Browsing by Author "Sunny, Febin, author"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Cross-layer design for AI acceleration with non-coherent optical computing(Colorado State University. Libraries, 2023-06-05) Sunny, Febin, author; Nikdast, Mahdi, author; Pasricha, Sudeep, author; ACM, publisherEmerging AI applications such as ChatGPT, graph convolutional networks, and other deep neural networks require massive computational resources for training and inference. Contemporary computing platforms such as CPUs, GPUs, and TPUs are struggling to keep up with the demands of these AI applications. Non-coherent optical computing represents a promising approach for light-speed acceleration of AI workloads. In this paper, we show how cross-layer design can overcome challenges in non-coherent optical computing platforms. We describe approaches for optical device engineering, tuning circuit enhancements, and architectural innovations to adapt optical computing to a variety of AI workloads. We also discuss techniques for hardware/ software co-design that can intelligently map and adapt AI software to improve performance on non-coherent platforms.Item Open Access GHOST: a graph neural network accelerator using silicon photonics(Colorado State University. Libraries, 2023-09-09) Afifi, Salma, author; Sunny, Febin, author; Shafiee, Amin, author; Nikdast, Mahdi, author; Pasricha, Sudeep, author; ACM, publisherGraph neural networks (GNNs) have emerged as a powerful approach for modelling and learning from graph-structured data. Multiple fields have since benefitted enormously from the capabilities of GNNs, such as recommendation systems, social network analysis, drug discovery, and robotics. However, accelerating and efficiently processing GNNs require a unique approach that goes beyond conventional artificial neural network accelerators, due to the substantial computational and memory requirements of GNNs. The slowdown of scaling in CMOS platforms also motivates a search for alternative implementation substrates. In this paper, we present GHOST, the first silicon-photonic hardware accelerator for GNNs. GHOST efficiently alleviates the costs associated with both vertex-centric and edge-centric operations. It implements separately the three main stages involved in running GNNs in the optical domain, allowing it to be used for the inference of various widely used GNN models and architectures, such as graph convolution networks and graph attention networks. Our simulation studies indicate that GHOST exhibits at least 10.2 × better throughput and 3.8 × better energy efficiency when compared to GPU, TPU, CPU and multiple state-of-the-art GNN hardware accelerators.