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ABSTRACT 

 

SPATIOTEMPORAL ANOMALY DETECTION: 

STREAMING ARCHITECTURE AND ALGORITHMS 

 

 Anomaly detection is the science of identifying one or more rare or unexplainable 

samples or events in a dataset or data stream.  The field of anomaly detection has been 

extensively studied by mathematicians, statisticians, economists, engineers, and computer 

scientists.  One open research question remains the design of distributed cloud-based 

architectures and algorithms that can accurately identify anomalies in previously unseen, 

unlabeled streaming, multivariate spatiotemporal data.  With streaming data, time is of the 

essence, and insights are perishable. Real-world streaming spatiotemporal data originate from 

many sources, including mobile phones, supervisory control and data acquisition enabled 

(SCADA) devices, the internet-of-things (IoT), distributed sensor networks, and social media. 

Baseline experiments are performed on four (4) non-streaming, static anomaly detection 

multivariate datasets using unsupervised offline traditional machine learning (TML), and 

unsupervised neural network techniques. Multiple architectures, including autoencoders, 

generative adversarial networks, convolutional networks, and recurrent networks, are adapted for 

experimentation.  Extensive experimentation demonstrates that neural networks produce superior 

detection accuracy over TML techniques. These same neural network architectures can be 

extended to process unlabeled spatiotemporal streaming using online learning. Space and time 

relationships are further exploited to provide additional insights and increased anomaly detection 

accuracy. 
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A novel domain-independent architecture and set of algorithms called the Spatiotemporal 

Anomaly Detection Environment (STADE) is formulated.   STADE is based on federated 

learning architecture.  STADE streaming algorithms are based on a geographically unique, 

persistently executing neural networks using online stochastic gradient descent (SGD). STADE 

is designed to be pluggable, meaning that alternative algorithms may be substituted or combined 

to form an ensemble. STADE incorporates a Stream Anomaly Detector (SAD) and a Federated 

Anomaly Detector (FAD).  The SAD executes at multiple locations on streaming data, while the 

FAD executes at a single server and identifies global patterns and relationships among the site 

anomalies.  Each STADE site streams anomaly scores to the centralized FAD server for further 

spatiotemporal dependency analysis and logging.  The FAD is based on recent advances in 

DNN-based federated learning. 

A STADE testbed is implemented to facilitate globally distributed experimentation using 

low-cost, commercial cloud infrastructure provided by Microsoft™.  STADE testbed sites are 

situated in the cloud within each continent: Africa, Asia, Australia, Europe, North America, and 

South America. Communication occurs over the commercial internet. Three STADE case studies 

are investigated.  The first case study processes commercial air traffic flows, the second case 

study processes global earthquake measurements, and the third case study processes social media 

(i.e., Twitter™) feeds.  These case studies confirm that STADE is a viable architecture for the 

near real-time identification of anomalies in streaming data originating from (possibly) 

computationally disadvantaged, geographically dispersed sites.   Moreover, the addition of the 

FAD provides enhanced anomaly detection capability. Since STADE is domain-independent, 

these findings can be easily extended to additional application domains and use cases. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Anomaly detection is the science of identifying novelties, non-conforming patterns in 

data [1].  Anomalies are known in the literature as noise, deviations, and exceptions. The study 

of anomaly detection has a long history in multiple disciplines, including engineering, statistics, 

economics, bioinformatics, and geoinformatics. Recent research has been focused on the 

financial, cyber, robotics, and medical application domains.  Fraud detection [2], intrusion 

detection [3] and [4], data center management [5], [6] and [7], financial markets [8], robotics [9], 

smart buildings [10], petroleum industry applications [11], computer network traffic [12], 

software verification [13], water treatment [14], [15] and [16], and wireless networks [17] and 

[18] are popular domains that have been addressed by anomaly detection architectures and 

algorithms.  

A variety of traditional machine learning (TML) algorithms has been applied to anomaly 

detection problems.  These algorithms range from stochastic models, time-series models, and 

classification, clustering, and nearest neighbor non-parametric techniques. Most of the 

approaches have been designed for small datasets and are non-scalable.  Few studies have 

addressed the requirement for large-scale, multivariate, streaming anomaly detection. 

There has been a well-advertised renaissance in the field of artificial intelligence and the 

use of deep neural networks (DNN) to address complex engineering problems such as computer 

vision, natural language processing, and robotics. While research has progressed on the 

application of DNNs to large-scale anomaly detection [19],  progress has been hampered by the 

lack of quality datasets [20]. Anomaly detection experimentation has resorted to the production 

of synthetically generated labeled data to conduct experiments. Perhaps more significantly, the 
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greater focus now has been placed on the development of unsupervised or self-supervised 

learning techniques to exploit a large number of unlabeled datasets. 

Why DNNs for anomaly detection? The short answer is that TML algorithms have 

proven to be insufficiently robust for application to complex anomaly detection problem 

domains.  TML algorithms produce anomaly scores on individual sample points, which is also 

known as point anomalies. These scores are often interpreted as an anomaly probability. TML 

algorithms do not transfer well to problem domains with streaming requirements, difficult to 

decipher spatial inter-relationships, long time horizons, and complex multivariate interactions. 

TML algorithms also produce mediocre results because of the core underlying model 

assumptions of stationary data and processes are often erroneous. In the presence of non-

stationary data and processes, TML-based anomaly detection techniques may produce 

suboptimal anomaly classifications. 

 DNNs are particularly suited for the estimation of complex, data-driven behaviors when 

the underlying generating model is uncertain or unknown [21]. Recent advances in neural 

machine translation may be used as a template for potential advances in anomaly detection 

algorithms [22].  For example, a language translation model can be formulated as a sequence-to-

sequence prediction model with compressed representations of sentences encoded for efficiency.  

Analogously, a spatiotemporal anomaly detection problem may also be formulated as a 

temporal-to-temporal prediction problem with encoded data representations; anomalies are 

identified when the predicted representation of the sequence of events deviates substantially for 

the observed representation. 
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1.2 Engineering Challenge 

The growth of the internet has created an explosion of streaming data generated from 

social networking web sites, mobile devices, and the internet-of-things (IoT).  Supervisory 

control and data acquisition (SCADA) software and hardware components that monitor and 

process real-time data at geographically distributed sites create massive volumes of streaming 

data. Ubiquitous embedded devices such as space-based sensors, robotics, and autonomous self-

driving vehicles also generate raw stream data.  In these cases, robust, near real-time anomaly 

detection techniques are required for optimal functionality and safety. 

The engineering challenge is to design domain-independent architectures and algorithms 

that exploit the underlying or hidden spatial and temporal (spatiotemporal) relationships that 

contribute to the timely identification of anomalies in multivariate data streams. The definition of 

timely is domain-dependent or analyst-defined.  The term spatiotemporal can be broadened to 

include sequential data without a time dimension (e.g., a DNA sequence). The terms temporal 

and sequential are used interchangeably, but the focus here is on time and geospatially dependent 

streams. 

1.3 Organization 

 Chapter 1 (this chapter) provides a general overview; spatiotemporal anomaly detection 

is placed into perspective by presenting several real-world use cases.  Chapter 2 highlights some 

foundational topics, including the types of anomalies, anomaly labeling and scoring, the use of 

unsupervised techniques, and anomaly detection performance evaluation. Chapter 3 presents the 

four (4) datasets used for TML and DNN experimentation, while Chapter 4 discusses the nine (9) 

different TML techniques used for experimentation. The discussion also includes a literature 

review.  Chapter 5 then discusses the TML experimentation results.   The purpose of Chapters 4 
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and 5 is not to provide a comprehensive evaluation of TMLs as applied to anomaly detection 

problems; instead, the discussion provides a sharp contrast to the DNNs presented in Chapter 6.  

Various flavors of autoencoders, generative adversarial networks, and recurrent neural networks 

are discussed in Chapter 6; these representational learning models, also known in the popular 

science literature as deep learning, are a vital ingredient to the Spatiotemporal Anomaly 

Detection Environment (STADE). Chapter 6 also provides an intensive literature review of 

recent applications of representational learning to anomaly detection, most of which have 

appeared in the last two to three years. Chapter 7 provides experimentation results associated 

with the DNNs using the same datasets described in Chapter 3.  These results are compared and 

contrasted with the TML results to illustrate the performance benefits of DNNs. Leveraging the 

recent advances in commercial cloud computing, Chapter 8 then presents the STADE 

specification and testbed for distributed real-time streaming spatiotemporal data, including a 

Stream Anomaly Detector (SAD) and a Federated Anomaly Detector (FAD).  The purpose of the 

FAD is to globally accumulate SAD scores and provide feedback back to the SAD 

geographically distributed sites. Within STADE specification, there is an architecture 

component, an algorithm component, and a testbed component.  The architecture component 

addresses how geospatially distributed sites orchestrate and communicate with each other.  The 

algorithm component addresses anomaly detection issues, neural networks, computation speed, 

accuracy, and other topics of importance to DNN stream processing. The STADE testbed is a 

cloud-based instantiation of the STADE architecture used for experimentation. Chapter 9 

describes experimentation with the STADE testbed, including the data sources, estimation, and 

the results of the global air-traffic case study; Chapter 10 describes the experimentation with the 

global earthquake case study, and Chapter 11 describes experimentation with the social 
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networking (i.e., Twitter™) case study.  The first two case studies are engineering and earth-

science related, while the third case study is text related.  Social media is viewed as a network of 

human sensors, so the distinction is not critical; the architecture and algorithms described are 

entirely domain independent. Finally, Chapter 12 provides a summary of the results, research 

limitations, and recommendations for future research.    

1.4 Use Cases 

Use cases are a technique in systems engineering to explore essential concepts of an 

underlying architecture or algorithm designed to solve real-world problems.  Use cases can be 

specified formally using modeling languages (e.g., Unified Modeling Language) or informally 

using textual descriptions or flow diagrams. Examples of streaming anomaly detection use cases 

include (1) Air Traffic Control (ATC): automatic tracking of flight anomalies and deviations 

from normal operations; (2) Connected and Autonomous Vehicle (CAV): runtime identification 

of hazards supporting the autonomous operation of vehicles; (3) Cyber-Physical System (CPS): 

the recognition of cyber issues such as coordinated denial-of-service, network intrusion, and 

other attacks in CPSs such as smart buildings and cloud data centers; (4) Distributed Sensor 

Network (DSN): timely fault detection of geospatially distributed sensors; (5) Earth Science 

(ES): the early warning of earthquakes, flooding, weather, and atmospheric anomalies; (6) 

Global Contraband (GC): the identification of anomalous global cargo shipping patterns and 

manifests designed to smuggle weapons of mass destruction and illicit drugs; (7) Global 

Pandemic (GP): the identification of anomalous global transmittal of viruses and associated 

infection and death rates;  (8) Industrial Control (IC): the real-time identification of anomalies in 

SCADA hardware and software elements that monitor and control industrial devices; and (9) 
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Social Networking Stream (SNS): identification of anomalous events, changes in objectivity, 

sentiment, fake news, and bot attacks through the mining of social network data and text streams. 

Table 1 summarizes the characteristics of these selected use cases in terms of the type of 

streaming data and the periodicity or frequency of the data.  The required periodicity is 

dependent on the specifics of the real-world application. With these use cases, there is a temporal 

and spatial component that could be further exploited for spatiotemporal anomaly detection. 

Table 1: Anomaly Detection Use Cases 

Use Case Streaming Periodicity 

Air Traffic Control (ATC) Airplane Tracking Minutes 
Connected/Autonomous Vehicle (CAV) Vehicle Traffic Milliseconds 
Cyber-Physical System (CPS) Cyber Seconds 
Distributed Sensor Network (DSN) Satellite Sensors Milliseconds 
Earth Science (ES) Land Sensors Seconds 
Global Contraband (GC) Cargo Shipping Days/Weeks 
Global Pandemic (GP) Infections Days 
Industrial Control (IC) Robotic Sensors Seconds 
Social Networking Stream (SNS) Sentiment, Bots Seconds 

 

1.4.1 Air Traffic Control (ATC) 

Air Traffic Control consists of a complex integrated system of pilots, controllers on the 

ground, radar ground stations, control towers, and software.  Because of the volume of flights, 

flight anomalies may be undetected, resulting in catastrophic events. Actionable alerts may go 

unnoticed.  Recent examples of flight-path anomalies and catastrophic failures that were not 

detected include Germanwings Flight 9525 [23] and Malaysia Airlines Flight 370 [24].  These 

failures were believed to be caused by intentional pilot behaviors.  In both cases, had the 

anomalous flight path been detected in real-time, tragedies might have been prevented through 

early recognition through automated algorithms and the electronic intervention.  Global Air 

Traffic (GAT) is the subject of the case study presented in Chapter 9. 
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1.4.2 Connected and Autonomous Vehicle (CAV) 

CAVs rely on their local sensors and information received from other nearby vehicles 

and road structures to navigate the roadway safely.  CAVs use wireless and near-field 

technologies to communicate.  Hazard identification is critical to the operation and 

commercialization of CAVs. By their nature, CAVs generate spatiotemporal data.  Streaming 

anomalous data generated through faulty sensors or a malicious local cyberattack could result in 

severe consequences, including fatal car crashes.  The automated and timely detection of 

anomalies in real-time is critical to the long-term commercial success of CAVs. 

1.4.3 Cyber-Physical System (CPS) 

 Foreign network attacks, host-based intrusions, malware, and other malicious cyber-

attacks on CPSs [25], including the electrical grid, power plants, and water distribution networks, 

can have severe economic and security consequences.  These attacks are generally recognized 

through the analysis of network packet attributes (e.g., the source and destination of the packet’s 

Internet Protocol (IP) address) or the evaluation of terabyte-sized, text-based log files.  Anomaly 

detection based on discrete event temporal sequences in log files is critical [26]; unfortunately, 

the recognition of these attacks is often too late to be actionable. Anomaly detection techniques 

that could recognize cyber-attacks in real-time by analyzing CPS streaming network traffic and 

log files would increase cybersecurity.  Since cyberattacks may originate globally, initiated by 

adversarial nation-states, cyber data streams have a strong geographic component that could be 

exploited by the spatiotemporal aware anomaly detection algorithm.  

1.4.4 Distributed Sensor Network (DSN) 

DSNs are characterized by a spatially distributed set of autonomous devices used to 

monitor and log physical or environmental conditions. Often, these devices are located at the 
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network edge at disadvantaged locations where power and computer resources are limited.  

Extreme values of sensor readings might indicate a sensor fault or point anomaly. The anomaly 

detection algorithm must be able to detect the difference between a faulty sensor and valid but 

previously unseen data. 

Through continuous monitoring, the spatial and temporal characteristics of DSN outputs 

can be exploited by analyzing not only the sequence of sensor reads at a particular location, but 

also by the relationship between the sequences at two or more sensor locations. Detection of an 

adversary missile launch, for example, could be formulated as an anomaly detection problem 

where the spatiotemporal pattern of sensor outputs from one satellite is time-related to the 

spatiotemporal pattern of outputs from a related satellite. Data can be transmitted remotely to a 

centralized server, aggregated, fused, and then deployed to a time-critical decision support 

system.  For example, space-based sensors attached to multiple geo-spatially distributed satellite 

monitor and detect adversary missile launches.  Anomalous sensor data could be an indicator of a 

sensor failure or a real adversarial missile launch.   

1.4.5 Earth Science (ES) 

 Anomaly detection and related techniques applied to ES spatiotemporal domains, 

including global warming simulation, earthquake prediction, ozone level detection [27], ocean 

surface temperature monitoring, hurricane modeling, and the early warning of flood events [28]. 

ES has perhaps the most durable spatial component of all of the use cases listed in Table 1. This 

domain is heavily multivariate; for example, land cover anomalies often proxy previously 

unrecognized climate change and geological activity. Streaming weather shape data and satellite 

images used in conjunction with other earth science sensors may be inputs into contextual 

anomaly detection algorithms.  In the future, earthquake prediction based on ES temporal and 
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spatial anomalous variations might be identified through representational learning algorithms. ES 

is the subject of the case study found in Chapter 10.  

1.4.6 Global Contraband (GC) 

 Maritime Domain Awareness is the term used to describe the process of monitoring 

commodity import patterns and global ship movements [29].  Terrorists and rogue nations use 

cargo shipping as the primary means to smuggle GC, including nuclear weapon materials and 

illicit drugs.  Algorithms that identify anomalous shipping transactions, fraudulent manifests, 

fake companies, and previously unseen ship movement patterns could be a capable detector of 

international smuggling and attempts to avoid financial sanctions [30]. 

1.4.7 Global Pandemic (GP) 

 A global pandemic is the rapid spread of a disease or virus across one or more regions.  

The H1N1 swine flu pandemic of 2009 and the COVID-19 pandemic of 2020 are examples of 

epidemics that originate one country and spread globally over time, sometimes over a few days 

or weeks. The spread of the disease or virus can be modeled, in part, as a spatiotemporal 

anomaly detection problem similar to a computer network virus.  Geographic and sequential 

anomalies can be identified when particular regions exhibit low or high pandemic infection rates. 

Anomaly detection can be used in forecasting models to guide better public-policy decision 

making (e.g., to avoid draconian countermeasures) and to evaluate the reliability of published 

infection and death rate data by controlled governments.  

1.4.8 Industrial Control (IC) 

 The Association for Computing Machinery 2017 Distributed and Event-Based Systems 

Grand Challenge focused on the problem of the analysis of anomalies in streaming IC data 

generated by digital and analog sensors embedded within manufacturing equipment [31].  
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Factory floor equipment failures in the manufacturing process often result in defective products.  

Equipment failures may occur randomly or incrementally over time. Automated diagnosis of 

industrial equipment using anomaly detection techniques could result in the early identification 

of faulty product manufacturing and failing equipment.  Delayed recognition of faulty 

manufacturing processes increases product rework expenses and other costs.  Unusual shapes of 

temporal values originating from equipment sensors may indicate an emergent equipment failure 

or the need for preventative maintenance. 

1.4.9 Social Networking Stream (SNS) 

 Social networks such as Twitter™, Instagram™, and YouTube™ generate massive 

geographically distributed SNSs and images with annotations. SNSs effectively form a grid of 

human sensors.   These SNSs provide valuable, timely, and actionable intelligence and 

situational awareness on evolving current events, natural emergencies, adversarial cyberattacks, 

and consumer sentiment.  The volume and variety of these SNSs create a technical barrier to 

their exploitation.   Anomaly detection techniques can be used to identify critical social 

networking information that would otherwise be lost in the noise by traditional algorithms.  

SNSs are the subject of the case study presented in Chapter 11. 

1.5 Research Contributions and Limitations 

The contributions of this research are as follows: 

1. A benchmark comparison between TML and DNN algorithms to identify various types of 

anomalies using datasets from multiple application domains. 

2. A novel STADE architecture that employs a continuous running DNN with parameter 

updates in a unified framework to identify anomalies in multivariate, streaming 

spatiotemporal data.  Within the STADE architecture is a Stream Anomaly Detector 
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(SAD) and a Federated Anomaly Detector (FAD) that identifies relationships among 

LAD anomalies. 

3. Three cloud-based case study demonstrating architecture and algorithmic concepts of 

STADE using live commercial air traffic flow from globally positioned sensors, live 

global earthquake readings from global sensors, and streaming tweets from the social 

network provider Twitter™. 

In order to focus on the algorithms associated with spatiotemporal anomaly detection, 

there are several related albeit essential topics that will not be addressed in detail.  The massive 

growth in the accuracy and performance of representational learning has been a result, in part by 

the availability of powerful Graphical Processing Units from NVIDIA, Tensor Processing 

Units from GOOGLE, and various Application-Specific Integrated Circuits.  NVIDIA’s 

parallel computing infrastructure can speed-up representational learning calculations by orders of 

magnitude over sequentially-based programming. Optimization and performance enhancements 

through the use of parallel computing architectures are not explicitly addressed herein. 

Seasonality in temporal data is typical but is not incorporated into the anomaly detection 

algorithms. Similarly, there are conceptual differences between locally distributed and globally 

distributed anomaly detection algorithms.  Local distribution may execute within a data center or 

factory floor, while global distribution may be across the world in the commercial cloud.  The 

focus of the case study is on the commercial cloud, but the results could be extended to local, 

clustered-based computing. 

Image anomaly detection, an emerging application area in representational learning, is 

not addressed. For example, automatic machinery surface image inspection for fault detection, 

building entry image detection for anomalous human activity, automated analysis of temporal x-
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rays images for medical diagnosis are examples of the application of anomaly detection 

algorithms. Convolutional neural networks (CNNs) is the neural network architecture primarily 

used in vision problems.  While vision anomaly detection problems are not addressed, CNNs 

adapted to non-vision multivariate anomaly problems are discussed in Chapters 6 and 7. 

Despite the explosion in the deployment of machine learning models for decision 

support, research in understanding the underlying reasoning behind representational learning is 

an open research problem. Explainable AI is essential, especially in mission-critical domains, 

because decision-makers need to have trust in a model override of personal expertise and 

intuition [32], [33].  Explaining anomaly designations produced by neural networks and trust 

versus untrustworthy models are critical topics that will not be addressed.  For a recent 

comprehensive survey of techniques for explaining black-box models, see [34] and [35]. 
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1.6 List of Acronyms 

Table 2: List of Acronyms 

1D-CNN One Dimensional Convolutional Neural Network 
ATC Air Traffic Control 
AUC The area under the (ROC) Curve 
BACKPROP The Backpropagation Algorithm 
CAV Connected/Autonomous Vehicles 
CBLOF Cluster-Based Local Outlier Factor TML technique 
CNN Convolutional Neural Network 
CONOPS Concept of Operations 
CPS Cyber-Physical System 
DATACENTER The Yahoo Datacenter anomaly detection dataset used for experimentation. 
DA-GMM Deep Autoencoding Gaussian Mixture Model 
DNN Deep Neural Network 
DSN Distributed Sensor Network 
DSS Decision Support System 
ED-1D-CNN Encoding-Decoding One-Dimensional Recurrent Neural Network 
ED-RNN Encoding-Decoding Recurrent Neural Network 
ES Earth Science 
FAD Federated Anomaly Detector 
FFN Feed-Forward Neural Network 
FL Federated Learning 
FN / FNR False Negative / False Negative Rate 
FP / FPR False Positive / False Positive Rate 
FRAUD The credit card fraud dataset used for experimentation 
GAN Generative Adversarial Network 
GAT Global Air Traffic 
GC Global Contraband 
GP Global Pandemics 
GPU Graphical Processing Unit 
HBOS Histogram-Based Outlier Score TML technique 
IC Industrial Control 
IDS Intrusion Detection System 
IF Isolation Forrest TML technique 
IoT Internet-of-Things 
K-L Kullback-Leibler Divergence 
k-NN k Nearest Neighbor TML technique 
LOF Local Outlier Factor TML technique 
LSTM Long Short-Term Memory 
MCD Minimum Covariance Determine TML technique 
NLP Natural Language Processing 
OC_SVM One-Class Support Vector Machine TML technique 
PCA Principal Components Analysis TML technique 
RE Reconstruction Error 
ROC Receiver Operating Characteristic 
RNN Recurrent Neural Network 
SAD Stream Anomaly Detector 
SCADA Supervisory Control and Data Acquisition 
SDA Shallow-Deep Autoencoder 
SGD Stochastic Gradient Descent 
SNS Social Networking Stream 
STADE Spatiotemporal Anomaly Detection Environment 
SVM Support Vector Machine 
SWAT The Secure Water Treatment Testbed dataset used for experimentation 
T-SNE t-distributed Stochastic Neighbor Embedding 
TML Traditional Machine Learning 
TN / TNR Ture Negative / True Negative Rate 
TP / TPR True Positive / True Positive Rate 
USGS United States Geological Survey 
VAE Variational Autoencoder 
WADI The Water Distribution Testbed dataset used for experimentation. 
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CHAPTER 2 – ANOMALIES AND ANOMALY DETECTION QUICK LOOK 

2.1 Anomaly Detection Terminology 

There are three types of anomalies: (1) point, (2) contextual, and (3) collective.  Point 

anomalies occur when a sample is unusual with respect to one or more other samples. Contextual 

anomalies occur when a sample is unusual when viewed within a specific, operational context.  

A significant change in a sensor value over two adjacent periods or two adjacent regions, for 

example, might indicate a contextual anomaly.  Collective anomalies occur when one or more 

samples are unusual with respect to the entire dataset.  Point anomalies are more extensively 

studied and more straightforward to identify than collective and contextual anomalies. 

 

Figure 1: Local vs. Global Anomalies 

 Consider Figure 1, which illustrates the distinction between local and global anomalies.  

Local anomalies are identified with respect to the nearest neighbors, while global anomalies are 

identified with respect to the entire dataset.   Therefore, local anomalies are typically point or 

contextual, while global anomalies are collective.  However, there is not a one-to-one 
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relationship between the definitions of local and global anomalies, and point, contextual, and 

collective anomalies. Local anomalies often occur in ecology and other biological domains. 

Note the subtle distinction in the literature between an outlier, anomaly, and a novelty. 

An outlier is a data point that has a low probability of occurrence but is not necessarily 

anomalous.  For example, random noise may cause outliers in data.  An anomaly has an even 

lower probability than an outlier so that the definition is one of degree; the threshold is 

determined by the characteristics of the domain and the use case. A novelty is an infrequent 

event. However, the distinction between an outlier, anomaly, and novelty is not critical to the 

discussion here. 

There are many core causes of anomalies. Uncertainties can cause anomalies and outliers.  

Uncertainty can be a result of incomplete domain understanding, incomplete observability, 

stochasticity, incomplete modeling, or inappropriate model abstraction.  Anomalies can also be 

an outcome of unidentified changes over time in normal behavior, or intentional changes in 

behavior such as malicious actions by adversaries.   

2.2 Streaming Spatiotemporal Data 

 Streaming is defined as the digital process of receiving data through a network in a 

continuous flow. The time intervals between receipt may or may not be equal depending on the 

problem domain.  Stream processing is the term used synonymously with the term ‘online’ and is 

the opposite of batch processing.  With streaming, each sample is processed sequentially with the 

model or algorithmic parameter updates on-the-fly.  Anomaly scoring is also continuous; 

anomaly designations are made immediately at the time of receipt, and there is no revision of 

past designations.  Upon receipt, samples are stored in local volatile memory, on disk in 
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persistent storage, transmitted via a network and combined with other sites in a central database 

server, or discarded on the spot. 

Streaming samples may be unordered, time-dependent, geographic-dependent, or 

spatiotemporal. With unordered streams, each sample is independent of the next; the sequential 

nature of the stream is unimportant. A time-dependent stream, which is also known under the 

moniker of time-series, includes a time dimension. A geographic-dependent stream includes a 

unique location or geographic dimension.  Examples of location or geographic features include a 

latitude and longitude or a computer internet protocol (IP) address.  In many statistical models, 

larger geographic regions (e.g., North America) may be incorporated by one-hot or dummy 

variable encoding. The combination of time dependence and location significance in a data 

stream is the working definition of spatiotemporal. 

Note that in non-engineering disciplines, spatiotemporal is referred to as a ‘time series of 

cross-sections’ (e.g., economics) or sequences (e.g., bioinformatics).  However, not all sequences 

are logically streamed.  A linearly ordered string such as a DNA encoding is ordered but not 

conceptually transmitted sequentially through a network and hence does not fit into the definition 

of streaming. 

There are numerous application examples of streaming spatiotemporal data in the 

anomaly detection literature.  The domain that has received the most research attention is 

network intrusion detection systems (IDSs).  An IDS monitors the inbound and outbound 

network packets in real-time for malicious activity (e.g., viruses or worms) and policy violations 

(e.g., network traffic originating from a prohibitive source). An IDS detects anomalies based on 

individual packet snapshots or adjacent packet changes. Other examples of streaming 

spatiotemporal applications include global air traffic, global earthquake monitoring, and 
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Twitter™ social networking tweets. These latter examples are the focus of the case studies 

presented in Chapters 9-11.  

Consider Figure 2, which illustrates the example of a temporal sensor stream from two 

locations without a geographic time lag.  A contextual and point anomaly would be detected 

around periods 15 and 29 in both Region #1 and Region #2 due to the sudden spike down in the 

temporal neighborhood.  However, there would be no collective anomaly because the value 

pattern repeats not only within a region but also between regions. These types of patterns may be 

easy to recognize with two regions but more challenging to identify with multivariate, multi-

regional data. 

Figure 3 illustrates a related example of a sensor network with two regions. Is this 

example, the sensors produce values that are identical in both regions; however, there is a five-

time unit offset in region two.  Both regions have the same shape of sensor values, so from a 

collective perspective, when multiple regions are analyzed jointly, no anomalies exist if an 

interregional lagged response is expected. 

 

Figure 2: Sensor Network No Lag 
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Figure 3: Sensor Network with Lag  

 Some anomaly detection techniques can be modified to support high-tempo streaming 

data even with slower executing algorithms.  Techniques that can process sub-windows of the 

entire stream can be adapted for streaming sequence data by assigning an independent anomaly 

score to each sub-window.  Scores are based on only the samples within the window.  The 

overall anomaly may be designated when a sequence of scores is anomalous. The adaptation of 

existing anomaly detection techniques is discussed in Chapter 3 (TML models) and Chapter 5 

(DNN models). 

2.3 Supervised, Semi-Supervised, Self-Supervised, and Unsupervised Learning 

Studies of anomaly detection employ supervised, semi-supervised, self-supervised, or 

unsupervised techniques. Supervised learning requires labeled training instances. Semi-

supervised learning uses a combination of labeled and unlabeled data and is required in cases 

where there are insufficient labeled instances.  Examples of supervised and semi-supervised 

TML techniques include support vector machines, decision trees, random forests, and multiple 

variants of regression analysis. DNNs formulated as a supervised learning problem are also 
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popular in the anomaly detection literature. For example, DNN-based fraud detection models use 

supervised learning because of the ready availability of financial transactions from financial 

institutions.  Similarly, DNN-based network spam models use supervised learning because of the 

availability of attack data from commercial and internet providers.  However, in most other 

domains, labeled datasets are not readily available. 

Self-supervised approaches replicate the input data probabilistically through a model; the 

target is the input sample. Principally, self-supervised techniques are supervised since training 

occurs with a target variable, although labeled data are not used.  An example of a self-

supervised technique is the various flavors of autoencoders.  Autoencoding and other techniques 

for self-supervision in the context of anomaly detection are discussed in detail in Chapter 6.  

Unsupervised techniques are based on unlabeled data and assume that the training data 

includes both anomalous and non-anomalous.  Some authors note the distinction between the 

definition of outlier detection and novelty detection.  Outlier detection assumes that the training 

data may include anomalies, while novelty detection assumes that training data does not include 

anomalies. In any event, by definition, an anomaly is a rare event; the inclusion of infrequent 

anomalies in unsupervised training datasets usually does not introduce bias. 

In summary, the focus of the research here is on self-supervised or unsupervised 

techniques (used interchangeably), where the assumption is that the training data may contain 

anomalies but at a low, insignificant frequency. Chapter 4 addresses unsupervised TML 

techniques, while Chapter 6 addresses unsupervised and self-supervised DNN techniques.  Note 

that while unsupervised or self-supervised techniques do not require labeled anomaly data, labels 

are still required on the test data in order to measure the efficacy of the algorithm. Section 2.5 

below discusses algorithm performance evaluation. 
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2.4 Anomaly Scoring and Labeling 

At the core of anomaly detection is a classification problem. Labeling is the process of 

assigning a score or metric and specifying a decision function that maps the score or metric to a 

binary anomaly classification. While the classification is binary, the anomaly score will also 

indicate the probability of abnormality.  Labels may be assigned to a single instance in the case 

of point anomalies, or a set of points, in the case of contextual or collective anomalies. 

Each algorithm has a unique approach to anomaly scoring and the classification function.  

One approach is to rank-order the anomaly scores from low-to-high. Assuming that the highest 

scores are the most anomalous, and if there are x percent anomalies identified in the training 

data, then the top x percent of the anomaly scores in the test data are designated as anomalous.   

Other approaches are based on probability cut-off values, various distance measures, and 

asymmetric risk objectives.  Scoring and labeling of streaming data occur continuously and in 

real-time. 

Anomaly labeling may be multi-step.  For example, an anomaly might be defined as a 

temporal sequence that produces a point anomaly in three consecutive periods in two or more 

regions.  Moreover, if the risk profile is asymmetric, the underprediction of anomalies may 

introduce a higher risk than over prediction.  An algorithm that consistently overpredicts this 

anomaly over four consecutive periods may be preferable to another algorithm that consistently 

underpredicts. These complexities make multi-step labeling challenging to generalize and highly 

domain-dependent. 

