Repository logo
 

Beam-driven co-linear X-band energy booster (CXEB) for a compact FEL

Date

2017

Authors

Sipahi, Taylan, author
Milton, Stephen V., advisor
Biedron, Sandra G., advisor
Menoni, Carmen S., committee member
Brandl, Alexander, committee member

Journal Title

Journal ISSN

Volume Title

Abstract

Achieving compact, efficient and cost-effective particle accelerators is overall major goal of the community to help propel future projects forward. In the realm of particle accelerators that enable both the high-energy physics and light-source communities, achieving the highest energy with the brightest beams in the shortest distance is most important and it is here where a paradigm shift is needed. Achieving high energies in a shorter distance (higher gradients) than presently achievable is important for even small laboratory settings, i.e. universities or industries desiring light sources, as it would permit an affordable cost. While there are several methods being considered for compact, efficient particle accelerators, it was chosen to pursue a unique application of X-band (11.7 GHz) RF cavities as they are capable, due to their intrinsic high shunt impedance, of generating high gradients with relatively low input power. A novel idea that can push the Colorado State University's (CSU) Advanced Beam Laboratory's beam energy up from the present 6 MeV to over 32.6 MeV, without the need of additional, expensive X-band power sources was conceived. The concept is called the co-linear X-band energy booster (CXEB) and it relies on the use of X-band structures powered by the beam that is already available from the facility's existing L-band (1.3 GHz) linear accelerator system. Also, this proposed system can provide electron beam to a compact free-electron laser (FEL) at CSU. The overall FEL system is quite compact and comparatively cost-effective given the fact that the existing L-band infrastructure already exists.

Description

Rights Access

Subject

high power computing (HPC)
Wakefield
compact RF accelerators
X-band RF structures
radio frequency (RF) cavity

Citation

Associated Publications