Schauer, Cynthia Karen, authorAnderson, Oren, advisorElliott, C. Michael, committee member2024-05-132024-05-131985https://hdl.handle.net/10217/238327Structural studies of several metal ion complexes with the tetraanion of the octadentate ligand, H^4EGTA (3,12-bis(carboxymethyl)-6, 9-dioxa-3, 12-diazatetradecanedioic acid), as well as the structure of H^4EGTA, have been performed by single crystal X-ray diffraction. Of particular interest was the structural basis for the large preference for EGTA^4- to bind calcium ion rather than (K(CaL^2-) ~= 10^6 magnesium ion = 10^6 (K(MgL^2-)), a preference which is similar to that exhibited by intracellular calcium binding proteins. The alkaline earth compounds, Ca[Ca(EGTA)]·(22/3)H2o, Sr[Ca(EGTA)] ·6H2O, Mg[Sr(EGTA)(OH2 )]·7H2o, Mg(Ba-(EGTA)]·(8/3)H2O·(1/3) (CH3) 2CO, and (Mg2(EGTA)(OH2 )6]·5H2O, have been structurally characterized. [Ca(EGTA)]2- is eight-coordinate and utilizes the full octadentate chelating capability of the EGTA^4- ligand. The ether oxygen atoms are bound at a shorter distance than the amine nitrogen atoms. EGTA^4 - is octadentate toward both the strontium and barium ions, which are nine- and ten-coordinate, respectively. The magnesium complex is dinuclear, utilizing each end of the EGTA^4- ligand as a tridentate iminodiacetate ligand; the ether oxygen atoms are not involved in coordination to the metal ion. Structures of EGTA^4 - chelates of metal ions that are commonly used as spectroscopic probes for calcium ion binding sites have also been determined. The cadmium chelate in Sr[Cd(EGTA)]·7H2 o is eight-coordinate, li k e [Ca(EGTA)]^2 -, but the amine nitrogen atoms are bound at shorter distances than the ether oxygen atoms. The metal ions in the structures of tripositive lanthanide ion complexes, Ca[Er(EGTA)(OH2)]2·12H2O and Ca[Nd(EGTA)- (OH 2 )]2·9H2O, are nine- and ten-coordinate, respectively. To further explore coordination modes of the EGTA^4 - ligand with smaller metal ions, where the ligand is not likely to be octadentate, structures of manganese and copper complexes of were determined. Sr[Mn(EGTA)] ·7H2O is isomorphous with the cadmium compound. As a result, the Mn(II) ion is eight-coordinate. The copper complex crystallizes as a dinuclear species, [CU2(EGTA)(OH2)2] ·2H2O, in which each end of the EGTA^4- ligand binds a copper(II) ion in a tetradentate fashion; the ether oxygen atom is bound in the apical position of the square pyramidal coordination sphere.doctoral dissertationsengCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.Metal ionsLigandsIon exchangeStructural variations in metal ion complexes of the ligand EGTA⁴-Text