Browsing by Author "Bell, Michael M., committee member"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Open Access An investigation of an east Pacific easterly wave genesis pathway and the impact of the Papagayo and Tehuantepec wind jets on the east Pacific mean state and easterly waves(Colorado State University. Libraries, 2021) Whitaker, Justin W., author; Maloney, Eric D., advisor; Bell, Michael M., committee member; Rasmussen, Kristen L., committee member; Niemann, Jeffrey D., committee memberPart one of this dissertation investigates the transition of a Panama Bight mesoscale convective system (MCS) into the easterly wave (EW) that became Hurricane Carlotta (2012). Reanalysis, observations, and a convective-permitting Weather Research and Forecasting (WRF) model simulation are used to analyze the processes contributing to EW genesis. A vorticity budget analysis shows that convective coupling and vortex stretching are very important to the transition in this case, while horizontal advection is mostly responsible for the propagation of the system. In the model, the disturbance is dominated by stratiform vertical motion profiles and a mid-level vortex, while the system is less top-heavy and is characterized by more prominent low-level vorticity later in the transition in reanalysis. The developing disturbance starts its evolution as a mesoscale convective system in the Bight of Panama. Leading up to MCS formation the Chocó jet intensifies, and during the MCS to EW transition the Papagayo jet strengthens. Differences in the vertical structure of the system between reanalysis and the model suggest that the relatively more bottom-heavy disturbance in reanalysis may have stronger interactions with the Papagayo jet. Field observations like those collected during the Organization of Tropical East Pacific Convection (OTREC) campaign are needed to further our understanding of this east Pacific EW genesis pathway and the factors that influence it, including the important role for the vertical structure of the developing disturbances in the context of the vorticity budget. In parts two and three of this dissertation, the Weather Research and Forecasting (WRF) model is used to quantify the impact that the Papagayo and Tehuantepec wind jets have on the east Pacific mean state and east Pacific easterly waves. Specifically, a control run simulation is compared with a gaps filled simulation, where mountain gaps in the Central American mountains are "filled in" to block the Papagayo and Tehuantepec wind jets. In the absence of these wind jets, the northern half of the east Pacific mean state becomes drier, supporting a reduction in convective activity and precipitation there. Further, a 700 hPa positive vorticity feature that is linked to the Papagayo jet is reduced. An easterly wave tracking algorithm is developed and shows that easterly wave track density and genesis density are generally reduced in the eastern half of the basin for the gaps filled run. An eddy kinetic energy (EKE) budget is also calculated and highlights that EKE, barotropic conversion, and eddy available potential energy (EAPE) to EKE conversion all decrease for easterly waves when the wind jets are blocked. A composite analysis reveals that there are slight horizontal structural changes between waves in the simulations, while the waves have surprisingly similar strengths. Overall, the Papagayo and Tehuantepec wind jets are shown to be supportive influences on east Pacific easterly waves.Item Open Access Examining the impacts of convective environments on storms using observations and numerical models(Colorado State University. Libraries, 2022) Freeman, Sean William, author; van den Heever, Susan C., advisor; Bell, Michael M., committee member; Kreidenweis, Sonia M., committee member; Eykholt, Richard, committee memberConvective clouds are significant contributors to both weather and climate. While the basic environments supporting convective clouds are broadly known, there is currently no unifying theory on how joint variations in different environmental properties impact convective cloud properties. The overaching goal of this research is to assess the response of convective clouds to changes in the dynamic, thermodynamic and aerosol properties of the local environment. To achieve our goal, two tools for examining convective cloud properties and their environments are first described, developed and enhanced. This is followed by an examination of the response of convective clouds to changes in the dynamic, thermodynamic and aerosol properties using these enhanced tools. In the first study comprising this dissertation, we assess the performance of small temperature, pressure, and humidity sensors onboard drones used to sample convective environments and convective cloud outflows by comparing them to measurements made from a tethersonde platform suspended at the same height. Using 82 total drone flights, including nine at night, the following determinations