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ABSTRACT 
 
 
 

UNMANNED AERIAL SYSTEMS FOR FOREST STRUCTURE MAPPING:  

ASSESSMENTS OF AREA-BASED AND INDIVIDUAL TREE MONITORING 
 
 
 

Characterization of forest structure is important for management-related decision 

making, especially in the wake of disturbance. Increasingly, observations of forest structure are 

needed at both finer resolution and across greater extents in order to support managers in 

meeting spatially explicit objectives. Current methods of acquiring forest measurements can be 

limited by a combination of time, expense, and either extent or temporal resolution. Drone or 

UAS-based photogrammetry provides an airborne method of forest structure data acquisition 

at a significantly lower cost and time commitment when compared to existing methods of such 

as airborne laser scanning (LiDAR). A growing body of literature confirms UAS-based 

photogrammetry models can be as detailed as conventional LiDAR models. However, there 

exists a knowledge gap in best practice for data acquisition parameters and assessment of 

accurate characterization within forest photogrammetry. The following two chapters utilize 

large stem mapped sites to fill that knowledge gap by 1) systematically testing the effects of 

UAS flight speed and altitude on plot-based aboveground biomass modeling through 

photogrammetry and 2) evaluating several algorithms for detecting individual tree locations 

and characterizing crown areas. Results show a strong positive relationship between flight 

altitude and aboveground biomass modeling, with all UAS flights evaluated above 80 m 

altitude, providing better results (2-24% more variance explained) than contemporary LiDAR 
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modeling strategies. Additionally, results demonstrate that the probability of detecting 

individual trees decays moving from the dominant overstory to suppressed trees, 

corresponding to >97% at the top of the canopy and decreasing to 67% for trees in the 

understory. Our results indicate the potential for UAS photogrammetry to produce highly 

detailed maps of forest biomass, as well as capture variation of forest structure through the 

detection of trees and tree groups. Such high-resolution data has the potential to become a 

much-needed tool for monitoring forest structures to inform spatially explicit management 

objectives. Additionally, these studies reinforced how UAS photogrammetry can provide low-

cost repeat monitoring of forest conditions.  
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Chapter 1:  INFLUENCE OF UAS FLIGHT ALTITUDE AND SPEED ON 
ABOVEGROUND BIOMASS PREDICTION 

 
 
 
1.1 Introduction 

Forests provide a variety of natural and societal benefits, with complex interactions 

governing recruitment, growth, and mortality processes across multiple-scales (Pan et al., 2013; 

Anderegg et al., 2015). In order to maximize these benefits, forest managers are increasingly 

acknowledging the need to monitor and manage forest structure at spatio-temporal scales, 

which accurately describe the spatial variability in forest dynamics (Briggs et al., 2017). Such 

forest management decisions require data that represent the continuous nature of ecological 

phenomena such as structures supportive of wildlife habitat (Vogeler et al., 2016). Complex 

ecological processes in forests that govern recruitment, growth, and mortality occur at the 

scale of tree-tree interactions (Dickinson et al., 2016). Traditional forest inventory methods, 

typically consisting of plot-based networks of in situ measurements, are limited in their ability 

to represent these cross-scale ecological processes and forest spatial arrangements (Lutz, 

2015). Despite the need for more continuous methods for characterizing forest structure across 

landscapes, the acquisition of plot networks of sufficient spatial and temporal resolution is 

limited by financial constraints (Torresan et al., 2016). 

The development of aerial Light Detection and Ranging (LiDAR) techniques for providing 

spatially continuous observations of forest structure has revolutionized the incorporation of 

landscape-level information in the decision-making process (Hudak et al., 2009; Nelson, 2013). 

LiDAR has been shown to produce reliable area-based estimates of forest density (i.e., basal 
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area per hectare; Hudak et al., 2006) and biomass (Bouvier et al., 2015), while also providing 

reasonable individual tree observations of height and volume (Tinkham et al., 2016). Despite 

these recent innovations, LiDAR data acquisition can be cost prohibitive as the price of crew 

mobilization alone starts at >$20,000 (Hummel et al., 2011). This price can preclude low-

productivity forest ecosystems from using the technology, as the value of the forest resource 

must justify the expense of data acquisition for effective management. Smaller land 

management organizations, which are unable to justify the cost, are commonly prevented from 

employing these techniques to inform their planning process. Larger organizations that can 

bear the initial cost may still find it impractical to obtain LiDAR at a temporal resolution suitable 

for monitoring forests responding to combinations of climatic, disturbance, or management 

influences (Mitchell et al., 2017). As ecological management drives increased demand for 

frequent, fine-scale observations of forest structure, new methods of forest structure 

characterization require further development. 

Unmanned Aerial Systems (UAS) are uniquely positioned to meet the demand for fine-

scale observations of forest structure by providing spatially-continuous observations at a higher 

temporal resolution. Professional grade UAS have recently become more accessible to 

consumers with entry costs under $2,000. Despite the low price point, UAS typically have high-

accuracy GPS receivers, automated inertial navigation systems, object detection/avoidance, 

and improved sensors for very high-resolution (VHR; < 10 cm) remote sensing (Torresan et al., 

2017). This combination of technologies is ideal for photogrammetry, which requires high-

resolution, spatially-accurate images. Autopilot technology allows users with minimal technical 

training to operate UAS for repeatable photogrammetry surveys, with commonly used flight 
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planning applications, including PrecisionMapper, Pix4Dcapture, DroneDeploy, DJI Ground 

Station Pro, and Altizure. UAS-mounted sensors are starting to surpass the spatial resolution 

previously only seen in aircraft-based remote sensing, while integrated control and navigation 

systems are becoming better equipped to maximize the sensor’s potential. Preliminary studies 

have evaluated both fixed-wing and multirotor UAS platforms equipped with a range of sensors 

for data collection, including consumer and professional grade RGB compact camera systems, 

among others (Wallace et al., 2016; Fritz et al., 2013; Zarco-Tejada et al., 2014; Webster et al., 

2018; Thiel & Schmullius, 2016). The high-cost and temporal resolution limitations of LiDAR are 

where UAS can fill data needs for forest management organizations; UAS cost orders of 

magnitude less than aircraft-based LiDAR acquisitions and can be flown as often as favorable 

conditions are met. Despite their potential, UAS are currently limited in the area that can be 

covered in a single acquisition by relatively short flight times due to battery capacity and 

governmental regulations requiring pilots to maintain a line of sight or visual contact with the 

platform at all times. Additionally, UAS are known to be impacted by changing light conditions 

during acquisition (O’Connor et al., 2017) and high winds, which can lead to errors in image 

matching (Iglhaut et al., 2019). While UAS have limitations, the low cost of deployment and the 

ability to collect VHR data demonstrates a niche for more frequent monitoring at the stand-

scale that UAS can provide.  

Over the last decade, numerous studies have utilized UAS to generate VHR two-

dimensional orthomosaic maps (Torrez-Sanchez et al., 2015; Fraser & Congalton, 2018) and 

three-dimensional point clouds of forest structure and terrain using various Structure from 

Motion (SfM) processing algorithms (Thiel & Schmullius, 2016; Frey et al., 2018). SfM 
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algorithms identify common points within overlapping images and, through a geometric 

process utilizing the position and rotation of captured images, a three-dimensional point cloud 

is generated (Frey et al., 2018). Due to the high degree of overlap, SfM point clouds can have 

data densities in excess of 1,000 points m-2 compared to LiDAR’s common 4-30 points m-2, and 

therefore have the potential to better capture the fine-scale complexity of forest structure than 

LiDAR. Additionally, recent studies have found that including UAS orthomosaic spectral data in 

SfM modeling resulted in it being a significant parameter in 80% of models predicting forest 

biomass (Domingo et al., 2019).  

Early UAS research has revealed that the accuracy of forest structure estimates varies 

based on data acquisition parameters such as forward and side image overlap, flight altitude, 

and speed. Dandois et al. (2015) demonstrated that increasing the levels of forward and side 

overlap until at least 80% led to improved location and height accuracies in forested 

environments. When controlling forward and side overlap separately, Seifert et al. (2019) found 

that maintaining high (>90%) forward overlap with lower side overlap (~70%) provided a 

balance between data accuracy, flight time, area coverage, and data processing time. Most 

studies have concluded that forward overlap should be maximized as it does not impact flight 

time or the area covered in a single acquisition. In contrast, side overlap can be reduced 

depending on data objectives to achieve a larger acquisition area. 

Several studies have evaluated the influence of flight altitude on data quality and forest 

structure characterization accuracy with conflicting results. Seifert et al. (2019) found that low 

altitude flights within 15-20 m of the vegetation canopy resulted in significantly more image 

registration points with improved precision. However, Fraser & Congalton (2018) found that 
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flying at 100 m above the vegetation canopy provided the best image alignment. Additionally, 

Torres-Sánchez et al. (2015) found no significant impact of altitude on object-based canopy 

parameter extraction. Faced with these conflicting results, it is necessary to standardize flight 

acquisition parameters for a consistent interpretation of UAS survey results across different 

environments and methods. Additionally, each of these studies evaluated how altitude 

impacted image alignment for study areas at similar forests to understand the role of forest 

structure characterization on end-product forest measurements.  

While these results indicate a range of optimal parameters for UAS image alignment 

within different vegetation types, significant knowledge gaps exist for both guiding future 

image acquisition and the translation of parameter optimization to the accuracy of UAS-based 

forest structure characterization. There is, therefore, a significant need for systematic testing of 

flight survey parameters in order to quantify the impact of forest structure on SfM-derived 

point clouds (Torres-Sánchez et al., 2015).  

This study seeks to examine how flight altitude and speed impact UAS model reliability 

in explaining forest biomass compared to standard aerial LiDAR modeling strategies across a 

range of forest structures found in ponderosa pine (Pinus ponderosa var. scopulorum Dougl. Ex 

Laws.) dominated forests. Specifically, comparisons of variance explained, and precision 

between UAS- and LiDAR-based models of forest biomass will be examined through their 

response to flight altitude and speed. Additionally, this analysis will investigate how 

segmentation of SfM point clouds based on spectral indices impacts model performance. The 

effects of flight altitude and speed will be discussed in terms of data collection, processing 

times, and data density. 
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Figure 1.1. Five 60 x 100 m study areas at the Kaibab National Forest in Northern Arizona 
(KNF1: A, KNF2: B, KNF3: C) and Manitou Experimental Forest in Central Colorado (MEF1: D, 
MEF2: E), with the location of  KNF study area (red) and MEF study area (blue) displayed in 
panel F. 

1.2 Methods 

1.2.1 Study Area and Field Data 

This study was conducted across two ponderosa pine dominated forests with existing 

aerial LiDAR and stem mapped forest inventories in the central Rocky Mountains (Figure 1.1). 

Within these forested areas, five study units were selected to represent a range of forest 

densities. The first forest is the N1 forest dynamics site located within the Manitou 
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Experimental Forest on the Pike-San Isabel National Forest in Colorado, about 40 km northwest 

of Colorado Springs. The average elevation is 2,500 m, with a mild slope (< 5%) to the 

southeast. This location provides an example of a typical human-influenced montane 

ponderosa pine forest, as it was selectively logged between 1880 and 1886 (Boyden et al., 

2005). After logging, the forest was undisturbed with no significant fire since 1846 and only 

minor mountain pine beetle disturbance in the late 1970’s. During the 140 years following 

harvest activities, the N1 forest has since experienced several regeneration pulses that have led 

to varying forest densities, with minor components of Douglas-fir (Pseudotsuga menziesii 

(Mirb.) Franco var. glauca (Beissn.) Franco) and blue spruce (Picea pungens Engelm.) in the 

understory, Native grasses and a few low growing woody shrubs comprise the sparse 

understory vegetation. To control for variation in forest densities during testing, the N1 forest 

was divided into two separate study units for UAS data acquisition, hereafter referred to as 

MEF1 and MEF2 (Table 1.1).  

