Horgan, Kevin A., authorGaiser, Peter W., authorRose, Louis Allen, 1938-, authorAhser, William E., authorReising, Steven C., authorAziz, Mohammed A., authorIEEE, publisher2007-01-032007-01-032005Aziz, Mohammed A., et al., Effects of Air-Sea Interaction Parameters on Ocean Surface Microwave Emission at 10 and 37 GHz, IEEE Transactions on Geoscience and Remote Sensing 43, no. 8 (August 2005): 1763-1774.http://hdl.handle.net/10217/684WindSat, the first polarimetric radiometer on orbit, launched in January 2003, provides the promise of passive ocean wind vector retrievals on a continuous basis, simultaneous with the retrieval of many other geophysical variables such as sea surface temperature, atmospheric water vapor, cloud liquid water, and sea ice extent and concentration. WindSat also serves as risk reduction for the upcoming National Polar-orbiting Operational environmental Satellite System (NPOESS) Conical Scanning Microwave Imager/Sounder (CMIS). Since the dependence of microwave brightness temperatures on wind direction is small relative to that of other parameters such as wind speed, wind direction retrieval relies on increasingly accurate knowledge of the ocean surface microwave emission, which depends upon surface properties such as roughness and foam due to wave breaking. Coordinated near-surface measurements of ocean surface microwave emission and air-sea interaction parameters are needed to quantify the effects of the processes mentioned above in surface emission models to improve the accuracy of wind vector retrievals. Such coordinated observations were performed during the Fluxes, Air-Sea Interaction, and Remote Sensing (FAIRS) experiment conducted on the R/P Floating Instrument Platform (FLIP) in the northeastern Pacific Ocean during the Fall of 2000. X- and Ka-band partially polarimetric radiometers were mounted at the end of the port boom of R/P FLIP to measure ocean surface emission at incidence angles of 45°, 53°, and 65°. A bore-sighted video camera recorded the fractional area of foam in the field of view of the radiometers. Air-sea interaction parameters that were measured concurrently include wind speed, friction velocity, heat fluxes, and significant wave height. The measured dependence of ocean surface emissivity on wind speed and friction velocity is in good agreement with, and extends, earlier observations and empirical models based on satellite data. Concurrent radiometric measurements and fractional area foam coverage data strengthen the possibility of retrieval of sea surface foam coverage using airborne or spaceborne radiometry. The dependence of emissivity on atmospheric stability is shown to be much smaller than the dependence of emissivity on wind speed. Analysis of emissivity dependence on atmospheric stability alone was inconclusive, due to the variation in atmospheric stability with wind speed. The effect of long-wave incidence angle modulation on sea surface emissivity for near-surface measurements was found to be negligible when emissivity measurements were averaged over tens to hundreds of long waves.born digitalarticleseng©2005 IEEE.Copyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.air-sea interactionsfractional area foam coveragefriction velocityheat fluxmicrowave emissivitymicrowave radiometrymomentum fluxocean surfaceocean surface emissivitysignificant wave heightwind speedEffects of air-sea interaction parameters on ocean surface microwave emission at 10 and 37 GHzText