Donne, Carina, authorSmith, Melinda, advisorHavrilla, Caroline, committee memberTrivedi, Pankaj, committee memberMetcalf, Jessica, committee member2024-05-272024-05-272024https://hdl.handle.net/10217/238409Drought has affected the Great Plains throughout history, most notably during the Dust Bowl of the 1930's. While most drought events are not as severe as the Dust Bowl, they still cause significant agricultural losses every year. As research has begun to uncover the mechanisms and responses of drought, there are still unanswered questions. For instance, the mechanisms of ecosystem recovery after drought ends remain relatively unexplored. It is possible that intervention methods such as reseeding will need to be done to help restore ecosystem structure and function after drought. After the Dust Bowl, it was a common practice to reseed native grasses, such as Blue Grama (Bouteloua gracilis), in sites severely impacted by the drought. Given forecasts of droughts on par or even more severe than the Dust Bowl, reseeding may need to be employed more frequently in the future to enhance post-drought recovery. However, with reseeding efforts, it is imperative to understand the adaptability of cultivars to the environmental conditions in which they are planted. One aspect of environmental conditions that has rarely been examined the soil microbiome. Here, I used a common garden experiment that included two cultivars of B. gracilis that were planted with soil microbial inocula extracted from either previously droughted or non-droughted soils. These soils were collected from a recently ended four-year drought experiment in the shortgrass steppe of northeastern Colorado, which caused the widespread loss of B. gracilis. The goal of the greenhouse experiment I conducted was to examine whether the post-drought legacy of altered soil microbial communities affected the growth and performance of two common cultivars of B. gracilis. I assessed plant performance by measuring weekly height to estimate relative growth rate and at the end of the experiment, I measured plant above- and belowground biomass. I found no significant differences in relative growth rate or plant biomass, and minimal differences in the bacterial community composition between the two cultivars. These results suggest that the post-drought legacy of altered soil bacterial communities did not differentially affect growth and performance of the two common B. gracilis cultivars evaluated in this study, and that the growth of these cultivars did not differ in their effects on the soil bacterial communities found under ambient vs. previously droughted conditions. Overall, both cultivars may be suitable for reseeding in the shortgrass steppe grassland after extreme drought, yet further studies are needed to examine a broader range of B. gracilis cultivars and whether soil bacterial communities previously exposed to extreme drought would allow for improved growth and performance of different cultivars to future drought conditions.born digitalmasters thesesengCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.Evaluating Bouteloua gracilis cultivars' performance after drought; The role of the soil microbiomeText