Table 1.1. Forest stand structure at the Manitou Experimental Forest (MEF) and Kaibab 
National Forest (KNF) study units, reported as mean (standard deviation) of 0.01 ha sampling 
unit.  

Study 
Area 

QMD 
(cm) 

Max Tree 
Height (m) 

Basal Area 
(m2 ha-1) 

Trees 
ha-1 

AGB* 
(tons ha-1) 

KNF1 
30.3 

(14.8) 
15.9 
(8.0) 

26.9 
(22.0) 

300 
(197) 

90.6 
(51.1) 

KNF2 
31.2 

(22.0) 
14.9 
(9.6) 

21.2 
(22.1) 

200 
(186) 

80.7 
(55.6) 

KNF3 
32.9 

(14.6) 
22.2 
(6.2) 

44.5 
(29.2) 

626 
(446) 

128.9 
(54.7) 

MEF1 
21.7 

(11.8) 
17.5 
(6.6) 

24.8 
(15.9) 

931 
(806) 

90.2 
(34.9) 

MEF2 
23.5 

(11.3) 
17.1 
(5.4) 

26.9 
(17.4) 

701 
(407) 

93.4 
(35.1) 

* aboveground biomass calculated using Jenkins et al., 2003 
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The Lookout Canyon forest dynamics site is located in the Kaibab National Forest in 

northern Arizona, approximately 65 km southeast of Kanab, Utah, at an elevation of 

approximately 2,400 m. The forest is primarily composed of ponderosa pine and was divided 

into three 4-hectare stands for thinning, including a control stand and two stands thinned to 9.2 

and 13.8 m2 ha-1 of basal area in 1993 (Table 1.1), hereafter KNF1, KNF2, and KNF3. Following 

thinning, quaking aspen (Populus tremuloides Michx.) began reestablishing within the 

understory alongside considerable pulses of ponderosa pine regeneration. A prescribed fire in 

an adjacent stand escaped in 1999 and burnt through the understory killing more than 600 

small diameter trees. 

All trees taller than 1.37 m were stem mapped at each of the five study units using a 

grid of known survey locations. For each mapped tree, the species, diameter at breast height 

(1.37 m; DBH), and height was recorded. Stem mapping of the 60 x 100 m study units (0.6 ha) 

was completed in July 2018 for MEF1 and MEF2 and in May 2019 for KNF1, KNF2, and KNF3. 

The study stem maps were divided into 10 x 10 m (0.01 ha; n = 60) sampling units. Each 

sampling unit was analyzed separately in the Central Rockies variant (Keyser & Dixon, 2008) of 

the Forest Vegetation Simulator (Dixon, 2002) to determine total aboveground biomass (AGB). 

Biomass was estimated as metric tons ha-1 using allometries from Jenkins et al. (2003) as 

implemented in the Forest Vegetation Simulator. 

1.2.2 UAS Data Acquisition 

UAS image data was collected using a DJI Phantom 4 Pro (Dá-Jiang Innovations Science 

and Technology Co. Ltd., Shenzhen, China) multirotor equipped with a 20-megapixel (5472 x 

3648 pixels) metal oxide semiconductor (CMOS) red-green-blue (RGB) sensor, with a fixed 8.8 
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mm focal length (Figure 1.2A). For all image acquisitions, the camera was set to infinity focus, 

with an aperture (F-stop) of 5.6, a shutter speed of 1/500s, and ISO values ranging from 100 to 

200 depending on lighting conditions. The aircraft recorded geolocation (x, y, and z) and camera 

parameter values for each captured photo to a manufacturer-stated vertical accuracy of ±0.5 m 

and horizontal accuracy of ±1.5 m (https://www.dji.com/phantom-4-pro).      

 

Figure 1.2. (A) DJI Phantom 4 Pro aircraft at KNF study area. (B) Conventional UAS survey 

depicting the automated route generated by Altizure. The white circles represent approximate 

camera capture locations for a flight 120 m above ground level.  

Flight planning and execution were performed using Altizure version 4.6.8.193 

(Shenzhen, China) for Apple iOS. The application was utilized to pre-program automated UAS 

flight paths with desired altitude, forward and side photo overlap, flight speed, exposure, 

aperture and shutter speed (Figure 1.2B). To better understand the optimal altitude for 

generating photogrammetric models of forest structure, 40 independent UAS flights were 

planned (8 acquisitions per study area) at randomly chosen altitudes ranging from 40 to 120 m 

above ground level.  Three flight speeds were systematically assigned to each altitude, including 

2, 3, and 4 m sec-1. This study utilized a nadir camera angle, with 90% forward and 90% side 

photo overlap for all data acquisitions. This overlap combination was selected based on 

previous research that suggested that forward and side overlaps greater than 80% improved 

https://www.dji.com/phantom-4-pro
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image alignment, improved tree height estimation, and reduced understory occlusion in UAS 

surveys (Dandois et al., 2015; Frey et al., 2018). 

An adaptive flight boundary methodology was used to maintain a constant number of 

flight lines and photo density or the number of photos viewing the same location at each of the 

desired altitudes. Initial testing showed that failing to increase flight boundary dimensions as 

altitude increases led to fewer flight lines and photos, resulting in reduced data density for the 

point cloud generation. In order to implement this methodology, 10% of the camera footprint 

(widths and lengths in meters) was determined across different altitudes and multiplied by 10 

to ensure maximum photo density at the center of the study area. This resulted in flight 

boundaries varying between 80 x 110 m and 161 x 110 m at flight altitudes of 40 and 120 m, 

respectively. At the Kaibab study units, it was determined that three of the randomly assigned 

UAS surveys could not be completed due to concerns of collision with the canopy at the lowest 

altitudes (<45 m), resulting in a total of 37 flights. 

All UAS surveys were flown between April and August 2019 and within three hours of 

solar noon to maintain a minimum solar angle of 50° from the horizon. All flights were 

conducted within the line of sight of the remote pilot in command with the assistance of a 

visual observer to comply with Part 107 Federal Aviation Administration regulations. 

1.2.3 Ground Control Points 

The methodology for ground control point (GCP) implementation followed the 

procedures outlined in the Australian Photogrammetry for Forest Inventory Planning Guide 

(Osborn et al., 2017). Ten high visibility ~0.2 m2 GCPs were collected using a Trimble GeoXT 

(Trimble Inc., Sunnyvale, CA, USA) with SBAS real-time corrections for each of the five study 
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units with accuracies of <1 m. All points were placed to account for visibility from the air with 

the UAS. Four points were set as close to each corner as possible, one along each long edge and 

the remaining four points were distributed throughout the center (Figure 1.2). The GCPs were 

differentially corrected using Trimble Pathfinder Office software. GCPs were imported into 

ArcGIS 10.6.1 (ESRI Inc.; Redlands, CA, U.S.A.), and projection was defined as the WGS 1984 

coordinate system to match the UAS imagery. Latitude, longitude, and altitude were then 

exported for use in georectifying the UAS imagery.  

1.2.4 UAS Structure from Motion Point Cloud Generation Data Processing  

Agisoft Metashape version 1.5.3 (www.agisoft.com; Agisoft LLC, St. Petersburg, Russia) 

was used to implement a SfM photogrammetry algorithm. SfM algorithms generate 3D point 

clouds by identifying image features and GCPs in each image and using these features to align 

the images in space. After these matches are found, a photogrammetric sparse bundle 

adjustment calculates the 3D location of each of the images in space using the camera 

parameters and the 3D geometry of the objects found within the images (Dandois et al., 2015). 

The Agisoft Metashape processing was implemented through a cloud server utilizing a 2.7 Ghz 

Intel Xeon E5 2686 V4 computer processor unit with two NVIDIA Tesla M60 graphics cards, and 

a total of 240 gigabytes of random-access memory. 

The Agisoft Metashape workflow closely followed the processing methodology found in 

the Agisoft Photoscan user manual (Link, 2017), with the only departure including local testing 

of the dense cloud and depth filter settings. Using the MEF1 95 m acquisition, the 20 possible 

combinations of the Agisoft Metashape build dense cloud quality settings and depth filtering 

settings were tested on this photo dataset, resulting in 20 unique point clouds with different 

http://www.agisoft.com/
https://www.agisoft.com/pdf/photoscan-pro_1_3_en.pdf


12 
 

point cloud densities and processing times. From this it was determined that SfM setting in 

Agisoft Metashape for forest reconstruction in this study would be set to High quality and Mild 

depth filtering as these settings provided a balance between data density and processing time 

and align with settings commonly used in other studies (Fraser & Congalton, 2018; Goldbergs et 

al., 2018). The full suite of selected Agisoft Metashape settings for image dataset processing is 

depicted in Appendix Table 1.1. 

Each of the SfM point clouds were exported from Agisoft Metashape with UTM Zone 

13N and 12N projections for Colorado and Arizona, respectively. CloudCompare version 2.10.1 

(www.cloudcompare.org), a software designed for 3-dimensional point data comparison, was 

used to visually inspect each point cloud to ensure complete dense cloud reconstruction. 

Agisoft Metashape processing reports were also generated and checked to ensure similar 

processing errors across the point cloud models. Clouds with significant processing errors or 

incomplete reconstruction were reprocessed to ensure comparable accuracy and quality across 

the 37 surveys. 

1.2.5 LiDAR Datasets 

At the Manitou Experimental Forest sites aerial LiDAR data was acquired in August 2014 

at a nominal point density of 5.74 points m-2. Aerial LiDAR data for the Kaibab National Forest 

sites was acquired in the winter of 2012 at a nominal point density of 13.70 points m-2. The time 

difference between the LiDAR acquisitions and the field inventory corresponds to average tree 

height growths of 0.5 m at MEF and 1.1 m at KNF, derived from prior site inventories. The LiDAR 

point clouds were cropped to the five study unit extents and used as an industry standard for 

comparing the accuracy of the UAS modeled forest biomass.  
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1.2.6 Point Cloud Processing 

All 37 SfM UAS point clouds and the five aerial LiDAR point clouds were processed using 

LAStools version 1.2 (http://lastools.org). The LiDAR and SfM point clouds were initially clipped 

to a buffered extent of 90 m x 130 m to provide a margin around each of the five study areas 

and to prevent geometry irregularities known to occur at the edge of point clouds during 

processing. Point clouds were filtered to remove noise by selecting block minimum points and 

fitting a digital elevation model with a spline fit; points that fell below the digital elevation 

model were classified as noise and removed from further processing. The remaining points 

were classified as either ground or non-ground points.  

After filtering and classification, each point cloud was clipped to the final 60 x 100 m 

study unit extent. Points classified as ground were extracted from each point cloud and visually 

compared to the LiDAR ground points in CloudCompare, revealing a slight Z-axis misalignment 

between the SfM and LiDAR datasets. This misalignment is attributed to low vertical precision 

in the GCPs from overstory trees, causing some degree of GPS satellite signal occlusion. There 

was minimal observed x- and y-axis misalignment between the SfM and LiDAR ground points, 

which suggested that the GCPs had high horizontal precision. This SfM ground point cloud 

misalignment was corrected using the iterative closest point - fine alignment tool to develop a 

custom transformation matrix for each SfM point cloud that was applied to the full SfM point 

cloud to align it with the LiDAR point cloud. Following geometric transformation, each SfM and 

LiDAR point cloud was height normalized against their classified ground points.  