There are four related approaches to multi-step anomaly labeling that are depicted in 

Figure 4.  Approach (a) is to estimate the required number of steps using a one-step model.  For 

example, for a three-step anomaly detection problem, three separate unsupervised models are 



 

 21 

estimated concurrently. Approach (b) is a variant of the first approach.  A separate model is 

estimated for each step, but the label from the previous step is used as input into the model for 

the next step. With this approach, the models are estimated sequentially. Approach (c) is to use a 

single model that is capable of estimating multiple steps.    For example, a single DNN could be 

formulated as multiple nodes in the output layer.  Approach (d) is through a recursive sequential 

approach.  The recursive strategy involves using a one-step model where the label generated 

from the previous step is used as an input into the prediction of the label in the next step. This 

approach is preferred because of the lower computation requirements vis-à-vis running a separate 

model for each step. Sequence-to-sequence recurrent neural networks (RNN) discussed in 

Chapter 4 are based on this approach.  

 

                Figure 4: Multi-Step Labeling 

2.5 Algorithm Performance Evaluation 

The focus of this research is on unsupervised TML and DNN, techniques that do not 

require labeled data.  However, without anomaly labels, how are algorithms evaluated?  The 
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answer is that labeled data is still required for evaluation purposes; the model parameters are 

estimated using training data without labels, but the performance of the model is measured with 

evaluation data that includes anomaly labels.  Model parameters are applied to the evaluation 

data, anomaly predictions made, and then compared against the actual labels to evaluate 

performance.  These performance measures relevant to the evaluation data are discussed below. 

A couple of critical assumptions should be noted here.  First, in the anomaly detection 

literature, anomalies are deemed ‘positive’ outcomes, while non-anomalies are ‘negative’ 

outcomes. Second, the assumption is that anomalies are a rare event and are only a small 

percentage of the overall population.   Note that predictive accuracy is an inappropriate measure 

of performance in anomaly detection studies because of the skewed population.  If, for example, 

there were only one percent (1%) anomalies in the population, a model that predicted one-

hundred percent (100%) non-anomalies would always be ninety-nine percent (99%) accurate. 

2.5.1 Confusion Matrix 

 Table 3 displays an example of the confusion matrix used in classification studies.  A 

confusion matrix is a two-by-two table that allows the comparison of the algorithmic 

performance on test data.   In this table, each row indicates the actual anomaly label, while each 

column represents the predicted label. Therefore, the values down the diagonal represent perfect 

classifiers, ‘true negatives’ (TN), and ‘true positives’ (TP).  Because of the data imbalance, most 

of the samples are expected to land in TN. The upper right quadrant includes false-positives 

(FP), which are non-anomalies misclassified as anomalies, and the bottom left quadrant includes 

‘false negatives’ (FN), which are anomalies misclassified as non-anomalies.  Therefore, the total 

number of misclassifications are FP+FN.  With highly imbalanced data, classification accuracy is 

not an appropriate metric for success. 
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Note that with supervised learning, the output of a DNN is an anomaly prediction. With 

anomaly predictions, the calculation of the confusion matrix is straightforward since the 

anomalous population within the training dataset is known. The confusion matrix is based on a 

threshold probability such as .5.  With unsupervised learning, the anomalous population within 

the training dataset is not known.  Unsupervised techniques produce rank order anomaly scores 

and do not produce direct probability estimates.  For this reason, the confusion matrix under 

supervised learning is only one example of a continuum of matrices based on the anomaly score 

threshold value. 

Table 3: Confusion Matrix 

Confusion Matrix Predicted 

Normal Anomalous 

Actuals Normal True 

Negative 

(TN) 

False 

Positive 

 (FP) 

Anomalous False 

Negative 

(FN) 

True 

Positive 

(TP) 

 

2.5.2 Precision Recall Tradeoff 

Let the decision function scoring threshold be denoted by t.  Increases in the threshold t 

result in fewer anomalies being classified in the test data. There is no right or wrong value for the 

scoring threshold value t; this value depends on the objectives of the model or study. 

The trade-off between failing to identify true anomalies (false negatives) and over-

identifying anomalies (false positives) is measured in terms of precision and recall, a standard 
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approach to testing of classifiers.   Precision is defined as the fraction of predicted anomalies 

(TP+FP) that are accurately predicted (TP):  

Precision(𝑡) = 𝑇𝑃𝑇𝑃 + 𝐹𝑃  (2.1) 

Note that as the decision threshold t increases, the size of FP decreases as fewer anomalies are 

predicted.  Moreover, the precision metric in equation (2.1) is not monotonic in t since both the 

numerator and denominator are a function of t. 

 Recall is defined as the fraction of actual anomalies (TP+FN) that were accurately 

predicted (TP).  Recall is also known as the true positive rate (TPR) and is shown in equation 

(2.2): 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑡) = 𝑇𝑃𝑅 =  𝑇𝑃𝑇𝑃 + 𝐹𝑁  (2.2) 

 The F1 metric, which is also known as the F-measure or F-score, combines precision and 

recall into a single metric, the harmonic average, as shown in equation (2.3).  This metric is 

useful when comparing two classifiers, is a measure of the overall accuracy of the algorithm, and 

is the harmonic average of the precision and recall.  An F1 close to one indicates both high 

precision and high recall: 

𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  (2.3) 

The Precision-Recall Tradeoff curves shown in Figure 5 illustrates the relationship 

between precision and recall metrics at various levels of the trade-off t.  The two curves are 

different viewpoints of the same data. The left-side curve incorporates the threshold t implicitly 

while the right-side cure incorporates the threshold t as the x-axis.  As the threshold t increases, 

fewer anomalies are classified, so that the false positives decrease, increasing precision.  

However, precision may also go down at some threshold t per equation (2.1), so the curve if 
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often concave.  Recall, however, is always a monotonic decreasing function of the threshold t. 

An increase in threshold t will result in fewer predicted anomalies increasing false negatives.  

Given equation (2.2), an increase in false negatives will always result in a decrease in the recall 

metric. 

Figure 5: Precision-Recall Tradeoffs Example 

2.5.3 The Receiver Operating Characteristic (ROC) Curve 

The final evaluation technique is the Receiver Operating Characteristic (ROC) Curve; an 

example is shown in Figure 6. Similar to the precision-recall curves, each point on the ROC is 

calculated by increasing the threshold t by a small amount. Using a ROC curve, the false positive 

rate FPR(t), given by equation (2.4) is graphed on the x-axis, and the true positive rate TPR(t), 

which is the same as recall and was given by equation (2.2), is graphed on the y-axis. 
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          Figure 6: Receiver Operating Characteristic (ROC) Example 

   

(𝐹𝑃𝑅) =  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(𝑡) = 𝐹𝑃𝑇𝑁 + 𝑇𝑃  (2.4) 

  

One statistic useful to compare the performance of different algorithms is the area under 

the Receiver Operating Characteristic (ROC) curve or AUC.  If one anomaly and one non-

anomaly sample are randomly selected from the dataset, AUC represents the likelihood that the 

algorithm will assign a higher predicted probability on the anomaly.  A random classifier will 

have a ROC AUC equal to .5, while a perfect classifier will have a ROC equal to 1. The higher 

the AUC, the better is the performance of the algorithm. Therefore, the ROC AUC is the 

probability that a binary classifier will predict that a random positive (anomalous) sample is a 

higher probability than a random negative (non-anomalous) sample.  Top-performing anomaly 

detection algorithms should produce AUCs above approximately .75 at a minimum. 
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CHAPTER 3:  EXPERIMENTATION DATASETS 

3.1 Introduction 

 Experimentation was conducted using four highly specialized anomaly detection datasets 

from different application domains.  All experimentation was performed in unsupervised mode.  

Unsupervised mode means that labels were not used to train the model parameters and only used 

to evaluate the algorithm against the test data.  While the TML and DNN algorithms to be 

discussed supports unsupervised or semi-supervised learning, there is still a practical need for 

labeled test data to compare, evaluate, and score alternative techniques.   The anomaly detection 

performance metrics used to score were discussed in the previous chapter, Section 2.5.  

Evaluation metrics must be carefully selected because the substantial imbalance between the 

number of non-anomalous samples and the number of anomalous samples will skew the results.   

 Chapter 2 also discussed the nature of contextual and collective anomalies that can be 

identified only after the analysis of the complete dataset. Most datasets, however, only identify 

point anomalies in isolation and that occur at an instance in time.  Algorithms designed to detect 

point anomalies may still be used for the study of contextual or collective anomalies by including 

features that capture or proxy time and location features. 

 Temporal sequence streaming data include a time-stamp feature associated with each 

sample.  Ideally, the processing architecture and algorithm under experimentation should be 

exercised under the operational conditions of streaming data where samples are processed in 

real-time.  In practice, this approach is rarely possible because datasets are collected from 

testbeds over many days or weeks of operation, and replicating this timing in experimentation is 

not feasible.  Sensor readings from the water treatment and water distribution testbeds (described 

below) were captured over an extended period. If the processing architecture and algorithm can 
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execute ‘faster than real-time,’ then speedup will not introduce artificialities into the model 

training process.  However, if the processing algorithm executes slower than real-time, 

artificialities are introduced that may compromise the validity of the experimentation and 

resultant conclusions. 

 Note that anomalies (e.g., cyberattacks) can extend over long periods. Anomaly detection 

algorithms may identify those attacks for only part of the attack window or for a period that 

extends beyond the completion of the attack.  Whether the algorithm receives credit for correctly 

identifying those attacks as anomalies depends on the data collection processes and the 

requirements of the case study.  Early recognition of a cyberattack may be more beneficial than 

belated recognition because corrective measures can be implemented proactively to mitigate 

damage. 

3.2 Feature Scaling 

 Feature scaling is the process of transforming the range of values into a standard or 

comparable scale.  The primary reason for feature scaling is that TML and DNN (i.e., stochastic 

gradient descent (SGD) algorithms) are more stable and converge faster with features that have a 

standard scale. Particularly with respect to SGD, large input values might cause numerical 

overflows and other non-transparent estimation problems.  Target features (i.e., the dependent 

variable) and binary or one-hot encoded features, however, are not scaled. 

 There are two conventional approaches to scaling: min-max scaling and standardization.  

With min-max scaling, features are transformed to the range from zero to one.  With 

standardization, the sample mean value is subtracted from each value and divided by the sample 

standard deviation, resulting in a zero mean and unit variance.  Standardization does not bound 
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vales to a specific range like min-max scaling but is less influenced by extreme outliers in the 

data.  Min-max scaling and standardization are adopted throughout the remaining chapters.  

3.3 Datasets for Experimentation 

Four multivariate datasets were identified for experimentation: (a) the Credit Card Fraud 

(FRAUD) dataset, (b) the Secure Water Treatment (SWAT) dataset, (c) the Water Distribution 

(WADI) dataset, and (d) the Yahoo DATACENTER dataset.  The characteristics of these 

datasets are briefly discussed below. Note that each dataset is time-ordered but does not include a 

spatial component.  Unfortunately, publicly available spatiotemporal anomaly detection 

experimentation datasets are not readily available.  The purpose of experimentation here is to 

explore the variety of algorithms that could be adapted for spatiotemporal anomaly detection.  

The concept of spatiotemporal anomaly detection is further addressed with the STADE 

specification provided in Chapter 8 and the three STADE case studies provided in Chapters 9-11. 

3.3.1 Credit Card Fraud (FRAUD) 

The FRAUD dataset consists of credit card transactions over two days in 2013 in Europe.  

A fraudulent transaction is an anomaly. In total, 284,807 transactions were processed with 492 

transactions deemed as fraudulent (and 284315 non-fraudulent), resulting in an anomaly rate of 

0.17 percent.   Included are twenty-eight numerical explanatory but undefined features; however, 

each feature has been obfuscated by Principal Components Analysis (PCA) for confidentiality so 

that the features are not interpretable.  The two features that were not transformed using PCA are 

the time and the transaction amount.  For an overview of fraud detection techniques, see Kou, 

Lu, and Sirwongwattana [36]. 

The FRAUD dataset is not a real temporal dataset.  While the time feature contains the 

seconds elapsed from the start of data collection, the value has no impact on the algorithmic 
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performance since the entities responsible for the transaction cannot be uniquely identified.  

Nevertheless, the dataset was selected because of the quality of the data and the extensive use in 

the anomaly detection literature. 

Table 4 displays the FRAUD raw statistics by anomaly designation. All features except 

time and transaction amount (in EURO currency) have been transformed by PCA so that the 

values are centered around zero.  Note that transaction amounts are, on average, higher for 

fraudulent samples than with routine transactions. However, the non-anomalous transactions 

include an apparent outlier (maximum of 25691€), which is significantly above the maximum 

anomalous transaction (2125€).  For many features, the standard deviation of the anomalous 

transactions is measurably higher than the standard deviation of non-anomalous features. 

Table 4: FRAUD Statistics 

Feature Non-Anomalous Anomalous (Fraudulent) 

Mean Std Dev Min Max Mean Std Dev Min Max 

Time 94838 47484 0.00 172792 80746 47835 406 170348 
V1 0.00 1.92 -56.40 2.45 -4.77 6.78 -30.5 2.13 
V2 0.00 1.63 -72.71 18.90 3.62 4.29 -8.4 22.0 
V3 0.01 1.45 -48.32 9.38 -7.03 7.11 -31.10 2.25 
V4 0.00 1.39 -5.68 16.87 4.54 2.87 -1.31 12.11 
V5 0.00 1.35 -113.74 34.80 -3.15 5.37 -22.10 11.09 
V6 0.00 1.32 -26.16 73.30 -1.39 1.85 -6.40 6.47 
V7 0.00 1.17 -31.76 120.58 -5.56 7.20 -43.55 5.80 
V8 0.00 1.16 -73.21 18.70 0.57 6.79 -41.04 20.00 
V9 0.00 1.08 -6.29 15.59 -2.58 2.50 -13.43 3.35 
V10 0.00 1.04 -14.74 23.74 -5.67 4.89 -24.58 4.03 
V11 0.00 1.00 -4.79 10.00 3.80 2.67 -1.70 12.01 
V12 0.01 0.94 -15.14 7.84 -6.25 4.65 -18.68 1.37 
V13 0.00 0.99 -5.79 7.12 -0.10 1.10 -3.12 2.81 
V14 0.01 0.89 18.39 10.52 -6.97 4.27 -19.21 3.44 
V15 0.00 0.91 -4.39 8.87 -0.09 1.04 -4.49 2.47 
V16 0.00 0.84 -10.11 17.31 -4.13 3.86 -14.12 3.13 
V17 0.01 0.74 -17.09 9.25 -6.66 6.97 -1.34 6.79 
V18 0.00 0.82 -5.36 5.04 -2.24 2.89 -9.49 3.79 
V19 0.00 0.81 -7.21 5.59 0.68 1.53 -3.68 5.22 
V20 0.00 0.76 -54.49 39.42 0.37 1.34 -4.12 11.05 
V21 0.00 0.71 -34.83 22.61 0.71 3.86 -22.79 27.20 
V22 0.00 0.72 -10.93 10.50 0.01 1.49 -8.88 8.36 
V23 0.00 0.62 -44.80 22.52 -0.04 1.57 -19.25 5.46 
V24 0.00 0.60 -2.83 4.58 -0.10 0.51 -2.02 1.09 
V25 0.00 0.52 -10.29 7.51 0.04 0.79 -4.78 2.20 
V26 0.00 0.48 -2.60 3.51 0.05 0.47 -1.152 2.74 
V27 0.00 0.39 -22.56 31.61 0.17 1.37 -7.26 3.05 
V28 0.00 0.32 -15.43 33.84 0.07 0.54 -1.86 1.77 
Amount 88.29 250.1 0.00 25691.16 122.21 256.68 0.00 2125.87 
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Figure 7 displays transaction amounts by time.  Note that there are a few transaction 

outliers, but as previously noted, the FRAUD dataset is useful only for point anomaly detection. 

 

 

Figure 7: FRAUD - Time Series of Transactions by Amount 

3.3.2 Secure Water Treatment (SWAT) Testbed 

 SWAT is an operational testbed for water treatment research and development in support 

of the Singapore Public Utility Board.  SWAT is operated by the iTrust Centre for Research in 

Cyber Security.  The testbed was designed to simulate and test the effects of cyberattacks on a 

water treatment facility.  The attack points include various sensors (e.g., water level) and 

actuators (e.g., water pumps).  Figure 8 provides a picture of the SWAT testbed that produced 

the dataset. 

Experimentation data was collected over eleven (11) days of continuous operation.  The 

first seven (7) days captured standard operation data, while the final four (4) days captured data 

under various simulated cyberattack scenarios.  Therefore, the first seven (7) days of data are 

used for model training, while the last four (4) days of data are used for model testing.  In total, 
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there were 495,000 records processed during normal operations and 449,919 records processed 

during the periods of attack, of which 54,584 records were labeled as anomalous.  Values from 

all fifty-one (51) sensors, network traffic, and actuators were recorded.  Thirty-six (36) distinct 

attacks of various types were initiated and recorded, ranging in length from two minutes to 

twenty-five minutes. Examples of attack impacts include water tank overflow, chemical 

discharge, and output valve shutdown. 

 

Figure 8: Secure Water Treatment (SWAT) Testbed 

 Table 5 displays the SWAT statistics by anomaly designation.  Note that with some 

features, anomalous samples exhibit lower mean values than non-anomalous samples (e.g., 

FIT101), while with other features, the reverse is true (e.g., LIT101).  The standard deviations 

are also measurably different between non-anomalous and anomalous samples for some features 

(e.g., AIT203). Since the anomaly detection algorithms are multivariate that capture complex 

interrelationships, conclusions cannot be drawn simply by inspecting individual feature values or 

variances.  Perhaps more critical, the sequence of values rather than the point values may be the 

most critical determinant of an anomaly.  As previously noted, techniques for point anomaly 

detection are not typically useful for the detection of contextual or collective anomalies that 

occur over some time. 
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Table 5: SWAT Statistics 

Feature Non-Anomalous Anomalous 

Mean Std Dev Min Max Mean Std Dev Min Max 

Time 457036 272573 0 944918 723844 95517 496754 940190 
FIT101 1.84 1.13 0 2.76 0.78 1.17 0.00 2.70 
LIT101 588.79 118.45 120.62 888.17 727.41 135.35 189.82 925.03 
MV101 1.71 0.46 0.00 2.00 1.30 0.46 0.00 2.00 
P101 1.75 0.43 1.00 2.00 1.27 0.44 1.00 2.00 
P102 1.00 0.01 1.00 2.00 1.05 0.22 1.00 2.00 
AIT201 240.53 35.58 168.03 272.52 202.22 26.58 168.80 265.18 
AIT202 8.44 0.11 6.00 8.988 8.54 0.16 6.00 8.70 
AIT203 334.87 40.99 285.33 567.46 337.13 21.16 287.95 370.54 
FIT201 1.83 1.05 0.00 2.82 0.68 1.12 0.00 2.82 
MV201 1.74 0.44 0.00 2.00 1.28 0.45 0.00 2.00 
P201 1.06 0.23 1.00 2.00 1.01 0.11 1.00 2.00 
P203 1.74 0.43 1.00 2.00 1.26 0.44 1.00 2.00 
P204 1.00 0.00 1.00 1.00 1.00 0.03 1.00 2.00 
P205 1.70 0.45 1.00 2.00 1.27 0.44 1.00 2.00 
P206 1.00 0.00 1.00 1.00 1.00 0.03 1.00 2.00 
DPIT301 16.71 6.72 0.00 45.00 8.41 10.24 0.01 45.00 
FIT301 1.84 0.80 0.00 2.37 0.66 1.00 0.00 2.35 
LIT301 901.04 85.05 123.81 1201.00 964.95 109.63 364.38 1201.00 
MV301 1.00 0.11 0.00 2.00 1.01 0.13 0.00 2.00 
MV302 1.80 0.41 0.00 2.00 1.29 0.46 0.00 2.00 
MV303 1.02 0.17 0.00 2.00 1.01 0.15 0.00 2.00 
MV304 1.02 0.19 0.00 2.00 1.63 0.49 0.00 2.00 
P301 1.00 0.04 1.00 2.00 1.00 0.00 1.00 1.00 
P302 1.83 0.37 1.00 2.00 1.29 0.45 1.00 2.00 
AIT401 135.41 42.58 0.00 148.85 148.80 0.00 148.76 148.85 
AIT402 161.71 14.89 141.11 327.83 250.77 85.33 140.83 333.811 
FIT401 1.71 0.07 0.00 1.74 0.66 0.82 0.00 1.74 
LIT401 881.54 89.67 130.38 1003.93 497.87 309.65 243.01 1002.58 
P402 1.99 0.04 1.00 2.00 1.41 0.49 1.00 2.00 
P403 1.00 0.00 1.00 2.00 1.00 0.00 1.00 1.00 
UV401 1.99 0.04 1.00 2.00 1.39 0.48 1.00 2.00 
AIT501 7.84 0.05 7.41 8.30 7.65 0.16 7.43 8.25 
AIT502 151.55 13.52 129.83 272.85 188.29 41.89 131.81 271.03 
AIT503 265.84 6.06 244.90 297.96 266.58 4.17 244.87 281.53 
AIT504 13.02 5.63 7.34 442.46 16.62 19.78 11.18 255.00 
FIT501 1.72 0.07 0.00 1.75 0.70 0.83 0.00 1.75 
FIT502 1.27 0.05 0.00 1.36 0.52 0.62 0.00 1.35 
FIT503 0.73 0.31 0.00 0.76 0.29 0.35 0.00 0.74 
FIT504 0.30 0.01 0.00 0.31 0.11 0.14 0.00 0.31 
P501 1.99 0.04 1.00 2.00 1.39 0.48 1.00 2.00 
PIT501 250.77 10.53 8.89 264.64 106.71 115.68 9.46 253.12 
PIT502 1.14 0.25 0.00 3.66 0.46 0.63 0.00 1.89 
PIT503 189.63 8.30 3.10 200.63 78.50 89.25 3.14 191.34 
FIT601 0.01 0.15 0.00 1.80 0.01 0.13 0.00 1.74 
P602 1.00 0.09 1.00 2.00 1.00 0.07 1.00 2.00 

 

 Figure 5 shows the time times of over normal operations of sensor LIT01, while figure 6 

shows this same sensor values throughout the cyberattack.  Note the spikes in values downward 

indicate likely anomalies.  However, given that cyberattacks occur over time, more complex 

lagged relationships between the attack trajectory and anomalous sensor readings are likely. 
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Figure 9: Normal Operations of Sensor LIT01 

 

 

Figure 10: Under Attack of Sensor LIT01 

 

3.3.3 Water Distribution (WADI) Testbed 

 The WADI testbed was designed by the iTrust Centre for Research in Cyber Security to 

simulate an unsecured water distribution network.  In addition to the sensors and pumps similar 

to the SWAT testbed, the WADI testbed can simulate the effects of the cyberattacks resulting in 

water leakages and malicious chemical injections into the water supply.  Figure 11 displays a 

picture of the WADI testbed. 
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Figure 11: Water Distribution (WADI) Testbed 

  

The WADI dataset consists of sixteen (16) days of operation, with the first fourteen (14) 

days of normal operations and the last two (2) days of attack scenarios.  A total of fifteen attacks 

were launched, ranging from 1.5 minutes to 30 minutes in length.  The dataset recorded readings 

from the 103 sensors, actuators, and network devices in the testbed.  However, some readings 

were constant throughout experimentation and were excluded from the analysis.  For purposes of 

exposition, the devices are designated ‘V1’ through ‘V127’.  

Table 6 provides the complete descriptive statistics from the testbed of the features used 

in the analysis.  Some of the features are continuous, while others are integers. For example, the 

values of the ‘V1’ and ‘V2’ sensors are significantly higher under attack than under normal 

operations.  Figures 12 and 13 show the ‘V1’ sensor readings under normal operations and 

attacks. Note that both sensors appear to shut down periodically under typical and attack 

scenarios. At only one time point, does the ‘V1’ sensor appear to be anomalous with a significant 

spike upward.  Overall, while some sensors, actuators, and devices appear to be affected by 

cyberattack activity, others do not.  As with the SWAT testbed, complex interrelationships exist 

between the readings. 
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Table 6: WADI Statistics 

Feature Non-Anomalous Anomalous 

Mean Std Dev Min Max Mean Std Dev Min Mas 

V1  168.57  12.68  0.0  214.31  188.22  74.56  0.0  634.49 
V2  0.62  0.06  0.0  6.0  0.98  1.38  0.0  6.0 
V3  11.77  0.19  0.0  12.18  11.96  0.3  0.0  12.06 
V4  483.8  25.3  0.0  526.53  447.11  22.93  0.0  480.53 
V5  0.3  0.05  0.2  0.42  0.26  0.04  0.22  0.34 
V6  0.52  0.85  0.0  2.08  1.48  0.81  0.0  2.5 
V9  56.8  11.26  0.03  100.22  49.21  8.91  37.11  74.53 
V10  1.27  0.45  0  2  1.68  0.51  0  2 
V11  1.0  0.01  0  2  1.13  0.35  0  2 
V12  1.0  0.01  0  2  1.13  0.35  0  2 
V13  1.28  0.45  0  2  1.11  0.32  0  2 
V14  1.27  0.44  1  2  1.72  0.45  1  2 
V15  1.0  0.0  1  1  1.0  0.0  1  1 
V16  1.27  0.44  1  2  1.72  0.45  1  2 
V17  1.0  0.0  1  1  1.0  0.0  1  1 
V18  1.23  0.42  1  2  1.41  0.49  1  2 
V19  1.0  0.01  1  2  1.0  0.0  1  1 
V20  2517.66  135.34  0.0  2777.41  2388.52  185.09  1033.12  2658.01 
V21  63.98  36.94  7.53  100.0  47.79  35.28  8.79  100.0 
V22  0.12  0.14  0.02  3.15  0.21  0.15  0.02  1.44 
V23  0.22  0.12  0.09  0.51  0.28  0.13  0.1  0.48 
V24  64.16  37.3  8.6  100.0  55.73  38.26  9.97  100.0 
V25  0.11  0.12  0.02  2.94  0.16  0.14  0.04  1.51 
V26  0.21  0.12  0.08  0.52  0.24  0.09  0.12  0.42 
V27  67.42  38.4  4.11  100.0  69.94  39.32  6.73  100.0 
V28  0.1  0.12  0.02  3.18  0.1  0.11  0.02  0.91 
V29  0.21  0.12  0.06  0.52  0.25  0.09  0.11  0.38 
V30  58.99  37.71  2.52  100.0  50.07  37.63  7.69  100.0 
V31  0.12  0.14  0.02  3.04  0.23  0.17  0.02  1.97 
V32  0.21  0.11  0.08  0.51  0.33  0.14  0.12  0.49 
V33  61.8  39.39  4.5  100.0  60.34  40.78  5.64  100.0 
V34  0.11  0.13  0.02  3.3  0.18  0.2  0.02  0.9 
V35  0.22  0.14  0.09  1.15  0.39  0.13  0.12  0.51 
V36  64.9  38.76  4.2  100.0  66.49  38.4  5.78  100.0 
V37  0.1  0.12  0.02  3.16  0.09  0.12  0.02  1.55 
V38  0.22  0.13  0.08  0.52  0.25  0.09  0.12  0.45 
V39  0.51  0.94  0.0  3.67  0.92  1.09  0.0  2.29 
V40  0.29  0.27  0.0  1.6  0.33  0.41  0.0  1.68 
V41  0.21  0.52  0.0  5.15  0.53  0.7  0.0  3.24 
V42  0.12  0.14  0.02  3.07  0.21  0.15  0.02  1.59 
V43  0.11  0.12  0.02  2.95  0.16  0.14  0.04  1.5 
V44  0.1  0.12  0.02  3.06  0.1  0.11  0.02  0.93 
V45  0.12  0.14  0.02  3.01  0.23  0.17  0.02  1.76 
V46  0.11  0.13  0.02  3.1  0.18  0.2  0.02  0.82 
V47  0.1  0.12  0.02  3.12  0.09  0.12  0.02  1.55 
V51  0.0  0.06  0  1  0.01  0.08  0  1 
V52  0.0  0.04  0  1  0.0  0.0  0  0 
V53  0.0  0.06  0  1  0.0  0.05  0  1 
V54  0.0  0.05  0  1  0.0  0.0  0  0 
V55  0.0  0.05  0  1  0.0  0.0  0  0 
V56  0.0  0.04  0  1  0.0  0.0  0  0 
V57  0.0  0.06  0  1  0.01  0.08  0  1 
V58  0.0  0.05  0  1  0.0  0.04  0  1 
V59  0.0  0.06  0  1  0.0  0.0  0  0 
V60  0.01  0.09  0  1  0.0  0.0  0  0 
V61  0.0  0.06  0  1  0.0  0.06  0  1 
V62  69.65  0.58  68.51  71.55  69.9  0.28  69.09  70.34 
V63  75.14  4.1  19.25  94.57  70.16  11.69  18.55  84.0 
V64  0.0  0.23  0  100  10.96  28.33  0  100 

---Continued on Next Page--- 



 

 37 

Feature Non-Anomalous Anomalous 

Mean Std Dev Min Max Mean Std Dev Min Max 

V65  11.1  15.55  0.0  100.0  18.22  27.17  0.0  100.0 
V66  12.51  17.76  0.0  100.0  23.09  32.68  0.0  100.0 
V67  16.8  20.91  0.0  100.0  35.65  34.79  0.0  100.0 
V68  10.44  15.68  0.0  100.0  20.11  32.4  0.0  100.0 
V69  13.61  17.44  0.0  100.0  21.4  26.09  0.0  100.0 
V70  17.21  22.85  0.0  100.0  31.73  30.26  0.0  100.0 
V73  1.22  0.44  0  2  1.36  0.56  0  2 
V76  1.15  0.39  0  2  1.4  0.5  0  2 
V78  1.47  0.5  0  2  1.16  0.37  0  2 
V79  1.51  0.5  0  2  1.34  0.48  0  2 
V80  1.57  0.5  0  2  1.5  0.5  1  2 
V81  1.43  0.5  0  2  1.15  0.36  0  2 
V82  1.5  0.5  0  2  1.38  0.49  0  2 
V83  1.54  0.5  0  2  1.48  0.5  0  2 
V86  3.48  8.11  -0.1  41.79  8.16  10.45  -0.02  39.45 
V87  1.16  0.37  1  2  1.38  0.49  1  2 
V88  0.03  0.01  -0.06  0.04  0.02  0.02  -0.03  0.03 
V90  45.7  9.48  0.0  50.0  39.92  12.11  8.25  50.0 
V91  0.22  0.42  0.01  3.82  0.4  0.49  0.01  1.9 
V92  1.0  0.0  1.0  1.0  0.99  0.09  0.25  1.0 
V93  152.33  2.05  123.88  163.33  147.58  5.83  129.75  158.26 
V94  89.36  7.32  0.0  99.83  81.69  10.76  1.32  97.51 
V95  0.22  0.42  0.01  3.82  0.4  0.49  0.01  1.9 
V102  0.17  0.01  0.14  0.32  0.18  0.0  0.17  0.18 
V103  0.0  0.05  0.0  7.9  0.0  0.06  0.0  1.74 
V104  8.62  0.1  8.19  8.87  8.63  0.04  8.56  8.74 
V105  482.3  7.68  457.31  502.0  472.84  3.47  464.91  479.34 
V106  0.19  0.01  0.16  0.23  0.19  0.01  0.18  0.2 
V107  543.04  2010.45  8.52  8128.0  3123.66  3941.87  8.72  8127.68 
V108  8.59  0.12  6.73  8.87  8.64  0.05  8.57  8.74 
V109  486.28  8.53  0.0  571.28  475.97  3.54  466.08  483.98 
V110  0.0  0.02  0.0  0.16  0.0  0.0  0.0  0.0 
V111  7301.73  2585.06  0.0  8295.95  8279.1  0.0  8279.1  8279.1 
V112  8.99  8.75  0.0  53.74  9.77  8.48  0.0  34.97 
V113  618.06  604.14  -2590.79  2831.28  563.14  585.26  -978.15  1766.92 
V114  0.67  0.16  0.07  1.21  0.65  0.13  0.43  0.89 
V115  0.52  0.26  0.0  1.16  0.41  0.31  0.0  0.99 
V117  65.16  1.18  63.96  69.18  64.84  1.04  64.19  68.48 
V125  62.96  5.88  45.4  147.29  65.8  6.94  58.97  138.2 
V127  0.55  0.44  0.0  2.33  1.1  0.7  0.0  2.33 

  

 

 

Figure 12: ‘V1’ Sensor - Normal Operations 

 

Figure 13: ‘V1’ Sensor - Under Attack 
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3.3.4 DATACENTER 

The DATACENTER dataset consists of real and simulated data center network traffic 

made available for research purposes.  While the anomalies in the simulated dataset were 

algorithmically generated, the anomalies in the real-traffic dataset were manually labeled and 

prone to human interpretation.  For this reason, only the synthetically generated datasets are 

used. The dataset consists of one-hundred (100) different locations with approximately 1700 

time-stamped samples per datacenter with seven (7) features.  Because of the location and time 

components, this dataset is particularly desirable for spatiotemporal and streaming analysis since 

each dataset represents a physical datacenter. 

