

DISSERTATION

SPATIOTEMPORAL ANOMALY DETECTION:

STREAMING ARCHITECTURE AND ALGORITHMS

Submitted by

Barry S. Siegel

Department of Systems Engineering

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2020

Doctoral Committee:

 Advisor: John Labadie

 Edwin Chong
 Anthony Maciejewski
 Peter Young

Copyright by Barry S. Siegel 2020

All Rights Reserved

 ii

ABSTRACT

SPATIOTEMPORAL ANOMALY DETECTION:

STREAMING ARCHITECTURE AND ALGORITHMS

 Anomaly detection is the science of identifying one or more rare or unexplainable

samples or events in a dataset or data stream. The field of anomaly detection has been

extensively studied by mathematicians, statisticians, economists, engineers, and computer

scientists. One open research question remains the design of distributed cloud-based

architectures and algorithms that can accurately identify anomalies in previously unseen,

unlabeled streaming, multivariate spatiotemporal data. With streaming data, time is of the

essence, and insights are perishable. Real-world streaming spatiotemporal data originate from

many sources, including mobile phones, supervisory control and data acquisition enabled

(SCADA) devices, the internet-of-things (IoT), distributed sensor networks, and social media.

Baseline experiments are performed on four (4) non-streaming, static anomaly detection

multivariate datasets using unsupervised offline traditional machine learning (TML), and

unsupervised neural network techniques. Multiple architectures, including autoencoders,

generative adversarial networks, convolutional networks, and recurrent networks, are adapted for

experimentation. Extensive experimentation demonstrates that neural networks produce superior

detection accuracy over TML techniques. These same neural network architectures can be

extended to process unlabeled spatiotemporal streaming using online learning. Space and time

relationships are further exploited to provide additional insights and increased anomaly detection

accuracy.

 iii

A novel domain-independent architecture and set of algorithms called the Spatiotemporal

Anomaly Detection Environment (STADE) is formulated. STADE is based on federated

learning architecture. STADE streaming algorithms are based on a geographically unique,

persistently executing neural networks using online stochastic gradient descent (SGD). STADE

is designed to be pluggable, meaning that alternative algorithms may be substituted or combined

to form an ensemble. STADE incorporates a Stream Anomaly Detector (SAD) and a Federated

Anomaly Detector (FAD). The SAD executes at multiple locations on streaming data, while the

FAD executes at a single server and identifies global patterns and relationships among the site

anomalies. Each STADE site streams anomaly scores to the centralized FAD server for further

spatiotemporal dependency analysis and logging. The FAD is based on recent advances in

DNN-based federated learning.

A STADE testbed is implemented to facilitate globally distributed experimentation using

low-cost, commercial cloud infrastructure provided by Microsoft™. STADE testbed sites are

situated in the cloud within each continent: Africa, Asia, Australia, Europe, North America, and

South America. Communication occurs over the commercial internet. Three STADE case studies

are investigated. The first case study processes commercial air traffic flows, the second case

study processes global earthquake measurements, and the third case study processes social media

(i.e., Twitter™) feeds. These case studies confirm that STADE is a viable architecture for the

near real-time identification of anomalies in streaming data originating from (possibly)

computationally disadvantaged, geographically dispersed sites. Moreover, the addition of the

FAD provides enhanced anomaly detection capability. Since STADE is domain-independent,

these findings can be easily extended to additional application domains and use cases.

 iv

ACKNOWLEDGEMENTS

 I want to thank the entire College of Engineering faculty and staff for supporting this

dissertation. I would also particularly like to thank the committee chair, Professor John Labadie,

for the support provided over many years, the committee members, Professor Chong, Professor

Maciejewski, and Professor Young for their constructive feedback. Professor Labadie’s course

on optimization and operations research was the genesis of this dissertation. I would also like to

thank my entire Ph.D. committee for the informative System Engineering courses, which

provided the scientific basis of this dissertation. Finally, I would like to thank Ingrid Bridge

from the Department of Systems Engineering, who provided amazing guidance traversing the

requirements of the System Engineering Ph.D. program.

 v

TABLE OF CONTENTS

ABSTRACT ...ii

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES ... xii

LIST OF FIGURES .. xiv

CHAPTER 1 INTRODUCTION .. 1

1.1 Background ... 1

1.2 Engineering Challenge .. 3

1.3 Organization .. 3

1.4 Use Cases .. 5

1.4.1 Air Traffic Control (ATC) ... 6

1.4.2 Connected and Autonomous Vehicle (CAV) .. 7

1.4.3 Cyber-Physical System (CPS) .. 7

1.4.4 Distributed Sensor Network (DSN) .. 7

1.4.5 Earth Science (ES) ... 8

1.4.6 Global Contraband (GC) ... 9

1.4.7 Global Pandemic (GP) .. 9

1.4.8 Industrial Control (IC) ... 9

1.4.9 Social Networking Stream (SNS) .. 10

1.5 Research Contributions and Limitations ... 10

1.6 List of Acronyms .. 13

 vi

CHAPTER 2 – ANOMALIES AND ANOMALY DETECTION QUICK LOOK .. 14

2.1 Anomaly Detection Terminology .. 14

2.2 Streaming Spatiotemporal Data ... 15

2.3 Supervised, Semi-Supervised, Self-Supervised, and Unsupervised Learning 18

2.4 Anomaly Scoring and Labeling .. 20

2.5 Algorithm Performance Evaluation .. 21

2.5.1 Confusion Matrix .. 22

2.5.2 Precision Recall Tradeoff.. 23

2.5.3 The Receiver Operating Characteristic (ROC) Curve .. 25

CHAPTER 3: EXPERIMENTATION DATASETS .. 27

3.1 Introduction .. 27

3.2 Feature Scaling .. 28

3.3 Datasets for Experimentation ... 29

3.3.1 Credit Card Fraud (FRAUD) .. 29

3.3.2 Secure Water Treatment (SWAT) Testbed .. 31

3.3.3 Water Distribution (WADI) Testbed ... 34

3.3.4 DATACENTER .. 38

3.4 Experimentation Dataset Summary .. 39

CHAPTER 4: TRADITIONAL MACHINE LEARNING (TML) ALGORITHMS .. 40

4.1 Introduction .. 40

4.2 Experimentation Algorithms ... 41

4.3 One-Class Support Vector Machine (Linear Model) ... 42

 vii

4.4 Principal Components Analysis (Linear Model) .. 43

4.5 K-Nearest Neighbor (Proximity-Based Model) ... 43

4.6 Local Outlier Factor (Proximity-Based Model).. 44

4.7 Cluster-Based Local Outlier Factor (Proximity-Based Model) .. 45

4.8 Histogram-Based Outlier Score (Proximity-Based Model) ... 45

4.9 Isolation Forest (Ensemble Technique) .. 46

4.10 Minimum Covariance Determinant (Probabilistic Model) ... 46

4.10.1 An Aside on Mahalanobis Distance ... 48

4.11 Summary ... 49

CHAPTER 5 – TRADITIONAL MACHINE LEARNING (TML) EXPERIMENTATION 51

5.1 Experimentation Overview ... 51

5.2 Experimentation Execution Time .. 52

5.3 Experimentation Performance Results ... 53

5.3.1 FRAUD Experimentation .. 55

5.3.2 SWAT Experimentation .. 56

5.3.3 WADI Experimentation .. 56

5.3.4 DATACENTER Experimentation .. 56

5.4 Experimentation Conclusions ... 58

CHAPTER 6 – DEEP NEURAL NETWORK (DNN) ANOMALY DETECTION .. 70

6.1 Background ... 70

6.2 Architecture #1: Shallow/Deep Autoencoder (SDA) .. 72

6.2.1 SDA Anomaly Detection Algorithm .. 76

 viii

6.3 Architecture #2: Variational Autoencoder (VAE) .. 77

6.3.1 An Aside on Kullback-Liebler (K-L) Divergence .. 80

6.3.2 VAE Anomaly Detection Algorithm .. 80

6.4 Architecture #3: Deep Autoencoding Gaussian Mixture Model (DA-GMM) 81

6.5 Architecture #4: Generative Adversarial Network (GAN) .. 84

6.5.1 GAN Anomaly Detection Algorithm ... 86

6.6 Architecture #5: Encoding-Decoding Recurrent Neural Network (ED-RNN) 87

6.6.1 ED-RNN Anomaly Detection Algorithm ... 90

6.7 Architecture #6: Encoding-Decoding 1D Convolutional Neural Network (ED-1D-CNN) 91

6.7.1 ED-1D-CNN Anomaly Detection Algorithm .. 92

6.8 Architecture Summary .. 93

6.9 Related Work .. 95

6.9.1 Architecture #1: SDA Related Work ... 96

6.9.2 Architecture #2: VAE Related Work ... 97

6.9.3 Architecture #3: DA-GMM Related Work .. 97

6.9.4 Architecture #4: Generative Adversarial Network (GAN) .. 98

6.9.5 Architecture #5: Encoding-Decoding Recurrent Neural Network (ED-RNN) 98

6.9.6 Architecture #6: Encoding-Decoding One-Dimensional CNN (ED-1D-CNN) 99

CHAPTER 7 – DEEP NEURAL NETWORK (DNN) EXPERIMENTATION ... 100

7.1 Background ... 100

7.2 t-SNE Visualization .. 101

7.3 Experimentation Methodology and Hyperparameters .. 104

 ix

7.4 Architectures #1 – Shallow Deep Autoencoder (SDA) Results ... 106

7.4.1 Architecture #1: Shallow Autoencoder Results ... 107

7.4.2 Architecture #1: Deep Autoencoder Results ... 110

7.5 Architecture #2: Variational Autoencoder (VAE) Results ... 113

7.6 Architecture #3: Deep Autoencoding Gaussian Mixture Model (DA-GMM) Results 115

7.7 Architecture #4: Generative Adversarial Network (GAN) Results 118

7.8 Architecture #5: Encoder-Decoder Recurrent Neural Network (ED-RNN) Results 120

7.9 Architecture #6: Encoding-Decoding 1-D Convolutional Network (ED-1D-CNN) Results 123

7.10 Experimentation Results Summary .. 124

CHAPTER 8 – SPATIOTEMPORAL ANOMALY DETECTION ENVIRONMENT (STADE) 127

8.1 Introduction .. 127

8.2 Design Considerations .. 128

8.2.1 Systems Engineering .. 128

8.2.2 Geospatial Distribution .. 129

8.2.3 Stream Processing .. 129

8.2.4 Algorithmic ... 130

8.2.5 Decision Support System (DSS) .. 131

8.3 Concept of Operations (CONOPS)... 131

8.3.1 An Aside on Federated Learning (FL) ... 132

8.4 Architecture and Components.. 134

8.5 Federated Anomaly Detector (FAD) and the Global Score Repository 137

8.6 Algorithms and Estimation ... 138

 x

8.6.1 STADE SGD ALGORITHMS .. 140

8.7 STADE Instantiation .. 143

8.7.1 Operational Environment .. 143

8.7.2 Infrastructure Software ... 145

8.7.3 SAD and FAD Anomaly Detectors .. 145

8.7.4 Decision Support System (DSS) .. 146

8.7.5 Workflow .. 146

8.8 Case Study Objectives ... 147

8.9 Summary ... 148

8.10 Related Work .. 149

CHAPTER 9 – STADE CASE STUDY #1: GLOBAL AIR TRAFFIC (GAT) ... 152

9.1 GAT Background ... 152

9.2 GAT Architecture Design Decisions .. 152

9.2.1 GAT Anomaly Definition... 153

9.2.2 GAT Data Sources ... 154

9.3 GAT Case Study Results... 155

9.4 GAT Related Work ... 156

CHAPTER 10 – STADE CASE STUDY #2: EARTH SCIENCE (ES) .. 157

10.1 ES Background .. 157

10.2 ES Architecture Design Decisions ... 157

10.2.1 ES Anomaly Definition.. 157

10.2.2 ES Data Sources and Design ... 157

 xi

10.3 ES Case Study Results ... 159

10.4 ES Related Work.. 160

CHAPTER 11 – STADE CASE STUDY #3: SOCIAL NETWORKING STREAMS (SNS) 161

11.1 SNS Background .. 161

11.2 SNS Architecture Design Decisions ... 162

11.2.1 SNS Anomaly Definition ... 162

11.2.2 SNS Data Sources ... 162

11.3 SNS Case Study Results ... 163

11.4 SNS Related Work ... 166

CHAPTER 12 – CONCLUSIONS AND RECOMMENDATIONS ... 168

12.1 Conclusions ... 168

12.2 Recommendations for Future Work ... 169

REFERENCES .. 171

 xii

LIST OF TABLES

Table 1: Anomaly Detection Use Cases .. 6

Table 2: List of Acronyms .. 13

Table 3: Confusion Matrix ... 23

Table 4: FRAUD Statistics .. 30

Table 5: SWAT Statistics .. 33

Table 6: WADI Statistics .. 36

Table 7: DATACENTER Statistics .. 38

Table 8: Comparison of Anomaly Detection Datasets .. 39

Table 9: Traditional Machine Learning Unsupervised Anomaly Detection Techniques 42

Table 10: Traditional Machine Learning Clock Times (Seconds) ... 53

Table 11: FRAUD Experimentation Results ... 57

Table 12: Secure Water Treatment Testbed (SWAT) Experimentation Results 57

Table 13: Water Distribution Testbed (WADI) Experimentation Results 57

Table 14: DATACENTER Experimentation Results .. 58

Table 15: Comparison of Anomaly Detection Architectures .. 94

Table 16: Architecture Anomaly Scoring Summary .. 106

Table 17: Shallow-Deep Autoencoder DNN Parameters .. 107

Table 18: Shallow Autoencoder Experimentation Results ... 108

Table 19: Deep Autoencoder Summary Experimentation Results ... 111

Table 20: Variational Autoencoder Experimentation Results .. 114

 xiii

Table 21: Deep Autoencoding Gaussian Mixture Model Experimentation – FRAUD 117

Table 22: Deep Autoencoding Gaussian Mixture Model Experimentation – SWAT 117

Table 23: Deep Autoencoding Gaussian Mixture Model Experimentation – WADI 118

Table 24: Deep Autoencoding Gaussian Mixture Model Experimentation – DATACENTER 118

Table 25: Generative Adversarial Network Experimentation Results .. 119

Table 26: ED-RNN FRAUD Experimentation Results ... 122

Table 27: ED-RNN SWAT Experimentation Results ... 122

Table 28: ED-RNN WADI Experimentation Results ... 122

Table 29: ED-RNN DATACENTER Experimentation Results .. 122

Table 30: ED-1D-CNN Experimentation Results.. 123

Table 31: Federated Learning and STADE ... 134

Table 32: STADE Terminology and Components .. 135

Table 33: STADE Case Study Software Components .. 145

Table 34: Global Air Traffic Data Elements ... 154

Table 35: Global Air Traffic Top 10 Anomaly Report (Over 24-Hour Period) 156

Table 36: Earth Science Data Elements .. 158

Table 37: Earth Science Top 10 Anomaly Report (Earthquakes Last 30 Days) 160

Table 38: Social Networking Streams Data Elements ... 163

 xiv

LIST OF FIGURES

Figure 1: Local vs. Global Anomalies ... 14

Figure 2: Sensor Network No Lag.. 17

Figure 3: Sensor Network with Lag ... 18

Figure 4: Multi-Step Labeling .. 21

Figure 5: Precision-Recall Tradeoffs Example ... 25

Figure 6: Receiver Operating Characteristic (ROC) Example .. 26

Figure 7: FRAUD - Time Series of Transactions by Amount .. 31

Figure 8: Secure Water Treatment (SWAT) Testbed .. 32

Figure 9: Normal Operations of Sensor LIT01 ... 34

Figure 10: Under Attack of Sensor LIT01 .. 34

Figure 11: Water Distribution (WADI) Testbed .. 35

Figure 12: ‘V1’ Sensor - Normal Operations ... 37

Figure 13: ‘V1’ Sensor - Under Attack ... 37

Figure 14: Datacenter #1 ‘Value’ – Normal Ops ... 39

Figure 15: Datacenter #1 ‘Value’ – Attack Ops ... 39

Figure 16 – Clustering-Based Local Outlier Factor (CBLOF) .. 60

Figure 17: Histogram-Based Outlier Score (HBOS) ... 61

Figure 18: Isolation Forest (IF) .. 62

Figure 19: k-Nearest Neighbor (k-NN) .. 63

Figure 20: k-Nearest Neighbor (kNN - Mean) ... 64

 xv

Figure 21: k-Nearest Neighbors (kNN - Median) .. 65

Figure 22: Local Outlier Factor (LOF) .. 66

Figure 23: Minimum Covariance Determinant (MCD) .. 67

Figure 24: One-Class Support Vector Machines (OC-SVM) .. 68

Figure 25: Principal Components Analysis (PCA) .. 69

Figure 26: Shallow/Deep Autoencoder (SDA) ... 74

Figure 27: SDA Anomaly Detection Algorithm .. 77

Figure 28: Variational Autoencoder (VAE) .. 78

Figure 29: VAE Anomaly Detection Algorithm .. 81

Figure 30: Deep Autoencoding Gaussian Mixture Model (DA-GMM) .. 83

Figure 31: DA-GMM Anomaly Detection Algorithm ... 84

Figure 32: Generative Adversarial Network (GAN) ... 85

Figure 33: GAN Anomaly Detection Algorithm ... 86

Figure 34: Encoding-Decoding Recurrent Neural Network (ED-RNN) .. 88

Figure 35: ED-RNN Anomaly Detection Algorithm ... 91

Figure 36: Encoding-Decoding One-Dimensional Recurrent Neural Network (ED-1D-CNN) 92

Figure 37: ED-1D-CNN Anomaly Detection Algorithm .. 93

Figure 38: t-SNE Plots – 0 and 50 Perplexity ... 103

Figure 39: Shallow Autoencoder Training ... 110

Figure 40: Deep Autoencoding Training ... 112

Figure 41: Variational Autoencoder Training.. 115

Figure 42: Deep Autoencoding Gaussian Mixture Model Training .. 116

 xvi

Figure 43: Generative Adversarial Network Training ... 120

Figure 44: STADE Top-Level Architecture ... 132

Figure 45: STADE Site Internal Architecture ... 136

Figure 46: Stochastic Gradient Descent .. 143

Figure 47: Delayed Parameter Estimation .. 143

Figure 48: STADE Case Study Testbed .. 144

Figure 49: STADE Case Study Workflow ... 147

Figure 50: Global Air Traffic Decision Support Map ... 155

Figure 51: Earth Science Decision Support Map ... 159

Figure 52: Social Networking Stream (Twitter) Feed .. 164

Figure 53: Global ‘Coronavirus’ Tweets – 15 Minute Period 4/6/2020 164

 1

CHAPTER 1 INTRODUCTION

1.1 Background

Anomaly detection is the science of identifying novelties, non-conforming patterns in

data [1]. Anomalies are known in the literature as noise, deviations, and exceptions. The study

of anomaly detection has a long history in multiple disciplines, including engineering, statistics,

economics, bioinformatics, and geoinformatics. Recent research has been focused on the

financial, cyber, robotics, and medical application domains. Fraud detection [2], intrusion

detection [3] and [4], data center management [5], [6] and [7], financial markets [8], robotics [9],

smart buildings [10], petroleum industry applications [11], computer network traffic [12],

software verification [13], water treatment [14], [15] and [16], and wireless networks [17] and

[18] are popular domains that have been addressed by anomaly detection architectures and

algorithms.

A variety of traditional machine learning (TML) algorithms has been applied to anomaly

detection problems. These algorithms range from stochastic models, time-series models, and

classification, clustering, and nearest neighbor non-parametric techniques. Most of the

approaches have been designed for small datasets and are non-scalable. Few studies have

addressed the requirement for large-scale, multivariate, streaming anomaly detection.

There has been a well-advertised renaissance in the field of artificial intelligence and the

use of deep neural networks (DNN) to address complex engineering problems such as computer

vision, natural language processing, and robotics. While research has progressed on the

application of DNNs to large-scale anomaly detection [19], progress has been hampered by the

lack of quality datasets [20]. Anomaly detection experimentation has resorted to the production

of synthetically generated labeled data to conduct experiments. Perhaps more significantly, the

 2

greater focus now has been placed on the development of unsupervised or self-supervised

learning techniques to exploit a large number of unlabeled datasets.

Why DNNs for anomaly detection? The short answer is that TML algorithms have

proven to be insufficiently robust for application to complex anomaly detection problem

domains. TML algorithms produce anomaly scores on individual sample points, which is also

known as point anomalies. These scores are often interpreted as an anomaly probability. TML

algorithms do not transfer well to problem domains with streaming requirements, difficult to

decipher spatial inter-relationships, long time horizons, and complex multivariate interactions.

TML algorithms also produce mediocre results because of the core underlying model

assumptions of stationary data and processes are often erroneous. In the presence of non-

stationary data and processes, TML-based anomaly detection techniques may produce

suboptimal anomaly classifications.

 DNNs are particularly suited for the estimation of complex, data-driven behaviors when

the underlying generating model is uncertain or unknown [21]. Recent advances in neural

machine translation may be used as a template for potential advances in anomaly detection

algorithms [22]. For example, a language translation model can be formulated as a sequence-to-

sequence prediction model with compressed representations of sentences encoded for efficiency.

Analogously, a spatiotemporal anomaly detection problem may also be formulated as a

temporal-to-temporal prediction problem with encoded data representations; anomalies are

identified when the predicted representation of the sequence of events deviates substantially for

the observed representation.

 3

1.2 Engineering Challenge

The growth of the internet has created an explosion of streaming data generated from

social networking web sites, mobile devices, and the internet-of-things (IoT). Supervisory

control and data acquisition (SCADA) software and hardware components that monitor and

process real-time data at geographically distributed sites create massive volumes of streaming

data. Ubiquitous embedded devices such as space-based sensors, robotics, and autonomous self-

driving vehicles also generate raw stream data. In these cases, robust, near real-time anomaly

detection techniques are required for optimal functionality and safety.

The engineering challenge is to design domain-independent architectures and algorithms

that exploit the underlying or hidden spatial and temporal (spatiotemporal) relationships that

contribute to the timely identification of anomalies in multivariate data streams. The definition of

timely is domain-dependent or analyst-defined. The term spatiotemporal can be broadened to

include sequential data without a time dimension (e.g., a DNA sequence). The terms temporal

and sequential are used interchangeably, but the focus here is on time and geospatially dependent

streams.

1.3 Organization

 Chapter 1 (this chapter) provides a general overview; spatiotemporal anomaly detection

is placed into perspective by presenting several real-world use cases. Chapter 2 highlights some

foundational topics, including the types of anomalies, anomaly labeling and scoring, the use of

unsupervised techniques, and anomaly detection performance evaluation. Chapter 3 presents the

four (4) datasets used for TML and DNN experimentation, while Chapter 4 discusses the nine (9)

different TML techniques used for experimentation. The discussion also includes a literature

review. Chapter 5 then discusses the TML experimentation results. The purpose of Chapters 4

 4

and 5 is not to provide a comprehensive evaluation of TMLs as applied to anomaly detection

problems; instead, the discussion provides a sharp contrast to the DNNs presented in Chapter 6.

Various flavors of autoencoders, generative adversarial networks, and recurrent neural networks

are discussed in Chapter 6; these representational learning models, also known in the popular

science literature as deep learning, are a vital ingredient to the Spatiotemporal Anomaly

Detection Environment (STADE). Chapter 6 also provides an intensive literature review of

recent applications of representational learning to anomaly detection, most of which have

appeared in the last two to three years. Chapter 7 provides experimentation results associated

with the DNNs using the same datasets described in Chapter 3. These results are compared and

contrasted with the TML results to illustrate the performance benefits of DNNs. Leveraging the

recent advances in commercial cloud computing, Chapter 8 then presents the STADE

specification and testbed for distributed real-time streaming spatiotemporal data, including a

Stream Anomaly Detector (SAD) and a Federated Anomaly Detector (FAD). The purpose of the

FAD is to globally accumulate SAD scores and provide feedback back to the SAD

geographically distributed sites. Within STADE specification, there is an architecture

component, an algorithm component, and a testbed component. The architecture component

addresses how geospatially distributed sites orchestrate and communicate with each other. The

algorithm component addresses anomaly detection issues, neural networks, computation speed,

accuracy, and other topics of importance to DNN stream processing. The STADE testbed is a

cloud-based instantiation of the STADE architecture used for experimentation. Chapter 9

describes experimentation with the STADE testbed, including the data sources, estimation, and

the results of the global air-traffic case study; Chapter 10 describes the experimentation with the

global earthquake case study, and Chapter 11 describes experimentation with the social

 5

networking (i.e., Twitter™) case study. The first two case studies are engineering and earth-

science related, while the third case study is text related. Social media is viewed as a network of

human sensors, so the distinction is not critical; the architecture and algorithms described are

entirely domain independent. Finally, Chapter 12 provides a summary of the results, research

limitations, and recommendations for future research.

1.4 Use Cases

Use cases are a technique in systems engineering to explore essential concepts of an

underlying architecture or algorithm designed to solve real-world problems. Use cases can be

specified formally using modeling languages (e.g., Unified Modeling Language) or informally

using textual descriptions or flow diagrams. Examples of streaming anomaly detection use cases

include (1) Air Traffic Control (ATC): automatic tracking of flight anomalies and deviations

from normal operations; (2) Connected and Autonomous Vehicle (CAV): runtime identification

of hazards supporting the autonomous operation of vehicles; (3) Cyber-Physical System (CPS):

the recognition of cyber issues such as coordinated denial-of-service, network intrusion, and

other attacks in CPSs such as smart buildings and cloud data centers; (4) Distributed Sensor

Network (DSN): timely fault detection of geospatially distributed sensors; (5) Earth Science

(ES): the early warning of earthquakes, flooding, weather, and atmospheric anomalies; (6)

Global Contraband (GC): the identification of anomalous global cargo shipping patterns and

manifests designed to smuggle weapons of mass destruction and illicit drugs; (7) Global

Pandemic (GP): the identification of anomalous global transmittal of viruses and associated

infection and death rates; (8) Industrial Control (IC): the real-time identification of anomalies in

SCADA hardware and software elements that monitor and control industrial devices; and (9)

 6

Social Networking Stream (SNS): identification of anomalous events, changes in objectivity,

sentiment, fake news, and bot attacks through the mining of social network data and text streams.

Table 1 summarizes the characteristics of these selected use cases in terms of the type of

streaming data and the periodicity or frequency of the data. The required periodicity is

dependent on the specifics of the real-world application. With these use cases, there is a temporal

and spatial component that could be further exploited for spatiotemporal anomaly detection.

Table 1: Anomaly Detection Use Cases

Use Case Streaming Periodicity

Air Traffic Control (ATC) Airplane Tracking Minutes
Connected/Autonomous Vehicle (CAV) Vehicle Traffic Milliseconds
Cyber-Physical System (CPS) Cyber Seconds
Distributed Sensor Network (DSN) Satellite Sensors Milliseconds
Earth Science (ES) Land Sensors Seconds
Global Contraband (GC) Cargo Shipping Days/Weeks
Global Pandemic (GP) Infections Days
Industrial Control (IC) Robotic Sensors Seconds
Social Networking Stream (SNS) Sentiment, Bots Seconds

1.4.1 Air Traffic Control (ATC)

Air Traffic Control consists of a complex integrated system of pilots, controllers on the

ground, radar ground stations, control towers, and software. Because of the volume of flights,

flight anomalies may be undetected, resulting in catastrophic events. Actionable alerts may go

unnoticed. Recent examples of flight-path anomalies and catastrophic failures that were not

detected include Germanwings Flight 9525 [23] and Malaysia Airlines Flight 370 [24]. These

failures were believed to be caused by intentional pilot behaviors. In both cases, had the

anomalous flight path been detected in real-time, tragedies might have been prevented through

early recognition through automated algorithms and the electronic intervention. Global Air

Traffic (GAT) is the subject of the case study presented in Chapter 9.

 7

1.4.2 Connected and Autonomous Vehicle (CAV)

CAVs rely on their local sensors and information received from other nearby vehicles

and road structures to navigate the roadway safely. CAVs use wireless and near-field

technologies to communicate. Hazard identification is critical to the operation and

commercialization of CAVs. By their nature, CAVs generate spatiotemporal data. Streaming

anomalous data generated through faulty sensors or a malicious local cyberattack could result in

severe consequences, including fatal car crashes. The automated and timely detection of

anomalies in real-time is critical to the long-term commercial success of CAVs.

1.4.3 Cyber-Physical System (CPS)

 Foreign network attacks, host-based intrusions, malware, and other malicious cyber-

attacks on CPSs [25], including the electrical grid, power plants, and water distribution networks,

can have severe economic and security consequences. These attacks are generally recognized

through the analysis of network packet attributes (e.g., the source and destination of the packet’s

Internet Protocol (IP) address) or the evaluation of terabyte-sized, text-based log files. Anomaly

detection based on discrete event temporal sequences in log files is critical [26]; unfortunately,

the recognition of these attacks is often too late to be actionable. Anomaly detection techniques

that could recognize cyber-attacks in real-time by analyzing CPS streaming network traffic and

log files would increase cybersecurity. Since cyberattacks may originate globally, initiated by

adversarial nation-states, cyber data streams have a strong geographic component that could be

exploited by the spatiotemporal aware anomaly detection algorithm.

1.4.4 Distributed Sensor Network (DSN)

DSNs are characterized by a spatially distributed set of autonomous devices used to

monitor and log physical or environmental conditions. Often, these devices are located at the

 8

network edge at disadvantaged locations where power and computer resources are limited.

Extreme values of sensor readings might indicate a sensor fault or point anomaly. The anomaly

detection algorithm must be able to detect the difference between a faulty sensor and valid but

previously unseen data.

Through continuous monitoring, the spatial and temporal characteristics of DSN outputs

can be exploited by analyzing not only the sequence of sensor reads at a particular location, but

also by the relationship between the sequences at two or more sensor locations. Detection of an

adversary missile launch, for example, could be formulated as an anomaly detection problem

where the spatiotemporal pattern of sensor outputs from one satellite is time-related to the

spatiotemporal pattern of outputs from a related satellite. Data can be transmitted remotely to a

centralized server, aggregated, fused, and then deployed to a time-critical decision support

system. For example, space-based sensors attached to multiple geo-spatially distributed satellite

monitor and detect adversary missile launches. Anomalous sensor data could be an indicator of a

sensor failure or a real adversarial missile launch.

1.4.5 Earth Science (ES)

 Anomaly detection and related techniques applied to ES spatiotemporal domains,

including global warming simulation, earthquake prediction, ozone level detection [27], ocean

surface temperature monitoring, hurricane modeling, and the early warning of flood events [28].

ES has perhaps the most durable spatial component of all of the use cases listed in Table 1. This

domain is heavily multivariate; for example, land cover anomalies often proxy previously

unrecognized climate change and geological activity. Streaming weather shape data and satellite

images used in conjunction with other earth science sensors may be inputs into contextual

anomaly detection algorithms. In the future, earthquake prediction based on ES temporal and

 9

spatial anomalous variations might be identified through representational learning algorithms. ES

is the subject of the case study found in Chapter 10.

1.4.6 Global Contraband (GC)

 Maritime Domain Awareness is the term used to describe the process of monitoring

commodity import patterns and global ship movements [29]. Terrorists and rogue nations use

cargo shipping as the primary means to smuggle GC, including nuclear weapon materials and

illicit drugs. Algorithms that identify anomalous shipping transactions, fraudulent manifests,

fake companies, and previously unseen ship movement patterns could be a capable detector of

international smuggling and attempts to avoid financial sanctions [30].

1.4.7 Global Pandemic (GP)

 A global pandemic is the rapid spread of a disease or virus across one or more regions.

The H1N1 swine flu pandemic of 2009 and the COVID-19 pandemic of 2020 are examples of

epidemics that originate one country and spread globally over time, sometimes over a few days

or weeks. The spread of the disease or virus can be modeled, in part, as a spatiotemporal

anomaly detection problem similar to a computer network virus. Geographic and sequential

anomalies can be identified when particular regions exhibit low or high pandemic infection rates.

Anomaly detection can be used in forecasting models to guide better public-policy decision

making (e.g., to avoid draconian countermeasures) and to evaluate the reliability of published

infection and death rate data by controlled governments.

1.4.8 Industrial Control (IC)

 The Association for Computing Machinery 2017 Distributed and Event-Based Systems

Grand Challenge focused on the problem of the analysis of anomalies in streaming IC data

generated by digital and analog sensors embedded within manufacturing equipment [31].

 10

Factory floor equipment failures in the manufacturing process often result in defective products.

Equipment failures may occur randomly or incrementally over time. Automated diagnosis of

industrial equipment using anomaly detection techniques could result in the early identification

of faulty product manufacturing and failing equipment. Delayed recognition of faulty

manufacturing processes increases product rework expenses and other costs. Unusual shapes of

temporal values originating from equipment sensors may indicate an emergent equipment failure

or the need for preventative maintenance.

1.4.9 Social Networking Stream (SNS)

 Social networks such as Twitter™, Instagram™, and YouTube™ generate massive

geographically distributed SNSs and images with annotations. SNSs effectively form a grid of

human sensors. These SNSs provide valuable, timely, and actionable intelligence and

situational awareness on evolving current events, natural emergencies, adversarial cyberattacks,

and consumer sentiment. The volume and variety of these SNSs create a technical barrier to

their exploitation. Anomaly detection techniques can be used to identify critical social

networking information that would otherwise be lost in the noise by traditional algorithms.

SNSs are the subject of the case study presented in Chapter 11.

1.5 Research Contributions and Limitations

The contributions of this research are as follows:

1. A benchmark comparison between TML and DNN algorithms to identify various types of

anomalies using datasets from multiple application domains.

2. A novel STADE architecture that employs a continuous running DNN with parameter

updates in a unified framework to identify anomalies in multivariate, streaming

spatiotemporal data. Within the STADE architecture is a Stream Anomaly Detector

 11

(SAD) and a Federated Anomaly Detector (FAD) that identifies relationships among

LAD anomalies.

3. Three cloud-based case study demonstrating architecture and algorithmic concepts of

STADE using live commercial air traffic flow from globally positioned sensors, live

global earthquake readings from global sensors, and streaming tweets from the social

network provider Twitter™.

In order to focus on the algorithms associated with spatiotemporal anomaly detection,

there are several related albeit essential topics that will not be addressed in detail. The massive

growth in the accuracy and performance of representational learning has been a result, in part by

the availability of powerful Graphical Processing Units from NVIDIA, Tensor Processing

Units from GOOGLE, and various Application-Specific Integrated Circuits. NVIDIA’s

parallel computing infrastructure can speed-up representational learning calculations by orders of

magnitude over sequentially-based programming. Optimization and performance enhancements

through the use of parallel computing architectures are not explicitly addressed herein.

Seasonality in temporal data is typical but is not incorporated into the anomaly detection

algorithms. Similarly, there are conceptual differences between locally distributed and globally

distributed anomaly detection algorithms. Local distribution may execute within a data center or

factory floor, while global distribution may be across the world in the commercial cloud. The

focus of the case study is on the commercial cloud, but the results could be extended to local,

clustered-based computing.

Image anomaly detection, an emerging application area in representational learning, is

not addressed. For example, automatic machinery surface image inspection for fault detection,

building entry image detection for anomalous human activity, automated analysis of temporal x-

 12

rays images for medical diagnosis are examples of the application of anomaly detection

algorithms. Convolutional neural networks (CNNs) is the neural network architecture primarily

used in vision problems. While vision anomaly detection problems are not addressed, CNNs

adapted to non-vision multivariate anomaly problems are discussed in Chapters 6 and 7.

Despite the explosion in the deployment of machine learning models for decision

support, research in understanding the underlying reasoning behind representational learning is

an open research problem. Explainable AI is essential, especially in mission-critical domains,

because decision-makers need to have trust in a model override of personal expertise and

intuition [32], [33]. Explaining anomaly designations produced by neural networks and trust

versus untrustworthy models are critical topics that will not be addressed. For a recent

comprehensive survey of techniques for explaining black-box models, see [34] and [35].

 13

1.6 List of Acronyms

Table 2: List of Acronyms

1D-CNN One Dimensional Convolutional Neural Network
ATC Air Traffic Control
AUC The area under the (ROC) Curve
BACKPROP The Backpropagation Algorithm
CAV Connected/Autonomous Vehicles
CBLOF Cluster-Based Local Outlier Factor TML technique
CNN Convolutional Neural Network
CONOPS Concept of Operations
CPS Cyber-Physical System
DATACENTER The Yahoo Datacenter anomaly detection dataset used for experimentation.
DA-GMM Deep Autoencoding Gaussian Mixture Model
DNN Deep Neural Network
DSN Distributed Sensor Network
DSS Decision Support System
ED-1D-CNN Encoding-Decoding One-Dimensional Recurrent Neural Network
ED-RNN Encoding-Decoding Recurrent Neural Network
ES Earth Science
FAD Federated Anomaly Detector
FFN Feed-Forward Neural Network
FL Federated Learning
FN / FNR False Negative / False Negative Rate
FP / FPR False Positive / False Positive Rate
FRAUD The credit card fraud dataset used for experimentation
GAN Generative Adversarial Network
GAT Global Air Traffic
GC Global Contraband
GP Global Pandemics
GPU Graphical Processing Unit
HBOS Histogram-Based Outlier Score TML technique
IC Industrial Control
IDS Intrusion Detection System
IF Isolation Forrest TML technique
IoT Internet-of-Things
K-L Kullback-Leibler Divergence
k-NN k Nearest Neighbor TML technique
LOF Local Outlier Factor TML technique
LSTM Long Short-Term Memory
MCD Minimum Covariance Determine TML technique
NLP Natural Language Processing
OC_SVM One-Class Support Vector Machine TML technique
PCA Principal Components Analysis TML technique
RE Reconstruction Error
ROC Receiver Operating Characteristic
RNN Recurrent Neural Network
SAD Stream Anomaly Detector
SCADA Supervisory Control and Data Acquisition
SDA Shallow-Deep Autoencoder
SGD Stochastic Gradient Descent
SNS Social Networking Stream
STADE Spatiotemporal Anomaly Detection Environment
SVM Support Vector Machine
SWAT The Secure Water Treatment Testbed dataset used for experimentation
T-SNE t-distributed Stochastic Neighbor Embedding
TML Traditional Machine Learning
TN / TNR Ture Negative / True Negative Rate
TP / TPR True Positive / True Positive Rate
USGS United States Geological Survey
VAE Variational Autoencoder
WADI The Water Distribution Testbed dataset used for experimentation.