            The SfM points clouds were further processed to investigate how segmentation of the 

points based on spectral indices impacts the prediction of forest biomass. To train the point 
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segmentation, all filtered and classified point clouds at a study site were merged using LAStools 

and loaded into CloudCompare. From the merged point cloud, 15 random samples each of 

canopy and stem (each containing 20,000-60,000 points) were manually extracted to ensure 

pure representation of both stem and canopy points. These classified stem and canopy point 

samples were imported to the R statistical programming language (R core Team, 2019) using 

the lidR package (Roussel & Auty, 2019). From each point sample, the red and green reflectance 

data was used to calculate the Normalized Green-Red Ratio (NGRR) using Equation 1.  𝑁𝐺𝑅𝑅 = 𝐺𝑏𝑎𝑛𝑑−𝑅𝑏𝑎𝑛𝑑𝐺𝑏𝑎𝑛𝑑+𝑅𝑏𝑎𝑛𝑑                                               [Equation 1] 

 

Figure 1.3. Example density plot of the canopy (green) and stem (red) NGRR values sampled from 

SfM point clouds at the MEF1 study area, where overlapping distribution segments are brown. 

Red and green vertical lines represent the 90th and 10th percentile of the stem and canopy 

values, respectively.  

Visual inspection of density plots for the stem and canopy indexed points for each study 

site (Figure 1.3) showed segregation of NGRR values when the data was split with stem values 

less than their 90th percentile and canopy values greater than their 10th percentile. Across the 

five study units, the stem 90th percentile varied from -0.0096 to 0, and the canopy 10th 

percentile varied from 0 to 0.0747. These segmentation thresholds were used to segment the 
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SfM point clouds into three different categories for each of the 37 acquisitions: Stem, Canopy, 

and Standard, where Standard is the non-NGRR classified point cloud (Figure 1.4). 

1.2.7 Forest Biomass Modeling 

To develop models of aboveground biomass the three SfM point clouds for each of the 

37 UAS acquisitions and the five LiDAR point clouds were processed using the lascanopy utility 

in LAStools. This function generated 21 point cloud distributional metrics for each of the 60 

sampling units (Figure 1.1) that aligned with the FVS modeled AGB for each study unit. These 

distributional metrics included maximum, average, minimum, standard deviation of height, 

skewness, kurtosis, average square height, percentiles (5, 25, 50, 75, 90), bicentiles (5, 25, 50, 

75, 90), vertical complexity index (0, 1, 2), and percent canopy cover.  

At each site, the LiDAR point cloud distribution metrics were used to create baseline 

predictions of AGB using the randomForest package (Liaw and Wiener, 2002) of the R statistical 

programming language. In order to refine the number of predictors being used to model AGB, 

the Random Forest Model Selection tool (Murphy et al., 2010) was used to select the top five 

predictors in each model. The top five point cloud metrics for each dataset were used as 

predictor variables to model AGB using a series of random forest regressions with 10,000 trees 

each (Breiman, 2001), where the 60 sampling units were randomly divided into training 

observations (80% or n=48)  and validation observations (20% or n=12). The same process for 

modeling AGB was repeated for each UAS data acquisition using the Standard SfM point cloud 

distribution metrics and then again with the point cloud distribution metrics combined for the 

Standard, Stem, and Canopy datasets, referred to as Standard + NGRR hereafter. In total, 74 
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UAS random forest models (37 Standard SfM and 37 Standard + NGRR SfM) were compared 

against the five LiDAR random forest models for the same respective study unit. 

 

Figure 1.4. Example point clouds and density histograms for high biomass (top panels) and low 

biomass locations (bottom panels), including LiDAR (A and E), Standard SfM (B and F), Stem SfM 

(C and G), and Canopy SfM (D and H). 

1.2.8 Model Evaluation 

The 74 SfM random forest models were evaluated by relativizing them against their 

respective LiDAR random forest model through the calculation of percent change in model 

performance metrics of the Coefficient of Determination (∆R2; Equation 2), Root Mean Squared 

Error (∆RMSE; Equation 3), and Mean Absolute Error (∆MAE; Equation 4). 

∆𝑅2 = 𝑆𝑓𝑀 𝑅𝑖𝑗2 −𝐿𝑖𝐷𝐴𝑅 𝑅𝑖2𝐿𝑖𝐷𝐴𝑅 𝑅𝑖2 × 100    Equation 2 

∆𝑅𝑀𝑆𝐸 = 𝑆𝑓𝑀 𝑅𝑀𝑆𝐸𝑖𝑗−𝐿𝑖𝐷𝐴𝑅 𝑅𝑀𝑆𝐸𝑖𝐿𝑖𝐷𝐴𝑅 𝑅𝑀𝑆𝐸𝑖 × 100   Equation 3 

∆𝑀𝐴𝐸 = 𝑆𝑓𝑀 𝑀𝐴𝐸𝑖𝑗−𝐿𝑖𝐷𝐴𝑅 𝑀𝐴𝐸𝑖𝐿𝑖𝐷𝐴𝑅 𝑀𝐴𝐸𝑖 × 100   Equation 4 
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Where i denotes an individual study site, while j signifies the individual UAS acquisitions within 

that site. These relativized metrics should be interpreted as positive values of ∆R2 indicating 

percentage improvement of the UAS model over the LiDAR model, while negative values of 

∆RMSE and ∆MAE indicate percentage reductions in the UAS model compared to the LiDAR 

model. To standardize the effect of altitude on model performance across the five sites, the 

effect of altitude was also evaluated as a ratio (A:LH; Equation 5) of altitude (A) compared to 

Lorey’s Mean Height (LH; Equation 6). 𝐴: 𝐿𝐻 = 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 (𝑚)𝐿𝐻(𝑚)      Equation 5 

𝐿𝐻 = ∑ 𝑔×ℎ∑ 𝑔       Equation 6 

Where g is a tree’s basal area (m2) and h is a tree’s height (m), meaning that LH can be 

interpreted as the weighted height of the forest were a stand with more regeneration will see 

this value be less than the arithmetic mean. The model performance metrics ∆R2, ∆RMSE, and 

∆MAE were all evaluated as a function of altitude and LH. 

To evaluate the relationship between Standard UAS random forest model performance 

metrics with UAS data acquisition flight altitude and speed, linear mixed-effects regression was 

performed. In this analysis, the 37 combinations of UAS acquisition altitude and speed were 

treated as fixed effects, while the five study sites were treated as a random-effect. Additional 

covariates of stand-level forest structure and AGB were also evaluated for their influence on 

model performance. While testing for interactions, a stepwise procedure was used to identify 

the best subset of explanatory factors that minimized the Akaike Information Criterion (AIC). All 

regression was performed using lme4 packages (Bates et al., 2015) of the R statistical 

programming language. 
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Finally, after pooling the important point cloud distribution metrics from each random 

forest model, they were evaluated based on the proportion of models they appeared in. This 

analysis was extended to contrast the changes in important distribution metrics for the 

Standard SfM models with the Standard + NGRR SfM models. 

1.3 Results  

1.3.1 LiDAR AGB Model Performance 

The five aerial LiDAR random forest model results for AGB varied across the study sites, 

with R² averaging 0.539 (range 0.424 - 0.666). However, R2 values for the three MEF study sites 

were 0.129 higher than those for the two KNF study sites. Additionally, the KNF study sites had 

nearly twice as much variation in the 0.01 ha sampling units for AGB, basal area ha-1, and max 

tree heights compared to the MEF sites (Table 1.1). Similar contrasts in model performance 

were found in RMSE, which ranged from 23.9 to 56.8 tons ha-1, and MAE, which ranged from 

15.8 to 55.1 tons per ha-1. Variation in these metrics across the five study sites followed the 

same trend as the R² values. 

1.3.2 Standard AGB Model Performance 

Random forest AGB model performance for Standard UAS SfM parameters compared to 

LiDAR models of AGB varied across flight altitudes (Figure 1.5). The lowest altitude UAS 

acquisitions at each study site failed to reconstruct the vertical profile of the vegetation and 

provided substantially worse results compared to the LiDAR predictions (average ∆R2 = -20.6%). 

For acquisitions that correctly generated SfM point clouds, the average ∆R2 was 4.4%, with 

model performance generally improving with increased altitude. Linear mixed-effects modeling 

of ∆R2 as a function of flight altitude and speed demonstrated a significant effect of flight 
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Figure 1.5. Comparison of Standard (panels A, C, & E) and Standard + NGRR (panels B, D, & F) 

AGB model performance metrics relativized to LiDAR, including percent ∆R2 (panels A & B), 

∆RMSE (C & D), and ∆MAE (E & F). The panel is split to show the influence of altitude above 

ground (left) and the ratio A:LH (right). Points in black circles represent acquisitions that failed to 

reconstruct the forest canopy.  
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altitude on ∆R2, but not flight speed (Table 1.2). Average ∆R2 varied from nearly a 20% 

reduction in prediction performance at the lowest altitudes to nearly a 20% improvement in 

prediction performance over the LiDAR models at the highest altitudes (Figure 1.6). Similar 

improvements with increased altitude were seen for Standard UAS SfM models of AGB for 

∆RMSE and ∆MAE (Figure 1.5). For models correctly generating SfM point clouds, the ∆RMSE 

and ∆MAE were reduced by 5.1% and 6.9%, respectively.  

Table 1.2. Linear mixed-effects model of the influence of flight altitude and speed on change in 

aboveground biomass model R2. The five study sites were treated as a random effect. 

Parameter Coefficient Standard Error t-value p-value 

Standard Flight Altitude 

Intercept -30.272 10.401 -2.910 0.0067 

Altitude (m) 0.403 0.082 4.908 <0.001 

Speed (m s-2) -0.574 2.325 -0.247 0.8068 

Relativized Flight Altitude 

Intercept -30.403 10.134 -3.000 0.0053 

Lorey’s Height 7.996 1.594 5.018 <0.001 

Speed (m s-2) -0.606 2.316 -0.261 0.7955 

 

Figure 1.6. Linear mixed-effects model results for the 37 Standard SfM AGB models. 
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Standard UAS SfM parameters always resulted in improved model performance at the 

highest altitudes, with altitudes at which models began outperforming LiDAR models varying 

from ~80 to 100 m (Figure 1.5). Standardizing flight altitude as a ratio of altitude divided by 

Lorey’s Height tightens this threshold for outperforming the LiDAR models to 4-4.5 times the 

site’s Lorey’s Height. Similar to flight altitude, Lorey’s Height significantly explains the variation 

in ∆R2 (Table 1.2). The linear mixed-effects model indicates that for every Lorey’s Height that 

acquisition altitude increases there is an ~8% improvement in ∆R2, indicating that at four times 

Lorey’s Height UAS SfM modeling of AGB typically exceeds the performance of aerial LiDAR 

models in ponderosa pine dominated systems (Figure 1.6).  

1.3.3 Standard + NGRR AGB Model Performance 

Integration of Standard + NGRR UAS SfM parameters for AGB modeling provided a 6.0% 

average increase in ∆R2 across all flights compared to the modeling only using the Standard SfM 

parameters (Figure 1.5). This increase was found to be significant (p-value = 0.0181) when 

tested with a paired Wilcoxon signed rank test. Although there was not a significant difference 

(p-value = 0.5453) in the ∆MAE, the Standard + NGRR models did significantly (p-value = 

0.0284) decrease ∆RMSE by 6.5% compared to models only using the Standard SfM parameters. 

Linear mixed-effects model coefficients for the Standard + NGRR SfM models revealed no 

significant differences compared to the Standard SfM linear mixed-effects models.  

1.3.4 AGB Model Variable Importance 

For the Standard SfM models of AGB the five most important variables fluctuated across 

models, but seven variables stood out from the rest and showed up in at least 40% of these 

models (Figure 1.7A). Across all flight altitudes and sites, the average height of points above  



22 
 

 

Figure 1.7. Random forest variable importance for Standard (A) and Standard + NGRR (B), values 

are sorted based on the percentage of the 37 models they appeared in for each grouping. 
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ground showed up in 74% of all models (or 27 of 37 models) and was the highest ranked 

variable in nearly 40%. The remaining six variables that were highly selected varied in being in 

43 to 57% of models, with their importance metrics level fluctuating. These seven metrics 

accounted for 73.7% of all metrics selected in the Standard SfM models. 