Table 7 provides example statistics for the seven (7) features included in the dataset.   

This dataset includes pure time-series style features (e.g., seasonality) and has the smallest 

sample size vis-à-vis the other datasets.  The core feature used to determine anomalies is ‘value.’ 

Table 7: DATACENTER Statistics 

Feature Normal Anomalous 

Mean Std Dev Min Max Mean Std Dev Min Max 

Value 261.77 1295.46 -5332.44 6323.90 96.88 1852.58 -6171.31 6093.26 
Changepoint 0.00 0.03 0.00 1.00 0.00 0.03 0.00 1.00 
Trend 261.39 1202.06 -5040.00 5040.00 180.94 1209.76 -4695.00 4302.00 
Noise 0.27 92.80 -802.36 902.05 0.75 95.79 -465.11 611.65 
Seasonality1 -0.02 355.94 -998.00 998.00 -4.36 348.69 -998.00 848.00 
Seasonality2 -0.03 264.91 -932.00 932.00 -2.05 274.31 -900.24 932.00 
Seasonality3 0.17 179.71 -739.00 739.00 0.18 174.92 -642.51 665.81 

 

Figure 14 displays the time-series of the ‘value’ feature for normal operations for 

datacenter #1, while Figure 15 provides the same ‘value’ feature but under attack operations.  

High and low spikes appear at different attack times points and are indicated in the dataset by the 

changepoint features. This dataset is likely better addressed by traditional univariate time-series 

algorithms but is included in determining if TML and DNN algorithms are effective detectors.     
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Figure 14: Datacenter #1 ‘Value’ – Normal Ops 

 

Figure 15: Datacenter #1 ‘Value’ – Attack Ops 

3.4 Experimentation Dataset Summary  

Table 8 summaries the four data sources selected for TML and DNN experimentation:  

Table 8: Comparison of Anomaly Detection Datasets 

Attribute FRAUD SWAT WADI DATACENTER** 

Domain Finance Water Treatment Water Distribution Data Centers 
Labeled Anomalies 492 54621 172801 4837 
Data Numeric Numeric Numeric Numeric 
Features 30 51 103 7 
Temporal Yes Yes Yes Yes 
Geospatial No No – Single Testbed No – Single Testbed Yes 
Cyber Attacks N/A 36 15 No 
Attack Durations N/A 2-25 minutes 1.5-30 minutes N/A 
Training Size ~227846 496800 1048571 ~134400 
Test Size ~56961 449919 172801 33600 

N/A = Not Applicable   **Across all 100 datacenters 

 The FRAUD dataset was the subject of one of many Kaggle online competitions to 

produce the best classification results in a particular problem domain using machine learning 

techniques.  The SWAT and WADI datasets are relatively new to the anomaly detection DNN 

research community and have recently appeared in [37] and [38].  There are no known research 

studies that have analyzed the DATACENTER dataset. 
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CHAPTER 4:  TRADITIONAL MACHINE LEARNING (TML) ALGORITHMS  

4.1 Introduction 

There is no universal consensus by anomaly detection researchers regarding the 

appropriate taxonomy to categorize TML algorithms.  Several books [39], [41], and [1], survey 

articles [40], and research papers address the various algorithms. Goldstein and Uchida [41] 

provide a comprehensive review of nineteen different unsupervised TML algorithms with ten 

multivariate datasets and provide computer runtime estimates for each algorithm.  

Suitability for streaming is dependent on the efficiency of the algorithm. Algorithmic 

efficiency is a property that captures the computational resource requirements as a function of 

the size of the input n.   The most common notation is the ‘Big 𝒪’ notation.  𝒪(1) indicates 

constant time with respect to n; 𝒪(log n) means logarithmic with respect to n; and 𝒪(n) means 

linear with respect to n.  Many anomaly detection algorithms are 𝒪(n2), quadratic and 𝒪(cn), 

exponential, where c>1, which may be too time-intensive to be suitable for stream processing. 

Unsupervised algorithms that could be adopted and operate at 𝒪(n) or marginally slower are 

potentially suitable for use with streaming data. 

With univariate temporal data, autoregressive integrated moving average (ARIMA) 

models and all of their variations have been used to predict point anomalies in unsupervised and 

semi-supervised univariate time-series data [42].  ARIMA models are particularly popular 

because of their ability to smooth moving averages to eliminate noise and the inclusion of terms 

that expresses drift, noise, and non-stationarity over time. Point anomalies in consecutive data 

points are easily identified. 

Anomaly identification is more difficult with multivariate data. Several TML techniques, 

such as multivariate regression, principal components analysis (PCA), and other linear models, 
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are often used with varying degrees of success to identify anomalies in multivariate data. These 

easy-to-implement linear modeling techniques, while useful for predicting a few steps or large 

deviations, are less useful when past data demonstrate unusual shapes or patterns.  More 

sophisticated non-linear techniques such as DNNs are required.  For example, in autonomous 

driving applications, large fluctuations in the shape of sensor information are expected 

depending on the road conditions, terrain, and weather. Collective anomaly detection techniques 

are required with temporal data collected over the entire operational history. 

TML-based temporal anomaly detection studies include [43], [44] and [45]. Salechi and 

Rashidi [46] provide a survey of anomaly techniques in the presence of evolving or changing 

data.  Some studies have specifically incorporated spatiotemporal relationships into their models, 

such as dynamic environmental monitoring campaigns [47].  Discrete event anomaly detection 

methods are described in [48].  Other TML-based anomaly detection and related studies include 

[49], [50], [51], [52] and [53]. 

4.2 Experimentation Algorithms 

Algorithms here are allocated to four (4) categories: Linear Models, Proximity Models, 

Ensemble Techniques, and Statistical Models. Table 9 lists eight (8) selected TML-based 

techniques that could be adapted to support streaming anomaly detection.  The list includes the 

most popular and mature unsupervised techniques and excludes supervised techniques. Some of 

these techniques were designed explicitly for anomaly detection (e.g., Local Outlier Factor) 

whiles others are generic but adaptable (e.g., Principal Components Analysis). Algorithms with 

the term ‘local’ in their name are proximity-based and are designed to detect local outliers. The 

experimentation datasets described in Chapter 3 contain global anomalies. For this reason, local 
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techniques will perform less optimally on these datasets.  Each selected algorithm is briefly 

discussed below. 

Table 9: Traditional Machine Learning Unsupervised Anomaly Detection Techniques 

TML Category Algorithm Local/Global Reference 

Linear Models One Class Support Vector 
Machine 

(OC-SVM) 
 

Global Scholkoft, Platt, Shawe-Taylor, 
Smola, and Williamson [54]. 
 

Principal Component Analysis 
(PCA) 

Global Aggarwal [55]. 
 

Proximity Models K Nearest Neighbor 
(K-NN) 

Global Ramaswamy, Rastogi, and Shim 
[56]. 
 

Local Outlier Factor 
(LOF) 

Local Breunig, Kreigel, Ng, and Sander 
[57]. 

Cluster-Based Local Outlier 
Factor 

(CB-LOF) 

Local He, Xu, and Deng [58]. 
 

Histogram-Based Outlier 
Score 

(HBOS) 

Global Goldstein and Dengel [59]. 
 

Ensemble 

Techniques 

Isolation Forest 
(IF) 

Global Liu, Ting, and Zhou [60]. 

Probabilistic 

Models 

Minimum Covariance 
Determinant 

(MCD) 

Global Hardin and Rocke [61], 
Rousseeux and Driessen [62]. 

 

4.3 One-Class Support Vector Machine (Linear Model)  

 Support Vector Machines (SVMs), a popular supervised TML technique, was modified 

by Scholkoft, et al. [54] to become a semi-supervised and unsupervised technique known as the 

One-Class Support Vector Machine (OC-SVM). An SVM implicitly maps the data to a high-

dimensional space and separates classes using a linear classifier. OC-SVM is similar except that 

the algorithm attempts to separate the instances in high dimensional space from the origin. The 

OC-SVM assumes that the training data is free of anomalies, drawing a boundary in what is 

known as kernel space around the normal class. OC-SVM is trained using the training data. Test 

samples are scored using a normalized distance to a decision boundary. Samples that do not fall 
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within the threshold distance are presumed to be anomalous. Borrowing from the operations 

research community, OC-SVM can be formulated as a quadratic programming minimization 

problem using Lagrange techniques and, as most optimization problems, is compute-intensive, 

and does not scale linearly. For this reason, OC-SVM is an unlikely candidate for streaming 

applications. [63] provides a good description of OC-SVM in the context of anomaly detection.  

Ma and Perkins [64] illustrate an example of the use of OC-SVM for temporal anomaly 

detection.   

4.4 Principal Components Analysis (Linear Model)  

Principal Components Analysis (PCA) has a long history in statistical science dating back 

to the early 1900s as a technique for dimensionality and covariance reduction.  PCA is a fast, 

low-overhead procedure that converts a set of correlated, multivariate vectors into a smaller set 

of linearly independent, orthogonal vectors.  The DNN analogy to PCA is autoencoders; the 

difference is that PCA is a linear combination of vectors using linear algebra techniques while an 

autoencoder is a nonlinear combination of vectors using DNN techniques.  Both PCA and 

autoencoders are two way; vectors can be encoded and decoded with limited loss of information.  

The basic intuition is that anomalies can be identified through reconstructive errors.   If for a 

given sample, the original set of input values are not closely replicated after the decoding 

process, an anomaly is indicated. Dimensionality reduction and DNN autoencoders are discussed 

in more detail in Chapters 6.  See Hinton and Salakhutdinov [65] regarding the benefits of 

dimensionality reduction. 

4.5 K-Nearest Neighbor (Proximity-Based Model) 

 The K Nearest Neighbor (K-NN) is a proximity-based technique that considers the 

distance between adjacent samples with algorithms to spatially group samples.  While the 
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techniques are simplistic with two-dimensional data, the computational complexity increases 

exponentially with multivariate data.  Various distance measures used to calculate the k-NN is 

described in Upadhyaya and Singh [66].  Tsai and Lin [67] provide an application of k-NN to 

intrusion detection. 

 For every sample in the dataset, the k-nearest neighbors are identified based on the 

distance measure.  An anomaly score is calculated using these neighbors with either two 

approaches.   One approach is to use the distance to a single kth nearest neighbor, known as the 

kth-NN technique, and the second approach is to use the average distance over all neighbors, 

known as the k-NN technique. The average distance may either be the mean distance or the 

median distance across all neighbors. The k-NN technique is substantially more computationally 

expensive than the kth-NN technique. With both techniques, the choice of the k parameter is 

critical, typically 10 < k < 50.  Note that the nearest neighbor and other proximity-based 

algorithms operate at 𝒪(n2).   

4.6 Local Outlier Factor (Proximity-Based Model) 

 The Local Outlier Factor (LOF) algorithm compares the density of samples around a 

given high-dimensional region. The LOF algorithm compares the density of instances around a 

given instance to the density of the neighbors.  The LOF approach is similar to the k-NN 

technique but applied within a localized data area.  The algorithm defines an average local 

reachability density or LRD.  LOF is then calculated by dividing the average LRD of all 

localized neighbors by their LRD.  A LOF ~ 1 means that the data point has a similar density of 

the neighbors; a LOF < 1 signifies higher density than the neighbors indicating a normal sample 

and a LOF > 1 signifies lower density than the neighbors indicating an anomaly. 



 

 45 

4.7 Cluster-Based Local Outlier Factor (Proximity-Based Model) 

There are many different varieties of clustering; one popular technique designed for 

anomaly detection is Cluster-Based Local Outlier Factor (CBLOF).  The underlying assumption 

is that normal samples belong to that cluster closest to the cluster centroid, while anomalous 

samples do not belong to any cluster.  CBLOF is similar to LOF but classifies the data into a set 

of small clusters and large clusters.  The algorithm calculates an anomaly score based not only 

on the size of the cluster but also on the distance to the nearest larger cluster.  For a complete 

discussion of CBLOF, see (He, Xu, and Deng, [58]).  In general, clustering algorithms operate 

faster (<𝒪(n2)) than nearest neighbor techniques. 

4.8 Histogram-Based Outlier Score (Proximity-Based Model) 

 The Histogram-Based Outlier Score (HBOS) is a nonparametric technique designed to be 

extremely fast in execution.  The underlying assumption is that each feature in the dataset is 

independent, and an anomaly score can be calculated by building a set of histograms.  While the 

assumption of independence may result in reduced accuracy, the speed of computation makes 

HBOS a possible candidate as a streaming algorithm.   HBOS also has the concept of dynamic 

bins where the number of histogram bins remains constant, but the size of the bins increases or 

decreases as needed.  The advantage of this dynamic approach is that density estimation is 

exceptionally flexible in the presence of a large number of anomalies. Equation (4.1) provides 

the scoring algorithm for the HBOS technique; the algorithm calculates the sum of probabilities 

over the entire histogram bins i = 1 … d: 

𝐻𝐵𝑂𝑆 𝑆𝑐𝑜𝑟𝑒 =  ∑ log ( 1ℎ𝑖𝑠𝑡𝑖(𝑝))𝑑
𝑖=𝑖   (4.1) 
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Note that HBOS is a global, non-parametric technique, operates at 𝒪(n), and is a candidate for 

stream processing adoption. 

4.9 Isolation Forest (Ensemble Technique)  

Ensemble techniques combine two different techniques into a single technique.  An 

Isolation Forest (IF) is an example of an anomaly detection ensemble technique. The IF approach 

is dramatically different from the one-class SVM approach and uses decision trees to identify 

anomalies.  First, an attribute is selected, and a partition is created by randomly selecting a value 

between the minimum and maximum value of that attribute. Since anomalies are, by definition, 

scarce and distant from normal values, a normal sample will require more partitions than an 

abnormal sample.  Based on IF technique, an anomaly score is given by: 

𝑠(𝑥, 𝑛) =  2−𝐸(ℎ(𝑥)𝑐(𝑛)   (4.2) 

where h(x) is the path length of sample x, c(n) is the average path length of an unsuccessful 

search in a Binary Search Tree, and n is the number of external nodes.  Based on this 

formulation, anomaly scores close to one indicate the high possibility of an anomaly, while a 

score closer to .5 would indicate that an anomaly is unlikely. 

In summary, an IF uses binary trees and can be scaled up to process large, high-

dimensional datasets.  Anomalous samples are usually far (in high-dimensional space) from 

other samples, so on average, across all the decision trees, anomalies are isolated and identified 

in fewer steps than normal samples.  

4.10 Minimum Covariance Determinant (Probabilistic Model)  

 Minimum Covariance Determinant (MCD) is a density-based approach based on 

Mahalanobis distance that has been applied to anomaly detection problems (see Section 4.10.1 

below for an aside on Mahalanobis distance).   With probabilistic models of anomaly detection, 
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each sample is analyzed against a probability distribution; the anomaly score is the probability of 

occurrence.  This approach to anomaly detection is called the Gaussian technique because of the 

underlying assumption of the data is normality. However, the density model approach can be 

applied to other statistical distributions such as Gamma or Chi-Squared distributions. When the 

underlying distribution of the non-anomalous population is unknown, which is often the case, a 

mixture of Gaussians is used as a proxy for the correct distribution. 

Consider a random variable X = [X1 … Xn] with a mean   Rn and covariance matrix 

nxn, (positive definite), the standard Gaussian probability density function is given by equation 

(4.3): 

𝑝(𝑥, 𝜇, Σ) =  1(2𝜋)n/2|Σ|1/2 exp (− 12 (𝑥 − 𝜇)TΣ-1(𝑥 − 𝜇)) 
(4.3) 

Where | Σ | denotes the determinant of the covariance matrix. 

To fit the parameters, given a semi-supervised training set {x(1), x(2), …, x(m) }, estimate 𝜇 = 1𝑚 ∑ 𝑥𝑚𝑖=1 i  and Σ = 1𝑚 ∑ (𝑥(i) −𝑚𝑖=1 𝜇)(𝑥(i) − 𝜇)T, then for the new (or test) samples, fit model 

p(x) by setting  and , compute p(x) using equation (4.3) and flag as an anomaly if p(x) <  for 

some threshold value of . 

The MCD approach assumes that the non-anomalous samples are generated from a single 

Gaussian distributed and not a mixture of Gaussians.   When the algorithm estimates the 

parameters of the Gaussian distribution by estimating the shape of the elliptic envelope while 

excluding the anomalous samples so as not to distort the parameter estimates.  Note that the 

Gaussian density estimation approach is most useful for unsupervised point anomaly detection 

but would be intractable and difficult to implement for lengthy temporal streaming data.  

Moreover, there is no a priori basis to determine the correct sequence length for parameter 
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estimation so all sequence length combinations would need to be tested.  While online streaming 

processing is feasible, this model can be computationally expensive because the calculation Σ-1 is 

a matrix inversion, which can be costly for a large number of features. Density estimation may 

be too slow for streaming data since the performance is 𝒪(n) or slower.  Moreover, the training 

set size must be larger than the number of features for  to be invertible. 

4.10.1 An Aside on Mahalanobis Distance  

The Mahalanobis distance is a crucial distance measure used in TML algorithms, 

including MCD.  From equation (4.3) above, which is the equation of a Gaussian distribution, 

the term (− 12 (𝑥 − 𝜇)TΣ-1(𝑥 − 𝜇)) is one-half of the squared Mahalanobis distance from the of 

the data point x(i) and the mean 𝜇 of the data.  The Mahalanobis distance d is the anomaly 

detection score; the computation is shown in equation (4.4): 𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠(𝑥, 𝜇, Σ) = d = √(𝑥 − 𝜇)TΣ-1(𝑥 − 𝜇) (4.4) 

Note that this distance method is parameter-free, and although quadratic in terms of data 

dimensionality, the measures are linear in the number of data points, an essential consideration 

for computational efficiency when processing streaming data. For normal multivariate 

distributions, the probability density of the Mahalanobis distance is chi-squared distributed. 

 For streaming data, a simplified version of Mahalanobis distance shown in equation (4.5) 

is easy to implement, where x is a vector containing all of the dimensions of a single sample; µ  is 

a vector representing the mean or center of mass of all of the data samples, and n is the number 

of elements in x; and µ and d(xi,ui) is the difference between the ith element of x and  µ:  

𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔 𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠(𝑥, 𝜇) = ds = ∑ 𝑑(𝑥𝑖, µ)𝜎𝑖𝑛
𝑖=1  

(4.5) 
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4.11 Summary 

Eight (8) TML anomaly detection algorithms are described in this chapter.  These 

algorithms are unsupervised designed to address point anomalies for non-streaming data.  

However, since many of these algorithms are not compute-intensive, most can be adapted for 

streaming data.  Some of these algorithms can execute in a few seconds with gigabyte datasets.  

Even if the application requires large datasets or the application or use case timing requirements 

are in the milliseconds rather than seconds, a moving window can be employed to detect 

anomalies on streaming subsets of the data using the same techniques described here.  Moreover, 

because these are TML unsupervised techniques, there is no requirement to pre-train the models 

before their use in streaming applications. 

 TML algorithms, however, process one sample at a time and cannot model complex 

relationships that exist over long periods or across spatial regions.  In short, the TML algorithms 

cannot robustly identify contextual or collective anomalies. Chapter 6 discusses the DNN 

approach to anomaly detection that could model complex inter-relationships with long-term 

memory to identify contextual or collective anomalies in spatiotemporal data.  However, there is 

a trade-off; DNN algorithms are processor-intensive to the extreme and may require minutes to 

hours to train. DNNs can be pre-trained if there was a belief that the model parameters exhibit 

long-term stability over space and time.  However, in many domains, there is a requirement to 

process streaming data not only for near real-time processing but also to identify concept drift in 

the underlying relationships in the data. 

The next chapter describes experimentation with the TML algorithms described in this 

chapter.  The goal of this experimentation is to evaluate algorithmic performance and to 

determine if these algorithms can be adapted for streaming applications.   These results and 
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conclusions will provide a baseline to compare against the findings associated with the DNN 

anomaly detection experimentation that are discussed in Chapters 6 and 7. 
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CHAPTER 5 – TRADITIONAL MACHINE LEARNING (TML) EXPERIMENTATION 

5.1 Experimentation Overview 

 The eight (8) TML algorithms described in Chapter 4 are the subject of experimentation 

and evaluation.  These algorithms include Cluster-Based Local Outlier Factor (CB-LOF), 

Histogram-Based Outlier Score (HBOS), Isolation Forest (IF), K-Nearest Neighbors (K-NN), 

Local Outlier Factor (LOF), Minimum Covariance Determinant (MCD), On-Class Support 

Vector Machines (OC-SVM), and Principal Component Analysis (PCA).  Three (3) variants of 

the k-NN algorithm are evaluated, including point-to-point, mean, and median nearest neighbors.  

Therefore, in total, ten (10) algorithms are compared for execution time and test performance on 

each of the four labeled anomaly datasets discussed in Chapter 3.   

Each dataset was separated into a training sample (70 percent) and a test sample (30 

percent).  The training dataset was used for parameter estimation, and the test dataset was used 

for performance evaluation.   All algorithms are unsupervised, meaning that the anomaly labels 

are not used for parameter estimation.  Anomaly labels are used for test and evaluation purposes.  

The performance evaluation criteria are described in Section 2.5.  Key metrics include algorithm 

execution time, Area under the Recovery Operating Characteristic (ROC) curve (AUC), 

Precision, Recall, and the F1 metric.  Execution time is essential when evaluating the suitability 

of an algorithm for adaptation for stream processing.  All experimentation was performed on the 

identical hardware that included a NVIDIA™ 2060 Graphical Processing Unit (GPU).   Further 

information on the software estimation approaches and the software packages can be found at 

[68]. 



 

 52 

5.2 Experimentation Execution Time 

Table 10 presents the wall-clock execution times in seconds for each of the algorithms 

with each experimentation dataset.  The results across algorithms are comparable for a given 

dataset only.  Each dataset has unique characteristics, including the number of features, the 

number of samples, and the number of labeled anomalies that would make comparisons across 

datasets problematic.  Processing time is dependent on the number of features included in the 

analysis.  The scalability of the algorithm is dependent on the performance characteristics, and, 

of course, the efficiency of the particular software implementation.   Every algorithm exhibits the 

same or longer processing time when all features are processed compared to a subset of the 

dataset features, but the increase in processing is non-linear.  The FRAUD dataset included thirty 

(30) features with 227846 training samples; the SWAT dataset included forty-six (46) features 

with 496800 training samples; the WADI dataset included ninety-nine (99) features with 

1048571 training samples, and the DATACENTER dataset included seven (7) features with 

134400 training samples.   

 There are significant differences among the algorithms in terms of execution speed.   

PCA and HBOS exhibited the fastest execution times and are the most linearly scalable.  PCA is 

based on linear algebra, while HBOS is non-parametric, involving histograms and data binning. 

PCA is extremely fast on smaller datasets but has difficulty scaling to more massive datasets.  

The fact that HBOS was the highest performant algorithm is not unexpected; the technique has 

performance characteristics of 𝒪(n).  HBOS processed the most stringent test, the WADI dataset, 

in 5.1 seconds.  Other algorithms, such as CB-LOF, performed quickly with the smaller 

DATACENTER dataset (less than one second) but did not linearly scale to the WADI dataset 

(203 seconds).  
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` The three (3) k-NN algorithms were not particularly scalable, which is consistent with the 

expected run-time performance characteristic of 𝒪(n2). The k-NN processed the DATACENTER 

dataset in about thirty (30) seconds, jumped to 1363 seconds for processing the FRAUD dataset, 

and then to 15568 seconds for the WADI dataset. 

The OC-SVM algorithm failed to complete processing WADI, the largest dataset. SVMs 

are known to be processor intensive and non-scalable, so this result is expected. Other proximity-

based (k-NN, LOF) and probabilistic algorithms (MCD) demonstrated long execution times and 

are not suitable for adaptation for stream processing.  

Table 10:  Traditional Machine Learning Clock Times (Seconds) 

Technique FRAUD (30) SWAT (46) WADI (99) DATACENTER (7) 

Training Samples 227846 496800 1048571 134400 
CB-LOF 19.1 22.4 203.8 .78 
HBOS 1.5 1.9 5.1 1.2 
I-FOREST 26.7 66.8 294.6 7.5 
k-NN 1363.8 1405.7 15568.5 29.9 
k-NN (Mean) 1697.7 1782.3 16431.4 50.8 
k-NN (Median) 1921.6 1453.4 16413.0 75.0 
LOF 2258.9 1500.3 2613.1 68.8 
MCD 66.7 223.8 2025.1 14.2 
OC-SVM 3313.9 21648.7 DNF – DID NOT FINISH 754.9 
PCA 0.7 3.1 29.7 0.1 

 

5.3 Experimentation Performance Results 

Algorithmic speed is of little value if the results produced are of low accuracy or high 

variance.  Each algorithm was evaluated against each experimentation dataset.  Anomaly datasets 

are typically unbalanced, meaning only a small percentage of all samples are anomalous.  As 

previously noted, in order to compare performance across algorithms and datasets, the area under 

the Receiver Operating Characteristic (ROC) curve (AUC) is the preferred metric. Recall that the 

higher the value of AUC, the higher the accuracy of the algorithm; estimates of AUC of .8 and 

above are generally viewed as favorable. 
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 The AUC, Precision, Recall, and F1 metrics are based on the parameters estimated on the 

training data applied to the test dataset.  Two approaches to the creation of the test dataset are 

possible.  The first approach is to separate anomalous samples from the training dataset and 

allocate these samples to the test set.  This approach is possible because the anomalies are 

labeled; however, in real-world situations, anomalies will not be labeled, and the anomaly rate is 

low.  The second approach is to separate the dataset into training and test subsets without regard 

to the anomaly labels.  This latter approach is more operationally realistic and was adopted for 

use with the FRAUD and DATACENTER datasets.  However, since the SWAT and WADI 

datasets were created from testbeds, there is a natural division between the training and test 

datasets. The training datasets are based on the operation of the testbeds under normal 

conditions. In contrast, the test datasets are based on the operation of the testbed during the 

period of attack.  

The experimentation findings are presented in Tables 11-14.  Table 11 presents the 

results for the FRAUD dataset; Table 12 for the SWAT dataset; Table 13 for the WADI dataset; 

and Table 14 for the DATACENTER dataset.  The tables also include estimated predictions for 

true-negatives, false-negatives, true-positive, and true-negative, which are the numbers that are 

entered into the ‘confusion matrix’ described in Section 2.5.1. Note that an anomaly is 

considered a positive, while a non-anomaly is negative. 

Each algorithm defines a particular methodology for anomaly scoring. By convention, 

higher scores indicate high probabilities of anomalies. However, anomaly scores are not 

comparable across algorithms; only the rank order is essential. With the test dataset, each sample 

is scored (based on the parameters estimated from the training dataset) and ranked from high to 

low.   If the population includes ‘x%’ anomalies, then the top ‘x%’ of the anomaly scores in the 
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test dataset are designated as anomalies and are compared against the actual labels.  The values 

of a confusion matrix can then be calculated. 

Note that a confusion matrix is based on a single threshold value of an anomaly score, 

while the AUC metric is derived from all possible threshold values.  Note that the values for 

Precision, Recall, and F1 metrics are for the single-valued, algorithmically defined scoring 

threshold, not a range in scoring values.   Ranges in Precision and Recall can be displayed 

graphically as a function of the algorithm threshold.  Figures 16-24 provides three sets of graphs 

associated with each dataset - algorithm combination: (a) the precision/recall vs. threshold graph, 

(b) the precision vs. recall graph, and (c) the Receiver Operating Characteristic (ROC) curve.   

5.3.1 FRAUD Experimentation 

 Table 11 displays the findings with respect to the FRAUD dataset. All algorithms 

produce an AUC above .9 except for Local Outlier Factor (LOF), where the AUC=.505.   The 

likely explanation for this result is that the FRAUD data contains only global anomalies, so a 

local algorithm such as LOF will perform poorly.  The fact that all other algorithms produce 

excellent results indicates that anomalies are easily detected in this dataset, which is often the 

case with financial anomalies. 

Note the example of a confusion matrix produced by the HBOS algorithm.   With an 

AUC=.962 and the algorithm default scoring threshold, there were 85179 true negatives; the 

algorithm correctly identifies these samples as non-anomalous.  HBOS also produced ninety-six 

(96) false negatives, anomalies that were not identified; HBOS produced 107 false positives, 

non-anomalies that were incorrectly identified as being anomalous.  Finally, there were sixty-one 

(61) true positives, anomalies that were correctly identified.   
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5.3.2 SWAT Experimentation 

 Table 12 presents the AUC findings for the SWAT dataset, which is similar to the 

findings for the FRAUD dataset.  All algorithms produce AUCs that exceed .84, except for LOF 

(AUC=.793).  Note that, for example, at the KNN default scoring threshold, no true negatives 

and no false negatives are identified.  All true-positives and all false-positives were identified.  

This result means that the algorithm threshold defaults are outside the relevant range and 

incorrectly set. 

5.3.3 WADI Experimentation 

 Table 13 presents the findings associated with the WADI dataset.  All AUC 

measurements are below .8 except for the PCA algorithm (AUC=.82). WADI is the largest 

dataset with the most features and samples.  This result might indicate that the quality of the 

WADI is lower than the other datasets, that the anomalies introduced into the testbed were not 

actual anomalies, or that the algorithms are insufficiently robust to uncover the complex 

interactions of the dataset features. 

5.3.4 DATACENTER Experimentation 

 Table 14 presents the findings associated with the DATACENTER dataset.  Three 

algorithms (k-NN (Mean), k-NN (Median), and LOF) recorded an AUC > .8.  LOF correctly 

identified 128 anomalies in the data. This result might indicate that the data includes local rather 

than global anomalies.  This dataset is a pooling of the samples from one-hundred (100) different 

datacenters.    By pooling the data across datacenter, the possibility exists that local, datacenter-

unique anomalies predominate. 
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Table 11: FRAUD Experimentation Results 

  Confusion Matrix    

Algorithm AUC True 

Negative 

False Positive False 

Negative 

True Positive Precision Recall F1 

CB-LOF .964 85166 120 112 45 .272 .286 .279 
HBOS .962 85179 107 96 61 .363 .388 .375 
I-Forest .952 85175 111 105 52 .319 .331 .325 
KNN .954 85149 137 139 18 .116 .114 .115 
KNN-Mean .942 85140 146 138 19 .115 .121 .118 
KNN-Median .916 85148 138 140 17 .109 .108 .108 
LOF .505 85127 159 157 0 .000 .000 .000 
MCD .960 85252 34 29 128 .790 .815 .802 
OC-SVM .958 85199 177 133 24 .119 .152 .152 
PCA .957 85168 118 116 41 .257 .261 .259 

 

 

Table 12: Secure Water Treatment Testbed (SWAT) Experimentation Results 

  Confusion Matrix    

Algorithm AUC True 

Negative 

False Positive False 

Negative 

True Positive Precision Recall F1 

CB-LOF .894 341340 53958 9261 45360 .456 .830 .589 
HBOS .854 293001 102297 11550 43071 .296 .788 .430 
I-Forrest .843 269893 125405 11889 42732 .254 .782 .383 
KNN .908 0 395298 0 54621 .121 1.000 .216 
KNN-Mean .907 0 395298 0 54621 .121 1.000 .216 
KNN-Median .903 0 395298 0 54621 .121 1.000 .216 
LOF .793 111 395187 0 54621 .121 1.0 .216 
MCD .840 344515 50783 14782 39839 .439 .729 .548 
OC-SVM .895 356425 38873 10622 43999 .530 .805 .640 
PCA .891 374400 20898 13249 41372 .664 .757 .707 

 

 

Table 13: Water Distribution Testbed (WADI) Experimentation Results 

  Confusion Matrix    

Algorithm AUC True 

Negative 

False Positive False 

Negative 

True Positive Precision Recall F1 

CB-LOF .737 153899 9042 6001 3859 .299 .391 .339 
HBOS .787 158420 4521 6760 3100 .406 .312 .354 
I-Forrest .747 149269 13672 6172 3688 .212 .374 .270 
KNN .776 0 162941 0 9860 .057 1.000 .107 
KNN-Mean .776 0 162941 0 9860 .057 1.000 .107 
KNN-Median .776 0 162941 0 9860 .057 1.000 .107 
LOF .684 4418 158523 118 9742 .057 .988 .109 
MCD .691 147399 15542 6411 3449 .181 .349 .239 
OC-SVM DNF – DID NOT FINISH 
PCA .821 153706 9235 5993 3867 .291 .391 .333 
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Table 14: DATACENTER Experimentation Results 

  Confusion Matrix    

Algorithm AUC True 

Negative 

False Positive False 

Negative 

True Positive Precision Recall F1 

CB-LOF .564 49923 231 245 1 .004 .004 .004 
HBOS .531 49884 270 246 0 .000 .000 .000 
I-Forrest .546 49889 265 245 1 .000 .004 .003 
KNN .776 49926 228 227 19 .076 .077 .077 
KNN-Mean .808 49944 210 219 27 .113 .109 .111 
KNN-Median .801 49935 219 220 26 .106 .105 .105 
LOF .964 50048 106 118 128 .547 .520 .533 
MCD .508 49929 225 246 0 0.0 0.0 0.0 
OC-SVM .546 49932 245 222 245 .004 .004 .004 
PCA .538 49925 229 245 1 .004 .004 .004 

   

5.4 Experimentation Conclusions 

Experimentation consisted of ten (10) different unsupervised algorithms trained and 

tested against four (4) different datasets.  The purpose was to determine those algorithms that can 

produce reasonably accurate results while being adaptable in a streaming environment.   