 14

CHAPTER 2 – ANOMALIES AND ANOMALY DETECTION QUICK LOOK

2.1 Anomaly Detection Terminology

There are three types of anomalies: (1) point, (2) contextual, and (3) collective. Point

anomalies occur when a sample is unusual with respect to one or more other samples. Contextual

anomalies occur when a sample is unusual when viewed within a specific, operational context.

A significant change in a sensor value over two adjacent periods or two adjacent regions, for

example, might indicate a contextual anomaly. Collective anomalies occur when one or more

samples are unusual with respect to the entire dataset. Point anomalies are more extensively

studied and more straightforward to identify than collective and contextual anomalies.

Figure 1: Local vs. Global Anomalies

 Consider Figure 1, which illustrates the distinction between local and global anomalies.

Local anomalies are identified with respect to the nearest neighbors, while global anomalies are

identified with respect to the entire dataset. Therefore, local anomalies are typically point or

contextual, while global anomalies are collective. However, there is not a one-to-one

 15

relationship between the definitions of local and global anomalies, and point, contextual, and

collective anomalies. Local anomalies often occur in ecology and other biological domains.

Note the subtle distinction in the literature between an outlier, anomaly, and a novelty.

An outlier is a data point that has a low probability of occurrence but is not necessarily

anomalous. For example, random noise may cause outliers in data. An anomaly has an even

lower probability than an outlier so that the definition is one of degree; the threshold is

determined by the characteristics of the domain and the use case. A novelty is an infrequent

event. However, the distinction between an outlier, anomaly, and novelty is not critical to the

discussion here.

There are many core causes of anomalies. Uncertainties can cause anomalies and outliers.

Uncertainty can be a result of incomplete domain understanding, incomplete observability,

stochasticity, incomplete modeling, or inappropriate model abstraction. Anomalies can also be

an outcome of unidentified changes over time in normal behavior, or intentional changes in

behavior such as malicious actions by adversaries.

2.2 Streaming Spatiotemporal Data

 Streaming is defined as the digital process of receiving data through a network in a

continuous flow. The time intervals between receipt may or may not be equal depending on the

problem domain. Stream processing is the term used synonymously with the term ‘online’ and is

the opposite of batch processing. With streaming, each sample is processed sequentially with the

model or algorithmic parameter updates on-the-fly. Anomaly scoring is also continuous;

anomaly designations are made immediately at the time of receipt, and there is no revision of

past designations. Upon receipt, samples are stored in local volatile memory, on disk in

 16

persistent storage, transmitted via a network and combined with other sites in a central database

server, or discarded on the spot.

Streaming samples may be unordered, time-dependent, geographic-dependent, or

spatiotemporal. With unordered streams, each sample is independent of the next; the sequential

nature of the stream is unimportant. A time-dependent stream, which is also known under the

moniker of time-series, includes a time dimension. A geographic-dependent stream includes a

unique location or geographic dimension. Examples of location or geographic features include a

latitude and longitude or a computer internet protocol (IP) address. In many statistical models,

larger geographic regions (e.g., North America) may be incorporated by one-hot or dummy

variable encoding. The combination of time dependence and location significance in a data

stream is the working definition of spatiotemporal.

Note that in non-engineering disciplines, spatiotemporal is referred to as a ‘time series of

cross-sections’ (e.g., economics) or sequences (e.g., bioinformatics). However, not all sequences

are logically streamed. A linearly ordered string such as a DNA encoding is ordered but not

conceptually transmitted sequentially through a network and hence does not fit into the definition

of streaming.

There are numerous application examples of streaming spatiotemporal data in the

anomaly detection literature. The domain that has received the most research attention is

network intrusion detection systems (IDSs). An IDS monitors the inbound and outbound

network packets in real-time for malicious activity (e.g., viruses or worms) and policy violations

(e.g., network traffic originating from a prohibitive source). An IDS detects anomalies based on

individual packet snapshots or adjacent packet changes. Other examples of streaming

spatiotemporal applications include global air traffic, global earthquake monitoring, and

 17

Twitter™ social networking tweets. These latter examples are the focus of the case studies

presented in Chapters 9-11.

Consider Figure 2, which illustrates the example of a temporal sensor stream from two

locations without a geographic time lag. A contextual and point anomaly would be detected

around periods 15 and 29 in both Region #1 and Region #2 due to the sudden spike down in the

temporal neighborhood. However, there would be no collective anomaly because the value

pattern repeats not only within a region but also between regions. These types of patterns may be

easy to recognize with two regions but more challenging to identify with multivariate, multi-

regional data.

Figure 3 illustrates a related example of a sensor network with two regions. Is this

example, the sensors produce values that are identical in both regions; however, there is a five-

time unit offset in region two. Both regions have the same shape of sensor values, so from a

collective perspective, when multiple regions are analyzed jointly, no anomalies exist if an

interregional lagged response is expected.

Figure 2: Sensor Network No Lag

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Region #1

Time Stamp

T
im

e
 S

e
ri

e
s

V
a

lu
e

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Region #2

Time Stamp

T
im

e
 S

e
ri

e
s

V
a

lu
e

SENSOR NETWORK

 18

Figure 3: Sensor Network with Lag

 Some anomaly detection techniques can be modified to support high-tempo streaming

data even with slower executing algorithms. Techniques that can process sub-windows of the

entire stream can be adapted for streaming sequence data by assigning an independent anomaly

score to each sub-window. Scores are based on only the samples within the window. The

overall anomaly may be designated when a sequence of scores is anomalous. The adaptation of

existing anomaly detection techniques is discussed in Chapter 3 (TML models) and Chapter 5

(DNN models).

2.3 Supervised, Semi-Supervised, Self-Supervised, and Unsupervised Learning

Studies of anomaly detection employ supervised, semi-supervised, self-supervised, or

unsupervised techniques. Supervised learning requires labeled training instances. Semi-

supervised learning uses a combination of labeled and unlabeled data and is required in cases

where there are insufficient labeled instances. Examples of supervised and semi-supervised

TML techniques include support vector machines, decision trees, random forests, and multiple

variants of regression analysis. DNNs formulated as a supervised learning problem are also

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Region #1

Time Stamp

T
im

e
 S

e
ri

e
s

V
a

lu
e

SENSOR NETWORK WITH LAG

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

REGION #2

Time Stamp

T
im

e
 S

e
ri

e
s

V
a

lu
e

 19

popular in the anomaly detection literature. For example, DNN-based fraud detection models use

supervised learning because of the ready availability of financial transactions from financial

institutions. Similarly, DNN-based network spam models use supervised learning because of the

availability of attack data from commercial and internet providers. However, in most other

domains, labeled datasets are not readily available.

Self-supervised approaches replicate the input data probabilistically through a model; the

target is the input sample. Principally, self-supervised techniques are supervised since training

occurs with a target variable, although labeled data are not used. An example of a self-

supervised technique is the various flavors of autoencoders. Autoencoding and other techniques

for self-supervision in the context of anomaly detection are discussed in detail in Chapter 6.

Unsupervised techniques are based on unlabeled data and assume that the training data

includes both anomalous and non-anomalous. Some authors note the distinction between the

definition of outlier detection and novelty detection. Outlier detection assumes that the training

data may include anomalies, while novelty detection assumes that training data does not include

anomalies. In any event, by definition, an anomaly is a rare event; the inclusion of infrequent

anomalies in unsupervised training datasets usually does not introduce bias.

In summary, the focus of the research here is on self-supervised or unsupervised

techniques (used interchangeably), where the assumption is that the training data may contain

anomalies but at a low, insignificant frequency. Chapter 4 addresses unsupervised TML

techniques, while Chapter 6 addresses unsupervised and self-supervised DNN techniques. Note

that while unsupervised or self-supervised techniques do not require labeled anomaly data, labels

are still required on the test data in order to measure the efficacy of the algorithm. Section 2.5

below discusses algorithm performance evaluation.

 20

2.4 Anomaly Scoring and Labeling

At the core of anomaly detection is a classification problem. Labeling is the process of

assigning a score or metric and specifying a decision function that maps the score or metric to a

binary anomaly classification. While the classification is binary, the anomaly score will also

indicate the probability of abnormality. Labels may be assigned to a single instance in the case

of point anomalies, or a set of points, in the case of contextual or collective anomalies.

Each algorithm has a unique approach to anomaly scoring and the classification function.

One approach is to rank-order the anomaly scores from low-to-high. Assuming that the highest

scores are the most anomalous, and if there are x percent anomalies identified in the training

data, then the top x percent of the anomaly scores in the test data are designated as anomalous.

Other approaches are based on probability cut-off values, various distance measures, and

asymmetric risk objectives. Scoring and labeling of streaming data occur continuously and in

real-time.

Anomaly labeling may be multi-step. For example, an anomaly might be defined as a

temporal sequence that produces a point anomaly in three consecutive periods in two or more

regions. Moreover, if the risk profile is asymmetric, the underprediction of anomalies may

introduce a higher risk than over prediction. An algorithm that consistently overpredicts this

anomaly over four consecutive periods may be preferable to another algorithm that consistently

underpredicts. These complexities make multi-step labeling challenging to generalize and highly

domain-dependent.

There are four related approaches to multi-step anomaly labeling that are depicted in

Figure 4. Approach (a) is to estimate the required number of steps using a one-step model. For

example, for a three-step anomaly detection problem, three separate unsupervised models are

 21

estimated concurrently. Approach (b) is a variant of the first approach. A separate model is

estimated for each step, but the label from the previous step is used as input into the model for

the next step. With this approach, the models are estimated sequentially. Approach (c) is to use a

single model that is capable of estimating multiple steps. For example, a single DNN could be

formulated as multiple nodes in the output layer. Approach (d) is through a recursive sequential

approach. The recursive strategy involves using a one-step model where the label generated

from the previous step is used as an input into the prediction of the label in the next step. This

approach is preferred because of the lower computation requirements vis-à-vis running a separate

model for each step. Sequence-to-sequence recurrent neural networks (RNN) discussed in

Chapter 4 are based on this approach.

 Figure 4: Multi-Step Labeling

2.5 Algorithm Performance Evaluation

The focus of this research is on unsupervised TML and DNN, techniques that do not

require labeled data. However, without anomaly labels, how are algorithms evaluated? The

 22

answer is that labeled data is still required for evaluation purposes; the model parameters are

estimated using training data without labels, but the performance of the model is measured with

evaluation data that includes anomaly labels. Model parameters are applied to the evaluation

data, anomaly predictions made, and then compared against the actual labels to evaluate

performance. These performance measures relevant to the evaluation data are discussed below.

A couple of critical assumptions should be noted here. First, in the anomaly detection

literature, anomalies are deemed ‘positive’ outcomes, while non-anomalies are ‘negative’

outcomes. Second, the assumption is that anomalies are a rare event and are only a small

percentage of the overall population. Note that predictive accuracy is an inappropriate measure

of performance in anomaly detection studies because of the skewed population. If, for example,

there were only one percent (1%) anomalies in the population, a model that predicted one-

hundred percent (100%) non-anomalies would always be ninety-nine percent (99%) accurate.

2.5.1 Confusion Matrix

 Table 3 displays an example of the confusion matrix used in classification studies. A

confusion matrix is a two-by-two table that allows the comparison of the algorithmic

performance on test data. In this table, each row indicates the actual anomaly label, while each

column represents the predicted label. Therefore, the values down the diagonal represent perfect

classifiers, ‘true negatives’ (TN), and ‘true positives’ (TP). Because of the data imbalance, most

of the samples are expected to land in TN. The upper right quadrant includes false-positives

(FP), which are non-anomalies misclassified as anomalies, and the bottom left quadrant includes

‘false negatives’ (FN), which are anomalies misclassified as non-anomalies. Therefore, the total

number of misclassifications are FP+FN. With highly imbalanced data, classification accuracy is

not an appropriate metric for success.

 23

Note that with supervised learning, the output of a DNN is an anomaly prediction. With

anomaly predictions, the calculation of the confusion matrix is straightforward since the

anomalous population within the training dataset is known. The confusion matrix is based on a

threshold probability such as .5. With unsupervised learning, the anomalous population within

the training dataset is not known. Unsupervised techniques produce rank order anomaly scores

and do not produce direct probability estimates. For this reason, the confusion matrix under

supervised learning is only one example of a continuum of matrices based on the anomaly score

threshold value.

Table 3: Confusion Matrix

Confusion Matrix Predicted

Normal Anomalous

Actuals Normal True

Negative

(TN)

False

Positive

 (FP)

Anomalous False

Negative

(FN)

True

Positive

(TP)

2.5.2 Precision Recall Tradeoff

Let the decision function scoring threshold be denoted by t. Increases in the threshold t

result in fewer anomalies being classified in the test data. There is no right or wrong value for the

scoring threshold value t; this value depends on the objectives of the model or study.

The trade-off between failing to identify true anomalies (false negatives) and over-

identifying anomalies (false positives) is measured in terms of precision and recall, a standard

 24

approach to testing of classifiers. Precision is defined as the fraction of predicted anomalies

(TP+FP) that are accurately predicted (TP):

Precision(𝑡) = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (2.1)

Note that as the decision threshold t increases, the size of FP decreases as fewer anomalies are

predicted. Moreover, the precision metric in equation (2.1) is not monotonic in t since both the

numerator and denominator are a function of t.

 Recall is defined as the fraction of actual anomalies (TP+FN) that were accurately

predicted (TP). Recall is also known as the true positive rate (TPR) and is shown in equation

(2.2):

𝑅𝑒𝑐𝑎𝑙𝑙(𝑡) = 𝑇𝑃𝑅 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (2.2)

 The F1 metric, which is also known as the F-measure or F-score, combines precision and

recall into a single metric, the harmonic average, as shown in equation (2.3). This metric is

useful when comparing two classifiers, is a measure of the overall accuracy of the algorithm, and

is the harmonic average of the precision and recall. An F1 close to one indicates both high

precision and high recall:

𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (2.3)

The Precision-Recall Tradeoff curves shown in Figure 5 illustrates the relationship

between precision and recall metrics at various levels of the trade-off t. The two curves are

different viewpoints of the same data. The left-side curve incorporates the threshold t implicitly

while the right-side cure incorporates the threshold t as the x-axis. As the threshold t increases,

fewer anomalies are classified, so that the false positives decrease, increasing precision.

However, precision may also go down at some threshold t per equation (2.1), so the curve if

 25

often concave. Recall, however, is always a monotonic decreasing function of the threshold t.

An increase in threshold t will result in fewer predicted anomalies increasing false negatives.

Given equation (2.2), an increase in false negatives will always result in a decrease in the recall

metric.

Figure 5: Precision-Recall Tradeoffs Example

2.5.3 The Receiver Operating Characteristic (ROC) Curve

The final evaluation technique is the Receiver Operating Characteristic (ROC) Curve; an

example is shown in Figure 6. Similar to the precision-recall curves, each point on the ROC is

calculated by increasing the threshold t by a small amount. Using a ROC curve, the false positive

rate FPR(t), given by equation (2.4) is graphed on the x-axis, and the true positive rate TPR(t),

which is the same as recall and was given by equation (2.2), is graphed on the y-axis.

 26

 Figure 6: Receiver Operating Characteristic (ROC) Example

(𝐹𝑃𝑅) = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(𝑡) = 𝐹𝑃𝑇𝑁 + 𝑇𝑃 (2.4)

One statistic useful to compare the performance of different algorithms is the area under

the Receiver Operating Characteristic (ROC) curve or AUC. If one anomaly and one non-

anomaly sample are randomly selected from the dataset, AUC represents the likelihood that the

algorithm will assign a higher predicted probability on the anomaly. A random classifier will

have a ROC AUC equal to .5, while a perfect classifier will have a ROC equal to 1. The higher

the AUC, the better is the performance of the algorithm. Therefore, the ROC AUC is the

probability that a binary classifier will predict that a random positive (anomalous) sample is a

higher probability than a random negative (non-anomalous) sample. Top-performing anomaly

detection algorithms should produce AUCs above approximately .75 at a minimum.

 27

CHAPTER 3: EXPERIMENTATION DATASETS

3.1 Introduction

 Experimentation was conducted using four highly specialized anomaly detection datasets

from different application domains. All experimentation was performed in unsupervised mode.

Unsupervised mode means that labels were not used to train the model parameters and only used

to evaluate the algorithm against the test data. While the TML and DNN algorithms to be

discussed supports unsupervised or semi-supervised learning, there is still a practical need for

labeled test data to compare, evaluate, and score alternative techniques. The anomaly detection

performance metrics used to score were discussed in the previous chapter, Section 2.5.

Evaluation metrics must be carefully selected because the substantial imbalance between the

number of non-anomalous samples and the number of anomalous samples will skew the results.

 Chapter 2 also discussed the nature of contextual and collective anomalies that can be

identified only after the analysis of the complete dataset. Most datasets, however, only identify

point anomalies in isolation and that occur at an instance in time. Algorithms designed to detect

point anomalies may still be used for the study of contextual or collective anomalies by including

features that capture or proxy time and location features.

 Temporal sequence streaming data include a time-stamp feature associated with each

sample. Ideally, the processing architecture and algorithm under experimentation should be

exercised under the operational conditions of streaming data where samples are processed in

real-time. In practice, this approach is rarely possible because datasets are collected from

testbeds over many days or weeks of operation, and replicating this timing in experimentation is

not feasible. Sensor readings from the water treatment and water distribution testbeds (described

below) were captured over an extended period. If the processing architecture and algorithm can

 28

execute ‘faster than real-time,’ then speedup will not introduce artificialities into the model

training process. However, if the processing algorithm executes slower than real-time,

artificialities are introduced that may compromise the validity of the experimentation and

resultant conclusions.

 Note that anomalies (e.g., cyberattacks) can extend over long periods. Anomaly detection

algorithms may identify those attacks for only part of the attack window or for a period that

extends beyond the completion of the attack. Whether the algorithm receives credit for correctly

identifying those attacks as anomalies depends on the data collection processes and the

requirements of the case study. Early recognition of a cyberattack may be more beneficial than

belated recognition because corrective measures can be implemented proactively to mitigate

damage.

3.2 Feature Scaling

 Feature scaling is the process of transforming the range of values into a standard or

comparable scale. The primary reason for feature scaling is that TML and DNN (i.e., stochastic

gradient descent (SGD) algorithms) are more stable and converge faster with features that have a

standard scale. Particularly with respect to SGD, large input values might cause numerical

overflows and other non-transparent estimation problems. Target features (i.e., the dependent

variable) and binary or one-hot encoded features, however, are not scaled.

 There are two conventional approaches to scaling: min-max scaling and standardization.

With min-max scaling, features are transformed to the range from zero to one. With

standardization, the sample mean value is subtracted from each value and divided by the sample

standard deviation, resulting in a zero mean and unit variance. Standardization does not bound

 29

vales to a specific range like min-max scaling but is less influenced by extreme outliers in the

data. Min-max scaling and standardization are adopted throughout the remaining chapters.

3.3 Datasets for Experimentation

Four multivariate datasets were identified for experimentation: (a) the Credit Card Fraud

(FRAUD) dataset, (b) the Secure Water Treatment (SWAT) dataset, (c) the Water Distribution

(WADI) dataset, and (d) the Yahoo DATACENTER dataset. The characteristics of these

datasets are briefly discussed below. Note that each dataset is time-ordered but does not include a

spatial component. Unfortunately, publicly available spatiotemporal anomaly detection

experimentation datasets are not readily available. The purpose of experimentation here is to

explore the variety of algorithms that could be adapted for spatiotemporal anomaly detection.

The concept of spatiotemporal anomaly detection is further addressed with the STADE

specification provided in Chapter 8 and the three STADE case studies provided in Chapters 9-11.

3.3.1 Credit Card Fraud (FRAUD)

The FRAUD dataset consists of credit card transactions over two days in 2013 in Europe.

A fraudulent transaction is an anomaly. In total, 284,807 transactions were processed with 492

transactions deemed as fraudulent (and 284315 non-fraudulent), resulting in an anomaly rate of

0.17 percent. Included are twenty-eight numerical explanatory but undefined features; however,

each feature has been obfuscated by Principal Components Analysis (PCA) for confidentiality so

that the features are not interpretable. The two features that were not transformed using PCA are

the time and the transaction amount. For an overview of fraud detection techniques, see Kou,

Lu, and Sirwongwattana [36].

The FRAUD dataset is not a real temporal dataset. While the time feature contains the

seconds elapsed from the start of data collection, the value has no impact on the algorithmic

 30

performance since the entities responsible for the transaction cannot be uniquely identified.

Nevertheless, the dataset was selected because of the quality of the data and the extensive use in

the anomaly detection literature.

Table 4 displays the FRAUD raw statistics by anomaly designation. All features except

time and transaction amount (in EURO currency) have been transformed by PCA so that the

values are centered around zero. Note that transaction amounts are, on average, higher for

fraudulent samples than with routine transactions. However, the non-anomalous transactions

include an apparent outlier (maximum of 25691€), which is significantly above the maximum

anomalous transaction (2125€). For many features, the standard deviation of the anomalous

transactions is measurably higher than the standard deviation of non-anomalous features.

Table 4: FRAUD Statistics

Feature Non-Anomalous Anomalous (Fraudulent)

Mean Std Dev Min Max Mean Std Dev Min Max

Time 94838 47484 0.00 172792 80746 47835 406 170348
V1 0.00 1.92 -56.40 2.45 -4.77 6.78 -30.5 2.13
V2 0.00 1.63 -72.71 18.90 3.62 4.29 -8.4 22.0
V3 0.01 1.45 -48.32 9.38 -7.03 7.11 -31.10 2.25
V4 0.00 1.39 -5.68 16.87 4.54 2.87 -1.31 12.11
V5 0.00 1.35 -113.74 34.80 -3.15 5.37 -22.10 11.09
V6 0.00 1.32 -26.16 73.30 -1.39 1.85 -6.40 6.47
V7 0.00 1.17 -31.76 120.58 -5.56 7.20 -43.55 5.80
V8 0.00 1.16 -73.21 18.70 0.57 6.79 -41.04 20.00
V9 0.00 1.08 -6.29 15.59 -2.58 2.50 -13.43 3.35
V10 0.00 1.04 -14.74 23.74 -5.67 4.89 -24.58 4.03
V11 0.00 1.00 -4.79 10.00 3.80 2.67 -1.70 12.01
V12 0.01 0.94 -15.14 7.84 -6.25 4.65 -18.68 1.37
V13 0.00 0.99 -5.79 7.12 -0.10 1.10 -3.12 2.81
V14 0.01 0.89 18.39 10.52 -6.97 4.27 -19.21 3.44
V15 0.00 0.91 -4.39 8.87 -0.09 1.04 -4.49 2.47
V16 0.00 0.84 -10.11 17.31 -4.13 3.86 -14.12 3.13
V17 0.01 0.74 -17.09 9.25 -6.66 6.97 -1.34 6.79
V18 0.00 0.82 -5.36 5.04 -2.24 2.89 -9.49 3.79
V19 0.00 0.81 -7.21 5.59 0.68 1.53 -3.68 5.22
V20 0.00 0.76 -54.49 39.42 0.37 1.34 -4.12 11.05
V21 0.00 0.71 -34.83 22.61 0.71 3.86 -22.79 27.20
V22 0.00 0.72 -10.93 10.50 0.01 1.49 -8.88 8.36
V23 0.00 0.62 -44.80 22.52 -0.04 1.57 -19.25 5.46
V24 0.00 0.60 -2.83 4.58 -0.10 0.51 -2.02 1.09
V25 0.00 0.52 -10.29 7.51 0.04 0.79 -4.78 2.20
V26 0.00 0.48 -2.60 3.51 0.05 0.47 -1.152 2.74
V27 0.00 0.39 -22.56 31.61 0.17 1.37 -7.26 3.05
V28 0.00 0.32 -15.43 33.84 0.07 0.54 -1.86 1.77
Amount 88.29 250.1 0.00 25691.16 122.21 256.68 0.00 2125.87

 31

Figure 7 displays transaction amounts by time. Note that there are a few transaction

outliers, but as previously noted, the FRAUD dataset is useful only for point anomaly detection.

Figure 7: FRAUD - Time Series of Transactions by Amount

3.3.2 Secure Water Treatment (SWAT) Testbed

 SWAT is an operational testbed for water treatment research and development in support

of the Singapore Public Utility Board. SWAT is operated by the iTrust Centre for Research in

Cyber Security. The testbed was designed to simulate and test the effects of cyberattacks on a

water treatment facility. The attack points include various sensors (e.g., water level) and

actuators (e.g., water pumps). Figure 8 provides a picture of the SWAT testbed that produced

the dataset.

Experimentation data was collected over eleven (11) days of continuous operation. The

first seven (7) days captured standard operation data, while the final four (4) days captured data

under various simulated cyberattack scenarios. Therefore, the first seven (7) days of data are

used for model training, while the last four (4) days of data are used for model testing. In total,

 32

there were 495,000 records processed during normal operations and 449,919 records processed

during the periods of attack, of which 54,584 records were labeled as anomalous. Values from

all fifty-one (51) sensors, network traffic, and actuators were recorded. Thirty-six (36) distinct

attacks of various types were initiated and recorded, ranging in length from two minutes to

twenty-five minutes. Examples of attack impacts include water tank overflow, chemical

discharge, and output valve shutdown.

Figure 8: Secure Water Treatment (SWAT) Testbed

 Table 5 displays the SWAT statistics by anomaly designation. Note that with some

features, anomalous samples exhibit lower mean values than non-anomalous samples (e.g.,

FIT101), while with other features, the reverse is true (e.g., LIT101). The standard deviations

are also measurably different between non-anomalous and anomalous samples for some features

(e.g., AIT203). Since the anomaly detection algorithms are multivariate that capture complex

interrelationships, conclusions cannot be drawn simply by inspecting individual feature values or

variances. Perhaps more critical, the sequence of values rather than the point values may be the

most critical determinant of an anomaly. As previously noted, techniques for point anomaly

detection are not typically useful for the detection of contextual or collective anomalies that

occur over some time.

 33

Table 5: SWAT Statistics

Feature Non-Anomalous Anomalous

Mean Std Dev Min Max Mean Std Dev Min Max

Time 457036 272573 0 944918 723844 95517 496754 940190
FIT101 1.84 1.13 0 2.76 0.78 1.17 0.00 2.70
LIT101 588.79 118.45 120.62 888.17 727.41 135.35 189.82 925.03
MV101 1.71 0.46 0.00 2.00 1.30 0.46 0.00 2.00
P101 1.75 0.43 1.00 2.00 1.27 0.44 1.00 2.00
P102 1.00 0.01 1.00 2.00 1.05 0.22 1.00 2.00
AIT201 240.53 35.58 168.03 272.52 202.22 26.58 168.80 265.18
AIT202 8.44 0.11 6.00 8.988 8.54 0.16 6.00 8.70
AIT203 334.87 40.99 285.33 567.46 337.13 21.16 287.95 370.54
FIT201 1.83 1.05 0.00 2.82 0.68 1.12 0.00 2.82
MV201 1.74 0.44 0.00 2.00 1.28 0.45 0.00 2.00
P201 1.06 0.23 1.00 2.00 1.01 0.11 1.00 2.00
P203 1.74 0.43 1.00 2.00 1.26 0.44 1.00 2.00
P204 1.00 0.00 1.00 1.00 1.00 0.03 1.00 2.00
P205 1.70 0.45 1.00 2.00 1.27 0.44 1.00 2.00
P206 1.00 0.00 1.00 1.00 1.00 0.03 1.00 2.00
DPIT301 16.71 6.72 0.00 45.00 8.41 10.24 0.01 45.00
FIT301 1.84 0.80 0.00 2.37 0.66 1.00 0.00 2.35
LIT301 901.04 85.05 123.81 1201.00 964.95 109.63 364.38 1201.00
MV301 1.00 0.11 0.00 2.00 1.01 0.13 0.00 2.00
MV302 1.80 0.41 0.00 2.00 1.29 0.46 0.00 2.00
MV303 1.02 0.17 0.00 2.00 1.01 0.15 0.00 2.00
MV304 1.02 0.19 0.00 2.00 1.63 0.49 0.00 2.00
P301 1.00 0.04 1.00 2.00 1.00 0.00 1.00 1.00
P302 1.83 0.37 1.00 2.00 1.29 0.45 1.00 2.00
AIT401 135.41 42.58 0.00 148.85 148.80 0.00 148.76 148.85
AIT402 161.71 14.89 141.11 327.83 250.77 85.33 140.83 333.811
FIT401 1.71 0.07 0.00 1.74 0.66 0.82 0.00 1.74
LIT401 881.54 89.67 130.38 1003.93 497.87 309.65 243.01 1002.58
P402 1.99 0.04 1.00 2.00 1.41 0.49 1.00 2.00
P403 1.00 0.00 1.00 2.00 1.00 0.00 1.00 1.00
UV401 1.99 0.04 1.00 2.00 1.39 0.48 1.00 2.00
AIT501 7.84 0.05 7.41 8.30 7.65 0.16 7.43 8.25
AIT502 151.55 13.52 129.83 272.85 188.29 41.89 131.81 271.03
AIT503 265.84 6.06 244.90 297.96 266.58 4.17 244.87 281.53
AIT504 13.02 5.63 7.34 442.46 16.62 19.78 11.18 255.00
FIT501 1.72 0.07 0.00 1.75 0.70 0.83 0.00 1.75
FIT502 1.27 0.05 0.00 1.36 0.52 0.62 0.00 1.35
FIT503 0.73 0.31 0.00 0.76 0.29 0.35 0.00 0.74
FIT504 0.30 0.01 0.00 0.31 0.11 0.14 0.00 0.31
P501 1.99 0.04 1.00 2.00 1.39 0.48 1.00 2.00
PIT501 250.77 10.53 8.89 264.64 106.71 115.68 9.46 253.12
PIT502 1.14 0.25 0.00 3.66 0.46 0.63 0.00 1.89
PIT503 189.63 8.30 3.10 200.63 78.50 89.25 3.14 191.34
FIT601 0.01 0.15 0.00 1.80 0.01 0.13 0.00 1.74
P602 1.00 0.09 1.00 2.00 1.00 0.07 1.00 2.00

 Figure 5 shows the time times of over normal operations of sensor LIT01, while figure 6

shows this same sensor values throughout the cyberattack. Note the spikes in values downward

indicate likely anomalies. However, given that cyberattacks occur over time, more complex

lagged relationships between the attack trajectory and anomalous sensor readings are likely.

 34

Figure 9: Normal Operations of Sensor LIT01

Figure 10: Under Attack of Sensor LIT01

3.3.3 Water Distribution (WADI) Testbed

 The WADI testbed was designed by the iTrust Centre for Research in Cyber Security to

simulate an unsecured water distribution network. In addition to the sensors and pumps similar

to the SWAT testbed, the WADI testbed can simulate the effects of the cyberattacks resulting in

water leakages and malicious chemical injections into the water supply. Figure 11 displays a

picture of the WADI testbed.

 35

Figure 11: Water Distribution (WADI) Testbed

The WADI dataset consists of sixteen (16) days of operation, with the first fourteen (14)

days of normal operations and the last two (2) days of attack scenarios. A total of fifteen attacks

were launched, ranging from 1.5 minutes to 30 minutes in length. The dataset recorded readings

from the 103 sensors, actuators, and network devices in the testbed. However, some readings

were constant throughout experimentation and were excluded from the analysis. For purposes of

exposition, the devices are designated ‘V1’ through ‘V127’.

Table 6 provides the complete descriptive statistics from the testbed of the features used

in the analysis. Some of the features are continuous, while others are integers. For example, the

values of the ‘V1’ and ‘V2’ sensors are significantly higher under attack than under normal

operations. Figures 12 and 13 show the ‘V1’ sensor readings under normal operations and

attacks. Note that both sensors appear to shut down periodically under typical and attack

scenarios. At only one time point, does the ‘V1’ sensor appear to be anomalous with a significant

spike upward. Overall, while some sensors, actuators, and devices appear to be affected by

cyberattack activity, others do not. As with the SWAT testbed, complex interrelationships exist

between the readings.

 36

Table 6: WADI Statistics

Feature Non-Anomalous Anomalous

Mean Std Dev Min Max Mean Std Dev Min Mas

V1 168.57 12.68 0.0 214.31 188.22 74.56 0.0 634.49
V2 0.62 0.06 0.0 6.0 0.98 1.38 0.0 6.0
V3 11.77 0.19 0.0 12.18 11.96 0.3 0.0 12.06
V4 483.8 25.3 0.0 526.53 447.11 22.93 0.0 480.53
V5 0.3 0.05 0.2 0.42 0.26 0.04 0.22 0.34
V6 0.52 0.85 0.0 2.08 1.48 0.81 0.0 2.5
V9 56.8 11.26 0.03 100.22 49.21 8.91 37.11 74.53
V10 1.27 0.45 0 2 1.68 0.51 0 2
V11 1.0 0.01 0 2 1.13 0.35 0 2
V12 1.0 0.01 0 2 1.13 0.35 0 2
V13 1.28 0.45 0 2 1.11 0.32 0 2
V14 1.27 0.44 1 2 1.72 0.45 1 2
V15 1.0 0.0 1 1 1.0 0.0 1 1
V16 1.27 0.44 1 2 1.72 0.45 1 2
V17 1.0 0.0 1 1 1.0 0.0 1 1
V18 1.23 0.42 1 2 1.41 0.49 1 2
V19 1.0 0.01 1 2 1.0 0.0 1 1
V20 2517.66 135.34 0.0 2777.41 2388.52 185.09 1033.12 2658.01
V21 63.98 36.94 7.53 100.0 47.79 35.28 8.79 100.0
V22 0.12 0.14 0.02 3.15 0.21 0.15 0.02 1.44
V23 0.22 0.12 0.09 0.51 0.28 0.13 0.1 0.48
V24 64.16 37.3 8.6 100.0 55.73 38.26 9.97 100.0
V25 0.11 0.12 0.02 2.94 0.16 0.14 0.04 1.51
V26 0.21 0.12 0.08 0.52 0.24 0.09 0.12 0.42
V27 67.42 38.4 4.11 100.0 69.94 39.32 6.73 100.0
V28 0.1 0.12 0.02 3.18 0.1 0.11 0.02 0.91
V29 0.21 0.12 0.06 0.52 0.25 0.09 0.11 0.38
V30 58.99 37.71 2.52 100.0 50.07 37.63 7.69 100.0
V31 0.12 0.14 0.02 3.04 0.23 0.17 0.02 1.97
V32 0.21 0.11 0.08 0.51 0.33 0.14 0.12 0.49
V33 61.8 39.39 4.5 100.0 60.34 40.78 5.64 100.0
V34 0.11 0.13 0.02 3.3 0.18 0.2 0.02 0.9
V35 0.22 0.14 0.09 1.15 0.39 0.13 0.12 0.51
V36 64.9 38.76 4.2 100.0 66.49 38.4 5.78 100.0
V37 0.1 0.12 0.02 3.16 0.09 0.12 0.02 1.55
V38 0.22 0.13 0.08 0.52 0.25 0.09 0.12 0.45
V39 0.51 0.94 0.0 3.67 0.92 1.09 0.0 2.29
V40 0.29 0.27 0.0 1.6 0.33 0.41 0.0 1.68
V41 0.21 0.52 0.0 5.15 0.53 0.7 0.0 3.24
V42 0.12 0.14 0.02 3.07 0.21 0.15 0.02 1.59
V43 0.11 0.12 0.02 2.95 0.16 0.14 0.04 1.5
V44 0.1 0.12 0.02 3.06 0.1 0.11 0.02 0.93
V45 0.12 0.14 0.02 3.01 0.23 0.17 0.02 1.76
V46 0.11 0.13 0.02 3.1 0.18 0.2 0.02 0.82
V47 0.1 0.12 0.02 3.12 0.09 0.12 0.02 1.55
V51 0.0 0.06 0 1 0.01 0.08 0 1
V52 0.0 0.04 0 1 0.0 0.0 0 0
V53 0.0 0.06 0 1 0.0 0.05 0 1
V54 0.0 0.05 0 1 0.0 0.0 0 0
V55 0.0 0.05 0 1 0.0 0.0 0 0
V56 0.0 0.04 0 1 0.0 0.0 0 0
V57 0.0 0.06 0 1 0.01 0.08 0 1
V58 0.0 0.05 0 1 0.0 0.04 0 1
V59 0.0 0.06 0 1 0.0 0.0 0 0
V60 0.01 0.09 0 1 0.0 0.0 0 0
V61 0.0 0.06 0 1 0.0 0.06 0 1
V62 69.65 0.58 68.51 71.55 69.9 0.28 69.09 70.34
V63 75.14 4.1 19.25 94.57 70.16 11.69 18.55 84.0
V64 0.0 0.23 0 100 10.96 28.33 0 100

---Continued on Next Page---

 37

Feature Non-Anomalous Anomalous

Mean Std Dev Min Max Mean Std Dev Min Max

V65 11.1 15.55 0.0 100.0 18.22 27.17 0.0 100.0
V66 12.51 17.76 0.0 100.0 23.09 32.68 0.0 100.0
V67 16.8 20.91 0.0 100.0 35.65 34.79 0.0 100.0
V68 10.44 15.68 0.0 100.0 20.11 32.4 0.0 100.0
V69 13.61 17.44 0.0 100.0 21.4 26.09 0.0 100.0
V70 17.21 22.85 0.0 100.0 31.73 30.26 0.0 100.0
V73 1.22 0.44 0 2 1.36 0.56 0 2
V76 1.15 0.39 0 2 1.4 0.5 0 2
V78 1.47 0.5 0 2 1.16 0.37 0 2
V79 1.51 0.5 0 2 1.34 0.48 0 2
V80 1.57 0.5 0 2 1.5 0.5 1 2
V81 1.43 0.5 0 2 1.15 0.36 0 2
V82 1.5 0.5 0 2 1.38 0.49 0 2
V83 1.54 0.5 0 2 1.48 0.5 0 2
V86 3.48 8.11 -0.1 41.79 8.16 10.45 -0.02 39.45
V87 1.16 0.37 1 2 1.38 0.49 1 2
V88 0.03 0.01 -0.06 0.04 0.02 0.02 -0.03 0.03
V90 45.7 9.48 0.0 50.0 39.92 12.11 8.25 50.0
V91 0.22 0.42 0.01 3.82 0.4 0.49 0.01 1.9
V92 1.0 0.0 1.0 1.0 0.99 0.09 0.25 1.0
V93 152.33 2.05 123.88 163.33 147.58 5.83 129.75 158.26
V94 89.36 7.32 0.0 99.83 81.69 10.76 1.32 97.51
V95 0.22 0.42 0.01 3.82 0.4 0.49 0.01 1.9
V102 0.17 0.01 0.14 0.32 0.18 0.0 0.17 0.18
V103 0.0 0.05 0.0 7.9 0.0 0.06 0.0 1.74
V104 8.62 0.1 8.19 8.87 8.63 0.04 8.56 8.74
V105 482.3 7.68 457.31 502.0 472.84 3.47 464.91 479.34
V106 0.19 0.01 0.16 0.23 0.19 0.01 0.18 0.2
V107 543.04 2010.45 8.52 8128.0 3123.66 3941.87 8.72 8127.68
V108 8.59 0.12 6.73 8.87 8.64 0.05 8.57 8.74
V109 486.28 8.53 0.0 571.28 475.97 3.54 466.08 483.98
V110 0.0 0.02 0.0 0.16 0.0 0.0 0.0 0.0
V111 7301.73 2585.06 0.0 8295.95 8279.1 0.0 8279.1 8279.1
V112 8.99 8.75 0.0 53.74 9.77 8.48 0.0 34.97
V113 618.06 604.14 -2590.79 2831.28 563.14 585.26 -978.15 1766.92
V114 0.67 0.16 0.07 1.21 0.65 0.13 0.43 0.89
V115 0.52 0.26 0.0 1.16 0.41 0.31 0.0 0.99
V117 65.16 1.18 63.96 69.18 64.84 1.04 64.19 68.48
V125 62.96 5.88 45.4 147.29 65.8 6.94 58.97 138.2
V127 0.55 0.44 0.0 2.33 1.1 0.7 0.0 2.33

Figure 12: ‘V1’ Sensor - Normal Operations

Figure 13: ‘V1’ Sensor - Under Attack

 38

3.3.4 DATACENTER

The DATACENTER dataset consists of real and simulated data center network traffic

made available for research purposes. While the anomalies in the simulated dataset were

algorithmically generated, the anomalies in the real-traffic dataset were manually labeled and

prone to human interpretation. For this reason, only the synthetically generated datasets are

used. The dataset consists of one-hundred (100) different locations with approximately 1700

time-stamped samples per datacenter with seven (7) features. Because of the location and time

components, this dataset is particularly desirable for spatiotemporal and streaming analysis since

each dataset represents a physical datacenter.