The top seven variables from the Standard metrics did not change even after including 

the NGRR segmented point cloud metrics (Figure 1.7B). However, these seven metrics only 

accounted for 56% of all selected metrics when the Standard and NGRR metrics were 

considered. This reduction was due to 17.8 and 4.9% of all selected variables being chosen from 

the Stem and Canopy distributional metrics, respectively. Of these NGRR metrics, only Stem 

average height, average squared height, and vertical complexity 1 were important in more than 

10% of models (Figure 1.7B). Additionally, none of the Canopy distributional metrics occurred in 

more than 2 of the 37 models. 

1.4 Discussion  

1.4.1 AGB Model Performance 

This study evaluated the impact of flight altitude and speed on UAS SfM plot-based 

modeling of aboveground biomass, with UAS modeling outperforming LiDAR at higher altitudes. 

Across all sites, UAS acquisitions above 80 m AGL resulted in improved model performance 

compared to aerial LiDAR; above this altitude relative to LiDAR models R2 increased on average 

by 7.4% and RMSE and MAE were decreased by 8.8 and 10.9%, respectively (Figure 1.5). While 

the authors could not identify other studies that have seen this relationship for UAS biomass 

modeling, inference might be drawn from studies looking at relationships between UAS SfM 

reconstruction quality and flight altitude. Fraser and Congalton (2018) tested the effect of flight 
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altitude on image alignment and found that flying at their highest tested altitude provided the 

best results. Other studies have not directly seen an influence of altitude on SfM vegetation 

reconstruction, but still concluded that flying higher provided the benefit of greater acquisition 

extents (Torres-Sanchez et al., 2015). This literature connects the small decrease in image 

resolution at higher altitudes with improved imaging matching by reducing the influence of 

vegetation movement in the wind (Iglhaut et al., 2019). There is reason to believe this improved 

image matching better represents vegetation vertical distributions and improves AGB modeling 

at the plot-level. However, there is reason to believe that continued increasing of flight altitude 

and decreasing of image resolution will at some point result in decreased performance in 

modeling forest attributes like AGB.  

While generally flying higher provided better model results, flying at altitudes too close 

to vegetation posed significant problems. Photogrammetric reconstruction of treetops was 

incomplete for the lowest altitudes tested at each site due to the proximity of the onboard UAS 

camera to the treetops. Failure to reconstruct the tops of trees led to inaccurate point cloud 

distributional metrics and resulted in poor AGB biomass model performance in our study 

(Figure 1.8). This truncation at the top of the point cloud can be seen in Figure 1.8, where the 

worse models represent low altitude flights that failed to reconstruct the tops of trees. The 

dependency of reconstruction on altitude is attributed to the proximity of treetops to the 

sensor, when the vegetation is too close, there is not sufficient photo overlap at the top of the 

tree compared to the programmed 90% forward and 90% side overlaps at the ground surface. 

While it varied across sites, consistent point cloud generation was achieved for all flights above 

65 m altitude or ~1.9 times the maximum tree height within a given site. While lower altitude 
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UAS acquisitions can provide greater resolution, studies that require close proximity acquisition 

of forest canopies should consider increasing the photo overlap to compensate for the depth of 

vegetation. Therefore, as the height of vegetation increases, the flight altitude needed to 

reconstruct forest canopies should increase as well. 

 

Figure 1.8. Relative point density as a function of height above ground for the best and worst 

Standard SfM AGB models (green and red respectively) at each site (from left to right KNF1, 

KNF2, KNF3, MEF1, and MEF2), with LiDAR point cloud distributions displayed in black.  

Standardizing altitude as a ratio of Lorey’s Height for each flight provided better 

consistency for interpreting the relationship between UAS flight altitude and vegetation height. 

All flights above four times a site’s Lorey’s Height resulted in improved model performance, 

with an average increase of 7.8% for R2 and decreases of 9.3 and 11.6% for RMSE and MAE, 

respectively (Figure 1.5). Currently, it is difficult to evaluate the effects of altitude in different 

vegetation types, as it has not become common practice to report vegetation height or its 

relationship to flight altitude. Standardization of this is necessary within the UAS literature to 

improve cross-study synthesis of results. While flying above four times a site’s Lorey’s Height 

promotes improved AGB modeling within these forest systems, understanding the transference 

of this to forest systems that can reach dominant tree heights in excess of 40 m need 

investigation. Such work within the United States will need to address FAA regulations limiting 

UAVs to 120 m AGL flight altitudes. 
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Our results did not find a statistically significant effect of flight speed on resultant AGB 

models (Table 1.2), which could be attributed to the narrow range of relatively slow flight 

speeds (2-4 m sec-1) evaluated. These findings differ from O’Connor et al. (2017), which found 

that increased flight speed causes image blurring, location errors, and, therefore, increased 

image alignment errors. While there is reason to believe this should propagate through to the 

modeling of forest attributes like AGB, it does not appear the moderate increases in flight 

speed tested in this study detrimentally impacted UAS SfM plot-based biomass modeling. 

Although not significant in this study, flight speed should remain an important consideration in 

planning UAS-based forest remote sensing. The effects of flight speed on modeling forest 

attributes like AGB need to be evaluated across a wider range of speeds and cross compared 

between sensor (rolling vs global shutter) and UAS platform types (multi-rotor vs fixed-wing; 

Zarco-Tejada et al., 2014).  

Inclusion of the NGRR point cloud distribution metrics significantly improved the 

prediction of AGB in terms of variance explained (∆R2) and precision (∆RMSE) over the Standard 

point cloud predictions. When NGRR metrics were included, they accounted for ~23% of 

important random forest predictors, with ~18% of them coming from the Stem point cloud 

metrics. The improved model performance, despite using only RGB spectral information, 

suggests that spectral segmentation of photogrammetric point clouds may be a powerful tool 

for improving models of forest structural attributes. Our results are shared by other studies, 

which found that including spectral indices from image orthomosaics as predictors of forest 

structure and biomass significantly improved model performance (Domingo et al., 2019). There 

is reason to believe more advanced segmentation and characterization of SfM points beyond 
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indices available from RGB imagery could further improve the modeling of forest biomass done 

in this study. The inclusion of a greater range of spectral data from more powerful multispectral 

sensors may contribute to better discernment between vegetation structural components 

within SfM point clouds. 

1.4.2 Implications for Forest Management 

Increasingly UAS are being utilized for characterizing forest structure across many 

ecosystems and forest management objectives (Kattenborn et al., 2014; Goldbergs et al., 2018; 

Navarro et al., 2020). Such UAS approaches can provide data at previously unachievable 

temporal and spatial resolutions with relatively low operational costs compared to similar 

datasets from aerial LiDAR. In order to transition UAS SfM forest structure monitoring from the 

research realm to a management tool, standardization of flight parameter reporting is critical. 

Without common reporting standards, synthesis and advancements in UAS research will be 

limited. This study highlights the potential of UAS SfM plot-based AGB modeling and the 

implications of flight altitude and speed while stating the importance of reporting altitude and 

vegetation height for improved data interpretation. 

Strong trends across all flights were found between altitude and data collection time, 

data processing time, and data density, all of which are important in UAS flight planning for 

forest mapping (Figure 1.9). Wider image footprints at higher altitudes provide more efficient 

flight times (~2 min ha-1), while there was a fivefold increase in flight times at the lowest 

altitude. Similarly, there are fewer images required at higher altitudes, resulting in SfM point 

cloud generation times varying from 10-60 min ha-1 moving from the highest to lowest 

altitudes. Conversely, the benefits of higher flight altitude on data collection and processing 
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time reverse, resulting in much lower point densities at the highest altitudes (~1,000 points m-2) 

compared to lower altitudes (~7,000 points m-2). While this is a strong gradient in data density, 

the highest altitude flights still provide greater than 50 times the point density of what is 

considered high quality aerial LiDAR data (Nelson, 2013). These results point to relatively rapid 

and reliable plot-based AGB modeling from UAS SfM at altitudes above four times a site’s 

Lorey’s Height. Additionally, moderate increases in UAS flight speed would amplify these 

benefits without detrimentally impacting model performance (Table 1.2). 

 

Figure 1.9. Evaluation of the effect of flight altitude above ground level on (A) filtered Standard 
SfM point cloud density, (B) SfM processing time in minutes ha-1, and (C) flight time in minutes 
ha-1, with black lines depicting Loess curves to represent data trend. 

The plot-based UAS modeling strategy used in this study appears to be effective at 

describing forest attributes that lend themselves to imputation methods, with the aerial LiDAR 

literature indicated it should lend itself to describing forest biomass, basal area, and volume. 

While this strategy was successful at describing plot and therefore stand-level AGB, further 
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exploration is needed to understand the potential of UAS to characterize things at both tree 

and landscape scales. The ultra-high resolution of UAS data products and potential to fuse 

spectral and structural characteristics should enable improved individual tree observations. 

Early testing of single tree extraction methods from UAS SfM data has successfully identified 

>90% of trees (Silva et al., 2016). Characterization of individual trees with such high reliability 

will enable modeling of future stand conditions. Additionally, UAS have the potential to serve as 

a sampling tool themselves, vastly increasing the amount of data available for training courser 

landscape-scale satellite-based models of forest biomass. Recent research has demonstrated 

techniques for scaling UAS observations to describe biomass at greater extents than the UAS 

was capable of characterizing (Navarro et al., 2019). 

1.5 Conclusion  

This study demonstrates the high potential of plot-based UAS photogrammetry for 

modeling ponderosa pine aboveground biomass. When flying at altitudes of more than four 

times a forest’s Lorey’s Height, UAS SfM biomass modeling resulted in a 7.8% improvement in 

R2 over aerial LiDAR. Additionally, segmenting the SfM point cloud based on the image spectral 

signature tied to individual points to look at Stem and Canopy distributions provided further 

substantial improvements to the AGB modeling. Beyond improved model performance, higher 

altitude UAS flights provide more efficient image acquisition and photogrammetry processing 

times of ~12 mins ha-1 as opposed to >70 min ha-1 at the lowest tested altitudes. This study 

highlights the role of UAS acquisition parameters on plot-based forest biomass modeling, while 

also showing the strong potential for UAS-based forest monitoring at increased temporal 
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frequencies than have been feasible from aerial LiDAR. Further work is needed to understand 

how such acquisition parameters might influence UAS-based single tree monitoring. 
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Chapter 2:  POTENTIAL FOR INDIVIDUAL TREE MONITORING IN PONDEROSA 
PINE-DOMINATED FORESTS USING UNMANNED AERIAL SYSTEM 
STRUCTURE FROM MOTION POINT CLOUDS 

2.1 Introduction 

Since the early 2000s, ecological management of dry lower-montane forest systems 

have increasingly focused on the variability and spatial arrangement of horizontal and vertical 

forest structure (Lydersen et al., 2013). This emphasis has grown alongside the body of 

literature supporting connections between forest resilience to disturbance and the level of 

variation in forest structure (Churchill and Larson, 2013). Silvicultural systems focused on 

altering forest spatial arrangement and variation can have impacts on overstory vertical 

complexity, microsite diversity, and future disturbance dynamics (Ziegler et al., 2017; Ma et al., 

2010). Management prescriptions that intend to enhance vertical structural complexity are 

often restoration-focused, in order to bring ponderosa pine systems back to the historic range 

of variability and increase resilience (Dickinson et al., 2016). The creation of appropriate gaps 

and variable size tree groupings has a direct effect on where seedlings establish and 

competition-based tree mortality (Lydersen et al., 2013). Standing dead trees can then become 

important nesting habitat or influence shaded microclimates needed for understory plants or 

young trees. The need to enhance forest structural diversity has led many land managers to 

emphasize treatment strategies that enhance variation in forest structure (Churchill and Larson, 

2013; Tinkham et al., 2017). Although managers have shown a desire to implement spatially 

informed silvicultural prescriptions that create variability, most monitoring tools available to 

them were not developed with spatial or heterogeneity management objectives in mind. 
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Fixed and variable radius plots have historically been the precedent for quantifying 

forest structure, however they assume forest homogeneity by focusing on average conditions 

of the forest (Dickinson et al., 2016). Small distributed plots (i.e., ≤ 1/10th acre) have been 

effective in the past at informing land managers of stand-level averages. However, such plots 

are limited in spatial extent and often use data collection protocols not designed for 

characterizing tree groups and opening arrangements that are critical in contemporary 

restoration approaches (Lutz, 2015). As a result, plot networks do not capture the spatial 

variability of forest structure necessary to meet changing restoration needs. Additionally, the 

relatively high expense of field data collection limits the temporal resolution of monitoring and 

treatment.   