Overall, only the HBOS, I-Forrest, K-NN, and LOF algorithms were able to process all of 

these benchmark datasets in a reasonable time. HBOS performance was close to the top across 

all datasets in both the speed and accuracy metrics. The fact that HBOS was near the top is 

somewhat surprising given the simplicity of the algorithm.  HBOS outperformed LOS in all 

experiments except for the processing of the DATACENTER dataset is also surprising given that 

LOS is more theoretically justifiable and more popular in the literature than HBOS.   

Based on the findings, HBOS appears to be the most promising algorithm for adaption 

because of the simplicity in design, speed of execution, and reasonably good accuracy vis-a-vis 

other more complex, theoretically-grounded algorithms.  PCA also has demonstrated consistent 

results.   Overall, in terms of anomaly detection accuracy, most algorithms performed similarly 

on the FRAUD and SWAT datasets and somewhat poorly on the WADI dataset.  The results 

associated with the DATACENTER dataset were mixed, with the LOF algorithm the highest 
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performer due to the likelihood of local anomalies in the raw data.  Nevertheless, HBOS, PCA, 

and other TML techniques used as a singular approach to anomaly detection are unlikely to be 

adequate for complex multivariate, data-driven spatiotemporal domains. 

Chapter 6 discusses the application of DNN models to anomaly detection, while Chapter 

7 provides the experimentation results using the same anomaly datasets.  The goal is to uncover 

promising DNN techniques that are adaptable for streaming anomaly detection, and investigate 

how lightweight TML-based techniques such as HBOS can be integrated into a unified streaming 

spatiotemporal environment called STADE.  The complete STADE specification is presented in 

Chapter 8.   
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FRAUD 

SECURE WATER TREATMENT TESTBED (SWAT) 

WATER DISTRIBUTION TESTBED (WADI) 

DATACENTER 

Figure 16 – Clustering-Based Local Outlier Factor (CBLOF) 
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FRAUD 

SECURE WATER TREATMENT TESTBED (SWAT) 

 

WATER DISTRIBUTION TESTBED (WADI) 

DATACENTER 

Figure 17: Histogram-Based Outlier Score (HBOS) 
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FRAUD 

SECURE WATER TREATMENT TESTBED (SWAT) 

WATER DISTRIBUTION TESTBED (WADI) 

DATACENTER 

Figure 18: Isolation Forest (IF) 
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FRAUD 

SECURE WATER TREATMENT TESTBED (SWAT) 

WATER DISTRIBUTION TESTBED (WADI) 

DATACENTER 

Figure 19: k-Nearest Neighbor (k-NN) 
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FRAUD 

SECURE WATER TREATMENT TESTBED (SWAT) 

WATER DISTRIBUTION TESTBED (WADI) 

DATACENTER 

Figure 20: k-Nearest Neighbor (kNN - Mean) 
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FRAUD 

SECURE WATER TREATMENT TESTBED (SWAT) 

WATER DISTRIBUTION TESTBED (WADI) 

DATACENTER 

Figure 21: k-Nearest Neighbors (kNN - Median) 
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FRAUD 

SECURE WATER TREATMENT TESTBED (SWAT) 

WATER DISTRIBUTION TESTBED (WADI) 

DATACENTER 

Figure 22: Local Outlier Factor (LOF) 
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FRAUD 

SECURE WATER TREATMENT TESTBED (SWAT) 

WATER DISTRIBUTION TESTBED (WADI) 

DATACENTER 
d

Figure 23: Minimum Covariance Determinant (MCD) 
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FRAUD 

SECURE WATER TREATMENT TESTBED (SWAT) 

WATER DISTRIBUTION TESTBED (WADI) 
 DNF – DID NOT FINISH  

DATACENTER 

Figure 24: One-Class Support Vector Machines (OC-SVM) 
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FRAUD 

SECURE WATER TREATMENT TESTBED (SWAT) 

 

WATER DISTRIBUTION TESTBED (WADI) 

 

DATACENTER 

Figure 25: Principal Components Analysis (PCA) 
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CHAPTER 6 – DEEP NEURAL NETWORK (DNN) ANOMALY DETECTION 

6.1 Background 

 DNNs experienced a resurgence in popularity beginning in the early 2000s that continues 

today.   This resurgence, in part, has been a result of the availability of low-cost computer 

infrastructure, in part by the emergence of new algorithms, and in part, because of the generation 

of large datasets from IoT and SCADA devices required new analytic techniques. 

Multiple network architectures and associated algorithms are included under the umbrella 

of DNNs.  These architectures include feedforward neural networks (FFNs), recurrent neural 

networks (RNN), convolutional neural networks (CNN), and generative adversarial networks 

(GAN). DNN architectures and algorithms have been employed singularly or in combination to 

address complex applications such as image captioning, natural language processing, speech 

recognition, transfer learning, and sentiment analysis.  For example, RNNs and CNNs have been 

successfully combined to produce an ensemble algorithm that can learn complex language 

embeddings for language translation [69]. Many of the mobile digital assistant applications are 

based on ensemble techniques targeted to smaller smartphone processors. 

There has also been a resurgence in research in advanced techniques for anomaly 

detection.  Studies have applied a variety of innovative algorithms to anomaly detection 

problems producing results superior to the TML techniques described in Chapters 4-5 [70].  

These algorithms have borrowed heavily from the DNN neural machine translation and image 

processing literature.   All of the types of DNN architectures described above have also been 

adapted to address anomaly detection problems. 

In designing a DNN architecture, the choice of the number of hidden layers, the number 

of processing nodes within a hidden layer, the nonlinear activation function, the form of the 
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output, and the overall parameter estimation strategy are tantamount. Parameters are estimated 

with training data using an optimizer [71] that implements variants of the backpropagation 

algorithm [72] and various styles of stochastic gradient descent [73].    Practical estimation of 

DNNs also requires a set of choices upfront regarding the model hyperparameters.  There are 

DNN meta-models designed to optimize the hyperparameter selection criteria [74].  Important 

hyperparameter decisions include the setup, initialization, and normalization of the architecture 

[75] and [76]; the selection of gradient descent optimization techniques such as the ADAM 

optimizer [71] and adjustments to the backpropagation algorithm (e.g., gradient clipping) to 

increase stability and prevent exploding or vanishing gradients; the approach to model overfitting 

including penalty-based regularization, early stopping, and dropout [77]; the decision regarding 

the treatment of dynamic learning-rates through learning rate decay, momentum [78], and other 

techniques; and the selection of GPU hardware acceleration and parallel computing 

infrastructure.  However, the analysis of these hyperparameters choices on the formulation and 

performance of anomaly detection algorithms, albeit important, is beyond the scope of this 

research.  

Below is a discussion of six (6) candidate DNN-based architectures that could support 

spatiotemporal anomaly detection stream processing.  These six architectures are: a) 

Shallow/Deep Autoencoders (SDA), b) Variational Autoencoders (VAE), c) Deep Autoencoding 

Gaussian Mixture Models (DA-GMM), d) Generative Adversarial Networks (GAN), e) 

Encoding-Decoding Recurrent Neural Networks (ED-RNN), and f) Encoding-Decoding One-

Dimensional Convolutional Neural Network (ED-1D-CNN). A few specialized DNN 

architectures have been used in anomaly detection studies.  These other architectures were 

rejected from consideration either because the core technique lacked intrinsic support for 
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unsupervised learning, lacked the theoretical underpinnings that would justify use in an anomaly 

detection study, or could not be reasonably adapted to support time-dependent spatiotemporal 

streaming data.   

Architectures #2 (VAE) and #4 (GAN) are members of a class of DNNs called generative 

models.  With generative models, the network learns the model’s probability distribution from 

the training data and generates new samples that can be used to complement the anomaly 

detection identification process. VAEs use approximate density estimation techniques, while 

GANs use implicit density estimation techniques [79]. Density estimation is a core problem of 

unsupervised learning and has been at the forefront of new approaches to anomaly detection. 

 There is an essential distinction between an architecture and an anomaly detection 

algorithm.  The architecture describes the relationships between the various components of the 

system, the approach to parameters estimation, and the constraints placed on the system. The 

anomaly detection algorithm, however, goes deeper by providing a specific algorithm to 

designate the existence or nonexistence of an anomaly.  For each of the six architectures 

described below, the associated anomaly detection algorithm is presented using pseudocode, a 

notation resembling a simplified programming language.   

6.2 Architecture #1: Shallow/Deep Autoencoder (SDA) 

SDAs are an unsupervised technique designed to encode data and reduce dimensionality 

efficiently.  Traditionally, SDAs have been used for dataset cleansing and noise reduction similar 

to the capabilities provided by linear, statistically-based Principal Components Analysis (PCA) 

and Singular Value Decomposition (SVD).  However, recent discoveries have suggested that 

SDAs can also provide novel anomaly detection capabilities. 
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 The concepts of representational learning [80] and feature extraction are essential here.  

DNNs at their core are universal nonlinear function estimators and feature extractors. Similarly, 

SDAs can extract features from complex multivariate data through encodings and dimensionality 

reduction and can represent those features as vectors.  These feature vectors, in turn, can be 

entered into other TML and DNN architectures designed for anomaly detection using ensemble 

algorithms and heuristic techniques. 

SDAs strive to replicate a set of inputs through a sequential process known as encoding 

and decoding.  The encoding process produces a minimalist representation by reducing the 

number of dimensions of the input data. This reduced dimensionality is then processed by the 

decoder to reproduce the original inputs. The idea is to preserve as much information as possible 

through the encoding and decoding process.  An anomaly would be identified if the decoding 

cannot faithfully reproduce the original inputs to some predetermined threshold level.  

Figure 26 depicts an example of a deep SDA with five (5) inputs, three (3) hidden layers 

with a compressed representation (middle hidden layer) of two nodes.  These hidden nodes are 

also referred to as feature vectors because the SDA has extracted features from the raw data.  The 

goal is to replicate or copy the vector of inputs 𝑥ℓ𝑡.  Each region ℓ has a separate instance of the 

model; there is no sharing of parameters across regions. The performance objective is to 

minimize the reconstruction error, the error between the original data and the reconstructed data. 

This reconstruction error is also considered the anomaly score.   

The architecture of shallow and deep autoencoders are similar; the difference is that 

shallow autoencoders are designed to have only a single hidden layer while deep autoencoders 

are designed with two or more hidden layers.  Otherwise, there is no practical difference between 
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a shallow and deep autoencoder. Also, note that autoencoding is an unsupervised technique 

because labeled data is not used in the training process.   

The parameters of the encoder and decoder are estimated using a traditional FFNs with an 

optimizer that implements the backpropagation algorithm.    However, an SDA does not have a 

clear concept of sequence or time embedded into the architecture; there is no time component 

shown in Figure 26.   Therefore, a practical implementation of an SDA architecture will require a 

model adaptation to incorporate the temporal dimension.  For example, the inputs into the SDA 

might include the data from t-1 (𝑥ℓ𝑡−1), from t-2 (𝑥ℓ𝑡−2), and from t-3 (𝑥ℓ𝑡−3). Unfortunately, in 

practice, this approach may be intractable in applications with long-term temporal relationships.  

With architecture #5, RNNs are a more natural approach to incorporating time-dependent data 

but with much higher compute resource requirements. 

  

Figure 26: Shallow/Deep Autoencoder (SDA) 

Mathematically, omitting the location subscript l for clarity, assume there are N 

multivariate samples from the training dataset (𝑥1, 𝑥2, … , 𝑥𝑁), with an encoder function 𝑓𝜃, then 

for each sample n from the training dataset, the hidden feature vector is given by: ℎn = 𝑓𝜃(𝑥𝑛) (6.1) 
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The decoder function, which maps or reconstructs the hidden feature vector back to the original 

inputs, is given by 𝑔∅: 𝑟𝑛 = 𝑔∅(ℎ𝑛) (6.2) 
 

The set of parameters 𝜃 𝑎𝑛𝑑 ∅ are learned by a DNN which attempts to minimize the 

reconstruction error over the entire set of training samples (𝑥1, 𝑥2, … , 𝑥𝑁).  The reconstruction 

error (RE) is the anomaly score. The reduction in dimension from an input size of five (5) to two 

(2) nodes forces the DNN to extract only the most salient features and learn the set of parameters 𝜃 𝑎𝑛𝑑 ∅. This bottleneck produced by the encoder also forces the network to learn an efficient 

compression of the data into a lower-dimensional space. When data is encoded, only the 

regularities in the data are captured; irregularities and noise are ignored.  So, the goal of the 

decoder is to minimize the RE or loss across all non-anomalous training samples given by 

equations (6.3): 

 𝑀𝑖𝑛: 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜r (θ, ∅) = ∑ 𝑅𝐸(𝑥𝑛, 𝑔𝜃(ℎ𝑛))𝑛  

 
or equivalently 

 
  𝑀𝑖𝑛: 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜r (θ, ∅) = ∑ 𝑅𝐸(𝑥𝑛, 𝑔𝜃(𝑓𝜃(𝑥𝑛)))𝑛  

(6.3) 

 
Let  𝑠𝑓 be the nonlinear activation function for the encoder, let 𝑠𝑔 be the nonlinear 

activation function for the decoder, b is the encoder bias vector, d is the decoder bias vector, DE 

is the encoder weight matrix, and EN is the decoder weight matrix. The equations of the 

autoencoder for each training sample are given by equations (6.4): 𝑓𝜃(𝑥𝑛) =  𝑠𝑓(𝐷𝐸𝑥𝑛 + 𝑏) 𝑔∅(ℎ𝑛) =  𝑠𝑔(𝐸𝑁ℎ𝑛 + 𝑑) 

 

(6.4) 

So, an autoencoder attempts to minimize the loss of information from the encoding process 

across all training samples, as seen in equation (6.5): 
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𝑀𝑖𝑛: 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜r (∅) = ∑ (𝑥𝑛 − 𝑔∅ (𝑠𝑓(𝐷𝐸𝑥𝑛 + 𝑏)))𝑁
𝑛=1  

and substituting: 

𝑀𝑖𝑛: 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜r (θ, ∅) = ∑ (𝑥𝑛 − 𝑠𝑔(𝐸𝑁(𝑠𝑓(𝐷𝐸𝑥𝑛 + 𝑏)) + 𝑑))𝑁
𝑛=1  

(6.5) 

 

 

(6.6) 

or in terms of Figure 26, the goal is to minimize the reconstruction error ‖𝑥 − 𝑥′‖, which is also 

known as the ‘L1’ norm. 

As an aside, a norm is a function that maps vectors to non-negative values and measures 

the size of a vector.  The Lp norm is given by equation 6.7, where 𝑝 ∈ ℝ, 𝑝 ≥ 1. [81] 

||x||p = (∑ |𝑥𝑖|𝑖 p)1/p (6.7) 

The L2 norm, with p=2, is known as the Euclidean norm, which is the distance from the origin to 

the point defined by x.  The squared L2 norm, xTx, is easier to work with mathematically and is 

often mentioned in DNN algorithms. Note that the higher the norm index, the greater the 

emphasis on high values and the less the emphasis on low values.  Other distance measures used 

in DNN cost functions include the Root Mean Squared Error (RMSE) and the Mean Absolute 

Error (MAE). 

6.2.1 SDA Anomaly Detection Algorithm 

Algorithm 1 in Figure 27 displays the pseudocode for the SDA anomaly detection 

algorithm.  The algorithm is based on a reconstruction error noted in the equations above. The 

parameters are estimated using only the non-anomalous samples in the training set as the 

underlying premise is that all of the methods are unsupervised, supporting unlabeled data. Note 

that the number of anomalies is determined by the threshold α, which is application dependent; 
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the higher the threshold, the fewer the number of data points that are designated as anomalous 

since higher scores mean a higher probability of an anomaly. 

Algorithm 1: Autoencoder Anomaly Detection Algorithm 
INPUT: Normal dataset X, Anomalous dataset xi, i = 1,…,N, threshold α 
OUTPUT: reconstruction error ||𝒙 − 𝒙′|| 
STEPS: ∅, 𝜽  train an SDA using the normal dataset X 

 
for i = 1 to N do 

     reconstruction error(i) = ||𝒙𝒊 −  𝒈∅ (𝒇𝜽(𝒙𝒊)) || 
      if reconstruction error(i) > α then 
          𝒙𝒊 is an anomaly 
 else 

          𝒙𝒊 is not an anomaly 
 endif 
endfor 

Figure 27: SDA Anomaly Detection Algorithm 

6.3 Architecture #2: Variational Autoencoder (VAE) 

A VAE [82] is a generative model that outputs a probability estimate rather than a 

reconstruction error as the anomaly score [83].  The SDA produces a numeric vector in the 

hidden layer that represents the set of learned or extracted features of the data.  A VAE also 

extracts and recreates the latent features of a problem domain, but uses a probabilistic approach.  

When decoding from these encoded features, sampling is performed from the encoded statistical 

distribution to create the decoded output.   The advantage of a VAE over the SDA is that 

probabilities tend to be more interpretable than absolute reconstructive errors. However, both 

approaches still require an arbitrary threshold value α to binary classify new samples as 

anomalous or non-anomalous. 

Figure 28 depicts a simplified VAE encoder and decoder network.  Each input feature 𝑥 

is assumed to follow a Gaussian distribution. The encoder, 𝑞𝜃(𝑧|𝑥) encodes inputs x and outputs 

to Z, a Gaussian multivariate vector of latent or hidden features. The decoder, 𝑝∅(𝑥|𝑧), draws 

from this Gaussian distribution and regenerates the inputs 𝑥 in 𝑥′.  The key idea is to determine 
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the probability that 𝑥′ was generated from Z.  If this probability is low, and depending on the 

threshold level α, the sample is deemed to be an anomaly.  Note that unlike the SDA, once 

training is completed and the parameters 𝜃 𝑎𝑛𝑑 ∅ are estimated, the decoder is not used in the 

anomaly detection algorithm. 

 

           Figure 28: Variational Autoencoder (VAE) 

 Consider the encoder network 𝑞𝜃(𝑧|𝑥).  Over the set of multivariate Gaussian training 

samples, the output of the encoding DNN is a vector Z with mean 𝜇𝑧|𝑥 and diagonal covariance 

of ∑𝑧|𝑥. Similarly, the output of the decoder network 𝑝∅(𝑥|𝑧)is given by mean 𝜇𝑥|𝑧and diagonal 

covariance of ∑𝑥|𝑧.  Both the encoder and decoder are probabilistic.  If sample Z is generated 

from the training samples 𝑥, then 𝑧|𝑥 ~ 𝑁(𝜇𝑧|𝑥 , ∑𝑧|𝑥) and 𝑥|𝑧 ~ 𝑁(𝜇𝑥|𝑧 , ∑𝑥|𝑧).  The goal is to 

estimate 𝑝∅(𝑥|𝑧) to determine if the sample is an anomaly.  To do so, estimate the (log) data 

likelihood of the ith training sample, as shown in equation 6.8 below, by taking the expected 

value with respect to z.  Note that 𝑝∅(𝑥𝑖) does not depend on z. log 𝑝∅(𝑥𝑖) = 𝐸𝑧~𝑞𝜃(𝑧|𝑥𝑖)[log 𝑝∅(𝑥𝑖)] (6.8) 

  
Using Bayes theorem, we derive equation (6.9): 
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log 𝑝∅(𝑥𝑖) = 𝐸𝑧~𝑞𝜃[log 𝑝∅(𝑥𝑖|𝑧)𝑝∅(𝑧)𝑝∅(𝑧|𝑥𝑖) ] (6.9) 

  

multiplying by a constant 
𝑞𝜃(𝑧|𝑥𝑖).𝑞𝜃(𝑧|𝑥𝑖), we get equation (6.10): 

log 𝑝∅(𝑥𝑖) = 𝐸𝑧~𝑞𝜃[log 𝑝∅(𝑥𝑖|𝑧)𝑝∅(𝑧)𝑝∅(𝑧|𝑥𝑖)  𝑞𝜃(𝑧|𝑥𝑖) 𝑞𝜃(𝑧|𝑥𝑖) ] (6.10) 

  
and taking logarithms, we get (6.11): 

log 𝑝∅(𝑥𝑖) = 𝐸𝑧[log𝑝∅(𝑥𝑖|𝑧)] − 𝐸𝑧 [log 𝑞𝜃(𝑧|𝑥𝑖)𝑝∅(𝑧) ] +  𝐸𝑧[𝑙𝑜𝑔 𝑞𝜃(𝑧|𝑥𝑖)𝑝∅(𝑧|𝑥𝑖)]  (6.11) 

which is equivalent to (6.12): log 𝑝∅(𝑥𝑖) = 𝐸𝑧[log𝑝∅(𝑥𝑖|𝑧)] − 𝐷𝐾𝐿(𝑞𝜃(𝑧|𝑥𝑖)||𝑝∅(𝑧)) + 𝐷𝐾𝐿(𝑞𝜃(𝑧|𝑥𝑖)||𝑝∅(𝑧|𝑥𝑖))   (6.12) 

 

where K-L is the Kullback-Leibler Divergence, a method to measure the difference between two 

probability distributions.  K-L divergence is always >=0.  Note that the term 𝐸𝑧[log𝑝∅(𝑥𝑖|𝑧)] is 

the decoder network that can be estimated through sampling and 𝐷𝐾𝐿(𝑞𝜃(𝑧|𝑥𝑖)||𝑝∅(𝑧)) is the K-

L term between the Gaussians for the encoder and the z prior. Unfortunately, the term 𝐷𝐾𝐿(𝑞𝜃(𝑧|𝑥𝑖)||𝑝∅(𝑧|𝑥𝑖))  from equation (6.12) is intractable and cannot be estimated because 

every z cannot be computed given the finite number of samples 𝑥𝑖. 
Since we want to maximize the data likelihood of log 𝑝∅(𝑥𝑖), we can drop the intractable 

term 𝐷𝐾𝐿(𝑞𝜃(𝑧|𝑥𝑖)||𝑝∅(𝑧|𝑥𝑖)) from (6.12) to get (6.13): ℒ(𝑥𝑖 , ∅, 𝜃) = 𝐸𝑧[log𝑝∅(𝑥𝑖|𝑧)] − 𝐷𝐾𝐿(𝑞𝜃(𝑧|𝑥𝑖)||𝑝∅(𝑧))  (6.13) 

  
Equation (6.13) is tractable and becomes the lower bound of log 𝑝∅(𝑥𝑖) since K-L >=0.  Gradient 

descent can be used to optimize  ∅ 𝑎𝑛𝑑 𝜃 to maximize the likelihood of the lower bound ℒ(𝑥𝑖 , ∅, 𝜃).  ℒ(𝑥𝑖 , ∅, 𝜃) is known as the variational lower bound, or ‘ELBO’ for short.  During 
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VAE training, the goal is to maximize ‘ELBO,’ the lower bound across the entire set of training 

examples. 

6.3.1 An Aside on Kullback-Liebler (K-L) Divergence 

The K-L divergence is a measure of the difference between two probability distributions.  

The basic idea behind K-L divergence is derived from three fundamental concepts in information 

theory: (1) unlikely events provide higher information content than unlikely events, (2) there is 

no information gained from the occurrence of a known event, and (3) the occurrence of 

independent events provides additive information content. The self-information I of event x is 

given by: 𝐼(𝑥) =  − log 𝑃(𝑥) (6.14) 

Given two probability distributions P(x) and Q(x), the K-L divergence measure is given 

by DKL(P||Q): 𝐷𝐾𝐿(P||Q) = 𝐸𝑥~𝑃[𝑙𝑜𝑔𝑃(𝑥) − 𝑙𝑜𝑔𝑄(𝑥)] (6.15) 

Note that K-L divergence is not a true distance measure since the metric is not 

symmetric: 𝐷𝐾𝐿(P||Q) ≠ 𝐷𝐿𝐾(P||Q).  Also, while the distance measures are generally thought of 

as a physical distance in 3D space, the distance measure is applied to multivariate data that does 

not represent a physical distance. Barz et al. [84] provide an unsupervised spatiotemporal 

anomaly detection algorithm called ‘Maximally Divergent Intervals’ (MDI), which is based on 

high K-L divergence compared to all other data. 

6.3.2 VAE Anomaly Detection Algorithm 

The VAE anomaly detection algorithm is adapted from [82] and is shown in Figure 29.  The 

algorithm is similar to the SDA anomaly detection algorithms except that reconstruction 

probability is used instead of the reconstruction error. 
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Algorithm 2: Variational Autoencoder Anomaly Detection Algorithm 
INPUT: Normal dataset X, Anomalous dataset xi i = 1,…,N threshold α 
OUTPUT: Reconstruction probability 𝒑∅(𝒙|𝒙′) 
STEPS: ∅, 𝜽  train a VAE using the normal dataset X 

 
for i = 1 to N do 

     𝝁𝒛𝒊𝝈𝒛𝒊 =  𝒒𝜽(𝒛|𝒙𝒊)    # from the encoder 
     Draw L samples from 𝒛 ~ 𝑵(𝝁𝒛𝒊𝝈𝒛𝒊)  
     for l = 1 to L 

          𝝁𝒛′(𝒊𝝈𝒛𝒊 =  𝒑∅(𝒙𝒊|𝒛(𝒊,𝒍)) 
     end for 

     reconstruction probability(i)= 
𝟏𝑳 ∑ 𝒑∅(𝒙𝒊|𝑳𝟏 𝝁𝒙′(𝒊,𝒍)𝝈𝒙′(𝒊,𝒍)) 

     if reconstruction probability(i) < α then 
          𝒙𝒊 is an anomaly 
     else 

          𝒙𝒊 is not an anomaly 
    endif 
endfor 

Figure 29: VAE Anomaly Detection Algorithm 

6.4 Architecture #3: Deep Autoencoding Gaussian Mixture Model (DA-GMM) 

 This discussion of the deep autoencoding Gaussian mixture models for unsupervised 

anomaly detection is based on [85]. DA-GMM is an unsupervised, anomaly detection approach 

that is an extension of the deep autoencoding model.  As background, a mixture model is a 

probabilistic model designed to represent the existence of subpopulations within an overall 

population. For example, anomalous points within a normal population can be modeled as a 

normal distribution subpopulation of anomalous points.  A GMM learns and assigns points to 

these subpopulations automatically.  A GMM is unsupervised because these subpopulations are 

unknown and are assigned by the underlying model. 

 The DA-GMM shown in Figure 30 is composed of two connected networks, a 

compression network, and an estimation network.  The compression network is similar to the 

SDA network and conducts dimensionality reduction and feature extraction.  The compression 

network feeds the estimation network, which predicts the probability 𝜋̂ that the reduced 

representation indeed represents the true data. The DA-GMM algorithm jointly optimizes the 
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parameters of the autoencoder and the mixture model simultaneously rather than sequentially.  

Through this joint optimization procedure, anomaly detection accuracy is improved by 10-15%, 

according to [85]. 

Note the compression network contains two sources of features: (1) the reduced, low-

dimensional representations learned by the autoencoder, and (2) the features derived from the 

reconstruction error.  The compression (autoencoding) network feeds the estimation network that 

takes the reduced dimensionality of the inputs and outputs mixture membership prediction 

(known as the likelihood/energy) for each sample.  Gaussian mixture density estimation 

procedures are beyond the scope of this paper but are discussed in detail in Section 3.3 of [85].  

So, to summarize, a DA-GMM model is essentially the combination of an SDA (architecture #1) 

with an integrated Gaussian mixture back-end model. 

The DA-GMM objective function is given by (6.16): 

𝐽(𝜃𝑐, 𝜃𝑑 , 𝜃𝑚) = 1𝑁 ∑ 𝐿(𝑥𝑖𝑥𝑖′) +  𝜆1𝑁  ∑ 𝐸(𝑧𝑖)𝑁
𝑖=1 + 𝜆2𝑃(∑̂)𝑁

𝑖=1  
(6.16) 

  
where 𝐿(𝑥𝑖𝑥𝑖′) is the loss function (e.g., L2 norm) from the reconstruction error from the 

autoencoder in the compression network; 𝐸(𝑧𝑖) is the model of the probabilities observed from 

the input data, and 𝜆1 and 𝜆12 are meta-parameters in DA-GMM. 
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Figure 30: Deep Autoencoding Gaussian Mixture Model (DA-GMM) 

 6.4.1 DA-GMM Anomaly Detection Algorithm 

 Algorithm 3 in Figure 31 provides the DA-GMM anomaly detection algorithm.  The 

estimation network utilizes a multi-layer DNN to predict the mixture membership of each sample 

and calculates the likelihood/energy values. Samples with high energy above the designated 

threshold are deemed anomalies.  Because the DA-GMM supports a classification problem, the 

standard evaluation metrics such as Precision, Recall, and F1 are applicable.   The DA-GMM 

paper designates the highest 20 percent in terms of ‘energy’ of all samples is marked as 

anomalies.  Note that by varying the energy threshold value, a standard ROC curve could be 

generated and an AUC metric calculated.  Because DA-GMM is probabilistic, each run will 

produce different results, sometimes dramatically different.   Results are averaged across twenty 

(20) executions. 
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Algorithm 3: Deep Autoencoder Gaussian Mixture Model Anomaly Detection 
Algorithm 
INPUT: Normal dataset X, Anomalous dataset xi i = 1,…,N threshold α, 

K=number of mixture components 
OUTPUT: Sample likelihood/energy 
STEPS: 𝜃𝑐 , 𝜃𝑑 , 𝜃𝑚  train a DA-GMM using the normal dataset X 

 
Estimate the parameters in GMM, including: ∅ ∶   𝑴𝒊𝒙𝒕𝒖𝒓𝒆 𝑪𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝑫𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏  𝝁: Mixture Means 
∑: Mixture Covariance 
z: Low Dimensional Representations 
 
for i = 1 to N do 
     calculate 𝒛𝒊 
     sample energy(i,𝒛𝒊)= −𝒍𝒐𝒈(∑ ∅𝒌 𝒆𝒙𝒑(−𝟏𝟐(𝒛−𝝁𝒌)𝑻 ∑ (𝒛−𝝁𝒌)−𝟏𝒌√|𝟐𝝅∑𝒌|𝑲𝒌=𝟏 ) 
     if sample energy(i, 𝒛𝒊) > α then 
          𝒙𝒊 is an anomaly 
     else 

          𝒙𝒊 is not an anomaly 
     endif 
endfor 

Figure 31: DA-GMM Anomaly Detection Algorithm 

6.5 Architecture #4: Generative Adversarial Network (GAN) 

 A GAN [86] is a generative model designed initially for image generation and is 

represented in Figure 32.  Unlike VAEs and DA-GMMs, GANs are not based on probability 

density models but a two-player game-theoretic approach.  Each GAN consists of two competing 

DNNs, a generator 𝐺 with parameters 𝜃𝑔 and a discriminator 𝐷 with parameters 𝜃𝑑, which are 

trained simultaneously and which learns to distinguish between real and fake or anomalous data.  𝐺 tries to fake the discriminator by generating realistic data, while 𝐷 tries to distinguish between 

real and fake data. After the model is trained, anomalies are identified by 𝐷 as fake data. As with 

all classification problems, the anomaly determination is dependent on the threshold value of 𝐷.  

