Warner College of Natural Resources
Permanent URI for this community
These digital collections include the materials from the Mongolia Project and datasets from the Warner College of Natural Resources.
Browse
Browsing Warner College of Natural Resources by Subject "climate change"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access 20-year vegetation change data in three ecological zones in Mongolia(Colorado State University. Libraries, 2020) Jamiyansharav, Khishigbayar; Fernandez-Gimenez, MariaMongolian rangelands have experienced warming temperatures and increasing livestock densities over the past 20 years. Remote sensing studies report widespread degradation, but there are no long-term field studies of vegetation responses to shifts in climate and stocking densities. In 2013, we resampled plots originally sampled in 1994-1995 in the desert-steppe, steppe and mountain-steppe, and analyzed changes in vegetation in relation to changes in climate, stocking densities and forage use. Summer temperatures significantly increased and stocking densities fluctuated in response to droughts followed by harsh winters. Total herbaceous biomass in 2013 was similar to (desert-steppe and steppe) or greater than (mountain-steppe) in 1995, and total foliar and herbaceous cover were unchanged since 1995 in all zones. In the mountain-steppe, functional type and species cover shifts were consistent with warming temperatures and increasing grazing pressure. All species richness and diversity indicators declined significantly in the mountain-steppe since 1995 as did richness in the steppe. Some Mongolian rangelands may be losing resilience due to interacting climate and grazing pressures, but our data suggest degradation observed at our study sites is reversible. Mountain-steppe systems appear more vulnerable to grazing- and climate-induced vegetation change than steppe and desert-steppe.Item Open Access Evaluating the impact of climate change based on herders' observations and comparing it with hydro-climatic and remote sensing data(Colorado State University. Libraries, 2015-06) Jigjsuren, Odgarav, author; Baival, Batkhishig, author; Nayanaa, Kherlentuul, author; Jargalsaikhan, Azjargal, author; Dash, Khurelbaatar, author; Badamkhand, Bayarmaa, author; Bud, Amarzaya, author; Nutag Action and Research Institute, publisherStudying the impact of recent years' climate change on Mongolian rangeland livestock husbandry and on pastoral herders' livelihoods, based on herders' observations and their experience, is an approach that is of considerable interest to many scientists. Our research identifies changes in natural conditions and climate, as well as the changes in rangeland conditions, as observed by herders, and compares them against weather stations' multi-year observations and remote sensing data. Our research region of Khanbogd, Manlai and Bayan-Ovoo soums of Umnugobi aimag has been, in the recent years, experiencing a rapid development of the mining industry and human population growth. According to local herders, current rangeland quality greatly decreased compared to the period before the year 2000, while the area of barren land, sand movement and soil erosion increased. Herders also said that the amount of rainfall diminished and the rainy season's duration shortened, short high intensity rains grew in number, and it became extremely hot in summer. Soum weather station records of air temperature, precipitation and evaporation confirmed herders' observations, and were consistent with Normalized Difference Vegetation Index (NDVI) or the results of observations of rangeland vegetation phenology. To develop local adaptive capacity in the face of changing social-ecological systems it is important to use and integrate multiple sources of information that are essential for making policy implementation mechanisms and measures more locally appropriate and relevant.Item Open Access Integrating herder observations, meteorological data and remote sensing to understand climate change patterns and impacts across an eco-climatic gradient in Mongolia(Colorado State University. Libraries, 2015-06) Fernandez-Gimenez, M. E., author; Angerer, J. P., author; Allegretti, A. M., author; Fassnacht, S. R., author; Byamba, A., author; Chantsallkham, J., author; Reid, R., author; Venable, N. B. H., author; Nutag Action and Research Institute, publisherMongolia has one of the strongest climate warming signals on Earth, and over 40% of the human population depends directly or indirectly on pastoral livestock production for their livelihoods. Thus, climate-driven changes in rangeland production will likely have a major effect on pastoral livelihoods. We examined patterns of climate change and rangeland production over 20 years in three ecological zones based on meteorological records, remote sensing and herder observations. We found the strongest trends in both instrument records and herder observations in the steppe zone, where summers are getting hotter and drier, winters colder, and rangeland production is declining. Instrument records and herder observations were most consistently aligned for total annual rainfall, and consensus among herders was greatest for changes in rainfall and production and lowest for temperature changes. We found more differences in herder observations between neighboring soums within the same ecozone than expected, suggesting the need for more fine-scale instrument observations to detect fine-scale patterns of change that herders observe.Item Open Access Spatial changes in climate across Mongolia(Colorado State University. Libraries, 2015-06) Venable, Niah B. H., author; Fassnacht, Steven R., author; Hendricks, Alyssa D., author; Nutag Action and Research Institute, publisherPrevious research using meteorological station data suggests that temperatures and precipitation have been changing more across the semi-arid and arid country of Mongolia than in many other locations across the globe. We used gridded monthly data to determine the annual and seasonal rate of change in total precipitation (P), maximum temperature (Tmax), and minimum temperature (Tmin), as computed from the non-parametric Thiel-Sen slope estimator method. The significance of those changes were computed from the Mann-Kendall test. The University of East Anglia Climatic Research Unit (CRU) dataset was used for the 50-year time period from 1963 through 2012 at a 0.5 degree (~55 km) resolution. For the first 30 years, 30 to 35 meteorological stations from across Mongolia were used to create the spatially distributed "High Resolution Gridded Data of Month-by-Month Variation in Climate" CRU product; 20 to 30 stations were used for the last 20 years due to a decrease in the number of operational stations. Results are presented as maps of 1) mean total annual P, and mean annual Tmax and Tmin, and ii) annual trends over the length of record (1963-2012) with significance overlain, for the three variables. Rates of change at annual and seasonal time scales varied spatially with more consistent increases in temperature; significant precipitation trends were observed over smaller areas than significant temperature trends.