Browsing by Author "Dillon, Jasmine, advisor"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access GWP* of U.S. beef and dairy systems(Colorado State University. Libraries, 2023) Molina Plaza, Erick, author; Dillon, Jasmine, advisor; Archibeque, Shawn, committee member; Denning, Scott, committee member; Sheehan, John, committee memberGlobal warming potential (GWP) is used to quantify the impact that greenhouse gases (GHG) have on the warming of the Earth's atmosphere relative to carbon dioxide (CO2). GWP* is a metric that is used to better quantify short-lived climate pollutants (SLCP) such as methane, hydrofluorocarbons, and sulfur dioxide. GWP* allows SLCP to be more consistently expressed by equating a change in the emission of the SLCP to a one-off pulse emission of CO2. Therefore, GWP* can be positive or negative. The objective of this work was to compare the GWP* and GWP100 for U.S. beef and dairy systems using livestock methane emissions data from the Food and Agriculture Organization (FAO) and the Environmental Protection Agency (EPA). Total methane emissions for this study are the sum of enteric and manure methane emissions. GWP100 was greater than GWP* for both beef and dairy systems using both datasets, with the exception GWP* for dairy using the EPA data. Dairy GWP* calculated using the EPA data was lower than GWP100 from 1990–2000, after which point on it became greater than GWP100 and continued increasing annually, because the emission factors used by the EPA increased annually, and the difference between weighted emissions from that year and the weighted emissions from 20 years prior surpassed the current emissions used in GWP100. Overall, the GWP* of EPA dairy increased by 507% from 1990–2020. The primary drivers of the differences in GWP* and GWP100 with the EPA dataset are the use of methane emission factors for manure methane, which increase yearly, and the use of a larger dairy population estimate than FAO. The EPA emission factors increase yearly based on the trend towards larger farm sizes managing more liquid manure, therefore produce more manure methane emissions. The dairy GWP* using EPA data was greater than the beef GWP* every year, despite greater total methane emissions for beef than for dairy, because the average rate of change for dairy (29.8 kt of CH4/yr) was greater than the average rate of change for beef (9.4 kt of CH4/yr). Accounting methods play a key role in the amount of methane emissions that are calculated, and thus how GWP100 and GWP* are calculated. The EPA larger population estimate and annual increase in manure methane emission factors led to greater GWP* and GWP100 values for the EPA data than for the FAO data for both beef and dairy systems. Data source is critical to the policy implications of GWP* and GWP100 for livestock systems, as evidenced by the differences in GWP* and GWP100 results between datasets.Item Open Access Life cycle environmental impacts of utilizing hemp seed meal as a protein source in sheep feedlot rations(Colorado State University. Libraries, 2023) Clark, Samantha Maye, author; Dillon, Jasmine, advisor; Archibeque, Shawn, committee member; Nachappa, Punya, committee member; DiVerdi, Joseph, committee memberHemp seed meal is a protein-rich byproduct of the hemp industry, obtained from the cold press extraction process used to produce hemp oil. The objective of this work was to evaluate the environmental impact of using hemp seed meal as a protein supplement in sheep production. A cradle-to-gate life cycle assessment (LCA) was conducted on three sheep production systems which differed in the feedlot phase: one fed a feedlot ration containing soybean meal as the protein source (soybean meal diet), one fed hemp seed meal in the feedlot ration (hemp diet), and one fed organic hemp seed meal in the feedlot ration (organic hemp diet). Animal performance data were collected from a nutrition trial. Hemp production, harvest, and processing data were provided by a hemp product company. Economic and physical allocation were applied to the hemp diet systems, and the ReCiPe Midpoint (H) methodology was used to calculate the global warming (i.e., carbon footprint), water consumption, land use, and fossil resource scarcity impacts on a per kg lamb live weight basis for each system. Carbon footprint ranged from 10.1 to 11.4 kg CO2eq/kg LW, water consumption ranged from 1.3 to 4.2 m3/kg LW, fossil resource scarcity ranged from 0.5 to 0.8 kg oil eq/kg LW, and land use ranged from 2.8 to 6 m2a crop eq/kg LW. Impact assessment results were not sensitive to a 10 or 20% increase in electricity demand at processing. The use of IPCC Tier 2 methods for estimating enteric methane emissions from sheep resulted in a 7.5–8.5% increase in the carbon footprint, relative to a mechanistic equation present in the Ruminant Nutrition System model. Physical allocation resulted in greater impacts of the hemp diet systems than the soybean diet systems for all categories except land use. However, economic allocation resulted in greater impacts for the soybean diet systems than the hemp diet systems for all categories evaluated. This was explained by inherent differences between the allocation method, as physical allocation attributed 80% of the environmental burden to hemp seed meal, while economic allocation attributed 0% of the environmental burden to hemp seed meal due to the current lack of an economic value for hemp seed meal. The production volume of dependent products ("dependent products", or products for which a change in demand does not affect production volume, commonly referred to as co- or byproducts) are driven by monetary value of the determining product (the product for which a change in demand affects the production volume), but relationships between co-products change overtime. Therefore, as the hemp industry continues to develop, an economic value may be placed on hemp seed meal with implications for its relative ability to reduce the environmental impacts of livestock production. As agricultural industries strive to become more environmentally efficient, they must be adaptive to changes in both monetary value and environmental impact, which are intrinsically related. This research demonstrated the importance of allocation choice in assessing the impact of feeding byproducts on the environmental impact of livestock production systems. Economic allocation better reflected the monetary driving factor for hemp production than physical allocation. As such, the inclusion of hemp seed meal in a feedlot ration reduced the environmental impact of sheep production systems.