Wang, Tianyang, authorDyer, James S., authorButler, John C., authorRisk Analysis, publisher2020-05-122020-05-122015-07-14Wang, T., Dyer, J., & Butler, J. (2016). Modeling Correlated Discrete Uncertainties in Event Trees with Copulas. Risk Analysis, 36(2), 396–410. https://doi.org/10.1111/risa.12451https://hdl.handle.net/10217/206707Includes bibliographical references (pages 31-32).Published as: Risk Analysis, vol. 36, no. 2, February 2016, pp. 396–410. https://doi.org/10.1111/risa.12451.Modeling the dependence between uncertainties in decision and risk analyses is an important part of the problem structuring process. We focus on situations where correlated uncertainties are discrete, and extend the concept of the copula‐based approach for modeling correlated continuous uncertainties to the representation of correlated discrete uncertainties. This approach reduces the required number of probability assessments significantly compared to approaches requiring direct estimates of conditional probabilities. It also allows the use of multiple dependence measures, including product moment correlation, rank order correlation and tail dependence, and parametric families of copulas such as normal copulas, t‐copulas, and Archimedean copulas. This approach can be extended to model the dependence between discrete and continuous uncertainties in the same event tree.born digitalarticleseng©2015 John Wiley & Sons, Inc. Author can archive pre-print. Author can archive post-print but subject to the restriction: 2 years embargo.Copyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.copulasdecision analysisdependencediscrete uncertaintiesevent treesprobabilistic risk analysisModeling correlated discrete uncertainties in event trees with copulasText