Browsing by Author "Juncosa Calahorrano, Julieta Fernanda, author"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Daytime evolution of oxidized reactive nitrogen in western U.S. wildfire smoke plumes: in situ and satellite observations(Colorado State University. Libraries, 2020) Juncosa Calahorrano, Julieta Fernanda, author; Fischer, Emily V., advisor; Bond, Tami, committee member; Pierce, Jeffrey R., committee member; Ravishankara, A. R., committee memberThe Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE-CAN) deployed the NSF/NCAR C-130 aircraft in summer 2018 across the western U.S. to sample wildfire smoke during its first day of atmospheric evolution. We present a summary of a subset of oxidized nitrogen species (NOy) in plumes sampled in a pseudo-lagrangian fashion. Emissions of nitrogen oxides (NOx = NO + NO2) and nitrous acid (HONO) are rapidly converted to more oxidized forms. Within 4 hours, ∼86% of the measured NOy (∑ NOy) is in the form of peroxy acyl nitrates (PANs) (∼37%), particulate nitrate (pNO3) (∼26%) and gas-phase organic nitrates (∼23%). The average e-folding time and distance for NOx are ∼90 minutes and ∼40 km, respectively. Nearly no enhancements in nitric acid (HNO3) were observed in plumes sampled in a pseudo-lagrangian fashion, implying HNO3-limited ammonium nitrate (NH4NO3) formation, with one notable exception that we highlight as a case study. We also summarize the observed partitioning of ∑ NOy in all the smoke-impacted samples intercepted during WE-CAN. In the smoke-impacted samples intercepted below 3 km above sea level (ASL), HNO3 is the dominant form of ∑ NOy and its relative contribution increases with smoke age. Above 3 km ASL, the contributions of PANs and pNO3 to ∑ NOy increase with altitude. WE-CAN also sampled smoke from multiple fires mixed with anthropogenic emissions over the California Central Valley. We distinguish samples where anthropogenic NOx emissions appear to lead to an increase in NOx abundances by a factor of 4 and contribute to additional PAN formation. We utilize data from the Cross-Track Infrared Sounder (CrIS) on the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite, which continues the thermal infrared peroxyacetyl nitrate (PAN) satellite record established by the Tropospheric Emission Spectrometer (TES) onboard the Aura satellite. CrIS provides improved spatial resolution, allowing for improved analysis opportunities. Here we present an analysis of CrIS PAN retrievals over the western US during the summer 2018 wildfire season. The analysis period coincides with WE-CAN. CrIS is capable of detecting PAN and CO enhancements from smoke plumes sampled during WE-CAN, especially those that became active before the satellite overpass or burned for several days (e.g., Carr Fire, Mendocino Complex Fire). The analysis show that ∼40 - 70% of PAN over the western U.S. can be attributed to smoke from wildfires. The contribution of smoke from wildfires to free tropospheric PAN generally increases with latitude. We calculate peroxyacetyl nitrate (PAN) excess mixing ratios normalized by CO (NEMRs) in fresh smoke plumes from fires and follow the evolution as these plumes are transported several hours to days downwind. This analysis shows that elevated PAN within smoke plumes can be detected several states downwind from the fire source. The combination of high CrIS spatial resolution and favorable background conditions on 13 September 2018 permits detecting chemical changes within the Pole Creek smoke plume in Utah. In this plume, CrIS PAN NEMRs increase from < 1% to 3.5% within 3 - 4 hours of physical aging. These results are within the range observed in fresh plumes sampled during WE-CAN, where PAN NEMRs increased from 1.5% to 4% within 4 hours of physical aging.Item Open Access Emissions, evolution, and transport of ammonia (NH₃) from large animal feeding operations: a summertime study in northeastern Colorado(Colorado State University. Libraries, 2024) Juncosa Calahorrano, Julieta Fernanda, author; Fischer, Emily V., advisor; Collett, Jeffrey L., Jr., committee member; Pierce, Jeffrey R., committee member; Jathar, Shantanu H., committee memberThe Transport and Transformation of Ammonia (TRANS2Am) airborne field campaign occurred over northeastern Colorado during the summers of 2021 and 2022. TRANS2Am measured ammonia NH3 emissions from cattle feedlots and dairies with the goal of describing the near-field evolution of the NH3 emitted from animal feeding operations. Most of the animal husbandry facilities in Colorado are co-located with oil and gas development within the Denver-Julesburg basin, an important source of methane (CH4) and ethane (C2H6) in the region. Leveraging TRANS2Am observations, this dissertation presents estimates of NH3 emissions ratios with respect to CH4 (NH3 EmR), with and without correction of CH4 from oil and gas, for 29 feedlots and dairies in the region. The data show larger emissions ratios than previously reported in the literature with a large range of values (i.e., 0.1 - 2.6 ppbv ppbv-1). Facilities housing cattle and dairy had a mean (std) of 1.20 (0.63) and 0.29 (0.08) ppbv ppbv-1, respectively. NH3 emissions have a strong dependency with time of day, with peak emissions around noon and lower emissions earlier in the morning and during the evening. Only 15% of the total ammonia (NHx) is in the particle phase (i.e., NH4+) near major sources during the warm summer months. Finally, estimates of NH3 emission rates from 4 optimally sampled facilities range from 4 - 29 g NH3 · h-1 · hd-1. This work also investigates the nearfield evolution of NH3 in five plumes from large animal husbandry facilities observed during TRANS2Am using a mass balance approach with CH4 as a conservative tracer in the timescales of plume transport. Since the plumes in TRANS2Am were not sampled in a pseudo-lagrangian manner, an empirical model is needed to correct for variations in summertime NH3 emissions as a function of local time (LT) (CF = 1.87ln(LT) - 3.95). Results from the mass balance approach show that the average summertime NH3 decay time below 80% and 60% against deposition in plumes from large animal feeding operations is ~1 and ~2 hours, respectively. Additionally, we present estimates of deposition/emission fluxes every 5 km downwind of the plume. We found that deposition almost always happens in the first 10 km from the emission source. Beyond that, the complex environmental exchange of NH3 between the atmosphere and the surface suggests that fresh NH3 emissions from small nearby sources, water bodies, and crops/soil could contribute to sufficient NH3 to switch the direction of the flux (to emission). Large uncertainties still remain in emission and deposition fluxes, shining light on the need for more measurements in the region. To our knowledge, this is the first study presenting NH3 evolution in the atmosphere using a conservative tracer and airborne measurements. The second goal of TRANS2Am was to investigate easterly wind conditions capable of moving agricultural emissions of ammonia (NH3) through urban areas and into the Rocky Mountains. TRANS2Am captured 6 of these events, unveiling important commonalities. 1) NH3 enhancements are present over the mountains on summer afternoons when easterly winds are present in the foothills region. 2) The abundance of summertime gas-phase NH3 is 1 and 2 orders of magnitude higher than particle-phase NH4+ over the mountains and major agricultural sources, respectively. 3) During thermally driven circulation periods, emissions from animal husbandry sources closer to the mountains likely contribute more to the NH3 observed over the mountains than sources located further east. 4) Transport of summertime plumes from major animal husbandry sources in northeastern Colorado westward across the foothills requires ~5 hours. 5) Winds drive variability in the transport of NH3 into nearby mountain ecosystems, producing both direct plume transport and recirculation. A similar campaign in other seasons, including spring and autumn, when synoptic scale events can produce sustained upslope transport, would place these results in context.