Browsing by Author "Cotton, William R., committee member"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Cloud-to-ground lightning polarity and environmental conditions over the central United States(Colorado State University. Libraries, 2007) Kalb, Christina P., author; Rutledge, Steven A., advisor; Cotton, William R., committee member; Robinson, Steven R., committee memberThe majority of cloud-to-ground (CG) lightning across the United States lowers negative charge to the ground. However, recent studies have documented storms that produce an abundance of positive CG lightning. These positive storms have been shown to occur in different mesoscale regions on the same days, and in different thermodynamic environments. This study uses radar data, and CG lightning data, to identify positive and negative storms that occurred in the region between the Rocky Mountains and the Mississippi River. The thermodynamic conditions in the environment of these storms are derived from the Rapid Update Cycle model analysis, where the point nearest to the storm, in the direction of storm motion was used. Considerable scatter was present in the final results that limited the extent of the trends seen. Out of all the variables used, cloud base height, dew point, 850-500 mb lapse rate, and warm cloud depth showed the most difference between the positive and negative storms. Positive storms tended to occur with lower cloud base heights, higher dew points, smaller 850-500 mb lapse rates, and lower warm cloud depths. Little trend was seen for CAPE, CIN, freezing level, lifted index, mean relative humidity, mid-level relative humidity, precipitable water 0-3 km wind shear, 0-6 km wind shear, storm relative helicity, and Se. The strength of the differences seen between the positive and negative storms varies with the choice of percent positive used. Differences between the positive and negative storms tended to decrease when 10% was chosen (as compared to 30%), but they increased when 50% was chosen.Item Open Access Estimation of snow microphysical properties with application to millimeter-wavelength radar retrievals for snowfall rate(Colorado State University. Libraries, 2011) Wood, Norman Bryce, author; Stephens, Graeme L., advisor; Cotton, William R., committee member; Fassnacht, Steven R., committee member; Kummerow, Christian D., committee member; Matrosov, Sergey Y., committee memberThe need for measuring snowfall is driven by the roles snow plays providing freshwater resources and affecting climate. Snow accumulations are an important resource for ecological and human needs and in many areas appear vulnerable to climate change. Snow cover modifies surface heat fluxes over areas extensive enough to influence climate at regional and perhaps global scales. Seasonal runoff from snowmelt, along with over-ocean snowfall, contributes to freshening in the Arctic and high-latitude North Atlantic oceans. Yet much of the Earth's area for which snowfall plays such significant roles is not well-monitored by observations. Radar reflectivity at 94 GHz is sensitive to scattering by snow particles and CloudSat, in a near-polar orbit, provides vertically resolved measurements of 94 GHz reflectivity at latitudes from 82 N to 82 S. While not global in areal coverage, CloudSat does provide observations sampled from regions where snowfall is the dominant form of precipitation and an important component of hydrologic processes. The work presented in this study seeks to exploit these observations by developing and assessing a physically-base snowfall retrieval which uses an explicit representation of snow microphysical properties. As the reflectivity-based snowfall retrieval problem is significantly underconstrained, a priori information about snow microphysical properties is required. The approaches typically used to develop relations between reflectivity and snowfall rate, so-called Ze-S relations, require assumptions about particle properties such as mass, area, fallspeed, and shape. Limited information about the distributions of these properties makes difficult the characterization of how uncertainties in the properties influence uncertainties in the Ze-S relations. To address this, the study proceeded in two parts. In the first, probability distributions for snow particle microphysical properties were assessed using optimal estimation applied to multi-sensor surface-based snow observations from a field campaign. Mass properties were moderately well determined by the observations, the area properties less so. The retrieval revealed nontrivial correlations between mass and area parameters not apparent in prior studies. Synthetic testing showed that the performance of the retrieval was hampered by uncertainties in the fallspeed forward model. The mass and area properties obtained from this retrieval were used to construct particle models including 94 GHz scattering properties for dry snow. These properties were insufficient to constrain scattering properties to match observed 94 GHz reflectivities. Vertical aspect ratio supplied a sufficient additional constraint. In the second part, the CloudSat retrieval, designed to estimate vertical profiles of snow size distribution parameters from reflectivity profiles, was applied to measurements from the field campaign and from an orbit of CloudSat observations. Uncertainties in the mass and area microphysical properties, obtained from the first part of this study, were substantial contributors to the uncertainties in the retrieved snowfall rates. Snowfall rate fractional uncertainties were typically 140% to 200%. Accumulations of snowfall calculated from the retrieval results matched observed accumulations to within 13%, however, when allowances were made for snowfall with properties likely inconsistent with the snow particle model. Information content metrics showed that the size distribution slope parameters were moderately to strongly constrained by the reflectivity observations, while the intercept parameters were determined primarily by the a priori constraints. Results from the CloudSat orbit demonstrated the ability of the CloudSat retrieval to represent a