Higher threshold values will result in fewer true positives but also fewer false positive anomaly 

designation.  There is always a trade-off between true and false positives given cutoff value. 
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Figure 32: Generative Adversarial Network (GAN) 

 Consider equation (6.17), which is a formulation of a minimax game, also known as a 

zero-sum game: 

min𝜃𝑔 max𝜃𝑑 [ 𝐸𝑥~𝑝(𝑑𝑎𝑡𝑎) log 𝐷𝜃𝑑,(𝑥)  + 𝐸𝑥~𝑝log (1 − 𝐷𝜃𝑑, (𝐺𝜃𝑔(𝑧)))]  (6.17) 

  

Note that 𝐷𝜃𝑑,(𝑥) is the discriminator output for real data while 𝐷𝜃𝑑, (𝐺𝜃𝑔(𝑧)) is the 

discriminator output for the generated fake data 𝐺𝜃𝑔(𝑧).  The discriminator 𝐷 outputs a 

likelihood in the range (0,1), where one (1) is real, and zero (0) is fake data.  𝐷 strives to 

maximize the objective such that 𝐷𝜃𝑑,(𝑥) is close to one and 𝐷𝜃𝑑, (𝐺𝜃𝑔(𝑧)) is close to zero, 

while 𝐺 strives to minimize the objective such that 𝐷𝜃𝑑, (𝐺𝜃𝑔(𝑧)) is close to 1.  GAN training 

includes an optimizer with minibatch gradient descent, with the backpropagation algorithm, is 

alternately applied between the discriminator shown in equation (6.18) and the generator shown 

in equation (6.19).  Equilibrium is reached when either the generator or the discriminator will not 

alter their parameters regardless of what the other does, which is also known as a Nash 

equilibrium. 



 

 86 

𝑚𝑎𝑥𝜃𝑑 [ 𝐸𝑥~𝑝(𝑑𝑎𝑡𝑎)𝑙𝑜𝑔𝐷𝜃𝑑,(𝑥) +  𝐸𝑥~𝑝(𝑧)log (1 − 𝐷𝜃𝑑, (𝐺𝜃𝑔(𝑧)))] (6.18) 

  min𝜃𝑔 𝐸𝑥~𝑝(𝑧)log (1 − 𝐷𝜃𝑑, (𝐺𝜃𝑔(𝑧))) (6.19) 

 
 

 

 GANs are challenging to train, in part because two DNNs are requiring two (large) sets of 

choices regarding hyperparameters and in part because of the inability to learn the model 

parameters.   Learning may be difficult because of the mode collapse problem, where there is a 

tendency by the generator to explore only a limited subset of plausible solutions, or because the 

discriminator may overpower the generator, or visa-versa causing overfitting. GANs also exhibit 

bouts of non-convergence where the model parameters oscillate and destabilize. 

6.5.1 GAN Anomaly Detection Algorithm 

 Algorithm 4 in Figure 33 displays the anomaly detection algorithm associated with a 

GAN.  The same process as network training is followed except that the model parameters are 

not re-estimated.  The input data is passed through the generator network, followed by the 

discriminator network.  An anomaly score (0,1) is calculated and compared against the threshold 

value.  The threshold value is set where the probability of a fake is greater than .5 

Algorithm 4: Generative Adversarial Network Anomaly Detection Algorithm 
INPUT: Normal dataset X, Anomalous dataset xi i = 1,…,N threshold α 

 
OUTPUT: GAN Output Score (0,1) 
STEPS: for i = 1 to N do 

     Generate 𝒛𝒊 from xi 
     Enter Generator Trained Network. Calculate 𝐷𝜃𝑑, (𝐺𝜃𝑔(𝑧))  
     output score(i) =  𝑙𝑜𝑔𝐷𝜃𝑑,(𝑥) 
     if output score(i) < α then 
          𝒙𝒊 is an anomaly 
 else 

          𝒙𝒊 is not an anomaly 
 endif 
endfor 

Figure 33: GAN Anomaly Detection Algorithm 
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6.6 Architecture #5: Encoding-Decoding Recurrent Neural Network (ED-RNN) 

RNNs have been used extensively in anomaly detection applications and can be adapted 

to form an autoencoding-like network. In this architecture, the output of an RNN attempts to 

replicate the inputs similar to an SDA. An ED-RNN combines the best of both architectures, 

adding a temporal component to an otherwise static SDA. ED-RNN style architectures are 

heavily used in machine and speech translation applications today, although the temporal 

component is not time but rather a sequence of words or speech.   

Figure 34 illustrates the basic variant of an ED-RNN.  An RNN is a dynamic network 

that contains delays and operates on an ordered sequence of inputs.  An RNN is represented as a 

directed graph along a temporal sequence. The self-loop or folded depiction is shown on the left, 

while the unfolded depiction is shown on the right.  Both the folded and unfolded versions are 

conceptually identical.  The subscripts represent location while the superscripts represent time or 

sequence. So, for example, 𝑥1𝑡−1 represents a multivariate input vector at location 1 at time t-1.  

Note that the hidden state ℎ𝑙𝑡is a function of not only the current input vector 𝑥𝑙𝑡, but also the 

previous period’s hidden state ℎ𝑙𝑡−1.  This model structure provides the long-term memory of the 

network.  Long-term memory is a desirable characteristic in anomaly detection architectures for 

uncovering complex temporal relationships.   

An ED-RNN is sensitive to the order of the data, supports long-term temporal patterns, 

and the identification of global anomalies.  An ED-RNN is not appropriate for the identification 

of local anomalies.  Like all DNN architectures, an ED-RNN can be combined with other 

architectures to form a hybrid architecture that could potentially identify both local and global 

anomalies. 
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Figure 34: Encoding-Decoding Recurrent Neural Network (ED-RNN) 

The goal of the autoencoder component is to replicate these three inputs by learning the 

hidden representation h, which includes features from not only the current inputs but also from 

the sequential history of inputs as captured by the RNN hidden units.  Formally, the network 

equations for the RNN are given by equation (6.20), omitting the location subscripts for brevity: ℎ𝑡 =  𝑓(ℎ𝑡−1, 𝑥𝑡) or ℎ𝑡 = 𝑓(𝑊ℎ𝑡−1 + 𝑈𝑥𝑡) 

(6.20) 

where the hidden state is a nonlinear activation function 𝑓(. , . ).  Popular activation functions 𝑓(. , . )  include rectified linear units, sigmoid, and tanh. The final output is another function 𝑔() 

of the hidden states: 𝑦𝑡 = 𝑔(ℎ𝑡), or equivalently 𝑦𝑡 = 𝑔(𝑓(𝑊ℎ𝑡−1 + 𝑈𝑥𝑡)) 

(6.21) 
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 Note that the RNN weight matrices U, W, and V are shared across time-steps. Sharing 

means that the model weights are constrained by the optimization algorithm to be identical 

across time or sequence.  Each location or geographic region, however, would have a separate 

instantiation of this architecture. Parameter sharing is desirable in RNNs to avoid many stability 

issues when estimating the model parameters with long temporal sequences. More importantly, 

the sharing of weights across time steps is theoretically grounded; there is no reason to believe 

that the underlying structural model drifts or is different across time within a given region.  If the 

weight parameters were not shared across time, then each period would be a separate model.  

Note that the weight matrices U, W, V are not shared across locations in this model, meaning 

that each location is operating autonomously and subject to a different underlying model.  

Whether RNN weight matrices should be shared across locations is an application design 

question and also an open research issue in the DNN literature. 

There are many variations in the EN-RNN architecture, including alternate connections 

[87], additional weight matrices, and different parameter constraints across time. RNN 

formulations handle variable-length input streams that are critical with time series or sequence 

data. Specialized versions of the backpropagation algorithm known as the backpropagation 

through time (BPTT) algorithm are required to estimate the parameters of the RNN.  

Unfortunately, the BPTT algorithm is processor-intensive, has difficulty learning long sequences 

(over a few hundred steps at best) due to the ubiquitous vanishing or exploding gradient problem 

[88] and may fail to converge.   As a result of these estimation issues, architectural add-ons to 

RNNs such as Long Short-Term Memory (LSTM) [89] and Gated-Recurrent Units (GRU) have 

been developed and are almost always used.  Even with these architectural add-ons, RNNs are 

long-running and processor-intensive [90]. For these reasons, the use of RNNs in streaming 
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anomaly detection applications is problematic.  Note that the optimizer with the backpropagation 

algorithm used in the encoder-decoder component is less complicated, more stable, and 

significantly faster than the BPTT algorithm required by RNNs.  Therefore, an SDA architecture 

is more performance compatible with streaming than an ED-RNN. However, conceptually, an 

ED-RNN is designed for multi-step temporal or sequential data, while SDAs are designed for 

snapshots or cross-sections.   

Because of the many estimation and complexity issues associated with RNNs with LSTM 

and the difficulty of training these models [91], there has been a recent trend in the neural 

machine translation literature away from recurrent networks and towards attention-based 

networks, which is similar to the SDA architecture.  The belief is that in most applications, and 

particular machine translation applications, long-term memory over many steps is not necessary 

and that the focus attention of network connections should be on recent or nearby memory.  See 

Vaswani et al. [92] for more details.  For a discussion of ED-RNN in the application of machine 

language translation, see [93]. 

6.6.1 ED-RNN Anomaly Detection Algorithm 

Figure 35 displays the pseudocode for the anomaly detection algorithm associated with 

an ED-RNN. The algorithm is based on a multi-step reconstructive error. Using an RNN, a 

multistep reconstructive error is made by comparing actual with predicted values. If the error 

between the actual/predicted reconstructive exceeds a threshold α, then the multi-step 

collectively is deemed an anomaly.  The approach to multi-step reconstructive step thresholds is 

application-defined. The threshold could be an average reconstructive error per-period, the sum 

over the period, or a mini-max value where the reconstructive error in any period cannot exceed 

a particular maximum threshold value.   
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Algorithm 5: Encoding-Decoding Recurrent Neural Network Anomaly Detection 
Algorithm 
INPUT: Normal dataset X, Anomalous dataset 𝒙𝒊𝒕 i = 1,…,N threshold α,time t 

at any given location (not shown) 
Reconstruction Sequence Window length: s 
Threshold Technique: minimum, maximum reconstruction error 

OUTPUT: Sum Reconstruction Error across Sequence Length 
STEPS: 𝑼, 𝑾, 𝑽  train an EN-RNN using the normal dataset X 

 
for i = 1 to N do 
     for j = 0 to (s-1) do 

          reconstruction error(i) = ||𝒙𝒊𝒕−𝒋 −  𝑔(𝑓(𝑊ℎ𝑡−𝑗−1 + 𝑈𝑥𝑡−𝑗))|| 
          if reconstruction error(i) > α then 
               𝒙𝒊𝒕−𝒋

 is an anomaly 
     else 

               𝒙𝒊𝒕−𝒋
 is not an anomaly 

     endif 
     endfor 
endfor 
 

Figure 35: ED-RNN Anomaly Detection Algorithm 

6.7 Architecture #6: Encoding-Decoding 1D Convolutional Neural Network (ED-1D-CNN) 

 An ED-1D-CNN is similar to the ED-RNN architecture except that the RNN component 

is replaced by a one-dimensional convolutional neural network (1D-CNN). 2D and 3D CNNs are 

designed to operate convolutionally, extract features for local inputs, and are suited for computer 

vision problems. These same concepts can be applied to anomaly detection, except that the 

domain is 1D and is modified for sequence processing.  An RNN captures long-term temporal 

patterns and supports the identification of global anomalies. With a 1D-CNN, local 1D patches, 

or subsequences, are extracted from the complete sequence. Unlike an RNN, these subsequences 

are location invariant.  For this reason, a 1D-CNN captures local, translation invariant patterns 

and best supports the identification of local anomalies.   When combined with an encoder and 

decoder, an anomaly detection algorithm can be designed. See Chollet [94] for an overview of 

the 1D-CNN architecture. 
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Figure 36: Encoding-Decoding One-Dimensional Recurrent Neural Network (ED-1D-CNN) 

Figure 36 displays the architecture of an ED-1D-CNN.  Rather than processing the entire 

sequence, ED-1D-CNN processes a convolutional window into the input sequence, extracts 

patches from that sequence (e.g., nine (9) steps), and learns a set of weights that minimizes the 

reconstruction error when feeding through the autoencoder.  This results in more stable, lighter 

weight and faster DNN over the ED-RNN architecture, albeit at a potential loss of information 

from the convolution.  Note that the ED-1D-CNN will capture sequence invariant local 

anomalies while the ED-RNN will capture global anomalies across the entire sequence. 

6.7.1 ED-1D-CNN Anomaly Detection Algorithm 

 Figure 37 displays the ED-1D-CNN anomaly detection algorithm.  This algorithm is 

similar in structure to the ED-RNN algorithm except that instead of an RNN preprocessing the 

inputs to the autoencoder, a 1D-CNN provides the inputs.  
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Algorithm 6: Encoding-Decoding One Dimensional Convolutional Neural Network 
Anomaly Detection Algorithm 
INPUT: Normal dataset X, Anomalous dataset 𝒙𝒊𝒕 i = 1,…,N threshold α,time t 

at any given location (not shown, convolutional window size w 
Reconstruction Sequence Window length: s 
Threshold Technique: minimum, maximum reconstruction error 

OUTPUT: Sum Reconstruction Error across Sequence Length 
STEPS: 𝑾  train an 1D-CNN using the normal dataset X 

 
for i = 1 to N do 
     for j = 0 to (s-1) do 

          reconstruction error(i) = ||𝒙𝒊𝒕−𝒋 −  𝑔(𝑓(𝑊ℎ𝑡−𝑗−1 + 𝑈𝑥𝑡−𝑗))|| 
          if reconstruction error(i) > α then 
               𝒙𝒊𝒕−𝒋

 is an anomaly 
     else 

               𝒙𝒊𝒕−𝒋
 is not an anomaly 

     endif 
     endfor 
endfor 
 

Figure 37: ED-1D-CNN Anomaly Detection Algorithm 

6.8 Architecture Summary 

 Table 15 provides a summary of the various architectures discussed in this chapter.   The 

techniques range from very mature (RNN) to recent (DA-GMM). Only the DA-GMM was 

explicitly designed for unsupervised anomaly detection.  However, both the SDA and VAE 

architectures were designed for unsupervised learning so that these techniques can easily be 

adapted.  Adapting RNNs to unsupervised learning is more challenging since these techniques 

were designed for prediction and forecasting, a supervised problem.  However, RNNs and, to 

some extent, SDAs are well supported in the open-source software community and have readily 

available software implementations.  VAE also has support but primarily for image-related tasks. 

DA-GMM architectures, however, require a custom software implementation as these 

architectures are new and are not implemented in open-source software packages. 

 Suitability to adaptation for streaming architectures as well as performance is important 

considerations when evaluating alternative anomaly detection architectures.  These architectures 

were designed to be trained offline, separate from deployment.  Once the model is trained, the 
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parameters are deployed operationally and perhaps periodically re-estimated.  While in many 

application domains, this workflow may be appropriate, for dynamic, high-tempo anomaly 

detection domains in conditions of concept drift, this approach is unsatisfactory.  Concept 

drift occurs when the statistical properties of the target variable change over time in unforeseen 

ways. In these situations, online streaming applications need to be constantly adapting and 

learning. 

Table 15: Comparison of Anomaly Detection Architectures 

 SDA VAE DA-GMM GAN ED-RNN ED-1D-CNN 
Architecture # 1 2 3 4 5 6 
Technology Core Non-

Parametric 
Probabilistic Gaussian 

Mixtures 
Game Theory Dynamic 

Systems 
Image 

Processing 
Built-In Temporal Support No No No No Yes Yes 
Complexity Low Moderate High Moderate High Moderate 
Estimation Technique FeedForward 

Network 
FeedForward 

Network 
FeedForward 

Network 
FeedForward + 
Convolutional 

Recurrent 
Network 

Convolutional 
Network 

Anomaly Algorithm Reconstruction 
Error 

K-L 
Divergence 

Probability 
Error 

(0,1) Reconstruction 
Error 

Reconstruction 

Largest Domain Usage Image 
Processing 

Image 
Processing 

Anomaly 
Detection 

Image 
Augmentation 

Neural 
Machine 

Translation 

Sequence 
Processing 

Maturity Level High Moderate Low Moderate High Low 
Reference [55] [83] [85] [86] [93] [94] 

 
 The six (6) architectures will undergo experimentation in Chapter 7 using the same 

datasets described in Chapter 3.  This experimentation will inform the decision made and 

concerning the STADE architecture.  The STADE architecture is designed to support streaming, 

near-real-time anomaly detection applications that can identify the concept drift described above.  

The STADE architecture is also designed to support pluggable algorithms.  Pluggable means that 

algorithms can be interchanged for one another, or new algorithms inserted or tailored to specific 

domain requirements.  STADE is designed to run multiple algorithms concurrently and 

combining the results using an ensemble approach that often produces better predictive 

performance compared to a single model.  
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6.9 Related Work 

 The authoritative sources for representational learning academic research are two major 

machine learning conferences, the International Conference on Machine Learning (ICML) and 

the Conference on Neural Information Processing Systems (NIPS). Virtually all machine and 

DNN research, including research-in-progress, are published at https://arxiv.org.  The open-

source community is rapidly expanding software support for various neural network 

architectures, led by Google™ with Tensorflow™ and Facebook™ with PyTorch™. The Open 

Neural Network Exchange (ONNX) is a vendor-independent industry consortium that is 

promoting a standard format to exchange neural network models and specifications. There has 

also been a measurable increase in the number of anomaly detection surveys and books 

published including Agrawal and Agrawal [40], Ariyaluran, et al. [95], Ahmed, Mahmood and 

Hu [96], Bhuyan, Bhattacharyya, and Kalita [97], and Bengio [98]. Goodfellow, Bengio, and 

Courville [81] is the definitive book on representational learning.   

Two training datasets continue to dominate the representational learning-based anomaly 

detection literature.  These datasets are the NMIST handwritten digital dataset for image 

processing, and the DARPA Knowledge Discovery and Data Mining Tools Competition 1999 

dataset on network intrusion. Neither dataset provides true support for anomaly detection; the 

lack of high quality, readily accessible multivariate datasets has hampered research. Network 

intrusion detection is a heavily studied component of the much larger field of cybersecurity, and 

the techniques designed for identifying outliers in computer traffic may not be transferable to 

other anomaly detection domains.  The two anomaly datasets used here, SWAT and WADI, are 

relatively new and have not appeared extensively in the literature.  

https://arxiv.org/
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6.9.1 Architecture #1: SDA Related Work 

Architecture #1, shallow and deep autoencoders, is perhaps the most cited anomaly 

detection representational learning architecture today. Hawkins et al. [99], in a 2002 study, used 

a three hidden-layer replicator neural network to select anomalies in network intrusion and 

cancer datasets. Cordero et al. [100] used a similar replicator for intrusion detection of large 

internet traffic. The replicator terminology survived through 2016 when the term was replaced by 

autoencoder. Schreyer et al. [101] applies deep autoencoder networks to accounting records and 

show higher F1 scores and lower false positives compared to current baseline methods in 

accounting. Chen et al. [102] use an ensemble of autoencoders (single architecture with different 

parameters) combined with a random edge and adaptive data sampling technique to improve 

performance.  Socher et al. [103] use autoencoders for sentiment prediction, a topic that is further 

explored in the case study found in Chapter 11. Baldi [104] provides a mathematical basis for 

utilizing autoencoders for unsupervised representational learning models. Other autoencoder-

based anomaly studies include [105], [106], [107], [108], [109], [110], [111], [112] and [113].  

As noted in Section 4.2, SDAs do not have explicit support for temporal data; several 

DNN-based time-series studies have resorted to utilizing traditional feedforward nets or plain 

RNNs.  See [114], [115], [116] and [117].  Chalapathy et al. [118] propose a one-class DNN 

model similar to the one-class SVM (OC-SVM) described in Chapter 4.  Other interested 

temporal anomaly detection studies include an extreme event (i.e., anomaly) forecasting model 

for the Uber™ ride-sharing company using an RNN with LSTM [119] and a convolutional 

encoder-decoder model from Zhang et al. [120]. 
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6.9.2 Architecture #2: VAE Related Work 

Variational Autoencoders (VAE) is now the preferred approach to anomaly detection due 

to the support for the interpretability of the probabilistic anomaly scores. Interestingly, VAEs 

made popular for image processing are now losing popularity and being replaced by GANs.  The 

initial formulation of VAEs by Kingma and Welling [83], a comprehensive tutorial on VAEs by 

Doersch [121], and a comparison of VAEs with SDAs with an evaluation on MNIST by An and 

Cho [82] have all contributed to the popularity of this type of autoencoder.  VAEs are a type of 

generative model where the network learns the underlying data distribution in order to produce 

new data points with variations.  Anomaly detection studies that have used VAEs include Solch 

et al. [122] and Xu et al. [123]. Studies applying VAEs to specific domains include intrusion 

detection in IoT [124], skin disease [125], and brain magnetic resonance imaging (MRI) images 

[126]. Kim et al. [127] combines a VAE with a CNN to predict anomalies in sensor time-series 

and finds improvement in performance. Borghesi et al. [128] apply VAEs to High-Performance 

Computing (HPC) anomalies, Walker et al. [129] to static images, Luo and Nagarajan [130] to 

wireless sensor networks anomalies, Oh and Yun [131] to sound data anomalies, Chalapathy et 

al. [132] to image data, and Guo et al. [133] on laboratory-generated sensor data.   

6.9.3 Architecture #3: DA-GMM Related Work 

The DA-DAGG model by Zong, et al. [85] described in detail in section 6.4.1 above 

combines the output of an autoencoder with a Gaussian Mixture Model under a two-step 

ensemble approach with improved results over the autoencoder results alone.  This approach is 

new and has only recently appeared in the literature. 
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6.9.4 Architecture #4: Generative Adversarial Network (GAN) 

GANs were initially designed to generate images for data augmentation but has recently 

been applied to non-image anomaly detection problems. There are many variants of a GAN, as 

described in [86].  The Wasserstein GAN is a method to evaluate the distance between two high-

dimensional datasets known as the ‘earth mover’ (EM) distance and is used in [134].  This GAN 

inspects the distribution of each variable, real and fake. The GAN determines how much effort 

(in terms of mass times distance) is required to push the generated distribution into the shape of 

the real distribution. The Wasserstein GAN distance measure is the anomaly score. Multi-

Discriminator GAN is another approach that includes a dense network for determining whether 

the generated samples are of sufficient quality (i.e., valid) and an autoencoder that serves as an 

anomaly detector. Other generative models have been combined with CNNs to address anomaly 

detection of sequence data [38] using the WADI and SWAT datasets.  Buitrago et al. [135] 

demonstrate the use of GANs and VAEs to identify anomalies in the presence of unbalanced 

(low frequency) anomaly data.  Sequence data is also supported by GANS, as discussed in [136].  

Other models using GANS or related technologies include [137], [138], [139], [140], [141], 

[142], [143] and [144]. A highly readable overview of adversarial autoencoders is presented in 

[145].  Wang et al. [146] apply maximum likelihood estimation to GANS for anomaly detection. 

6.9.5 Architecture #5: Encoding-Decoding Recurrent Neural Network (ED-RNN) 

RNNs, LSTMs, and sequence-to-sequence models have been used heavily in the 

representational learning-based anomaly detection literature.  Early research by Elman [147] 

provided the basis for RNN-based anomaly detection studies that followed. Sequence-to-

sequence recurrent models described by Graves [148] are used in many time-series, image 

recognition, and other studies, including [149], [150]. Example recurrent neural network 
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applications include electrical load [151], computer system logs [152] and [153], video forgeries 

[154], network traffic [155] and [156], electrocardiography (ECG) signals [157], sensor networks 

[158] and time-series [159] anomaly detection.  Bontemps et al. [160] and Thi, et al. [161] both 

use the KDD-Cup dataset to address collective anomaly detection where anomalies are identified 

by prediction errors from multiple consecutive time steps.  Other ED-RNN models include [162], 

[163], [164], [165], [166] and [167].  A special type of neural network model known as a 

restricted Boltzmann machine was a popular technique a few years ago in several anomaly 

detection studies, including [168] [169], but is seldom used today.  For a study that uses an RNN 

to detect anomalies in the SWAT database, see [170].   

6.9.6 Architecture #6: Encoding-Decoding One-Dimensional CNN (ED-1D-CNN) 

1D-CNN architectures have most extensively been employed in medical time-series 

studies, including the analysis of ECG and EEG [171], and cardiotocography traces [172].  

Russo et al. [173] apply 1D-CNN architecture with deep autoencoders for anomaly detection for 

wastewater monitoring systems. A survey of various applications of 1D-CNN is provided in 

[174].  Chollet [94] including an example software program for a 1D-CNN using the Keras 

neural network library.  However, there are no known published papers that utilize ED-1D-CNN 

architecture.  
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CHAPTER 7 – DEEP NEURAL NETWORK (DNN) EXPERIMENTATION 

7.1 Background 

 Six (6) neural network architectures are described in Chapter 6.  Five architectures are 

based in part on an autoencoder (#1, #2, #3, #5, and #6), one architecture includes a generative 

adversarial network (#4), one architecture includes a gaussian mixture model (#3), one 

architecture includes a recurrent neural network (#5), and one architecture includes a 

convolutional neural network (#6).  Architecture #1 may be viewed as two architectures; a 

shallow autoencoder has a single hidden layer, and a deep autoencoder has multiple hidden 

layers.  The deep network should produce more accurate results, but the shallow network will 

execute faster and maybe preferable within a streaming architecture.  Autoencoders are trained 

with feedforward networks and are algorithmic more stable compared to GANs, RNNs, and 

CNNs. 

 GANs are estimated using dual feedforward networks resulting is slower parameter 

training.  Therefore, the deployment in streaming architectures is problematic.  However, the use 

of GANs in anomaly detection studies is emerging, and more research is needed regarding 

architectural options and streamlined algorithms.  The GAN in use here implements a plain 

vanilla design that lacks the recent advances in architectural optimizations that have emerged in 

the literature.  

An RNN-based architecture is designed to exploit the temporal structure where samples 

depend on one or more previous samples. If there does not exist a temporal dependence, then the 

deployment of RNN models would be counterproductive, and an autoencoder or other non-

recurrent architecture will provide better results.  The CNN-based architecture #6 traditionally 
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used for image processing has been adapted for sequence processing and has the same strengths 

and limitations of an RNN. 

The four (4) experimentation datasets are sequential with a timestamp and are candidates 

for the application of the RNN and 1D-CNN architectures.  The fraud dataset is based on 

sequential transactions over time, the DATACENTER dataset is based on the logging of data 

center activity over time, and the SWAT and WADI datasets are based on the recording of 

sensors, actuators, and network devices over time.  However, the temporal dependencies 

contained in these datasets are weak.  For example, the fraud transactions were recorded 

sequentially but by different purchasers.  Application of RNN and 1-CNN-based architectures is 

possible but might not yield improved results.  Note that the RNN in architecture #5 utilizes the 

Long Short-Term Memory (LSTM) variant of the architecture for estimation stability and 

improved temporal dependency modeling.     

7.2 t-SNE Visualization 

 t-SNE is a visualization technique developed by van der Maaten and Hinton [175] 

designed to explore high-dimensional data relationships. The goal of t-SNE is to transform a set 

of high-dimensional points into a two-dimensional representation in order to visualize clusters of 

related data.  The t-SNE iterative algorithm uses SGD and performs different non-linear 

transformations on different regions of the data, and converts similarities between data points to 

joint probabilities. The algorithm tries to minimize the Kullback-Leibler (K-L) divergence 

(discussed in Section 6.3.1) between the joint probabilities from the low-dimensional 

representation and the high dimensional data.  T-SNE has a set of hyperparameters such as the 

learning-rate and a perplexity value, usually ranging from one (1) to one-hundred (100). With 

smaller perplexity values, local variations dominate, while larger perplexity values the clusters 
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are merged based on the similarity of features.  Overall, the results are influenced by the 

perplexity value, the number of iterations, and other parameters required by the SGD algorithm.  

 Figure 38 displays the t-SNE representations for the four experimentation datasets with 

perplexity values zero (0) and fifty (50).  The plots in the left column with a t-SNE perplexity 

value of 0 is an unprocessed representation of the raw high-dimensional dataset transformed into 

a two-dimensional representation. Each point represents an anomaly in red or a non-anomaly in 

green.  With a perplexity value of 0, the anomalies cannot be distinguished from the non-

anomalous samples. The inability to distinguish anomalies from non-anomalies indicates that the 

raw data are evenly distributed and has the appearance of a Gaussian distribution. 

The plots in the right column of Figure 38 display the datasets transformed with a 

perplexity value of fifty (50).  Improved separation of the data is shown with apparent clustering 

and with the red anomaly points partially separated from the green points.  The SWAT and 

WADI datasets have the best separation with the fraud dataset also exhibits a few densely 

populated red clusters. Conversely, the DATACENTER dataset shows less separation, which is 

an indication that the limited number of features, seven (7) in total, is insufficient for the t-SNE 

algorithm to process.  

Note that the topology of the t-SNE clusters is somewhat tricky to interpret.  Symmetry 

indicates underlying Gaussian distributions.  For example, the elongated shapes in the WADI 

and SWAT plots indicate an axis-aligned Gaussian distributed.  These results also indicate which 

datasets are likely candidates for application of a mixture of Gaussian techniques such as 

architecture #3, DA-GMM.  Plots that lack structured might indicate that Gaussian-based 

techniques are not appropriate.  In these instances, consideration should be given to the 

application of distribution-agnostic autoencoders or distance-based GAN architectures. 
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Figure 38: t-SNE Plots – 0 and 50 Perplexity 
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7.3 Experimentation Methodology and Hyperparameters 

Experimentation was performed in unsupervised mode, meaning that the model 

parameters are trained without regard to the anomaly labels.  Anomaly labels are used in testing 

but only for evaluation purposes. The FRAUD and DATACENTER training datasets contain 

anomalies, but in a low percentage, since, by definition, anomalies are rare events. The reason is 

that in real-world datasets, anomalies are rarely known or designated a priori.   Note that the 

training samples from the SWAT and WADI testbeds were captured during the period of benign 

operation (no network attacks). So, unlike the FRAUD and DATACENTER training datasets, 

the SWAT and WADI training datasets are free of anomalous samples. The estimation challenge 

here is to identify anomalies in test data based on parameter training in an unsupervised 

environment with anomaly-free data. 

All datasets are time-series and include a time-stamp attribute.  The ED-RNN and ED-

1D-CNN architectures require timestamps for the sample to look back; otherwise, the 

timestamps are ignored. 

Architectures with autoencoders use feedforward network with the backpropagation 

algorithm, RNNs use the backpropagation-through-time (BPTT) algorithm, and the CNN use the 

convolution neural network algorithm. SGD with the ADAM [71] or RMSprop optimizers is 

used throughout the experimentation. Per standard DNN estimation practice, training occurs over 

multiple epochs, with each epoch containing a mini-batch that includes a subset of the complete 

set of training samples.  Mini-batch sizes are architecture and dataset dependent; excessive 

epochs and mini-batch sizes result in model overfitting and poor test results. 

Evaluation metrics included the area under the receiver operating characteristic (ROC) 

curve (AUC) and other metrics described in section 2.5. The AUC is preferred because the 
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calculation is based on the entire range of anomaly score thresholds. The confusion matrix, 

precision, recall, and F1 metrics are point estimates derived from a single arbitrary anomaly score 

threshold. While not the best performance metric in the presence of highly unbalanced data, 

‘confusion matrix’ results are nevertheless presented in addition to AUC to describe absolute 

performance (e.g., true positives) comparable across architectures. 

