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The distribution-free run method, devised for 
solving non-parametric problems of testing whether two 
continuous distributions are identical, was employed for 
statistical evaluation of weather modification at the 
river flow control level. The practical application of 
this two-sample method to the sequences of runs of 
ordered nonseeded and seeded annual river flows drained 
from a target basin indicated that the method is sensitive 
to differences both in shape and in mean between two 
distributions. 

INTRODUCTION 

In this paper, the term "weather modification" covers all 

activities concerned with the production of precipitation and resultant 

runoff. Thus this term includes artificial cloud modification brought 

about to induce rain from otherwise nonprecipitating clouds and/ or to 

increase natural precipitation from such clouds by improving their 

precipitation efficiency. In the past, cloud modification has been per-

formed almost entirely by introducing condensation or ice nuclei into 

cloud systems. Therefore, for all practical purposes, "cloud seed-

ing, " also means weather modification. 

The statistical evaluation of weather modification must be 

based upon cautious mathematical and statistical analysis of data from 

many weather modification experiments. That is, the problem is 

determining whether these activities actually produced an increase in 

precipitation or runoff identifiable over a well defined target area. 
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Most statistical techniques used in the evaluation of weather 

modification attainment s r e ly on the as:::-:u mption that the variable 

describing the hydrologic phc n~rncnon und<'.r consideration (precipita-

tion and/ or river flow) is normally distributed . This assumption is 

not so restrictive as it may seem at fin;t s ight, for three reasons. 

First, it has already been shown that, in many practical cases, the 

distribution of precipitation or of a river flow variable can best be 

approximated by normal distribution [ Markovic, 1965]. Second, a 

transformation can often be found which will bring the observations 

close to the normal form and permit the application of the normal 

theory. Third, frequently means can be dealt with and then, in accord-

ance with the central-limit theorem, the distribution of the sample 

means approaches normality as sample size increases if a population 

has a finite variance. 

How important the assumption of normality in statistical eval-

uations of weather modification is depends on the magnitude and 

nature of any departure from normality and on the kind of statistical 

techniques being used. Highly skewed distributions, for example, 

can badly upset the level of significance of a one-tailed test even 

though they have only a small effect on a two-tailed test. Since an 

increase in precipitation and runoff due to weather modification exper-

iments is anticipated a priori, the upper or one-tailed test is usually 

indicated. However, deviation from normality in the extreme tails 

is rather unimportant in significance testing. In general, deviations 

from normality cause fewer gross errors than do two other departures 

from the usual assumptions: lack of constancy of variance and lack 

of independence of observations [ Brownlee, 1960]. 
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Unfortunately, often it is not known wh ether a hydrologic 

variable's basic distribution is th e kind to whi ch the central limit 

theorem applies. Moreover, so m etimes the approximation to normal 

distribution may not be good enough; then the resulting confidence 

intervals and the tests of hypotheses based on normal theory are not 

as accurate as supposed. 

For cases in which conventional methods--based on the 

assumption of a normal distribution--are not applicable, an alternative 

method must be found. In recent years, techniques have been devel-

oped which assume only that the form of an underlying distribution is 

continuous and assume nothing about the form of that distribution. 

These techniques are known as distribution free methods. The obser-

vations of hydrologic variables certainly do have distributions with 

parameters: what one is free of is assumptions about the forms of 

distribution. 

In this paper, the method used ignores the functional forms of 

parameters and of distribution functions for the basic variables. It 

can be applied to very wide families of distributions as well as to 

families specified by particular functional forms. The properties of 

this method, therefore, allow application of it to a large variety of 

man's activities in the field of weather modification as well as to the 

various control levels from which statistical evaluation of weather 

modification can be considered. These control levels include the 

levels of cloud phenomena, precipitation, and river flow control, cor-

responding to three particular stages in the general hydrologic cycle. 

Since it has already been demonstrated [ Markovic, 1967] that, 

under general conditions, river flow control level seems likely to 
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evolve into the most accurate, most reliable, and most detectable way 

of control of the three levels, the information in the rest of this paper 

pertains exclusively to the river flow control level. 

The fundamental variable at the river flow control level is the 

flow rate or flow discharge. The annual river flow averaged over a 

water year which starts usually on October 1 and lasts to September 

30 of the next calendar year is the only variable that needs to be con-

sidered for this method of statistical evaluation of weather modifica-

tion attainments. Meteorologically and hydrologically, annual river 

flow is very convenient because its time unit generally coincides with 

the complete hydrologic annual cycle of all the ph sical processes of 

seasonal nature. 