Table 7 provides example statistics for the seven (7) features included in the dataset.

This dataset includes pure time-series style features (e.g., seasonality) and has the smallest

sample size vis-à-vis the other datasets. The core feature used to determine anomalies is ‘value.’

Table 7: DATACENTER Statistics

Feature Normal Anomalous

Mean Std Dev Min Max Mean Std Dev Min Max

Value 261.77 1295.46 -5332.44 6323.90 96.88 1852.58 -6171.31 6093.26
Changepoint 0.00 0.03 0.00 1.00 0.00 0.03 0.00 1.00
Trend 261.39 1202.06 -5040.00 5040.00 180.94 1209.76 -4695.00 4302.00
Noise 0.27 92.80 -802.36 902.05 0.75 95.79 -465.11 611.65
Seasonality1 -0.02 355.94 -998.00 998.00 -4.36 348.69 -998.00 848.00
Seasonality2 -0.03 264.91 -932.00 932.00 -2.05 274.31 -900.24 932.00
Seasonality3 0.17 179.71 -739.00 739.00 0.18 174.92 -642.51 665.81

Figure 14 displays the time-series of the ‘value’ feature for normal operations for

datacenter #1, while Figure 15 provides the same ‘value’ feature but under attack operations.

High and low spikes appear at different attack times points and are indicated in the dataset by the

changepoint features. This dataset is likely better addressed by traditional univariate time-series

algorithms but is included in determining if TML and DNN algorithms are effective detectors.

 39

Figure 14: Datacenter #1 ‘Value’ – Normal Ops

Figure 15: Datacenter #1 ‘Value’ – Attack Ops

3.4 Experimentation Dataset Summary

Table 8 summaries the four data sources selected for TML and DNN experimentation:

Table 8: Comparison of Anomaly Detection Datasets

Attribute FRAUD SWAT WADI DATACENTER**

Domain Finance Water Treatment Water Distribution Data Centers
Labeled Anomalies 492 54621 172801 4837
Data Numeric Numeric Numeric Numeric
Features 30 51 103 7
Temporal Yes Yes Yes Yes
Geospatial No No – Single Testbed No – Single Testbed Yes
Cyber Attacks N/A 36 15 No
Attack Durations N/A 2-25 minutes 1.5-30 minutes N/A
Training Size ~227846 496800 1048571 ~134400
Test Size ~56961 449919 172801 33600

N/A = Not Applicable **Across all 100 datacenters

 The FRAUD dataset was the subject of one of many Kaggle online competitions to

produce the best classification results in a particular problem domain using machine learning

techniques. The SWAT and WADI datasets are relatively new to the anomaly detection DNN

research community and have recently appeared in [37] and [38]. There are no known research

studies that have analyzed the DATACENTER dataset.

 40

CHAPTER 4: TRADITIONAL MACHINE LEARNING (TML) ALGORITHMS

4.1 Introduction

There is no universal consensus by anomaly detection researchers regarding the

appropriate taxonomy to categorize TML algorithms. Several books [39], [41], and [1], survey

articles [40], and research papers address the various algorithms. Goldstein and Uchida [41]

provide a comprehensive review of nineteen different unsupervised TML algorithms with ten

multivariate datasets and provide computer runtime estimates for each algorithm.

Suitability for streaming is dependent on the efficiency of the algorithm. Algorithmic

efficiency is a property that captures the computational resource requirements as a function of

the size of the input n. The most common notation is the ‘Big 𝒪’ notation. 𝒪(1) indicates

constant time with respect to n; 𝒪(log n) means logarithmic with respect to n; and 𝒪(n) means

linear with respect to n. Many anomaly detection algorithms are 𝒪(n2), quadratic and 𝒪(cn),

exponential, where c>1, which may be too time-intensive to be suitable for stream processing.

Unsupervised algorithms that could be adopted and operate at 𝒪(n) or marginally slower are

potentially suitable for use with streaming data.

With univariate temporal data, autoregressive integrated moving average (ARIMA)

models and all of their variations have been used to predict point anomalies in unsupervised and

semi-supervised univariate time-series data [42]. ARIMA models are particularly popular

because of their ability to smooth moving averages to eliminate noise and the inclusion of terms

that expresses drift, noise, and non-stationarity over time. Point anomalies in consecutive data

points are easily identified.

Anomaly identification is more difficult with multivariate data. Several TML techniques,

such as multivariate regression, principal components analysis (PCA), and other linear models,

 41

are often used with varying degrees of success to identify anomalies in multivariate data. These

easy-to-implement linear modeling techniques, while useful for predicting a few steps or large

deviations, are less useful when past data demonstrate unusual shapes or patterns. More

sophisticated non-linear techniques such as DNNs are required. For example, in autonomous

driving applications, large fluctuations in the shape of sensor information are expected

depending on the road conditions, terrain, and weather. Collective anomaly detection techniques

are required with temporal data collected over the entire operational history.

TML-based temporal anomaly detection studies include [43], [44] and [45]. Salechi and

Rashidi [46] provide a survey of anomaly techniques in the presence of evolving or changing

data. Some studies have specifically incorporated spatiotemporal relationships into their models,

such as dynamic environmental monitoring campaigns [47]. Discrete event anomaly detection

methods are described in [48]. Other TML-based anomaly detection and related studies include

[49], [50], [51], [52] and [53].

4.2 Experimentation Algorithms

Algorithms here are allocated to four (4) categories: Linear Models, Proximity Models,

Ensemble Techniques, and Statistical Models. Table 9 lists eight (8) selected TML-based

techniques that could be adapted to support streaming anomaly detection. The list includes the

most popular and mature unsupervised techniques and excludes supervised techniques. Some of

these techniques were designed explicitly for anomaly detection (e.g., Local Outlier Factor)

whiles others are generic but adaptable (e.g., Principal Components Analysis). Algorithms with

the term ‘local’ in their name are proximity-based and are designed to detect local outliers. The

experimentation datasets described in Chapter 3 contain global anomalies. For this reason, local

 42

techniques will perform less optimally on these datasets. Each selected algorithm is briefly

discussed below.

Table 9: Traditional Machine Learning Unsupervised Anomaly Detection Techniques

TML Category Algorithm Local/Global Reference

Linear Models One Class Support Vector
Machine

(OC-SVM)

Global Scholkoft, Platt, Shawe-Taylor,
Smola, and Williamson [54].

Principal Component Analysis
(PCA)

Global Aggarwal [55].

Proximity Models K Nearest Neighbor
(K-NN)

Global Ramaswamy, Rastogi, and Shim
[56].

Local Outlier Factor
(LOF)

Local Breunig, Kreigel, Ng, and Sander
[57].

Cluster-Based Local Outlier
Factor

(CB-LOF)

Local He, Xu, and Deng [58].

Histogram-Based Outlier
Score

(HBOS)

Global Goldstein and Dengel [59].

Ensemble

Techniques

Isolation Forest
(IF)

Global Liu, Ting, and Zhou [60].

Probabilistic

Models

Minimum Covariance
Determinant

(MCD)

Global Hardin and Rocke [61],
Rousseeux and Driessen [62].

4.3 One-Class Support Vector Machine (Linear Model)

 Support Vector Machines (SVMs), a popular supervised TML technique, was modified

by Scholkoft, et al. [54] to become a semi-supervised and unsupervised technique known as the

One-Class Support Vector Machine (OC-SVM). An SVM implicitly maps the data to a high-

dimensional space and separates classes using a linear classifier. OC-SVM is similar except that

the algorithm attempts to separate the instances in high dimensional space from the origin. The

OC-SVM assumes that the training data is free of anomalies, drawing a boundary in what is

known as kernel space around the normal class. OC-SVM is trained using the training data. Test

samples are scored using a normalized distance to a decision boundary. Samples that do not fall

 43

within the threshold distance are presumed to be anomalous. Borrowing from the operations

research community, OC-SVM can be formulated as a quadratic programming minimization

problem using Lagrange techniques and, as most optimization problems, is compute-intensive,

and does not scale linearly. For this reason, OC-SVM is an unlikely candidate for streaming

applications. [63] provides a good description of OC-SVM in the context of anomaly detection.

Ma and Perkins [64] illustrate an example of the use of OC-SVM for temporal anomaly

detection.

4.4 Principal Components Analysis (Linear Model)

Principal Components Analysis (PCA) has a long history in statistical science dating back

to the early 1900s as a technique for dimensionality and covariance reduction. PCA is a fast,

low-overhead procedure that converts a set of correlated, multivariate vectors into a smaller set

of linearly independent, orthogonal vectors. The DNN analogy to PCA is autoencoders; the

difference is that PCA is a linear combination of vectors using linear algebra techniques while an

autoencoder is a nonlinear combination of vectors using DNN techniques. Both PCA and

autoencoders are two way; vectors can be encoded and decoded with limited loss of information.

The basic intuition is that anomalies can be identified through reconstructive errors. If for a

given sample, the original set of input values are not closely replicated after the decoding

process, an anomaly is indicated. Dimensionality reduction and DNN autoencoders are discussed

in more detail in Chapters 6. See Hinton and Salakhutdinov [65] regarding the benefits of

dimensionality reduction.

4.5 K-Nearest Neighbor (Proximity-Based Model)

 The K Nearest Neighbor (K-NN) is a proximity-based technique that considers the

distance between adjacent samples with algorithms to spatially group samples. While the

 44

techniques are simplistic with two-dimensional data, the computational complexity increases

exponentially with multivariate data. Various distance measures used to calculate the k-NN is

described in Upadhyaya and Singh [66]. Tsai and Lin [67] provide an application of k-NN to

intrusion detection.

 For every sample in the dataset, the k-nearest neighbors are identified based on the

distance measure. An anomaly score is calculated using these neighbors with either two

approaches. One approach is to use the distance to a single kth nearest neighbor, known as the

kth-NN technique, and the second approach is to use the average distance over all neighbors,

known as the k-NN technique. The average distance may either be the mean distance or the

median distance across all neighbors. The k-NN technique is substantially more computationally

expensive than the kth-NN technique. With both techniques, the choice of the k parameter is

critical, typically 10 < k < 50. Note that the nearest neighbor and other proximity-based

algorithms operate at 𝒪(n2).

4.6 Local Outlier Factor (Proximity-Based Model)

 The Local Outlier Factor (LOF) algorithm compares the density of samples around a

given high-dimensional region. The LOF algorithm compares the density of instances around a

given instance to the density of the neighbors. The LOF approach is similar to the k-NN

technique but applied within a localized data area. The algorithm defines an average local

reachability density or LRD. LOF is then calculated by dividing the average LRD of all

localized neighbors by their LRD. A LOF ~ 1 means that the data point has a similar density of

the neighbors; a LOF < 1 signifies higher density than the neighbors indicating a normal sample

and a LOF > 1 signifies lower density than the neighbors indicating an anomaly.

 45

4.7 Cluster-Based Local Outlier Factor (Proximity-Based Model)

There are many different varieties of clustering; one popular technique designed for

anomaly detection is Cluster-Based Local Outlier Factor (CBLOF). The underlying assumption

is that normal samples belong to that cluster closest to the cluster centroid, while anomalous

samples do not belong to any cluster. CBLOF is similar to LOF but classifies the data into a set

of small clusters and large clusters. The algorithm calculates an anomaly score based not only

on the size of the cluster but also on the distance to the nearest larger cluster. For a complete

discussion of CBLOF, see (He, Xu, and Deng, [58]). In general, clustering algorithms operate

faster (<𝒪(n2)) than nearest neighbor techniques.

4.8 Histogram-Based Outlier Score (Proximity-Based Model)

 The Histogram-Based Outlier Score (HBOS) is a nonparametric technique designed to be

extremely fast in execution. The underlying assumption is that each feature in the dataset is

independent, and an anomaly score can be calculated by building a set of histograms. While the

assumption of independence may result in reduced accuracy, the speed of computation makes

HBOS a possible candidate as a streaming algorithm. HBOS also has the concept of dynamic

bins where the number of histogram bins remains constant, but the size of the bins increases or

decreases as needed. The advantage of this dynamic approach is that density estimation is

exceptionally flexible in the presence of a large number of anomalies. Equation (4.1) provides

the scoring algorithm for the HBOS technique; the algorithm calculates the sum of probabilities

over the entire histogram bins i = 1 … d:

𝐻𝐵𝑂𝑆 𝑆𝑐𝑜𝑟𝑒 = ∑ log (1ℎ𝑖𝑠𝑡𝑖(𝑝))𝑑
𝑖=𝑖 (4.1)

 46

Note that HBOS is a global, non-parametric technique, operates at 𝒪(n), and is a candidate for

stream processing adoption.

4.9 Isolation Forest (Ensemble Technique)

Ensemble techniques combine two different techniques into a single technique. An

Isolation Forest (IF) is an example of an anomaly detection ensemble technique. The IF approach

is dramatically different from the one-class SVM approach and uses decision trees to identify

anomalies. First, an attribute is selected, and a partition is created by randomly selecting a value

between the minimum and maximum value of that attribute. Since anomalies are, by definition,

scarce and distant from normal values, a normal sample will require more partitions than an

abnormal sample. Based on IF technique, an anomaly score is given by:

𝑠(𝑥, 𝑛) = 2−𝐸(ℎ(𝑥)𝑐(𝑛) (4.2)

where h(x) is the path length of sample x, c(n) is the average path length of an unsuccessful

search in a Binary Search Tree, and n is the number of external nodes. Based on this

formulation, anomaly scores close to one indicate the high possibility of an anomaly, while a

score closer to .5 would indicate that an anomaly is unlikely.

In summary, an IF uses binary trees and can be scaled up to process large, high-

dimensional datasets. Anomalous samples are usually far (in high-dimensional space) from

other samples, so on average, across all the decision trees, anomalies are isolated and identified

in fewer steps than normal samples.

4.10 Minimum Covariance Determinant (Probabilistic Model)

 Minimum Covariance Determinant (MCD) is a density-based approach based on

Mahalanobis distance that has been applied to anomaly detection problems (see Section 4.10.1

below for an aside on Mahalanobis distance). With probabilistic models of anomaly detection,

 47

each sample is analyzed against a probability distribution; the anomaly score is the probability of

occurrence. This approach to anomaly detection is called the Gaussian technique because of the

underlying assumption of the data is normality. However, the density model approach can be

applied to other statistical distributions such as Gamma or Chi-Squared distributions. When the

underlying distribution of the non-anomalous population is unknown, which is often the case, a

mixture of Gaussians is used as a proxy for the correct distribution.

Consider a random variable X = [X1 … Xn] with a mean   Rn and covariance matrix

nxn, (positive definite), the standard Gaussian probability density function is given by equation

(4.3):

𝑝(𝑥, 𝜇, Σ) = 1(2𝜋)n/2|Σ|1/2 exp (− 12 (𝑥 − 𝜇)TΣ-1(𝑥 − 𝜇))
(4.3)

Where | Σ | denotes the determinant of the covariance matrix.

To fit the parameters, given a semi-supervised training set {x(1), x(2), …, x(m) }, estimate 𝜇 = 1𝑚 ∑ 𝑥𝑚𝑖=1 i and Σ = 1𝑚 ∑ (𝑥(i) −𝑚𝑖=1 𝜇)(𝑥(i) − 𝜇)T, then for the new (or test) samples, fit model

p(x) by setting  and , compute p(x) using equation (4.3) and flag as an anomaly if p(x) <  for

some threshold value of .

The MCD approach assumes that the non-anomalous samples are generated from a single

Gaussian distributed and not a mixture of Gaussians. When the algorithm estimates the

parameters of the Gaussian distribution by estimating the shape of the elliptic envelope while

excluding the anomalous samples so as not to distort the parameter estimates. Note that the

Gaussian density estimation approach is most useful for unsupervised point anomaly detection

but would be intractable and difficult to implement for lengthy temporal streaming data.

Moreover, there is no a priori basis to determine the correct sequence length for parameter

 48

estimation so all sequence length combinations would need to be tested. While online streaming

processing is feasible, this model can be computationally expensive because the calculation Σ-1 is

a matrix inversion, which can be costly for a large number of features. Density estimation may

be too slow for streaming data since the performance is 𝒪(n) or slower. Moreover, the training

set size must be larger than the number of features for  to be invertible.

4.10.1 An Aside on Mahalanobis Distance

The Mahalanobis distance is a crucial distance measure used in TML algorithms,

including MCD. From equation (4.3) above, which is the equation of a Gaussian distribution,

the term (− 12 (𝑥 − 𝜇)TΣ-1(𝑥 − 𝜇)) is one-half of the squared Mahalanobis distance from the of

the data point x(i) and the mean 𝜇 of the data. The Mahalanobis distance d is the anomaly

detection score; the computation is shown in equation (4.4): 𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠(𝑥, 𝜇, Σ) = d = √(𝑥 − 𝜇)TΣ-1(𝑥 − 𝜇) (4.4)

Note that this distance method is parameter-free, and although quadratic in terms of data

dimensionality, the measures are linear in the number of data points, an essential consideration

for computational efficiency when processing streaming data. For normal multivariate

distributions, the probability density of the Mahalanobis distance is chi-squared distributed.

 For streaming data, a simplified version of Mahalanobis distance shown in equation (4.5)

is easy to implement, where x is a vector containing all of the dimensions of a single sample; µ is

a vector representing the mean or center of mass of all of the data samples, and n is the number

of elements in x; and µ and d(xi,ui) is the difference between the ith element of x and µ:

𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔 𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠(𝑥, 𝜇) = ds = ∑ 𝑑(𝑥𝑖, µ)𝜎𝑖𝑛
𝑖=1

(4.5)

 49

4.11 Summary

Eight (8) TML anomaly detection algorithms are described in this chapter. These

algorithms are unsupervised designed to address point anomalies for non-streaming data.

However, since many of these algorithms are not compute-intensive, most can be adapted for

streaming data. Some of these algorithms can execute in a few seconds with gigabyte datasets.

Even if the application requires large datasets or the application or use case timing requirements

are in the milliseconds rather than seconds, a moving window can be employed to detect

anomalies on streaming subsets of the data using the same techniques described here. Moreover,

because these are TML unsupervised techniques, there is no requirement to pre-train the models

before their use in streaming applications.

 TML algorithms, however, process one sample at a time and cannot model complex

relationships that exist over long periods or across spatial regions. In short, the TML algorithms

cannot robustly identify contextual or collective anomalies. Chapter 6 discusses the DNN

approach to anomaly detection that could model complex inter-relationships with long-term

memory to identify contextual or collective anomalies in spatiotemporal data. However, there is

a trade-off; DNN algorithms are processor-intensive to the extreme and may require minutes to

hours to train. DNNs can be pre-trained if there was a belief that the model parameters exhibit

long-term stability over space and time. However, in many domains, there is a requirement to

process streaming data not only for near real-time processing but also to identify concept drift in

the underlying relationships in the data.

The next chapter describes experimentation with the TML algorithms described in this

chapter. The goal of this experimentation is to evaluate algorithmic performance and to

determine if these algorithms can be adapted for streaming applications. These results and

 50

conclusions will provide a baseline to compare against the findings associated with the DNN

anomaly detection experimentation that are discussed in Chapters 6 and 7.

 51

CHAPTER 5 – TRADITIONAL MACHINE LEARNING (TML) EXPERIMENTATION

5.1 Experimentation Overview

 The eight (8) TML algorithms described in Chapter 4 are the subject of experimentation

and evaluation. These algorithms include Cluster-Based Local Outlier Factor (CB-LOF),

Histogram-Based Outlier Score (HBOS), Isolation Forest (IF), K-Nearest Neighbors (K-NN),

Local Outlier Factor (LOF), Minimum Covariance Determinant (MCD), On-Class Support

Vector Machines (OC-SVM), and Principal Component Analysis (PCA). Three (3) variants of

the k-NN algorithm are evaluated, including point-to-point, mean, and median nearest neighbors.

Therefore, in total, ten (10) algorithms are compared for execution time and test performance on

each of the four labeled anomaly datasets discussed in Chapter 3.

Each dataset was separated into a training sample (70 percent) and a test sample (30

percent). The training dataset was used for parameter estimation, and the test dataset was used

for performance evaluation. All algorithms are unsupervised, meaning that the anomaly labels

are not used for parameter estimation. Anomaly labels are used for test and evaluation purposes.

The performance evaluation criteria are described in Section 2.5. Key metrics include algorithm

execution time, Area under the Recovery Operating Characteristic (ROC) curve (AUC),

Precision, Recall, and the F1 metric. Execution time is essential when evaluating the suitability

of an algorithm for adaptation for stream processing. All experimentation was performed on the

identical hardware that included a NVIDIA™ 2060 Graphical Processing Unit (GPU). Further

information on the software estimation approaches and the software packages can be found at

[68].

 52

5.2 Experimentation Execution Time

Table 10 presents the wall-clock execution times in seconds for each of the algorithms

with each experimentation dataset. The results across algorithms are comparable for a given

dataset only. Each dataset has unique characteristics, including the number of features, the

number of samples, and the number of labeled anomalies that would make comparisons across

datasets problematic. Processing time is dependent on the number of features included in the

analysis. The scalability of the algorithm is dependent on the performance characteristics, and,

of course, the efficiency of the particular software implementation. Every algorithm exhibits the

same or longer processing time when all features are processed compared to a subset of the

dataset features, but the increase in processing is non-linear. The FRAUD dataset included thirty

(30) features with 227846 training samples; the SWAT dataset included forty-six (46) features

with 496800 training samples; the WADI dataset included ninety-nine (99) features with

1048571 training samples, and the DATACENTER dataset included seven (7) features with

134400 training samples.

 There are significant differences among the algorithms in terms of execution speed.

PCA and HBOS exhibited the fastest execution times and are the most linearly scalable. PCA is

based on linear algebra, while HBOS is non-parametric, involving histograms and data binning.

PCA is extremely fast on smaller datasets but has difficulty scaling to more massive datasets.

The fact that HBOS was the highest performant algorithm is not unexpected; the technique has

performance characteristics of 𝒪(n). HBOS processed the most stringent test, the WADI dataset,

in 5.1 seconds. Other algorithms, such as CB-LOF, performed quickly with the smaller

DATACENTER dataset (less than one second) but did not linearly scale to the WADI dataset

(203 seconds).

 53

` The three (3) k-NN algorithms were not particularly scalable, which is consistent with the

expected run-time performance characteristic of 𝒪(n2). The k-NN processed the DATACENTER

dataset in about thirty (30) seconds, jumped to 1363 seconds for processing the FRAUD dataset,

and then to 15568 seconds for the WADI dataset.

The OC-SVM algorithm failed to complete processing WADI, the largest dataset. SVMs

are known to be processor intensive and non-scalable, so this result is expected. Other proximity-

based (k-NN, LOF) and probabilistic algorithms (MCD) demonstrated long execution times and

are not suitable for adaptation for stream processing.

Table 10: Traditional Machine Learning Clock Times (Seconds)

Technique FRAUD (30) SWAT (46) WADI (99) DATACENTER (7)

Training Samples 227846 496800 1048571 134400
CB-LOF 19.1 22.4 203.8 .78
HBOS 1.5 1.9 5.1 1.2
I-FOREST 26.7 66.8 294.6 7.5
k-NN 1363.8 1405.7 15568.5 29.9
k-NN (Mean) 1697.7 1782.3 16431.4 50.8
k-NN (Median) 1921.6 1453.4 16413.0 75.0
LOF 2258.9 1500.3 2613.1 68.8
MCD 66.7 223.8 2025.1 14.2
OC-SVM 3313.9 21648.7 DNF – DID NOT FINISH 754.9
PCA 0.7 3.1 29.7 0.1

5.3 Experimentation Performance Results

Algorithmic speed is of little value if the results produced are of low accuracy or high

variance. Each algorithm was evaluated against each experimentation dataset. Anomaly datasets

are typically unbalanced, meaning only a small percentage of all samples are anomalous. As

previously noted, in order to compare performance across algorithms and datasets, the area under

the Receiver Operating Characteristic (ROC) curve (AUC) is the preferred metric. Recall that the

higher the value of AUC, the higher the accuracy of the algorithm; estimates of AUC of .8 and

above are generally viewed as favorable.

 54

 The AUC, Precision, Recall, and F1 metrics are based on the parameters estimated on the

training data applied to the test dataset. Two approaches to the creation of the test dataset are

possible. The first approach is to separate anomalous samples from the training dataset and

allocate these samples to the test set. This approach is possible because the anomalies are

labeled; however, in real-world situations, anomalies will not be labeled, and the anomaly rate is

low. The second approach is to separate the dataset into training and test subsets without regard

to the anomaly labels. This latter approach is more operationally realistic and was adopted for

use with the FRAUD and DATACENTER datasets. However, since the SWAT and WADI

datasets were created from testbeds, there is a natural division between the training and test

datasets. The training datasets are based on the operation of the testbeds under normal

conditions. In contrast, the test datasets are based on the operation of the testbed during the

period of attack.

The experimentation findings are presented in Tables 11-14. Table 11 presents the

results for the FRAUD dataset; Table 12 for the SWAT dataset; Table 13 for the WADI dataset;

and Table 14 for the DATACENTER dataset. The tables also include estimated predictions for

true-negatives, false-negatives, true-positive, and true-negative, which are the numbers that are

entered into the ‘confusion matrix’ described in Section 2.5.1. Note that an anomaly is

considered a positive, while a non-anomaly is negative.

Each algorithm defines a particular methodology for anomaly scoring. By convention,

higher scores indicate high probabilities of anomalies. However, anomaly scores are not

comparable across algorithms; only the rank order is essential. With the test dataset, each sample

is scored (based on the parameters estimated from the training dataset) and ranked from high to

low. If the population includes ‘x%’ anomalies, then the top ‘x%’ of the anomaly scores in the

 55

test dataset are designated as anomalies and are compared against the actual labels. The values

of a confusion matrix can then be calculated.

Note that a confusion matrix is based on a single threshold value of an anomaly score,

while the AUC metric is derived from all possible threshold values. Note that the values for

Precision, Recall, and F1 metrics are for the single-valued, algorithmically defined scoring

threshold, not a range in scoring values. Ranges in Precision and Recall can be displayed

graphically as a function of the algorithm threshold. Figures 16-24 provides three sets of graphs

associated with each dataset - algorithm combination: (a) the precision/recall vs. threshold graph,

(b) the precision vs. recall graph, and (c) the Receiver Operating Characteristic (ROC) curve.

5.3.1 FRAUD Experimentation

 Table 11 displays the findings with respect to the FRAUD dataset. All algorithms

produce an AUC above .9 except for Local Outlier Factor (LOF), where the AUC=.505. The

likely explanation for this result is that the FRAUD data contains only global anomalies, so a

local algorithm such as LOF will perform poorly. The fact that all other algorithms produce

excellent results indicates that anomalies are easily detected in this dataset, which is often the

case with financial anomalies.

Note the example of a confusion matrix produced by the HBOS algorithm. With an

AUC=.962 and the algorithm default scoring threshold, there were 85179 true negatives; the

algorithm correctly identifies these samples as non-anomalous. HBOS also produced ninety-six

(96) false negatives, anomalies that were not identified; HBOS produced 107 false positives,

non-anomalies that were incorrectly identified as being anomalous. Finally, there were sixty-one

(61) true positives, anomalies that were correctly identified.

 56

5.3.2 SWAT Experimentation

 Table 12 presents the AUC findings for the SWAT dataset, which is similar to the

findings for the FRAUD dataset. All algorithms produce AUCs that exceed .84, except for LOF

(AUC=.793). Note that, for example, at the KNN default scoring threshold, no true negatives

and no false negatives are identified. All true-positives and all false-positives were identified.

This result means that the algorithm threshold defaults are outside the relevant range and

incorrectly set.

5.3.3 WADI Experimentation

 Table 13 presents the findings associated with the WADI dataset. All AUC

measurements are below .8 except for the PCA algorithm (AUC=.82). WADI is the largest

dataset with the most features and samples. This result might indicate that the quality of the

WADI is lower than the other datasets, that the anomalies introduced into the testbed were not

actual anomalies, or that the algorithms are insufficiently robust to uncover the complex

interactions of the dataset features.

5.3.4 DATACENTER Experimentation

 Table 14 presents the findings associated with the DATACENTER dataset. Three

algorithms (k-NN (Mean), k-NN (Median), and LOF) recorded an AUC > .8. LOF correctly

identified 128 anomalies in the data. This result might indicate that the data includes local rather

than global anomalies. This dataset is a pooling of the samples from one-hundred (100) different

datacenters. By pooling the data across datacenter, the possibility exists that local, datacenter-

unique anomalies predominate.

 57

Table 11: FRAUD Experimentation Results

 Confusion Matrix

Algorithm AUC True

Negative

False Positive False

Negative

True Positive Precision Recall F1

CB-LOF .964 85166 120 112 45 .272 .286 .279
HBOS .962 85179 107 96 61 .363 .388 .375
I-Forest .952 85175 111 105 52 .319 .331 .325
KNN .954 85149 137 139 18 .116 .114 .115
KNN-Mean .942 85140 146 138 19 .115 .121 .118
KNN-Median .916 85148 138 140 17 .109 .108 .108
LOF .505 85127 159 157 0 .000 .000 .000
MCD .960 85252 34 29 128 .790 .815 .802
OC-SVM .958 85199 177 133 24 .119 .152 .152
PCA .957 85168 118 116 41 .257 .261 .259

Table 12: Secure Water Treatment Testbed (SWAT) Experimentation Results

 Confusion Matrix

Algorithm AUC True

Negative

False Positive False

Negative

True Positive Precision Recall F1

CB-LOF .894 341340 53958 9261 45360 .456 .830 .589
HBOS .854 293001 102297 11550 43071 .296 .788 .430
I-Forrest .843 269893 125405 11889 42732 .254 .782 .383
KNN .908 0 395298 0 54621 .121 1.000 .216
KNN-Mean .907 0 395298 0 54621 .121 1.000 .216
KNN-Median .903 0 395298 0 54621 .121 1.000 .216
LOF .793 111 395187 0 54621 .121 1.0 .216
MCD .840 344515 50783 14782 39839 .439 .729 .548
OC-SVM .895 356425 38873 10622 43999 .530 .805 .640
PCA .891 374400 20898 13249 41372 .664 .757 .707

Table 13: Water Distribution Testbed (WADI) Experimentation Results

 Confusion Matrix

Algorithm AUC True

Negative

False Positive False

Negative

True Positive Precision Recall F1

CB-LOF .737 153899 9042 6001 3859 .299 .391 .339
HBOS .787 158420 4521 6760 3100 .406 .312 .354
I-Forrest .747 149269 13672 6172 3688 .212 .374 .270
KNN .776 0 162941 0 9860 .057 1.000 .107
KNN-Mean .776 0 162941 0 9860 .057 1.000 .107
KNN-Median .776 0 162941 0 9860 .057 1.000 .107
LOF .684 4418 158523 118 9742 .057 .988 .109
MCD .691 147399 15542 6411 3449 .181 .349 .239
OC-SVM DNF – DID NOT FINISH
PCA .821 153706 9235 5993 3867 .291 .391 .333

 58

Table 14: DATACENTER Experimentation Results

 Confusion Matrix

Algorithm AUC True

Negative

False Positive False

Negative

True Positive Precision Recall F1

CB-LOF .564 49923 231 245 1 .004 .004 .004
HBOS .531 49884 270 246 0 .000 .000 .000
I-Forrest .546 49889 265 245 1 .000 .004 .003
KNN .776 49926 228 227 19 .076 .077 .077
KNN-Mean .808 49944 210 219 27 .113 .109 .111
KNN-Median .801 49935 219 220 26 .106 .105 .105
LOF .964 50048 106 118 128 .547 .520 .533
MCD .508 49929 225 246 0 0.0 0.0 0.0
OC-SVM .546 49932 245 222 245 .004 .004 .004
PCA .538 49925 229 245 1 .004 .004 .004

5.4 Experimentation Conclusions

Experimentation consisted of ten (10) different unsupervised algorithms trained and

tested against four (4) different datasets. The purpose was to determine those algorithms that can

produce reasonably accurate results while being adaptable in a streaming environment.

Overall, only the HBOS, I-Forrest, K-NN, and LOF algorithms were able to process all of

these benchmark datasets in a reasonable time. HBOS performance was close to the top across

all datasets in both the speed and accuracy metrics. The fact that HBOS was near the top is

somewhat surprising given the simplicity of the algorithm. HBOS outperformed LOS in all

experiments except for the processing of the DATACENTER dataset is also surprising given that

LOS is more theoretically justifiable and more popular in the literature than HBOS.

Based on the findings, HBOS appears to be the most promising algorithm for adaption

because of the simplicity in design, speed of execution, and reasonably good accuracy vis-a-vis

other more complex, theoretically-grounded algorithms. PCA also has demonstrated consistent

results. Overall, in terms of anomaly detection accuracy, most algorithms performed similarly

on the FRAUD and SWAT datasets and somewhat poorly on the WADI dataset. The results

associated with the DATACENTER dataset were mixed, with the LOF algorithm the highest

 59

performer due to the likelihood of local anomalies in the raw data. Nevertheless, HBOS, PCA,

and other TML techniques used as a singular approach to anomaly detection are unlikely to be

adequate for complex multivariate, data-driven spatiotemporal domains.

Chapter 6 discusses the application of DNN models to anomaly detection, while Chapter

7 provides the experimentation results using the same anomaly datasets. The goal is to uncover

promising DNN techniques that are adaptable for streaming anomaly detection, and investigate

how lightweight TML-based techniques such as HBOS can be integrated into a unified streaming

spatiotemporal environment called STADE. The complete STADE specification is presented in

Chapter 8.

 60

FRAUD

SECURE WATER TREATMENT TESTBED (SWAT)

WATER DISTRIBUTION TESTBED (WADI)

DATACENTER

Figure 16 – Clustering-Based Local Outlier Factor (CBLOF)

 61

FRAUD

SECURE WATER TREATMENT TESTBED (SWAT)

WATER DISTRIBUTION TESTBED (WADI)

DATACENTER

Figure 17: Histogram-Based Outlier Score (HBOS)

 62

FRAUD

SECURE WATER TREATMENT TESTBED (SWAT)

WATER DISTRIBUTION TESTBED (WADI)

DATACENTER

Figure 18: Isolation Forest (IF)

 63

FRAUD

SECURE WATER TREATMENT TESTBED (SWAT)

WATER DISTRIBUTION TESTBED (WADI)

DATACENTER

Figure 19: k-Nearest Neighbor (k-NN)

 64

FRAUD

SECURE WATER TREATMENT TESTBED (SWAT)

WATER DISTRIBUTION TESTBED (WADI)

DATACENTER

Figure 20: k-Nearest Neighbor (kNN - Mean)

 65

FRAUD

SECURE WATER TREATMENT TESTBED (SWAT)

WATER DISTRIBUTION TESTBED (WADI)

DATACENTER

Figure 21: k-Nearest Neighbors (kNN - Median)

 66

FRAUD

SECURE WATER TREATMENT TESTBED (SWAT)

WATER DISTRIBUTION TESTBED (WADI)

DATACENTER

Figure 22: Local Outlier Factor (LOF)

 67

FRAUD

SECURE WATER TREATMENT TESTBED (SWAT)

WATER DISTRIBUTION TESTBED (WADI)

DATACENTER
d

Figure 23: Minimum Covariance Determinant (MCD)

 68

FRAUD

SECURE WATER TREATMENT TESTBED (SWAT)

WATER DISTRIBUTION TESTBED (WADI)
 DNF – DID NOT FINISH

DATACENTER

Figure 24: One-Class Support Vector Machines (OC-SVM)

 69

FRAUD

SECURE WATER TREATMENT TESTBED (SWAT)

WATER DISTRIBUTION TESTBED (WADI)

DATACENTER

Figure 25: Principal Components Analysis (PCA)

 70

CHAPTER 6 – DEEP NEURAL NETWORK (DNN) ANOMALY DETECTION

6.1 Background

 DNNs experienced a resurgence in popularity beginning in the early 2000s that continues

today. This resurgence, in part, has been a result of the availability of low-cost computer

infrastructure, in part by the emergence of new algorithms, and in part, because of the generation

of large datasets from IoT and SCADA devices required new analytic techniques.

Multiple network architectures and associated algorithms are included under the umbrella

of DNNs. These architectures include feedforward neural networks (FFNs), recurrent neural

networks (RNN), convolutional neural networks (CNN), and generative adversarial networks

(GAN). DNN architectures and algorithms have been employed singularly or in combination to

address complex applications such as image captioning, natural language processing, speech

recognition, transfer learning, and sentiment analysis. For example, RNNs and CNNs have been

successfully combined to produce an ensemble algorithm that can learn complex language

embeddings for language translation [69]. Many of the mobile digital assistant applications are

based on ensemble techniques targeted to smaller smartphone processors.

There has also been a resurgence in research in advanced techniques for anomaly

detection. Studies have applied a variety of innovative algorithms to anomaly detection

problems producing results superior to the TML techniques described in Chapters 4-5 [70].

