Fischer, Emily V.2017-04-262017-04-262017http://hdl.handle.net/10217/180149http://dx.doi.org/10.25675/10217/180149Data was collected during Fall 2015 and Spring 2016.Department of Atmospheric ScienceWomen are underrepresented in a number of science, technology, engineering, and mathematics (STEM) disciplines. Limited diversity in the development of the STEM workforce has negative implications for scientific innovation, creativity, and social relevance. The current study reports the first-year results of the PROmoting Geoscience Research, Education, and SuccesS (PROGRESS) program, a novel theory-driven informal mentoring program aimed at supporting first- and second-year female STEM majors. Using a prospective, longitudinal, multi-site (i.e., 7 universities in Colorado/Wyoming Front Range & Carolinas), propensity score matched design, we compare mentoring and persistence outcomes for women in and out of PROGRESS (N = 116). Women in PROGRESS attended an off-site weekend workshop and gained access to a network of volunteer female scientific mentors from on- and off-campus (i.e., university faculty, graduate students, and outside scientific professionals). The results indicate that women in PROGRESS had larger networks of developmental mentoring relationships and were more likely to be mentored by faculty members and peers than matched controls. Mentoring support from a faculty member benefited early-undergraduate women by strengthening their scientific identity and their interest in earth and environmental science career pathways. Further, support from a faculty mentor had a positive indirect impact on women's scientific persistence intentions, through strengthened scientific identity development. These results imply that first- and second- year undergraduate women's mentoring support networks can be enhanced through provision of protégé training and access to more senior women in the sciences willing to provide mentoring support.ZIPCSVPDFengPROGRESS_dataset_YR1Dataset