CONSTRUCTION OF THE TEST 

First, Q. (i = 1, 2, 3, ... , n) denotes the ith sequential 
1 

observation in a sample of n observations of annual river flows at a 

river gaging station registering the runoff drained from the target 

basin in the nonseeded period. Likewise, Q(i) (i = 1, 2, 3, ... , n) 

denotes the ith ordered observation in the same sample (i. e., the 

symbol Q( 1 ) refers to the smallest of the n observations, Q( 2) to the 

second smallest of the observations, and so on, while Q(n) refers to 

the largest). Representations of sequential and ordered observations, 

hydrograph and duration curve respectively, are graphed in Figure 1. 

Similarly, Q':: (j = 1, 2, 3, ... , m) denotes the jth sequential 
J 

observation in a sample of m observations of annual river flows from 

the same target basin but in the seeded period. Also, Q>:'(j) (j = 1, 2, 

3, ... , m) denotes the jth ordered observation in the target seeded 
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sample of annual river flows (Figure 1). 

Next, the above two target samples, nonseeded [ Q( l)' 

... , Q(n)] and seeded [Q,:{l)' Q,:,(Z)' Q""( 3)' · · ·, Q""(m)] are 

combined and arranged in order of magnitude (Figure 1). In this way, 

it is possible to obtain the following arrangement of ordered nonseeded 

and seeded annual river flows in the target basin: 
I I , I 

/ ~ r 
-- 7 ">,r 1 

Q(1)' Q(2)' Q>:{1)' Q*(z)' Q(3)' Q*(3)' Q(4)' Q""(4)' Q(5)' ( 1) 

The expression ( 1) starts with an arrangement of two Q's called the 

run of two Q's; then follows the run of two Q* 's, the run of one Q, 

etc. Altogether, seven runs are exhibited in (1), As can be observed, 

a run is a sequence of ordered observations from the same sample 

(such as nonseeded) bounded by observations from the other sample 

(such as seeded). For example, a run of Q's is a set of successive 

Q I s closed off at both ends by Q* 's ( except at the beginning and end of 

the sequence). and vice versa for a run of Q* 's. 

It is obvious that, if two samples are from the same population 

(that is, if the seeding experiments had no effect whatsoever), the 

nonseeded and seeded observations will ordinarily be well mixed and 

the number of runs, r,, will ordinarily be large (Figure 2 a). If the 

seeded experiments had a very strong effect upon annual river flows, 

the two samples would be taken from two distinct populations. If 

these two populations are widely separated so that their ranges do not 

overlap, the number of runs would be only two, r, = 2 (Figure 2 b). In 

general, the larger the difference between the two populations, the 

smaller the number of runs. In other words, the difference between 

two populations tends to reduce the number of runs. Even if the two 
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populations happen to have the same mean or median but with the 

nonseeded population (Q's) dispersed and the seeded population (Q>:"s) 

concentrated, a long Q run will still occur on each end of the com-

bined sample, thus creating a tendency to reduce the number of runs 

(Figure 2 c). 

Obviously, the number of runs can play an important role 

in the construction of a test. The task, then, is to determine the dis-

tribution of a number of runs, 77, in order to specify 77 for a given a 
level of significance a (the probability er for the type I error). Once 

this has been accomplished the working hypotheses can be tested. 

Since the main goal of cloud seeding operations is to increase water 

yield, the effect of these operations should logically be tested by 

utilizing the theory of runs under the following null and alternative 

hypotheses: 

H
0

: There is no increase in annual river flows of the target 
basin, and 

Ha: There is an increase in annual river flows caused by cloud 
seeding operations. 

First, a simple result on the distribution of arrangements of 

two sets of annual observations of river flows from the same target 

population should be obtained. Any arrangement, representing a 

single sample point, is a sequence of ordered nonseeded (Q's) and 

seeded (Q* 's) annual river flows consisting of alternating runs of Q's 

and Q>:• 's. The set of all these sample points or arrangements con-

stitutes the sample space. Now, this sample space, its sample points 

consisting of the set of all possible arrangements or combinations 

of n Q's and m Q*'s, 
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N {S} = ( n + m) 
n ( 2) 

should be considered. All these arrangem ents are equally likely under 

the null hypothesis. . Next, it is necessary to count all the arrangements 

with exactly r, runs. If rJ is assumed to be even, then there must be 

r,/ 2 runs of Q's and YJI 2 runs of Q>:" s. To find the r,/ 2 runs of Q's, 

the n Q's must be divided into YJI 2 groups, and all r,/ 2 numbers in 

each group must be counted. Then, the required number, the ordered 

r,/ 2 - part partitions on n with zero parts excluded, can be found by 

means of the combinatorial generating function as the coefficient of 

tn in the following identity [ Mood and Graybill, 196 3] : 