about sensor accuracy are made. First, when examining temperature, the nighttime flight temperature errors are found to have a smaller range than the daytime temperature errors, indicating that much of the daytime error arises from exposure to solar radiation. The pressure errors demonstrate a strong dependence on horizontal wind speed with all of the error distributions being multimodal in high wind conditions. Finally, dewpoint temperature errors are found to be larger than temperature errors. We conclude that measurements in field campaigns are more accurate when sensors are placed away from the drone's main body and associated propeller wash and are sufficiently aspirated and shielded from incoming solar radiation. The Tracking and Object-Based Analysis of Clouds (tobac) tracking package is a commonly used tracking package in atmospheric science that allows for tracking of atmospheric phenomena on any variable and on any grid. We have enhanced the tobac tracking package to enable it to be used on more atmospheric phenomena, with a wider variety of atmospheric data and across more diverse platforms than before. New scientific improvements (three spatial dimensions and an internal spectral filtering tool) and procedural improvements (enhanced computational efficiency, internal re-gridding of data, and treatments for periodic boundary conditions) comprising this new version of tobac (v1.5) are described in the second study of this dissertation. These improvements have made tobac one of the most robust, powerful, and flexible identification and tracking tools in our field and expanded its potential use in other fields. In the third study of this dissertation, we examine the relationship between the thermodynamic and dynamic environmental properties and deep convective clouds forming in the tropical atmosphere. To elucidate this relationship, we employ a high-resolution, long-duration, large-area numerical model simulation alongside tobac to build a database of convective clouds and their environments. With this database, we examine differences in the initial environment associated with individual storm strength, organization, and morphology. We find that storm strength, defined here as maximum midlevel updraft velocity, is controlled primarily by Convective Available Potential Energy (CAPE) and Precipitable Water (PW); high CAPE (>2500 J kg-1) and high PW (approximately 63 mm) are both required for midlevel CCC updraft velocities to reach at least 10 m s-1. Of the CCCs with the most vigorous updrafts, 80.9% are in the upper tercile of precipitation rates, with the strongest precipitation rates requiring even higher PW. Furthermore, vertical wind shear is the primary differentiator between organized and isolated convective storms. Within the set of organized storms, we also find that linearly-oriented CCC systems have significantly weaker vertical wind shear than nonlinear CCCs in low- (0-1 km, 0-3 km) and mid-levels (0-5 km, 2-7 km). Overall, these results provide new insights into the joint environmental conditions determining the CCC properties in the tropical atmosphere. Finally, in the fourth study of this dissertation, we build upon the third study by examining the relationship between the aerosol environment and convective precipitation using the same simulations and tracking approaches as in the third study. As the environmental aerosol concentrations are increased, the total domain-wide precipitation decreases (-3.4%). Despite the overall decrease in precipitation, the number of tracked terminal congestus clouds increases (+8%), while the number of tracked cumulonimbus clouds is decreased (-1.26%). This increase in the number of congestus clouds is accompanied by an overall weakening in their rainfall as aerosol concentration increases, with a decrease in overall rain rates and an increase in the number of clouds that do not precipitate (+10.7%). As aerosol particles increase, overall cloud droplet size gets smaller, suppressing the initial generation of rain and leading to clouds evaporating due to entrainment before they are able to precipitate.Item Open Access Insights into extreme short-term precipitation associated with supercells and mesovortices(Colorado State University. Libraries, 2019) Nielsen, Erik R., author; Schumacher, Russ S., advisor; van den Heever, Susan C., committee member; Bell, Michael M., committee member; Niemann, Jeffrey D., committee memberOverall, this manuscript aims to holistically evaluate the relationship between rotation and extreme precipitation processes, since radar and rain-gauge observations in several flash flooding events have suggested that the heaviest short-term rainfall accumulations were associated with supercells or mesovortices embedded within larger convective systems. A specific subclass of these events, when tornadoes and flash floods are both concurrent and collocated (referred to here at TORFF events), present a unique set of concerns, since the recommended