Clark, Nicholas James, authorLuger, Karolin, advisorBailey, Susan, committee memberDeLuca, Jennifer, committee memberHansen, Jeffrey C., committee memberWoody, Robert, committee member2007-01-032007-01-032013http://hdl.handle.net/10217/78840Eukaryotic DNA is highly dynamic and must be compacted and organized with the help of cellular machines, proteins, into 'heterochromatin' state. At its basic level, chromatin is comprised of spool-like structures of protein complexes termed histones, which bind and organize DNA into larger fibrous structures. Cellular processes like transcription and DNA-damage repair require that chromatin be at least partially stripped of its protein components, which in turn allows for complete accessibility by DNA-repair or transcription machinery. A number of protein factors contribute to chromatin structure regulation. Poly(ADP-ribose) Polymerase-1 (PARP-1) is one of these proteins that exists in all eukaryotic organisms except for yeast. In its inactive form, it compacts chromatin, but performs its chromatin-opening function by covalently modifying itself and other nuclear proteins with long polymers of ADP-ribose in response to DNA damage. Thus, it also serves as a first responder to many types of DNA damage. The highly anionic polymers serve to disrupt protein-DNA interactions and thus allow for the creation of a temporary euchromatin structure. Contained herein are investigations aimed at addressing key questions regarding key differences between the interactions of PARP-1 and chromatin and its DNA-damage substrates. Our experiments show that human PARP-1 interacts with and is enzymatically activated to a similar level by a variety of different DNA substrates. In terms of chromatin, it appears that PARP-1 fails to interact with nucleosomes that do not have linker DNA. PARP-1 most effectively interacts with chromatin by simultaneously binding two DNA strands through contacts made by its two N-terminal Zn-finger domains. Small-Angle X-ray (SAXS) and Neutron Scattering (SANS) and molecular dynamics (MD) experiments were combined with biophysical and biochemical studies to better describe the structural effects of DNA binding on PARP-1. The average solution structure of PARP-1 indicates that the enzyme is a monomeric, non-spherical, elongated molecule with a radius of gyration (Rg) of ~55Å. The DNA-bound form of PARP-1 is also monomeric and binding DNA causes the molecule to become more elongated with an average Rg of ~80Å.born digitaldoctoral dissertationsengCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.DNA complexesSAXSSANSnucleosomePARP-1chromatinThe biophysical, biochemical and structural characterization of Poly(ADP-ribose) Polymerase-1 (PARP-1) and its complexes with DNA-damage models and chromatin substratesText