Land managers are increasingly requiring novel methods of data collection in response 

to the need for monitoring of forest spatial variability (Dickinson et al., 2016). Such methods are 

being called upon to provide comprehensive and accurate vertical forest structure data that can 

capture both inter-tree relationships, variations in groups, and stand-level dynamics. At the 

same time, research has consistently shown a need to observe forest structure at a spatial scale 

one step larger than the phenomenon being studied (i.e., clumps of trees and openings; Lutz, 

2015). This combined need for higher resolution and complete coverage of management 

projects creates a unique methodological challenge. Exploration with a range of remote sensing 

strategies has shown hope for characterizing variation in horizontal forest structure with 

adequate resolution through both image spectral classification (Dickenson et al., 2016) and 

active sensor modeling (i.e., Light Detection and Ranging [LiDAR]; Zhen et al., 2016). 
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Image classification can characterize variation in metrics like canopy cover, it struggles 

to represent tree spatial patterns and metrics of vertical forest structure. With the advent of 

aerial LiDAR, forest managers found an inventory method of wall-to-wall coverage capable of 

capturing vertical heterogeneity in forests (Wulder et al., 2012). Although LiDAR can provide 

accurate estimates of forest structure, its cost limits repeat acquisitions for stand-level 

monitoring (Hummel, 2011). Additionally, although attempts to capture fine-scale tree-to-tree 

interactions have been successful through LiDAR individual tree detection (ITD) methods 

(Mielcarek et al., 2018), these techniques have been shown to represent dominant overstory 

trees most reliably. Beyond the tree locations and heights provided by ITD methods, various 

crown growing methods can characterize crown area using a set of rules on a pixel-by-pixel 

basis where locations of ITD detected trees are often used as starting “seeds”. Most literature 

on ITD methods points to LiDAR’s limited point density of 10 - 30 points m-2 as causing omission 

or underrepresentation in smaller size classes of trees (Li et al., 2012). While Canopy Height 

Models (CHMs) derived from aerial LiDAR typically range from 0.5 - 1 m resolution, the average 

spacing between LiDAR points can be as high as 0.62 m (Popescu et al., 2007). The relatively 

high resolution of LiDAR-derived CHM compared to the actual spacing between laser points can 

be attributed to the smoothing of data with a moving window that creates the appearance of a 

higher resolution than LiDAR allows. The high cost of LiDAR for individual management projects 

and its limited success in describing variation in smaller tree size classes has again drawn 

attention towards other methods of monitoring forest horizontal and vertical arrangement at 

fine spatio-temporal scales.  
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Unmanned aerial systems (UAS) have emerged as a lower-cost alternative to aerial 

LiDAR for local wall-to-wall horizontal and vertical forest structure characterization (Fraser & 

Congalton, 2018). Most commonly, UAS are deployed with standard RGB cameras, which allow 

for three-dimensional forest reconstruction through the application of Structure from Motion 

(SfM) photogrammetry algorithms (Torresan et al., 2017). The miniaturization of advanced 

imaging sensors and GPS technologies are facilitating low cost (i.e., < $2,000) UAS platforms for 

natural resource monitoring (Torresan et al., 2017; Maturbong et al., 2019; Mlambo et al., 

2017). Because of the low financial barrier to UAS platforms capable of accurately 

characterizing vertical forest structure, land managers are exploring new approaches that 

improve temporal resolution in forest monitoring (Westoby et al., 2012). Additionally, UAS SfM 

photogrammetry can provide data density well in excess of 1,000 points m-2, possibly enabling 

adaptation of LiDAR ITD methods for characterizing all tree size classes. Successful ITD across all 

tree size classes from UAS's higher data density could enable accurate spatial characterization 

of individual trees within different canopy strata and lead to better representations of local 

forest neighborhoods and heterogeneity (Dickinson et al., 2016). Moving window ITD methods 

may be effective in ponderosa-dominated ecosystems due to the specie’s shade intolerance 

leading to large inter-tree separation distance (Balsi et al., 2018). 

Many studies have cross-examined ITD methods for LiDAR-derived CHM, with an 

accuracy of 40-90% depending upon the forest type and structure (Belmonte et al., 2019; 

Heurich et al., 2008; Maturbong et al., 2019; Persson et al., 2002; Yu et al., 2011). Despite the 

variety of ITD methods, most use a fixed moving window to detect the local maxima of a CHM, 

which are then identified as trees (Popescu and Wynne, 2004). As of yet, the literature applying 



41 
 

ITD methods to SfM-derived CHM has been nominally investigated, with limited cross-

comparison of these methods on higher data density UAS SfM-derived CHMs. Additionally, 

there has been little emphasis on comparison of crown growing methods on UAS-derived 

CHMs. However, there is reason to think the accurate fine-scale vertical forest structure 

provided by UAS SfM point clouds may translate to a higher resolution CHM better suited for 

moving window ITD methods and crown growing methods.  

High resolution UAS-derived CHMs have not been comprehensively evaluated to 

understand how a trees position within the forest canopy impacts individual tree detection. The 

existing literature, especially as it pertains to LiDAR, usually narrows the focus to include only 

overstory canopy due to the inherent difficulty of detecting trees with narrower, partially-

occluded crowns lower in the canopy (Heurich et al., 2008; Panagioditis et al., 2017). In 

addition, the use of small plots of trees and consumer-grade GPS technology for ITD validation 

in most studies results in a small sample of real trees, representing limited variation in forest 

structure, and the inability to perform true individual tree-level matching. In the past there 

have been calls for using large (>1 ha) stem-mapped sites for training and validation of 

remotely sensed aboveground biomass (Chava et al., 2019), however, we content that such 

stem-mapped sites are ideal for validation in a range of remote sensing application. The use of 

large, maintained stem-map plots may allow for a more accurate estimate of ITD methods 

across continuous observations of forest structure. 

This study will utilize high-resolution, fine-scale UAS SfM point clouds and large 

continuous forest stem-maps of ponderosa pine (Pinus ponderosa Lawson & C. Lawson) 

dominated forests (1) to examine the accuracy of individual tree detection methods, and 
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subsequent crown growing algorithms and (2) determine the effect of tree size and local forest 

structure on an individual tree’s probability of detection.  

2.2 Methods 

2.2.1 Study Area & Validation Data 

Two study regions of ponderosa pine dominated forest were used to investigate the 

influence of forest structure on UAS tree detection. The Lookout Canyon forest dynamics site 

on the Kaibab National Forest in Arizona sits at an elevation of approximately 2,400 m on the 

Kaibab plateau, hereafter called KNF (Figure 2.1). The site is comprised of two adjacent 4-ha 

treatments, including one control and one thinned in 1993 to 13.8 m2 ha-1 of basal area. 

Utilizing an existing grid of survey points, in May 2019 the sites were stem mapped, with 

observations of location, height, and diameter at breast height (DBH) for all trees > 1.37 m tall. 

The N1 forest dynamics site at the Manitou Experimental Forest on the Pike-San Isabel 

National Forest in Colorado is a square 9.3-ha site that was initially stem-mapped in 1974, 

hereafter called MEF. The site is dominated by ponderosa pine with very minor components of 

Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and blue spruce (Picea pungens Engelm.), 

with a sparse, grassy understory and a minor shrub component. The average elevation of the 

plot is 2,500 m, with a slope of ~5% to the southeast. In August 2018 the established trees on 

the site were re-inventoried and ingrowth was measured and stem-mapped by recording 

distance and direction to two previously mapped trees.  

Within each site a random subset of tree crown diameters was also sampled to assess 

the accuracy of different crown growing methods. At each site, six randomly selected locations 

were used to sample trees within 15 m. Two crown diameters were measured for each selected 
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tree in order to calculate the area of an ellipse, resulting in a total of 186 crowns: 97 at KNF and 

89 at MEF. 

 

Figure 2.1. Relative locations (Left panel) and example forest structures captured by UAS at MEF 

(middle) and KNF (right). 

2.2.2 UAS Data Collection & Processing 

All images were collected with a DJI Phantom 4 Pro quadcopter (Dá-Jiang Innovations 

Science and Technology Co. Ltd., Shenzhen, China) equipped with a 20-megapixel RGB camera. 

The aircraft recorded geolocation (x, y, and z) and camera parameter values for each captured 

photo to a manufacturer-stated vertical accuracy of ±0.5 m and horizontal accuracy of ±1.5 m 

(https://www.dji.com/phantom-4-pro; accessed 18 March 2019). Pre-programmed flight paths 

with 90 m flight height, flight speed of 5 m s-1, and side and forward image overlap of 90% were 

set for MEF, while KNF was flown at 100 m flight height, flight speed of 4 m s-1, and side and 

forward image overlap of 90% using Altizure (Shenzhan, China) for IOS flight controller. 

Differences in flight parameterization among the two sites ensured a constant ratio of flight 

height to vegetation height, while also ensuring each acquisition could be completed with a 

https://www.dji.com/phantom-4-pro
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single battery. Additionally, Altizure provides control of camera settings (in case of lighting 

changes), which were set to adjust automatically. In order to comply with Part 107 Federal 

Aviation Administration regulations, the remote pilot in command and visual observer 

maintained a line of sight with the aircraft for the duration of the flight.  

 

Figure 2.2. Final acquisition extent clipped to central area of interest at KNF (left) and MEF 

(right). 

Point clouds were produced with Agisoft Metashape version 1.5.3 (www.agisoft.com; 

Agisoft LLC, St. Petersburg, Russia) through initial image feature identification, feature matching 

across photos, and location of images in 3D space using the 431 and 476 UAS images as inputs 

from KNF and MEF, respectively. Using CloudCompare version 2.10.1 (www.cloudcompare.org), 

a software for inspecting point data in 3-dimentional space, the UAS SfM point clouds were 

georeferenced to existing aerial LiDAR point clouds at each site using the “Fine Registration” 

tool. This process iteratively matched the ground points of the UAS SfM point cloud to the 

geolocated aerial LiDAR ground points. Optimal settings conformed to the processing 

parameters for photogrammetry forest reconstruction outlined in Fraser & Congalton (2018). 

http://www.agisoft.com/
http://www.cloudcompare.org/
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After the point clouds were filtered and normalized to themselves in LAStools version 1.2 

(http://lastools.org), canopy height models (CHM) were produced at 0.25 m resolution in 

LAStools using “LAS2dem”. The CHMs were clipped to the area of interest at each site, which 

were squares of varying dimensions whose area totaled 4.5-ha (Figure 2.2). 

Table 2.1. Summary of individual tree detection and crown growing functions and parameters 

used in this study. 

Method R Package (Function); Citation Variables 

Individual Tree Detection 

Fixed Window  ForestTools package (vwf); 

Popescu and Wynne (2004) 

Window Size (3x3, 5x5, 7x7 cells etc.) 