These algorithms have borrowed heavily from the DNN neural machine translation and image

processing literature. All of the types of DNN architectures described above have also been

adapted to address anomaly detection problems.

In designing a DNN architecture, the choice of the number of hidden layers, the number

of processing nodes within a hidden layer, the nonlinear activation function, the form of the

 71

output, and the overall parameter estimation strategy are tantamount. Parameters are estimated

with training data using an optimizer [71] that implements variants of the backpropagation

algorithm [72] and various styles of stochastic gradient descent [73]. Practical estimation of

DNNs also requires a set of choices upfront regarding the model hyperparameters. There are

DNN meta-models designed to optimize the hyperparameter selection criteria [74]. Important

hyperparameter decisions include the setup, initialization, and normalization of the architecture

[75] and [76]; the selection of gradient descent optimization techniques such as the ADAM

optimizer [71] and adjustments to the backpropagation algorithm (e.g., gradient clipping) to

increase stability and prevent exploding or vanishing gradients; the approach to model overfitting

including penalty-based regularization, early stopping, and dropout [77]; the decision regarding

the treatment of dynamic learning-rates through learning rate decay, momentum [78], and other

techniques; and the selection of GPU hardware acceleration and parallel computing

infrastructure. However, the analysis of these hyperparameters choices on the formulation and

performance of anomaly detection algorithms, albeit important, is beyond the scope of this

research.

Below is a discussion of six (6) candidate DNN-based architectures that could support

spatiotemporal anomaly detection stream processing. These six architectures are: a)

Shallow/Deep Autoencoders (SDA), b) Variational Autoencoders (VAE), c) Deep Autoencoding

Gaussian Mixture Models (DA-GMM), d) Generative Adversarial Networks (GAN), e)

Encoding-Decoding Recurrent Neural Networks (ED-RNN), and f) Encoding-Decoding One-

Dimensional Convolutional Neural Network (ED-1D-CNN). A few specialized DNN

architectures have been used in anomaly detection studies. These other architectures were

rejected from consideration either because the core technique lacked intrinsic support for

 72

unsupervised learning, lacked the theoretical underpinnings that would justify use in an anomaly

detection study, or could not be reasonably adapted to support time-dependent spatiotemporal

streaming data.

Architectures #2 (VAE) and #4 (GAN) are members of a class of DNNs called generative

models. With generative models, the network learns the model’s probability distribution from

the training data and generates new samples that can be used to complement the anomaly

detection identification process. VAEs use approximate density estimation techniques, while

GANs use implicit density estimation techniques [79]. Density estimation is a core problem of

unsupervised learning and has been at the forefront of new approaches to anomaly detection.

 There is an essential distinction between an architecture and an anomaly detection

algorithm. The architecture describes the relationships between the various components of the

system, the approach to parameters estimation, and the constraints placed on the system. The

anomaly detection algorithm, however, goes deeper by providing a specific algorithm to

designate the existence or nonexistence of an anomaly. For each of the six architectures

described below, the associated anomaly detection algorithm is presented using pseudocode, a

notation resembling a simplified programming language.

6.2 Architecture #1: Shallow/Deep Autoencoder (SDA)

SDAs are an unsupervised technique designed to encode data and reduce dimensionality

efficiently. Traditionally, SDAs have been used for dataset cleansing and noise reduction similar

to the capabilities provided by linear, statistically-based Principal Components Analysis (PCA)

and Singular Value Decomposition (SVD). However, recent discoveries have suggested that

SDAs can also provide novel anomaly detection capabilities.

 73

 The concepts of representational learning [80] and feature extraction are essential here.

DNNs at their core are universal nonlinear function estimators and feature extractors. Similarly,

SDAs can extract features from complex multivariate data through encodings and dimensionality

reduction and can represent those features as vectors. These feature vectors, in turn, can be

entered into other TML and DNN architectures designed for anomaly detection using ensemble

algorithms and heuristic techniques.

SDAs strive to replicate a set of inputs through a sequential process known as encoding

and decoding. The encoding process produces a minimalist representation by reducing the

number of dimensions of the input data. This reduced dimensionality is then processed by the

decoder to reproduce the original inputs. The idea is to preserve as much information as possible

through the encoding and decoding process. An anomaly would be identified if the decoding

cannot faithfully reproduce the original inputs to some predetermined threshold level.

Figure 26 depicts an example of a deep SDA with five (5) inputs, three (3) hidden layers

with a compressed representation (middle hidden layer) of two nodes. These hidden nodes are

also referred to as feature vectors because the SDA has extracted features from the raw data. The

goal is to replicate or copy the vector of inputs 𝑥ℓ𝑡. Each region ℓ has a separate instance of the

model; there is no sharing of parameters across regions. The performance objective is to

minimize the reconstruction error, the error between the original data and the reconstructed data.

This reconstruction error is also considered the anomaly score.

The architecture of shallow and deep autoencoders are similar; the difference is that

shallow autoencoders are designed to have only a single hidden layer while deep autoencoders

are designed with two or more hidden layers. Otherwise, there is no practical difference between

 74

a shallow and deep autoencoder. Also, note that autoencoding is an unsupervised technique

because labeled data is not used in the training process.

The parameters of the encoder and decoder are estimated using a traditional FFNs with an

optimizer that implements the backpropagation algorithm. However, an SDA does not have a

clear concept of sequence or time embedded into the architecture; there is no time component

shown in Figure 26. Therefore, a practical implementation of an SDA architecture will require a

model adaptation to incorporate the temporal dimension. For example, the inputs into the SDA

might include the data from t-1 (𝑥ℓ𝑡−1), from t-2 (𝑥ℓ𝑡−2), and from t-3 (𝑥ℓ𝑡−3). Unfortunately, in

practice, this approach may be intractable in applications with long-term temporal relationships.

With architecture #5, RNNs are a more natural approach to incorporating time-dependent data

but with much higher compute resource requirements.

Figure 26: Shallow/Deep Autoencoder (SDA)

Mathematically, omitting the location subscript l for clarity, assume there are N

multivariate samples from the training dataset (𝑥1, 𝑥2, … , 𝑥𝑁), with an encoder function 𝑓𝜃, then

for each sample n from the training dataset, the hidden feature vector is given by: ℎn = 𝑓𝜃(𝑥𝑛) (6.1)

 75

The decoder function, which maps or reconstructs the hidden feature vector back to the original

inputs, is given by 𝑔∅: 𝑟𝑛 = 𝑔∅(ℎ𝑛) (6.2)

The set of parameters 𝜃 𝑎𝑛𝑑 ∅ are learned by a DNN which attempts to minimize the

reconstruction error over the entire set of training samples (𝑥1, 𝑥2, … , 𝑥𝑁). The reconstruction

error (RE) is the anomaly score. The reduction in dimension from an input size of five (5) to two

(2) nodes forces the DNN to extract only the most salient features and learn the set of parameters 𝜃 𝑎𝑛𝑑 ∅. This bottleneck produced by the encoder also forces the network to learn an efficient

compression of the data into a lower-dimensional space. When data is encoded, only the

regularities in the data are captured; irregularities and noise are ignored. So, the goal of the

decoder is to minimize the RE or loss across all non-anomalous training samples given by

equations (6.3):

 𝑀𝑖𝑛: 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜r (θ, ∅) = ∑ 𝑅𝐸(𝑥𝑛, 𝑔𝜃(ℎ𝑛))𝑛

or equivalently

 𝑀𝑖𝑛: 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜r (θ, ∅) = ∑ 𝑅𝐸(𝑥𝑛, 𝑔𝜃(𝑓𝜃(𝑥𝑛)))𝑛

(6.3)

Let 𝑠𝑓 be the nonlinear activation function for the encoder, let 𝑠𝑔 be the nonlinear

activation function for the decoder, b is the encoder bias vector, d is the decoder bias vector, DE

is the encoder weight matrix, and EN is the decoder weight matrix. The equations of the

autoencoder for each training sample are given by equations (6.4): 𝑓𝜃(𝑥𝑛) = 𝑠𝑓(𝐷𝐸𝑥𝑛 + 𝑏) 𝑔∅(ℎ𝑛) = 𝑠𝑔(𝐸𝑁ℎ𝑛 + 𝑑)

(6.4)

So, an autoencoder attempts to minimize the loss of information from the encoding process

across all training samples, as seen in equation (6.5):

 76

𝑀𝑖𝑛: 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜r (∅) = ∑ (𝑥𝑛 − 𝑔∅ (𝑠𝑓(𝐷𝐸𝑥𝑛 + 𝑏)))𝑁
𝑛=1

and substituting:

𝑀𝑖𝑛: 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜r (θ, ∅) = ∑ (𝑥𝑛 − 𝑠𝑔(𝐸𝑁(𝑠𝑓(𝐷𝐸𝑥𝑛 + 𝑏)) + 𝑑))𝑁
𝑛=1

(6.5)

(6.6)

or in terms of Figure 26, the goal is to minimize the reconstruction error ‖𝑥 − 𝑥′‖, which is also

known as the ‘L1’ norm.

As an aside, a norm is a function that maps vectors to non-negative values and measures

the size of a vector. The Lp norm is given by equation 6.7, where 𝑝 ∈ ℝ, 𝑝 ≥ 1. [81]

||x||p = (∑ |𝑥𝑖|𝑖 p)1/p (6.7)

The L2 norm, with p=2, is known as the Euclidean norm, which is the distance from the origin to

the point defined by x. The squared L2 norm, xTx, is easier to work with mathematically and is

often mentioned in DNN algorithms. Note that the higher the norm index, the greater the

emphasis on high values and the less the emphasis on low values. Other distance measures used

in DNN cost functions include the Root Mean Squared Error (RMSE) and the Mean Absolute

Error (MAE).

6.2.1 SDA Anomaly Detection Algorithm

Algorithm 1 in Figure 27 displays the pseudocode for the SDA anomaly detection

algorithm. The algorithm is based on a reconstruction error noted in the equations above. The

parameters are estimated using only the non-anomalous samples in the training set as the

underlying premise is that all of the methods are unsupervised, supporting unlabeled data. Note

that the number of anomalies is determined by the threshold α, which is application dependent;

 77

the higher the threshold, the fewer the number of data points that are designated as anomalous

since higher scores mean a higher probability of an anomaly.

Algorithm 1: Autoencoder Anomaly Detection Algorithm
INPUT: Normal dataset X, Anomalous dataset xi, i = 1,…,N, threshold α
OUTPUT: reconstruction error ||𝒙 − 𝒙′||
STEPS: ∅, 𝜽  train an SDA using the normal dataset X

for i = 1 to N do

 reconstruction error(i) = ||𝒙𝒊 − 𝒈∅ (𝒇𝜽(𝒙𝒊)) ||
 if reconstruction error(i) > α then
 𝒙𝒊 is an anomaly
 else

 𝒙𝒊 is not an anomaly
 endif
endfor

Figure 27: SDA Anomaly Detection Algorithm

6.3 Architecture #2: Variational Autoencoder (VAE)

A VAE [82] is a generative model that outputs a probability estimate rather than a

reconstruction error as the anomaly score [83]. The SDA produces a numeric vector in the

hidden layer that represents the set of learned or extracted features of the data. A VAE also

extracts and recreates the latent features of a problem domain, but uses a probabilistic approach.

When decoding from these encoded features, sampling is performed from the encoded statistical

distribution to create the decoded output. The advantage of a VAE over the SDA is that

probabilities tend to be more interpretable than absolute reconstructive errors. However, both

approaches still require an arbitrary threshold value α to binary classify new samples as

anomalous or non-anomalous.

Figure 28 depicts a simplified VAE encoder and decoder network. Each input feature 𝑥

is assumed to follow a Gaussian distribution. The encoder, 𝑞𝜃(𝑧|𝑥) encodes inputs x and outputs

to Z, a Gaussian multivariate vector of latent or hidden features. The decoder, 𝑝∅(𝑥|𝑧), draws

from this Gaussian distribution and regenerates the inputs 𝑥 in 𝑥′. The key idea is to determine

 78

the probability that 𝑥′ was generated from Z. If this probability is low, and depending on the

threshold level α, the sample is deemed to be an anomaly. Note that unlike the SDA, once

training is completed and the parameters 𝜃 𝑎𝑛𝑑 ∅ are estimated, the decoder is not used in the

anomaly detection algorithm.

 Figure 28: Variational Autoencoder (VAE)

 Consider the encoder network 𝑞𝜃(𝑧|𝑥). Over the set of multivariate Gaussian training

samples, the output of the encoding DNN is a vector Z with mean 𝜇𝑧|𝑥 and diagonal covariance

of ∑𝑧|𝑥. Similarly, the output of the decoder network 𝑝∅(𝑥|𝑧)is given by mean 𝜇𝑥|𝑧and diagonal

covariance of ∑𝑥|𝑧. Both the encoder and decoder are probabilistic. If sample Z is generated

from the training samples 𝑥, then 𝑧|𝑥 ~ 𝑁(𝜇𝑧|𝑥 , ∑𝑧|𝑥) and 𝑥|𝑧 ~ 𝑁(𝜇𝑥|𝑧 , ∑𝑥|𝑧). The goal is to

estimate 𝑝∅(𝑥|𝑧) to determine if the sample is an anomaly. To do so, estimate the (log) data

likelihood of the ith training sample, as shown in equation 6.8 below, by taking the expected

value with respect to z. Note that 𝑝∅(𝑥𝑖) does not depend on z. log 𝑝∅(𝑥𝑖) = 𝐸𝑧~𝑞𝜃(𝑧|𝑥𝑖)[log 𝑝∅(𝑥𝑖)] (6.8)

Using Bayes theorem, we derive equation (6.9):

 79

log 𝑝∅(𝑥𝑖) = 𝐸𝑧~𝑞𝜃[log 𝑝∅(𝑥𝑖|𝑧)𝑝∅(𝑧)𝑝∅(𝑧|𝑥𝑖)] (6.9)

multiplying by a constant
𝑞𝜃(𝑧|𝑥𝑖).𝑞𝜃(𝑧|𝑥𝑖), we get equation (6.10):

log 𝑝∅(𝑥𝑖) = 𝐸𝑧~𝑞𝜃[log 𝑝∅(𝑥𝑖|𝑧)𝑝∅(𝑧)𝑝∅(𝑧|𝑥𝑖) 𝑞𝜃(𝑧|𝑥𝑖) 𝑞𝜃(𝑧|𝑥𝑖)] (6.10)

and taking logarithms, we get (6.11):

log 𝑝∅(𝑥𝑖) = 𝐸𝑧[log𝑝∅(𝑥𝑖|𝑧)] − 𝐸𝑧 [log 𝑞𝜃(𝑧|𝑥𝑖)𝑝∅(𝑧)] + 𝐸𝑧[𝑙𝑜𝑔 𝑞𝜃(𝑧|𝑥𝑖)𝑝∅(𝑧|𝑥𝑖)] (6.11)

which is equivalent to (6.12): log 𝑝∅(𝑥𝑖) = 𝐸𝑧[log𝑝∅(𝑥𝑖|𝑧)] − 𝐷𝐾𝐿(𝑞𝜃(𝑧|𝑥𝑖)||𝑝∅(𝑧)) + 𝐷𝐾𝐿(𝑞𝜃(𝑧|𝑥𝑖)||𝑝∅(𝑧|𝑥𝑖)) (6.12)

where K-L is the Kullback-Leibler Divergence, a method to measure the difference between two

probability distributions. K-L divergence is always >=0. Note that the term 𝐸𝑧[log𝑝∅(𝑥𝑖|𝑧)] is

the decoder network that can be estimated through sampling and 𝐷𝐾𝐿(𝑞𝜃(𝑧|𝑥𝑖)||𝑝∅(𝑧)) is the K-

L term between the Gaussians for the encoder and the z prior. Unfortunately, the term 𝐷𝐾𝐿(𝑞𝜃(𝑧|𝑥𝑖)||𝑝∅(𝑧|𝑥𝑖)) from equation (6.12) is intractable and cannot be estimated because

every z cannot be computed given the finite number of samples 𝑥𝑖.
Since we want to maximize the data likelihood of log 𝑝∅(𝑥𝑖), we can drop the intractable

term 𝐷𝐾𝐿(𝑞𝜃(𝑧|𝑥𝑖)||𝑝∅(𝑧|𝑥𝑖)) from (6.12) to get (6.13): ℒ(𝑥𝑖 , ∅, 𝜃) = 𝐸𝑧[log𝑝∅(𝑥𝑖|𝑧)] − 𝐷𝐾𝐿(𝑞𝜃(𝑧|𝑥𝑖)||𝑝∅(𝑧)) (6.13)

Equation (6.13) is tractable and becomes the lower bound of log 𝑝∅(𝑥𝑖) since K-L >=0. Gradient

descent can be used to optimize ∅ 𝑎𝑛𝑑 𝜃 to maximize the likelihood of the lower bound ℒ(𝑥𝑖 , ∅, 𝜃). ℒ(𝑥𝑖 , ∅, 𝜃) is known as the variational lower bound, or ‘ELBO’ for short. During

 80

VAE training, the goal is to maximize ‘ELBO,’ the lower bound across the entire set of training

examples.

6.3.1 An Aside on Kullback-Liebler (K-L) Divergence

The K-L divergence is a measure of the difference between two probability distributions.

The basic idea behind K-L divergence is derived from three fundamental concepts in information

theory: (1) unlikely events provide higher information content than unlikely events, (2) there is

no information gained from the occurrence of a known event, and (3) the occurrence of

independent events provides additive information content. The self-information I of event x is

given by: 𝐼(𝑥) = − log 𝑃(𝑥) (6.14)

Given two probability distributions P(x) and Q(x), the K-L divergence measure is given

by DKL(P||Q): 𝐷𝐾𝐿(P||Q) = 𝐸𝑥~𝑃[𝑙𝑜𝑔𝑃(𝑥) − 𝑙𝑜𝑔𝑄(𝑥)] (6.15)

Note that K-L divergence is not a true distance measure since the metric is not

symmetric: 𝐷𝐾𝐿(P||Q) ≠ 𝐷𝐿𝐾(P||Q). Also, while the distance measures are generally thought of

as a physical distance in 3D space, the distance measure is applied to multivariate data that does

not represent a physical distance. Barz et al. [84] provide an unsupervised spatiotemporal

anomaly detection algorithm called ‘Maximally Divergent Intervals’ (MDI), which is based on

high K-L divergence compared to all other data.

6.3.2 VAE Anomaly Detection Algorithm

The VAE anomaly detection algorithm is adapted from [82] and is shown in Figure 29. The

algorithm is similar to the SDA anomaly detection algorithms except that reconstruction

probability is used instead of the reconstruction error.

 81

Algorithm 2: Variational Autoencoder Anomaly Detection Algorithm
INPUT: Normal dataset X, Anomalous dataset xi i = 1,…,N threshold α
OUTPUT: Reconstruction probability 𝒑∅(𝒙|𝒙′)
STEPS: ∅, 𝜽  train a VAE using the normal dataset X

for i = 1 to N do

 𝝁𝒛𝒊𝝈𝒛𝒊 = 𝒒𝜽(𝒛|𝒙𝒊) # from the encoder
 Draw L samples from 𝒛 ~ 𝑵(𝝁𝒛𝒊𝝈𝒛𝒊)
 for l = 1 to L

 𝝁𝒛′(𝒊𝝈𝒛𝒊 = 𝒑∅(𝒙𝒊|𝒛(𝒊,𝒍))
 end for

 reconstruction probability(i)=
𝟏𝑳 ∑ 𝒑∅(𝒙𝒊|𝑳𝟏 𝝁𝒙′(𝒊,𝒍)𝝈𝒙′(𝒊,𝒍))

 if reconstruction probability(i) < α then
 𝒙𝒊 is an anomaly
 else

 𝒙𝒊 is not an anomaly
 endif
endfor

Figure 29: VAE Anomaly Detection Algorithm

6.4 Architecture #3: Deep Autoencoding Gaussian Mixture Model (DA-GMM)

 This discussion of the deep autoencoding Gaussian mixture models for unsupervised

anomaly detection is based on [85]. DA-GMM is an unsupervised, anomaly detection approach

that is an extension of the deep autoencoding model. As background, a mixture model is a

probabilistic model designed to represent the existence of subpopulations within an overall

population. For example, anomalous points within a normal population can be modeled as a

normal distribution subpopulation of anomalous points. A GMM learns and assigns points to

these subpopulations automatically. A GMM is unsupervised because these subpopulations are

unknown and are assigned by the underlying model.

 The DA-GMM shown in Figure 30 is composed of two connected networks, a

compression network, and an estimation network. The compression network is similar to the

SDA network and conducts dimensionality reduction and feature extraction. The compression

network feeds the estimation network, which predicts the probability 𝜋̂ that the reduced

representation indeed represents the true data. The DA-GMM algorithm jointly optimizes the

 82

parameters of the autoencoder and the mixture model simultaneously rather than sequentially.

Through this joint optimization procedure, anomaly detection accuracy is improved by 10-15%,

according to [85].

Note the compression network contains two sources of features: (1) the reduced, low-

dimensional representations learned by the autoencoder, and (2) the features derived from the

reconstruction error. The compression (autoencoding) network feeds the estimation network that

takes the reduced dimensionality of the inputs and outputs mixture membership prediction

(known as the likelihood/energy) for each sample. Gaussian mixture density estimation

procedures are beyond the scope of this paper but are discussed in detail in Section 3.3 of [85].

So, to summarize, a DA-GMM model is essentially the combination of an SDA (architecture #1)

with an integrated Gaussian mixture back-end model.

The DA-GMM objective function is given by (6.16):

𝐽(𝜃𝑐, 𝜃𝑑 , 𝜃𝑚) = 1𝑁 ∑ 𝐿(𝑥𝑖𝑥𝑖′) + 𝜆1𝑁 ∑ 𝐸(𝑧𝑖)𝑁
𝑖=1 + 𝜆2𝑃(∑̂)𝑁

𝑖=1
(6.16)

where 𝐿(𝑥𝑖𝑥𝑖′) is the loss function (e.g., L2 norm) from the reconstruction error from the

autoencoder in the compression network; 𝐸(𝑧𝑖) is the model of the probabilities observed from

the input data, and 𝜆1 and 𝜆12 are meta-parameters in DA-GMM.

 83

Figure 30: Deep Autoencoding Gaussian Mixture Model (DA-GMM)

 6.4.1 DA-GMM Anomaly Detection Algorithm

 Algorithm 3 in Figure 31 provides the DA-GMM anomaly detection algorithm. The

estimation network utilizes a multi-layer DNN to predict the mixture membership of each sample

and calculates the likelihood/energy values. Samples with high energy above the designated

threshold are deemed anomalies. Because the DA-GMM supports a classification problem, the

standard evaluation metrics such as Precision, Recall, and F1 are applicable. The DA-GMM

paper designates the highest 20 percent in terms of ‘energy’ of all samples is marked as

anomalies. Note that by varying the energy threshold value, a standard ROC curve could be

generated and an AUC metric calculated. Because DA-GMM is probabilistic, each run will

produce different results, sometimes dramatically different. Results are averaged across twenty

(20) executions.

 84

Algorithm 3: Deep Autoencoder Gaussian Mixture Model Anomaly Detection
Algorithm
INPUT: Normal dataset X, Anomalous dataset xi i = 1,…,N threshold α,

K=number of mixture components
OUTPUT: Sample likelihood/energy
STEPS: 𝜃𝑐 , 𝜃𝑑 , 𝜃𝑚  train a DA-GMM using the normal dataset X

Estimate the parameters in GMM, including: ∅ ∶ 𝑴𝒊𝒙𝒕𝒖𝒓𝒆 𝑪𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝑫𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏 𝝁: Mixture Means
∑: Mixture Covariance
z: Low Dimensional Representations

for i = 1 to N do
 calculate 𝒛𝒊
 sample energy(i,𝒛𝒊)= −𝒍𝒐𝒈(∑ ∅𝒌 𝒆𝒙𝒑(−𝟏𝟐(𝒛−𝝁𝒌)𝑻 ∑ (𝒛−𝝁𝒌)−𝟏𝒌√|𝟐𝝅∑𝒌|𝑲𝒌=𝟏)
 if sample energy(i, 𝒛𝒊) > α then
 𝒙𝒊 is an anomaly
 else

 𝒙𝒊 is not an anomaly
 endif
endfor

Figure 31: DA-GMM Anomaly Detection Algorithm

6.5 Architecture #4: Generative Adversarial Network (GAN)

 A GAN [86] is a generative model designed initially for image generation and is

represented in Figure 32. Unlike VAEs and DA-GMMs, GANs are not based on probability

density models but a two-player game-theoretic approach. Each GAN consists of two competing

DNNs, a generator 𝐺 with parameters 𝜃𝑔 and a discriminator 𝐷 with parameters 𝜃𝑑, which are

trained simultaneously and which learns to distinguish between real and fake or anomalous data. 𝐺 tries to fake the discriminator by generating realistic data, while 𝐷 tries to distinguish between

real and fake data. After the model is trained, anomalies are identified by 𝐷 as fake data. As with

all classification problems, the anomaly determination is dependent on the threshold value of 𝐷.

Higher threshold values will result in fewer true positives but also fewer false positive anomaly

designation. There is always a trade-off between true and false positives given cutoff value.

 85

Figure 32: Generative Adversarial Network (GAN)

 Consider equation (6.17), which is a formulation of a minimax game, also known as a

zero-sum game:

min𝜃𝑔 max𝜃𝑑 [𝐸𝑥~𝑝(𝑑𝑎𝑡𝑎) log 𝐷𝜃𝑑,(𝑥) + 𝐸𝑥~𝑝log (1 − 𝐷𝜃𝑑, (𝐺𝜃𝑔(𝑧)))] (6.17)

Note that 𝐷𝜃𝑑,(𝑥) is the discriminator output for real data while 𝐷𝜃𝑑, (𝐺𝜃𝑔(𝑧)) is the

discriminator output for the generated fake data 𝐺𝜃𝑔(𝑧). The discriminator 𝐷 outputs a

likelihood in the range (0,1), where one (1) is real, and zero (0) is fake data. 𝐷 strives to

maximize the objective such that 𝐷𝜃𝑑,(𝑥) is close to one and 𝐷𝜃𝑑, (𝐺𝜃𝑔(𝑧)) is close to zero,

while 𝐺 strives to minimize the objective such that 𝐷𝜃𝑑, (𝐺𝜃𝑔(𝑧)) is close to 1. GAN training

includes an optimizer with minibatch gradient descent, with the backpropagation algorithm, is

alternately applied between the discriminator shown in equation (6.18) and the generator shown

in equation (6.19). Equilibrium is reached when either the generator or the discriminator will not

alter their parameters regardless of what the other does, which is also known as a Nash

equilibrium.

 86

𝑚𝑎𝑥𝜃𝑑 [𝐸𝑥~𝑝(𝑑𝑎𝑡𝑎)𝑙𝑜𝑔𝐷𝜃𝑑,(𝑥) + 𝐸𝑥~𝑝(𝑧)log (1 − 𝐷𝜃𝑑, (𝐺𝜃𝑔(𝑧)))] (6.18)

 min𝜃𝑔 𝐸𝑥~𝑝(𝑧)log (1 − 𝐷𝜃𝑑, (𝐺𝜃𝑔(𝑧))) (6.19)

 GANs are challenging to train, in part because two DNNs are requiring two (large) sets of

choices regarding hyperparameters and in part because of the inability to learn the model

parameters. Learning may be difficult because of the mode collapse problem, where there is a

tendency by the generator to explore only a limited subset of plausible solutions, or because the

discriminator may overpower the generator, or visa-versa causing overfitting. GANs also exhibit

bouts of non-convergence where the model parameters oscillate and destabilize.

6.5.1 GAN Anomaly Detection Algorithm

 Algorithm 4 in Figure 33 displays the anomaly detection algorithm associated with a

GAN. The same process as network training is followed except that the model parameters are

not re-estimated. The input data is passed through the generator network, followed by the

discriminator network. An anomaly score (0,1) is calculated and compared against the threshold

value. The threshold value is set where the probability of a fake is greater than .5

Algorithm 4: Generative Adversarial Network Anomaly Detection Algorithm
INPUT: Normal dataset X, Anomalous dataset xi i = 1,…,N threshold α

OUTPUT: GAN Output Score (0,1)
STEPS: for i = 1 to N do

 Generate 𝒛𝒊 from xi
 Enter Generator Trained Network. Calculate 𝐷𝜃𝑑, (𝐺𝜃𝑔(𝑧))
 output score(i) = 𝑙𝑜𝑔𝐷𝜃𝑑,(𝑥)
 if output score(i) < α then
 𝒙𝒊 is an anomaly
 else

 𝒙𝒊 is not an anomaly
 endif
endfor

Figure 33: GAN Anomaly Detection Algorithm

 87

6.6 Architecture #5: Encoding-Decoding Recurrent Neural Network (ED-RNN)

RNNs have been used extensively in anomaly detection applications and can be adapted

to form an autoencoding-like network. In this architecture, the output of an RNN attempts to

replicate the inputs similar to an SDA. An ED-RNN combines the best of both architectures,

adding a temporal component to an otherwise static SDA. ED-RNN style architectures are

heavily used in machine and speech translation applications today, although the temporal

component is not time but rather a sequence of words or speech.

Figure 34 illustrates the basic variant of an ED-RNN. An RNN is a dynamic network

that contains delays and operates on an ordered sequence of inputs. An RNN is represented as a

directed graph along a temporal sequence. The self-loop or folded depiction is shown on the left,

while the unfolded depiction is shown on the right. Both the folded and unfolded versions are

conceptually identical. The subscripts represent location while the superscripts represent time or

sequence. So, for example, 𝑥1𝑡−1 represents a multivariate input vector at location 1 at time t-1.

Note that the hidden state ℎ𝑙𝑡is a function of not only the current input vector 𝑥𝑙𝑡, but also the

previous period’s hidden state ℎ𝑙𝑡−1. This model structure provides the long-term memory of the

network. Long-term memory is a desirable characteristic in anomaly detection architectures for

uncovering complex temporal relationships.

An ED-RNN is sensitive to the order of the data, supports long-term temporal patterns,

and the identification of global anomalies. An ED-RNN is not appropriate for the identification

of local anomalies. Like all DNN architectures, an ED-RNN can be combined with other

architectures to form a hybrid architecture that could potentially identify both local and global

anomalies.

 88

Figure 34: Encoding-Decoding Recurrent Neural Network (ED-RNN)

The goal of the autoencoder component is to replicate these three inputs by learning the

hidden representation h, which includes features from not only the current inputs but also from

the sequential history of inputs as captured by the RNN hidden units. Formally, the network

equations for the RNN are given by equation (6.20), omitting the location subscripts for brevity: ℎ𝑡 = 𝑓(ℎ𝑡−1, 𝑥𝑡) or ℎ𝑡 = 𝑓(𝑊ℎ𝑡−1 + 𝑈𝑥𝑡)

(6.20)

where the hidden state is a nonlinear activation function 𝑓(. , .). Popular activation functions 𝑓(. , .) include rectified linear units, sigmoid, and tanh. The final output is another function 𝑔()

of the hidden states: 𝑦𝑡 = 𝑔(ℎ𝑡), or equivalently 𝑦𝑡 = 𝑔(𝑓(𝑊ℎ𝑡−1 + 𝑈𝑥𝑡))

(6.21)

 89

 Note that the RNN weight matrices U, W, and V are shared across time-steps. Sharing

means that the model weights are constrained by the optimization algorithm to be identical

across time or sequence. Each location or geographic region, however, would have a separate

instantiation of this architecture. Parameter sharing is desirable in RNNs to avoid many stability

issues when estimating the model parameters with long temporal sequences. More importantly,

the sharing of weights across time steps is theoretically grounded; there is no reason to believe

that the underlying structural model drifts or is different across time within a given region. If the

weight parameters were not shared across time, then each period would be a separate model.

Note that the weight matrices U, W, V are not shared across locations in this model, meaning

that each location is operating autonomously and subject to a different underlying model.

Whether RNN weight matrices should be shared across locations is an application design

question and also an open research issue in the DNN literature.

There are many variations in the EN-RNN architecture, including alternate connections

[87], additional weight matrices, and different parameter constraints across time. RNN

formulations handle variable-length input streams that are critical with time series or sequence

data. Specialized versions of the backpropagation algorithm known as the backpropagation

through time (BPTT) algorithm are required to estimate the parameters of the RNN.

Unfortunately, the BPTT algorithm is processor-intensive, has difficulty learning long sequences

(over a few hundred steps at best) due to the ubiquitous vanishing or exploding gradient problem

[88] and may fail to converge. As a result of these estimation issues, architectural add-ons to

RNNs such as Long Short-Term Memory (LSTM) [89] and Gated-Recurrent Units (GRU) have

been developed and are almost always used. Even with these architectural add-ons, RNNs are

long-running and processor-intensive [90]. For these reasons, the use of RNNs in streaming

 90

anomaly detection applications is problematic. Note that the optimizer with the backpropagation

algorithm used in the encoder-decoder component is less complicated, more stable, and

significantly faster than the BPTT algorithm required by RNNs. Therefore, an SDA architecture

is more performance compatible with streaming than an ED-RNN. However, conceptually, an

ED-RNN is designed for multi-step temporal or sequential data, while SDAs are designed for

snapshots or cross-sections.

Because of the many estimation and complexity issues associated with RNNs with LSTM

and the difficulty of training these models [91], there has been a recent trend in the neural

machine translation literature away from recurrent networks and towards attention-based

networks, which is similar to the SDA architecture. The belief is that in most applications, and

particular machine translation applications, long-term memory over many steps is not necessary

and that the focus attention of network connections should be on recent or nearby memory. See

Vaswani et al. [92] for more details. For a discussion of ED-RNN in the application of machine

language translation, see [93].

6.6.1 ED-RNN Anomaly Detection Algorithm

Figure 35 displays the pseudocode for the anomaly detection algorithm associated with

an ED-RNN. The algorithm is based on a multi-step reconstructive error. Using an RNN, a

multistep reconstructive error is made by comparing actual with predicted values. If the error

between the actual/predicted reconstructive exceeds a threshold α, then the multi-step

collectively is deemed an anomaly. The approach to multi-step reconstructive step thresholds is

application-defined. The threshold could be an average reconstructive error per-period, the sum

over the period, or a mini-max value where the reconstructive error in any period cannot exceed

a particular maximum threshold value.

 91

Algorithm 5: Encoding-Decoding Recurrent Neural Network Anomaly Detection
Algorithm
INPUT: Normal dataset X, Anomalous dataset 𝒙𝒊𝒕 i = 1,…,N threshold α,time t

at any given location (not shown)
Reconstruction Sequence Window length: s
Threshold Technique: minimum, maximum reconstruction error

OUTPUT: Sum Reconstruction Error across Sequence Length
STEPS: 𝑼, 𝑾, 𝑽  train an EN-RNN using the normal dataset X

for i = 1 to N do
 for j = 0 to (s-1) do

 reconstruction error(i) = ||𝒙𝒊𝒕−𝒋 − 𝑔(𝑓(𝑊ℎ𝑡−𝑗−1 + 𝑈𝑥𝑡−𝑗))||
 if reconstruction error(i) > α then
 𝒙𝒊𝒕−𝒋

 is an anomaly
 else

 𝒙𝒊𝒕−𝒋
 is not an anomaly

 endif
 endfor
endfor

Figure 35: ED-RNN Anomaly Detection Algorithm

6.7 Architecture #6: Encoding-Decoding 1D Convolutional Neural Network (ED-1D-CNN)

 An ED-1D-CNN is similar to the ED-RNN architecture except that the RNN component

is replaced by a one-dimensional convolutional neural network (1D-CNN). 2D and 3D CNNs are

designed to operate convolutionally, extract features for local inputs, and are suited for computer

vision problems. These same concepts can be applied to anomaly detection, except that the

domain is 1D and is modified for sequence processing. An RNN captures long-term temporal

patterns and supports the identification of global anomalies. With a 1D-CNN, local 1D patches,

or subsequences, are extracted from the complete sequence. Unlike an RNN, these subsequences

are location invariant. For this reason, a 1D-CNN captures local, translation invariant patterns

and best supports the identification of local anomalies. When combined with an encoder and

decoder, an anomaly detection algorithm can be designed. See Chollet [94] for an overview of

the 1D-CNN architecture.

 92

Figure 36: Encoding-Decoding One-Dimensional Recurrent Neural Network (ED-1D-CNN)

Figure 36 displays the architecture of an ED-1D-CNN. Rather than processing the entire

sequence, ED-1D-CNN processes a convolutional window into the input sequence, extracts

patches from that sequence (e.g., nine (9) steps), and learns a set of weights that minimizes the

reconstruction error when feeding through the autoencoder. This results in more stable, lighter

weight and faster DNN over the ED-RNN architecture, albeit at a potential loss of information

from the convolution. Note that the ED-1D-CNN will capture sequence invariant local

anomalies while the ED-RNN will capture global anomalies across the entire sequence.

6.7.1 ED-1D-CNN Anomaly Detection Algorithm

 Figure 37 displays the ED-1D-CNN anomaly detection algorithm. This algorithm is

similar in structure to the ED-RNN algorithm except that instead of an RNN preprocessing the

inputs to the autoencoder, a 1D-CNN provides the inputs.

 93

Algorithm 6: Encoding-Decoding One Dimensional Convolutional Neural Network
Anomaly Detection Algorithm
INPUT: Normal dataset X, Anomalous dataset 𝒙𝒊𝒕 i = 1,…,N threshold α,time t

at any given location (not shown, convolutional window size w
Reconstruction Sequence Window length: s
Threshold Technique: minimum, maximum reconstruction error

OUTPUT: Sum Reconstruction Error across Sequence Length
STEPS: 𝑾  train an 1D-CNN using the normal dataset X

for i = 1 to N do
 for j = 0 to (s-1) do

 reconstruction error(i) = ||𝒙𝒊𝒕−𝒋 − 𝑔(𝑓(𝑊ℎ𝑡−𝑗−1 + 𝑈𝑥𝑡−𝑗))||
 if reconstruction error(i) > α then
 𝒙𝒊𝒕−𝒋

 is an anomaly
 else

 𝒙𝒊𝒕−𝒋
 is not an anomaly

 endif
 endfor
endfor

Figure 37: ED-1D-CNN Anomaly Detection Algorithm

6.8 Architecture Summary

 Table 15 provides a summary of the various architectures discussed in this chapter. The

techniques range from very mature (RNN) to recent (DA-GMM). Only the DA-GMM was

explicitly designed for unsupervised anomaly detection. However, both the SDA and VAE

architectures were designed for unsupervised learning so that these techniques can easily be

adapted. Adapting RNNs to unsupervised learning is more challenging since these techniques

were designed for prediction and forecasting, a supervised problem. However, RNNs and, to

some extent, SDAs are well supported in the open-source software community and have readily

available software implementations. VAE also has support but primarily for image-related tasks.