range of scene-dependent Ze-S relations.Item Open Access Investigation of enhanced-reflectivity features embedded within a wintertime orographic cloud on 28-29 November 1984(Colorado State University. Libraries, 1994) Baker, Ian T., author; Grant, Lewis O., advisor; Mielke, Paul W., committee member; Cotton, William R., committee memberA combination of aircraft, sounding, surface, vertically-pointing ku-Band radar and dual-channel radiometer data was used to investigate the microphysical characteristics of enhanced-reflectivity areas embedded within an orographic cloud in northwestern Colorado on 28-29 November 1984. The orographic cloud was associated with the passage of an open wave and upper-level front over the region, and embedded within the cloud were regularly-spaced areas of increased reflectivity as seen by the vertically-pointing radar. The radiometer observed a cyclical component on both the liquid and vapor channels when oriented in the vertical. Aircraft data reveal that there was supercooled liquid water in the cloud at levels as high as 41 kPa and as far as 55 km upwind of the barrier. 2D-C and 2D-P probe data indicated two crystal regimes, one where concentrations in individual size bins were larger and spectra were broader, indicating crystal growth. In the other, concentrations were smaller and size spectra were narrower. Radar data indicate that the enhanced-reflectivity regions were between 10-20 km apart, with a length dimension on the order of 5 km wide. It is believed that the presence of the enhanced-reflectivity areas is closely linked to the presence of a decoupled layer on the windward side of the barrier, and preliminary evidence points to a gravity-wave mechanism as a physical cause.Item Open Access Observation of progressive convective interactions from the Rocky Mountain slopes to the Plains(Colorado State University. Libraries, 1979) Philipp, Ceri Burns, author; Vonder Haar, Thomas H., advisor; Cotton, William R., committee member; Meiman, James R., committee memberGeosynchronous satellite data were employed for a climatological study of two summers' data and for a specific case study to observe convective interactions between the eastern slopes of the Colorado Rocky Mountains and the plains of eastern Colorado and western Kansas. The climatological study involved imagery for May-August 1976 and 1977 for a study region defined from eastern Utah to western Kansas that was divided into five areas. Development and movement of convective activity from the mountains to the plains was identified by the satellite imagery analysis for 12% of the 1976 summer days (13 out of 108) and 17% of the 1977 summer days (16 out of 94). When precipitation records for stations in western Kansas were consulted, it was found that these satellite- identified development and movement days made a significant contribution to the monthly and seasonal total precipitation for this area. There were instances when the contribution was greater than 90% (for some months) and greater than 50% (for seasonal total). Further results from the climatological study showed that cumulus clouds were most likely to form in the southwestern and central Colorado mountains between 0700 and 1000 MDT (1300 to 1600 GMT). Mountain regions were generally clearing remnants of old cells during the late afternoon, evening and night hours with development and growth of new cells occurring in the early morning to early afternoon. Plains regions generally were clearing remnants during morning and early afternoon hours with convection developing in late afternoon, evening and night hours. A quantitative case study was performed for 4 August 1977 when 3-minute rapid scan satellite data were available. It was a day when optimum conditions for development and movement from the mountains to the plains existed. Computer programs on the All Digital Video Imaging System for Atmospheric Research (ADVISAR) were used to study changes in cloud size, cloud number, and cloud brightness for two areas in Colorado. The first area was in the northeastern Colorado Rocky Mountains where the primary storm system moved through. The second area was in southern Colorado (near Pueblo) which included both mountains and plains regions and primarily stationary convective activity. From the quantitative study, no definite correlation was found between changes in cloud number and changes in cloud brightness. Differences in both quantities over 3-minute intervals were found to be significant and were sometimes larger than 6 or 9-minute changes. Both areas showed varying patterns of increasing and decreasing cloud number and brightness. The first area with the active moving system tended to have greater mean brightness and more time periods with large clouds than the stationary system area. It also had larger "largest clouds" over the time period studied (1100 - 1624 MDT) than the second area.Item Open Access Physical mechanisms of extra area effects from weather modification(Colorado State University. Libraries, 1977) Mulvey, G. (Gerald), author; Grant, Lewis O., advisor; Karaki, Susumu, committee member; Corrin, Myron L., committee member; Mielke, Paul W., committee member; Cotton, William R., committee memberOne of the complexities of weather modification, namely extra area effects have long posed an opportunity for the long-term control of the earth's weather. This study investigates the physical mechanisms by which cloud seeding projects may cause extra area effects. The investigations center on one of the simplest of precipitating systems, namely the cold wintertime orographic clouds of the central Rocky Mountains. Three lines of investigation are followed: (1) field studies of seeding material movement in the atmosphere and receiver cloud characteristics, (2) numerical simulation, and (3) historical studies of the affected cloud system. The field observations consist of case studies of the movement and dispersion of silver iodide from ground based generators. These studies, during the winters of 1974-75 and 1975-76, used nuclei counters aboard two aircraft. Aerosol silver concentration measurements were also made during the