Theses and Dissertations
Permanent URI for this collection
Browse
Browsing Theses and Dissertations by Author "Alzahrani, Saleh Ibrahim, author"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access A comparison of tri-polar concentric ring electrodes to disc electrodes for decoding real and imaginary finger movements(Colorado State University. Libraries, 2019) Alzahrani, Saleh Ibrahim, author; Anderson, Charles W., advisor; Vigh, Jozsef, committee member; Rojas, Don, committee member; Abdel-Ghany, Salah, committee memberThe electroencephalogram (EEG) is broadly used for diagnosis of brain diseases and research of brain activities. Although the EEG provides a good temporal resolution, it suffers from poor spatial resolution due to the blurring effects of volume conduction and signal-to-noise ratio. Many efforts have been devoted to the development of novel methods that can increase the EEG spatial resolution. The surface Laplacian, which is the second derivative of the surface potential, has been applied to EEG to improve the spatial resolution. Tri-polar concentric ring electrodes (TCREs) have been shown to estimate the surface Laplacian automatically with better spatial resolution than conventional disc electrodes. The aim of this research is to study how well the TCREs can be used to acquire EEG signals to decode real and imaginary finger movements. These EEG signals will be then translated into finger movements commands. We also compare the feasibility of discriminating finger movements from one hand using EEG recorded from TCREs and conventional disc electrodes. Furthermore, we evaluated two movement-related features, temporal EEG data and spectral features, in discriminating individual finger from one hand using non-invasive EEG. To do so, movement-related potentials (MRPs) are measured and analyzed from four TCREs and conventional disc electrodes while 13 subjects performed either motor execution or motor imagery of individual finger movements. The tri-polar-EEG (tEEG) and conventional EEG (cEEG) were recorded from electrodes placed according to the 10-20 International Electrode Positioning System over the motor cortex. Our results show that the TCREs achieved higher spatial resolution than conventional disc electrodes. Moreover, the results show that signals from TCREs generated higher decoding accuracy compared to signals from conventional disc electrodes. The average decoding accuracy of five-class classification for all subjects was of 70.04 ± 7.68% when we used temporal EEG data as feature and classified it using Artificial Neural Networks (ANNs) classifier. In addition, the results show that the TCRE EEG (tEEG) provides approximately a four times enhancement in the signal-to-noise ratio (SNR) compared to disc electrode signals. We also evaluated the interdependency level between neighboring electrodes from tri-polar, disc, and disc with Hjorth's Laplacian method in time and frequency domains by calculating the mutual information (MI) and coherence. The MRP signals recorded with the TCRE system have significantly less mutual information (MI) between electrodes than the conventional disc electrode system and disc electrodes with Hjorth's Laplacian method. Also, the results show that the mean coherence between neighboring tri-polar electrodes was found to be significantly smaller than disc electrode and disc electrode with Hjorth's method, especially at higher frequencies. This lower coherence in the high frequency band between neighboring tri polar electrodes suggests that the TCREs may record a more localized neuronal activity. The successful decoding of finger movements can provide extra degrees of freedom to drive brain computer interface (BCI) applications, especially for neurorehabilitation.Item Open Access P300 wave detection using Emotiv EPOC+ headset: effects of matrix size, flash duration, and colors(Colorado State University. Libraries, 2016) Alzahrani, Saleh Ibrahim, author; Anderson, Charles W., advisor; Vigh, Jozsef, committee member; Gavin, William, committee memberBrain-computer interfaces (BCIs) allow interactions between human beings and comput- ers without using voluntary muscle. Enormous research effort has been employed in the last few decades to design convenient and user-friendly interfaces. The aim of this study is to provide the people with severe neuromuscular disorders a new augmentative communication technology so that they can express their wishes and communicate with others. The research investigates the capability of Emotiv EPOC+ headset to capture and record one of the BCIs signals called P300 that is used in several applications such as the P300 speller. The P300 speller is a BCI system used to enable severely disabled people to spell words and convey their thoughts without any physical effort. In this thesis, the effects of matrix size, flash duration, and colors were studied. Data are collected from five healthy subjects in their home environments. Different programs are used in this experiment such as OpenViBE platform and MATLAB to pre-process and classify the EEG data. Moreover, the Linear Discriminate Analysis (LDA) classification algorithm is used to classify the data into target and non-target samples.