Variable Window  ForestTools package (vwf); 

Popescu and Wynne (2004) 

Window Size (Varies according to user defined function in 

response to height) 

Crown Growing 

Silva2016(); 

voronoi 

tessellation 

lidR package; 

treetops from best vwf() models; 

Silva et al., 2016 

Lmf (local maxima filter) 

Mac_cr_factor (Maximum crown diameter given as a 

proportion of tree height) 

Dalponte2016(); 

crown growing 

decision tree 

lidR package; 

treetops from best vwf() models; 

Dalponte and Coomes, 2016 

Lmf (local maxima filter) 

Th_tree (Minimum tree height threshold) 

Th_seed (growing threshold 1) 

Th_cr (growing threshold 2) 

Max_cr = 30 (maximum crown diameter) 

watershed(); 

watershed 

segmentation 

lidR package; 

treetops from best vwf() models; 

Romain, 2020 

Lmf (local maxima filter) 

th_tree (threshold below which a pixel cannot be a tree) 

mcws(); marker-

controlled 

watershed 

segmentation 

ForestTools package; 

treetops from best vwf() models; 

Plowright, 2018 

minheight = 0.5 (minimum pixel value a crown can be) 

format = “polygon” 

2.2.3 Individual Tree Detection 

This study evaluates both fixed and variable window local-maxima functions as 

implemented in the ForestTools package (Plowright, 2018) of the R statistical programming 

language (R Core Team, 2019) for their potential to represent different forest canopy stratums 

and the overall forest structure. The fixed window function was tested at window sizes varying 

from 1 - 7 m in 1 m steps. The variable window function was tested using both linear (Equation 
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1) and exponential (Equation 2) functions that define the window radius as a function of height 

in the CHM.  𝑊𝑅 = 𝑏1 + 𝐻𝑏2     [Equation 1] 𝑊𝑅 = 𝑏1 × 𝑒𝐻𝑏2      [Equation 2] 

Where WR is the window radius (m), H is the height value (m) in the CHM, and the coefficients 

b1 and b2 were tested across a range of values. In the linear model b1 and b2 were tested from 

0.3 - 0.6 and 0.05 - 0.09, respectively. For the exponential model, b1 and b2 were tested from 

0.4 - 0.9 and 0.01 - 0.09, respectively.  

2.3.4 Accuracy of Tree Detection and Structure Parameters 

 Accuracy assessment of individual tree detection has typically been implemented 

through traditional inventory methods, visual inspection of remotely acquired imagery, and 

direct comparison of the total number of trees detected vs. the number of trees on the site. 

This verification is lacking because it does not allow us to examine where ITD methods might 

break down in relation to forest structure and tree type.  

This study utilized 2,270 and 2,700 stem-mapped trees at the KNF and MEF sites to 

assess the accuracy of each ITD method. Using the methodology of tree matching outlined by 

Silva et al. (2016), detected trees were matched against stem-mapped trees by finding their 

nearest neighbor that falls within a range of the detected tree’s height. In effect, there is a 

maximum Euclidean distance (MED) and minimum height difference (MHD) that must both be 

fulfilled for the two trees to be considered a match. It is an iterative process that buffers one 

tree at a time according to the MED before checking the MHD. If multiple trees are found 

within the buffer, the tree with the smallest MHD is considered a match to the detected tree. 
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Once a match is made, both the ITD extracted tree, and stem-map match are removed before 

the next iterative match is identified. MED was set to 3 m to account for stem-mapping errors, 

georeferencing errors, and tree lean. The MHD was set to 10% of the field inventoried height to 

account for observation errors in dense, mature forests (Andersen et al., 2006). 

To understand extraction accuracy across tree sizes, the stem-mapped trees were 

classified into three classes of Overstory (> 18 m at MEF; > 20 m at KNF), Intermediate (heights 

between the upper and lower bounds), and Understory (< 6 m at MEF; < 8 m at KNF) based on 

their location within the distribution of heights at each study site. Trees were not distinguished 

between live and dead, due to less than 30 dead trees at each study site. Within each class and 

overall at each site, the correctly and incorrectly matched trees were summarized by calculating 

the true positive (TP, correct detection), false positive (FP, commission error), and false 

negative (FN, omission error) extraction rates. The accuracy of these measurements was 

summarized to recall (r; Equation 3), precision (p; Equation 4), and F-score (F; Equation 5) 

(Goutte and Gaussier, 2005; Sokolova et al., 2006): 𝑟 =  𝑇𝑃𝑇𝑃 + 𝐹𝑁     [Equation 3] 

𝑝 =  𝑇𝑃𝑇𝑃 + 𝐹𝑃     [Equation 4] 

𝐹 = 2 ∗ 𝑟 ∗ 𝑝𝑟 + 𝑝     [Equation 5] 

Recall is the rate of tree detection, precision is a measure of detected tree correctness, 

and F-score is the overall accuracy of the method, which incorporates both precision and recall. 

The values of p, r, and F will range from 0 to 1. If a particular ITD method has identified trees 

and done it correctly according to its values of p and r, a higher F-score will result. In a scenario 

given perfect segmentation, all values would be equal to 1. While the F-score is an important 
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tool for measuring success, looking at initial values of true and false positives, as well as false 

negatives, can help further illustrate the success of the given equation. For example, while one 

method may see a high raw number of true positives, it may be due to an over detection of 

trees. With trees classified by size, tree detection accuracy metrics can be examined not only at 

the overall stand level, but also be examined as they pertain to different tree size groups. The 

best performing ITD methods should perform well across size groups, as well as not over detect 

tree tops and produce artificially higher true positive numbers. Therefore, to establish the best 

performing equations for individual tree detection overall F-score was evaluated, and ties were 

broken through examining F-scores for the Overstory, Intermediate, and Understory strata. The 

best performing models overall were identified at both sites for exponential, linear, and fixed 

window sizes. Additionally, matched stem-mapped trees were compared to extracted heights 

to determine precision on a tree-tree basis. Errors were summarized using mean absolute error 

(MAE) and percentage root mean square error (%RMSE).  

2.2.5 Probability of Tree Detection  

To quantify the range of forest structures the best performing ITD method can 

represent, logistic regression was used to determine the probability of a tree’s detection. 

Separate models were fit within each canopy stratum where the response was classified as 1 

for correctly matched trees and as 0 for omitted trees. Individual measures of height and DBH 

were combined with local neighborhood structural attributes summarized for a 5 m radius 

circle surrounding each tree (Table 2.1) that included trees per hectare (TPH), basal area (m2 ha-

1), height percentile (%) calculated as target tree height divided by tallest tree height in the 

neighborhood times 100, and nearest-neighbor distance (meters; NND). Parameters were 
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tested for collinearity using the Pearson’s correlation coefficient and when exceeding 0.6 the 

parameter with weaker relation to the response was removed. The best subset of remaining 

variables was identified through stepwise forward-backward variable selection using the Akaike 

Information Criterion (AIC). The best model subset was the one that minimized AIC. Logistic 

regression was performed using the glm and regsubsets functions in the stats (R Core Team, 

2019) and leaps (Lumley, 2020) packages of the R statistical programming language. 

2.2.6 Crown Growing 

The top-performing ITD method, as determined above by Overall F-score, was then used 

as input trees to several crown growing methods, most of which use detected treetops as 

“seeds'' to grow crowns using the rasterized CHM. All crown growing was run in the R statistical 

program (Table 2.1) using the Dalponte, Silva, and watershed functions from the lidR package 

(Romain, 2020), and the marker-controlled watershed function from the ForestTools package 

(Plowright, 2018). The Dalponte2016() function uses a decision tree to grow crowns using the 

ITD trees as seeds. Crowns are grown by iteratively adding surrounding cells as long as their 

height value is less than a defined maximum difference from the seeds height, less than a 

maximum crown ratio, or a maximum crown diameter is reached (Dalponte & Coomes, 2016). 

The Silva2016() function starts with a buffer around each ITD tree point, from which crowns are 

then separated through centroidal Voronoi tessellation (Silva et al., 2016). Values within a 

resulting tree crown less than a user-defined percentage of the tree’s height are then removed 

from the crown region. Lastly, an inverted watershed segmentation method, as implemented in 

the watershed() function of the lidR package, was used to grow crowns using detected trees as 

seeds. The watershed() function can either use input tree locations using a “marker-controlled” 
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approach or find local maxima on its own. The mcws() function (marker-controlled watershed) 

from the ForestTools package was also run. The user-defined parameters within each function 

are summarized in Table 2.1 and set to the default except where noted. Extracted tree crown 

area was compared with matched stem-mapped tree crown area to determine precision on a 

tree-tree basis. Errors were summarized using MAE and %RMSE. Crown radius of a circle was 

also back calculated from field inventory and detected crown areas for further comparison. 

Table 2.2. Summary of tree and neighborhood structural attributes at the two study sites. 

Numbers represent the mean (standard deviation) of individual tree parameters or from 5 m 

radius local plots. 

Study Site Stratum 
Height 

(m) 
DBH (cm) 

Crown 

Area (m) 
NND* (m) 

Height 

Percentile 

(%) 

Basal Area 

(m2 ha-1) 
TPH 

KNF 
(N=2,270) 

Overstory 
(n=446) 

25.2 
(3.5)  

54.5 
(12.6)  

163.8 
(81.4) 

2.47 
(1.25)  

97 
(6)  

64.4 
(30.3)  

462 
(345)  

Intermediate 
(n=820) 

13.2 
(3.3) 

23.9 
(8.9) 

51.1 
(39.1) 

1.66 
(1.04)  

74 
(21)  

45.3 
(27.5)  

1,075 
(747)  

Understory 
(n=1,004) 

4.8 
(1.6) 

8.7 
(4.2)  

15.6 
(8) 

 1.22 
(0.99)  

51 
(28) 

22.6 
(20.2)  

1,508 
(1,163)  

MEF 
(N=2,700) 

Overstory 
(n=592) 

20.6 
(1.6) 

40.7 
(8.1)  

99.0 
(60.9) 

2.50 
(1.17) 

97 
(5)  

43.9 
(16.4) 

527 
(261) 

Intermediate 
(n=689) 

11.9 
(4.0) 

22.6 
(10.0) 

58.6 
(33.9)  

1.87 
(1.16)  

76 
(22)  

30.4 
(20.8)  

852 
(639)  

Understory 
(n=1,419) 

3.0 
(1.3) 

4.4 
(3.6) 

15.5 
(13.8)  

1.44 
(0.98) 

39 
(28)  

12.8 
(13.9)  

1,293 
(752)  

* NND - nearest-neighbor distance 

2.3 Results 

2.3.1 Observed Forest Structure 

 Both study sites exhibit complex vertical and horizontal forest structure with high levels 

of variation in the individual tree and local neighborhood structural attributes (Table 2.2). Trees 

at KNF tended to be ~20% taller in each canopy stratum than those at MEF, with the KNF 

Overstory stratum having twice the variation within it. Across the site strata, the only 
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substantial differences in the relative height of a tree compared to its neighbors was that 

Understory trees at KNF tended to be taller in both relative and absolute terms than 

Understory trees at MEF. Despite having larger trees, KNF tended to have trees arranged closer 

to neighboring trees across all strata. KNF’s height distribution appears unimodal and skewed to 

the right, typical of a multi-age or all-age forest structure (Figure 2.3). Conversely, the bimodal 

appearance of the MEF height distribution is more indicative of a two-age forest structure.  

 

Figure 2.3. Histogram of observed tree heights at the two study sites colored by canopy stratum.  

2.3.2 ITD Model Performance 

Evaluation of the ITD process showed that linear models fit within the variable-window 

function produced the 12 and 7 highest ranked models in terms of maximizing overall F-score at 

MEF and KNF, respectively (Table 2.3). Additionally, similar overall performance was seen for 

each model form at the two respective sites, although the best model parameters varied 

slightly. At both sites, exponential models performed similarly to the linear models, except that 

exponential models tended to have lower detection rates in the Understory stratum. 
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Consistently, 1 m was the best fixed window size. However, this tended to have substantially 

worse F-scores than both the linear and exponential variable window functions (Table 2.3). 