"'tr,/ 2 (-1-) r,/ 2 
- 1 - t 

= tr,/2 [ 1 + (71{2)t + (71/t+ 1 )tz + 

+ (71 / ; + 2) t3 + . . . ] 

= tril 2 ; (n/ 2 - 1 + i) i 
71/ 2 - 1 i= 1 

( 3) 

which is ( n/;: 1). Similarly, there are (r,/Z -_ \) n/ 2 - part partitions 

of m, excluding zero parts. Now, any partition of Q's may be com-

bined in any partition of Q·~'s in two ways to form a sequence as in 

( 1): the first Q partition or the first Q * partition may be put at the 

beginning of the sequence. There are, therefore, 

N {E} (4) 

arrangements with exactly r, runs. Thus , the probability function for 



even values of ri is: 

_ N lE} 
p (ri) - N {S } 

10 

A similar result will hold, of course, for the probability density 

function for odd values of ri [ Wilks, 196 2], 

n-1 
= (,r,/ 2) 

m - 1 
( ril 2 ) 

( 5) 

(6) 

To test the null hypothesis at the a level of significance, the 

critical value of ri , ri must be found from the probability that the a 
number of runs is equal to or less than r, in a random arrangement; a 
this probability is given by: 

TJa 
= ~ p(ri) = a 

ri=2 
(7) 

The test is then performed by observing the total number of runs in the 

combined nonseeded-seeded sample of n + m observations; the null 

hypothesis is accepted if the observed number of runs, ri , is 
0 

greater than the specified ( critical) number of runs at the a level 

of significance, ri • or the null hypothesis is rejected if the observed a 
number of runs does not exceed the critical number of runs. In other 

words, if 

(8) 
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there is no significant difference between the nonseeded and seeded 

annual river flows (Figure 3) ; if there is, the reverse is true. 

The computation of equation (7) can be quite involved unless 

both n and m are small. The distribution of 71 becomes approxi-

mately normal for large samples, and in fact, the approximation is 

usually good enough for practical purposes when both n and m 

exceed 10. The mean of the distribution of runs is then: 

and the variance is: 

E(71) 2nm =-- + 1 n+m 

er 2 = 2nm ( 2nm - n - m) 
71 (n+ m)2 (n+ m - 1) 

By use of the unit normal deviate, 

u = 71 - E (TJ) 
er 

71 

( 9) 

( 1 O} 

( 11) 

71a can be determined for testing the null hypothesis at the a level of 

significance. This is c:bne by making the right-hand side of equation 

( 10) equal to the critical value of u for the same level of significance 

of the normal function and by solving for 71 : 

= u er + E(71) a 71 ( 12} 

The two-sample run test should be sensitive to both differences 

in shape and in mean between the nonseeded and seeded annual river 

flow distributions. 
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PRACTICAL APPLICATION 

Essentially, the purpose of this paper is to illustrate the 

appli<::ation of method rather than to evaluate a particular weather 

modification project. However, all weather modification projects are 

not equally suitable, even for illustration purposes. Generally, for 

evaluation purposes, the river basin subjected to weather modification 

experiments should, as nearly as possible, meet the following condi-

tions: 

( 1) Gaged river basin, preferably equipped with recorders; 

(2) Long period of river flow observations prior to weather 

modification experiments; 

(3) Long period of river flow observations during weather 

modification experiments; 

(4) Accurate and reliable data, preferably classified excellent 

or very good; 

(5) Continuous and uniform weather modification experiments 

over entire river basin (i.e., not partial or random); 

(6) Unchanged natural conditions of river basin in both non-

seeded and seeded period (i.e., no nonhomogeneity in river flow data), 

and preferably no diversions or storage in reservoirs. 

The above conditions are exacting, and very few river basins 

can fully satisfy the majority of them. Nevertheless, a survey of past 

and present weather modification projects indicated that the Kings 

River Basin in California can, at least partially, fulfill the majority of 

them. Here a project rare in the United States and in the rest of the 

world was carried out. This river basin has been solely and continu-

ously treated by one unique weather modification technique--cloud 
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seeding with silver iodide--for more than twelve years. In addition, 

river flow data is available for nonseeded as well as for seeded 

periods at s everal gaging sites registering the runoff from upstream 

drainage areas. From these several gaging sites, the data from the 

Kings River at Piedra, California, are used to demonstrate the 

application of the target two-sample run method of statistical evaluation 

of weather modification. 