DA-GMM architectures, however, require a custom software implementation as these

architectures are new and are not implemented in open-source software packages.

 Suitability to adaptation for streaming architectures as well as performance is important

considerations when evaluating alternative anomaly detection architectures. These architectures

were designed to be trained offline, separate from deployment. Once the model is trained, the

 94

parameters are deployed operationally and perhaps periodically re-estimated. While in many

application domains, this workflow may be appropriate, for dynamic, high-tempo anomaly

detection domains in conditions of concept drift, this approach is unsatisfactory. Concept

drift occurs when the statistical properties of the target variable change over time in unforeseen

ways. In these situations, online streaming applications need to be constantly adapting and

learning.

Table 15: Comparison of Anomaly Detection Architectures

 SDA VAE DA-GMM GAN ED-RNN ED-1D-CNN
Architecture # 1 2 3 4 5 6
Technology Core Non-

Parametric
Probabilistic Gaussian

Mixtures
Game Theory Dynamic

Systems
Image

Processing
Built-In Temporal Support No No No No Yes Yes
Complexity Low Moderate High Moderate High Moderate
Estimation Technique FeedForward

Network
FeedForward

Network
FeedForward

Network
FeedForward +
Convolutional

Recurrent
Network

Convolutional
Network

Anomaly Algorithm Reconstruction
Error

K-L
Divergence

Probability
Error

(0,1) Reconstruction
Error

Reconstruction

Largest Domain Usage Image
Processing

Image
Processing

Anomaly
Detection

Image
Augmentation

Neural
Machine

Translation

Sequence
Processing

Maturity Level High Moderate Low Moderate High Low
Reference [55] [83] [85] [86] [93] [94]

 The six (6) architectures will undergo experimentation in Chapter 7 using the same

datasets described in Chapter 3. This experimentation will inform the decision made and

concerning the STADE architecture. The STADE architecture is designed to support streaming,

near-real-time anomaly detection applications that can identify the concept drift described above.

The STADE architecture is also designed to support pluggable algorithms. Pluggable means that

algorithms can be interchanged for one another, or new algorithms inserted or tailored to specific

domain requirements. STADE is designed to run multiple algorithms concurrently and

combining the results using an ensemble approach that often produces better predictive

performance compared to a single model.

 95

6.9 Related Work

 The authoritative sources for representational learning academic research are two major

machine learning conferences, the International Conference on Machine Learning (ICML) and

the Conference on Neural Information Processing Systems (NIPS). Virtually all machine and

DNN research, including research-in-progress, are published at https://arxiv.org. The open-

source community is rapidly expanding software support for various neural network

architectures, led by Google™ with Tensorflow™ and Facebook™ with PyTorch™. The Open

Neural Network Exchange (ONNX) is a vendor-independent industry consortium that is

promoting a standard format to exchange neural network models and specifications. There has

also been a measurable increase in the number of anomaly detection surveys and books

published including Agrawal and Agrawal [40], Ariyaluran, et al. [95], Ahmed, Mahmood and

Hu [96], Bhuyan, Bhattacharyya, and Kalita [97], and Bengio [98]. Goodfellow, Bengio, and

Courville [81] is the definitive book on representational learning.

Two training datasets continue to dominate the representational learning-based anomaly

detection literature. These datasets are the NMIST handwritten digital dataset for image

processing, and the DARPA Knowledge Discovery and Data Mining Tools Competition 1999

dataset on network intrusion. Neither dataset provides true support for anomaly detection; the

lack of high quality, readily accessible multivariate datasets has hampered research. Network

intrusion detection is a heavily studied component of the much larger field of cybersecurity, and

the techniques designed for identifying outliers in computer traffic may not be transferable to

other anomaly detection domains. The two anomaly datasets used here, SWAT and WADI, are

relatively new and have not appeared extensively in the literature.

https://arxiv.org/

 96

6.9.1 Architecture #1: SDA Related Work

Architecture #1, shallow and deep autoencoders, is perhaps the most cited anomaly

detection representational learning architecture today. Hawkins et al. [99], in a 2002 study, used

a three hidden-layer replicator neural network to select anomalies in network intrusion and

cancer datasets. Cordero et al. [100] used a similar replicator for intrusion detection of large

internet traffic. The replicator terminology survived through 2016 when the term was replaced by

autoencoder. Schreyer et al. [101] applies deep autoencoder networks to accounting records and

show higher F1 scores and lower false positives compared to current baseline methods in

accounting. Chen et al. [102] use an ensemble of autoencoders (single architecture with different

parameters) combined with a random edge and adaptive data sampling technique to improve

performance. Socher et al. [103] use autoencoders for sentiment prediction, a topic that is further

explored in the case study found in Chapter 11. Baldi [104] provides a mathematical basis for

utilizing autoencoders for unsupervised representational learning models. Other autoencoder-

based anomaly studies include [105], [106], [107], [108], [109], [110], [111], [112] and [113].

As noted in Section 4.2, SDAs do not have explicit support for temporal data; several

DNN-based time-series studies have resorted to utilizing traditional feedforward nets or plain

RNNs. See [114], [115], [116] and [117]. Chalapathy et al. [118] propose a one-class DNN

model similar to the one-class SVM (OC-SVM) described in Chapter 4. Other interested

temporal anomaly detection studies include an extreme event (i.e., anomaly) forecasting model

for the Uber™ ride-sharing company using an RNN with LSTM [119] and a convolutional

encoder-decoder model from Zhang et al. [120].

 97

6.9.2 Architecture #2: VAE Related Work

Variational Autoencoders (VAE) is now the preferred approach to anomaly detection due

to the support for the interpretability of the probabilistic anomaly scores. Interestingly, VAEs

made popular for image processing are now losing popularity and being replaced by GANs. The

initial formulation of VAEs by Kingma and Welling [83], a comprehensive tutorial on VAEs by

Doersch [121], and a comparison of VAEs with SDAs with an evaluation on MNIST by An and

Cho [82] have all contributed to the popularity of this type of autoencoder. VAEs are a type of

generative model where the network learns the underlying data distribution in order to produce

new data points with variations. Anomaly detection studies that have used VAEs include Solch

et al. [122] and Xu et al. [123]. Studies applying VAEs to specific domains include intrusion

detection in IoT [124], skin disease [125], and brain magnetic resonance imaging (MRI) images

[126]. Kim et al. [127] combines a VAE with a CNN to predict anomalies in sensor time-series

and finds improvement in performance. Borghesi et al. [128] apply VAEs to High-Performance

Computing (HPC) anomalies, Walker et al. [129] to static images, Luo and Nagarajan [130] to

wireless sensor networks anomalies, Oh and Yun [131] to sound data anomalies, Chalapathy et

al. [132] to image data, and Guo et al. [133] on laboratory-generated sensor data.

6.9.3 Architecture #3: DA-GMM Related Work

The DA-DAGG model by Zong, et al. [85] described in detail in section 6.4.1 above

combines the output of an autoencoder with a Gaussian Mixture Model under a two-step

ensemble approach with improved results over the autoencoder results alone. This approach is

new and has only recently appeared in the literature.

 98

6.9.4 Architecture #4: Generative Adversarial Network (GAN)

GANs were initially designed to generate images for data augmentation but has recently

been applied to non-image anomaly detection problems. There are many variants of a GAN, as

described in [86]. The Wasserstein GAN is a method to evaluate the distance between two high-

dimensional datasets known as the ‘earth mover’ (EM) distance and is used in [134]. This GAN

inspects the distribution of each variable, real and fake. The GAN determines how much effort

(in terms of mass times distance) is required to push the generated distribution into the shape of

the real distribution. The Wasserstein GAN distance measure is the anomaly score. Multi-

Discriminator GAN is another approach that includes a dense network for determining whether

the generated samples are of sufficient quality (i.e., valid) and an autoencoder that serves as an

anomaly detector. Other generative models have been combined with CNNs to address anomaly

detection of sequence data [38] using the WADI and SWAT datasets. Buitrago et al. [135]

demonstrate the use of GANs and VAEs to identify anomalies in the presence of unbalanced

(low frequency) anomaly data. Sequence data is also supported by GANS, as discussed in [136].

Other models using GANS or related technologies include [137], [138], [139], [140], [141],

[142], [143] and [144]. A highly readable overview of adversarial autoencoders is presented in

[145]. Wang et al. [146] apply maximum likelihood estimation to GANS for anomaly detection.

6.9.5 Architecture #5: Encoding-Decoding Recurrent Neural Network (ED-RNN)

RNNs, LSTMs, and sequence-to-sequence models have been used heavily in the

representational learning-based anomaly detection literature. Early research by Elman [147]

provided the basis for RNN-based anomaly detection studies that followed. Sequence-to-

sequence recurrent models described by Graves [148] are used in many time-series, image

recognition, and other studies, including [149], [150]. Example recurrent neural network

 99

applications include electrical load [151], computer system logs [152] and [153], video forgeries

[154], network traffic [155] and [156], electrocardiography (ECG) signals [157], sensor networks

[158] and time-series [159] anomaly detection. Bontemps et al. [160] and Thi, et al. [161] both

use the KDD-Cup dataset to address collective anomaly detection where anomalies are identified

by prediction errors from multiple consecutive time steps. Other ED-RNN models include [162],

[163], [164], [165], [166] and [167]. A special type of neural network model known as a

restricted Boltzmann machine was a popular technique a few years ago in several anomaly

detection studies, including [168] [169], but is seldom used today. For a study that uses an RNN

to detect anomalies in the SWAT database, see [170].

6.9.6 Architecture #6: Encoding-Decoding One-Dimensional CNN (ED-1D-CNN)

1D-CNN architectures have most extensively been employed in medical time-series

studies, including the analysis of ECG and EEG [171], and cardiotocography traces [172].

Russo et al. [173] apply 1D-CNN architecture with deep autoencoders for anomaly detection for

wastewater monitoring systems. A survey of various applications of 1D-CNN is provided in

[174]. Chollet [94] including an example software program for a 1D-CNN using the Keras

neural network library. However, there are no known published papers that utilize ED-1D-CNN

architecture.

 100

CHAPTER 7 – DEEP NEURAL NETWORK (DNN) EXPERIMENTATION

7.1 Background

 Six (6) neural network architectures are described in Chapter 6. Five architectures are

based in part on an autoencoder (#1, #2, #3, #5, and #6), one architecture includes a generative

adversarial network (#4), one architecture includes a gaussian mixture model (#3), one

architecture includes a recurrent neural network (#5), and one architecture includes a

convolutional neural network (#6). Architecture #1 may be viewed as two architectures; a

shallow autoencoder has a single hidden layer, and a deep autoencoder has multiple hidden

layers. The deep network should produce more accurate results, but the shallow network will

execute faster and maybe preferable within a streaming architecture. Autoencoders are trained

with feedforward networks and are algorithmic more stable compared to GANs, RNNs, and

CNNs.

 GANs are estimated using dual feedforward networks resulting is slower parameter

training. Therefore, the deployment in streaming architectures is problematic. However, the use

of GANs in anomaly detection studies is emerging, and more research is needed regarding

architectural options and streamlined algorithms. The GAN in use here implements a plain

vanilla design that lacks the recent advances in architectural optimizations that have emerged in

the literature.

An RNN-based architecture is designed to exploit the temporal structure where samples

depend on one or more previous samples. If there does not exist a temporal dependence, then the

deployment of RNN models would be counterproductive, and an autoencoder or other non-

recurrent architecture will provide better results. The CNN-based architecture #6 traditionally

 101

used for image processing has been adapted for sequence processing and has the same strengths

and limitations of an RNN.

The four (4) experimentation datasets are sequential with a timestamp and are candidates

for the application of the RNN and 1D-CNN architectures. The fraud dataset is based on

sequential transactions over time, the DATACENTER dataset is based on the logging of data

center activity over time, and the SWAT and WADI datasets are based on the recording of

sensors, actuators, and network devices over time. However, the temporal dependencies

contained in these datasets are weak. For example, the fraud transactions were recorded

sequentially but by different purchasers. Application of RNN and 1-CNN-based architectures is

possible but might not yield improved results. Note that the RNN in architecture #5 utilizes the

Long Short-Term Memory (LSTM) variant of the architecture for estimation stability and

improved temporal dependency modeling.

7.2 t-SNE Visualization

 t-SNE is a visualization technique developed by van der Maaten and Hinton [175]

designed to explore high-dimensional data relationships. The goal of t-SNE is to transform a set

of high-dimensional points into a two-dimensional representation in order to visualize clusters of

related data. The t-SNE iterative algorithm uses SGD and performs different non-linear

transformations on different regions of the data, and converts similarities between data points to

joint probabilities. The algorithm tries to minimize the Kullback-Leibler (K-L) divergence

(discussed in Section 6.3.1) between the joint probabilities from the low-dimensional

representation and the high dimensional data. T-SNE has a set of hyperparameters such as the

learning-rate and a perplexity value, usually ranging from one (1) to one-hundred (100). With

smaller perplexity values, local variations dominate, while larger perplexity values the clusters

 102

are merged based on the similarity of features. Overall, the results are influenced by the

perplexity value, the number of iterations, and other parameters required by the SGD algorithm.

 Figure 38 displays the t-SNE representations for the four experimentation datasets with

perplexity values zero (0) and fifty (50). The plots in the left column with a t-SNE perplexity

value of 0 is an unprocessed representation of the raw high-dimensional dataset transformed into

a two-dimensional representation. Each point represents an anomaly in red or a non-anomaly in

green. With a perplexity value of 0, the anomalies cannot be distinguished from the non-

anomalous samples. The inability to distinguish anomalies from non-anomalies indicates that the

raw data are evenly distributed and has the appearance of a Gaussian distribution.

The plots in the right column of Figure 38 display the datasets transformed with a

perplexity value of fifty (50). Improved separation of the data is shown with apparent clustering

and with the red anomaly points partially separated from the green points. The SWAT and

WADI datasets have the best separation with the fraud dataset also exhibits a few densely

populated red clusters. Conversely, the DATACENTER dataset shows less separation, which is

an indication that the limited number of features, seven (7) in total, is insufficient for the t-SNE

algorithm to process.

Note that the topology of the t-SNE clusters is somewhat tricky to interpret. Symmetry

indicates underlying Gaussian distributions. For example, the elongated shapes in the WADI

and SWAT plots indicate an axis-aligned Gaussian distributed. These results also indicate which

datasets are likely candidates for application of a mixture of Gaussian techniques such as

architecture #3, DA-GMM. Plots that lack structured might indicate that Gaussian-based

techniques are not appropriate. In these instances, consideration should be given to the

application of distribution-agnostic autoencoders or distance-based GAN architectures.

 103

Figure 38: t-SNE Plots – 0 and 50 Perplexity

 104

7.3 Experimentation Methodology and Hyperparameters

Experimentation was performed in unsupervised mode, meaning that the model

parameters are trained without regard to the anomaly labels. Anomaly labels are used in testing

but only for evaluation purposes. The FRAUD and DATACENTER training datasets contain

anomalies, but in a low percentage, since, by definition, anomalies are rare events. The reason is

that in real-world datasets, anomalies are rarely known or designated a priori. Note that the

training samples from the SWAT and WADI testbeds were captured during the period of benign

operation (no network attacks). So, unlike the FRAUD and DATACENTER training datasets,

the SWAT and WADI training datasets are free of anomalous samples. The estimation challenge

here is to identify anomalies in test data based on parameter training in an unsupervised

environment with anomaly-free data.

All datasets are time-series and include a time-stamp attribute. The ED-RNN and ED-

1D-CNN architectures require timestamps for the sample to look back; otherwise, the

timestamps are ignored.

Architectures with autoencoders use feedforward network with the backpropagation

algorithm, RNNs use the backpropagation-through-time (BPTT) algorithm, and the CNN use the

convolution neural network algorithm. SGD with the ADAM [71] or RMSprop optimizers is

used throughout the experimentation. Per standard DNN estimation practice, training occurs over

multiple epochs, with each epoch containing a mini-batch that includes a subset of the complete

set of training samples. Mini-batch sizes are architecture and dataset dependent; excessive

epochs and mini-batch sizes result in model overfitting and poor test results.

Evaluation metrics included the area under the receiver operating characteristic (ROC)

curve (AUC) and other metrics described in section 2.5. The AUC is preferred because the

 105

calculation is based on the entire range of anomaly score thresholds. The confusion matrix,

precision, recall, and F1 metrics are point estimates derived from a single arbitrary anomaly score

threshold. While not the best performance metric in the presence of highly unbalanced data,

‘confusion matrix’ results are nevertheless presented in addition to AUC to describe absolute

performance (e.g., true positives) comparable across architectures.

Table 16 describes the anomaly scoring approaches used for each architecture. As a

binary classification problem, for evaluation purposes, a threshold score or other deterministic

approach is required. Four (4) different approaches are built into the architectures: (a)

‘reconstruction error,’ (b) ‘probability of an anomaly,’ (c) ‘energy’ with percental level,’ and (d)

chained DNN-TML. The chained DNN-TML is a novel approach where the latent

representation output produced by the DNN VAE is inserted into the TML HBOS algorithm. Per

standard practice and for efficient DNN estimation, all inputs were identically scaled and

normalized with mean zero () and standard deviation one () across the entire spectrum of

experimentation. This scaling means that the identical input reconstruction thresholds can be

used in the autoencoding architectures #1, #5, and #6.

All experimentation algorithms were programmed using the Python-3 programming

language with the Tensorflow™ deep learning library. Where possible, software

implementations were validated against other similar published findings. For example, the DA-

GMM implementation faithfully replicates the numeric results and graphics presented in the

original paper [85].

 106

Table 16: Architecture Anomaly Scoring Summary

Architecture Anomaly Scoring Threshold for Experimentation

#1 Shallow-Deep Autoencoder (SDA) Input Reconstruction Error Threshold > 4 (FRAUD, SWAT, WADI)

Threshold > 1 (DATACENTER)

#2 Variational Autoencoder (VAE) Ensemble DNN-TML using HBOS Built-Into HBOS. Equal to the percentage of

anomalies in the latent representation of test

#3 Deep Autoencoding Gaussian Mixture

Model (DA-GMM)

Sample Energies derived by the Gaussian

Mixture Model (GMM) [85]

All percentiles presented (e.g., energy Level

such that 20% of samples are anomalous.

#4 Generative Adversarial Model (GAN) Probability of a Fake Anomaly if probability > .5 is fake as

determined by the discriminator

#5 Encoding-Decoding Recurrent Neural

Network (ED-RNN)

Input Reconstruction Error Threshold > 4 (FRAUD, SWAT, WADI)

Threshold > 1 (DATACENTER)

#6 Encoding-Decoding Convolutional

Neural Network (ED-1D-CNN)

Input Reconstruction Error Threshold > 4 (FRAUD, SWAT, WADI)

Threshold > 1 (DATACENTER)

7.4 Architectures #1 – Shallow Deep Autoencoder (SDA) Results

Table 17 displays the training size, test size, anomaly counts, and various DNN

parameters used in the SDA estimation. Datasets were split with seventy (70) percent for

training and thirty (30) percent for the test. As a feature extractor, autoencoders are designed

with fewer hidden units than the number of input features. For instance, the SWAT shallow

autoencoder model included a single hidden layer of twenty-five (25) nodes, resulting in 2320

trainable parameters. The corresponding deep autoencoder model has four hidden layers of 13-

7-7-13 nodes resulting in 3384 trainable parameters. Note the symmetry in the number of DNN

layers between the encoder and decoder components. The encoder includes a succession of

decreasing number of nodes, while the decoder includes a succession of an increasing number of

nodes. All estimation utilized rectified linear units (RELU) as the nonlinear activation function,

 107

the Adam SGD optimizer, an SGD learning rate of 1e-7, fifty (50) training epochs, with each

epoch utilizing an SGD batch size of 128.

Table 17: Shallow-Deep Autoencoder DNN Parameters

Dataset Training

Size

Test Size Anomalies

in Test

Input Hidden Layers Output Trainable

Parameters

FRAUD (Shallow) 199364 85443 157 30 15 30 945
SWAT (Shallow) 495000 449919 54621 45 25 45 2320
WADI (Shallow) 1209601 172801 9860 99 60 99 12039
DATACENTER (Shallow) 117600 50400 246 8 4 8 76
FRAUD (Deep) 199364 85443 157 30 18-10-6-6-10-18 30 1694
SWAT (Deep) 495000 449919 54621 45 26-13-7-7-13-26 45 3384
WADI (Deep) 1209601 172801 9860 99 60-30-15-15-30-60 99 16914
DATACENTER (Deep) 117600 50400 246 8 6-5-3-3-5-6 8 231
All Datasets Optimizer=Adam, Activation=RELU, Learning Rate=1e-7, 50 Training Epochs=50, Batch Size=128

7.4.1 Architecture #1: Shallow Autoencoder Results

Table 18 and Figure 39 provide the findings from the shallow autoencoder

experimentation. The results indicate that shallow autoencoders are reasonably capable anomaly

detectors, as evidenced by the AUC associated with the FRAUD (.961), SWAT (.878), and

WADI (.783) experimentation. The shallow autoencoder performed poorly with the

DATACENTER dataset.

The AUC for the FRAUD experimentation is surprisingly high, given the imbalance of

the test data and the difficulty in ‘needle in the haystack’ detection with unsupervised techniques.

There were 85443 samples and only 157 anomalies in the FRAUD test dataset, for an anomaly

rate of .0018. If the anomaly scores are ranked from top to bottom, and an arbitrary threshold

value of four (4) is specified, then 118 ‘true positives’ and 39 ‘false negatives’ are designated

from the anomaly pool. Note that while 84394 ‘true negatives’ (non-anomalies) are correctly

designated, another 892 ‘false positives” are incorrectly designated. If the threshold value is

increased, fewer true positives are identified, but also fewer false positives are identified. This

trade-off between correct and incorrect designations of anomalies is intrinsic to binary

 108

classification problem domains. Note that the temporal sequence in the FRAUD dataset is

irrelevant since each transaction is autonomous.

The AUC (.878) for the SWAT (.878) experimentation and, to a lesser extent, for the

WADI experimentation (.783) also illustrates reasonably good performance. The SWAT test

dataset includes 449919 samples with 54621 designated anomalies by the testbed

experimentation team, for a rate of 12.1 percent. The WADI test dataset included 172801

samples with 9860 inferred anomalies, for a rate of 5.7 percent. The WADI anomalies are

inferred because the testbed experimentation team did not explicitly designate anomalies. An

anomaly in the WADI dataset is defined broadly as the samples recorded during periods of

testbed cyber or network attack. All samples acquired during these known attack periods are

designed anomalous. In general, the SWAT anomaly designation approach is more accurate than

the WADI approach, which may account for differences in algorithmic performance.

Experimentation results will be highly dependent on the quality of the underlying data collection

process and the corresponding anomaly designation assumptions.

Table 18: Shallow Autoencoder Experimentation Results

Metric Fraud SWAT WADI Datacenter

Area Under ROC .962 .878 .783 .579
True Negative 84394 391941 157770 47090
False Positive 892 3357 5171 3086
False Negative 39 21861 6583 224
True Positive 118 32760 3277 22
Precision .116 .907 .387 .007
Recall .751 .599 .332 .009
F1 Score .202 .722 .357 .013

The fact that the AUC for the SWAT and WADI experimentation is lower than the

FRAUD experimentation might be a by-product of model overfitting. The SWAT and WADI

experimentation demonstrated an increase in model loss over the training epochs, a symptom of

 109

overfitting. This conclusion is illustrated with the training and test loss curves displayed in the

left column of Figure 39. While the FRAUD and DATACENTER datasets illustrate the typical

convex shape of these loss curves, the SWAT and WADI loss curves are either flat-lined,

trending upward, or convex. In general, the test loss curve will be above training loss and will

eventually level-off, indicating that the autoencoding parameters stabilize around ten (10)

epochs, and further estimation is counterproductive.

There are various DNN techniques to combat overfitting, including additional parameters

for L1 and L2 regularization, random ‘dropout’ of nodes in hidden layers, and reducing the

number of epochs, also known as ‘early stopping.’ Models with otherwise identical parameters

might overfit one dataset and underfit another dataset and may depend on the specification of the

hidden layer(s) and the complex interaction with the other hyperparameters.

The right column of Figure 39 also displays the Receiver Operating Characteristics

(ROC) curve. Recall that the ROC curve measures the relationship between false positive and

true positive rates; the AUC is the probability that a classifier will rank a true positive higher

than a false negative. A true positive indicates that the model correctly identifies the anomaly.

Since a positive is an anomaly, a false negative indicates that the model fails to identify the

anomaly. Note that in many mission-critical applications, the risk is not necessarily

symmetrical; the risk of failing to identify is greater than the risk to over-identifying anomalies.

For these and other reasons, the ROC curve should be well above the diagonal line. An AUC

higher than .75 indicates that the anomaly classifier is reasonably performant using the shallow

autoencoder with the FRAUD, SWAT, and WADI datasets.

 110

The AUC associated with the DATACENTER experimentation is .579. This result is

only slightly above a random chance result and indicates that the autoencoder architecture does

not identify anomalies in the DATACENTER dataset.

Figure 39: Shallow Autoencoder Training

7.4.2 Architecture #1: Deep Autoencoder Results

 Table 19 and Figure 40 provide the findings from the deep autoencoder experimentation.

The results are similar to the shallow autoencoder indicating the additional DNN layers adds a

small to the performance of the autoencoder as an anomaly detector. The AUC is now .894

(compared to .878) for the SWAT experimentation and .818 (compared to .783) for the WADI

 111

experimentation. The DATACENTER AUC of .544 is now lower than the shallow autoencoder

AUC of .579. The overall conclusion can be drawn that there is a minimal performance bump, if

any, from a deep over a shallow architecture.

Note that the deep autoencoder execution time (~ 12 seconds) is approximate twice the

shallow autoencoder execution time (~7 seconds) but is still fast enough to be adaptable to a

streaming architecture. Moreover, the overfitting of the WADI dataset still exists but is less

pronounced.

Table 19: Deep Autoencoder Summary Experimentation Results

Metric FRAUD SWAT WADI DATACENTER

Area Under ROC .958 .894 .818 .544
True Negative 84237 391883 161037 40035
False Positive 1049 3415 1904 10119
False Negative 42 21578 9196 172
True Positive 115 33043 664 74
Precision .102 .906 .258 .007
Recall .751 .604 .067 .300
F1 Score .180 .725 .106 .014

Consider the SWAT dataset with a deep autoencoder. In total, 391843 samples were

correctly classified as non-anomalous, and 33043 samples were correctly classified as

anomalous, for a total of 424886. However, 3415 were incorrectly classified as anomalous, and

21578 were incorrectly classified as non-anomalous, for a total of 24993 incorrect classifications.

Therefore, the misclassification rate is 5.5 percent (24993 / (424886 + 24,993)). Given the

imbalance of data, a naïve approach would be to classify all samples as non-anomalous. This

naïve approach would produce a misclassification rate of 12.1 percent (54621 / 449919).

Following Occam’s razor, all things being equal, simplicity is preferred over complexity. In this

example, the more complex deep autoencoder model produces superior classification results over

the naïve model. Note that what is and what is not acceptable, and the anomaly threshold values

 112

are entirely domain-dependent and sensitive to the problem requirements. A naïve model may

be acceptable in one domain and unacceptable in another.

To summarize, there seems to be a slight advantage to the use of deep autoencoders over

the less complicated shallow autoencoders. SDAs are not based on probability distribution

assumptions, another difference from the VAE and AE-GMM models discussed in the following

sections.

Figure 40: Deep Autoencoding Training

 113

7.5 Architecture #2: Variational Autoencoder (VAE) Results

 A VAE is an unsupervised technique made accessible in the generative image literature

but adapted here for anomaly detection. A VAE consists of a DNN encoder, a DNN decoder, and

a loss function. The DNN encoder compresses the inputs into a lower-dimensional space, known

as the latent space, and outputs the parameters of a Gaussian probability density. The DNN

decoder inputs the latent representational space and outputs the parameters to the probability

distribution function. The loss function measures how effectively the decoder can reconstruct the

inputs. Once these parameters are estimated from the training data, the decoder is no longer

required. Under VAEs, rather than learning to replicate the input data, the autoencoder learns

the parameters of the latent representation of the data.

At least two approaches are possible to adapt the VAE architecture to anomaly detection.

The first approach is to apply the estimated VAE parameters to generate the latent space

representation of the test. Sample points from the test latent space distribution can be randomly

drawn and compared against the test samples. Anomalies can be identified when the test samples

diverge measurably from the sampled latent representation of the training samples.

The second approach, adopted here, leverages the findings from the TML

experimentation discussed in Chapter 5 to form a unique chained, ensemble technique. As

before, as new samples are received, the parameters estimated from the training dataset are used

to produce a compressed, multidimensional representation. An unsupervised TML technique is

then applied to this representation to identify anomalies within the latent space. Histogram-

Based Outlier Score (HBOS) is the technique selected here, but any of the unsupervised TML

techniques (e.g., k-nearest neighbor) described in Chapter 4 may be used. Table 20 presents the

estimation results, and Figure 41 provides the training model graphs for the VAE architecture

 114

with HBOS. Note that the last line of Table 20 provides the number of non-trainable / trainable

in the VAE model for each dataset.

Table 20: Variational Autoencoder Experimentation Results

Metric FRAUD SWAT WADI DATACENTER

Area Under ROC .687 .783 .652 .583
True Negative 77718 373234 149867 45251
False Positive 7568 22064 13074 4903
False Negative 93 33811 5715 201
True Positive 64 20810 4145 45
Precision .008 .485 .240 .009
Recall .407 .380 .420 .182
F1 Score .016 .426 .306 .017
Parameters 92 / 1214 122 /1214 230 / 3629 28 /184

The results from the VAE experimentation show promise but are less performant than the

SDA results. The VAE AUC metric is well below the corresponding SDA AUC for the

FRAUD, SWAT, and WADI datasets and slightly higher for the DATACENTER dataset. The

AUC metric dropped precipitously from .958 with SDA to .687 with VAE. Note that the WADI

VAE produced a more substantial true positive value than WADI SDA experimentation (4145

versus 664) but at the expense of a more substantial false positive value (13074 versus 1904).

Because of the probabilistic nature of a VAE, no two experimentation runs of the model

will produce identical results unless the entire sequence of Gaussian random draws from the

latent representation is controlled. The model loss curves in Figure 41 are convex and

demonstrate that overfitting is not an issue. Otherwise, the shapes of the loss curves are

comparable to the SDA experimentation. While the VAE technique described here produced

less optimal results, the underpinnings of VAE are more theoretically justifiable than non-

probabilistic autoencoders. Further research is needed concerning the exploitation of latent space

representations and the chaining of DNN with TML algorithms for anomaly detection.

 115

Figure 41: Variational Autoencoder Training

7.6 Architecture #3: Deep Autoencoding Gaussian Mixture Model (DA-GMM) Results

 The DA-GMM algorithm is programmatically more complex than the SDA or the VAE,

and the complete software implementation details are beyond the scope here. The DA-GMM

approach is to use a deep autoencoder that produces a reconstruction error for the inputs, which

is fed into a Gaussian Mixture Model. The algorithm jointly optimizes the parameters of the

autoencoder with the mixture model simultaneously. With the test dataset, using the learned

GMM parameters, sample energies are predicted; the higher the energy, the more likelihood of

an anomaly. The concept of ‘energy’ is defined using an expression for the multivariate Gaussian

distribution that involves a covariance matrix inversion. In practice, there are often matrix

inversion and performance issues, so the implementation uses the Cholesky decomposition of the

covariance matrix as a substitute for matrix inversion.

 116

Figure 42 displays a set of graphics derived from the training of the DA-GMM model.

Total loss, reconstruction loss, sample energy, and the value of the covariance diagonal over the

training cycles are displayed for each dataset. Note that unlike other approaches, the DA-GMM

curves lack smoothness and exhibit sharp changepoints and will require more epochs to stabilize

the estimated parameters. The number of training epochs was set at 300, resulting in longer

execution times than either the SDA or VAE architectures.

FRAUD

WADI

SWAT

DATACENTER

Figure 42: Deep Autoencoding Gaussian Mixture Model Training

 Tables 21-24 displays the results of estimation covering the full range of sample energy

percentiles ranging from 0 to 100 percent. Note that when the energy percentile is set to zero (0),

all samples are considered anomalies. Conversely, when the energy percentile is set to one, all

samples are considered non-anomalous. The higher the energy threshold, the fewer of

designated anomalies.

 117

Table 21: Deep Autoencoding Gaussian Mixture Model Experimentation – FRAUD

 Percentile of Energies

0 5 10 20 30 40 50 60 70 80 90 95 100

Area Under ROC .500 .518 .543 .587 .631 .671 .718 .762 .812 .859 .874 .628 .500

True Negative 0 4270 8543 17085 25627 34168 42711 51254 59798 68341 76874 81061 85285

False Positive 85286 81016 76743 68201 59659 51118 42575 34032 25488 16945 8412 4225 1

False Negative 0 2 2 4 6 9 10 12 12 13 24 109 157

True Positive 157 155 155 153 151 148 147 145 145 144 133 48 0

Precision .002 .002 .002 .002 .003 .003 .003 .004 .006 .008 .016 .011 .000

Recall 1.00 .987 .987 .975 .962 .943 .936 .924 .924 .917 .847 .306 .000

F1 Score .004 .004 .004 .004 .005 .006 .007 .008 .011 .017 .031 .022 .000

Energy Threshold -5.34 -5.22 -5.18 -5.09 -4.96 -4.79 -4.59 -4.37 -4.12 -3.61 -1.33 1.05 45.51

Table 22: Deep Autoencoding Gaussian Mixture Model Experimentation – SWAT

 Percentile of Energies

0 5 10 20 30 40 50 60 70 80 90 95 100

Area Under ROC .500 .522 .547 .588 .628 .661 .688 .721 .606 .443 .467 .484 .500

True Negative 0 21896 44110 87525 130887 173614 215706 258410 286970 310857 352609 374088 395298

False Positive 395298 373402 351188 307773 264441 221684 179592 136888 108328 84441 42689 21210 0

False Negative 0 600 882 2459 4089 6354 9253 11541 27973 49078 52318 53335 54620

True Positive 54621 54021 53739 52162 50532 48267 45368 43080 26648 5543 2303 1286 1

Precision .121 .126 .133 .145 .160 .179 .202 .239 0.197 0.062 .051 .057 1.00

Recall 1.00 .989 .984 .955 .925 .884 .831 .789 .488 .101 .042 .024 0.00

F1 Score .217 .224 .234 .252 .273 .297 .325 .367 .281 .077 .046 .033 0.00

Energy Threshold -4.67 -2.97 -1.00 4.63 4.98 5.54 6.92 7.21 8.94 9.76 11.303 13.16 606.52

 The DA-GMM model performed poorly on all four datasets. The highest AUC for the

FRAUD dataset (.874) occurred at the 80th energy percentile; for the SWAT dataset (.721) at the

60th percentile; for the WADI dataset (.511) at the 10th energy percentile, and the

DATACENTER (.524) at the 70th energy percentile. These results are all significantly below the

AUCs found with the SDA and VAE architectures. The highest AUC in the FRAUD dataset

resulted in 133 true positives and only 24 false negatives being identified but at the expense of

 118

creating 8412 false positives. The reasons for this poor performance are not entirely clear. The

AE-GMM architecture is more theoretically grounded than the SDA architecture, but the core

underlying Gaussian assumptions may be inappropriate for these datasets.

Table 23: Deep Autoencoding Gaussian Mixture Model Experimentation – WADI

 Percentile of Energies

0 5 10 20 30 40 50 60 70 80 90 95 100

Area Under ROC .500 .515 .511 .509 .468 .431 .384 .430 .465 .507 .560 .508 .500

True Negative 0 8437 16504 32772 48295 63905 79321 96476 113410 130490 147760 154959 162940

False Positive 162941 154504 146437 130169 114646 4649 83620 66465 49531 32451 15181 7982 1

False Negative 0 203 771 1788 3544 5211 7078 7202 7543 7749 7757 9200 9860

True Positive 9860 9657 9080 8072 6316 4649 2782 2658 2317 2111 2103 660 0

Precision .057 .059 .058 .058 .052 .045 .032 .038 .045 .061 .122 .076 .000

Recall 1.00 .979 .922 .819 .641 .472 .282 .270 .235 .214 .213 .067 .000

F1 Score .108 .111 .110 .109 .097 .082 .058 .067 .075 .095 .155 .071 .000

Energy Threshold -3.19 -2.96 -2.76 -2.22 -1.18 4.63 5.29 5.30 5.31 5.33 5.51 5.88 145.59

Table 24: Deep Autoencoding Gaussian Mixture Model Experimentation – DATACENTER

 Percentile of Energies

0 5 10 20 30 40 50 60 70 80 90 95 100

Area Under ROC .500 .496 .501 .482 .483 .502 .506 .521 .524 .511 .508 .495 .500

True Negative 0 2506 5016 10022 15038 20063 25080 30103 35120 40129 45143 47644 50153

False Positive 50154 47648 45138 40132 35116 30091 25074 20051 15034 10025 5011 2510 1

False Negative 0 14 24 58 82 97 120 137 160 191 217 236 246

True Positive 246 232 222 188 164 149 126 109 86 55 29 10 0

Precision .005 .005 .005 .005 .005 .005 .005 .005 .006 .005 .006 .004 .000

Recall 1.00 .943 .902 .764 .667 .606 .512 .443 .350 .224 .118 .041 .000

F1 Score 0.010 .010 .010 .009 .009 .010 .010 .011 .011 .011 .011 .007 .000

Energy Threshold -3.72 -3.66 -3.61 -3.50 -3.39 -3.27 -3.16 -2.95 -2.66 -2.12 -0.98 0.74 583.3

7.7 Architecture #4: Generative Adversarial Network (GAN) Results

 Table 25 displays the experimentation results produced from the GAN architecture. The

AUC results are on-par with the DA-GMM architecture, with the best results demonstrated by

 119

the FRAUD dataset (AUC=.872) and the worst results experienced by the DATACENTER

dataset (AUC=.502). Note that the F1 scores using the GAN architecture are higher than the F1

scores using the DA-GMM architecture. Recall that the AUC is a summary metric encompassing

all of the threshold values, while the F1 score is based at a given anomaly threshold level. The F1

score is .753 for FRAUD is and .744 for SWAT. So, to summarize, a GAN makes no explicit

assumptions regarding underlying distributions, produces relatively accurate results, but exhibit

longer execution times.

