Browsing by Author "Kelp, Nicole, committee member"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access From computation to communication: unveiling Salmonella metabolic plasticity and public perceptions of the microbial world using multi-omics and thematic analysis(Colorado State University. Libraries, 2024) Kokkinias, Katherine, author; Wrighton, Kelly C., advisor; Kelp, Nicole, committee member; Borlee, Brad, committee member; Weir, Tiffany, committee memberResearch and communication on microorganisms and microbiomes has become increasingly important in recent decades due to evolving threats posed by infectious diseases and microbial contributions to ecological systems. Antibiotic resistance presents a significant challenge to global health equity, with nontyphoidal Salmonella infections being a prominent concern. Despite its prevalence and impact, Salmonella infections lack effective vaccines, posing a serious threat to vulnerable populations. Concurrently, misconceptions and misinformation about microorganisms and microbiomes can arise given the dynamic nature of scientific research which can hinder effective science communication and health outcomes. Despite this, little is known about public perceptions of microorganisms and microbiomes, impeding our ability to create effective, tailored science messaging. Both basic pathogen research and science communication research are essential to identify targeted prevention strategies and to understand public perceptions of microorganism and microbiomes. This dissertation spans microbiome and science communication research, employing both qualitative and quantitative methods. The overarching research goals of this dissertation are to 1) lay the groundwork for therapeutics by studying Salmonella metabolism and metabolic plasticity, 2) develop a multi-omics repository to expand the usability of our omics datasets, and 3) understand public perceptions of microorganisms and microbiomes to improve future microbial science communication efforts. Chapter 1 as the introductory chapter reviews the current state of Salmonella and science communication research, providing a context for the new research presented in this dissertation. Through a multi-omics approach, Chapter 2 explores the metabolic strategies of Salmonella under different diet backgrounds and over time, offering insights into potential therapeutic targets. Chapter 3 introduces the CBA_DREAMM database, facilitating centralized storage and sharing of multi-omics datasets to enhance communication of our research and collaboration in microbiome research. Chapter 4 investigates public perceptions of microbes and microbiomes in the United States, revealing a need for tailored science communication efforts. Additionally, the study emphasizes the importance of clear communication, trust, and emotions, like apathy, in science communication. Chapter 5 is the conclusion, summarizing findings from Chapter 2, 3, and 4 and describing future directions. By bridging natural and social sciences, this dissertation aims to inform strategies for tackling global issues by advancing microbiome and science communication research.Item Open Access L-type calcium channel-dependent signaling impacts GnRH receptor function and intercellular communication in cultured gonadotropes(Colorado State University. Libraries, 2020) Drennan, Meggan L., author; Amberg, Gregory, advisor; Clay, Colin, committee member; Garrity, Deborah, committee member; Kelp, Nicole, committee memberThe hypothalamic-pituitary-gonadal (HPG) axis is a negative feedback biological system critical in fertility, reproduction and development. Gonadotropin-releasing hormone (GnRH) is first released by the hypothalamus and binds to GnRH receptors (GnRH-R) on gonadotrope cells of the anterior pituitary gland where the receptors must mediate a variety of pulsatile signals. The gonadotropin hormones, luteinizing hormone (LH) and follicle stimulating hormone (FSH), are subsequently released by the pituitary and act upon the ovaries and testes, further producing gonadal steroids to be circulated throughout the body. GnRH pulse frequency and amplitude determine successful gonadotropin release, which is ultimately regulated by the GnRH-R. The GnRH-R is a heterotrimeric G-protein coupled 7-transmembrane domain receptor with Gα, β, and γ subunits. Ligand binding initiates an intracellular cascade that leads to a global increase of cytosolic calcium concentration by way of calcium influx through voltage-gated calcium (Cav) channels, and intracellular calcium release from endoplasmic reticulum (ER) stores. Gonadotropes depend on intracellular calcium concentration to carry out their specific physiological function, such as transcription of gonadotropin subunits, hormone biosynthesis and release. Calcium flux is a normal and important aspect of cellular function, including cell-cell communication. Calcium oscillations have been well documented in multiple cell types, with different patterns being induced with distinct treatments. Observations in this line of research include the following: different oscillatory patterns lead to different physiological outcomes, the rate at which internal calcium is secreted from the ER can greatly impact these patterns, and IP3 receptor clustering on the ER results in localized changes in calcium concentration rather than a marked global difference, implicating a spatial stochasticity. These oscillations have shown evidence of paracellular coupling at gap junctions, as well as synchrony following extracellular diffusion. Chapter two of this thesis details experiments investigating calcium oscillations using a membrane-targeted calcium indicator. Immortalized αT3-1 cells were transfected with a membrane-targeted GCaMP and TIRF microscopy was used to capture fluorescent calcium activity. Cells were treated with GnRH as well as various pharmaceutical treatments that would exploit L-type Cav channel function and manipulate normal intracellular calcium release. An array of observations was recorded. Qualitatively, there was an overall increase in calcium activity in the majority of cells after GnRH treatment. Drug-induced inhibition of calcium influx and intracellular calcium release diminished calcium activity entirely. Further, synchronized activity was captured among several cell groups, showing both pre-established synchrony and GnRH-induced synchronized peaking. Further research should be conducted to better understand the full mechanism underlying these behavioral responses, but these experiments provide a foundation for this work. Chapter three highlights experiments using a GFP-tagged GnRH-R in αT3-1 gonadotropes in order to investigate GnRH binding-induced receptor mobility and clustering. Treatment groups were identical to the previous chapter. SRRF and binary analysis were used to characterize receptor activity. Descriptively, clustering of receptors was seen, especially when calcium activity was limited, but more appropriate methods of quantitative analysis should be explored in order to go beyond these observations in processed images. This thesis concludes overall that GnRH-induced calcium oscillation patterning and receptor clustering are far more complex and difficult to study than initially thought. Much more research is needed to determine any conclusive findings, however, these experiments may serve as a stepping stone toward obtaining the answers sought.Item Open Access Managing occupational stigma in abortion care work(Colorado State University. Libraries, 2024) Lee-Simpson, Becca, author; Faw, Meara, advisor; Long, Ziyu, committee member; Kelp, Nicole, committee memberThis study explores how United States health professionals who work in abortion care experience occupational stigma and enact stigma management communication (SMC; Meisenbach, 2010) in the wake of the repeal of Roe v. Wade. Through interviews with 24 current and former abortion workers, the results indicate that health providers experience stigma through stigmatizing messages, stress compounded by stigma, and socioemotional impacts. Workers manage stigma using a blend of SMC strategies including accepting, avoiding, transcending, and challenging. Further, the study uses intersectional analysis to identify seven factors that influence how workers manage stigma as it intersects with their social identities and context: state laws, service delivery, organizational culture, community attitudes, regional identity, privileged/marginalized identities, and reproductive experiences. The study concludes with discussion of theoretical contributions to the SMC model and practical recommendations for healthcare organizations providing abortion.