Browsing by Author "Caspari, Horst, committee member"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Addressing the threat of frost damage on peach floral buds through large-scale cold hardiness phenotyping, dynamic weather modeling and non-targeted metabolomic and proteomic analysis(Colorado State University. Libraries, 2023) Sterle, David, author; Minas, Ioannis, advisor; Sharp, Julia, committee member; Prenni, Jessica, committee member; Caspari, Horst, committee memberCold damage to reproductive tissues is the greatest threat to the profitability of peach (Prunus persica) growers worldwide. Cold hardiness is the extent to which peach floral buds super-freeze without suffering lethal damage. Although no changes are visible externally to floral buds for much of the dormant season, cold hardiness fluctuates as they acclimate, deacclimate and respond to abiotic stressors such as temperature or drought. A greater understanding of the mechanisms involved in these fluctuations involves accurate and frequent measurement of the extent to which cold hardiness is changing, and the ambient weather factors influencing the changes, at different stages of the dormant season. Warmer or more erratic temperature changes during the dormant season threatens peach floral buds to more frequently receive frost damage if cold hardiness becomes misaligned with the timing of lethally cold weather events. Statistical analysis of the trends and forces impacting the cold hardiness of floral buds can help identify significant patterns. These patterns can be used to better understand the physiological mechanisms affecting cold hardiness changes, and they can be used to help predict the impact of weather conditions on cold hardiness. In addition to their use in a practical sense by growers to aid in frost management decisions, accurate cold hardiness prediction models can be used to estimate what effects foreseeable climate effects can have on the outlook of future peach production. Metabolic changes are known to occur in dormant plants, although the effects of the metabolome in peaches on cold hardiness are unknown. Changes associated with cold hardiness likely follow several trends. One such trend is the fluctuations of metabolic abundances across the season, which are more associated with the endodormancy, and ecodormancy phases and the prebloom phase. These trends likely take place every dormant season as buds undergo a steady process of acclimating and deacclimating. Another trend is the response floral buds exhibit in response to acute cold events, in order to rapidly increase cold hardiness. The study of this response necessitates the monitoring of cold hardiness as well as the metabolic shift to the weather event. The response can be further elucidated by comparing cold hardiness and metabolic changes between genotypes that have different cold hardiness phenotypes. By exploring changes a cold hardy genotype undergoes, geneticists may be able to target certain metabolic expressions that may increase the frost tolerance of future cultivars. Since frost damage can be so destructive to peach production, it is necessary to understand the risks to the peach industry moving forward surrounding climate change, and it is also necessary to understand the extent to which frost tolerance can be improved in future cultivars. This study uses a multifaceted approach to cold hardiness which involves improved and large-scale cold hardiness phenotyping using differential thermal analysis, dynamic weather prediction models and associated metabolic regulation understanding.Item Open Access Evaluation of cyanobacterial biofertilizer as a supplemental or solitary fertilizer on peach yields, leaf tissue nutrient concentration, and trunk growth(Colorado State University. Libraries, 2016) Sterle, David, author; Davis, Jessica G., advisor; Caspari, Horst, committee member; Fonte, Steven, committee memberNitrogen (N) is the nutrient applied in the greatest quantities to peach trees and is a necessary component of proteins. As a result, carbon assimilation is dependent upon adequate levels of N in leaf tissue. Cyanobacteria are a type of bacteria which can fix gaseous N from the atmosphere enzymatically. This N fixation can be exploited in a cyanobacterial biofertilizer (cyano-fertilizer) production raceway, which allows farmers to grow their own source of N with relatively small energy inputs. Cyano-fertilizer was grown on three peach farms in Western Colorado, and applied to peach orchards in combination with a chicken feather meal (mixed with meat and bone meal), a dried chicken manure, and separately in comparison to a conventional foliar fertilizer, fish emulsion fertilizer foliarly applied, and a soil application of fish emulsion fertilizer. Treatments were assigned to experimental units across three separate farms (Farms A, B, and C) and arranged using Randomized Complete Block Designs. Peach fruit yield, trunk cross sectional area, leaf tissue nutrient concentrations, soil nutrient concentrations, SPAD and fruit juice quality characteristics were measured. A significant fruit yield increase was seen on Farm B in treatments which included cyano-fertilizer and manure (Cyano-Manure), versus manure alone (No-Cyano). Trunk cross sectional area showed less growth in treatments including cyanobacteria on Farm B. Significantly higher leaf tissue S, P, and Cu concentrations were found in Cyano-Manure treatments on Farm B; however, significantly greater Ca concentrations were found in the No-Cyano treatment. Chlorosis was present throughout Farm