Table 16 describes the anomaly scoring approaches used for each architecture.  As a 

binary classification problem, for evaluation purposes, a threshold score or other deterministic 

approach is required. Four (4) different approaches are built into the architectures: (a) 

‘reconstruction error,’ (b) ‘probability of an anomaly,’ (c) ‘energy’ with percental level,’ and (d) 

chained DNN-TML.  The chained DNN-TML is a novel approach where the latent 

representation output produced by the DNN VAE is inserted into the TML HBOS algorithm. Per 

standard practice and for efficient DNN estimation, all inputs were identically scaled and 

normalized with mean zero () and standard deviation one () across the entire spectrum of 

experimentation.  This scaling means that the identical input reconstruction thresholds can be 

used in the autoencoding architectures #1, #5, and #6. 

All experimentation algorithms were programmed using the Python-3 programming 

language with the Tensorflow™ deep learning library.  Where possible, software 

implementations were validated against other similar published findings.   For example, the DA-

GMM implementation faithfully replicates the numeric results and graphics presented in the 

original paper [85]. 
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Table 16: Architecture Anomaly Scoring Summary 

Architecture Anomaly Scoring Threshold for Experimentation 

#1 Shallow-Deep Autoencoder (SDA) Input Reconstruction Error Threshold > 4 (FRAUD, SWAT, WADI) 

Threshold > 1 (DATACENTER) 

#2 Variational Autoencoder (VAE) Ensemble DNN-TML using HBOS Built-Into HBOS. Equal to the percentage of 

anomalies in the latent representation of test 

#3 Deep Autoencoding Gaussian Mixture 

Model (DA-GMM) 

Sample Energies derived by the Gaussian 

Mixture Model (GMM) [85] 

All percentiles presented (e.g., energy Level 

such that 20% of samples are anomalous. 

#4 Generative Adversarial Model (GAN) Probability of a Fake Anomaly if probability > .5 is fake as 

determined by the discriminator 

#5 Encoding-Decoding Recurrent Neural 

Network (ED-RNN) 

Input Reconstruction Error Threshold > 4 (FRAUD, SWAT, WADI) 

Threshold > 1 (DATACENTER) 

#6 Encoding-Decoding Convolutional 

Neural Network (ED-1D-CNN) 

Input Reconstruction Error Threshold > 4 (FRAUD, SWAT, WADI) 

Threshold > 1 (DATACENTER) 

 

7.4 Architectures #1 – Shallow Deep Autoencoder (SDA) Results 

Table 17 displays the training size, test size, anomaly counts, and various DNN 

parameters used in the SDA estimation.  Datasets were split with seventy (70) percent for 

training and thirty (30) percent for the test.   As a feature extractor, autoencoders are designed 

with fewer hidden units than the number of input features.  For instance, the SWAT shallow 

autoencoder model included a single hidden layer of twenty-five (25) nodes, resulting in 2320 

trainable parameters.  The corresponding deep autoencoder model has four hidden layers of 13-

7-7-13 nodes resulting in 3384 trainable parameters.  Note the symmetry in the number of DNN 

layers between the encoder and decoder components.  The encoder includes a succession of 

decreasing number of nodes, while the decoder includes a succession of an increasing number of 

nodes. All estimation utilized rectified linear units (RELU) as the nonlinear activation function, 
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the Adam SGD optimizer, an SGD learning rate of 1e-7, fifty (50) training epochs, with each 

epoch utilizing an SGD batch size of 128. 

Table 17: Shallow-Deep Autoencoder DNN Parameters 

Dataset Training 

Size 

Test Size Anomalies 

in Test 

Input Hidden Layers Output Trainable 

Parameters 

FRAUD (Shallow) 199364 85443 157 30 15 30 945 
SWAT (Shallow) 495000 449919 54621 45 25 45 2320 
WADI (Shallow) 1209601 172801 9860 99 60 99 12039 
DATACENTER (Shallow) 117600 50400 246 8 4 8 76 
FRAUD (Deep) 199364 85443 157 30 18-10-6-6-10-18 30 1694 
SWAT (Deep) 495000 449919 54621 45 26-13-7-7-13-26 45 3384 
WADI (Deep) 1209601 172801 9860 99 60-30-15-15-30-60 99 16914 
DATACENTER (Deep) 117600 50400 246 8 6-5-3-3-5-6 8 231 
All Datasets Optimizer=Adam, Activation=RELU, Learning Rate=1e-7, 50 Training Epochs=50, Batch Size=128 

 

7.4.1 Architecture #1: Shallow Autoencoder Results 

Table 18 and Figure 39 provide the findings from the shallow autoencoder 

experimentation.  The results indicate that shallow autoencoders are reasonably capable anomaly 

detectors, as evidenced by the AUC associated with the FRAUD (.961), SWAT (.878), and 

WADI (.783) experimentation. The shallow autoencoder performed poorly with the 

DATACENTER dataset. 

The AUC for the FRAUD experimentation is surprisingly high, given the imbalance of 

the test data and the difficulty in ‘needle in the haystack’ detection with unsupervised techniques.   

There were 85443 samples and only 157 anomalies in the FRAUD test dataset, for an anomaly 

rate of .0018. If the anomaly scores are ranked from top to bottom, and an arbitrary threshold 

value of four (4) is specified, then 118 ‘true positives’ and 39 ‘false negatives’ are designated 

from the anomaly pool.  Note that while 84394 ‘true negatives’ (non-anomalies) are correctly 

designated, another 892 ‘false positives” are incorrectly designated. If the threshold value is 

increased, fewer true positives are identified, but also fewer false positives are identified.  This 

trade-off between correct and incorrect designations of anomalies is intrinsic to binary 
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classification problem domains. Note that the temporal sequence in the FRAUD dataset is 

irrelevant since each transaction is autonomous.   

The AUC (.878) for the SWAT (.878) experimentation and, to a lesser extent, for the 

WADI experimentation (.783) also illustrates reasonably good performance. The SWAT test 

dataset includes 449919 samples with 54621 designated anomalies by the testbed 

experimentation team, for a rate of 12.1 percent.  The WADI test dataset included 172801 

samples with 9860 inferred anomalies, for a rate of 5.7 percent.  The WADI anomalies are 

inferred because the testbed experimentation team did not explicitly designate anomalies. An 

anomaly in the WADI dataset is defined broadly as the samples recorded during periods of 

testbed cyber or network attack.  All samples acquired during these known attack periods are 

designed anomalous.  In general, the SWAT anomaly designation approach is more accurate than 

the WADI approach, which may account for differences in algorithmic performance. 

Experimentation results will be highly dependent on the quality of the underlying data collection 

process and the corresponding anomaly designation assumptions. 

Table 18: Shallow Autoencoder Experimentation Results 

Metric Fraud SWAT WADI Datacenter 

Area Under ROC .962 .878 .783 .579 
True Negative 84394 391941 157770 47090 
False Positive 892 3357 5171 3086 
False Negative 39 21861 6583 224 
True Positive 118 32760 3277 22 
Precision .116 .907 .387 .007 
Recall .751 .599 .332 .009 
F1 Score .202 .722 .357 .013 

 

The fact that the AUC for the SWAT and WADI experimentation is lower than the 

FRAUD experimentation might be a by-product of model overfitting.  The SWAT and WADI 

experimentation demonstrated an increase in model loss over the training epochs, a symptom of 
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overfitting.   This conclusion is illustrated with the training and test loss curves displayed in the 

left column of Figure 39.  While the FRAUD and DATACENTER datasets illustrate the typical 

convex shape of these loss curves, the SWAT and WADI loss curves are either flat-lined, 

trending upward, or convex.  In general, the test loss curve will be above training loss and will 

eventually level-off, indicating that the autoencoding parameters stabilize around ten (10) 

epochs, and further estimation is counterproductive. 

There are various DNN techniques to combat overfitting, including additional parameters 

for L1 and L2 regularization, random ‘dropout’ of nodes in hidden layers, and reducing the 

number of epochs, also known as ‘early stopping.’  Models with otherwise identical parameters 

might overfit one dataset and underfit another dataset and may depend on the specification of the 

hidden layer(s) and the complex interaction with the other hyperparameters. 

The right column of Figure 39 also displays the Receiver Operating Characteristics 

(ROC) curve.  Recall that the ROC curve measures the relationship between false positive and 

true positive rates; the AUC is the probability that a classifier will rank a true positive higher 

than a false negative. A true positive indicates that the model correctly identifies the anomaly.  

Since a positive is an anomaly, a false negative indicates that the model fails to identify the 

anomaly.  Note that in many mission-critical applications, the risk is not necessarily 

symmetrical; the risk of failing to identify is greater than the risk to over-identifying anomalies.  

For these and other reasons, the ROC curve should be well above the diagonal line. An AUC 

higher than .75 indicates that the anomaly classifier is reasonably performant using the shallow 

autoencoder with the FRAUD, SWAT, and WADI datasets. 
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The AUC associated with the DATACENTER experimentation is .579.  This result is 

only slightly above a random chance result and indicates that the autoencoder architecture does 

not identify anomalies in the DATACENTER dataset. 

   

   

   

   

Figure 39: Shallow Autoencoder Training 

7.4.2 Architecture #1: Deep Autoencoder Results 

 Table 19 and Figure 40 provide the findings from the deep autoencoder experimentation.  

The results are similar to the shallow autoencoder indicating the additional DNN layers adds a 

small to the performance of the autoencoder as an anomaly detector.  The AUC is now .894 

(compared to .878) for the SWAT experimentation and .818 (compared to .783) for the WADI 
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experimentation. The DATACENTER AUC of .544 is now lower than the shallow autoencoder 

AUC of .579.  The overall conclusion can be drawn that there is a minimal performance bump, if 

any, from a deep over a shallow architecture. 

Note that the deep autoencoder execution time (~ 12 seconds) is approximate twice the 

shallow autoencoder execution time (~7 seconds) but is still fast enough to be adaptable to a 

streaming architecture.  Moreover, the overfitting of the WADI dataset still exists but is less 

pronounced.   

Table 19: Deep Autoencoder Summary Experimentation Results 

Metric FRAUD SWAT WADI DATACENTER 

Area Under ROC .958 .894 .818 .544 
True Negative 84237 391883 161037 40035 
False Positive 1049 3415 1904 10119 
False Negative 42 21578 9196 172 
True Positive 115 33043 664 74 
Precision .102 .906 .258 .007 
Recall .751 .604 .067 .300 
F1 Score .180 .725 .106 .014 

 

Consider the SWAT dataset with a deep autoencoder.  In total, 391843 samples were 

correctly classified as non-anomalous, and 33043 samples were correctly classified as 

anomalous, for a total of 424886. However, 3415 were incorrectly classified as anomalous, and 

21578 were incorrectly classified as non-anomalous, for a total of 24993 incorrect classifications.  

Therefore, the misclassification rate is 5.5 percent (24993 / (424886 + 24,993)).  Given the 

imbalance of data, a naïve approach would be to classify all samples as non-anomalous.  This 

naïve approach would produce a misclassification rate of 12.1 percent (54621 / 449919).  

Following Occam’s razor, all things being equal, simplicity is preferred over complexity. In this 

example, the more complex deep autoencoder model produces superior classification results over 

the naïve model.  Note that what is and what is not acceptable, and the anomaly threshold values 
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are entirely domain-dependent and sensitive to the problem requirements.  A naïve model may 

be acceptable in one domain and unacceptable in another. 

To summarize, there seems to be a slight advantage to the use of deep autoencoders over 

the less complicated shallow autoencoders.  SDAs are not based on probability distribution 

assumptions, another difference from the VAE and AE-GMM models discussed in the following 

sections.   

   

   

   

   

Figure 40: Deep Autoencoding Training 
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7.5 Architecture #2: Variational Autoencoder (VAE) Results 

 A VAE is an unsupervised technique made accessible in the generative image literature 

but adapted here for anomaly detection. A VAE consists of a DNN encoder, a DNN decoder, and 

a loss function.  The DNN encoder compresses the inputs into a lower-dimensional space, known 

as the latent space, and outputs the parameters of a Gaussian probability density. The DNN 

decoder inputs the latent representational space and outputs the parameters to the probability 

distribution function. The loss function measures how effectively the decoder can reconstruct the 

inputs. Once these parameters are estimated from the training data, the decoder is no longer 

required.   Under VAEs, rather than learning to replicate the input data, the autoencoder learns 

the parameters of the latent representation of the data.   

At least two approaches are possible to adapt the VAE architecture to anomaly detection.  

The first approach is to apply the estimated VAE parameters to generate the latent space 

representation of the test. Sample points from the test latent space distribution can be randomly 

drawn and compared against the test samples. Anomalies can be identified when the test samples 

diverge measurably from the sampled latent representation of the training samples. 

The second approach, adopted here, leverages the findings from the TML 

experimentation discussed in Chapter 5 to form a unique chained, ensemble technique.  As 

before, as new samples are received, the parameters estimated from the training dataset are used 

to produce a compressed, multidimensional representation. An unsupervised TML technique is 

then applied to this representation to identify anomalies within the latent space.  Histogram-

Based Outlier Score (HBOS) is the technique selected here, but any of the unsupervised TML 

techniques (e.g., k-nearest neighbor) described in Chapter 4 may be used.  Table 20 presents the 

estimation results, and Figure 41 provides the training model graphs for the VAE architecture 
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with HBOS. Note that the last line of Table 20 provides the number of non-trainable / trainable 

in the VAE model for each dataset. 

Table 20: Variational Autoencoder Experimentation Results 

Metric FRAUD SWAT WADI DATACENTER 

Area Under ROC .687 .783 .652 .583 
True Negative 77718 373234 149867 45251 
False Positive 7568 22064 13074 4903 
False Negative 93 33811 5715 201 
True Positive 64 20810 4145 45 
Precision .008 .485 .240 .009 
Recall .407 .380 .420 .182 
F1 Score .016 .426 .306 .017 
# Parameters 92 / 1214 122 /1214 230 / 3629 28 /184 

 

The results from the VAE experimentation show promise but are less performant than the 

SDA results.  The VAE AUC metric is well below the corresponding SDA AUC for the 

FRAUD, SWAT, and WADI datasets and slightly higher for the DATACENTER dataset.  The 

AUC metric dropped precipitously from .958 with SDA to .687 with VAE. Note that the WADI 

VAE produced a more substantial true positive value than WADI SDA experimentation (4145 

versus 664) but at the expense of a more substantial false positive value (13074 versus 1904).   

Because of the probabilistic nature of a VAE, no two experimentation runs of the model 

will produce identical results unless the entire sequence of Gaussian random draws from the 

latent representation is controlled.  The model loss curves in Figure 41 are convex and 

demonstrate that overfitting is not an issue.  Otherwise, the shapes of the loss curves are 

comparable to the SDA experimentation.  While the VAE technique described here produced 

less optimal results, the underpinnings of VAE are more theoretically justifiable than non-

probabilistic autoencoders. Further research is needed concerning the exploitation of latent space 

representations and the chaining of DNN with TML algorithms for anomaly detection. 
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Figure 41: Variational Autoencoder Training 

7.6 Architecture #3: Deep Autoencoding Gaussian Mixture Model (DA-GMM) Results 

 The DA-GMM algorithm is programmatically more complex than the SDA or the VAE, 

and the complete software implementation details are beyond the scope here.  The DA-GMM 

approach is to use a deep autoencoder that produces a reconstruction error for the inputs, which 

is fed into a Gaussian Mixture Model.  The algorithm jointly optimizes the parameters of the 

autoencoder with the mixture model simultaneously. With the test dataset, using the learned 

GMM parameters, sample energies are predicted; the higher the energy, the more likelihood of 

an anomaly. The concept of ‘energy’ is defined using an expression for the multivariate Gaussian 

distribution that involves a covariance matrix inversion.  In practice, there are often matrix 

inversion and performance issues, so the implementation uses the Cholesky decomposition of the 

covariance matrix as a substitute for matrix inversion.   
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Figure 42 displays a set of graphics derived from the training of the DA-GMM model.  

Total loss, reconstruction loss, sample energy, and the value of the covariance diagonal over the 

training cycles are displayed for each dataset. Note that unlike other approaches, the DA-GMM 

curves lack smoothness and exhibit sharp changepoints and will require more epochs to stabilize 

the estimated parameters. The number of training epochs was set at 300, resulting in longer 

execution times than either the SDA or VAE architectures. 

 

FRAUD 

 

WADI 

 

SWAT 

 

DATACENTER 

Figure 42: Deep Autoencoding Gaussian Mixture Model Training 

 Tables 21-24 displays the results of estimation covering the full range of sample energy 

percentiles ranging from 0 to 100 percent.  Note that when the energy percentile is set to zero (0), 

all samples are considered anomalies.  Conversely, when the energy percentile is set to one, all 

samples are considered non-anomalous.  The higher the energy threshold, the fewer of 

designated anomalies. 
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Table 21: Deep Autoencoding Gaussian Mixture Model Experimentation – FRAUD 

 Percentile of Energies 

0 5 10 20 30 40 50 60 70 80 90 95 100 

Area Under ROC .500 .518 .543 .587 .631 .671 .718 .762 .812 .859 .874 .628  .500 

True Negative 0 4270 8543 17085 25627 34168 42711 51254 59798 68341 76874 81061 85285 

False Positive 85286 81016 76743 68201 59659 51118 42575 34032 25488 16945 8412 4225 1 

False Negative 0 2 2 4 6 9 10 12 12 13 24 109 157 

True Positive 157 155 155 153 151 148 147 145 145 144 133 48 0 

Precision .002 .002 .002 .002 .003 .003 .003 .004 .006 .008 .016 .011 .000 

Recall 1.00 .987 .987 .975 .962 .943 .936 .924 .924 .917 .847 .306 .000 

F1 Score .004 .004 .004 .004 .005 .006 .007 .008 .011 .017 .031 .022 .000 

Energy Threshold -5.34 -5.22 -5.18 -5.09 -4.96 -4.79 -4.59 -4.37 -4.12 -3.61 -1.33 1.05 45.51 

 

Table 22: Deep Autoencoding Gaussian Mixture Model Experimentation – SWAT 

 Percentile of Energies 

0 5 10 20 30 40 50 60 70 80 90 95 100 

Area Under ROC .500 .522 .547 .588 .628 .661 .688 .721 .606 .443 .467 .484 .500 

True Negative 0 21896 44110 87525 130887 173614 215706 258410 286970 310857 352609 374088 395298 

False Positive 395298 373402 351188 307773 264441 221684 179592 136888 108328 84441 42689 21210 0 

False Negative 0 600 882 2459 4089 6354 9253 11541 27973 49078 52318 53335 54620 

True Positive 54621 54021 53739 52162 50532 48267 45368 43080 26648 5543 2303 1286 1 

Precision .121 .126 .133 .145 .160 .179 .202 .239 0.197 0.062 .051 .057 1.00 

Recall 1.00 .989 .984 .955 .925 .884 .831 .789 .488 .101 .042 .024 0.00 

F1 Score .217 .224 .234 .252 .273 .297 .325 .367 .281 .077 .046 .033 0.00 

Energy Threshold -4.67 -2.97 -1.00 4.63 4.98 5.54 6.92 7.21 8.94 9.76 11.303 13.16 606.52 

 

 The DA-GMM model performed poorly on all four datasets. The highest AUC for the 

FRAUD dataset (.874) occurred at the 80th energy percentile; for the SWAT dataset (.721) at the 

60th percentile; for the WADI dataset (.511) at the 10th energy percentile, and the 

DATACENTER (.524) at the 70th energy percentile.  These results are all significantly below the 

AUCs found with the SDA and VAE architectures. The highest AUC in the FRAUD dataset 

resulted in 133 true positives and only 24 false negatives being identified but at the expense of 
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creating 8412 false positives. The reasons for this poor performance are not entirely clear.  The 

AE-GMM architecture is more theoretically grounded than the SDA architecture, but the core 

underlying Gaussian assumptions may be inappropriate for these datasets. 

Table 23: Deep Autoencoding Gaussian Mixture Model Experimentation – WADI 

 Percentile of Energies 

0 5 10 20 30 40 50 60 70 80 90 95 100 

Area Under ROC .500  .515 .511 .509 .468  .431 .384 .430 .465 .507 .560 .508 .500 

True Negative 0 8437 16504 32772 48295 63905 79321 96476 113410 130490 147760 154959 162940 

False Positive 162941 154504 146437 130169 114646 4649 83620 66465 49531 32451 15181 7982 1 

False Negative 0 203 771 1788 3544 5211 7078 7202 7543 7749 7757 9200 9860 

True Positive 9860 9657 9080 8072 6316 4649 2782 2658 2317 2111 2103 660 0 

Precision .057 .059 .058 .058 .052 .045 .032 .038 .045 .061 .122 .076 .000 

Recall 1.00 .979 .922 .819 .641 .472 .282 .270 .235 .214 .213 .067 .000 

F1 Score .108 .111 .110 .109 .097 .082 .058 .067 .075 .095 .155 .071 .000 

Energy Threshold -3.19 -2.96 -2.76 -2.22 -1.18 4.63 5.29 5.30 5.31 5.33 5.51 5.88 145.59 

 

Table 24: Deep Autoencoding Gaussian Mixture Model Experimentation – DATACENTER 

 Percentile of Energies 

0 5 10 20 30 40 50 60 70 80 90 95 100 

Area Under ROC .500  .496 .501 .482 .483 .502 .506  .521  .524 .511 .508  .495 .500 

True Negative 0 2506 5016 10022 15038 20063 25080 30103 35120 40129 45143 47644 50153 

False Positive 50154 47648 45138 40132 35116 30091 25074 20051 15034 10025 5011 2510 1 

False Negative 0 14 24 58 82 97 120 137 160 191 217 236 246 

True Positive 246 232 222 188 164 149 126 109 86 55 29 10 0 

Precision .005 .005 .005 .005 .005 .005 .005 .005 .006 .005 .006 .004 .000 

Recall 1.00 .943 .902 .764 .667 .606 .512 .443 .350 .224 .118 .041 .000 

F1 Score 0.010 .010 .010 .009 .009 .010 .010 .011 .011 .011 .011 .007 .000 

Energy Threshold -3.72 -3.66 -3.61 -3.50 -3.39 -3.27 -3.16 -2.95 -2.66 -2.12 -0.98 0.74 583.3 

 

7.7 Architecture #4: Generative Adversarial Network (GAN) Results 

 Table 25 displays the experimentation results produced from the GAN architecture.  The 

AUC results are on-par with the DA-GMM architecture, with the best results demonstrated by 
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the FRAUD dataset (AUC=.872) and the worst results experienced by the DATACENTER 

dataset (AUC=.502).  Note that the F1 scores using the GAN architecture are higher than the F1 

scores using the DA-GMM architecture. Recall that the AUC is a summary metric encompassing 

all of the threshold values, while the F1 score is based at a given anomaly threshold level.  The F1 

score is .753 for FRAUD is and .744 for SWAT.  So, to summarize, a GAN makes no explicit 

assumptions regarding underlying distributions, produces relatively accurate results, but exhibit 

longer execution times. 

Table 25: Generative Adversarial Network Experimentation Results 

Metric FRAUD SWAT WADI DATACENTER 

Area Under ROC .872 .800 .657 .502 
True Negative 85250 394535 160121 49832 
False Positive 36 763 2820 322 
False Negative 40 21750 6585 243 
True Positive 117 32871 3275 3 
Precision .764 .977 .537 .009 
Recall .745 .601 .332 .012 
F1 Score .754 .744 .410 .010 
# Parameters 158 / 3341 158 / 4301 158 / 7757 158 / 1933 

   

Figure 27 provides a new-style graphic of the training performance of the GAN with 

respect to each of the four datasets.  These graphs display the value of the F1 metric on the test or 

dataset as training proceeds.  Note the up-and-down flow of the graph until training stabilizes, 

and the graph flatlines. With adversarial training, two neural networks run concurrently and 

require more epochs (e.g., 5000) than autoencoders to sufficiently train the parameters.  A GAN 

requires longer execution times, roughly ten times the execution time of the deep autoencoding 

architecture. 
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Figure 43: Generative Adversarial Network Training 

7.8 Architecture #5: Encoder-Decoder Recurrent Neural Network (ED-RNN) Results 

 The final two architectures under consideration, ED-RNN, and ED-1D-CNN incorporate 

a look-back feature.   The ED-RNN architecture is essentially a recurrent neural network that 

acts like an autoencoder.  This architecture explicitly models temporal relationships and long-

term memory, which is essential when considering spatiotemporal applications. While RNNs 

have been used extensively for sequence forecasting, neural machine translation, and other 

sequence-to-sequence models, they have been infrequently used for anomaly detection 

applications.   Using the ED-RNN, the encoder and decoder are RNN.  Similar to architecture #1, 

the shallow and deep autoencoder, the input reconstruction error is the measure of the anomaly; 

when the reconstruction error exceeds a pre-defined threshold value, an anomaly is designated. 

Because the scales of the input are identical, the threshold values are also the same as 

architecture #1. 

 Table 26 presents the experimentation results for the ED-RNN architecture for the 

FRAUD dataset; Table 27 for SWAT; table 28 for WADI; and Table 29 for DATACENTER.  
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Four different ‘look-back’ periods are included: five (5), ten (10), twenty-five (25), and fifty (50) 

with a period typically one-second in length.  A comparison with the architecture #1 deep 

autoencoder results found in Table 19 is a good indicator of the value-added from the inclusion 

of a recurrent network in the architecture. 

The AUC (.956) results of the ED-RNN FRAUD experimentation with a look back of 

five (5) is identical to the corresponding AUC (.958) from the deep autoencoding 

experimentation.  This result is to be expected since the FRAUD samples are not temporally 

dependent. Noteworthy is the fact that the AUC (.937) is higher than the corresponding AUC 

(.894) in the five (5) period SWAT deep autoencoding experimentation; similarly, the AUC 

(.835) is higher than the corresponding AUC (.818) in the five (5) period WADI deep 

autoencoding experimentation.  Both the SWAT and WADI datasets exhibit intrinsic temporal 

dependence because the network and cyber testbed attacks are multi-period. The addition of the 

recurrent architecture to the autoencoding architecture for the SWAT and WADI added valued 

and improved the anomaly detection results.  Note that there was no improvement over random 

chance (AUC ~ .5) of the addition of recurrence to the DATACENTER experimentation results;  

RNN performance is notoriously sensitive to the length of the lookback period and the 

combination of DNN hyperparameters.  For example, the WADI experimentation failed to 

complete due to ‘out-of-memory’ errors experienced with a fifty (50) look back. No attempt was 

made to optimize performance and search for the best combination of hyperparameters. 
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Table 26: ED-RNN FRAUD Experimentation Results 

 Look Back Period 

5 10 25 50 

Area Under ROC .956 .943 .951 .933 
True Negative 84064 83871 83536 82493 
False Positive 1244 1426 1749 2758 
False Negative 45 38 29 39 
True Positive 88 104 121 137 
Precision .066 .067 .064 .047 
Recall .661 .732 .806 .778 
F1 Score .120 .124 .119 .089 
# Parameters 20574 20574 20574 20574 

 

Table 27: ED-RNN SWAT Experimentation Results 

 Look Back Period 

5 10 25 (Attack Period Only) 50 (Attack Period Only) 

Area Under ROC .933 .937 .922 .896 
True Negative 267037 267023 262988 253073 
False Positive 66 127 4110 14004 
False Negative 15461 15030 4933 4535 
True Positive 910 1293 11437 11853 
Precision .932 .910 .735 .458 
Recall .055 .079 .698 .723 
F1 Score .104 .145 .716 .561 
# Parameters 40634 40634 40634 40634 

 

Table 28: ED-RNN WADI Experimentation Results 

 Look Back Period 

5 10 25 (Attack Period Only) 35 (Attack Period Only) 

Area Under ROC .835 .821 .846 .861 
True Negative 409290 406405 39423 35241 
False Positive 2426 5336 9435 13634 
False Negative 1980 1782 897 515 
True Positive 1023 1185 2078 2440 
Precision .296 .182 .180 .151 
Recall .340 .401 .698 .825 
F1 Score .317 .251 .286 .256 
# Parameters 198304 198304 198304 198304 

 

Table 29: ED-RNN DATACENTER Experimentation Results 

 Look Back Period 

5 10 25 50 

Area Under ROC .538 .549 .582 .527 
True Negative 43596 44600 44078 38949 
False Positive 6552 5531 6029 11209 
False Negative 205 220 227 161 
True Positive 46 46 59 66 
Precision .006 .008 .009 .005 
Recall .183 .172 .206 .290 
F1 Score .013 .015 .018 .011 
# Parameters 1384 1384 1384 1384 
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7.9 Architecture #6: Encoding-Decoding 1-D Convolutional Network (ED-1D-CNN) Results 

 The ED-1D-CNN architecture is a derivative of the ED-RNN architecture by the 

inclusion of a CNN layer as a preprocessing step in front of the ED-RNN architecture.  CNNs are 

not sensitive to the order of the timestamps except within the size of the convolutional window.  

By the inclusion of a CNN layer, the processing is more efficient because CNN converts the long 

sequence into a shorter sequence that, in turn, is processed by the RNN.  This approach is 

described in Chollet [94] in the context of a forecasting domain.  The difference here is that 

instead of a forecast, architecture #6 is designed for anomaly detection with an autoencoder. The 

expectation is that the results will perhaps not be as good as architecture #5 because the approach 

is down-sampling from a longer time-series into a shorter CNN representation.  

 Table 30 displays the results from ED-1D-CNN experimentation.  Consider the five (5) 

period look back results from the ED-RNN architecture.  The results are comparable to the 

results from the ED-RNN.  For instance, the FRAUD experimentation produced an AUC of .956 

under the ED-RNN architecture and .947 under the ED-1D-CNN architecture.    Similar small 

differences exist throughout all datasets.  Therefore, the inclusion of a CNN front-end to the ED-

RNN architecture has no tangible impacts; however, processing requirements are reduced. 

Table 30: ED-1D-CNN Experimentation Results 

Metric FRAUD SWAT WADI DATACENTER 

Area Under ROC .947 .940 .819 .534 
True Negative 83622 266334 406706 41316 
False Positive 1675 769 5010 8832 
False Negative 33 5016 1780 196 
True Positive 109 11355 1223 55 
Precision .061 .936 .196 .534 
Recall .767 .693 .407 .219 
F1 .113 .796 .264 .012 
# Parameters 25662 45526 187644 3464 
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7.10 Experimentation Results Summary 

The experimentation results from six different anomaly detection architectures were 

presented using four different datasets. All architectures are unsupervised, four of the 

architectures (SDA, VAE, ED-RNN, and ED-1D-CNN) include autoencoders, two of the 

architectures (VAE and DA-GMM) incorporate statistical distribution theory, two of the 

architectures include generative models (VAE and GAN) and two specifically model time 

sequences (ED-RNN and ED-1D-CNN).  None of the architectures were explicitly designed for 

geospatial data, although CNNs can be modeled as a geospatial problem, and none of the 

architectures were designed for support streaming data.  The only architecture ED-RNN) 

designed for temporal applications (ED-RNN) also has the most stringent resource requirements.  

The discussion of a suitable architecture of spatiotemporal streaming applications is deferred to 

the next chapter when the STADE architecture is presented. 

Overall, the three autoencoding architectures are the most performant, followed by the 

GAN, VAE, and AE-GMM.  The FRAUD dataset consistently exhibited the highest AUC 

scores, followed by SWAT, then WADI, and finally, DATACENTER. In general, all 

architectures performed consistently across the set of datasets in terms of accuracy across any 

given dataset. 

Architecture performance is highly dependent on the quality of the training datasets and 

the anomaly labeling process. Anomaly labels are only used for architecture testing.  The 

FRAUD and SWAT datasets were both labeled based on a set of specific rationale.  For example, 

a sample has labeled an anomaly when a credit card transaction is denied.  The testbed domain 

experts labeled the SWAT dataset. A WADI record was labeled as an anomaly if the sample 

existed during a testbed cyber-attack event.  An anomaly is not determined by the recorded value 



 

 125 

of the particular feature. This broad approach to anomaly labeling is one possible cause for the 

lower quality results associated with the WADI dataset. 

The following are the summary key findings from the experimentation discussed in this 

chapter. 

• All architectures performed roughly equivalently in terms of AUC across architectures. 

• Shallow Autoencoders performed nearly as well as Deep Autoencoders, are simpler to 

implement and execute faster. 

• The statistically-based approaches, VAE and DA-GMM, while more theoretically 

justifiable than other architectures, did not produce superior results.  DA-GMM is the 

most complex architecture, somewhat challenging to implement, and relies on matrix 

inversion.  

• The autoencoding recurrent neural network architecture (AE-RNN), is more justifiable 

when used in conjunction with temporal or sequential data, did not produce higher quality 

anomaly classifications. The AE-RNN architecture trains slower than other architectures 

by order of magnitude and would not be suitable for implementation as-is within a 

streaming architecture.  

