Research Data
Permanent URI for this collectionhttps://hdl.handle.net/10217/170617
Browse
Browsing Research Data by Author "Bai, Hedanqiu"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Data associated with “Adapting the COSP Radar Simulator to Compare GCM Output and GPM Precipitation Radar Observations”(Colorado State University. Libraries, 2021) Riley Dellaripa, Emily M.; Funk, Aaron; Schumacher, Courtney; Bai, Hedanqiu; Spangehl, ThomasComparisons of precipitation between general circulation models (GCMs) and observations are often confounded by a mismatch between model output and instrument measurements, including variable type and temporal and spatial resolution. To mitigate these differences, the radar-simulator Quickbeam within the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP) simulates reflectivity from model variables at the sub-grid scale. This work adapts Quickbeam to the dual-frequency Precipitation Radar (DPR) onboard the Global Precipitation Measurement (GPM) satellite. The longer wavelength of the DPR is used to evaluate moderate-to-heavy precipitation in GCMs, which is missed when Quickbeam is used as a cloud radar simulator. Latitudinal and land/ocean comparisons are made between COSP output from the Community Atmospheric Model version 5 (CAM5) and DPR data. Additionally, this work improves the COSP sub-grid algorithm by applying a more realistic, non-deterministic approach to assigning GCM grid box convective cloud cover when convective cloud is not provided as a model output. Instead of assuming a static 5% convective cloud coverage, DPR convective precipitation coverage is used as a proxy for convective cloud coverage. For example, DPR observations show that convective rain typically only covers about 1% of a 2°grid box, but that the median convective rain area increases to over 10% in heavy rain cases. In our CAM5 tests, the updated sub-grid algorithm improved the comparison between reflectivity distributions when the convective cloud cover is provided versus the default 5% convective cloud cover assumption.