Research Data
Permanent URI for this collection
The Research Data collection contains the research data produced by scholars at CSU that has been made available in Mountain Scholar through 2022. This collection has a particular focus on the natural sciences, featuring the Shortgrass Steppe - Long Term Ecological Research (SGS-LTER) collection and a number of datasets from the Natural Resource Ecology Lab (NREL) and the Department of Atmospheric Science. By using these files, users agree to the CSU Libraries' Research Data Terms of Use.
CSU now offers data publishing through an institutional membership in Dryad. For more information about how to publish your data to meet journal and funder requirements, please see our Dryad information page.
Browse
Browsing Research Data by Subject "aerosol"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Model code for "Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modelling"(Colorado State University. Libraries, 2018-08) Hodshire, Anna; Bian, Qijing; Jimenez, Jose; Pierce, JeffreyOxidation flow reactors (OFRs) allow the concentration of a given atmospheric oxidant to be increased beyond ambient levels in order to study secondary organic aerosol (SOA) formation and aging over varying periods of equivalent aging by that oxidant. Previous studies have used these reactors to determine the bulk OA mass and chemical evolution. To our knowledge, no OFR study has focused on the interpretation of the evolving aerosol size distributions. In this study, we use size distribution measurements of the OFR and an aerosol microphysics model to learn about size-dependent processes in the OFR. Specifically, we use OFR exposures between 0.09–0.9 equivalent days of OH aging from the 2011 BEACHON-RoMBAS and the GoAmazon2014/5 field campaigns. We use simulations in the TOMAS (TwO-Moment Aerosol Sectional) microphysics box model to constrain the following parameters in the OFR: (1) the rate constant of gas-phase functionalization reactions of organic compounds with OH, (2) the rate constant of gas-phase fragmentation reactions of organic compounds with OH, (3) the reactive uptake coefficient for heterogeneous fragmentation reactions with OH, (4) the nucleation rate constants for three different nucleation schemes, and (5) an effective accommodation coefficient that accounts for possible particle diffusion limitations of particles larger than 60nm in diameter. We find the best model-to-measurement agreement when the accommodation coefficient of the larger particles (Dp>60nm) was 0.1 or lower (with an accommodation coefficient of 1 for smaller particles), which suggests a diffusion limitation in the larger particles. When using these low accommodation-coefficient values, the model agrees with measurements when using a published H2SO4-organics nucleation mechanism and previously published values of rate constants for gas-phase oxidation reactions. Further, gas-phase fragmentation was found to have a significant impact upon the size distribution, and including fragmentation was necessary for accurately simulating the distributions in the OFR. The model was insensitive to the value of the reactive uptake coefficient on these aging timescales. Monoterpenes and isoprene could explain 24–95% of the observed change in total volume of aerosol in the OFR, with ambient semivolatile and intermediate-volatility organic compounds (S/IVOCs) appearing to explain the remainder of the change in total volume. These results provide support to the mass-based findings of previous OFR studies, give insight to important size-distribution dynamics in the OFR, and enable the design of future OFR studies focused on new particle formation and/or microphysical processes.Item Open Access TOMAS-VBS model for "More than emissions and chemistry: fire size, dilution, and background aerosol also greatly influence near-field biomass burning aerosol aging"(Colorado State University. Libraries, 2019) Hodshire, Anna; Pierce, Jeffrey; Bian, QijingBiomass burning emits particles (black carbon and primary organic aerosol; POA) and precursor vapors to the atmosphere that chemically and physically age in the atmosphere. This theoretical study explores the relationships between fire size (determining the initial plume width and concentration), dilution rate, and entrainment of background aerosol on particle coagulation, OA evaporation, and secondary organic aerosol (SOA) condensation in smoke plumes. We examine the impacts of these processes on aged smoke OA mass, geometric mean diameter (Dg), peak lognormal modal width (σg), particle extinction (E), and cloud condensation nuclei (CCN) concentrations. In our simulations, aging OA mass is controlled by competition between OA evaporation and SOA condensation. Large, slowly diluting plumes evaporate little in our base set of simulations, which may allow for net increases in mass, E, CCN, and Dg from SOA condensation. Smaller, quickly diluting fire plumes lead to faster evaporation, which favors decreases in mass, E, CCN, and Dg. However, the SOA fraction of the smoke OA increases more rapidly in smaller fires due to faster POA evaporation leading to more SOA precursors. Net mass changes for smaller fires depend on background OA concentrations; increasing background aerosol concentrations decrease evaporation rates. Although coagulation does not change mass, it can decrease the number of particles in large/slowly diluting plumes, increasing Dg and E, and decreasing σg. While our conclusions are limited by being a theoretical study, we hope they help motivate future smoke-plume analyses to consider the effects of fire size, meteorology, and background OA concentrations.