Table 25: Generative Adversarial Network Experimentation Results

Metric FRAUD SWAT WADI DATACENTER

Area Under ROC .872 .800 .657 .502
True Negative 85250 394535 160121 49832
False Positive 36 763 2820 322
False Negative 40 21750 6585 243
True Positive 117 32871 3275 3
Precision .764 .977 .537 .009
Recall .745 .601 .332 .012
F1 Score .754 .744 .410 .010
Parameters 158 / 3341 158 / 4301 158 / 7757 158 / 1933

Figure 27 provides a new-style graphic of the training performance of the GAN with

respect to each of the four datasets. These graphs display the value of the F1 metric on the test or

dataset as training proceeds. Note the up-and-down flow of the graph until training stabilizes,

and the graph flatlines. With adversarial training, two neural networks run concurrently and

require more epochs (e.g., 5000) than autoencoders to sufficiently train the parameters. A GAN

requires longer execution times, roughly ten times the execution time of the deep autoencoding

architecture.

 120

Figure 43: Generative Adversarial Network Training

7.8 Architecture #5: Encoder-Decoder Recurrent Neural Network (ED-RNN) Results

 The final two architectures under consideration, ED-RNN, and ED-1D-CNN incorporate

a look-back feature. The ED-RNN architecture is essentially a recurrent neural network that

acts like an autoencoder. This architecture explicitly models temporal relationships and long-

term memory, which is essential when considering spatiotemporal applications. While RNNs

have been used extensively for sequence forecasting, neural machine translation, and other

sequence-to-sequence models, they have been infrequently used for anomaly detection

applications. Using the ED-RNN, the encoder and decoder are RNN. Similar to architecture #1,

the shallow and deep autoencoder, the input reconstruction error is the measure of the anomaly;

when the reconstruction error exceeds a pre-defined threshold value, an anomaly is designated.

Because the scales of the input are identical, the threshold values are also the same as

architecture #1.

 Table 26 presents the experimentation results for the ED-RNN architecture for the

FRAUD dataset; Table 27 for SWAT; table 28 for WADI; and Table 29 for DATACENTER.

 121

Four different ‘look-back’ periods are included: five (5), ten (10), twenty-five (25), and fifty (50)

with a period typically one-second in length. A comparison with the architecture #1 deep

autoencoder results found in Table 19 is a good indicator of the value-added from the inclusion

of a recurrent network in the architecture.

The AUC (.956) results of the ED-RNN FRAUD experimentation with a look back of

five (5) is identical to the corresponding AUC (.958) from the deep autoencoding

experimentation. This result is to be expected since the FRAUD samples are not temporally

dependent. Noteworthy is the fact that the AUC (.937) is higher than the corresponding AUC

(.894) in the five (5) period SWAT deep autoencoding experimentation; similarly, the AUC

(.835) is higher than the corresponding AUC (.818) in the five (5) period WADI deep

autoencoding experimentation. Both the SWAT and WADI datasets exhibit intrinsic temporal

dependence because the network and cyber testbed attacks are multi-period. The addition of the

recurrent architecture to the autoencoding architecture for the SWAT and WADI added valued

and improved the anomaly detection results. Note that there was no improvement over random

chance (AUC ~ .5) of the addition of recurrence to the DATACENTER experimentation results;

RNN performance is notoriously sensitive to the length of the lookback period and the

combination of DNN hyperparameters. For example, the WADI experimentation failed to

complete due to ‘out-of-memory’ errors experienced with a fifty (50) look back. No attempt was

made to optimize performance and search for the best combination of hyperparameters.

 122

Table 26: ED-RNN FRAUD Experimentation Results

 Look Back Period

5 10 25 50

Area Under ROC .956 .943 .951 .933
True Negative 84064 83871 83536 82493
False Positive 1244 1426 1749 2758
False Negative 45 38 29 39
True Positive 88 104 121 137
Precision .066 .067 .064 .047
Recall .661 .732 .806 .778
F1 Score .120 .124 .119 .089
Parameters 20574 20574 20574 20574

Table 27: ED-RNN SWAT Experimentation Results

 Look Back Period

5 10 25 (Attack Period Only) 50 (Attack Period Only)

Area Under ROC .933 .937 .922 .896
True Negative 267037 267023 262988 253073
False Positive 66 127 4110 14004
False Negative 15461 15030 4933 4535
True Positive 910 1293 11437 11853
Precision .932 .910 .735 .458
Recall .055 .079 .698 .723
F1 Score .104 .145 .716 .561
Parameters 40634 40634 40634 40634

Table 28: ED-RNN WADI Experimentation Results

 Look Back Period

5 10 25 (Attack Period Only) 35 (Attack Period Only)

Area Under ROC .835 .821 .846 .861
True Negative 409290 406405 39423 35241
False Positive 2426 5336 9435 13634
False Negative 1980 1782 897 515
True Positive 1023 1185 2078 2440
Precision .296 .182 .180 .151
Recall .340 .401 .698 .825
F1 Score .317 .251 .286 .256
Parameters 198304 198304 198304 198304

Table 29: ED-RNN DATACENTER Experimentation Results

 Look Back Period

5 10 25 50

Area Under ROC .538 .549 .582 .527
True Negative 43596 44600 44078 38949
False Positive 6552 5531 6029 11209
False Negative 205 220 227 161
True Positive 46 46 59 66
Precision .006 .008 .009 .005
Recall .183 .172 .206 .290
F1 Score .013 .015 .018 .011
Parameters 1384 1384 1384 1384

 123

7.9 Architecture #6: Encoding-Decoding 1-D Convolutional Network (ED-1D-CNN) Results

 The ED-1D-CNN architecture is a derivative of the ED-RNN architecture by the

inclusion of a CNN layer as a preprocessing step in front of the ED-RNN architecture. CNNs are

not sensitive to the order of the timestamps except within the size of the convolutional window.

By the inclusion of a CNN layer, the processing is more efficient because CNN converts the long

sequence into a shorter sequence that, in turn, is processed by the RNN. This approach is

described in Chollet [94] in the context of a forecasting domain. The difference here is that

instead of a forecast, architecture #6 is designed for anomaly detection with an autoencoder. The

expectation is that the results will perhaps not be as good as architecture #5 because the approach

is down-sampling from a longer time-series into a shorter CNN representation.

 Table 30 displays the results from ED-1D-CNN experimentation. Consider the five (5)

period look back results from the ED-RNN architecture. The results are comparable to the

results from the ED-RNN. For instance, the FRAUD experimentation produced an AUC of .956

under the ED-RNN architecture and .947 under the ED-1D-CNN architecture. Similar small

differences exist throughout all datasets. Therefore, the inclusion of a CNN front-end to the ED-

RNN architecture has no tangible impacts; however, processing requirements are reduced.

Table 30: ED-1D-CNN Experimentation Results

Metric FRAUD SWAT WADI DATACENTER

Area Under ROC .947 .940 .819 .534
True Negative 83622 266334 406706 41316
False Positive 1675 769 5010 8832
False Negative 33 5016 1780 196
True Positive 109 11355 1223 55
Precision .061 .936 .196 .534
Recall .767 .693 .407 .219
F1 .113 .796 .264 .012
Parameters 25662 45526 187644 3464

 124

7.10 Experimentation Results Summary

The experimentation results from six different anomaly detection architectures were

presented using four different datasets. All architectures are unsupervised, four of the

architectures (SDA, VAE, ED-RNN, and ED-1D-CNN) include autoencoders, two of the

architectures (VAE and DA-GMM) incorporate statistical distribution theory, two of the

architectures include generative models (VAE and GAN) and two specifically model time

sequences (ED-RNN and ED-1D-CNN). None of the architectures were explicitly designed for

geospatial data, although CNNs can be modeled as a geospatial problem, and none of the

architectures were designed for support streaming data. The only architecture ED-RNN)

designed for temporal applications (ED-RNN) also has the most stringent resource requirements.

The discussion of a suitable architecture of spatiotemporal streaming applications is deferred to

the next chapter when the STADE architecture is presented.

Overall, the three autoencoding architectures are the most performant, followed by the

GAN, VAE, and AE-GMM. The FRAUD dataset consistently exhibited the highest AUC

scores, followed by SWAT, then WADI, and finally, DATACENTER. In general, all

architectures performed consistently across the set of datasets in terms of accuracy across any

given dataset.

Architecture performance is highly dependent on the quality of the training datasets and

the anomaly labeling process. Anomaly labels are only used for architecture testing. The

FRAUD and SWAT datasets were both labeled based on a set of specific rationale. For example,

a sample has labeled an anomaly when a credit card transaction is denied. The testbed domain

experts labeled the SWAT dataset. A WADI record was labeled as an anomaly if the sample

existed during a testbed cyber-attack event. An anomaly is not determined by the recorded value

 125

of the particular feature. This broad approach to anomaly labeling is one possible cause for the

lower quality results associated with the WADI dataset.

The following are the summary key findings from the experimentation discussed in this

chapter.

• All architectures performed roughly equivalently in terms of AUC across architectures.

• Shallow Autoencoders performed nearly as well as Deep Autoencoders, are simpler to

implement and execute faster.

• The statistically-based approaches, VAE and DA-GMM, while more theoretically

justifiable than other architectures, did not produce superior results. DA-GMM is the

most complex architecture, somewhat challenging to implement, and relies on matrix

inversion.

• The autoencoding recurrent neural network architecture (AE-RNN), is more justifiable

when used in conjunction with temporal or sequential data, did not produce higher quality

anomaly classifications. The AE-RNN architecture trains slower than other architectures

by order of magnitude and would not be suitable for implementation as-is within a

streaming architecture.

• The ED-1D-CNN architecture performed at the same level of AE-RNN and executes

faster and is more stable.

• The Generative Adversarial Network (GAN) is easy to implement and does not rely on

statistical assumptions. Training execution speed is longer than other techniques because

a GAN requires two concurrent executing neural networks. Note that in the image

recognition domains, GANs generate higher quality images than VAEs and are the

preferred architecture.

 126

• Anomaly detection training and testing dataset quality are problematic. Ture multivariate

time-series or sequence anomaly detection benchmarks do not exist. There does not exist

agreed-upon criteria to evaluate unsupervised models.

• The DATACENTER dataset, while advertised for anomaly detection research by

YAHOO, is flawed and is not suitable for experimentation

• Architectures considered here do not adequately support spatiotemporal and streaming

data either individually or jointly.

 127

CHAPTER 8 – SPATIOTEMPORAL ANOMALY DETECTION ENVIRONMENT (STADE)

8.1 Introduction

 Chapters 4-7 presents several unsupervised TML and DNN architectures and algorithms

applied to anomaly detection. While there are many different technical options, direct

architectural and algorithmic support for streaming spatiotemporal data is lacking. This support

is the topic of this chapter with the specification called the Spatiotemporal Anomaly Detection

Environment (STADE). STADE consists of architecture and one or more instantiations. The

STADE architecture consists of a set of software or system components that are loosely

connected and communicate with each other. These software components may be special-

purpose unique to a particular domain or general-purpose (e.g., database system).

The mapping of the STADE software or system components to physical software or

products is called an instantiation of STADE. There are multiple instantiations of STADE with

each instantiation tailored to the target domain of interest. Three (3) instantiations mapped to

three (3) case studies are presented in Chapters 9-11. However, most of the components of

STADE are shared across the case studies.

 STADE provides an environment for automated, domain-independent, globally

distributed anomaly detection of multivariate streaming data. The term STADE is,

coincidentally, a Greek unit of measurement, the distance covered in ancient Greco footraces.

This analogy is appropriate since streaming, real-time anomaly detection, is also a race – a race

against time before a decision becomes ‘overcome-by-events.’ With streaming applications,

time is of the essence, and decisions are perishable.

 128

8.2 Design Considerations

High-level STADE design considerations can be categorized into: (1) System

Engineering, (2) Global Distribution, (3) Stream Processing, (4) Algorithmic Design, and (5)

Decision Support. These categories are briefly discussed below. Note that the focus of the

research is on anomaly detection algorithms for streaming spatiotemporal data and not on

general computer science-related topics. However, algorithms exist in software and are

controlled by an infrastructure. This infrastructure impacts not only the algorithmic design but

also implementation details such as persistence, storage and retrieval, local and network

communication, loose versus tight coupling, and user-interface design.

8.2.1 Systems Engineering

There are several systems of engineering performance and quality concepts that should be

embraced by STADE. Examples include modularity (i.e., pluggable algorithms), responsiveness,

reliability (i.e., automated recovery), spatial independence (i.e., a failure at one location does not

impact the operations at another location), predictability (i.e., correctness and consistency of

output), and low latency. Systems engineering textbooks describe these design, quality, and

performance concepts [176].

Early prototyping is a systems engineering process for building a functional model that

elicits clarity in the requirements and design before full development and operational fielding.

The three case studies are examples of early prototypes. Early prototypes can demonstrate

potential feasibility, scalability, and performance options and bottlenecks. For example, a

prototype of a global air traffic monitoring and anomaly detection system can identify unique

performance and user-interface issues that would be quite different from a social network

sentiment information system.

 129

8.2.2 Geospatial Distribution

 Geospatial distribution and optimization of systems, network communications, and

latency is a heavily studied and largely solved research area in computer science. Standards-

based network protocols such as Transmission Control Protocol/Internet Protocol (TCP/IP),

Hypertext Transport Protocol (HTTP), Message Passing Interface (MPI), and various open-

source service buses support reliable and timely wide-area and cloud-based data distribution.

Some of the protocols are synchronous, and some are asynchronous. Synchronous protocols

have higher performance but lower reliability than asynchronous protocols.

The STADE internal architecture relies on the publish-and-subscribe messaging protocol

for communication. In the publish-and-subscribe pattern, STADE sites act as publishers and

subscribers of anomaly scores with other STADE sites. A messaging technique such as publish-

and-subscribe, however, is asynchronous; time-critical STADE instantiations may also require

point-to-point synchronous communication to satisfy requirements. Moreover, in practice,

impediments to network traffic such as encryption, security devices, and firewalls also induce

external network constraints and negative performance impacts.

8.2.3 Stream Processing

There are many core requirements for stream processing architectures [177].

Requirements include (a) the processing of the data in-stream upon receipt, (b) the capability to

resiliently handle stream imperfections, and (c) the ability to scale resources when needed to

achieve an instantaneous response. Each of these core requirements is discussed below.

Real-time management of incoming data is an essential characteristic of stream

processing architectures. In-stream means that the data is processed without the employment of a

persistent data store such as a relational database or file system. If data is persistently stored,

 130

streamed and stored data should be processed concurrently without impact on the overall

performance of the anomaly detection algorithm.

The ability of resiliently process stream imperfections and noise is also critical. Stream

imperfections include missing, out-of-sequence, corrupted, and invalid data. Moreover, data

integrity should be maintained throughout the chain of custody. Data integrity means that while

data is in motion, inadvertent or malicious changes to the data should be protected. The injection

of a computer virus and malware into the data are examples of the loss of integrity of a data

stream.

Availability and scalability are additional streams processing requirements. Availability

is the proportion of time a system is operational. Scalability is the capability to add resources and

increase workload without performance degrading. Scaling-out (horizontal scaling) occurs by

increasing the number of sites, while scaling-up (vertical scaling) occurs by increasing the

processing resources at a given site. There are many techniques to maintain availability and

scalability, including middleware, partitioning an application across multiple processors,

partitioning across multiple compute nodes in a cluster and virtual machine replication on

demand.

8.2.4 Algorithmic

STADE estimation algorithms are based on stochastic gradient descent (SGD) and the

emerging DNN concept of federated learning (FL). With streaming data, algorithms should be

online, performant, and supportive of the goals of the decision-maker. The selection of the

algorithms is dependent on the selection of the Stream Anomaly Detector (SAD) and the

Federated Anomaly Detector (FAD). Section 8.5.1 below describes the STADE algorithms in

more detail.

 131

8.2.5 Decision Support System (DSS)

 A DSS is a digital, model-driven information system that processes and displays anomaly

information and assists with decision-making. This DSS will likely require remote access as

STADE sites may be situated at the compute edge or at disadvantaged network locations. The

design of a STADE DSS will also be highly contextual and domain-dependent. Decision support

is a complicated and broad topic that is beyond the scope of research here but is included in the

architectural drawings for completeness.

8.3 Concept of Operations (CONOPS)

A CONOPS is an engineering document that describes the system's high-level

architecture and interaction from an end-user perspective. The end-user may be a person, a user

interface, or another digital system. STADE provides alerts to the DSS regarding the presence or

absence of anomalies in streaming data. A STADE instantiation consists of the set of

autonomous STADE sites that process incoming high-dimensional location or region-specific

data. Each STADE site includes a plug-in capability that supports a replaceable and

interchangeable algorithm called the Stream Anomaly Detector (SAD). Multiple SADs can be

installed at a given site for ensemble or consensus-based anomaly score generation. Site-specific

anomaly scores are pushed asynchronously through the publish-and-subscribe message bus for

processing and storage at the Federated Anomaly Detector (FAD) global repository. The FAD is

the central warehouse for all SAD scores within a STADE instantiation.

The site that hosts the FAD global repository site also performs anomaly detection on the

streaming anomaly scores. The FAD detects ‘anomalies within anomalies’ and publishes those

scores via the publish-and-subscribe message bus to the DSS. Participant sites also subscribe to

global FAD scores originating from neighboring sites and may incorporate those scores as inputs

 132

into their SAD. This architecture provides a feedback loop between site anomalies, anomalies

reported from neighboring sites, and anomalies reported from the FAD global repository. Figure

44 provides a graphical view of the top-level architecture of a STADE instantiation. In this

example, there are four (4) STADE geographic sites, each with a unique streaming feed (i.e.,

Stream #101, #102, #103, and #104).

Figure 44: STADE Top-Level Architecture

8.3.1 An Aside on Federated Learning (FL)

 Federated learning (FL) [178] is an emerging architecture designed to support a large

number of geographically distributed networked clients. These clients aggregate into a union

that collaboratively and cooperatively train DNN models using a centralized server but without

input data sharing. By forming a union, robust, highly performant ML models can be estimated,

modified, and deployed in real-time. FL is a form of privacy-preserving decentralized

collaborative machine learning [179].

 133

The genesis of FL originated with the need for ML on a massive number of low-powered

devices such as smartphones. For example, Google™ uses FL to create smartphone keyboard

assistants by training DNNs with on-device stochastic gradient descent (SGD) using captured

keystrokes in real-time. However, for on-device privacy reasons, these keystrokes are not shared

with a central server; what is shared periodically are the estimated DNN parameters. Even if

privacy is not a concern, mobile or low-powered devices are randomly offline or have limited

communication bandwidth to make centralized DNN model training impractical. By sharing

model parameters and not input data, network bandwidth is preserved.

 Periodically, a central FL server collects parameters from participant devices and

modifies the global parameters through a technique known as Federated Averaging (FA). Under

FA, the DNN parameters are aggregated and averaged across all other available and reporting

devices. The newly modified SGD parameters are then transmitted back to the local phone or

device. The server may add to the data stream additional privacy preservation techniques such as

lossy compression for communication efficiency, update clipping, or intentional noise insertion.

 There is a substantial similarity between the architectures of FL and FAD. While the

privacy-preserving aspects of FL technology are not the focus of STADE, the distributed data

and model parameter sharing requirements are similar in many respects. FL is designed to

support a large number of unreliable devices (e.g., smartphones); STADE is designed to support

a relatively small number of reliable clients. These STADE sites may be sensors with low power

consumption and minimal connectivity but highly reliable.

Table 31, adapted from Kairouz et al. [180], presents a summary of the differences

between the characteristics and assumptions of FL versus STADE. FL consists of hundreds or

thousands of unreliable devices or sites, while STADE is designed for perhaps two (2) to ninety-

 134

nine (99) reliable devices or sites. All sites in FL and STADE are stateful, meaning that data is

store locally and persistently. FL is orchestrated and controlled by a central server while STADE

uses a message bus and asynchronous communications. FL is designed to share the global DNN

model parameters through FA; STADE is designed to share the anomaly scores and estimating

‘anomalies within anomalies’ for spatiotemporal analysis.

Table 31: Federated Learning and STADE

 Federated Learning (FL) STADE
of Clients Hundreds / Thousands 1-99
Data Stored at Client Yes Yes
Orchestration Centrally at Server Publish-and-Subscribe Message Bus
Expected Client Reliability Low Reliability High Reliability
Network Mobile Device Connected / Cloud
ML Algorithm Stochastic Gradient Descent (SGD) Stochastic Gradient Descent (SGD)
Federated Data SGD Model Parameters Anomaly Scores
Model Aggregation SGD Averaging None
ML Algorithm at Server None Anomaly Detector of Anomaly Scores

8.4 Architecture and Components

Table 32 provides the definitions for the terminology and software components found in

the STADE architectural diagrams that follow. Figure 45 illustrates the STADE cloud-based

architecture. Each site or geographic region has a separate STADE instantiation and processes

multi-dimensional data streams needed to calculate the anomaly scores. The diagram illustrates

four (4) STADE sites, but there is no technical limit as to the number of sites within an

architecture. There is also no technical limit to the geographical location of the sites as

communication may occur across the public internet.

To summarize the CONOPS, each site receives relevant data (e.g., Site #1 receives

streaming data from source #101), performs anomaly detection on that data using a SAD, and

transmits the score to the global score repository for processing by the FAD. This process is

repeated upon receipt of each instance of data. The anomaly scores are accumulated from all

 135

SADs and stored in the global repository for aggregation and additional processing, display at a

remote DSS, and further processing by the FAD.

Table 32: STADE Terminology and Components

Anomaly Score (AS) The output of an algorithm that measures the anomalous degree assigned to
multivariate data received over some time.

Stream Anomaly Detector (SAD) A site-specific implementation of an anomaly detection algorithm using
online SGD. Model parameters are updated continuously.

Decision Support System (DSS) A digital, model-driven information system that processes and displays
anomaly information and assists with decision-making.

Global Repository A STADE site that can persistently aggregate, store, transmit, and process
anomaly scores from other STADE sites.

Publish and Subscribe
Message Bus

A publish-and-subscribe protocol to asynchronously transmit data between
STADE sites and the global score repository.

Message Component Software that manages the interfaces with the message bus and messages
between components at a STADE site.

Federated Anomaly Detector
(FAD)

An implementation of an anomaly detection algorithm that operates on
anomaly scores in the global repository.

STADE Architecture A group of two or more STADE Sites that communicate via a pub-sub
message bus and that includes a global repository.

STADE Site # A numbered geospatial instantiation of STADE. Each site processes unique
data and executes unique anomaly models.

Storage Component Includes software that manages storage at a STADE site. All data received
into a STADE site is stored locally.

Stream# A numbered data stream for processing by the stream component. Multiple
streams sources may enter a STADE site.

Stream Component Software that processes incoming streams and performs stream quality
control.

Workflow Component Software that orchestrates and manages the sequence and flow of STADE
components and a Stream Anomaly Detector (SAD)

In addition to the SAD, each STADE site consists of four components, (a) a workflow

component, (b) a stream component, (c) a storage component, and (d) a messaging component.

There is also an interface to the publish-and-subscribe message bus used to transmit anomaly

scores to the global score repository. These components are notional because an actual

instantiation of STADE may combine multiple functions into one component or may use the

operating system or commercial cloud computing capabilities (e.g., a message bus) instead of a

physical software component.

 136

Figure 45: STADE Site Internal Architecture

The workflow component provides the heartbeat of STADE and orchestrates the internal

flow of control, such as directing messages to the message processor or controlling the transfer

of data. Workflows are always a two-way interaction between the workflow component, the

three components (Message, Storage, Stream), and the SAD. Workflows can also be expressed

implicitly, or hardwired into the source code for smaller environments without the need for a

dedicated workflow engine. Formal workflows are preferable to hardwired workflows because

models are easily modifiable and can be placed under configuration management.

The stream component controls the ingestion and processing of externally transmitted

streaming data. Upon receipt, the stream component forwards the packets to the storage

component. The storage component persists the data into storage and forwards a copy to the

SAD, which then executes the anomaly detection algorithm on the newly received data. The

SAD, in turn, calculates the anomaly score and submits the results back to the storage

 137

component. The storage component forwards the anomaly scores to the message component,

which, in turn, inserts the newly calculated anomaly scores onto the publish-and-subscribe

message bus for transmission to the global score repository. Although STADE is a relatively

simple system, the workflow becomes surprisingly complex, with just a single data flow and four

software components.

The glue that supports communication with the global score repository is the publish-and-

subscribe message bus. Scalability is also enhanced by the publish-and-subscribe middleware to

promote loose coupling. Publish-and-subscribe is a messaging pattern that provides for

increased network scalability with loose coupling, highly desirable design characteristics of

distributed systems. Scalability is increased because STADE sites can filter messages if

required, communicate asynchronously, and are not tightly coupled, as would be the case in a

client-server architecture. By providing a dynamic network topology, publish-and-subscribe

simplifies implementation, as a new site participating in a STADE architecture has no impact on

the existing set of sites that are currently in operation.

 Since the product of STADE is an anomaly designation, a critical component is SAD.

Alternative SADs based on different TML and DDN algorithms may be inserted without

modification to the other architectural components. If a higher-performing SAD is discovered,

that detector can be inserted into the STADE instantiated architecture.

8.5 Federated Anomaly Detector (FAD) and the Global Score Repository

 The FAD is an anomaly detection algorithm that operates on the anomaly scores stored in

the global repository. At first glance, the rationale for performing anomaly detection on the set

of anomaly scores is not entirely apparent. However, the approach here follows meta-analysis, a

statistical procedure used in many different scientific disciplines for combining data in multiple

 138

studies. In this case, the score repository is combining anomaly scores from multiple sites or

regions. The meta-detector approach attempts to identify collective anomalies by considering

time-stamped anomaly scores from one site or region only within the context of the anomaly

scores at other sites and regions.

Consider three (3) geographically distinct STADE sites. Anomaly scores are submitted to

the score repository simultaneously by these three sites. Anomaly scores will vary region by

region for a variety of reasons, but the anomaly scores may be related depending on the domain

characteristics. For example, a significant increase or decrease in the anomaly score at the same

time at all sites might indicate a non-anomalous occurrence (e.g., a benign solar disturbance that

has a temporary effect on sensor recordings). When considering point anomalies only, each site

would be designated anomalous. However, collectively, there is no anomaly; only when an

increase or decrease occurs in one site vis-a-vis the other two sites is there an anomaly. These

types of relationships are difficult to decipher if there are more than a few sites, which is why the

meta-detector approach through the FAD is incorporated into STADE. Which anomaly detection

algorithms are appropriate for the FAD? Within STADE, FAD algorithms are pluggable as there

is no prior reason to prefer one anomaly detection algorithm over another.

8.6 Algorithms and Estimation

 In most neural network-based commercial applications, training occurs offline, often with

specialty hardware, and the resulting model deployed to production in the cloud or to consumer

devices. For example, in a smartphone language translation app, training occurs offline using

supervised learning techniques with millions of text-to-speech or text-to-text samples, and the

resultant highly performant binary is deployed to the smartphone with a minimalistic footprint.

The text-to-speech model is static and does not change over time.

 139

STADE cannot use this approach. First, STADE supports unsupervised learning; there

are no training datasets. Second, with streaming spatiotemporal data, the ability to capture

concept drift to the extent possible is critical to system performance. Recognition of concept drift

is particularly crucial with mission-critical applications (e.g., military combat systems) where

adversaries intentionally change behaviors in order to deceive. Third, STADE is designed to

leverage the information provided by other STADE sites through the FAD; this exchange of

information would not be possible if models were deployed statically.

 In many domains, streaming data may arrive faster than the ability of the DNN to execute

SGD in real-time. Deployment of static, pre-trained models is possible, but the parameters

would become out-of-date quickly in the presence of concept drift. There are three approaches

to address the issue of online training of neural networks with streaming data. The first approach

is an optimizer that implements online stochastic gradient descent (SGD) training with

backpropagation, the second approach is delayed training with batch SGD, and the third

approach is a variant of FL. This third approach, FL, is not considered further because of the

differences in the underlying STADE requirements, as noted in Table 31.

To summarize, in highly dynamic environments, model parameters may change over

time, often subtlety, a problem known as concept drift. Therefore, learning algorithms should

adapt to the changing parameters; the learning needs to be online and in real-time. The learning

algorithm also needs to be adapted for the velocity of the data. If, for example, the receipt of

streaming data is faster than the processing of that data, then the algorithm needs to be modified

to support the velocity of the data stream.

 140

8.6.1 STADE SGD ALGORITHMS

With the first approach to processing streaming data, online SGD, training occurs one

sample at a time upon arrival at the processing site. So, with a persistently running SGD

implementation, at time t-1, the arriving sample could be used to update the SGD parameters. At

time t, the DNN model estimated using the parameters of the t-1 sample could be used for

anomaly scoring and also to update the DNN parameters using SGD again. This process of

anomaly scoring and parameter update would continue upon receipt of each new sample from the

data stream.

Online SGD is significantly faster than batch gradient descent and could be adapted for

use with streaming data. However, the SGD technique generally exhibits higher variance

compared to batch SGD and can cause significant fluctuations in the parameter estimates. With

higher variance, recognition of concept drift and other data imperfections is less precise than

using the traditional batch SGD with DNNs.

The second approach is the delayed parameter estimation using batch SGD. Under this

approach, streaming data is accumulated over time by the STADE storage component and used

in the SAD training algorithm in the same way as offline SGD estimation. The newly estimated

parameters are then applied to the newly received streaming data in an anomaly scoring

algorithm. The SAD training algorithm is restarted once again, including the most recently

received streaming data. Under this approach, the model parameters are out-of-date only to the

extent of the time required to retrain the model with newly received streaming data.

The training time under SGD may exceed the mean period of receipt of new streaming

data. In these circumstances, the second approach, delayed training with batch SGD, may be

combined with SGD to create a hybrid algorithm. Under this hybrid approach, an optimizer with

 141

SGD with backpropagation is persistently executing and processing the latest set of streamed

data. Upon completion, the SGD is restated, and execution is started again with the latest set of

streamed data.

The goal of gradient descent is to minimize the objective function 𝐽(𝜃), where parameters 𝜃 ∈ ℝ𝑛, the set of real numbers in 𝑛 dimensional space. With gradient descent, parameters are

updated in the opposite direction of the gradient of the objective function with respect to the

parameters 𝜃, given by ∇𝜃𝐽(𝜃). The learning rate ŋ determines the size of the step used in the

gradient descent algorithm. Let 𝑥𝑖𝑡denote the multivariate input streams at location 𝑖 at time 𝑡

and may include lagged values to capture the impact of time. Since the model at location 𝑖 is

independent of the model at location 𝑗, for brevity, we can omit the location subscript. With

unsupervised learning, there is also no targeted sample, so the goal is to minimize the

reconstructive error of the input sample. Let 𝑥𝑡′be the target value at time 𝑡. Therefore, the

update equation for stochastic gradient descent is given by (8.1) equation: 𝜃 = 𝜃 − ŋ · ∇𝜃𝐽(𝜃; 𝑥𝑡; 𝑥𝑡′) (8.1)

Therefore, SGD with backpropagation performs one update at a time.

Note that in most batch SGD approaches, the input data is shuffled, and samples are

randomly drawn before running the backpropagation algorithm so that the most recent streamed

data may not be the sampled as part of the parameter update cycle. Processing the most recently

received stream data would be preferred over shuffling if there was a desire to identify concept

drift. The reason for the random draw is that gradient descent is a multi-pass algorithm. The

number of epochs is a hyperparameter that specifies the number of complete passes, both

forward and backward, through the training data. In order for the parameters to be learned,

 142

different samples must be used through each epoch. There are usually many epochs and many

iterations through the samples.

Most SGD software packages support options for no shuffling and only one (1) epoch per

time cycle. Note that the SGD algorithm overshoots the global minimum during the early stages

of training. Therefore, the recommendation in the literature is to slowly decrease the learning

rate as training proceeds to mitigate the large parameter swings caused by the use of only a

single sample in SGD. The above discussion suggests that parameter estimation using SGD is

challenging, albeit less problematic than attempting to use a recurrent neural network (RNN)

architecture in an online, streaming environment. Online SGD challenges include general

conversion to a global minimum, selection of the proper learning rate, selection of the approach

for including of time-lagged features, and the approach to capturing concept drift over time.

 Figure 46 below displays the STADE estimation algorithm #7 for SGD. This algorithm

is appropriate for autoencoder and other feedforward architectures but not appropriate for

recurrent neural networks.

Figure 47 below displays the STADE algorithm #8 for the Delayed Parameter Estimation

algorithm. With delayed parameter estimation, traditional batch SGD is used. Gradient descent

is restarted with the newly received data after the old gradient descent algorithm completes. So,

the trade-off is better parameter estimation from the use of batches at the expense of some stale

parameters existing for short periods. Algorithm #7 and algorithm #8 are similar in most aspects.

For example, algorithm #8 is identical to algorithm #7 under the assumption that SGD executes

faster than the receipt of the stream (so that there is no delayed execution) and that the batch size

=1 without shuffling.

 143

Algorithm 7: Perpetual Stochastic Gradient Descent (SGD)
INPUT: incoming streaming sample: 𝒙𝒊𝒕, # of epochs: E==1, learning rate: ŋ

accumulated dataset: X
OUTPUT: parameters
STEPS: 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔  train a feedforward network with SGD

append 𝒙𝒊𝒕 to X
 loopOverEachEpoch E

 sample = get_data(X,1)
 params-grad = evaluate-gradient(loss-function, sample, parameters)

 parameters = parameters – (learning rate ŋ * params-grad)

Figure 46: Stochastic Gradient Descent

Algorithm 8: Delayed Parameter Estimation (with Batch Gradient Descent)
INPUT: Incoming Streaming sample: 𝒙𝒊𝒕, # of epochs: E, Learning Rate: ŋ

Batch size: n
Accumulated Dataset: X

OUTPUT: parameters
STEPS: 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔 train a FeedForward Network with gradient descent

append 𝒙𝒊𝒕 to X
if(Delayed Parameter Estimation is not executing)
loopOverEachEpoch E
 random-shuffle(X)
 loopOverEachMiniBatch n
 get_data(X,n)
 params-grad=evaluate-gradient(loss-function,sample,parameters)
 parameters = parameters – (learning rate ŋ * params-grad)

Figure 47: Delayed Parameter Estimation

8.7 STADE Instantiation

 A given STADE instantiation consists of an operating environment, infrastructure

software, SAD and FAD, decision support system, and a workflow. Each of these elements is

discussed below.

8.7.1 Operational Environment

 The execution of the case studies on operational equipment was preferable to a laboratory

environment. The belief is that the most information on the suitability of STADE architecture

could be garnered by using cloud-based, globally distributed equipment that communicated over

 144

the public internet. The Microsoft™ Azure commercial cloud was chosen as the platform to

conduct the case studies. Azure has data centers located throughout the world and provides

several enterprise-level services that could potentially be mapped to components required for an

instantiation of STADE.

 Six (6) Azure datacenters were chosen to host a STADE instantiation. These data centers

were located one in each continent, Africa (South Africa), Asia (India), Australia, Europe

(United Kingdom), North America (USA), and South America (Brazil). Figure 48 provides a

map of the physical locations of the datacenters hosting STADE. One (1) location is also

designated as the global score repository hosting the FAD. The North America STADE

implementation is designated as this global score repository.

Figure 48: STADE Case Study Testbed

 Each Microsoft™ Azure datacenter hosted one or more STADE virtual machines. No

additional Azure software or services were used, and all cloud services were accessed remotely

via the remote desktop connection protocol.

 145

8.7.2 Infrastructure Software

Table 33 relates the components of the STADE specification to the components used in

the case studies. The components include services provided by the Microsoft™ Azure cloud,

interfaces to cloud-based database systems, and custom software programs that execute on local

computers or virtual machines in the cloud, The most critical components include COSMOS DB,

which serves as a cloud database and provides capabilities for asynchronous communications

similar to the publish-and-subscribe message broker, and Azure Functions, which supports

workflow capabilities. The DSS is based on a web-based interface; all end-user interactions are

completed through interactions with a global map.

Table 33: STADE Case Study Software Components

Stream Anomaly Detector (SAD) Shallow/Deep Autoencoder / HBOS
Decision Support System (DSS) Azure Maps Web-Based Map
Global Repository Cosmos DB
Publish and Subscribe Message Bus Microsoft™ Azure Functions
Message Component Microsoft™ SignalR Azure Service
Federated Anomaly Detector (FAD) Shallow/Deep Autoencoder / HBOS
Storage Component Microsoft™ Azure COSMOS DB
Stream Component Custom Software
Workflow Component Microsoft™ Azure Functions Custom Software

8.7.3 SAD and FAD Anomaly Detectors

There are two types of anomaly detectors in the STADE architecture, a SAD executing at

multiple local sties and a FAD executing at a single global site. Both the SAD and FAD are

configured to ingest inputs as they arrive, perform online learning, and calculate the anomaly

score. The input to the SAD is high-dimensional (e.g., sensor data), while the input to the FAD

is anomaly scores generated from the SAD sites. These anomaly scores are then transmitted via

the publish-and-subscribe messaging infrastructure for storage at the global repository.

 146

The TML and DNN algorithms previously discussed are all candidates for employment

as the SAD and FAD. For example, the DNN shallow and deep autoencoder (SDA) algorithm

might be designated as the SAD, and the TML Histogram-Based Outlier Score (HBOS)

algorithm was designated as the FAD. These SDA and HBOS algorithms might be selected

because both were reasonably effective in identifying anomalies in the experimentation. Other

combinations of algorithms are a reasonable combination. The SDA is estimated using perpetual

stochastic gradient descent (Algorithm 7). Different SADs could have been selected for different

sites as the STADE architecture is pluggable and loosely coupled; however, deployment of

STADE is simplified if the same set of SADs is installed throughout the architecture.

8.7.4 Decision Support System (DSS)

The DSS is provided as a web site that communicates with the global repository through

the publish-and-subscribe message bus and displays streaming point data and anomaly scores

reported from each STADE site. While the architecture diagrams display the decision support

web connecting to the global repository only, the decision support web can also connect to the

individual STADE sites to monitor incoming feeds and view anomaly scores for that location.

Note that in the case studies, no analytical algorithms execute on the decision support site, but, in

practice, background algorithms would further analyze the scores and provide additional

assessments and graphical displays to the decision-maker.

8.7.5 Workflow

Figure 49 displays the sequence of events, or workflow, for the arrival of one sample

(e.g., sensor reading) at a given site.

 147

Figure 49: STADE Case Study Workflow

Each number represents one step in the end-to-end chain from receipt to the data to

display on the decision support web. While there are ten (10) numbered steps, steps one to six (1-

6) are implemented on one virtual machine at one site, while steps seven to ten (7-10) are

implemented on another virtual machine at another site. The global repository and the FAD are

implemented at the STADE site designated in North America. The most significant potential

impact on performance is the message bus, which transmits data over the internet and would be a

choke point in the presence of network outages or global latencies.