life-saving actions for each threat are contradictory. Given this, Chapter 2 aims to evaluate the climatological and meteorological characteristics associated with TORFF events over the United States. Two separate datasets, one based on overlapping tornado and flash flood warnings and the other based on observations, were used to arrive at estimations of the instances when a TORFF event was deemed imminent and verified to have occurred, respectively. These datasets, combined with field project data, were then used to discern the geographical and meteorological characteristics of recent TORFF events. The results show that TORFF scenarios commonly occur, are not easily distinguishable from tornadic events that fail to produce collocated flash flooding, and present difficult challenges both from the perspective of forecasting and public communication. The research in Chapter 3 strives to identify the influence that rotation has on the storm-scale processes associated with heavy precipitation. Five total idealized simulations of a TORFF event, where the magnitude of the 0-1 km shear was varied, were performed to test the sensitivity of precipitation processes to rotation. In the simulations with greater environmental low-level shear and associated rotation, more precipitation fell, both in a point maximum and area-averaged sense. Intense, rotationally induced low-level vertical accelerations associated with the dynamic nonlinear perturbation vertical pressure gradient force were found to enhance the low-to-mid level updraft strength, total vertical mass flux, and allowed access to otherwise inhibited sources of moisture and CAPE in the higher shear simulations. The dynamical accelerations, which increased with the intensity of the low-level shear, dominated over buoyant accelerations in the low levels and were responsible for inducing more intense, low-level updrafts that were sustained despite a stable boundary layer. Chapter 4 aims to explore how often extreme short-term rain rates in the United States are associated with storm-scale or mesoscale vortices, since significant low-level rotation does not always yield a tornado (i.e., not all extreme rainfall events are TORFFs). Five years of METAR observations and three years of Stage-IV analyses were obtained and filtered for hourly accumulations over 75 and 100 mm, respectively. Local dual-pol radar data was then obtained for the remaining events for the hour leading up to the METAR observation. Nearly 50% of the cases were associated with low-level rotation in high-precipitation supercells and/or mesoscale vortices embedded in more organized storm modes. These results support recent modeling results, presented in Chapter 3, suggesting that rotationally induced dynamic vertical pressure accelerations are important to the precipitation formation mechanisms that lead to extreme short-term rainfall rates. The upper Texas Coast, in and around the Houston, TX area, has experienced many intense TORFF events over the recent years. The research in Chapter 5 focuses on examining the horizontally heterogeneous environmental characteristics associated with one of those events, the Tax Day flood of 2016, which was identified as a "verified" TORFF event in Chapter 2. Radar and local mesonet rain gauge observations were used to examine the storm scale characteristics to identify the locations and structures of extreme rain rate producing cells. To supplement the observational based analysis above, a WRF-ARW simulation of the Tax Day flood in 2016, based upon a real-time forecast from the HRRR, was examined. Convective cells that produced the most intense short-term (i.e., sub-hourly to hourly) accumulations within the MCS were examined for the influence of any attendant rotation on both the dynamics and microphysics of the precipitation processes. Results show that the most intense rainfall accumulations, as in the observations analysis, are associated with rotating convective elements, and the results of this chapter confirm that the processes described in Chapter 3 apply outside of the idealized framework.Item Open Access Intraseasonal variability in the diurnal cycle of precipitation in the Philippines(Colorado State University. Libraries, 2019) Natoli, Michael B., author; Maloney, Eric D., advisor; Bell, Michael M., committee member; Niemann, Jeffrey D., committee memberPrecipitation in the region surrounding the South China Sea (SCS) over land and coastal waters exhibits a strong diurnal cycle associated with a land-sea temperature contrast that drives a sea-breeze circulation. The boreal summer intraseasonal oscillation (BSISO) is an important modulator of the daily mean precipitation rate and the amplitude of the diurnal cycle. Using 19 years of the CMORPH precipitation product for the Philippines, it is shown that in aggregate the diurnal cycle amplitude is maximized before the arrival of the broader oceanic convective envelope associated with the BSISO. Over Luzon Island in the