Browsing by Author "Pallickara, Sangmi, author"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Paying attention to wildfire: using U-Net with attention blocks on multimodal data for next day prediction(Colorado State University. Libraries, 2023-10-09) Fitzgerald, Jack, author; Seefried, Ethan, author; Yost, James, author; Pallickara, Sangmi, author; Blanchard, Nathaniel, author; ACM, publisherPredicting where wildfires will spread provides invaluable information to firefighters and scientists, which can save lives and homes. However, doing so requires a large amount of multimodal data e.g., accurate weather predictions, real-time satellite data, and environmental descriptors. In this work, we utilize 12 distinct features from multiple modalities in order to predict where wildfires will spread over the next 24 hours. We created a custom U-Net architecture designed to train as efficiently as possible, while still maximizing accuracy, to facilitate quickly deploying the model when a wildfire is detected. Our custom architecture demonstrates state-of-the-art performance and trains an order of magnitude more quickly than prior work, while using fewer computational resources. We further evaluated our architecture with an ablation study to identify which features were key for prediction and which provided negligible impact on performance.Item Open Access RUBIKS: rapid explorations and summarization over high dimensional spatiotemporal datasets(Colorado State University. Libraries, 2024-04-03) Mitra, Saptashwa, author; Young, Matt, author; Breidt, Jay, author; Pallickara, Sangmi, author; Pallickara, Shrideep, author; ACM, publisherExponential growth in spatial data volumes have occurred alongside increases in the dimensionality of datasets and the rates at which observations are generated. Rapid summarization and explorations of such datasets are a precursor to several downstream operations including data wrangling, preprocessing, hypothesis formulation, and model construction among others. However, researchers are stymied both by the dimensionality and data volumes that often entail extensive data movements, computation overheads, and I/O. Here, we describe our methodology to support effective summarizations and explorations at scale over arbitrary spatiotemporal scopes, which encapsulate the spatial extents, temporal bounds, or combinations thereof over the data space of interest. Summarizations can be performed over all variables representing the dataspace or subsets specified by the user. We extend the concept of data cubes to encompass spatiotemporal datasets with high-dimensionality and where there might be significant gaps in the data because measurements (or observations) of diverse variables are not synchronized and may occur at diverse rates. We couple our data summarization features with a rapid Choropleth visualizer that allows users to explore spatial variations of diverse measures of interest. We validate these concepts in the context of an Environmental Protection Agency dataset which tracks over 4000 chemical pollutants, presenting in natural water sources across the United States from 1970 onwards.