8.8 Case Study Objectives

Chapters 9-11 describe three (3) case studies that utilize the STADE instantiation

described. Chapter 9 describes the global air traffic case study, Chapter 10 describes the earth

sciences case study, focusing on earthquakes, while Chapter 11 describes the social networking

streams case study. The prime objective of these case studies is to determine if STADE is a

 148

viable architecture for the detection of anomalies in highly dimensional streaming spatiotemporal

data. These case studies are proof-of-concept. While STADE is domain-independent, an

instantiation of STADE is tailored to the particular problem statement of each case study.

STADE can support automated decision making or augment the human decision-making process.

Because STADE supports unsupervised learning, the algorithms could potentially identify novel

or never-seen (zero-day) anomalies. STADE can be applied either in a local area network

clustered or a geographically distributed cloud (e.g., global sensor network). The instantiation

of STADE described above is cloud-based. The algorithms exploit the information contained not

only in the values at a point in space-time, but also the sequences of data, or spatiotemporal

anomaly detection.

8.9 Summary

STADE is designed to address spatiotemporal anomaly detection in a distributed, cloud-

centric, domain-independent application domain. Anomaly detectors execute at local STADE

sites and report the anomaly score to a centralized Federated Anomaly Detector (FAD) site for

further analysis or display on the remote decision support system. The centralized repository

provides further analysis of the reported anomaly scores. With multiple geospatially distributed

sources of information, the decision-makers can make informed decisions regarding the

existence or non-existence of a spatiotemporal anomaly.

 The description of STADE in this chapter included a mapping of the architecture to

specific products and technologies. This instantiation included several existing open source

technologies and commercial products since programming STADE from scratch is cost-

prohibitive. Each use case has unique requirements and may require a unique instantiation of the

STADE components

 149

 The design goal of STADE is to process streaming spatiotemporal data for anomaly

detection. Most anomaly detectors have long training times that make online neural network

learning with streaming data difficult. Two practical solutions to this problem are the use of

stochastic gradient descent and a delayed parameter estimation approach. Spatial considerations

are addressed within STADE by running separate models per region; there is no cross-region

pooling of data. Temporal issues are addressed by using an anomaly detection algorithm that has

built-in multivariate support for time or sequences (e.g., ED-1D-CNN) or by direct inclusion of

time as part of the feature set. For example, lagged response variables from a time series can be

introduced as features in autoencoders without the need for explicitly using a sequentially

dynamic model (e.g., RNN).

8.10 Related Work

Studies of streaming anomaly detection utilize various time-series techniques with

univariate data. The Numenta Anomaly Benchmark (NAB) [181] and [182] includes a set of

univariate time-stamped datasets with anomalies annotated by a well-defined human labeling

process. Specially designed datasets were created to allow the comparison and scoring of various

algorithms that support streaming anomaly detection. Anomaly detectors assign scores on the

test data based on the parameters estimated from the training data. The NAB scoring system, in

turn, calculates an overall performance metric based on a set of rules. For example, the

performance metric penalizes detectors that trigger higher false alarms than expected. NAB is

designed to allow a comparison of alternative univariate techniques against a single baseline.

TML techniques designed for real-time streaming anomaly detection include hierarchical

temporal memory (HTM) [183] and [184], random cut forests [185], and seasonal trend

decomposition based on loess (STL) combined with seasonal autoregressive integrated moving

 150

average (SARIMA) [186]. Other anomaly detection applications designed specifically for

processing online streaming data include domain-independent processing of complex event

streams through ‘STREAM-LEARNER’ [187], wireless sensor networks [188], road traffic

conditions [189], unmanned aerial vehicles (UAVs) [190], and network intrusion detection [191].

Choudhary et al. [192] present an analysis of the runtime trade-off of various techniques to

process real-time streaming anomaly detection.

STADE is designed to support distributed real-time anomaly detection in multiple

domains, including sensor networks. Ball et al. [193] provide a survey of representational

learning techniques for remote sensing and sensor networks. Budalakoti et al. [194] develop an

anomaly detection system called ‘sequenceMiner’ that detects anomalies by recording and

analyzing the symbol sequences of switch sensors in the cockpits of commercial airlines. Hayes

and Capretz [195] provide a contextual anomaly detection model for sensor data. Mohammaddi

et al. [196] provide a survey of neural network applications for big data and streaming analytics.

Muallem et al. [197] provide a survey of hoeffding tree algorithms, a TML technique, for

streaming cyber anomaly detection applications. Xie and Chen [198] address anomaly detection

with the elimination of data redundancy in sensor data streams. Other studies of sensor anomaly

detection include [199], and streaming data include [200].

FL inspires the STADE architecture by the ’attention’ mechanism [92] that is popular

today in the DNN language translation literature. The attention mechanism is an evolution from

an earlier architecture based on the encoder-decoder recurrent neural network model (ED-RNN).

Models that use a combination ED-RNN with or without attention include [201], [152], [22],

[202], [203] and [204].

 151

The STADE architecture is based on FL and incorporates the concept of a centralized

repository to maintain and exchange anomaly scores across geographically dispersed clients.

Within this architecture, all algorithms are trained locally, and the results coordinated across

regions. There have been numerous projects by Google™ and others to formulate distributed

representational learning algorithms primarily to support image processing tasks. Distributed

processing is typically within a data center or in a computer cluster and not geographically

dispersed as proposed here. Dean et al. [205] describe a system called DistBelief consisting of

thousands of CPU cores in data centers used to train large models with sixteen (16) million

images. Note that while asynchronous stochastic gradient descent procedures can be parallelized

in image processing convolutional neural networks, parallelization is not possible with a

recurrent neural network or autoencoder architecture.

Moreover, STADE architecture is designed to support disadvantaged locations at the

network edge. For a comprehensive survey of various approaches to large-scale distributed

training of DNNs and various formulation of the stochastic gradient descent algorithm, see

Chahal et al. [206]. Williams and Zipser [207] propose an algorithm for continually running

RNNs; however, the performance is worse than the performance of a traditional RNN and is not

suitable for high tempo streaming applications.

In summary, research on real-time streaming anomaly detection has been spotty and has

focused on univariate problem domains and non-scalable machine learning techniques. There

does exist online streaming stochastic gradient descent algorithms, but their performance is still

lacking and not suitable for all streaming applications. New, more agile algorithms are needed to

process streaming data for high-tempo, real-time anomaly detection.

 152

CHAPTER 9 – STADE CASE STUDY #1: GLOBAL AIR TRAFFIC (GAT)

9.1 GAT Background

 The purpose of the GAT case study is to identify, in near real-time, anomalies in global

air traffic. The parameters would be learned from past non-anomalous flights and applied to

ongoing flights. A decision-support system would then provide alerts to air traffic controllers

(ATC), commercial airlines, and aircraft manufacturers of possible anomalies that require

attention.

 One obvious question is, why is a DNN or another set of sophisticated techniques are

required in this scenario? Why not analyze the raw data? The reasons are twofold. First, the

amount of raw data would be overwhelming for a decision-analyst or a management information

system. Second, the data relationships are complex, and a traditional management or database

system would unlikely to uncover the complex dependencies and attribute interrelationships

necessary to identify a multidimensional anomaly.

9.2 GAT Architecture Design Decisions

 The GAT case study architecture follows closely the STADE architecture described in

Chapter 8. Note that, in this particular case study, because data feeds are through the public

internet, the geographic distribution of the processing nodes is not critical. Moreover, the

publish-and-subscribe infrastructure that is part of the STADE global cloud essentially abstracts

away the concept of geo-location. Nevertheless, for proof-of-concept and demonstration

purposes, STADE processes nodes have been distributed to the various Microsoft Azure cloud

sites, as described in Section 8.7.1.

 The GAT case study is designed to support global operations involving thousands of

simultaneous flights. Given the limited available data, Streaming Anomaly Detector (SAD)

 153

models can be partitioned either by country-of-origin, commercial carrier, or aircraft callsign.

The preferred partition would be the airport origin and airport destination pairs because

anomalies happen within a particular route. This data is inferred based on trajectories of the

takeoff and approach. For demonstration, country-of-origin will be used to partition the SAD

models; each country-of-origin is a separate SAD model. The centralized FAD would collect the

anomaly scores on a per-country basis. For example, if flights originate from twenty (20)

different countries, there would be twenty different FAD scores per period. The FAD collects

the highest SAD score every five (5) minutes from each origin country unique model, but the

FAD time interval parameter can easily be changed to fit the architecture.

 Both the Streaming Anomaly Detector (SAD) and Federated Anomaly Detector (FAD)

technique selected for this case study are the Encoding-Decoding Recurrent Neural Network

(ED-RNN). Parameters are estimated using perpetual stochastic gradient descent (Algorithm 7)

described in Section 8.6.1.

 9.2.1 GAT Anomaly Definition

There are limitless examples of potential anomalies, such as the location (latitude and

longitude) along an aircraft route, the altitude at that location along a route, and airspeed for a

particular aircraft. Anomalies are domain-dependent, however. For example. [208] notes that an

anomaly might be a large commercial airliner overflying a terrain in the vicinity of a large

international airport.

Since the anomaly techniques are multidimensional, all relevant flight attributes enter

into the anomaly scoring algorithm so that a specific anomaly definition is not required. The

flight attributes are discussed below. Stream Anomaly Detection (SAD) scores are ranked with

 154

the highest ten (10) scored over 24 hours listed below for all flights originating from the United

States. The corresponding Federated Anomaly detection (FAD) scores are also listed.

 9.2.2 GAT Data Sources

 This case study uses data produced by the OpenSky Network (https://opensky-

network.org/). Most commercial aircraft have MODE-S hardware transmitters that emit ADS-B

messages. The OpenSky Network is a community-based, crowd-sourced collaborative effort to

collect air traffic data from more than one-thousand Mode S sensors located throughout the

world [209]. These sensors collect the ADS-B generate messages that track the state of an

aircraft at a point in time, including position, velocity, and aircraft identity. Table 34 describes

the data provided through the OpenSky Network and delivered in real-time via the internet.

Table 34: Global Air Traffic Data Elements

Data Element Description

icao24 ICAO24 address of the transmitter in a hex string representation
Callsign Callsign of the aircraft
Origin Country The origin-country of the flight
Last Time Time since the last position report
Last Contact Seconds since last received message from this transponder
Longitude In ellipsoidal coordinates (WGS-84) and degrees.
Latitude In ellipsoidal coordinates (WGS-84) and degrees.
Altitude Geometric altitude in meters
Velocity Speed over ground in meters per second
On the Ground True if the aircraft is on the ground
Heading In decimal degrees, where 0 is north
Vertical Rate In meters/second. The incline is positive, and decline is negative
Sensors The serial number of sensors which received messages from this aircraft
Barometric Barometric altitude in meters
Squawk Transponder code, aka Squawk.
SPI Special Purpose Indicator
Position Source Origin of the position: 0 = ADS-B, 1 = ASTERIX, 2 = MLAT, 3=FLARM
Type code The aircraft model type
Origin Origin Airport
Destination Destination Airport

One additional issue relates to the use of location attributes in the SAD and FAD. For the

GAT case study, the exact latitude and longitude are relatively unimportant, and only a relatively

https://opensky-network.org/
https://opensky-network.org/

 155

small geographic bounding box has relevance. With a simple formula, the latitude and longitude

are converted into a unique integer for entry into the models. The simple formula is: (latitude

+90)*180 + longitude. This formula is equivalent to a hashing algorithm in computer science.

With this formula, every point on the map can be converted into an integer that designates a

unique bounding box accurate to one (1) degree.

9.3 GAT Case Study Results

 Figure 50 below displays a snapshot of the GAT map of United States air traffic at a

given point in time by exact latitude and longitude (not the integer conversion). This flight

display is web-based and animated; flight locations on the map are updated upon receipt of the

flight reports (i.e., samples), and plane icons are clickable. Flight reports (i.e., samples) are

received every 5 to 10 seconds following the architecture and workflow described in Chapter 8.

Figure 50: Global Air Traffic Decision Support Map

 156

Table 35: Global Air Traffic Top 10 Anomaly Report (Over 24-Hour Period)

 Date Call Sign SAD FAD Latitude Longitude Velocity Heading Vertical Altitude

1 2020-03-02 OMA154 188.8 Yes 47.14 11.45 250 113.1 6.5 10.7
2 2020-03-02 AZA22FL 13.9 No 50.51 0.47 236 144.5 6.5 9997
3 2020-03-02 TCRSD 13.9 No 59.20 -8.65 221 319.4 0.3 12687
4 2020-03-02 AAY96 12.8 No 37.64 -120.71 147 295.9 10.4 2514
5 2020-03-02 N417EP 12.8 No 28.91 -80.92 60 219.11 0.0 1028
6 2020-03-02 JME508N 12.7 No 32.29 -108.22 297 105.7 0.3 12694
7 2020-03-02 VTI973 11.1 No 19.01 73.92 200 156.7 22.1 3787
8 2020-03-02 UAE542 11.1 No 25.29 56.59 271 100.3 4.87 8107
9 2020-03-02 UAL555 10.9 No 32.73 -116.94 101 109.1 6.17 1226
10 2020-03-02 KAL646 10.8 No 25.73 122.17 296 35.3 0.0 11811

STADE was able to identify hundreds of flight anomalies in real-time in thousands of

flights over 24 hours. The model was trained with historical data from the previous thirty (30)

days. The FAD found only one ‘federated’ anomaly for the corresponding time-stamp. This

anomaly may be a result of a data error since the reported altitude was ten (10) meters. This

result may be an outcome of the artificial partition of the model by country-of-origin. An

anomaly in the location of a flight in the United States is unlikely to be related to an anomaly in

Great Britain. As previously noted, an operational system would likely partition the models by

source-destination airport pairs. The exact cause of these anomalies would require further

analysis, perhaps by air traffic controllers. Note that without the inclusion of an automated

explainable AI module, a subject on ongoing research in the ML community, the explanation of

the anomaly score is complicated.

9.4 GAT Related Work

Few published studies have applied DNN anomaly detection techniques to the air traffic

domain. There have been statistical applications of anomaly detection to air traffic issues.

Tanner and Strohmeier [210] utilize the OpenSky network to detect anomalies in air traffic

patterns and runway use. Other studies use visual satellite data combined with the Opensky

network to build a flight anomaly detection dataset [208].

 157

CHAPTER 10 – STADE CASE STUDY #2: EARTH SCIENCE (ES)

10.1 ES Background

 The objective of this case study is to investigate earthquake data as provided by the U.S

Geological Survey (USGS). The goal is to identify anomalies in sequences of earth sensor

readings that may portend a future earthquake or aftershock. The goal here is not to forecast

earthquakes, which is a supervised learning problem but to identify anomalies in data sequences

that may support explanations of near-term future geophysical events.

 Under the Earthquake Hazards Program, the USGS uses statistical modeling techniques

to make probabilistic predictions such as: “the chance of an earthquake of magnitude three (3) or

higher is > 99%, and it is most likely that as few as 42 or as many as 230 such earthquakes may

occur in the case that the sequence is reinvigorated by a larger aftershock.” Multivariate anomaly

detection techniques could enhance these types of predictions.

10.2 ES Architecture Design Decisions

 10.2.1 ES Anomaly Definition

 Similar to the GAT case study, anomalies are based on SAD scores. Each network is a

separate SAD model. There are approximately fifteen (15) networks throughout the world that

collect earthquake data. Each network provides its anomaly scores to the FAD. As before, the

SAD and FAD technique selected for this case study is the Encoding-Decoding Recurrent Neural

Network (ED-RNN).

 10.2.2 ES Data Sources and Design

 The earthquake data is provided by the U.S. Geological Survey using the GeoJSON

Javascript Object Notation (JSON). GeoJSON is similar to Extensible Markup Language (XML)

but is less formal. GeoJSON provides a standard approach for defining geospatial information

 158

such as geometry, attributes, bounding boxes, and projection information. GeoJSON is a

standard published by the Internet Engineering Task Force (IETF). RFC 7946 was published in

August 2016 and is the standard specification for the GeoJSON format. GeoJSON earthquake

data updated every sixty (60) seconds.

 Table 36 displays the minimalist data elements that ARE used in the analysis. There are

many other data elements, but most are related to measurements of the quality of the data inputs.

Included is a quality measure, RMS, which measures the fit of the observed arrival times to the

predicted arrival times for the event location. The higher the RMS, the greater the uncertainty of

the data associated with the event.

Like the GAT case study, latitude and longitude are converted into a more

straightforward integer representation. Seismologists have a far more sophisticated approach to

designate homogenous earthquake faults, regions, and zones, but those definitions require

extensive domain knowledge and are outside the scope of this study. Note also that earthquakes

of all magnitudes are included in the analysis

Table 36: Earth Science Data Elements

Data Element Description

Time date and time of the event, also known as the origin time
Latitude Decimal degrees latitude. Negative values for southern latitudes.
Longitude Decimal degrees longitude. Negative values for western longitudes.
Depth Depth of the event in kilometers.
Magnitude The magnitude of the event. Ranges from -1.0 to 10.0
RMS The root-mean-square (RMS) travel time residual, in seconds. Used to measure the

quality of the data.
Net The reporting network for the event. Network values include ak, at, ci, hv, ld, mb, nc,

nm, nn, pr, pt, s e, us, uu, uw
ID The unique identifier for the event
Place Textual description of named geographic region near to the event.

 159

10.3 ES Case Study Results

 Figure 51 displays all earthquakes of any magnitude throughout thirty (30) days by exact

latitude and longitude. The darker the pink color, the higher the number of earthquakes. Note

that the display traces well-documented fault lines and areas of high earthquake activity (e.g.,

California).

Figure 51: Earth Science Decision Support Map

 Table 37 presents the results of the top ten anomalies over one month. While the

reporting is global, most of the anomalies were found in low-magnitude earthquakes at shallow

depth in California. Since an autoencoder is used in this case study, the highest reconstructive

mean-squared error produced the highest scores. Unlike the GAT case study, the sample sizes

 160

are small since few global earthquakes occur during any given minutes, which may account for

the appearance of the FAD anomalies.

Table 37: Earth Science Top 10 Anomaly Report (Earthquakes Last 30 Days)

ID Description SAD FAD Latitude Longitude Magnitude Depth

2632 17km ESE of Anza, CA 13.66 Yes 33.50 -116.50 1.3 10.09
931 4km N of Redwood Valley, CA 12.10 Yes 39.29 -123.21 1.6 6.71

3209 6km NW of The Geysers, CA 11.65 Yes 38.81 -122.80 1.1 1.20
1179 16km ESE of Anza, CA 11.56 Yes 33.50 -116.51 0.5 10.13
863 9km NNE of Kingfisher, Ok 10.73 Yes 35.94 -97.89 1.4 5.77
619 16km ESE of Anza, CA 10.26 Yes 33.56 -116.50 1.0 10.66

3603 5km NW of the Geysers, CA 10.12 Yes 38.81 -122.79 1.1 3.51
1238 8km NW of Anza, CA 9.95 Yes 33.59 -116.74 0.3 12.64
349 16km W of Searles Valley, CA 9.79 Yes 35.76 -117.57 0.8 6.99

1141 16km ESE of Anza, CA 9.69 Yes 33.50 -116.50 1.2 10.83

10.4 ES Related Work

 There has not been extensive published research of DNN related unsupervised anomaly

detection techniques applied to earthquake data. A few studies have used basic supervised DNN

techniques to forecast earthquake magnitudes [211]. Aster [212] provides a high-level overview

of statistical modeling earthquake sequences and aftershocks and emphasizes the importance of

recognizing, in real-time, earth sequences that create conditions for large aftershocks. Pavlidou

et al. [213] provide a time-series analysis of the impact of temperature on twenty (20) global

earthquakes.

 161

CHAPTER 11 – STADE CASE STUDY #3: SOCIAL NETWORKING STREAMS (SNS)

11.1 SNS Background

The Twitter™ global feed was selected as an example of an SNS. While tweets are not

of particular interest to the research here, the feeds are freely available, spatially and time

distributed, and are an endless source of human sensor data that is convenient to use for the case

study of STADE. Twitter™ is known as a microblogging platform that also provides a

streaming Application Programming Interface (API) supporting globally accessible real-time,

text-based tweets. These tweets can be filtered by several attributes, including content, time, and

geospatial origin.

Interesting anomaly detection problems can be analyzed using tweets. For example,

through various natural language processing (NLP) techniques, a tweet’s anomaly score and

associated attributes can be examined and used to determine if the tweet is genuine or produced

by a malicious bot. Another aspect of the Twitter feed is called sentiment analysis [214].

Sentiment analysis is the process of computationally identifying and categorizing opinions

expressed in the text. Objectivity analysis is the process of computationally identifying where

there is bias, opinion, or emotion. The goal of the case study is to provide a framework to capture

near real-time anomalies in sentiment and objectivity based on time and geographic location of

the tweet.

Sentiment and objectivity analysis is a sub-field of the general area of Natural Language

Processing (NLP) that processes written material and digitally extracts attributes such as the

polarity, subject matter, and the entity who authored the text. For the case study, the sentiment is

expressed in terms of polarity and subjectivity. The polarity of a sentence is a measure of

whether the author expresses a positive, neutral, or negative opinion. The polarity metric ranges

 162

from -1 (very negative) to 0 (neutral) to +1 (very positive). In most instances, polarity would be

zero, or neutral. Anomalous posts occur when the polarity is close to -1 or +1. Subjectivity

measures the degree to which a statement of opinion or a statement of fact and exhibits a value

between -1 (subjective or opinion) and +1 (objective or fact).

11.2 SNS Architecture Design Decisions

 The SNS architecture is identical to the GAT and ES case studies, as described in

sections 9.2 and 10.2, and follows the STADE architecture described in Chapter 8.

11.2.1 SNS Anomaly Definition

 An anomaly is defined as a combination sentiment and objectivity score that exceeds the

projected value in a particular geographic region. In this case study, the geographic region is

defined as the country of origin of the tweet, so that separate SAD models are applied to each

country.

11.2.2 SNS Data Sources

 The tweet object contains a long list of attributes such as the id of the tweet, the tweet

text, the set of attributes of the person creating the tweet, whether the tweet is original or a

retweet, the number of followers of the person tweeting, and many other features. In the tweet

are a set of coordinates that represent the latitude and longitude of the tweet as reported by the

user or client application. Also included is a ‘place’ attribute that may or may not be present in

the data stream. When present, this attribute indicates that the tweet is associated but not

necessarily originating from a place. The place might be a city, a historical place, an event, and

many other possibilities. The coordinates and the place attributes can determine the geographic

location of the tweet.

 Table 38 provides the selected data elements to use in the SNS case study.

 163

Table 38: Social Networking Streams Data Elements

Data Element Description

ID Unique identification associated with the tweet.
Text Text of the Tweet
Polarity Calculated:
Subjectivity Calculated:
Username User Screen Name of the author of the tweet
Name User name of the author of the tweet
Profile Image URL Profile Image
Location User location from the account profile.
Confidence The confidence level associated with the tweet.
Latitude Calculated from available location and place data.
Longitude Calculated from available location ad place data.
Place When present, it indicates that the tweet is associated, but not necessarily originating from) a Place.

 One potential limitation of tweets is that they are in multiple languages. The Twitter™

API does include support for language translation (e.g., French to English). However, language

translation technology is not perfect. Anomaly Detection algorithms that rely on NLP may

perform sub-optimally with multi-language streams such as Twitter™.

11.3 SNS Case Study Results

Figure 52 shows a screen snapshot of the Twitter™ feed taken from the case study after

processing by STADE. An open-source NLP python library, text blob, is used to translate a

sentence into a polarity and subjectivity metric. For example, with ‘pizza’ as the search word, the

sentence “just discovered the best pizza sitting right under our noses” earned a polarity score of

.42 (somewhat positive) and a subjectivity score of .27 (somewhat objective). Another sentence,

“I hoped you still enjoyed your pizza to the fullest,” earned a polarity score of .5 and a

subjectivity score of .7. So, the second sentence is slightly more positive and subjective than the

first sentence. Throughout the STADE architecture and workflow, these tweets were allocated to

geographic regions by the publish-and-subscribe cloud infrastructure.

Figure 53 displays the geographical distribution of tweets within a fifteen (15) minute

period, where the tweet text includes the word ‘coronavirus.’ This figure illustrates the global

composition of tweets and the high volume on a topic of global interest.

 164

Figure 52: Social Networking Stream (Twitter) Feed

Figure 53: Global ‘Coronavirus’ Tweets – 15 Minute Period 4/6/2020

 Unfortunately, STADE could not identify anomalies in the tweets. First, each tweet

anomaly score is autonomous and not dependent on previous tweets, so that tweet sequences are

not useful. Second, there was a large number of tweets with values at the extremes. For

example, there were many negative tweets (polarity = -1) combined with statements of opinion

 165

(subjectivity = -1). Conversely, there was a large number of very positive tweets (polarity = +1)

combined with statements of fact (objectivity = +1). Anomalies must infrequently be occurring.

SAD techniques are only useful if there are true anomalies in the data. Similarly, FAD

techniques are only useful if there are anomalies in the anomaly scores. If this case study, due to

the nature of the subjectivity and polarity text algorithms, within a given country, there lacks

variability in the anomaly scores. There exists more variability across countries, but the

variability was insufficient to identify anomalies.

The number of incoming tweets was variable depending on the region. Only English

language tweets were considered, and the other languages discarded because the sentiment score

would be difficult to interpret. The United States experienced a high tempo of incoming tweets,

and the online SGD algorithms in the United States site could not maintain pace with the

incoming tweets. Such was not the case with the other cloud-based sites, which had a much

slower tempo of incoming tweets. The end-to-end time to complete the cycle from tweet receipt

through storage at the global repository was roughly five (5) seconds. However, the required

time was highly variable depending on the network characteristics, time-of-day, and other

factors.

 This case study demonstrates the STADE architecture designed to connect spatiotemporal

streaming data (e.g., Twitter™ tweets) to a near real-time anomaly detection algorithm. The

streaming data is essentially a form of a human sensor. Two distributed algorithms are deployed

globally, The SAD and the FAD both running the Encoding-Decoding Recurrent Neural

Network (ED-RNN). The design uses a commercial cloud provider, minimalist hardware (low

cost, everyday virtual machines), minimalist software (cloud software, open-source software,

 166

small python programs), and the non-dedicated network (public internet) using asynchronous

communications (publish-and-subscribe).

 The results, while limited by the variability of the subjectivity and polarity metrics, did

illustrate that a globally distributed sensor anomaly detection network based on STADE is easy

to set up and operate globally. Using a two-step approach, the SAD anomaly detector combined

with a FAD, was able to evaluate anomalies in the sentiment and objectivity scores of Twitter™

tweets. Unfortunately, no discernable anomalies were found because there were no rare events.

This may also be the reason why the training of the model parameters with online SGD a sample

at a time proved to be problematic as the model parameters often failed to learn or change.

11.4 SNS Related Work

 The use of social networking applications for anomaly detection experimentation has a

practical advantage - the availability of accessible, high volume, streaming data sources freely

available for analysis. A social network, in some regards, has similar characteristics to a sensor.

Previous applications of neural networks to anomaly detection in social networks include Yu et

al. [215], who provides a survey of social media anomaly detection methods. [215] also focuses

on the distinction between point anomalies and group anomalies, and distinguishing between

activity-based and graph-based methods. Savage et al. [216] provide an overview of online

anomaly detection. Tasoulis et al. [217] conduct a statistical approach to sentiment change

detection on Twitter™ streaming data, which has similarities to the case study presented here.

Castellini et al. [218] use denoising autoencoders to identify fake (or anomalous) followers in

twitter streaming data. The use of anomaly detection techniques to identify fake news and data

streams has become increasingly important in recent years. Zhang et al. [120] deploy an

autoencoder to detect rumors on online social networks.

 167

 Different ML algorithms have been applied to this data stream include Naïve Bayes,

Max Entropy, and Support Vector Machines (SVMs). Moreover, because of the availability,

size, and global distribution, the Twitter™ stream can be used to demonstrate concepts of cloud-

based, distributed anomaly detection architectures.

 168

CHAPTER 12 – CONCLUSIONS AND RECOMMENDATIONS

12.1 Conclusions

 Unsupervised anomaly detection on high dimensional data is an active research area and

touches multiple TML and DNN technologies. Autoencoders, RNNs, CNNs, and GANs

deployed singularly and, in combination, have been used to address anomaly detection. A set of

TML techniques and six (6) DNN architectures were presented and subject to extensive

experimentation using four anomaly datasets. The results indicate that selected TML techniques,

such as HBOS, and selected DNN techniques such as autoencoders combined with recurrent and

convolutional neural networks performed the best in identifying anomalies. Results are

dependent on the quality of the dataset, including the variability of the samples, the accuracy of

the anomaly designations, and the degree of imbalance of the training samples. Anomaly

detection is a “needle-in-the-haystack” problem domain where a single, universal solution is

unlikely to be identified.

One gap in research has been the application of these techniques to streaming

spatiotemporal data and the integration with online decision support systems. This research gap

is addressed by the Spatiotemporal Anomaly Detection Environment (STADE). STADE is an

ensemble approach that combines one or more anomaly detection algorithms with a Federated

Anomaly Detector (FAD). The algorithm may be either a TML (e.g., HBOS) or a DNN (e.g.,

VAE) modified to support stream processing. Borrowing from recent advances in DNN

Federated Learning, the FAD is a centralized server that collects and processes anomaly scores

from geographically distributed STADE sites. Three case studies, (a) global air traffic, (b)

global earthquake measurement, and (c) social media feeds are presented and demonstrate the

applicability of STADE to real-world problems. These case studies also demonstrate that the

 169

algorithms perform reasonably well in a highly distributed environment when trained using

stochastic gradient descent techniques. The FAD provides valuable anomaly feedback to the

individual STADE sites that can be exploited to provide further insights into the spatiotemporal

anomaly detection process.

DNNs do have burdensome resource requirements, and processing capabilities may be

limited or non-existent at the network edge. STADE is modular, and algorithms can be swapped

in and out. Pre-trained neural network models can be successfully deployed at runtime within

STADE and re-trained at periodic intervals in a resource-constrained streaming environment.

12.2 Recommendations for Future Work

 Research has been hampered by the limited availability of multivariate unsupervised

spatiotemporal datasets. Algorithms have been tested using small toy datasets, and researchers

have resorted to using synthetic training sets that do not adequately capture domain and

distributional diversity. The often-cited KDDCUP intrusion detection dataset used in many

studies is twenty (20) years old and has well-documented flaws (Divekar et al., [20]). Investment

in the development of a set of broad, high-dimensional benchmarks for steaming anomaly

detection is critically needed to advance the state-of-the-art in spatiotemporal algorithms.

 A central repository for all neural network-based anomaly detection models and

algorithms would be helpful. Researchers often attempt, without success, to reproduce

algorithms and implementations other researchers have developed. The experimentation results

cited in Chapter 7 did not wholly replicate the findings of other researchers, although the results

were close. The performance of these algorithms is sensitive to micro-decisions regarding neural

network hyperparameters, optimization assumptions, software packages, and frameworks.

 170

Replication and adaptation of the results of other research are complicated by the complex array

of architectural decisions that need to be made up-front.

 Alternatives to stochastic gradient descent (SGD) algorithms have not progressed in

concert with other DNN technologies and remains an active area of research. The well-cited

Real-Time Recurrent Learning (RTRL) algorithm [207] was formulated in 1989 is not suitable

for high-velocity anomaly detection problem domains described in the introduction. Long short-

term memory (LSTM) and backpropagation through time (BPTT) [219], the standard approach

to the estimation of RNNs, is compute-intensive, has unstable estimation properties, and is not

suitable to near real-time or streaming parameter estimation. A performant, lightweight set of

optimization algorithms designed for distributed cloud computing are needed that could be used

in conjunction with highly performant lightweight TML and DNN-based algorithms described in

STADE. Recent advances in Federated Learning have shown promising results in this area

[180].

 Research in unsupervised representational learning has intensified but supervised, and

reinforcement learning remains the focus of industrial research. While neural machine

translation has many similarities to the spatiotemporal stream processing domain, such as

sequence-to-sequence (seq2seq) modeling, language-translation is fundamentally a supervised

learning problem with short sequences. Streaming spatiotemporal anomaly detection is a non-

supervised problem, often with long-term temporal and distributed spatial relationships that need

to be addressed by novel non-supervised algorithms and architectures such as STADE.

 171

REFERENCES

[1] C. Aggarwal, Outlier Analysis. Second Edition., New York City: Springer, 2017.

[2] A. Adewumi and A. Akinyelu, "A survey of machine-learning and nature-inspired based

credit card fraud detection techniques," International Journal of System Assurance

Engineering and Management, vol. 8, no. 2, pp. 937-953, 2017.

[3] K. Kim, M. Aminanto and H. Tanuwidjaja, Network Intrusion Detection using Deep

Learning: A Feature Learning Approach, New York City: Springer, 2018.

[4] D. Weller-Fahy, B. Borghetti and A. Sodemann, "A survey of distance and similarity

measures used within network intrusion anomaly detection," IEEE Communication

Surveys & Tutorials, vol. 17, no. 1, pp. 70-91, 2015.

[5] S. Barbhuiya, Z. Papazachos, P. Kilpatrick and D. Nikolopoulos, "RADS: Real-time

anomaly detection system for cloud data centres," arXiv preprint, vol. 1811.04481, 2018.

[6] Z. Lu, C. Zhu, X. Liu and X. Sui, "Anomaly detection for virtualized data center via

outlier analysis," in Proceedings of the IEEE 1th International Conference on

Networking, Sensing and Control, Calabria(ITA), 2017.

[7] Wang, Chengwei; Viswanathan, K; Choudur, L; Talwar, V; Satterfield, W; Schwan, K;,

"Statistical techniques for online anomaly detection in data centers," Hewlett-Packard,

Palo Alto(USA), 2011.

[8] A. Anandakrishnan, S. Kumar, d. Xu and D. Xu, "Anomaly detection in finance: editors'

introduction," Proceedings of Machine Learning Research, vol. 71, pp. 1-7, 2017.

 172

[9] A. Munawar, P. Vinayavekhin and G. Magistris, "Spatio-temporal anomaly detection for

industrial robots through prediction in unsupervised feature space," in Proceedings of the

IEEE Winter Conference on Applications of Computer Vision, Santa Rosa(USA), 2017.

[10] D. Araya, K. Grolinger, H. Yamany, M. Capretz and G. Bitsuamlak, "Collective

contextual anomaly detection framework for smart buildings," in Proceedings of the

International Joint Conference on Neural Networks, Vancouver(CAN), 2016.

[11] L. Marti, N. Sanchez-Pi, J. Molina and A. Garcia, "Anomaly detection based on sensor

data in petroleum industry applications," Sensors, vol. 15, no. 2, pp. 2774-2797, 2015.

[12] B. Radford, B. Richardson and S. Davis, "Sequence aggregation rules for anomaly

detection in computer network traffic," arXiv preprint, vol. 1805.03735, 2018.

[13] S. Varghese and K. Jacob, "Anomaly detection using system call sequence sets," Journal

of Software, vol. 2, no. 6, pp. 14-21, 2007.

[14] J. Inoue, Y. Yamagata, Y. Chen, C. Poskitt and J. Sun, "Anomaly detection for a water

treatment system using unsupervised machine learning," in Proceedings of the IEEE

International Conference on Data Mining Workshops, New Orleans(USA), 2017.

[15] C. Leigh, O. Alsibai, R. Hyndman, S. Kandanaarachchi, C. King, J. McGree, C.

Neelamraju, J. Strauss, P. Talagala, R. Turner, K. Mengersen and E. Peterson, "A

framework for automated anomaly detection in high frequency water-quality data from in

situ sensors," arXiv preprint, vol. 1810.13076, 2018.

[16] D. Shalyga, P. Filonov and A. Laventyev, "Anomaly detection for water treatment system

based on neural network with automatic architecture optimization," arXiv preprint, vol.

1807.07282, 2018.

 173

[17] D. Ramotsoela, A. Abu-Hahfouz and G. Hancke, "A survey of anomaly detection in

industrial wireless sorsor networks with critical water system infrastructure as a case

study," Sensors, vol. 18, no. 8, 2018.

[18] L. Vrizlynn and L. Thing, "IEEE 802.11 network anomaly detection and attack

classification: A deep learning approach," in Proceedings of the Wireless Comminications

and Networking Conference, San Fransciso(USA), 2017.

[19] D. Kwon, H. Kim, J. Kim, S. Suh, I. Kim and K. Kim, "A survey of deep learning-based

network anomaly detection," Cluster Computing, pp. 1-13, 2017.

[20] A. Divekar, M. Parekh, V. Salva, R. Mishra and M. Shirole, "Benchmarking datasets for

anomaly-based network intrusion detection: KDD CUP 99 alternatives," in Proceedings

of the IEEE 3rd International Conference on Computing, Communication and Security,

Kathmandu(NPL), 2018.

[21] S. Skansi, Introduction to Deep Learning, New York City: Springer, 2018.

[22] K. Cho, B. Merrienboer, D. Bahdanau and Y. Bengio, "On the properties of neural

machine translation: encoder-decoder approaches," arXiv preprint, vol. 1409.1259, 2014.

[23] M. Yasarm, "Flight anomaly tracking for improved situational awareness: case study of

Germanwings flight 9525," in Proceedings of the Annual Conference on the Prognosis of

Health Management Society, Denver(USA), 2016.

[24] R. Mark, "Five years after MH370 avaiation industry rolling out tech to ensure no plane

disappears again," Forbes Magazine, 4 March 2019.

[25] A. Jain, B. Verma and J. Rana, "Anomaly intrusion detection techniques: a brief review,"

International Journal of Scientific & Engineering Research, vol. 5, no. 7, 2014.

 174

[26] V. Chandola, A. Banerjee and V. Kumar, "Anomaly detection for discrete sequences: a

survey," IEEE Transactions on Knowledge and Data Engineering, vol. 24, no. 5, pp. 823-

839, 2012.

[27] E. Eslami, Y. Choi, Y. Lops and A. Sayeed, "A real-time hourly ozone prediction system

using deep convolutional neural networks," arXiv preprint, vol. 1901.11079, 2019.

[28] M. Flach, F. Gans, A. Brenning, J. Denzler, M. Reichstein, E. Rodner, S. Bathiany, P.

Bodesheim, Y. Guanche, S. Sippel and M. Mahecha, "Multivariate anomaly detection for

Earth observations: a comparison of algorithms and feature extraction techniques," Earth

Sytems Dynamics, vol. 8, pp. 677-696, 2017.

