White, Wesley Gunnar, authorChandrasekar, V., advisorBradley, Thomas, committee memberChavez, Jose, committee memberJayasumana, Anura P., committee member2018-09-102018-09-102018https://hdl.handle.net/10217/191476This dissertation explores techniques for evaluating system concepts using the point of diminishing marginal utility to determine a best value alternative with an optimal combination of risk, performance, reliability, and life cycle cost. The purpose of this research is to address the uncertainty of customer requirements and assess crisp and fuzzy design parameters to determine a best value system. At the time of this research, most commonly used decision analysis (DA) techniques use minimum and maximum values under a specific criterion to evaluate each alternative. These DA methods do not restrict scoring beyond the point of diminished marginal utility resulting in superfluous capabilities and overvalued system alternatives. Using these models, an alternative being evaluated could receive significantly higher scores when reported capabilities are greater than ideal customer requirements. This problem is pronounced whenever weights are applied to criteria where excessive capabilities are recorded. The techniques explored in this dissertation utilize fuzzy membership functions to restrict scoring for alternatives that provide excess capabilities beyond ideal customer requirements. This research investigates and presents DA techniques for evaluating system alternatives that determine an ideal compromise between risk, performance criteria, reliability and life cycle costs.born digitaldoctoral dissertationsengCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.concept developmentfuzzy mathematicstrade studiesdecision sciencebusiness analyticsoptimizationModeling fuzzy criteria preference to evaluate tradespace of system alternativesText