northern Philippines, the diurnal cycle amplitude is not in phase with daily mean precipitation, which peaks with the large-scale BSISO convection. An increase in nocturnal and morning precipitation more than compensates for the reduced precipitation rates during the afternoon peak amidst the BSISO active period. This pattern is not seen over Mindanao Island in the southern Philippines, where diurnal cycle amplitude tends to determine daily mean precipitation. A strong diurnal cycle in coastal waters west of the Philippines is evident in the transition from the inactive to active phase, due to offshore propagation of convection generated over land. This behavior is dramatically different on small spatial scales within the Philippine archipelago, depending strongly on topography. For example, the BSISO influence on the diurnal cycle on the eastern side of the high mountains of Luzon is nearly opposite to the western side. It is proposed, using wind, moisture, and radiation budget products from the ERA-Interim reanalysis, that the enhanced diurnal cycle over land and coastal waters west of the mountains during BSISO suppressed phases is a consequence of increased insolation and weaker prevailing onshore winds. Offshore propagation, and thus the diurnal cycle over the coastal waters of the SCS, is suppressed until ambient mid-level moisture increases during the transition to the active BSISO phase. In the BSISO enhanced phases, strong low level winds out of the southwest combine with increased cloudiness to suppress the sea-breeze circulation and thus the diurnal cycle of precipitation in the SCS region. Strong frictional moisture convergence leading the BSISO is not found to be concurrent with the peak in the diurnal cycle. Results are consistent when examined in other precipitation products or BSISO indices, and support conclusions derived from studies focusing on intraseasonal modulation of precipitation in other regions of the Maritime Continent, with some important local distinctions owed to geography.Item Open Access Intraseasonal variability in the tropical diurnal cycle(Colorado State University. Libraries, 2022) Natoli, Michael B., author; Maloney, Eric D, advisor; Bell, Michael M., committee member; Randall, David A., committee member; Niemann, Jeffrey D., committee memberThe relationship between large-scale intraseasonal variability in tropical convection and the local diurnal cycle on tropical islands is explored with observations and an idealized model. In part one, the impact of quasi-biweekly variability in the monsoon southwesterly winds on the precipitation diurnal cycle in the Philippines is examined using CMORPH precipitation, ERA5 reanalysis, and outgoing longwave radiation (OLR) fields. Both a case study during the 2018 Propagation of Intraseasonal Tropical Oscillations (PISTON) field campaign and a 23-year composite analysis are used to understand the effect of the QBWO on the diurnal cycle. QBWO events in the west Pacific, identified with an extended EOF index, bring increases in moisture, cloudiness, and westerly winds to the Philippines. Such events are associated with significant variability in daily mean precipitation and the diurnal cycle. It is shown that the modulation of the diurnal cycle by the QBWO is remarkably similar to that by the boreal summer intraseasonal oscillation (BSISO). The diurnal cycle reaches a maximum amplitude on the western side of the Philippines on days with average to above average moisture, sufficient insolation, and weakly offshore prevailing wind. This occurs during the transition period from suppressed to active large-scale convection for both the QBWO and BSISO. Westerly monsoon surges associated with QBWO variability generally exhibit active precipitation over the South China Sea (SCS), but a depressed diurnal cycle. These results highlight that modes of large-scale convective variability in the tropics can have a similar impact on the diurnal cycle if they influence the local scale environmental background state similarly. In part two, a specific large-scale mode is neglected, and the impact of variability in the background wind at any timescale on the local diurnal cycle is isolated. Luzon Island in the northern Philippines is used as an observational test case. Composite diurnal cycles of CMORPH precipitation are constructed based on an index derived from the first empirical orthogonal function (EOF) of ERA5 zonal wind profiles. A strong precipitation diurnal cycle and pronounced offshore propagation in the leeward direction tends to occur on days with a weak, offshore prevailing wind. Strong background winds, particularly in the onshore direction, are associated with a suppressed diurnal cycle. Idealized high resolution 2-D Cloud Model 1 (CM1) simulations test the dependence of the diurnal cycle on environmental wind speed and direction by nudging the model base-state toward to composite profiles derived from the reanalysis zonal wind index. These simulations