B and so relative leaf chlorophyll content was estimated by measuring Soil Plant Analysis Development (SPAD). SPAD readings were positively correlated with leaf Fe concentration. In the 2015 fertilization section, SPAD readings were higher in Cyano-Manure treatments despite the relatively low amount of Fe present in the cyano-fertilizer, suggesting that cyano-fertilizer may have increased Fe uptake by the trees. Significant differences in leaf micronutrient concentrations were found among treatments in Farm C. Across all farms, treatment effects were masked by three unforeseen events. First, a large infestation of aphids on Farm A caused the death of young vegetative tissue and also killed young peach fruit. Second, a freezing event during bloom, killed most of the fruit on two of the farms. Lastly, there were prior fertilizations earlier in the season on Farm C which lowered the impact additional fertilizer had on the trees.Item Embargo The impact of rootstock on peach tree vigor, light environment, fruit quality, and metabolism(Colorado State University. Libraries, 2024) Pieper, Jeffrey Ross, author; Minas, Ioannis, advisor; Bunning, Marisa, committee member; Caspari, Horst, committee member; Prenni, Jessica, committee memberThe key to Colorado's successful peach industry is superb fruit quality. The fruit quality growers achieve allows for the highest premium 'farm-gate' price per pound in the nation. Fruit quality is created in the orchard via the interaction of several pre-harvest factors. One critical pre-harvest factor that has several knock-on effects for orchard management decisions is rootstock selection. Rootstock selection has the potential to impact the longevity, productivity, efficiency, and profitability of an orchard, and is dependent on climatic and edaphic environments as well as the soil microbiome. Rootstock selection may also allow growers to augment orchard design through vigor manipulation. In Colorado, growers are faced with relatively short growing seasons, sudden fall and spring frost events, and calcareous soils which limit the availability of certain nutrients. The unique growing environments coupled with the need for high quality fruit production makes rootstock selection limited. Identifying rootstocks suitable for production in Colorado and determining how they impact fruit quality is paramount. While previous studies have evaluated rootstocks for their performance and relationship to fruit quality, few have limited confounding factors such as crop load, canopy position, and or physiological maturity when assessing fruit. The following experiments evaluated twenty-one genetically diverse rootstocks for their phenotypic and agronomic performance and potential use in Colorado production systems. The nine-year performance review, in chapter one, details the productivity and suitability of seventeen genetically diverse peach rootstocks in Colorado growing conditions. The trial determined rootstock vigor strongly correlates with cumulative yield. However, vigor also showed an inverse relationship with internal fruit quality development measured as dry matter content (DMC) and soluble solids concentration (SSC). The trial showed interspecific peach and non-peach hybrids outperformed peach seedling rootstocks. One interspecific peach rootstock in particular, 'Krymsk® 86', performed exceptionally well and has since been widely adopted by industry. By controlling for several confounding factors, the rootstock vigor trial, chapter two, demonstrated the true impact of vigor and light availability on fruit quality enhancement and primary metabolite profiles. Fruit developing in reduced vigor canopy of the dwarfing rootstock 'Krymsk® 1' had increased light availability and enhanced internal fruit quality parameters (DMC and SSC) at harvest. Mesocarp metabolites relating to internal quality showed they are up and down accumulated by rootstock vigor and the light environment. Several metabolite classes including soluble sugars, cyclitols, flavanols, and chlorogenic acids were associated with 'Krymsk® 1', a low vigor rootstock that had high light availability and enhanced fruit quality profiles. 'Atlas™' and 'Bright's Hybrid® 5', both vigorous rootstocks, showed low light availability and reduced fruit quality. The vigorous rootstocks also showed an increase of amino and fatty acids compared to the standard and dwarfing rootstocks. The six-year physiological and agronomic performance of modern semi-dwarfing rootstocks trial, chapter three, reiterated the impact of vigor on yield, light availability, and fruit quality development. Furthermore, the trial showed increased vigor was related to an increase of gummosis incidence and severity. Also, intra-specific Prunus hybrids had increased rates of proleptic shoot formation, however, some showed they were susceptible to iron chlorosis. Overall, the rootstock trials identify key parameters of performance and suitability in Colorado production systems. The outcomes indicate that rootstocks with increased vigor resulted in higher yields per tree, however, lower light availability in the canopy decreased DMC and SSC. While rootstock genotype and vigor are influencing peach fruit development and quality, their effect on light availability may play a more significant role in achieving optimal yield and fruit quality and augmented metabolite profiles. Additionally, this work demonstrates the importance of controlling for confounding variables when evaluating preharvest factors for their impact on internal fruit quality and metabolite profiles.