• The ED-1D-CNN architecture performed at the same level of AE-RNN and executes 

faster and is more stable.   

• The Generative Adversarial Network (GAN) is easy to implement and does not rely on 

statistical assumptions.  Training execution speed is longer than other techniques because 

a GAN requires two concurrent executing neural networks.  Note that in the image 

recognition domains, GANs generate higher quality images than VAEs and are the 

preferred architecture. 
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• Anomaly detection training and testing dataset quality are problematic.  Ture multivariate 

time-series or sequence anomaly detection benchmarks do not exist.  There does not exist 

agreed-upon criteria to evaluate unsupervised models. 

• The DATACENTER dataset, while advertised for anomaly detection research by 

YAHOO, is flawed and is not suitable for experimentation  

• Architectures considered here do not adequately support spatiotemporal and streaming 

data either individually or jointly. 
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CHAPTER 8 – SPATIOTEMPORAL ANOMALY DETECTION ENVIRONMENT (STADE) 

8.1 Introduction 

 Chapters 4-7 presents several unsupervised TML and DNN architectures and algorithms 

applied to anomaly detection.  While there are many different technical options, direct 

architectural and algorithmic support for streaming spatiotemporal data is lacking.  This support 

is the topic of this chapter with the specification called the Spatiotemporal Anomaly Detection 

Environment (STADE).  STADE consists of architecture and one or more instantiations.  The 

STADE architecture consists of a set of software or system components that are loosely 

connected and communicate with each other. These software components may be special-

purpose unique to a particular domain or general-purpose (e.g., database system). 

The mapping of the STADE software or system components to physical software or 

products is called an instantiation of STADE.  There are multiple instantiations of STADE with 

each instantiation tailored to the target domain of interest. Three (3) instantiations mapped to 

three (3) case studies are presented in Chapters 9-11.  However, most of the components of 

STADE are shared across the case studies. 

 STADE provides an environment for automated, domain-independent, globally 

distributed anomaly detection of multivariate streaming data.    The term STADE is, 

coincidentally, a Greek unit of measurement, the distance covered in ancient Greco footraces. 

This analogy is appropriate since streaming, real-time anomaly detection, is also a race – a race 

against time before a decision becomes ‘overcome-by-events.’  With streaming applications, 

time is of the essence, and decisions are perishable. 
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8.2 Design Considerations 

High-level STADE design considerations can be categorized into: (1) System 

Engineering, (2) Global Distribution, (3) Stream Processing, (4) Algorithmic Design, and (5) 

Decision Support.   These categories are briefly discussed below.    Note that the focus of the 

research is on anomaly detection algorithms for streaming spatiotemporal data and not on 

general computer science-related topics.  However, algorithms exist in software and are 

controlled by an infrastructure. This infrastructure impacts not only the algorithmic design but 

also implementation details such as persistence, storage and retrieval, local and network 

communication, loose versus tight coupling, and user-interface design. 

8.2.1 Systems Engineering 

There are several systems of engineering performance and quality concepts that should be 

embraced by STADE.  Examples include modularity (i.e., pluggable algorithms), responsiveness, 

reliability (i.e., automated recovery), spatial independence (i.e., a failure at one location does not 

impact the operations at another location), predictability (i.e., correctness and consistency of 

output), and low latency.  Systems engineering textbooks describe these design, quality, and 

performance concepts [176].   

Early prototyping is a systems engineering process for building a functional model that 

elicits clarity in the requirements and design before full development and operational fielding.  

The three case studies are examples of early prototypes. Early prototypes can demonstrate 

potential feasibility, scalability, and performance options and bottlenecks.  For example, a 

prototype of a global air traffic monitoring and anomaly detection system can identify unique 

performance and user-interface issues that would be quite different from a social network 

sentiment information system.     
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8.2.2 Geospatial Distribution 

 Geospatial distribution and optimization of systems, network communications, and 

latency is a heavily studied and largely solved research area in computer science.  Standards-

based network protocols such as Transmission Control Protocol/Internet Protocol (TCP/IP), 

Hypertext Transport Protocol (HTTP), Message Passing Interface (MPI), and various open-

source service buses support reliable and timely wide-area and cloud-based data distribution. 

Some of the protocols are synchronous, and some are asynchronous.  Synchronous protocols 

have higher performance but lower reliability than asynchronous protocols. 

The STADE internal architecture relies on the publish-and-subscribe messaging protocol 

for communication. In the publish-and-subscribe pattern, STADE sites act as publishers and 

subscribers of anomaly scores with other STADE sites.   A messaging technique such as publish-

and-subscribe, however, is asynchronous; time-critical STADE instantiations may also require 

point-to-point synchronous communication to satisfy requirements. Moreover, in practice, 

impediments to network traffic such as encryption, security devices, and firewalls also induce 

external network constraints and negative performance impacts.   

8.2.3 Stream Processing 

There are many core requirements for stream processing architectures [177].  

Requirements include (a) the processing of the data in-stream upon receipt, (b) the capability to 

resiliently handle stream imperfections, and (c) the ability to scale resources when needed to 

achieve an instantaneous response.  Each of these core requirements is discussed below. 

Real-time management of incoming data is an essential characteristic of stream 

processing architectures. In-stream means that the data is processed without the employment of a 

persistent data store such as a relational database or file system. If data is persistently stored, 
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streamed and stored data should be processed concurrently without impact on the overall 

performance of the anomaly detection algorithm.  

The ability of resiliently process stream imperfections and noise is also critical.  Stream 

imperfections include missing, out-of-sequence, corrupted, and invalid data.  Moreover, data 

integrity should be maintained throughout the chain of custody.  Data integrity means that while 

data is in motion, inadvertent or malicious changes to the data should be protected. The injection 

of a computer virus and malware into the data are examples of the loss of integrity of a data 

stream. 

Availability and scalability are additional streams processing requirements.  Availability 

is the proportion of time a system is operational. Scalability is the capability to add resources and 

increase workload without performance degrading.  Scaling-out (horizontal scaling) occurs by 

increasing the number of sites, while scaling-up (vertical scaling) occurs by increasing the 

processing resources at a given site.  There are many techniques to maintain availability and 

scalability, including middleware, partitioning an application across multiple processors, 

partitioning across multiple compute nodes in a cluster and virtual machine replication on 

demand.  

8.2.4 Algorithmic 

STADE estimation algorithms are based on stochastic gradient descent (SGD) and the 

emerging DNN concept of federated learning (FL).  With streaming data, algorithms should be 

online, performant, and supportive of the goals of the decision-maker.   The selection of the 

algorithms is dependent on the selection of the Stream Anomaly Detector (SAD) and the 

Federated Anomaly Detector (FAD). Section 8.5.1 below describes the STADE algorithms in 

more detail.  
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8.2.5 Decision Support System (DSS) 

 A DSS is a digital, model-driven information system that processes and displays anomaly 

information and assists with decision-making. This DSS will likely require remote access as 

STADE sites may be situated at the compute edge or at disadvantaged network locations.  The 

design of a STADE DSS will also be highly contextual and domain-dependent.  Decision support 

is a complicated and broad topic that is beyond the scope of research here but is included in the 

architectural drawings for completeness. 

8.3 Concept of Operations (CONOPS)  

A CONOPS is an engineering document that describes the system's high-level 

architecture and interaction from an end-user perspective.   The end-user may be a person, a user 

interface, or another digital system. STADE provides alerts to the DSS regarding the presence or 

absence of anomalies in streaming data.  A STADE instantiation consists of the set of 

autonomous STADE sites that process incoming high-dimensional location or region-specific 

data.  Each STADE site includes a plug-in capability that supports a replaceable and 

interchangeable algorithm called the Stream Anomaly Detector (SAD).  Multiple SADs can be 

installed at a given site for ensemble or consensus-based anomaly score generation. Site-specific 

anomaly scores are pushed asynchronously through the publish-and-subscribe message bus for 

processing and storage at the Federated Anomaly Detector (FAD) global repository.  The FAD is 

the central warehouse for all SAD scores within a STADE instantiation.   

The site that hosts the FAD global repository site also performs anomaly detection on the 

streaming anomaly scores.  The FAD detects ‘anomalies within anomalies’ and publishes those 

scores via the publish-and-subscribe message bus to the DSS.  Participant sites also subscribe to 

global FAD scores originating from neighboring sites and may incorporate those scores as inputs 
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into their SAD.  This architecture provides a feedback loop between site anomalies, anomalies 

reported from neighboring sites, and anomalies reported from the FAD global repository.  Figure 

44 provides a graphical view of the top-level architecture of a STADE instantiation.  In this 

example, there are four (4) STADE geographic sites, each with a unique streaming feed (i.e., 

Stream #101, #102, #103, and #104). 

 

Figure 44: STADE Top-Level Architecture 

8.3.1 An Aside on Federated Learning (FL) 

 Federated learning (FL) [178] is an emerging architecture designed to support a large 

number of geographically distributed networked clients.  These clients aggregate into a union 

that collaboratively and cooperatively train DNN models using a centralized server but without 

input data sharing.  By forming a union, robust, highly performant ML models can be estimated, 

modified, and deployed in real-time. FL is a form of privacy-preserving decentralized 

collaborative machine learning [179]. 
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The genesis of FL originated with the need for ML on a massive number of low-powered 

devices such as smartphones.  For example, Google™ uses FL to create smartphone keyboard 

assistants by training DNNs with on-device stochastic gradient descent (SGD) using captured 

keystrokes in real-time.  However, for on-device privacy reasons, these keystrokes are not shared 

with a central server; what is shared periodically are the estimated DNN parameters.  Even if 

privacy is not a concern, mobile or low-powered devices are randomly offline or have limited 

communication bandwidth to make centralized DNN model training impractical.  By sharing 

model parameters and not input data, network bandwidth is preserved. 

 Periodically, a central FL server collects parameters from participant devices and 

modifies the global parameters through a technique known as Federated Averaging (FA).  Under 

FA, the DNN parameters are aggregated and averaged across all other available and reporting 

devices.  The newly modified SGD parameters are then transmitted back to the local phone or 

device.  The server may add to the data stream additional privacy preservation techniques such as 

lossy compression for communication efficiency, update clipping, or intentional noise insertion. 

  There is a substantial similarity between the architectures of FL and FAD.  While the 

privacy-preserving aspects of FL technology are not the focus of STADE, the distributed data 

and model parameter sharing requirements are similar in many respects. FL is designed to 

support a large number of unreliable devices (e.g., smartphones); STADE is designed to support 

a relatively small number of reliable clients.  These STADE sites may be sensors with low power 

consumption and minimal connectivity but highly reliable. 

Table 31, adapted from Kairouz et al. [180],  presents a summary of the differences 

between the characteristics and assumptions of FL versus STADE.  FL consists of hundreds or 

thousands of unreliable devices or sites, while STADE is designed for perhaps two (2) to ninety-
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nine (99) reliable devices or sites.  All sites in FL and STADE are stateful, meaning that data is 

store locally and persistently. FL is orchestrated and controlled by a central server while STADE 

uses a message bus and asynchronous communications. FL is designed to share the global DNN 

model parameters through FA; STADE is designed to share the anomaly scores and estimating 

‘anomalies within anomalies’ for spatiotemporal analysis.  

Table 31: Federated Learning and STADE 

 Federated Learning (FL) STADE 
# of Clients Hundreds / Thousands 1-99 
Data Stored at Client Yes Yes 
Orchestration Centrally at Server Publish-and-Subscribe Message Bus 
Expected Client Reliability Low Reliability High Reliability 
Network Mobile Device Connected / Cloud 
ML Algorithm Stochastic Gradient Descent (SGD) Stochastic Gradient Descent (SGD) 
Federated Data SGD Model Parameters Anomaly Scores 
Model Aggregation SGD Averaging None 
ML Algorithm at Server None Anomaly Detector of Anomaly Scores 

 

8.4 Architecture and Components 

Table 32 provides the definitions for the terminology and software components found in 

the STADE architectural diagrams that follow. Figure 45 illustrates the STADE cloud-based 

architecture.  Each site or geographic region has a separate STADE instantiation and processes 

multi-dimensional data streams needed to calculate the anomaly scores.   The diagram illustrates 

four (4) STADE sites, but there is no technical limit as to the number of sites within an 

architecture.  There is also no technical limit to the geographical location of the sites as 

communication may occur across the public internet.   

To summarize the CONOPS, each site receives relevant data (e.g., Site #1 receives 

streaming data from source #101), performs anomaly detection on that data using a SAD, and 

transmits the score to the global score repository for processing by the FAD.  This process is 

repeated upon receipt of each instance of data.  The anomaly scores are accumulated from all 
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SADs and stored in the global repository for aggregation and additional processing, display at a 

remote DSS, and further processing by the FAD. 

Table 32: STADE Terminology and Components 

Anomaly Score (AS) The output of an algorithm that measures the anomalous degree assigned to 
multivariate data received over some time. 

Stream Anomaly Detector (SAD) A site-specific implementation of an anomaly detection algorithm using 
online SGD.  Model parameters are updated continuously.   

Decision Support System (DSS) A digital, model-driven information system that processes and displays 
anomaly information and assists with decision-making. 

Global Repository A STADE site that can persistently aggregate, store, transmit, and process 
anomaly scores from other STADE sites. 

Publish and Subscribe 
Message Bus 

A publish-and-subscribe protocol to asynchronously transmit data between 
STADE sites and the global score repository. 

Message Component Software that manages the interfaces with the message bus and messages 
between components at a STADE site. 

Federated Anomaly Detector 
(FAD) 

An implementation of an anomaly detection algorithm that operates on 
anomaly scores in the global repository. 

STADE Architecture A group of two or more STADE Sites that communicate via a pub-sub 
message bus and that includes a global repository. 

STADE Site # A numbered geospatial instantiation of STADE. Each site processes unique 
data and executes unique anomaly models. 

Storage Component Includes software that manages storage at a STADE site.  All data received 
into a STADE site is stored locally. 

Stream# A numbered data stream for processing by the stream component.  Multiple 
streams sources may enter a STADE site. 

Stream Component Software that processes incoming streams and performs stream quality 
control.   

Workflow Component Software that orchestrates and manages the sequence and flow of STADE 
components and a Stream Anomaly Detector (SAD) 

 
In addition to the SAD, each STADE site consists of four components, (a) a workflow 

component, (b) a stream component, (c) a storage component, and (d) a messaging component.  

There is also an interface to the publish-and-subscribe message bus used to transmit anomaly 

scores to the global score repository.  These components are notional because an actual 

instantiation of STADE may combine multiple functions into one component or may use the 

operating system or commercial cloud computing capabilities (e.g., a message bus) instead of a 

physical software component. 
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Figure 45: STADE Site Internal Architecture 

The workflow component provides the heartbeat of STADE and orchestrates the internal 

flow of control, such as directing messages to the message processor or controlling the transfer 

of data.  Workflows are always a two-way interaction between the workflow component, the 

three components (Message, Storage, Stream), and the SAD.  Workflows can also be expressed 

implicitly, or hardwired into the source code for smaller environments without the need for a 

dedicated workflow engine.  Formal workflows are preferable to hardwired workflows because 

models are easily modifiable and can be placed under configuration management. 

The stream component controls the ingestion and processing of externally transmitted 

streaming data.  Upon receipt, the stream component forwards the packets to the storage 

component.  The storage component persists the data into storage and forwards a copy to the 

SAD, which then executes the anomaly detection algorithm on the newly received data.  The 

SAD, in turn, calculates the anomaly score and submits the results back to the storage 
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component.  The storage component forwards the anomaly scores to the message component, 

which, in turn, inserts the newly calculated anomaly scores onto the publish-and-subscribe 

message bus for transmission to the global score repository.  Although STADE is a relatively 

simple system, the workflow becomes surprisingly complex, with just a single data flow and four 

software components.  

The glue that supports communication with the global score repository is the publish-and-

subscribe message bus.  Scalability is also enhanced by the publish-and-subscribe middleware to 

promote loose coupling.  Publish-and-subscribe is a messaging pattern that provides for 

increased network scalability with loose coupling, highly desirable design characteristics of 

distributed systems.  Scalability is increased because STADE sites can filter messages if 

required, communicate asynchronously, and are not tightly coupled, as would be the case in a 

client-server architecture.  By providing a dynamic network topology, publish-and-subscribe 

simplifies implementation, as a new site participating in a STADE architecture has no impact on 

the existing set of sites that are currently in operation. 

 Since the product of STADE is an anomaly designation, a critical component is SAD.  

Alternative SADs based on different TML and DDN algorithms may be inserted without 

modification to the other architectural components. If a higher-performing SAD is discovered, 

that detector can be inserted into the STADE instantiated architecture. 

8.5 Federated Anomaly Detector (FAD) and the Global Score Repository  

 The FAD is an anomaly detection algorithm that operates on the anomaly scores stored in 

the global repository.  At first glance, the rationale for performing anomaly detection on the set 

of anomaly scores is not entirely apparent.  However, the approach here follows meta-analysis, a 

statistical procedure used in many different scientific disciplines for combining data in multiple 
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studies.  In this case, the score repository is combining anomaly scores from multiple sites or 

regions.  The meta-detector approach attempts to identify collective anomalies by considering 

time-stamped anomaly scores from one site or region only within the context of the anomaly 

scores at other sites and regions. 

Consider three (3) geographically distinct STADE sites. Anomaly scores are submitted to 

the score repository simultaneously by these three sites.  Anomaly scores will vary region by 

region for a variety of reasons, but the anomaly scores may be related depending on the domain 

characteristics.  For example, a significant increase or decrease in the anomaly score at the same 

time at all sites might indicate a non-anomalous occurrence (e.g., a benign solar disturbance that 

has a temporary effect on sensor recordings). When considering point anomalies only, each site 

would be designated anomalous.  However, collectively, there is no anomaly; only when an 

increase or decrease occurs in one site vis-a-vis the other two sites is there an anomaly.  These 

types of relationships are difficult to decipher if there are more than a few sites, which is why the 

meta-detector approach through the FAD is incorporated into STADE. Which anomaly detection 

algorithms are appropriate for the FAD?  Within STADE, FAD algorithms are pluggable as there 

is no prior reason to prefer one anomaly detection algorithm over another.  

8.6 Algorithms and Estimation 

 In most neural network-based commercial applications, training occurs offline, often with 

specialty hardware, and the resulting model deployed to production in the cloud or to consumer 

devices.  For example, in a smartphone language translation app, training occurs offline using 

supervised learning techniques with millions of text-to-speech or text-to-text samples, and the 

resultant highly performant binary is deployed to the smartphone with a minimalistic footprint.  

The text-to-speech model is static and does not change over time. 
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STADE cannot use this approach.  First, STADE supports unsupervised learning; there 

are no training datasets.  Second, with streaming spatiotemporal data, the ability to capture 

concept drift to the extent possible is critical to system performance. Recognition of concept drift 

is particularly crucial with mission-critical applications (e.g., military combat systems) where 

adversaries intentionally change behaviors in order to deceive.   Third, STADE is designed to 

leverage the information provided by other STADE sites through the FAD; this exchange of 

information would not be possible if models were deployed statically.  

 In many domains, streaming data may arrive faster than the ability of the DNN to execute 

SGD in real-time.  Deployment of static, pre-trained models is possible, but the parameters 

would become out-of-date quickly in the presence of concept drift.  There are three approaches 

to address the issue of online training of neural networks with streaming data.  The first approach 

is an optimizer that implements online stochastic gradient descent (SGD) training with 

backpropagation, the second approach is delayed training with batch SGD, and the third 

approach is a variant of FL.  This third approach, FL, is not considered further because of the 

differences in the underlying STADE requirements, as noted in Table 31. 

To summarize, in highly dynamic environments, model parameters may change over 

time, often subtlety, a problem known as concept drift.  Therefore, learning algorithms should 

adapt to the changing parameters; the learning needs to be online and in real-time.  The learning 

algorithm also needs to be adapted for the velocity of the data.  If, for example, the receipt of 

streaming data is faster than the processing of that data, then the algorithm needs to be modified 

to support the velocity of the data stream.   
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8.6.1 STADE SGD ALGORITHMS  

With the first approach to processing streaming data, online SGD, training occurs one 

sample at a time upon arrival at the processing site. So, with a persistently running SGD 

implementation, at time t-1, the arriving sample could be used to update the SGD parameters.  At 

time t, the DNN model estimated using the parameters of the t-1 sample could be used for 

anomaly scoring and also to update the DNN parameters using SGD again.  This process of 

anomaly scoring and parameter update would continue upon receipt of each new sample from the 

data stream. 

Online SGD is significantly faster than batch gradient descent and could be adapted for 

use with streaming data.  However, the SGD technique generally exhibits higher variance 

compared to batch SGD and can cause significant fluctuations in the parameter estimates.  With 

higher variance, recognition of concept drift and other data imperfections is less precise than 

using the traditional batch SGD with DNNs.  

The second approach is the delayed parameter estimation using batch SGD. Under this 

approach, streaming data is accumulated over time by the STADE storage component and used 

in the SAD training algorithm in the same way as offline SGD estimation.  The newly estimated 

parameters are then applied to the newly received streaming data in an anomaly scoring 

algorithm.  The SAD training algorithm is restarted once again, including the most recently 

received streaming data.  Under this approach, the model parameters are out-of-date only to the 

extent of the time required to retrain the model with newly received streaming data.  

The training time under SGD may exceed the mean period of receipt of new streaming 

data.  In these circumstances, the second approach, delayed training with batch SGD, may be 

combined with SGD to create a hybrid algorithm. Under this hybrid approach, an optimizer with 
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SGD with backpropagation is persistently executing and processing the latest set of streamed 

data.  Upon completion, the SGD is restated, and execution is started again with the latest set of 

streamed data. 

The goal of gradient descent is to minimize the objective function 𝐽(𝜃), where parameters 𝜃 ∈ ℝ𝑛, the set of real numbers in 𝑛 dimensional space.  With gradient descent, parameters are 

updated in the opposite direction of the gradient of the objective function with respect to the 

parameters 𝜃, given by ∇𝜃𝐽(𝜃).  The learning rate ŋ determines the size of the step used in the 

gradient descent algorithm.  Let 𝑥𝑖𝑡denote the multivariate input streams at location 𝑖 at time 𝑡 

and may include lagged values to capture the impact of time.  Since the model at location 𝑖 is 

independent of the model at location 𝑗, for brevity, we can omit the location subscript.  With 

unsupervised learning, there is also no targeted sample, so the goal is to minimize the 

reconstructive error of the input sample.  Let 𝑥𝑡′be the target value at time 𝑡.  Therefore, the 

update equation for stochastic gradient descent is given by (8.1) equation: 𝜃 = 𝜃 −  ŋ · ∇𝜃𝐽(𝜃; 𝑥𝑡; 𝑥𝑡′) (8.1) 
  

Therefore, SGD with backpropagation performs one update at a time.  

Note that in most batch SGD approaches, the input data is shuffled, and samples are 

randomly drawn before running the backpropagation algorithm so that the most recent streamed 

data may not be the sampled as part of the parameter update cycle.  Processing the most recently 

received stream data would be preferred over shuffling if there was a desire to identify concept 

drift.  The reason for the random draw is that gradient descent is a multi-pass algorithm. The 

number of epochs is a hyperparameter that specifies the number of complete passes, both 

forward and backward, through the training data.  In order for the parameters to be learned, 
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different samples must be used through each epoch.  There are usually many epochs and many 

iterations through the samples. 

Most SGD software packages support options for no shuffling and only one (1) epoch per 

time cycle.  Note that the SGD algorithm overshoots the global minimum during the early stages 

of training.  Therefore, the recommendation in the literature is to slowly decrease the learning 

rate as training proceeds to mitigate the large parameter swings caused by the use of only a 

single sample in SGD.  The above discussion suggests that parameter estimation using SGD is 

challenging, albeit less problematic than attempting to use a recurrent neural network (RNN) 

architecture in an online, streaming environment.  Online SGD challenges include general 

conversion to a global minimum, selection of the proper learning rate, selection of the approach 

for including of time-lagged features, and the approach to capturing concept drift over time. 

 Figure 46 below displays the STADE estimation algorithm #7 for SGD.  This algorithm 

is appropriate for autoencoder and other feedforward architectures but not appropriate for 

recurrent neural networks. 

Figure 47 below displays the STADE algorithm #8 for the Delayed Parameter Estimation 

algorithm.  With delayed parameter estimation, traditional batch SGD is used.  Gradient descent 

is restarted with the newly received data after the old gradient descent algorithm completes.  So, 

the trade-off is better parameter estimation from the use of batches at the expense of some stale 

parameters existing for short periods. Algorithm #7 and algorithm #8 are similar in most aspects.  

For example, algorithm #8 is identical to algorithm #7 under the assumption that SGD executes 

faster than the receipt of the stream (so that there is no delayed execution) and that the batch size 

=1 without shuffling. 

 



 

 143 

 

Algorithm 7: Perpetual Stochastic Gradient Descent (SGD) 
INPUT: incoming streaming sample: 𝒙𝒊𝒕, # of epochs: E==1, learning rate: ŋ 

accumulated dataset: X 
OUTPUT: parameters 
STEPS:  𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔  train a feedforward network with SGD  

append 𝒙𝒊𝒕 to X 
     loopOverEachEpoch E 
 
     sample = get_data(X,1) 
     params-grad = evaluate-gradient(loss-function, sample, parameters) 

     parameters = parameters – (learning rate ŋ * params-grad)  
 

Figure 46: Stochastic Gradient Descent 

Algorithm 8: Delayed Parameter Estimation (with Batch Gradient Descent)  
INPUT: Incoming Streaming sample: 𝒙𝒊𝒕, # of epochs: E, Learning Rate: ŋ 

Batch size: n 
Accumulated Dataset: X 

OUTPUT: parameters 
STEPS:  𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔 train a FeedForward Network with gradient descent  

append 𝒙𝒊𝒕 to X 
if(Delayed Parameter Estimation is not executing) 
loopOverEachEpoch E 
     random-shuffle(X) 
     loopOverEachMiniBatch n 
     get_data(X,n) 
     params-grad=evaluate-gradient(loss-function,sample,parameters) 
     parameters = parameters – (learning rate ŋ * params-grad)     
 

Figure 47: Delayed Parameter Estimation 

8.7 STADE Instantiation 

 A given STADE instantiation consists of an operating environment, infrastructure 

software, SAD and FAD, decision support system, and a workflow.  Each of these elements is 

discussed below. 

8.7.1 Operational Environment 

 The execution of the case studies on operational equipment was preferable to a laboratory 

environment.  The belief is that the most information on the suitability of STADE architecture 

could be garnered by using cloud-based, globally distributed equipment that communicated over 
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the public internet.   The Microsoft™ Azure commercial cloud was chosen as the platform to 

conduct the case studies.  Azure has data centers located throughout the world and provides 

several enterprise-level services that could potentially be mapped to components required for an 

instantiation of STADE. 

 Six (6) Azure datacenters were chosen to host a STADE instantiation.  These data centers 

were located one in each continent, Africa (South Africa), Asia (India), Australia, Europe 

(United Kingdom), North America (USA), and South America (Brazil). Figure 48 provides a 

map of the physical locations of the datacenters hosting STADE.  One (1) location is also 

designated as the global score repository hosting the FAD.  The North America STADE 

implementation is designated as this global score repository.   

 

 

Figure 48: STADE Case Study Testbed 

 Each Microsoft™ Azure datacenter hosted one or more STADE virtual machines.  No 

additional Azure software or services were used, and all cloud services were accessed remotely 

via the remote desktop connection protocol. 
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8.7.2 Infrastructure Software 

Table 33 relates the components of the STADE specification to the components used in 

the case studies.  The components include services provided by the Microsoft™ Azure cloud, 

interfaces to cloud-based database systems, and custom software programs that execute on local 

computers or virtual machines in the cloud, The most critical components include COSMOS DB, 

which serves as a cloud database and provides capabilities for asynchronous communications 

similar to the publish-and-subscribe message broker, and Azure Functions, which supports 

workflow capabilities.  The DSS is based on a web-based interface; all end-user interactions are 

completed through interactions with a global map. 

Table 33: STADE Case Study Software Components 

Stream Anomaly Detector (SAD) Shallow/Deep Autoencoder / HBOS 
Decision Support System (DSS) Azure Maps Web-Based Map 
Global Repository Cosmos DB 
Publish and Subscribe Message Bus Microsoft™ Azure Functions  
Message Component Microsoft™ SignalR Azure Service 
Federated Anomaly Detector (FAD) Shallow/Deep Autoencoder / HBOS 
Storage Component Microsoft™ Azure COSMOS DB 
Stream Component Custom Software 
Workflow Component Microsoft™ Azure Functions Custom Software 

 

8.7.3 SAD and FAD Anomaly Detectors 

There are two types of anomaly detectors in the STADE architecture, a SAD executing at 

multiple local sties and a FAD executing at a single global site.  Both the SAD and FAD are 

configured to ingest inputs as they arrive, perform online learning, and calculate the anomaly 

score.  The input to the SAD is high-dimensional (e.g., sensor data), while the input to the FAD 

is anomaly scores generated from the SAD sites.  These anomaly scores are then transmitted via 

the publish-and-subscribe messaging infrastructure for storage at the global repository. 
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The TML and DNN algorithms previously discussed are all candidates for employment 

as the SAD and FAD.  For example, the DNN shallow and deep autoencoder (SDA) algorithm 

might be designated as the SAD, and the TML Histogram-Based Outlier Score (HBOS) 

algorithm was designated as the FAD.   These SDA and HBOS algorithms might be selected 

because both were reasonably effective in identifying anomalies in the experimentation. Other 

combinations of algorithms are a reasonable combination. The SDA is estimated using perpetual 

stochastic gradient descent (Algorithm 7). Different SADs could have been selected for different 

sites as the STADE architecture is pluggable and loosely coupled; however, deployment of 

STADE is simplified if the same set of SADs is installed throughout the architecture.  

8.7.4 Decision Support System (DSS) 

The DSS is provided as a web site that communicates with the global repository through 

the publish-and-subscribe message bus and displays streaming point data and anomaly scores 

reported from each STADE site.  While the architecture diagrams display the decision support 

web connecting to the global repository only, the decision support web can also connect to the 

individual STADE sites to monitor incoming feeds and view anomaly scores for that location. 

Note that in the case studies, no analytical algorithms execute on the decision support site, but, in 

practice, background algorithms would further analyze the scores and provide additional 

assessments and graphical displays to the decision-maker. 

8.7.5 Workflow 

Figure 49 displays the sequence of events, or workflow, for the arrival of one sample 

(e.g., sensor reading) at a given site.   
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Figure 49: STADE Case Study Workflow 

Each number represents one step in the end-to-end chain from receipt to the data to 

display on the decision support web. While there are ten (10) numbered steps, steps one to six (1-

6) are implemented on one virtual machine at one site, while steps seven to ten (7-10) are 

implemented on another virtual machine at another site.  The global repository and the FAD are 

implemented at the STADE site designated in North America. The most significant potential 

impact on performance is the message bus, which transmits data over the internet and would be a 

choke point in the presence of network outages or global latencies.  

8.8 Case Study Objectives 

Chapters 9-11 describe three (3) case studies that utilize the STADE instantiation 

described. Chapter 9 describes the global air traffic case study, Chapter 10 describes the earth 

sciences case study, focusing on earthquakes, while Chapter 11 describes the social networking 

streams case study. The prime objective of these case studies is to determine if STADE is a 
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viable architecture for the detection of anomalies in highly dimensional streaming spatiotemporal 

data.  These case studies are proof-of-concept. While STADE is domain-independent, an 

instantiation of STADE is tailored to the particular problem statement of each case study.  

STADE can support automated decision making or augment the human decision-making process.  

Because STADE supports unsupervised learning, the algorithms could potentially identify novel 

or never-seen (zero-day) anomalies.  STADE can be applied either in a local area network 

clustered or a geographically distributed cloud (e.g., global sensor network).   The instantiation 

of STADE described above is cloud-based. The algorithms exploit the information contained not 

only in the values at a point in space-time, but also the sequences of data, or spatiotemporal 

anomaly detection. 

8.9 Summary 

STADE is designed to address spatiotemporal anomaly detection in a distributed, cloud-

centric, domain-independent application domain.   Anomaly detectors execute at local STADE 

sites and report the anomaly score to a centralized Federated Anomaly Detector (FAD) site for 

further analysis or display on the remote decision support system.  The centralized repository 

provides further analysis of the reported anomaly scores.  With multiple geospatially distributed 

sources of information, the decision-makers can make informed decisions regarding the 

existence or non-existence of a spatiotemporal anomaly. 