can qualitatively replicate the observed development, strength, and offshore propagation of diurnally generated convection under varying wind regimes. Under strong background winds, the land-sea contrast is reduced, which leads to a substantial reduction in the strength of the sea-breeze circulation and precipitation diurnal cycle. Weak offshore prevailing winds favor a strong diurnal cycle and offshore leeward propagation, with the direction of propagation highly sensitive to the background wind in the lower free troposphere. Offshore propagation speed appears consistent with density current theory rather than a direct coupling to a single gravity wave mode, though several gravity wave modes apparent in the model likely contribute to a destabilization of the offshore environment. In part three, the hypotheses developed in parts one and two regarding the mechanisms regulating the diurnal cycle response are rigorously tested. A novel probabilistic framework is applied to the Luzon test case to improve the understanding of diurnal cycle variability. High amplitude diurnal cycle days tend to occur with weak to moderate offshore low-level wind and near to above average column moisture in the local environment. The transition from the BSISO suppressed phase to the active phase is most likely to produce the wind and moisture conditions supportive of a substantial diurnal cycle over western Luzon and the South China Sea (SCS). Thus, the impact of the BSISO on the local diurnal cycle can be understood in terms of the change in the probability of favorable environmental conditions. Idealized high-resolution 3-D Cloud Model 1 (CM1) simulations driven only by a base-state derived from BSISO composite profiles are able to reproduce several important features of the observed diurnal cycle variability with BSISO phase, including the strong, land-based diurnal cycle and offshore propagation in the transition phases. Background wind appears to be the primary variable controlling the diurnal cycle response, but ambient moisture distinctly reduces precipitation strength in the suppressed BSISO phase, and enhances it in the active phase. A land-breeze, lingering deep convection over land after sunset, and strong mechanical convergence appear to all be required in order to produce offshore propagation in CM1. Simulations in which the diurnal cycle of insolation is removed suggest the potential for a natural timescale for convective regeneration related to the island size.Item Open Access Observations of aerosol particles and deep convective updrafts and the modeling of their interactions(Colorado State University. Libraries, 2020) Marinescu, Peter James, author; van den Heever, Susan C., advisor; Kreidenweis, Sonia M., advisor; Bell, Michael M., committee member; Eykholt, Richard, committee memberWithin cloud updrafts, cloud droplets form on aerosol particles that serve as cloud condensation nuclei (CCN). Varying the concentrations of CCN alters the concentrations of cloud droplets, which in turn modifies subsequent microphysical processes within clouds. In this dissertation, both observational and modeling studies are presented that reduce the uncertainties associated with these aerosol-induced feedback processes in deep convective clouds. In the first study, five years of observations of aerosol particle size distributions from central Oklahoma are compared, and useful metrics are provided for implementing aerosol size distributions into models. Using these unique, long-term observations, power spectra analyses are also completed to determine the most relevant cycles (from hours to weeks) for different aerosol particle sizes. Diurnal cycles produce the strongest signals in every season, most consistently in the accumulation mode and the smallest (diameters < 30 nm) particles. The latter result suggests that these smallest particles may play a more important role in the CCN budget than previously thought. Ultimately, in understanding which, when and why different aerosol particles are present in the atmosphere, we can better assess the impacts that they have on clouds. The types and number of aerosol particles that can serve as CCN depend on the amount of supersaturation, and thus the magnitude of the cloud updraft vertical velocities. However, in situ updraft observations in deep convective clouds are scarce, and other vertical velocity estimates often have uncertainties that are difficult to characterize. In the next study, novel, in situ observations of deep convective updraft vertical velocities from targeted radiosonde launches during the CSU Convective Cloud Outflows and Updrafts Experiment (C3LOUD-Ex) are presented. Vertical velocities of over 50 m s-1 are estimated from radiosonde observations taken in Colorado. Radar data are used to contextualize the radiosonde measurements and to provide an independent estimate of the updraft magnitudes for comparison. These observations are valuable in that they: 1) contribute novel estimates