The observed river flows used here are those from the non-

seeded period, 1917 to 1954, and from the seeded period, 1955 to 1966 

water year. These n = 38 nonseeded and m = 12 seeded annual 

river flows of the Kings River at Piedra are listed in Table 1 and 

graphed in Figure 4. 

From Table 1 and Figure 4 it is obvious that the observed 

number of runs is: 

= 17 . 

Then, from equation ( 9}, the mean of the distribution can be 

determined: 

E(ri) = 2 X 38 X 1 2 + 1 = 
38 + 12 19. 240 

And, using equation ( 1 O}, the variance of the distribution is: 

= 2 X 38 X 12 (2 X 38 X 12 - 38 - 12) = 
( 38 + 12)2 ( 38 + 12 - 1) 6.417 

Therefore, the following is standard deviation of the distribution: 

er = Y6. 41 7 = 2. 5 3 3 . 
rJ 

Finally, according to equation ( 12}, the critical value of rJ at the a 



Table 1. Annual river flows of the Kings River at Piedra, California. 

Q. Q(i) Q(i) & Q*(j) 
i Year 1 i Year Q. Q(i) Q(i) & Q*(j) (rn 3 / sec) (rn 3/sec) (rn 3/sec) 1 

1 1917 73,907 15. 263 15. 26 3 31 7 43,325 79. 259 6 3. 06 2 
2 53. 236 18. 236 / 

8 18. 236 32 8 38. 823 80,675 63,402 
3 9 47,006 25. 740 22. 370* 33 9 37,577 81. 270 69. 830 
4 1920 54,652 33,131 25. 740 34 1950 50,093 85.801 73. 200 
5 1 60.032 33,697 28. 090>:< 35 1 62.609 91.549 7 3, 200* -
6 2 85,801 37.577 32, 225* 36 2 111. 399 99.449 7 3. 907 -
7 3 60.882 37,945 33.131 37 3 45. 166 111. 399 74.361,:. 
8 4 15. 26 3 38. 115 33,697 38 1954 52. 358 128.078 77.475>:< 
9 1925 50,404 38. 823 34, 320* 

10 6 40,493 40.493 37,577 
11 7 77.589 43. 325 37. 945 
12 8 37,577 45. 166 38. 115 ..... 

CJl 
13 9 33,131 45.562 38.823 
14 1930 33.697 46. 157 40,493 
15 1 18,236 47.006 43. 325 
16 2 81. 270 50.093 44. 713* j Year Q >!< . Q >:c{j) Q(i) & Q>:'(j) 
17 3 46. 157 50.404 45. 166 J 
18 4 25. 740 52. 358 45.562 
19 1935 63.402 53. 236 46. 157 1 1955 44. 713 22. 370 77.589 
20 6 73. 200 54.652 47.006 2 6 105. 113 28. 090 78.438 
21 7 91.549 60,032 47.686* 3 7 49. 243 32. 225 79. 259 
22 8 128.078 60,882 49. 243* 4 8 102. 281 34. 320 80.675 I 
23 9 38. 115 62,609 50.093 5 9 32. 225 44. 713 81. 270 
24 1940 69,830 63.062 50.404 6 1960 28.090 47,686 85,801 
25 1 99.449 63,402 52. 358 7 1 22. 370 49 . 243 91. 549 
26 2 78. 438 69.830 53. 236 8 2 73. 200 7 3. 200 99.449 
27 3 79. 259 7 3. 200 54.652 9 3 74. 361 74. 361 102. 281 >:< 
28 4 45.562 73. 907 60.032 10 4 34. 320 77,475 105. 11 3,:, 
29 1945 80.675 77,589 60.882 11 1965 77.475 102. 281 111. 399 
30 6 6 3. 062 78. 438 62.609 12 6 47,686 105. 113 128. 078 

')/ 11 
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level of significance can be determined to be: 

ri = -1.645x2.533+ 19.240 = 15.073:::::: 15. a 

The test of significance, preformed in accordance with 

equation (8), 

T/0 = 17 > r/0 . 05 = 15 

indicates that the null hyp~thesis can be accepted at the 5 per cent 

level of significance. In other words, there is no statistically signi-

ficant change in annual river flows of the target basin caused by cloud 

seeding operations. 

Although the test result is statistically nonsignificant, the 

small difference between the observed and the critical number of runs 

indicates that the target two-sample run test is sensitive to changes in 

river flow distributions. It also indicates that cloud seeding opera-

tions may produce a certain change in river flows but that such 

change is within the range of the natural fluctuations of annual river 

flow distributions. 
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