Table 2.3. Summary of best linear, exponential, and fixed-window ITD models for both Manitou 

Experimental Forest (MEF) and Kaibab National Forest (KNF).  

 

The Overall number of extracted trees was 31.3 and 21.1% less than the stem-mapped 

number of trees for the MEF and KNF study sites, respectively (Table 2.3). However, extraction 

accuracy varied across the canopy strata. The total number of Overstory stratum trees 

extracted in the best models was over by 6.4, and 2.9% of the inventoried tree counts at MEF 

and KNF, respectively. The direction of this error shifts to an under extraction of 20.6 and 43.9% 

in the Intermediate stratum and 59.8 and 13.2% in the Understory stratum, respectively. Both 

the linear and exponential variable window functions provided similar mean height errors for 
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each of the canopy strata, with the Overall error being less than 0.70 m. This positive bias in 

extracted tree height tended to be 2 to 6 times larger at KNF than at MEF (Table 2.3). Height 

RMSE was 4-10% in the Overstory, increasing through the shorter canopy strata to 16-24% in 

the understory. 

  

Figure 2.4. Density distributions of tree heights at the two study sites with field observed data 

outlined in blue, and the top-ranked individual tree detection model values outlined in red. 

Overlapping segments of the distributions appear darker. 

2.3.3 Probability of Tree Detection 

 Visual comparison of height distributions for the stem-mapped trees and trees extracted 

with the best performing model follow similar trends (Figure 2.4). The largest departure in the 

distributions occurred at the KNF study site, with extracted tree heights tending to be shifted 

and slightly taller than field observed values. The two-sample Wilcoxon Rank Sum test was used 

to statistically validate the similarity of strata distributions of detected heights to observed 

heights for both sites. Despite the visual similarity of the distributions, only the extracted 

heights in the KNF Understory (p = 0.9856) and MEF Intermediate (p = 0.3629) strata were 

found not to depart from the observed height distributions. While the other stratum pairs 
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appeared visually similar, they were found to significantly differ at the ɑ < 0.05 level. A 

Kolmogorov-Smirnov test was also performed, and all strata combinations at both sites were 

found to differ significantly at the ɑ < 0.05 level. 

Table 2.4. Best model subset from logistic regression to predict the probability of extracting a 

tree given local forest structure in a 5 m radius of a tree, broken out by canopy stratum. 

Parameter Coefficient Std. Error Z value p-value 

Overstory Stratum     

Intercept -4.5404 1.2743 -3.563 <0.001 

Height Percentile 0.0659 0.0127 5.170 <0.001 

Basal Area (m2 ha-1) -0.0106 0.0029 -3.645 <0.001 

Intermediate Stratum     

Intercept -0.8171 0.5939 -1.376 0.1689 

Height Percentile 0.0223 0.0069 3.215 0.0013 

Basal Area (m2 ha-1) -0.0668 0.0148 -4.504 <0.001 

Height Percentile:Basal Area (m2 ha-1) 0.0005 0.0002 2.770 0.0056 

Understory Stratum     

Intercept -1.1015 0.1346 -8.186 <0.001 

Height Percentile 0.0164 0.0018 9.323 <0.001 

Basal Area (m2 ha-1) -0.0176 0.0033 -5.302 <0.001 

Distance to Nearest-Neighbor (m) 0.1693 0.0407 4.161 <0.001 

 

Figure 2.5. Probability of detecting (A) Overstory stratum trees and (B) Intermediate stratum 

trees, based on a tree’s height compared to neighbors within 5 m and basal area per hectare 
estimated from a 5 m radius plot. 
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The significant variables controlling the probability of detecting individual trees varied 

across canopy strata (Table 2.4). However, across all strata trees that were relatively taller 

compared to their local neighbors (Height Percentile) had a greater probability of detection 

(Figures 2.5 and 2.6). In the Overstory and Intermediate stratums the probability of detection 

was negatively related to Basal Area per hectare, with Basal Area having a six times greater 

influence on Intermediate canopy stratum trees (Table 2.4). The effect of the Basal Area in the 

Intermediate stratum also interacted with Height Percentile, such that increasing stand density 

could reduce the probability of detection to 0% for trees less than half the height of a local 

neighbor (Figure 2.5). 

 

Figure 2.6. Probability of detecting Understory stratum trees based on a tree’s height compared 
to neighbors within 5 m, nearest-neighbor distance (m; NND), and basal area per hectare 

estimated from a 5 m radius plot set to (A) 0 m2 ha-1 and (B) 20 m2 ha-1. 

Similar dynamics were seen in the Understory stratum (Figure 2.6), with the exception 

that increasing the distance to the nearest neighboring tree significantly increased the 

probability of detecting Understory trees (Table 2.4). For every meter of distance to the nearest 
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neighbor, there is an almost 4% increase in the probability of detecting an Understory tree, 

meaning open-grown trees have a significantly greater likelihood of being detected (Figure 2.6). 

 

Figure 2.7. Observed versus lidR watershed extracted individual tree crown area. Dashed lines 

represent linear regression for each of the study sites, while the solid line represents a one to 

one relationship for reference. 

2.3.4 Crown Growth 

Individual tree crown growing was only validated for correctly detected trees. Of the 

tested crown growing methods, all but one consistently underestimated the crown area, while 

the lidR watershed method tended to have a slight overestimation error (Table 2.5). Overall, 

the lidR watershed method provided the smallest crown area bias at 3.68 and 1.40 m2 at KNF 

and MEF, respectively. Comparing the observed and lidR watershed extracted crown areas 

showed the method's tendency to slightly overestimate small crowns and slightly 

underestimate larger crowns (Figure 2.7). These errors in crown area translate to slight 

overprediction bias in crown radius for the lidR watershed method, with a crown radius RMSE 

of 0.76 and 0.65 m at the KNF and MEF study sites, respectively (Table 2.5). The lidR watershed 
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methods correctly extracted 41% of crown radii to within 0.25 m and 64% to within 0.50 m. In 

addition to tree-to-tree accuracies, the different methods were evaluated for the accuracy of 

their total extracted canopy area. Total lidR watershed extracted crown area was under by 

24.8% of the observed 2,530 m2 at KNF and 13.3% of the observed 1,483 m2 at MEF, compared 

to the other methods that underestimated by 35.0-44.3% (Table 2.5). While some of the other 

evaluated methods performed similarly for an individual metric, none of these methods 

consistently minimized bias and precision as well as the lidR watershed method. 

Table 2.5. Assessment of the crown growing methods ability to characterize individual tree 

crown area and radius for only extracted trees, as well as total extracted crown area error as a 

proportion of field observed crown area. 

 Crown Growing Method KNF MEF 

Crown Area 

Mean Error 

(m2) 

lidR Watershed 3.68 1.40 

ForestTools MCWS -4.61 -2.14 

lidR Dalponte -7.30 -4.04 

lidR Silva -7.48 -4.01 

Crown Area 

RMSE (m2) 

lidR Watershed 16.53 10.45 

ForestTools MCWS  15.80 8.1 

lidR Dalponte 15.85 9.58 

lidR Silva 16.03 9.74 

Crown 

Radius Mean 

Error (m) 

lidR Watershed 0.21 0.09 

ForestTools MCWS -0.31 -0.16 

lidR Dalponte -0.44 -0.26 

lidR Silva -0.43 -0.24 

Crown 

Radius RMSE 

(m) 

lidR Watershed 0.76 0.65 

ForestTools MCWS 0.83 0.54 

lidR Dalponte 0.83 0.61 

lidR Silva 0.82 0.61 

Total Crown 

Area Error 

(%) 

lidR Watershed -24.8% -13.3% 

ForestTools MCWS -35.0% -37.6% 

lidR Dalponte -44.3% -41.6% 

lidR Silva -44.3% -42.2% 
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2.4 Discussion 

2.4.1 Tree Detection and Crown Growing Performance 

This study evaluated three individual tree detection algorithms with 97 different 

parameterizations at two study sites to identify the best strategy for detecting trees in complex 

uneven-aged ponderosa pine forest structures. The best performing parameterization provided 

Overall tree detection accuracies of 78.8% at KNF and 68.7% at MEF. Standard ITD methods 

performed on LiDAR or SfM-derived CHM have detected real trees on site with accuracies 

ranging from 40% to 90% (Heurich et al., 2008; Maturbong et al., 2019; Persson et al., 2002). 

The wide range of successful tree matching can be attributed to variation in forest structures, 

the methods tested, and the size of trees included for analysis (Zhen et al., 2016). However, the 

present study evaluated these methods across a comprehensive range of tree structures, unlike 

many studies that target only overstory trees (Zhen et al., 2016). The Overstory tree detection 

accuracy in this study was 97.2% and 93.9% at KNF and MEF, respectively, which is on the 

higher end of what has been previously reported in the literature (Belmonte et al., 2019; Yu et 

al., 2011). The high Overstory detection accuracy might be attributed to the use of variable 

window equations as opposed to the more common fixed window approach. 

More recent literature has determined F-score to be a more holistic measure of 

validation as it integrates the true positive, false positive, and false-negative rates. Our best 

Overall F-scores were 0.57 and 0.58 at KNF and MEF, respectively; the accuracy of performance 

in the Overstory produced F-scores of 0.71 and 0.75 at KNF and MEF, respectively, which is in 

line with more recent ITD studies that have found F-scores ranging from 0.74 - 0.94 (Mohan et 

al., 2017; Silva et al., 2016). The difference in accuracies can be explained by variations in the 
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stringency of accuracy assessments and what trees were included in each study. This study 

utilized nearly 5,000 trees from stem-mapped sites with rigorous tree level matching to 

determine true positive detections (i.e., 3 m horizontally and 10% of field height). Mohan et al. 

(2017) matched detected trees with real trees through a visual assessment that identified 367 

trees and resulted in an F-score of 0.86, but only visually discernible trees from the imagery 

were included. More rigorously, Silva et al. (2016) achieved an F-score of 0.83 by applying a 

similar tree-based matching logic to that used in this study but allowed trees to be matched 

with a location error of up to 10 m to accommodate GPS errors and only tested forest densities 

up to 200 trees per hectare. Given that each of these studies only evaluated the ability of local-

maximum, fixed-window detection strategies to observe dominant tree structures, it is 

promising to see that the current study was able to provide similar results in the Overstory 

while maintaining reasonable detection throughout all tree size classes. 

Of the tested individual tree detection methods, linear models used in the variable-

window function provided the 18 top-performing outputs at MEF and 10 at KNF. Despite the 

consistently high performance of the linear models, the best exponential models were similar in 

performance. While this study examined a variety of models, the consistently high F-scores 

found through the top 20 models at both sites point to some flexibility in model coefficients 

that provide reasonable results in the Overstory and Intermediate stratums (Figure 2.8). 

However, when considering the entire forest canopy as all trees > 1.37 m tall, this coefficient 

space narrows for both the linear and exponential model to the smallest intercept values of 0.4 

with a higher slope term around 0.07 (Figure 2.8). This combination of coefficients provides a 

sufficiently small search window in the Understory to identify smaller, more densely located  
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Figure 2.8. Contour plot of F-scores based on linear (left panels) and exponential (right panels) 

model coefficients, with higher F-scores indicated by lighter shades of blue. F-scores have been 

averaged across the two study sites for each set of unique model coefficients and are arranged 

top to bottom as Overall, Overstory, Intermediate, and Understory strata. 
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trees while scaling the search window to be large enough not to segment individual tree crowns 

in the Overstory stratum. The variation in F-score values across the canopy strata and Overall 

point to a need for future investigations to consider adaptive variable window functions such as 

piecewise regression so that more consistent accuracies can be achieved across all tree sizes. 

 

Figure 2.9. Visual representation of the four crown growing methods: (A) lidR watershed, (B) 

ForestTools marker-controlled watershed, (C) lidR Silva, and (D) lidR Dalponte. 