of the vertical velocities within deep convective clouds, 2) demonstrate that in situ observations of vertical velocities complement estimates from other platforms and 3) will allow for better assessments of the supersaturation magnitudes, and thus the amount of CCN that are present within deep convective clouds. While the first two studies focus on observing aerosol particles and updrafts separately, the third study within this dissertation presents simulations of their interactions from an international model intercomparison project. Seven models from different institutions simulated the same case study of isolated deep convective clouds with both high and low CCN concentrations. The range of the responses in updrafts to varying CCN concentrations are calculated for this model suite. Despite the various physical parameterizations that these models utilize, all the models simulate stronger updrafts in the High-CCN simulations from near cloud base through ~8 km AGL, with diverging results above this altitude. The vertical velocity tendency equation is analyzed to explain which processes are causing the consistent and inconsistent updraft responses to varying CCN concentrations amongst the models. The three studies in this dissertation each reduce the uncertainties related to aerosol effects on deep convective cloud updrafts. This work also assisted in motivating the DOE Tracking Aerosol Convection Interactions Experiment (TRACER), which will further connect observational and modeling research to reduce the uncertainties in aerosol-cloud interactions.Item Open Access Origins and impacts of tropopause layer cooling in tropical cyclones(Colorado State University. Libraries, 2020) Rivoire, Louis, author; Birner, Thomas, advisor; Knaff, John A., advisor; Bell, Michael M., committee member; Davis, Christopher A., committee member; Kummerow, Christian D., committee member; Venayagamoorthy, Subhas K., committee memberRemote sensing data from GPS radio occultation reveal temperatures lower than climatological average over a layer several kilometers deep near the tropopause above tropical cyclones (TCs). This signal, here referred to as tropopause layer cooling (TLC), occurs primarily during TC intensification and on spatial scales of the order of 1000 km. TLC has been hypothesized to be the result of: 1) Adiabatic expansion in cloud tops that overshoot the local level of neutral buoyancy. 2) Long wave radiative effects near the cloud top. 3) Adiabatic expansion in the TC secondary circulation. The relative role of these mechanism has not been quantified yet, perhaps pertaining to the large uncertainties and relative lack of vertical resolution of observational data sets and numerical modeling studies near the tropopause. Given the complex relationships between the thermal structure of the upper troposphere and the TC secondary circulation, determining which mechanisms are at play is paramount. TLC is also expected to destabilize the upper troposphere to convection and allow clouds to reach higher altitudes, likely leading to subtle but consequential changes in the secondary circulation and associated latent heating vertical distribution. Low temperatures near the tropopause can lead to in situ formation of cirrus clouds, which impact the radiative budget in the tropical tropopause layer. Lastly, low temperatures above convective systems have been linked to dehydration of the stratosphere, prompting the question of the role of TCs on the climate. Mechanism 1 is discussed in light of existing literature and suggested to be of marginal importance. Mechanisms 2 and 3 are examined using a combination of observational and theoretical analysis, and numerical modeling. Radiative heating rates calculated using cloud properties retrieved by the A-train suggest that mechanism 2 may explain up to half of TLC in the inner core, but only marginal amounts of TLC at larger radii. While reanalysis data sets suggest that mechanism 3 may explain TLC, numerical simulations of TCs with higher resolution suggest that mechanism 3 does not act in a way consistent with the secondary circulation as is typically pictured, and may need to be revisited. Other mechanisms involving processes which violate gradient wind balance near the tropopause need to be formulated. Finally, feedbacks between TLC, cloud structure, and TC dynamics are examined using parcel theory and idealized simulations. Parcel theory predicts that the TC thermal structure exerts a positive feedback on cloud top height during intensification, especially when convective entrainment is taken into account. While idealized simulations capture this general behavior, they exhibit other complex, transient behaviors which indicate breaking points in the interaction between clouds and their thermal environment.Item Open Access Response of convective cold pools and precipitation to changes in soil moisture(Colorado State University. Libraries, 2020) Drager, Aryeh Jacob, author; van den Heever, Susan