last experimental year. The surface observations made as part of the field studies included snow collection for silver analysis, radar observation and ice nuclei measurements. The aircraft studies established the fact that regions of above background ice nuclei concentrations extend from the target cloud systems as far as 240 km downwind while exhibiting concentrations from 10 to over 700 ice nuclei per liter active at -20°C. The analysis of silver concentrations in snow confirmed above background silver concentrations exist in snow samples on days during which cloud seeding occurred in the mountains. The numerical cloud models were used to investigate the mode of seeding and the seeding requirements of the downwind cloud systems. Case study r n s using a cumulus model suggested that seeding the upslope cloud would cause little dynamic intensification. It was therefore inferred that the seeding mode was static. The second cloud model, a rapid glaciation model, estimated the seeding requirements in terms of active ice nuclei or ice crystals for precipitation augmentation to be between 1.0 and 5 No1-1. An ice crystal transport model was used to predict 0 the survival time for a spectrum of crystal sizes under a variety of conditions. The results indicate that under certain meteorological conditions crystals typically observed in orographic conditions can survive long enough to reach the downwind upslope cloud in concentrations between 0.5 and 50 No1-1. The historical studies established characteristics of the typical upslope clouds as well as the surf ace features controlling their formation. The radar observations showed convective-like echoes migrating within the upslope cloud over the eastern plains of Colorado downwind of Climax. These studies show that at least two feasible mechanisms through which mountain orographic clouds can affect the precipitation on the eastern plains exist, and, under certain conditions, are operative.Item Open Access Quantitative comparisons of satellite observations and cloud models(Colorado State University. Libraries, 2011) Wang, Fang, author; Kummerow, Christian D., advisor; Vonder Haar, Thomas H., committee member; Cotton, William R., committee member; Ramirez, Jorge A., committee memberMicrowave radiation interacts directly with precipitating particles and can therefore be used to compare microphysical properties found in models with those found in nature. Lower frequencies (< 37 GHz) can detect the emission signals from the raining clouds over radiometrically cold ocean surfaces while higher frequencies (≥ 37 GHz) are more sensitive to the scattering of the precipitating-sized ice particles in the convective storms over high-emissivity land, which lend them particular capabilities for different applications. Both are explored with a different scenario for each case: a comparison of two rainfall retrievals over ocean and a comparison of a cloud model simulation to satellite observations over land. Both the Goddard Profiling algorithm (GPROF) and European Centre for Medium-Range Weather Forecasts (ECMWF) one-dimensional + four-dimensional variational analysis (1D+4D-Var) rainfall retrievals are inversion algorithms based on the Bayes' theorem. Differences stem primarily from the a-priori information. GPROF uses an observationally generated a-priori database while ECMWF 1D-Var uses the model forecast First Guess (FG) fields. The relative similarity in the two approaches means that comparisons can shed light on the differences that are produced by the a-priori information. Case studies have found that differences can be classified into four categories based upon the agreement in the brightness temperatures (Tbs) and in the microphysical properties of Cloud Water Path (CWP) and Rain Water Path (RWP) space. We found a category of special interest in which both retrievals converge to similar Tb through minimization procedures but produce different CWP and RWP. The similarity in Tb can be attributed to comparable Total Water Path (TWP) between the two retrievals while the disagreement in the microphysics is caused by their different degrees of constraint of the cloud/rain ratio by the observations. This situation occurs frequently and takes up 46.9% in the one month 1D-Var retrievals examined. To attain better constrained cloud/rain ratios and improved retrieval quality, this study suggests the implementation of higher microwave frequency channels in the 1D-Var algorithm. Cloud Resolving Models (CRMs) offer an important pathway to interpret satellite observations of microphysical properties of storms. High frequency microwave brightness temperatures (Tbs) respond to precipitating-sized ice particles and can, therefore, be compared with simulated Tbs at the same frequencies. By clustering the Tb vectors at these frequencies, the scene can be classified into distinct microphysical regimes, in other words, cloud types. The properties for each cloud type in the simulated scene are compared to those in the observation scene to identify the discrepancies in microphysics within that cloud type. A convective storm over the Amazon observed by the Tropical Rainfall Measuring Mission (TRMM) is simulated using the Regional Atmospheric Modeling System (RAMS) in a semi-ideal setting, and four regimes are defined within the scene using cluster analysis: the 'clear sky/thin cirrus' cluster, the 'cloudy' cluster, the 'stratiform anvil' cluster and the 'convective' cluster. The relationship between Tb difference of 37 and 85 GHz and Tb at 85 GHz is found to contain important information of microphysical properties such as hydrometeor species and size distributions. Cluster-by-cluster comparison between the observations and the simulations discloses biases in the model including overproduction of supercooled water and large hail particles. The detected biases shed light on how the model should be adjusted to generate more realistic microphysical relationships for each cluster. Guided by the model/observation discrepancies in the 'convective' cloud cluster, a new simulation is performed to provide dynamic adjustments by generating more but smaller hail particles.