[29] D. Cheng, "The importance of maritime domain awareness for the indo-pacific quad

countries," The Heritage Foundation, No 3392, 2019.

[30] D. Nguyen, R. Vadaine, G. Hajduch, R. Garello and R. Fablet, "GeotrackNet - A

Maritime Anomaly Detector using Probabilistic Neural Network Representation of AIS

Tracks and A Contrario Detection," arXiv preprint, vol. 1912.00682, 2019.

[31] C. Amariei, P. Diac and E. Onica, "Grand challenge: optimized stage processing for

anomaly detection on numerical data streams," in Proceedings of the 11th ACM

International Conference on Distributed and Event-based System., Barcelona(ESP), 2017.

[32] A. Adhikari, D. Tax, R. Satta and M. Fath, "Example and feature importance-based

explanations for black-box machine learning models," arXiv preprint, vol. 1812.09044,

2019.

 175

[33] M. Ribeiro, S. Singh and C. Guestrin, "Why should I trust you? Explaining the

predictions of any classifier," in Proceedings of the 22nd ACD SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Franscisco(USA), 2016.

[34] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti and A. Pedreschi, "A survey

of methods for explaining black box models," ACM Computing Surveys, vol. 51, no. 5,

pp. 1-42, 2018.

[35] Y. Bengio, T. Dekeu, N. Rahaman, N. Ke, S. Lachapelle, O. Bilaniuk, A. Goyal and C.

Pal, "A Meta-transfer Objective for Learning to Disentangle Causal Mechanisms," arXiv

preprint, vol. 1901.19012, 2019.

[36] Y. Kou, C. Lu and S. Sirwongwattana, "Survey of fraud detection techniques," in

Proceedings of the 2004 IEEE Intenrational Conference on Networking, Sensing, &

Control, Taipei(TWN), 2004.

[37] D. Li, D. Chen, J. Goh and S. Ng, "Anomaly detection with generative adversarial

networks for multivariate time series," arXiv preprint, vol. 1809.04758, 2018.

[38] D. Li, D. Chen, L. Shi, B. Jin, J. Goh and S. Ng, "MAD-GAN: Multivariate anomaly

detection for time series data with generative adversarial networks," arXiv preprint, vol.

1901.04997, 2019.

[39] K. Mehrotra, C. Mohan and H. Huang, Anomaly Detection Principles and Alogrithms,

New York City: Springer, 2017.

[40] S. Agrawal and J. Agrawal, "Survey on anomaly detection using data mining techniques,"

in Proceedings of the 19th International Conference on Knowledge Based and Intelligent

Information and Engineering Systems, Singapore(MYS), 2015.

 176

[41] M. Goldstein and S. Uchida, "A comparative evaluation of unsupervised anomaly

detection algorithms for multivariate data," PLOS ONE, San Francisco, 2016.

[42] B. Pincombe, "Anomaly detection in time series of graphs using ARMA processes,"

ASOR Bulletin, vol. 24, no. 4, 2005.

[43] E. Burnaev and V. Ishimtev, "Conformalized density and distance-based anomaly

detection in timer-series data," arXiv preprint, vol. 1608.04585, 2016.

[44] T. Lee, J. Gottschlich, N. Tatbul, E. Metcalf and S. Zdonik, "Greenhouse: A zero-positive

machine learning system for time-series anomaly detection," arXiv preprint, vol.

1801.03168, 2018.

[45] L. Wei, N. Kumar, V. Lolla, E. Keogh, S. Lonardi and C. Ratanamahatana, "Assumption-

free anomaly detection in time series," in Proceedings of the 17th International

Conference on Scientific and Statistical Database Management, Santa Barbara(USA),

2005.

[46] M. Salechi and L. Rashidi, "A survey on anomaly detection in evolving data," ACM

SIGKDD Explorations Newsletter, vol. 20, no. 1, pp. 13-23, 2018.

[47] E. Dereszynski and T. Dietterich, "Spatiotemporal models for data anomaly detection in

dynamic environmental monitoring campaigns," ACM Transactions on Sensor Networks,

vol. 8, no. 1, pp. 1-36, 2011.

[48] T. Klerx, M. Anderka, H. Buning and S. Priesterjahn, "Model-based anomaly detection

for discrete event systems," in Proceedings of the IEEE 26th International Conference on

tools with Artificial Intelligence, Limassol(CYP), 2014.

 177

[49] M. Schneider, W. Ertel and F. Ramos, "Expected similarity estimation for large-scale

batch and streaming anoamly detection," Machine Learning, vol. 105, no. 3, pp. 305-333,

2016.

[50] X. Shi, R. Qiu, X. He, Z. Chu, Z. Ling and H. Yang, "Anomaly detection and location in

distribution network: a data-driven approach," arXiv preprint, vol. 1801.01669, 2018.

[51] X. Shi, R. Qiu, Z. Ling, F. Yang and X. He, "Spatio-temporal correlation analysis of

online monitoring data for anomaly detection in distribution networks," arXiv preprint,

vol. 1810.08962, 2018.

[52] H. Song, Z. Jiang, A. Men and B. Yang, "A hybrid semi-supervised anomaly detection

model for high-dimensional data," Computational Intelligenece and Neuroscience, vol. 1,

pp. 1-9, 2017.

[53] M. Siddiqui, A. Fern, T. Dietterich and W. Wong, "Sequential feature explanations for

anomaly detection," arXiv preprint, vol. 1503.00038, 2015.

[54] B. Scholkopf, R. Williamson, A. Smola, J. Shawe-Taylor and J. Platt, "Support vector

method for novelty detection," in Proceedings of the 12th International Conference on

Neural Information Processing Systems, Denver(USA), 1999.

[55] C. Aggarwal, Neural Networks and Deep Learning: A Textbook, New York City:

Springer, 2017.

[56] S. Ramaswamy, R. Rastogi and K. Shim, "Efficient algorithms for mining outliers from

large data sets," ACM Sigmod Record, vol. 29, no. 2, pp. 427-438, 2000.

 178

[57] M. Breunig, H. Kriegel, R. Ng and J. Sander, "LOF: Identifying Density-Based Local

Outliers," in Proceedings of the ACM SIGMOD 2000 International Conference on

Management of Data, Dallas(USA), 2000.

[58] Z. He, X. Xu and S. Deng, "Discovering cluster-based local outliers," Pattern Recognition

Letters, vol. 24, no. 9-10, pp. 1641-1650, 2003.

[59] M. Goldstein and A. Dengel, "Histogram-based outlier score. A fast unsupervised

anomaly detection algorithm," in Poster and Demo Track of the 35th German Conference

on Artificial Intelligence, Saarbrücken(Ger), 2012.

[60] F. Liu, K. Ting and Z. Zhou, "Isolation forest.," in Proceedings of the International

Conference on Data Mining, Pisa(ITA), 2008.

[61] J. Hardin and D. Rocke, "Outlier detection in the multiple cluster setting using the

minimum covariance determinant estimator," Computational Statistics & Data Analysis,

vol. 44, no. 4, pp. 625-638, 2004.

[62] P. Rousseeuw and K. Van Driessen, "A fast algorithm for the minimum covariance

determinant estimator," Technometrics, vol. 41, no. 3, pp. 212-223, 1999.

[63] M. Amer, M. Goldstein and S. Abdennadher, "Enhancing One-class Support Vector

Machines for Unsupervised Anomaly Detection," in Proceedings of the ACM SIGKDD

Workshop on Outlier Dection and Description (ODD'13), New York City, 2013.

[64] J. Ma and S. Perkins, "Time-series novelty detection using one-class support vector

machines," in Proceedings of the International Joint Conference on Neural Networks,

Portland(USA), 2003.

 179

[65] G. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural

networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.

[66] S. Upadhyaya and K. Singh, "Nearest neighbor-based outlier detection techniques,"

International Journal of Computer Trends and Technology, vol. 3, no. 2, pp. 299-303,

2012.

[67] C. Tsai and C. Lin, "A triangle area based nearest neighbor approach to intrusion

detection," Pattern Recognition, vol. 43, no. 1, pp. 222-229, 2010.

[68] Y. Zhao, Z. Nasrullah and L. Zheng, "PyOD: A python toolbox for scalable outlier

detection," Jornal of Machine Learning Research, vol. 20, no. 96, pp. 1-7, 2019.

[69] R. Josefowicz, W. Zaremba and I. Sutskever, "An empirical exploration of recurrent

neural network architectures," in International Conference on Machine Learning,

Paris(Fr), 2015.

[70] R. Chalapathy and S. Chawla, "Deep learning for anomaly detection: A Survey," arXiv

preprint, vol. 1901.03407, 2019.

[71] D. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," arXiv preprint,

vol. 1412.6980, no. V9, 2017.

[72] D. Rumelhart, G. Hinton and R. Williams, "Learning representations by backpropaging

errors," Nature, vol. 323, no. 6088, pp. 533-536, 1986.

[73] S. Ruder, "An overview of gradient descent optimization algorithms," arXiv preprint, vol.

1609.04747, 2016.

 180

[74] J. Berstra, R. Bardenet, Y. Bengio and B. Kegl, "Algorithms for hyper-parameter

optimization," in Proceedings of the Twenty-Fifth Conference on Neural Information

Processing Systems, Granada(ESP), 2011.

[75] T. Salimans and D. Kingma, "Weight normalization: a simple reparameterization to

acclereate training of deep neural networks," in Proceedings of the Thirtieth Conference

on Neural Information Processing Systems, Barcelona(ESP), 2016.

[76] S. Ioffe and C. Szegedy, "Batch normalization: accelerating deep network training by

reducing internal covariate shift," arXiv preprint, vol. 1502.03167, 2015.

[77] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, "Dropout: a

simple way to prevent neural networks from overfitting," Journal of Machine Learning

Research, vol. 15, pp. 1929-1958, 2014.

[78] I. Sutskever, J. Martens, G. Dahl and G. Hinton, "On the importance of initialization and

momentum in deep learning," in Proceedings of the 30th International Conference on

Machine Learning, Atlanta(USA), 2013.

[79] I. Goodfellow, "NIPS 2016 Tutorial: Generative adversarial network," arXiv preprint, vol.

1701.00160, 2016.

[80] Y. Bengio, A. Courville and P. Vincent, "Representation learning: a review and new

perspectives," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35,

no. 8, pp. 1798-1828, 2013.

[81] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, Cambridge: The MIT Press,

2016.

 181

[82] J. An and S. Cho, "Variational autoencoder based anomaly detection using reconstruction

probability," SNU Data Mining Center, Seoul, 2015.

[83] D. Kingma and M. Welling, "Auto-encoding variational bayes," in Proceedings of the

International Conference on Learning Representations, Banff(CAN), 2014.

[84] B. Barz, E. Rodner, Y. Garcia and J. Denzler, "Detecting regions of maximal divergence

for spatio-temporal anoamly detection," IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 41, no. 5, pp. 1088-1101, 2018.

[85] B. Zong, Q. Song, M. Renqiang Min, W. Cheng, C. Lumezanu, D. Cho and H. Chen,

"Deep autoencoding gaussian mixture model for unsupervised anomaly detection," in

Proceedings of the Sixth International Conference on Learning Representations,

Vancouver(CAN), 2018.

[86] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.

Courville and Y. Bengio, "Generative adversarial nets," in Advances in Neural

Information Processing Systems 27, Montreal, 2014.

[87] Z. Lipton, J. Berkowitz and C. Elkau, "A critical review of recurrent neural networks for

sequence learning," arXiv preprint, vol. 1506.00019, 2015.

[88] Y. Bengio, P. Simard and P. Frasconi, "Learning long-term dependencies with gradient

descent is difficult," IEEE Transactions of Neural Networks, vol. 5, no. 2, pp. 157-166,

1994.

[89] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Computation, vol.

9, no. 8, pp. 1735-1785, 1997.

 182

[90] S. Hochreiter, Y. Bengio, P. Frasconi and J. Schmidhuber, "Gradient flow in recurrent

nets: the difficulty of learning long-term dependencies," in A field guide to dynamical

recurrent neural networks, IEEE Press, 2001.

[91] R. Pascanau, T. Mikolov and Y. Bengio, "On the difficulty of training recurrent neural

networks," in Proceedings of the International Conference on Machine Learning,

Atlanta(USA), 2013.

[92] A. Vaswani, N. Shazeer, N. Parmar, J. Uskoreit, L. Jones, A. Gomez, L. Kaiser and I.

Polosukhin, "Attention is all you need," arXiv preprint, vol. 1706.03762, 2017.

[93] K. Cho, B. Merrienboer, D. Bahdanau, H. Schwenk and Y. Benio, "Learning phase

representations using RNN encoder-decoder for statistical machine translaiton," in

Proceedings of the 19th Conference on Empirical Methods in Natural Language

Processing, Doha(QAT), 2014.

[94] F. Chollet, Deep Learning with Python, Shelter Island: Manning Publications Co, 2018.

[95] R. Ariyaluran, F. Habeeb, F. Nasaruddin, A. Gani, A. Targio, E. Ahmed and M. Imran,

"Real-time big data processing for anomaly detection: A Survey," International Journal

of Information Management, vol. 45, pp. 289-307, 2019.

[96] M. Ahmed, A. Mahmood and J. Hu, "A survey of network anomaly detection techniques,"

Journal of Network and Computer Applications, vol. 60, pp. 19-31, 2016.

[97] M. Bhuyan, D. Bhattacharyya and J. Kalita, Network traffic anomaly detection and

prevention: concepts, techniques, and tools, New York City: Springer, 2017.

[98] Y. Bengio, Learning deep architectures for A.I., Boston: Now Publishers, 2009.

 183

[99] S. Hawkins, H. He, G. Williams and R. Baxter, "Outlier detection using replicator neural

networks," in Proceedings of the Warehousing and Knowledge Discovery 4th

International Conference, Provence(FRA), 2002.

[100] C. Cordero, S. Hauke, M. Muhlhauser and M. Fisher, "Analyzing flow-based anomaly

intrusion detection using replicator neural networks," in Proceedings of the 14th Annual

Conference on Privacy, Security and Trust, Auckland(NZL), 2016.

[101] M. Schreyer, T. Sattarov, D. Borth, A. Dengel and B. Reimer, "Detection of anomalies in

large scale accounting data using deep autoencoding networks," arXiv preprint, vol.

1709.05254, 2017.

[102] J. Chen, S. Sathe, C. Aggarwal and D. Turaga, "Outlier detection with autoencoder

ensembles," in SIAM International Conference on Data Mining, Houston(USA), 2017.

[103] R. Socher, J. Pennington, E. Huang, A. Ng and C. Manning, "Semi-supervised recursive

autoencoders for predicting sentiment distributions," in Proceedings of the Empirical

Methods in Natural Language Processing Conference, Edinburgh(GBR), 2011.

[104] P. Baldi, "Autoencoders, unsupervised learning, and deep architectures," in Proceedings

of the International Conference on Machine Learning Workshop on Unsupervised and

Transfer Learning, Edinburgh(GBR), 2012.

[105] J. Andrews, E. Morton and D. Griffin, "Detecting anomalous data using auto-encoders,"

International Journal of Machine Learning and Computing, vol. 6, no. 1, pp. 21-26, 2016.

[106] R. Aygun and A. Yavuz, "Network anomaly detection with stochastically improved

autoencoder based models," in Proceedings of the IEEE 4th International Conference on

Cyber Security and Cloud Computing, New York City(USA), 2017.

 184

[107] Y. Ikeda, K. Ishibashi, Y. Nakano, K. Watanabe and R. Kawahara, "Anomaly detection

and interpretation using multimodal autoencoder and sparse optimization," arXiv preprint,

vol. 1812.07136, 2018.

[108] C. Zhou and R. Paffenroth, "Anomaly detection with robust deep autoencoders," in

Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge

Discovery and Mining, Halifax, Nova Scotia(CAN), 2017.

[109] Y. Chong and Y. Tay, "Abnormal event detection in videos using spatioemporal

autoencoder," in Proceedings of the International Symposium on Neural Networks,

Sapporo(JPN), 2017.

[110] M. Roy, S. Bose, B. Kar, P. Gopalakrishnan and A. Basu, "A stacked autoencoder neural

network based automated feature extraction method for anomaly detection in on-line

conditioning monitoring," arXiv preprint, vol. 1810.08609, 2018.

[111] M. Sakurada and T. Yairi, "Anomaly detection using autoencoders with nonlinear

dimensionality reduction," in Proceedings of the MLSDA 2014 2nd Workshop on Machine

Learning for Sensory Data Analysis, Gold Coast(AUS), 2014.

[112] M. Yousefi-Azar, V. Varadharajan, L. Hamey and U. Tupakula, "Autoencoder-based

feature learning for cyber security applications," in Proceedings of the International Joint

Conference on Neural Networks, Anchorage(USA), 2017.

[113] P. Vincent, H. Larochelle, Y. Bengio and P. Manzagol, "Extracting and composing robust

features with denoising autoencoders," in Proceedings of the 25th International

Conference on Machine Learning, Helsinki(FIN), 2008.

 185

[114] G. Dorffnet, "Neural networks for time series processing," Neural Network World, vol. 6,

pp. 447-468, 1996.

[115] R. Kozma, M. Kitamura, M. Sakuma and Y. Yokoyama, "Anomaly detection by neural

network models and statistical time series analysis," in Proceedings of the 1994 IEEE

International Conference on Neural Networks, Orlando(USA), 1994.

[116] C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni, B. Zong, H. Chen

and N. Chawla, "A deep neural network for unsupervised anomaly detection and

diagnosis in multivariate time series data," arXiv preprint, vol. 1811.08055, 2018.

[117] Z. Rong, D. Shandong, N. Xin and X. Shiguang, "Feedforwared neural network for time

series anomaly detection," arXiv preprint, vol. 1812.08389, 2018.

[118] R. Chalapathy, A. Menon and S. Chawla, "Anomaly detection using one-class neural

networks," arXiv preprint, vol. 1802.06360, 2018.

[119] N. Laptev, J. Yosinski, L. Erran and S. Smyl, "Time-series extreme event forecasting with

neural networks at Uber," in Proceedings of the International Conference on Machine

Learning Time Series Workshop, Sydney(AUS), 2017.

[120] Y. Zhang, W. Chen, C. Yeo, C. Lau and B. Lee, "Detecting rumors on online social

networks using multi-layer autoencoder," in Proceedings of the Technology and

Engineering Management Conference, Santa Clara(USA), 2017.

[121] C. Doersch, "Tutorial on variational autoencoders," arXiv preprint, vol. 1606.05908,

2016.

 186

[122] M. Soelch, J. Bayer, M. Ludersdorfer and P. van der Smagt, "Variational inference for on-

line anomaly detection in high dimensional time series.," arXiv preprint, vol. 1602.07109,

2016.

[123] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Lui, Y. Zhao, D. Pei, Y. Feng, J. Chen,

Z. Wang and H. Qiao, "Unsupervised anomaly detection via variational auto-encoder for

seasonal KPIs in web applications," arXiv preprint, vol. 1802.03903, 2018.

[124] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas and J. Lloret, "Conditional

variational autoencoder for prediction and feature reovery applied to intrusion detection in

IoT," Sensors, vol. 17, no. 9, pp. 1-17, 2017.

[125] Y. Lu and P. Xu, "Anomaly detection for skin disease images using variational

autoencoder," arXiv preprint, vol. 1807.01349, 2018.

[126] D. Zimmerer, S. Kohl, J. Petersen, F. Isensee and K. Maier-Hein, "Context-encoding

variational autoencoder for unsupervised anomaly detection," arXiv preprint, vol.

1812.05941, 2018.

[127] D. Kim, H. Yang, M. Chung and S. Cho, "Squeezed convolutional variational

autoencoder for unsupervised anomaly detection in edge device industrial internet of

things," arXiv preprint, vol. 1712.06343, 2017.

[128] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano and L. Benini, "Anomaly detection

using autoencoders in high performance computing systems," arXiv preprint, vol.

1811.05269, 2018.

 187

[129] J. Walker, C. Doersh, A. Gupta and M. Hebert, "An uncertain future: forecasting from

static images using variational autoencoders," in Proceedings of the European Conference

on Computer Vision, Amsterdam(NLD), 2016.

[130] T. Luo and S. Nagarajan, "Distributed anomaly detection using autoencoder neural

networks in WSN in IoT," in Proceedigns of the IEEE International Conference on

Communications, Kansas City(USA), 2018.

[131] D. Oh and I. Yun, "Residual error-based anomaly detection using auto-encoder in SMD

machine sound," Sensors, vol. 18, no. 5, pp. 1-14, 2018.

[132] R. Chalapathy, E. Toth and S. Chawla, "Group anomaly detection using deep generative

models," arXiv preprint, vol. 1804.04876, 2018.

[133] Y. Guo, W. Liao, Q. Wang, L. Yu, T. Ji and P. Li, "Multidimensional time series anomaly

detection: A GRU-based gaussian mixture variational autoencoder approach," in

Proceedings of the 10th Asian Conference on Machine Learning, Beijing(CHN), 2018.

[134] I. Haloui, J. Gupta and V. Feuillard, "Anomaly detection with Wasserstein GAN," arXiv

preprint, vol. 1812.02463, 2018.

[135] N. Buitrago, L. Tonnaer, V. Menkovski and D. Mavroeidis, "Anomaly detection for

imbalanced datasets with deep generative models," arXiv preprint, vol. 1811.00986, 2018.

[136] S. Ger and D. Klabjan, "Autoencoders and generative adversarial networks for anomaly

detection for sequences," arXiv preprint, vol. 1901.02514, 2019.

[137] M. Kimura and T. Yanagihara, "Anomaly detection using GANs for visual inspection in

noisy training data," arXiv preprint, vol. 1807.01136, 2018.

 188

[138] S. Lim, Y. Loo, N. Tran, N. Cheung, G. Roig and Y. Elovici, "DOPING: generative data

augmentation for unsupervised anomaly detection with GAN," arXiv preprint, vol.

1808.07632, 2018.

[139] J. Lima, D. Macedo and C. Zanchettin, "Heartbeat anomaly detection using adversarial

oversampling," arXiv preprint, vol. 1901.09972, 2019.

[140] T. Matsubara, K. Hama, R. Tachibana and K. Uehara, "Deep generative model using

unregularized score for anomaly detection with heterogeneous complexity," arXiv

preprint, vol. 1807.05800, 2018.

[141] M. Salem, S. Taheri and J. Yuan, "Anomaly generation using generative adversarial

networks in host-based intrusion detection," arXiv preprint, p. 1812.04697, 2018.

[142] Y. Intrator, G. Katz and A. Shabtai, "MDGAN: Boosting anomaly detection using multi-

discriminator generative adversarial networks," arXiv preprint, vol. 1810.05221, 2018.

[143] H. Zenati, M. Romain, C. Foo, B. Lecouat and V. Chandrasekhar, "Adversarially learned

anomaly detection," arXiv preprint, vol. 1812.02288, 2018.

[144] H. Zenati, C. Foo, B. Lecouat, G. Manek and V. Chandrasekhar, "Efficient GAN-based

anomaly detection," arXiv preprint, vol. 1802.06222, 2018.

[145] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow and B. Frey, "Adversarial autoencoders,"

in Proceedings of the International Conference on Language Representations, San

Juan(PRI), 2016.

[146] C. Wang, Y. Zhang and C. Liu, "Anomaly detection via minimum likelihood generative

adversarial networks," arXiv preprint, vol. 1808.00200, 2018.

 189

[147] J. Elman, "Finding structure in time," Cognitive Science, vol. 14, no. 2, pp. 179-211,

1990.

[148] A. Graves, "Geneerating sequences with recurrent neural networks," arXiv preprint, vol.

1308.0850, 2013.

[149] A. Karpathy, J. Johnson and L. Fei-Fei, "Visualizing and understanding recurrent

networks," arXiv preprint, vol. 1506.02078, 2015.

[150] A. de Souza Costa, "Sequence to sequence model for anomaly detection in financial

transactions," in Proceedings of the 33rd International Conference on Machine Learning,

New York City(USA), 2016.

[151] F. Bianchi, E. Maiorino, M. Kampffmeyer, A. Rizzi and R. Jenssen, Neural networks for

short-term load forecasting, New York City: Springer, 2017.

[152] A. Brown, A. Tuor, B. Hutchinson and N. Nichols, "Recurrent neural nework attention

mechanisms for interpretable system log anomaly detection," arXiv preprint, vol.

1803.04967, 2018.

[153] M. Du, F. Li, G. Zheng and V. Srikumar, "Deeplong: anomaly detection and diagnosis

from system logs through deep learning," in Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, Dallas(USA), 2017.

[154] D. D'Avino, D. Cozzolino, G. Poggi and L. Verdoliva, "Autoencoder with recurrent

neural networks for video forgery detection," Media Watermarking, Security, and

Forensics, vol. 8, pp. 92-99, 2017.

[155] B. Radford, L. Apolonio, A. Trias and J. Simpson, "Network traffic anomaly detection

using recurrent neural networks," arXiv preprint, vol. 1803.10769, 2018.

 190

[156] R. Malaiya, D. Kwon, J. Kim, S. Suh, H. Kim and I. Kim, "An empirical evaluation of

deep learning for network anomaly detection," in Proceedings of the International

Conference on Computing, Networking and Communications, Maui(USA), 2018.

[157] S. Chauhan and L. Vig, "Anomaly detection in ECG time signals via deep long short-term

memory networks," in Proceedings of the IEEE International Conference on Data

Science and Advanced Analytics, Paris(FRA), 2015.

[158] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal and G. Shroff, "LSTM-

based encoder-decoder for multi-sensor anomaly detection," in International Conference

on Machine Learning Anomaly Detection Workshop, New York City(USA), 2016.

[159] P. Malhotra, L. Vig, G. Shroff and P. Agarwal, "Long short-term memory networks for

anomaly detection in time series," in Proceedings of the European Symposium on

Artificial Neural, Networks Computation Intelligence and Machine Learning,

Bruges(BEL), 2014.

[160] L. Bontemps, V. Cao, J. McDermott and N. Le-Khac, "Collective anomaly detection

based on long short-term memory recurrent neural network," arXiv preprint, vol.

1703.09752, 2017.

[161] N. Thi, V. Cao and N. Le-Khac, "One-class collective anomaly detection based on long

short-term memory recurrent neural networks," arXiv preprint, vol. 1802.00324, 2018.

[162] T. Ergen, A. Mirza and S. Kozat, "Unsupervised and semi-supervised anomaly detection

with LSTM neural entworks," arXiv preprint, vol. 1710.09207, 2017.

 191

[163] A. Nanduri and L. Sherry, "Anomaly detection in aircraft data using recurrent neural

networks (RNN)," in Proceedings of the Integrated Communications Navigation and

Surveillance Conference, Herndon(USA), 2016.

[164] D. Park, Y. Hoshi and C. Kemp, "A multimodal anomaly detector for robot-assisted

feeding using an LSTM-based variational autoencoder," IEEE Robotics and Automation

Letters, vol. 3, no. 3, pp. 1544-1551, 2018.

[165] Y. Park and I. Yun, "Comparison of RNN encoder-decoder models for anomaly

detection," arXiv preprint, vol. 1807.06576, 2018.

[166] S. Saurav, P. Malhotra, T. Vishnu, N. Gugulothu, L. Vig, P. Agarwal and G. Shroff,

"Online anomaly detection with concept drift adaptation using recurrent neural networks,"

in Proceedings of the ACM India Joint International Conference on Data Science and

Management of Data, Goa(IND), 2018.

[167] D. Hendrycks, M. Mazeika and T. Dietterich, "Deep anomaly detection with outlier

exposure," arXiv preprint, vol. 1812.04606, 2018.

[168] U. Fiore, F. Palmieri, A. Castiglione and A. De Santis, "Network anomaly detection with

the restricted Boltzmann machine," Neurocomputing, vol. 122, pp. 13-23, 2013.

[169] S. Zhai, Y. Cheng, W. Lu and Z. Zhang, "Deep structured energy-based models for

anomaly detection," in Proceedings of the International Conference on Machine

Learning, New York City(USA), 2016.

[170] J. Kim, J. Yun and H. Kim, "Anomaly Detection for Industrial Control Systems Using

Sequence-to-Sequence Neural Networks," arXiv preprint, vol. 1911.04831, 2019.

 192

[171] S. Thompson, P. Fergus, C. Chalmers and D. Reilly, "Detection of Obstructive Sleep

Apnoea Using Features Extracted from Segmented Time-Series ECG Sginals Using a One

Dimensional Convolutional Neural Network," arXiv preprint, vol. 2002.00833, 2020.

[172] P. Fergus, C. Chalmers, C. C. Montanez, D. Reilly, P. Lisboa and B. Pineles, "Modelling

Segmented Cardiotocography Time-Series Signals Using One-Dimensional

Convolutional Neural Netwroks for the Early Detection of Abnormal Birth Outcomes,"

arXiv preprint, vol. 1908.02338, 2019.

[173] S. Russo, A. Disch, F. Blumensaat and K. Villez, "Anomaly Detection using Deep

Autoencoders for in-situ Wastewater Systems Monitoring Data," arXiv preprint, vol.

2002.03843, 2020.

[174] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj and D. Inman, "1D

Convolutional Neural Networks and Applications - A Survey," arXiv preprint, vol.

1905.03554, 2019.

[175] L. van der Maaten and G. Hinton, "Visualizing high-dimensional data using t-SNE,"

Journal of Machine Learning Research, vol. 9, pp. 2579-2605, 2008.

[176] A. Kossiakoff, W. Sweet, S. Seymour and S. Biemer, Systems Engineering Principles and

Practice, 2nd Edition, Hoboken: John Wiley & Sons, Inc., 2011.

[177] M. Stonebraker, U. Cetintemel and S. Zdonik, "The 8 requirements of real-time stream

processing," SIGMOD Record, vol. 34, no. 4, pp. 42-47, 2005.

[178] H. B. McMahan, E. Moore, D. Ramage, S. Hampson and B. Aguera y Arcas,

"Communication-efficient learning of deep networks from decentralized data," in

 193

Proceedings of the 20th International Conference on Artificial Intelligence and Statistics,

Fort Lauderdale, 2017.

[179] Q. Yang, Y. Liu, T. Chen and Y. Tong, "Federated Machine Learning: Concept and

Applications," ACM Transactions on Intelligent Systems and Technology, vol. 10, no. 2,

pp. 1-19, 2019.

[180] P. Kairouz and et. al., "Advances and Open Problems in Federated Learning," arXiv

preprint, vol. 1912.04977, 2019.

[181] S. Ahmad, A. Lavin, S. Purdy and Z. Agha, "Unsupervised real-time anomaly detection

for streaming data," Neurocomputing, vol. 262, pp. 134-147, 2017.

[182] A. Lavin and S. Ahmad, "Evaluating real-time anomaly detection algorithms - the

Numenta anomaly benchmark," in Proceedings of the IEEE 14th International

Conference on Machine Learning and Applications, Miami(USA), 2015.

[183] S. Ahmad and S. Purdy, "Real-time anomaly detection for streaming analytics," arXiv

preprint, vol. 1607.02480, 2016.

[184] Y. Cui, S. Ahmad and J. Hawkins, "Continuous online sequence learning with an

unsupervised neural network model," arXiv preprint, vol. 1512.05463, 2015.

[185] S. Guha, N. Mishra, G. Roy and O. Schrijvers, "Robust random cut forest-based anomaly

detection on streams," in Proceedings of the 33rd International Conference on Machine

Learning, New York City(USA), 2016.

[186] S. Lee and H. Kim, "ADSaS: Comprehensive real-time anomaly detection system," arXiv

preprint, vol. 1811.12634, 2018.

 194

[187] C. Mayer, R. Mayer and M. Abdo, "Streamlearner: Distributed incremental machine

learning on event streams: grand challenge," in Proceedings of the 11th ACM

International Conference on Distributed and Event-Based Systems, Barcelona(ESP),

2017.

[188] J. Pardo, F. Zamora-Martinez and P. Botella-Rocamora, "Online learning algorithm for

time-series forecasting suitable for low cost wireless sensor networks nodes," Sensors,

vol. 15, no. 4, pp. 9277-9304, 2015.

[189] J. Raiyn and T. Toledo, "Real-time road traffic anomaly detection.," Journal of

Transportation Technologies, vol. 4, no. 3, pp. 256-266, 2014.

[190] E. Khalastchi, G. Kaminka, M. Kalech and R. Lin, "Online anomaly detection in

unmanned vehicles," in Proceedings of the 10th International Conference on Autonomous

Agents and Multiagent Systems, Taipei(TWN), 2011.

[191] K. Alrawashdeh and C. Purdy, "Toward an online anomaly intrusion detection system

based on deep learning," in Proceedings of the 15th IEEE International Conference in

Machine Learning and Applications, Anaheim(USA), 2016.

[192] D. Choudhary, A. Kejariwal and F. Orsini, "One the runtime-efficacy trade-off of

anomaly detection techniques for real-time streaming data," arXiv preprint, vol.

1710.04735, 2017.

[193] J. Ball, D. Anderson and C. Chan, "Comprehensive survey of deep learning in remote

sensing: theories, tools, and challenges for the community," Journal of Applied Remote

Sensing, vol. 11, no. 4, 2017.

 195

[194] S. Budalakoti, A. Srivastava and M. Otey, "Anomaly detection and diagnosis algorithms

for discrete symbol sequences with applications to airline safety," IEEE Transactions on

Ssytems, man, and Cybernetics, Part C (Applications and Reviews), vol. 39, no. 1, pp.

101-113, 2009.

[195] M. Hayes and M. Capretz, "Contextual anomaly detection framework for big sensor data,"

in Proceedings of the IEEE International Congress on Big Data, Anchorage(USA)),

2014.

[196] M. Mohammaddii, A. Al-Fugaha, S. Sorour and M. Guizani, "Deep learning for IoT big

data and streaming analytics: A Survey," arXiv preprint, vol. 1712.04301, 2017.

[197] A. Muallem, S. Shetty, J. Pan, J. Zhao and B. Biswal, "Hoeffding tree algorithms for

anomaly dtection in straming datasets: A Survey," Jornal of Information Security, vol. 8,

no. 4, pp. 339-361, 2017.

[198] S. Xie and Z. Chen, "Anomaly detection and redundancy elimination of big sensor data in

internat of things," arXiv preprint, vol. 1703.03225, 2017.

[199] M. Yadav, P. Malhotra, L. Vig, K. Sriram and G. Shroff, "ODE - augmented training

improves anomaly detction in sensor data from machines," arXiv preprint, vol.

1605.01534, 2016.

[200] T. Zaarour, N. Pavlopoulou, S. Hasan, U. Hassan and E. Curry, "Automatic anomaly

detection over sliding windows: grand challenge," in Proceedings of the 11th ACM

International Conference on Distributed and Event-based Systems, Barcelona(SP), 2017.

 196

[201] D. Bahdanau, K. Cho and Y. Bengio, "Neural machine translation by jointly learning to

align and translate," in Proceedings of the International Conference on Language

Representations, San Diego(USA), 2015.

[202] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho and Y. Bengio, "Attention-based models

for speech recognition," in Proceedings of the 29th Conference on Neural Information

Processing Systems, Montreal(CAN), 2015.

[203] J. Chung, C. Gulcehre, K. Cho and Y. Bengio, "Empirical evaluation of gated recurrent

neural networks on sequence modeling," arXiv preprint, vol. 1412.3555, 2014.

[204] M. Luong, H. Pham and C. Manning, "Effective approaches to attention-based neural

machine translation," arXiv preprint, vol. 1508.04025, 2015.

[205] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato, A. Senior, P.

Tucker, K. Yang, Q. Le and A. Ng, "Large scale distributed deep networks," in

Proceedings of Advances in Neural Information Processing Systems 25 Conference, Lake

Tahoe(USA), 2012.

[206] K. Chahal, M. Grover and K. Dey, "A hitchhiker's guide on distributed training of deep

neural networks," arXiv preprint, vol. 1810.11787, 2018.

[207] R. Williams and D. Zipster, "A learning algorithms for continually ruunning fully

recurrent neural networks," Neural Computing, vol. 1, no. 2, pp. 270-280, 1989.

[208] M. Kastelic and J. Pers, "Building Visual Anomaly Daaset from Satellite Data using

ADS-B," in Proceedings of the 7th OpenSky Workshop, Zurich, 2019.

 197

[209] M. Schafer, M. Strohmeier, V. Lenders, I. Martinovic and M. Wilhelm, "Bringing up

OpenSky: A large-scale ADS-B sensor network for research," in Proceedings of the 13th

international sumposium on information processing in sensor networks, Berlin, 2014.

[210] A. Tanner and M. Strohmeier, "Anomalies in the Sky: Experiments with traffic densities

and airport runway use," in Proceedings of the 7th OpenSky Workshop, Zurich, 2019.

[211] S. Mousavi and G. Beroza, "A Machine-Learning Approach for Earthqauke Magnitude

Estimation," arXiv preprint, vol. 1911.05975, 2019.

[212] R. Aster, "Earthquake forecast for Puerto Rico: Dozens more large aftershocks are likely,"

The Conversation, no. at: https://theconversation.com/earthquake-forecast-for-puerto-

rico-dozens-more-large-aftershocks-are-likely-129874, pp.

https://theconversation.com/earthquake-forecast-for-puerto-rico-dozens-more-large-

aftershocks-are-likely-129874, 14 January 2020.

[213] E. Pavlidou, M. van der Meijde, H. van der Werff and C. Hecker, "Time Series Analysis

of Land Surface Temperatures in 20 Earthquake Cases Worldwide," Remote Sensing, vol.

11, no. 61, pp. 1-25, 2018.

[214] A. Pak and P. Paroubek, "Twitter as a corpus for sentiment analysis and opinion mining,"

in Proceedings of the Seventh Conference on International Language Resources and

Evaluation, Valletta(MLT), 2010.

[215] R. Yu, H. Qiu, Z. Wen, C. Lin and Y. Liu, "A survey on social media anomaly

detection.," ACM SIGKDD Explorations Newsletter, vol. 18, no. 1, pp. 1-14, 2016.

[216] D. Savage, X. Zhang, X. Yu, P. Chou and Q. Wang, "Anomaly detection in online social

networks," Social Networks, vol. 39, pp. 62-70, 2014.

 198

[217] S. Tasoulis, A. Vrahatis, S. Georgakopoulos and V. Plagianakos, "Real time sentiment

change detection of twitter data streams," arXiv preprint, vol. 1804.00482, 2018.

[218] J. Castellini, V. Poggioni and G. Sorbi, "Fake twitter followers detection by denoising

autoencoder," in Proceedings of the International Conference on Web Intelligence,

Leipzig(DEU), 2017.

[219] P. Werbos, "Backpropagation through time: what is does and how to do it," Proceedings

of the IEEE, vol. 78, no. 10, pp. 1550-1560, 1990.

