

Dangerous: Rangers can be ambushed. Boring: they miss passing poachers.

Drones increase play instinct which keeps them alert and gives them advantage.

Poaching Time

As many as 60 heavily armed groups of poachers entering KNP during full moon

- ➤ Requires paramilitary training
 ✓ Track

 - ✓ Ambush
 - ✓ Gather intelligence
 - √ Wage counter-assault ops
- Flash mobs from Mozambique •

Rescue and Arrests

Veterinarians trying to save a poached rhino that

Photos: WO1 Noel Kloppers

Arrest success < 5% Poaching success > 95%

Punishments easy to absorb with earnings of \$3-400,000 per horn!

What we do NOT hear about EVERY 4 DAYS, A RANGER IS KILLED IN THE LINE OF DUTY.

UAS = Dual Use Technologies

- UAS, or drones, are dual use technologies like the kitchen knife; and can be used
 - > For or against people
 - > For or against wildlife
- UAS can support rangers with added situational awareness and enhance their safety (safe distance)
- · UAS are often less costly, more efficient, and more precise than traditional approaches

Rationale for UAS

- Light-aircraft crashes are the No. 1 killer of wildlife biologists in US.
 - o D. Blake Sasse, Wildlife Society Bulletin, 2003
- UAS can support rangers
 - > to estimate wildlife populations
 - > Help firefighting efforts
 - > Support rescue missions
 - > Provide information about poaching
 - > By being a deterrent to poachers

PHOTOGRAPH BY KELLY LANDEN The Great Elephant Census adds Botswana's Okavango Delta

that UAS and related systems can be effective in deterring poaching in Africa.

The WWF and MET anti-poaching team in Namibia, including Falcon UAV's fixed-wing unmanned aircraft. Photo courtesy Helge Denker, WWF Namibia.

Slide removed per author request

Design Objectives

Long Range
Far Reach
Quick response Vehicle
Low Noise
High Resolution Sensor
High Data Rate Transmission (short-term)
(On-board Processing - long-term)
Autonomous Flight

Mission Objectives

Solution with UAV system:
1) Provides large search footprint
COVETAGE

- 2) Provides novel **Sensor** and processing system to identify humans through trees
- 3) Can be flown **quickly** to areas of concern
- 4) Can search area of concern with low noise
- 5) Eye in the sky to aid limited number of rangers/soldiers

Systems Overview

Data Flow

Payload

P

Safety Considerations

- Academy of Model Aeronautics operational safety requirements
 - o #105 General Requirements
 - o #560 Autopilot Operational Requirements
- Take-off
 - Catapult launch preferred (human-assisted launch dangerous)
- Landing
 - Net capture option
 - o Belly landing option

area

- ITAR
- Ranger knowledge and education
- .

UAS Security

Malicious activities against UAS:

- Recon (Intel collection mission, system, Counter Intel)
- Penetrate (gain access to the UAS and Headquarters office)
- Enumerate the UAS (recon from within the UAS of all subsystems)
- Conduct Computer Network Recon (CNR) or Computer Network Exploitation CNE (collect data or destroy systems)
- Maintain Access to the UAS and network (import tools and install backdoors)
- · Obfuscate (dust their tracks, stay hidden
 - Ref.: Tony Robinson communication

Fuselage Design Requirements

Fuselage design shall:

- o have the **low possible drag characteristics**[CD < 0.035]
- o be sufficiently sized to house the required payload
- o be volumetrically efficient [Oval shape ideal]
- allow for sensor visibility [Nose cone = body of revolution]
- o have a durable and lightweight structure
- o allow for easy **modular mounting** of sensors
- o be easy to assemble, maintain, and manufacture
- o be low cost

9 38

Mission Support: Alert Sequence

- Detection: possible poacher activity is detected by ground sensors
- 2. Relay: sensor data is relayed through network to central command for processing
- 3. **Processing**: data is processed off-network to determine threat level of activity
- 4. Alert: central command is alerted to high-level threats and their GPS positions
- Dispatch: GPS positions are used to help determine and/or narrow UAV mission search footprint

AREND is unique in several respects:

- UAS vehicle designed around requirements for sensors/mission objectives
- Implementation of input directly from anti-poaching rangers
- · Payload modularity for defined operations
- International collaboration providing students with experience in global design and manufacturing environment

0.4

Team Members

University of Colorado Boulder (United States)

Laura Kruger
Andrew Levine
Aaron Buysse
Aaron Buysse
Nikhil Shetty
David Soucie
Byron Coetser
Justin Ceorge
Chris Womack
Neel Desai

Company Byron
David States
Neel Desai
David States
David States
David States
University of Pretoria (South Africa)
Lelanie Smith
Karl Grimschl
Sume Gerber
Byron Coetser
Michael Kruger
Joachim Huyssen Justin George Chris Womack AJ Gemer Christine Fanchiang

Anna Rivas Neel Desai Cameron Brown Prasanta Achanta

Metropolia University (Finland) Joe Hotchkiss John Malangoni Balázs Kovács Nikita Korhonen

University of Stuttgart (Germany)

Johannes Schneider Tarik Özyurt Rick Lohmann Tim Baur Tim Wegmann

Team Members

Academic Advisors

Doe Tanner (CU)
Donna Gerren (CU)
Alexandra Musk (CU)
Laurent Dala (UP)
Wouter Van Hoven (UP)
Joe Hotchkiss (MU)
Holger Kurz (US)
Peter Middendorf (US)
Dominique Bergmann (US)
Claus Dieter-Munz (US)

Industry Advisors

Jason Coder
David Novotny
Jeffrey Guerrieri
Molly Kainuma
Rebecca McCloskey
Brian Aucone
Patrick Egan
Richard Soto
Eric Schmidt
Rebecca Vandiver
Philip Moffett
Phelps Lane Philip Moriett
Phelps Lane
Dean Paschen
Joe Pirozzoli
Lee Jay Fingersh
Jason Sand
Luigi Moretti
Will Fox

Tom Spendlove Charlie Lambert Marshall Lee Matt Bracken Tom McKinnon Brandon Lewis Amanda Harvey Christensen Flemming Dillon Jensen Barbara Bicknell Brett Anderson