 The description of STADE in this chapter included a mapping of the architecture to 

specific products and technologies.  This instantiation included several existing open source 

technologies and commercial products since programming STADE from scratch is cost-

prohibitive. Each use case has unique requirements and may require a unique instantiation of the 

STADE components 
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 The design goal of STADE is to process streaming spatiotemporal data for anomaly 

detection.   Most anomaly detectors have long training times that make online neural network 

learning with streaming data difficult. Two practical solutions to this problem are the use of 

stochastic gradient descent and a delayed parameter estimation approach.  Spatial considerations 

are addressed within STADE by running separate models per region; there is no cross-region 

pooling of data.  Temporal issues are addressed by using an anomaly detection algorithm that has 

built-in multivariate support for time or sequences (e.g., ED-1D-CNN) or by direct inclusion of 

time as part of the feature set.  For example, lagged response variables from a time series can be 

introduced as features in autoencoders without the need for explicitly using a sequentially 

dynamic model (e.g., RNN).      

8.10 Related Work  

Studies of streaming anomaly detection utilize various time-series techniques with 

univariate data.  The Numenta Anomaly Benchmark (NAB) [181] and [182] includes a set of 

univariate time-stamped datasets with anomalies annotated by a well-defined human labeling 

process. Specially designed datasets were created to allow the comparison and scoring of various 

algorithms that support streaming anomaly detection.  Anomaly detectors assign scores on the 

test data based on the parameters estimated from the training data. The NAB scoring system, in 

turn, calculates an overall performance metric based on a set of rules.  For example, the 

performance metric penalizes detectors that trigger higher false alarms than expected.   NAB is 

designed to allow a comparison of alternative univariate techniques against a single baseline.  

TML techniques designed for real-time streaming anomaly detection include hierarchical 

temporal memory (HTM) [183] and [184], random cut forests [185], and seasonal trend 

decomposition based on loess (STL) combined with seasonal autoregressive integrated moving 
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average (SARIMA) [186].  Other anomaly detection applications designed specifically for 

processing online streaming data include domain-independent processing of complex event 

streams through ‘STREAM-LEARNER’ [187], wireless sensor networks [188], road traffic 

conditions [189], unmanned aerial vehicles (UAVs) [190], and network intrusion detection [191].  

Choudhary et al. [192] present an analysis of the runtime trade-off of various techniques to 

process real-time streaming anomaly detection. 

STADE is designed to support distributed real-time anomaly detection in multiple 

domains, including sensor networks. Ball et al. [193] provide a survey of representational 

learning techniques for remote sensing and sensor networks. Budalakoti et al. [194] develop an 

anomaly detection system called ‘sequenceMiner’ that detects anomalies by recording and 

analyzing the symbol sequences of switch sensors in the cockpits of commercial airlines. Hayes 

and Capretz [195] provide a contextual anomaly detection model for sensor data.   Mohammaddi 

et al. [196] provide a survey of neural network applications for big data and streaming analytics.  

Muallem et al. [197] provide a survey of hoeffding tree algorithms, a TML technique, for 

streaming cyber anomaly detection applications.  Xie and Chen [198] address anomaly detection 

with the elimination of data redundancy in sensor data streams. Other studies of sensor anomaly 

detection include [199], and streaming data include [200]. 

FL inspires the STADE architecture by the ’attention’ mechanism [92] that is popular 

today in the DNN language translation literature. The attention mechanism is an evolution from 

an earlier architecture based on the encoder-decoder recurrent neural network model (ED-RNN).  

Models that use a combination ED-RNN with or without attention include [201], [152], [22], 

[202], [203] and [204]. 
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The STADE architecture is based on FL and incorporates the concept of a centralized 

repository to maintain and exchange anomaly scores across geographically dispersed clients. 

Within this architecture, all algorithms are trained locally, and the results coordinated across 

regions.  There have been numerous projects by Google™ and others to formulate distributed 

representational learning algorithms primarily to support image processing tasks.  Distributed 

processing is typically within a data center or in a computer cluster and not geographically 

dispersed as proposed here.  Dean et al. [205] describe a system called DistBelief consisting of 

thousands of CPU cores in data centers used to train large models with sixteen (16) million 

images. Note that while asynchronous stochastic gradient descent procedures can be parallelized 

in image processing convolutional neural networks, parallelization is not possible with a 

recurrent neural network or autoencoder architecture. 

Moreover, STADE architecture is designed to support disadvantaged locations at the 

network edge. For a comprehensive survey of various approaches to large-scale distributed 

training of DNNs and various formulation of the stochastic gradient descent algorithm, see 

Chahal et al. [206].  Williams and Zipser [207] propose an algorithm for continually running 

RNNs; however, the performance is worse than the performance of a traditional RNN and is not 

suitable for high tempo streaming applications. 

In summary, research on real-time streaming anomaly detection has been spotty and has 

focused on univariate problem domains and non-scalable machine learning techniques.  There 

does exist online streaming stochastic gradient descent algorithms, but their performance is still 

lacking and not suitable for all streaming applications.  New, more agile algorithms are needed to 

process streaming data for high-tempo, real-time anomaly detection. 



 

 152 

CHAPTER 9 – STADE CASE STUDY #1: GLOBAL AIR TRAFFIC (GAT)  

9.1 GAT Background 

 The purpose of the GAT case study is to identify, in near real-time, anomalies in global 

air traffic.  The parameters would be learned from past non-anomalous flights and applied to 

ongoing flights.  A decision-support system would then provide alerts to air traffic controllers 

(ATC), commercial airlines, and aircraft manufacturers of possible anomalies that require 

attention.  

 One obvious question is, why is a DNN or another set of sophisticated techniques are 

required in this scenario?  Why not analyze the raw data? The reasons are twofold.  First, the 

amount of raw data would be overwhelming for a decision-analyst or a management information 

system.  Second, the data relationships are complex, and a traditional management or database 

system would unlikely to uncover the complex dependencies and attribute interrelationships 

necessary to identify a multidimensional anomaly. 

9.2 GAT Architecture Design Decisions 

 The GAT case study architecture follows closely the STADE architecture described in 

Chapter 8.  Note that, in this particular case study, because data feeds are through the public 

internet, the geographic distribution of the processing nodes is not critical.  Moreover, the 

publish-and-subscribe infrastructure that is part of the STADE global cloud essentially abstracts 

away the concept of geo-location. Nevertheless, for proof-of-concept and demonstration 

purposes, STADE processes nodes have been distributed to the various Microsoft Azure cloud 

sites,  as described in Section 8.7.1. 

 The GAT case study is designed to support global operations involving thousands of 

simultaneous flights.  Given the limited available data, Streaming Anomaly Detector (SAD) 
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models can be partitioned either by country-of-origin, commercial carrier, or aircraft callsign.   

The preferred partition would be the airport origin and airport destination pairs because 

anomalies happen within a particular route.  This data is inferred based on trajectories of the 

takeoff and approach.  For demonstration, country-of-origin will be used to partition the SAD 

models; each country-of-origin is a separate SAD model.  The centralized FAD would collect the 

anomaly scores on a per-country basis.  For example, if flights originate from twenty (20) 

different countries, there would be twenty different FAD scores per period.  The FAD collects 

the highest SAD score every five (5) minutes from each origin country unique model, but the 

FAD time interval parameter can easily be changed to fit the architecture. 

 Both the Streaming Anomaly Detector (SAD) and Federated Anomaly Detector (FAD) 

technique selected for this case study are the Encoding-Decoding Recurrent Neural Network 

(ED-RNN).  Parameters are estimated using perpetual stochastic gradient descent (Algorithm 7) 

described in Section 8.6.1. 

 9.2.1 GAT Anomaly Definition 

There are limitless examples of potential anomalies, such as the location (latitude and 

longitude) along an aircraft route, the altitude at that location along a route, and airspeed for a 

particular aircraft.  Anomalies are domain-dependent, however. For example. [208] notes that an 

anomaly might be a large commercial airliner overflying a terrain in the vicinity of a large 

international airport. 

Since the anomaly techniques are multidimensional, all relevant flight attributes enter 

into the anomaly scoring algorithm so that a specific anomaly definition is not required. The 

flight attributes are discussed below.  Stream Anomaly Detection (SAD) scores are ranked with 
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the highest ten (10) scored over 24 hours listed below for all flights originating from the United 

States.  The corresponding Federated Anomaly detection (FAD) scores are also listed.  

 9.2.2 GAT Data Sources 

 This case study uses data produced by the OpenSky Network (https://opensky-

network.org/).  Most commercial aircraft have MODE-S hardware transmitters that emit ADS-B 

messages. The OpenSky Network is a community-based, crowd-sourced collaborative effort to 

collect air traffic data from more than one-thousand Mode S sensors located throughout the 

world [209].  These sensors collect the ADS-B generate messages that track the state of an 

aircraft at a point in time, including position, velocity, and aircraft identity.  Table 34 describes 

the data provided through the OpenSky Network and delivered in real-time via the internet. 

Table 34: Global Air Traffic Data Elements 

Data Element Description 

icao24 ICAO24 address of the transmitter in a hex string representation 
Callsign Callsign of the aircraft 
Origin Country The origin-country of the flight 
Last Time Time since the last position report 
Last Contact Seconds since last received message from this transponder 
Longitude In ellipsoidal coordinates (WGS-84) and degrees. 
Latitude In ellipsoidal coordinates (WGS-84) and degrees. 
Altitude Geometric altitude in meters 
Velocity Speed over ground in meters per second 
On the Ground True if the aircraft is on the ground 
Heading In decimal degrees, where 0 is north 
Vertical Rate In meters/second.  The incline is positive, and decline is negative 
Sensors The serial number of sensors which received messages from this aircraft 
Barometric Barometric altitude in meters 
Squawk Transponder code, aka Squawk. 
SPI Special Purpose Indicator 
Position Source Origin of the position: 0 = ADS-B, 1 = ASTERIX, 2 = MLAT, 3=FLARM 
Type code The aircraft model type 
Origin Origin Airport 
Destination Destination Airport 

 

One additional issue relates to the use of location attributes in the SAD and FAD.  For the 

GAT case study, the exact latitude and longitude are relatively unimportant, and only a relatively 

https://opensky-network.org/
https://opensky-network.org/
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small geographic bounding box has relevance.  With a simple formula, the latitude and longitude 

are converted into a unique integer for entry into the models.  The simple formula is: (latitude 

+90)*180 + longitude.  This formula is equivalent to a hashing algorithm in computer science. 

With this formula, every point on the map can be converted into an integer that designates a 

unique bounding box accurate to one (1) degree. 

9.3 GAT Case Study Results 

 Figure 50 below displays a snapshot of the GAT map of United States air traffic at a 

given point in time by exact latitude and longitude (not the integer conversion).  This flight 

display is web-based and animated; flight locations on the map are updated upon receipt of the 

flight reports (i.e., samples), and plane icons are clickable. Flight reports (i.e., samples) are 

received every 5 to 10 seconds following the architecture and workflow described in Chapter 8. 

 

 

Figure 50: Global Air Traffic Decision Support Map 
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Table 35: Global Air Traffic Top 10 Anomaly Report (Over 24-Hour Period) 

 Date Call Sign SAD FAD Latitude Longitude Velocity Heading Vertical Altitude 

1 2020-03-02 OMA154 188.8 Yes 47.14 11.45 250 113.1 6.5 10.7 
2 2020-03-02 AZA22FL 13.9 No 50.51 0.47 236 144.5 6.5 9997 
3 2020-03-02 TCRSD 13.9 No 59.20 -8.65 221 319.4 0.3 12687 
4 2020-03-02 AAY96 12.8 No 37.64 -120.71 147 295.9 10.4 2514 
5 2020-03-02 N417EP 12.8 No 28.91 -80.92 60 219.11 0.0 1028 
6 2020-03-02 JME508N 12.7 No 32.29 -108.22 297 105.7 0.3 12694 
7 2020-03-02 VTI973 11.1 No 19.01 73.92 200 156.7 22.1 3787 
8 2020-03-02 UAE542 11.1 No 25.29 56.59 271 100.3 4.87 8107 
9 2020-03-02 UAL555 10.9 No 32.73 -116.94 101 109.1 6.17 1226 
10 2020-03-02 KAL646 10.8 No 25.73 122.17 296 35.3 0.0 11811 

 
STADE was able to identify hundreds of flight anomalies in real-time in thousands of 

flights over 24 hours.  The model was trained with historical data from the previous thirty (30) 

days.  The FAD found only one ‘federated’ anomaly for the corresponding time-stamp.  This 

anomaly may be a result of a data error since the reported altitude was ten (10) meters. This 

result may be an outcome of the artificial partition of the model by country-of-origin.  An 

anomaly in the location of a flight in the United States is unlikely to be related to an anomaly in 

Great Britain. As previously noted, an operational system would likely partition the models by 

source-destination airport pairs. The exact cause of these anomalies would require further 

analysis, perhaps by air traffic controllers.  Note that without the inclusion of an automated 

explainable AI module, a subject on ongoing research in the ML community, the explanation of 

the anomaly score is complicated.   

9.4 GAT Related Work 

Few published studies have applied DNN anomaly detection techniques to the air traffic 

domain.  There have been statistical applications of anomaly detection to air traffic issues.  

Tanner and Strohmeier [210] utilize the OpenSky network to detect anomalies in air traffic 

patterns and runway use.  Other studies use visual satellite data combined with the Opensky 

network to build a flight anomaly detection dataset [208].  
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CHAPTER 10 – STADE CASE STUDY #2: EARTH SCIENCE (ES) 

10.1 ES Background 

 The objective of this case study is to investigate earthquake data as provided by the U.S 

Geological Survey (USGS).  The goal is to identify anomalies in sequences of earth sensor 

readings that may portend a future earthquake or aftershock.  The goal here is not to forecast 

earthquakes, which is a supervised learning problem but to identify anomalies in data sequences 

that may support explanations of near-term future geophysical events. 

 Under the Earthquake Hazards Program, the USGS uses statistical modeling techniques 

to make probabilistic predictions such as: “the chance of an earthquake of magnitude three (3) or 

higher is > 99%, and it is most likely that as few as 42 or as many as 230 such earthquakes may 

occur in the case that the sequence is reinvigorated by a larger aftershock.” Multivariate anomaly 

detection techniques could enhance these types of predictions. 

10.2 ES Architecture Design Decisions 

 10.2.1 ES Anomaly Definition 

 Similar to the GAT case study, anomalies are based on SAD scores.  Each network is a 

separate SAD model.  There are approximately fifteen (15) networks throughout the world that 

collect earthquake data.  Each network provides its anomaly scores to the FAD.  As before, the 

SAD and FAD technique selected for this case study is the Encoding-Decoding Recurrent Neural 

Network (ED-RNN).   

 10.2.2 ES Data Sources and Design 

 The earthquake data is provided by the U.S. Geological Survey using the GeoJSON 

Javascript Object Notation (JSON).  GeoJSON is similar to Extensible Markup Language (XML) 

but is less formal.  GeoJSON provides a standard approach for defining geospatial information 
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such as geometry, attributes, bounding boxes, and projection information.  GeoJSON is a 

standard published by the Internet Engineering Task Force (IETF).  RFC 7946 was published in 

August 2016 and is the standard specification for the GeoJSON format. GeoJSON earthquake 

data updated every sixty (60) seconds.  

 Table 36 displays the minimalist data elements that ARE used in the analysis. There are 

many other data elements, but most are related to measurements of the quality of the data inputs.  

Included is a quality measure, RMS, which measures the fit of the observed arrival times to the 

predicted arrival times for the event location.  The higher the RMS, the greater the uncertainty of 

the data associated with the event. 

Like the GAT case study, latitude and longitude are converted into a more 

straightforward integer representation.  Seismologists have a far more sophisticated approach to 

designate homogenous earthquake faults, regions, and zones, but those definitions require 

extensive domain knowledge and are outside the scope of this study.  Note also that earthquakes 

of all magnitudes are included in the analysis 

Table 36: Earth Science Data Elements 

Data Element Description 

Time date and time of the event, also known as the origin time 
Latitude Decimal degrees latitude.  Negative values for southern latitudes. 
Longitude Decimal degrees longitude.  Negative values for western longitudes. 
Depth Depth of the event in kilometers. 
Magnitude The magnitude of the event.  Ranges from -1.0 to 10.0 
RMS The root-mean-square (RMS) travel time residual, in seconds.  Used to measure the 

quality of the data. 
Net The reporting network for the event.  Network values include ak, at, ci, hv, ld, mb, nc, 

nm, nn, pr, pt, s e, us, uu, uw 
ID The unique identifier for the event 
Place Textual description of named geographic region near to the event. 
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10.3 ES Case Study Results 

 Figure 51 displays all earthquakes of any magnitude throughout thirty (30) days by exact 

latitude and longitude.  The darker the pink color, the higher the number of earthquakes.  Note 

that the display traces well-documented fault lines and areas of high earthquake activity (e.g., 

California). 

 

 

Figure 51: Earth Science Decision Support Map 

 

 Table 37 presents the results of the top ten anomalies over one month.  While the 

reporting is global, most of the anomalies were found in low-magnitude earthquakes at shallow 

depth in California.  Since an autoencoder is used in this case study, the highest reconstructive 

mean-squared error produced the highest scores.  Unlike the GAT case study, the sample sizes 
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are small since few global earthquakes occur during any given minutes, which may account for 

the appearance of the FAD anomalies.  

 

Table 37: Earth Science Top 10 Anomaly Report (Earthquakes Last 30 Days) 

ID Description SAD FAD Latitude Longitude Magnitude Depth 

2632 17km ESE of Anza, CA 13.66 Yes 33.50 -116.50 1.3 10.09 
931 4km N of Redwood Valley, CA 12.10 Yes 39.29 -123.21 1.6 6.71 

3209 6km NW of The Geysers, CA 11.65 Yes 38.81 -122.80 1.1 1.20 
1179 16km ESE of Anza, CA 11.56 Yes 33.50 -116.51 0.5 10.13 
863 9km NNE of Kingfisher, Ok 10.73 Yes 35.94 -97.89 1.4 5.77 
619 16km ESE of Anza, CA 10.26 Yes 33.56 -116.50 1.0 10.66 

3603 5km NW of the Geysers, CA 10.12 Yes 38.81 -122.79 1.1 3.51 
1238 8km NW of Anza, CA 9.95 Yes 33.59 -116.74 0.3 12.64 
349 16km W of Searles Valley, CA 9.79 Yes 35.76 -117.57 0.8 6.99 

1141 16km ESE of Anza, CA 9.69 Yes 33.50 -116.50 1.2 10.83 

 

10.4 ES Related Work 

 There has not been extensive published research of DNN related unsupervised anomaly 

detection techniques applied to earthquake data.  A few studies have used basic supervised DNN 

techniques to forecast earthquake magnitudes [211].  Aster [212] provides a high-level overview 

of statistical modeling earthquake sequences and aftershocks and emphasizes the importance of 

recognizing, in real-time, earth sequences that create conditions for large aftershocks.  Pavlidou 

et al. [213] provide a time-series analysis of the impact of temperature on twenty (20) global 

earthquakes.  
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CHAPTER 11 – STADE CASE STUDY #3: SOCIAL NETWORKING STREAMS (SNS)  

11.1 SNS Background 

The Twitter™ global feed was selected as an example of an SNS.  While tweets are not 

of particular interest to the research here, the feeds are freely available, spatially and time 

distributed, and are an endless source of human sensor data that is convenient to use for the case 

study of STADE.  Twitter™ is known as a microblogging platform that also provides a 

streaming Application Programming Interface (API) supporting globally accessible real-time, 

text-based tweets. These tweets can be filtered by several attributes, including content, time, and 

geospatial origin. 

Interesting anomaly detection problems can be analyzed using tweets.  For example, 

through various natural language processing (NLP) techniques, a tweet’s anomaly score and 

associated attributes can be examined and used to determine if the tweet is genuine or produced 

by a malicious bot. Another aspect of the Twitter feed is called sentiment analysis [214].  

Sentiment analysis is the process of computationally identifying and categorizing opinions 

expressed in the text. Objectivity analysis is the process of computationally identifying where 

there is bias, opinion, or emotion. The goal of the case study is to provide a framework to capture 

near real-time anomalies in sentiment and objectivity based on time and geographic location of 

the tweet. 

Sentiment and objectivity analysis is a sub-field of the general area of Natural Language 

Processing (NLP) that processes written material and digitally extracts attributes such as the 

polarity, subject matter, and the entity who authored the text.  For the case study, the sentiment is 

expressed in terms of polarity and subjectivity.  The polarity of a sentence is a measure of 

whether the author expresses a positive, neutral, or negative opinion.  The polarity metric ranges 
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from -1 (very negative) to 0 (neutral) to +1 (very positive).  In most instances, polarity would be 

zero, or neutral.  Anomalous posts occur when the polarity is close to -1 or +1.  Subjectivity 

measures the degree to which a statement of opinion or a statement of fact and exhibits a value 

between -1 (subjective or opinion) and +1 (objective or fact). 

11.2 SNS Architecture Design Decisions 

 The SNS architecture is identical to the GAT and ES case studies, as described in 

sections 9.2 and 10.2, and follows the STADE architecture described in Chapter 8. 

11.2.1 SNS Anomaly Definition 

 An anomaly is defined as a combination sentiment and objectivity score that exceeds the 

projected value in a particular geographic region.  In this case study, the geographic region is 

defined as the country of origin of the tweet, so that separate SAD models are applied to each 

country. 

11.2.2 SNS Data Sources 

 The tweet object contains a long list of attributes such as the id of the tweet, the tweet 

text, the set of attributes of the person creating the tweet, whether the tweet is original or a 

retweet, the number of followers of the person tweeting, and many other features. In the tweet 

are a set of coordinates that represent the latitude and longitude of the tweet as reported by the 

user or client application. Also included is a ‘place’ attribute that may or may not be present in 

the data stream.  When present, this attribute indicates that the tweet is associated but not 

necessarily originating from a place.  The place might be a city, a historical place, an event, and 

many other possibilities.  The coordinates and the place attributes can determine the geographic 

location of the tweet.  

 Table 38 provides the selected data elements to use in the SNS case study. 
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Table 38: Social Networking Streams Data Elements 

Data Element Description 

ID Unique identification associated with the tweet. 
Text Text of the Tweet 
Polarity Calculated: 
Subjectivity Calculated: 
Username User Screen Name of the author of the tweet 
Name User name of the author of the tweet 
Profile Image URL Profile Image 
Location User location from the account profile. 
Confidence The confidence level associated with the tweet. 
Latitude Calculated from available location and place data. 
Longitude Calculated from available location ad place data. 
Place When present, it indicates that the tweet is associated, but not necessarily originating from) a Place. 

 

 One potential limitation of tweets is that they are in multiple languages. The Twitter™ 

API does include support for language translation (e.g., French to English).  However, language 

translation technology is not perfect.  Anomaly Detection algorithms that rely on NLP may 

perform sub-optimally with multi-language streams such as Twitter™. 

11.3 SNS Case Study Results 

Figure 52 shows a screen snapshot of the Twitter™ feed taken from the case study after 

processing by STADE.  An open-source NLP python library, text blob, is used to translate a 

sentence into a polarity and subjectivity metric. For example, with ‘pizza’ as the search word, the 

sentence “just discovered the best pizza sitting right under our noses” earned a polarity score of 

.42 (somewhat positive) and a subjectivity score of .27 (somewhat objective).  Another sentence, 

“I hoped you still enjoyed your pizza to the fullest,” earned a polarity score of .5 and a 

subjectivity score of .7.  So, the second sentence is slightly more positive and subjective than the 

first sentence.  Throughout the STADE architecture and workflow, these tweets were allocated to 

geographic regions by the publish-and-subscribe cloud infrastructure. 

Figure 53 displays the geographical distribution of tweets within a fifteen (15) minute 

period, where the tweet text includes the word ‘coronavirus.’  This figure illustrates the global 

composition of tweets and the high volume on a topic of global interest. 
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Figure 52: Social Networking Stream (Twitter) Feed 

 

Figure 53: Global ‘Coronavirus’ Tweets – 15 Minute Period 4/6/2020 

 Unfortunately, STADE could not identify anomalies in the tweets. First, each tweet 

anomaly score is autonomous and not dependent on previous tweets, so that tweet sequences are 

not useful.  Second, there was a large number of tweets with values at the extremes.  For 

example, there were many negative tweets (polarity = -1) combined with statements of opinion 
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(subjectivity = -1).  Conversely, there was a large number of very positive tweets (polarity = +1) 

combined with statements of fact (objectivity = +1).   Anomalies must infrequently be occurring.  

SAD techniques are only useful if there are true anomalies in the data.  Similarly, FAD 

techniques are only useful if there are anomalies in the anomaly scores.  If this case study, due to 

the nature of the subjectivity and polarity text algorithms, within a given country, there lacks 

variability in the anomaly scores.  There exists more variability across countries, but the 

variability was insufficient to identify anomalies. 

The number of incoming tweets was variable depending on the region.  Only English 

language tweets were considered, and the other languages discarded because the sentiment score 

would be difficult to interpret.  The United States experienced a high tempo of incoming tweets, 

and the online SGD algorithms in the United States site could not maintain pace with the 

incoming tweets.  Such was not the case with the other cloud-based sites, which had a much 

slower tempo of incoming tweets.  The end-to-end time to complete the cycle from tweet receipt 

through storage at the global repository was roughly five (5) seconds. However, the required 

time was highly variable depending on the network characteristics, time-of-day, and other 

factors.   

 This case study demonstrates the STADE architecture designed to connect spatiotemporal 

streaming data (e.g., Twitter™ tweets) to a near real-time anomaly detection algorithm.   The 

streaming data is essentially a form of a human sensor.   Two distributed algorithms are deployed 

globally, The SAD and the FAD both running the Encoding-Decoding Recurrent Neural 

Network (ED-RNN).  The design uses a commercial cloud provider, minimalist hardware (low 

cost, everyday virtual machines), minimalist software (cloud software, open-source software, 
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small python programs), and the non-dedicated network (public internet) using asynchronous 

communications (publish-and-subscribe). 

 The results, while limited by the variability of the subjectivity and polarity metrics, did 

illustrate that a globally distributed sensor anomaly detection network based on STADE is easy 

to set up and operate globally.  Using a two-step approach, the SAD anomaly detector combined 

with a FAD, was able to evaluate anomalies in the sentiment and objectivity scores of Twitter™ 

tweets.  Unfortunately, no discernable anomalies were found because there were no rare events.  

This may also be the reason why the training of the model parameters with online SGD a sample 

at a time proved to be problematic as the model parameters often failed to learn or change.   

11.4 SNS Related Work 

 The use of social networking applications for anomaly detection experimentation has a 

practical advantage - the availability of accessible, high volume, streaming data sources freely 

available for analysis. A social network, in some regards, has similar characteristics to a sensor. 

Previous applications of neural networks to anomaly detection in social networks include Yu et 

al. [215], who provides a survey of social media anomaly detection methods. [215] also focuses 

on the distinction between point anomalies and group anomalies, and distinguishing between 

activity-based and graph-based methods.  Savage et al. [216] provide an overview of online 

anomaly detection. Tasoulis et al. [217] conduct a statistical approach to sentiment change 

detection on Twitter™ streaming data, which has similarities to the case study presented here. 

Castellini et al. [218] use denoising autoencoders to identify fake (or anomalous) followers in 

twitter streaming data.  The use of anomaly detection techniques to identify fake news and data 

streams has become increasingly important in recent years. Zhang et al. [120] deploy an 

autoencoder to detect rumors on online social networks. 
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 Different ML algorithms have been applied to this data stream include Naïve Bayes, 

Max Entropy, and Support Vector Machines (SVMs).  Moreover, because of the availability, 

size, and global distribution, the Twitter™ stream can be used to demonstrate concepts of cloud-

based, distributed anomaly detection architectures. 
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CHAPTER 12 – CONCLUSIONS AND RECOMMENDATIONS 

12.1 Conclusions 

 Unsupervised anomaly detection on high dimensional data is an active research area and 

touches multiple TML and DNN technologies. Autoencoders, RNNs, CNNs, and GANs 

deployed singularly and, in combination, have been used to address anomaly detection.  A set of 

TML techniques and six (6) DNN architectures were presented and subject to extensive 

experimentation using four anomaly datasets.  The results indicate that selected TML techniques, 

such as HBOS, and selected DNN techniques such as autoencoders combined with recurrent and 

convolutional neural networks performed the best in identifying anomalies.  Results are 

dependent on the quality of the dataset, including the variability of the samples, the accuracy of 

the anomaly designations, and the degree of imbalance of the training samples.  Anomaly 

detection is a “needle-in-the-haystack” problem domain where a single, universal solution is 

unlikely to be identified.  

One gap in research has been the application of these techniques to streaming 

spatiotemporal data and the integration with online decision support systems.  This research gap 

is addressed by the Spatiotemporal Anomaly Detection Environment (STADE).  STADE is an 

ensemble approach that combines one or more anomaly detection algorithms with a Federated 

Anomaly Detector (FAD).  The algorithm may be either a TML (e.g., HBOS) or a DNN (e.g., 

VAE) modified to support stream processing.  Borrowing from recent advances in DNN 

Federated Learning, the FAD is a centralized server that collects and processes anomaly scores 

from geographically distributed STADE sites.  Three case studies, (a) global air traffic, (b) 

global earthquake measurement, and (c) social media feeds are presented and demonstrate the 

applicability of STADE to real-world problems. These case studies also demonstrate that the 
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algorithms perform reasonably well in a highly distributed environment when trained using 

stochastic gradient descent techniques.  The FAD provides valuable anomaly feedback to the 

individual STADE sites that can be exploited to provide further insights into the spatiotemporal 

anomaly detection process. 

DNNs do have burdensome resource requirements, and processing capabilities may be 

limited or non-existent at the network edge.  STADE is modular, and algorithms can be swapped 

in and out. Pre-trained neural network models can be successfully deployed at runtime within 

STADE and re-trained at periodic intervals in a resource-constrained streaming environment.  

12.2 Recommendations for Future Work 

 Research has been hampered by the limited availability of multivariate unsupervised 

spatiotemporal datasets.  Algorithms have been tested using small toy datasets, and researchers 

have resorted to using synthetic training sets that do not adequately capture domain and 

distributional diversity.  The often-cited KDDCUP intrusion detection dataset used in many 

studies is twenty (20) years old and has well-documented flaws (Divekar et al., [20]). Investment 

in the development of a set of broad, high-dimensional benchmarks for steaming anomaly 

detection is critically needed to advance the state-of-the-art in spatiotemporal algorithms. 

 A central repository for all neural network-based anomaly detection models and 

algorithms would be helpful.  Researchers often attempt, without success, to reproduce 

algorithms and implementations other researchers have developed.  The experimentation results 

cited in Chapter 7 did not wholly replicate the findings of other researchers, although the results 

were close. The performance of these algorithms is sensitive to micro-decisions regarding neural 

network hyperparameters, optimization assumptions, software packages, and frameworks. 
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Replication and adaptation of the results of other research are complicated by the complex array 

of architectural decisions that need to be made up-front. 

 Alternatives to stochastic gradient descent (SGD) algorithms have not progressed in 

concert with other DNN technologies and remains an active area of research. The well-cited 

Real-Time Recurrent Learning (RTRL) algorithm [207] was formulated in 1989 is not suitable 

for high-velocity anomaly detection problem domains described in the introduction.  Long short-

term memory (LSTM) and backpropagation through time (BPTT) [219], the standard approach 

to the estimation of RNNs, is compute-intensive, has unstable estimation properties, and is not 

suitable to near real-time or streaming parameter estimation. A performant, lightweight set of 

optimization algorithms designed for distributed cloud computing are needed that could be used 

in conjunction with highly performant lightweight TML and DNN-based algorithms described in 

STADE.  Recent advances in Federated Learning have shown promising results in this area 

[180]. 

 Research in unsupervised representational learning has intensified but supervised, and 

reinforcement learning remains the focus of industrial research.  While neural machine 

translation has many similarities to the spatiotemporal stream processing domain, such as 

sequence-to-sequence (seq2seq) modeling, language-translation is fundamentally a supervised 

learning problem with short sequences. Streaming spatiotemporal anomaly detection is a non-

supervised problem, often with long-term temporal and distributed spatial relationships that need 

to be addressed by novel non-supervised algorithms and architectures such as STADE. 
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