Crown area mean error across all methods ranged from -7.48 to 3.68 m2 at KNF and -

4.04 to 1.40 m2 at MEF (Table 2.5). The lidR watershed method performed the best overall and 

produced a more natural crown representation, most likely due to its decision-making process 

on a pixel-by-pixel level (Figure 2.9). Silva and Dalponte both utilize geometric processes that 

produced straight lines and hard edges in crown groupings. 
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With a study CHM resolution of 0.25 m, crown area mean error can be described as a 

bias of -30 to 15 pixels at KNF and -16 to 6 pixels at MEF. Crowns present at KNF were, on 

average, much larger than crowns present at MEF. Therefore, the smaller pixel size may have 

helped to mitigate error that could have been present with a larger pixel size ≥ 0.5 m. Crown 

radius RMSE across all methods ranged from 0.76 to 0.82 at KNF and 0.55 to 0.65 at MEF. This 

study’s precision in extracted crown radii slightly improves on those found in Panagioditis et al. 

(2017), who found a crown diameter RMSE of 0.82 and 1.04 m for two study sites. This 

difference in accuracy may be attributed to Panagioditis et al. (2017) working in a typically 

higher canopy cover forest system. However, their assessment was restricted to trees > 12 m 

tall, and they only used observed tree locations to initiate the crown segmentation procedure. 

Since crowns were grown in our study from the detected tree X and Y coordinates, there were 

instances where measured trees in the field were not correctly matched with detected trees. 

This error was restricted in calculating crown area and radii errors at the individual tree level 

but could explain the positive bias in our best performing method. Additionally, the total crown 

area was directly compared regardless of if a tree was detected or omitted. This omission error 

propagated through to cause an underestimation of the total crown area across methods from -

44.3% to -24.8% at KNF and -33.2% to -13.3% at MEF (Table 2.5).  

2.4.2 Omission Modeling  

This study's use of large stem-mapped study sites provided nearly 5,000 trees for 

validation and evaluation of how forest structure impacts the probability of detecting a tree. 

Logistic regression results underscore the importance of local neighborhood forest structure on 

the detection probability of an individual tree. The evaluation of how forest structure interacts 
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with a tree’s size may provide insights into the potential applications for which moving window 

individual tree detection is best suited. 

The best performing ITD methods maintained similar tree height distributions and 

closely matched the total number of trees in the Overstory and Intermediate strata (Figure 2.4). 

The large omission error for Intermediate stratum trees at KNF is likely attributed to the site’s 

greater vertical heterogeneity and these trees tending to occur in local neighborhoods with 

greater basal area than were seen at MEF. This is supported by the logistic regression that 

found the trees most likely to be missed in these strata were in dense tree groups at the higher 

end of the observed local basal area and tended to be at least 20% shorter than neighboring 

trees (Figure 2.5). The relatively high basal areas seen in these sites are indicative of untreated 

ponderosa pine forest conditions (Tinkham et al., 2016) and indicate that UAS single tree 

monitoring performance should increase in post-treatment environments for dominant and 

codominant trees.  

Although relative distributions of heights were maintained between observed and 

detected trees, Understory trees experienced variable under-detection rates with 86 and 48% 

of trees being identified at KNF and MEF, respectively (Table 2.5). The differences between 

these sites in correctly identifying Understory canopy stratum trees can be attributed to MEF 

appearing to be in a stand re-initiation phase that has resulted in very high densities of small 

trees. Logistic regression identified that Understory trees in close proximity to other trees and 

relatively shorter than neighboring trees were much less likely to be detected (Figure 2.6). This 

under-detection of Understory trees most likely propagates through the crown growing, where 
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the crowns of smaller trees are under segmented, which results in a positive bias in the 

estimated crown area for smaller trees (Figure 2.7).  

2.4.3 Applications in Forest Monitoring 

Individual tree detection methods might be better suited for monitoring certain aspects 

of forest structure than traditional plot-level methods, which average out variation across 

larger scales. Due to the fine-scale nature of ecological processes that happen within forested 

ecosystems, capturing variation at the tree-to-tree, local neighborhood, and stand-level is 

crucial for understanding forest structural dynamics at any scale. Local and neighborhood 

interactions take place in three-dimensional space; therefore, understanding the vertical 

heterogeneity and complexity of a landscape can only be enabled through accurate monitoring 

of tree heights and relative locations. The best approach to accuracy validation would then rely 

on a large sample of observed and measured tree attributes. 

While many studies of individual tree detection have stem-mapped validation data, it is 

more often plot-sampling gathered specifically for the study and is not comprehensive across 

the landscape being observed (Belmonte et al., 2019; Heurich et al., 2008)). Ponderosa pine 

forest management encourages heterogeneity in neighborhood forest structure, which may 

lead to sampling plots overlooking the variation in density (Addington et al., 2018). The use of 

large, established, and longitudinal study plots further strengthens the relationship found 

between the effectiveness of ITD methods and observed forest structure. Large monitoring 

plots provide continuous coverage which can accurately capture the range of variability present 

on the landscape, something that smaller sampling plots may overlook. While most ITD method 

validation uses stem-mapped trees to some degree, it is important to evaluate potential flaws.  
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Larger trees on the landscape are known to have a disproportionate impact on their 

surrounding ecosystem and store a large amount of above-ground biomass in forest systems, 

accounting for nearly half of on-site AGB in some studies (Ligot et al., 2018; Sist et al., 2014). 

Variation in large tree density has been found to increase understory microclimate variation, 

which can influence regeneration dynamics in certain conifer systems (Ma et al., 2010). Because 

of the importance of these trees for carbon management and monitoring, the reliable 

distribution of overstory trees produced through UAS-photogrammetry derived ITD methods 

could be a powerful sampling tool, both at the stand and landscape level. Coupling ITD methods 

with the relative high precision of crown growing methods could provide valuable information 

to forest managers. Crown growing methods could also identify trees without crowns and help 

identify snags, which serve as wildlife habitat, influence shaded microclimates, and perpetuate 

forest openings. Reliable characterization of tree height and crown area could enable cheaper 

and more accessible drone monitoring technology to provide observations of carbon storage in 

low productivity forest systems.  

While it may only be possible to fully characterize the density, location, and height 

distribution of smaller trees in a post-treatment condition, the representation of relative height 

distributions may hold promise for other ecological applications. Forest structural variation 

across size classes has far-reaching consequence for ecological processes happening across 

scales. The spatial pattern and density of trees influence the presence of shade-tolerant and -

intolerant plants present on the landscape beyond trees. While shading by the intermediate 

and overstory canopy in ponderosa pine forests can promote establishment of shade-tolerant 

species such as Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco; Cannon et al., 2016), 
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substantially altering fire disturbance dynamics within this system. These ITD methods could be 

coupled with concepts of tree approximate objects to describe ecologically important forest 

structures (Jeronimo et al., 2018), particularly when approximations of forest structure are 

often enough for planning and decision-making processes. Understanding the spatial 

configuration of tree patch sizes and forest openings through UAS monitoring would provide 

the detail needed for restoring ponderosa pine forest pattern and structure. Implementing 

methods to distinguish between live and dead trees within individual tree detection may also 

prove useful, as standing dead trees can function as nesting habitat for some bird species 

(Vogeler et al., 2016). 

Most ponderosa pine-dominated forests within the central and southern Rocky 

Mountains that have intact disturbance regimes or have undergone restoration have local basal 

areas of <4.6 to 18.4 m2 (Addington et al., 2018). With these being such lower stand basal area 

levels than are currently seen across most of the KNF and MEF study areas, there is reason to 

believe that UAS single tree methods would perform better across all tree sizes when 

monitoring post-treatment forest conditions. Given the increased temporal resolution of UAS 

monitoring, repeated observations in post-treatment conditions could contribute to further 

understanding of forest stand dynamics such as seedling establishment, seedling and juvenile 

mortality, and the role of larger trees and gaps for propagating regeneration. Further 

investigation is needed to evaluate these methods for monitoring treated environments and to 

assess the full range of forest inventory attributes that UAS single tree analysis can provide. 
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2.4.4 Study Limitations 

Our stem-mapped tree locations are highly accurate through the use of an independent 

grid system that does not rely on taking GPS locations of trees, a practice that can be inaccurate 

due to canopy interference with satellite reception. This allows for a relatively high degree of 

accuracy in matching trees, as new trees are recorded into the grid through relative positioning 

to the oldest trees to mitigate the propagation of error throughout survey years. Despite having 

a high degree of horizontal precision, matching detected trees to stem-mapped trees at KNF 

was challenging due to potential error in field measurements. While field observations of tree 

height are the current standard, they are typically negatively biased by 5% and vary in precision 

by 10% (Vastaranta et al., 2009). This negative bias in field height might account for the shift in 

heights between the distributions of KNF field and ITD heights (Figure 2.4). Current literature 

suggests that drone photogrammetry provides similar accuracies in describing tree heights as 

LiDAR and field-based measurements (Tang and Shao et al., 2015; Tiberiu Paul Banu et al., 

2016). Detected heights at KNF were matched to field measured heights using an MHD of 5 m 

due to potential difficulty in obtaining accurate field observations of heights in high canopy 

cover (Andersen et al., 2006). 

The variable errors in the crown growing methods can be attributed to several factors. 

The high under-detection rate of Understory trees led to a single detected tree being attributed 

with the crown area of several neighboring small trees. In contrast, larger trees that were 

accurately detected were occasionally overly segmented due to forked treetops, which led to 

large disparities between observed and detected crown areas. Errors also exist in our ability to 

reliably characterize crown areas in the field through the use of two crown diameter 
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observations. This technique assumes that a tree’s crown area is a perfect ellipse and that there 

is no error in determining the two ellipse diameters. While not a perfect relationship, the 

relatively strong correlation (r > 0.69) seen between detected and observed crown area 

indicates that the UAS observed crown areas provide reasonable approximations.  

2.5 Conclusion 

This study found that photogrammetry-based ITD methods perform as well, if not 

better, than comparable LiDAR-based ITD methods. The high-resolution CHM provided by UAS 

SfM data allows for accurate tree-level crown growth, with the potential for more accurate 

results when observed tree locations are used. Our work establishes that adaptive variable-

window strategies increase tree detection rates across the full range of tree sizes. Such 

characterization of tree-level forest structure distributions would be valuable for monitoring 

changes in forest structure from pre- to post-disturbance. Further work should explore if the 

accuracy we observed for UAS-based ITD methods using variable window functions translates 

to other forest systems. 
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Appendix 

 

Supplemental Figure 1.1: LiDAR vs SfM point cloud structural metric comparisons for the model 

with the highest improved variance compared to LiDAR, which was the 85 m AGL altitude at 

KNF1, which had an improved variance of 26.3% over the LiDAR AGB model for that site.  

 

Supplemental Figure 1.2: Observed (x axis) vs Predicted (y axis) for KNF1 (A), KNF2 (B), KNF3 (C), 

MEF1 (D), and MEF2 (E) AGB models, representing from top to bottom the LiDAR (black line), 

highest altitude UAS (green line), and lowest altitude UAS (red line) models for each study area.  
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Supplemental Table 1.1. Agisoft Metashape processing parameters for SfM photogrammetry 

forest reconstruction. 

Parameter Setting 

Align Photos 
Accuracy  
Generic preselection  
Reference preselection 
Reset current alignment 
Key point limit 
Tie Point Limit 
Apply masks to 
Adaptive camera model fitting 
Optimize Alignment 
Adaptive camera model fitting  
Build Dense Cloud 
Quality 
Depth Filtering 
Calculate point colors 
Calculate point confidence 

 
Highest 

Yes 
Source 

No 
40,000 
4000 
None 
Yes 

 
Yes 

 
High 
Mild 
Yes 
No 

 
 


