Gupta, Gautam, authorRajopadhye, Sanjay Vishnu, advisorBöhm, Anton Pedro Willem, 1948-, committee memberChong, Edwin Kah Pin, committee memberMcConnell, Ross M., committee member2007-01-032007-01-032010http://hdl.handle.net/10217/40288Department Head: L. Darrell Whitley.The polyhedral model is a mathematical formalism and a framework for the analysis and transformation of regular computations. It provides a unified approach to the optimization of computations from different application domains. It is now gaining wide use in optimizing compilers and automatic parallelization. In its purest form, it is based on a declarative model where computations are specified as equations over domains defined by "polyhedral sets". This dissertation presents two results. First is an analysis and optimization technique that enables us to simplify---reduce the asymptotic complexity---of such equations. The second is an extension of the model to richer domains called Ƶ-Polyhedra. Many equational specifications in the polyhedral model have reductions---application of an associative and commutative operator to collections of values to produce a collection of answers. Moreover, expressions in such equations may also exhibit reuse where intermediate values that are computed or used at different index points are identical. We develop various compiler transformations to automatically exploit this reuse and simplify the computational complexity of the specification. In general, there is an infinite set of applicable simplification transformations. Unfortunately, different choices may result in equivalent specifications with different asymptotic complexity. We present an algorithm for the optimal application of simplification transformations resulting in a final specification with minimum complexity. This dissertation also presents the Ƶ-Polyhedral model, an extension to the polyhedral model to more general sets, thereby providing a transformation framework for a larger set of regular computations. For this, we present a novel representation and interpretation of Ƶ-Polyhedra and prove a number of properties of the family of unions of Ƶ-Polyhedra that are required to extend the polyhedral model. Finally, we present value based dependence analysis and scheduling analysis for specifications in the Ƶ-Polyhedral model. These are direct extensions of the corresponding analyses of specifications in the polyhedral model. One of the benefits of our results in the Ƶ-Polyhedral model is that our abstraction allows the reuse of previously developed tools in the polyhedral model with straightforward pre- and post-processing.born digitaldoctoral dissertationsengCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.polyhedra modelscompilersprogram analysispolyhedral modelloop optimizationPolyhedral functionsCode generatorsCompilers (Computer programs)Computer science-MathematicsSome advances in the polyhedral modelText