C., advisor; Bell, Michael M., committee member; Davis, Christopher A., committee member; Kirby, Michael J., committee member; Schubert, Wayne H., committee memberIn Part 1 of this dissertation, we examine the role of soil moisture in modulating convective cold pool properties. This investigation is performed within an idealized modeling framework featuring a cloud-resolving model coupled to an interactive land surface model. Five high-resolution simulations of tropical continental convection are conducted in which the initial soil moisture is varied. The hundreds of cold pools forming within each simulation are identified and composited across space and time using an objective cold pool identification algorithm. Several important findings emerge from this analysis. Lower initial soil moisture results in greater daytime heating of the surface, which produces a deeper, drier subcloud layer. As a result, latent cooling through the evaporation of precipitation is enhanced, and cold pools are stronger and deeper. Increased gust front propagation speed, combined with wider rain shafts, results in wider cold pools. Finally, the "water vapor rings" that surround each cold pool under wet-soil conditions disappear under dry-soil conditions, due to the suppression of surface latent heat fluxes. Instead, when soils are dry, short-lived "puddles" of enhanced water vapor permeate the interiors of the cold pools. The results are nonlinear in that the properties of the cold pools in the two driest-soil simulations depart substantially from the cold pool properties in the three simulations initialized with wetter soil. The dividing line between the resulting wet-soil and dry-soil regimes is the permanent wilting point (PWP), below which transpiration is subdued. Land surface-boundary layer-cloud interactions are found overall to play a key role in governing the properties of cold pools. During Part 1 of this dissertation, we identify a novel "intermediate-soil moisture disadvantage" regime in which soils whose initial liquid water content slightly exceeds the PWP receive the least rainfall. In Part 2, we investigate the physical mechanisms behind this result. Four suites of ten idealized, high-resolution numerical experiments are conducted using the same modeling system used in Part 1. Each suite uses a distinct combination of soil type and vegetation, and within each suite, each simulation is initialized with a different amount of soil moisture. The "intermediate soil-moisture disadvantage" from Part 1 is reproduced. This result is found to stem from differing amounts of subcloud rain evaporation across the simulations, as well as from divergent balances between the level of free convection and the strength of boundary layer vertical motions. However, the result only holds for vegetated surfaces; bare-soil surfaces are instead found to exhibit a pure "wet-soil advantage" relationship. These results have important implications for the design of future process-level studies and large-scale model parameterizations.Item Open Access Topographic and diurnal influences on storms associated with heavy rainfall in northern Colorado(Colorado State University. Libraries, 2024) Douglas, Zoe A., author; Rasmussen, Kristen L., advisor; Bell, Michael M., committee member; Kampf, Stephanie K., committee memberDespite its profound impacts on agricultural and socioeconomical conditions globally, heavy rainfall is a high-impact weather phenomenon of which we have limited quantitative understanding and forecast skill. The Prediction of Rainfall Extremes Campaign in the Pacific (PRECIP) planned to observe the spectrum of heavy rainfall events in the moisture-rich environment of Taiwan and Japan during 2020, but was delayed until 2022 due to the global COVID-19 pandemic. As a result of this unanticipated delay, the PRECIP science team conducted the Preparatory Rockies Experiment for the Campaign in the Pacific ("PRE"-CIP), which observed precipitation over northern Colorado from May to August 2021 using Colorado State University's ground-based research radars and radiosondes. Extreme precipitation features are identified in the radar data and organized into storm modes based on prior research on the Tropical Rainfall Measuring Mission satellite's Precipitation Radar. An "ingredients-based" approach provides a theoretical framework to separate the storm modes into a spectrum of storm intensity and duration during the entire "PRE"-CIP field project, allowing us to connect storm modes to the topography, diurnal cycle, and overall rainfall characteristics in northern Colorado. While precipitation occurred from the mountains to the plains, the highest concentration of storm tracks calculated from all ground-based radar observations occurred over the Rocky Mountains, regardless of storm duration. The majority of storm tracks are of low intensity and short duration, with over 80% of tracked storms having lifetimes of 1 h or less, suggesting that the general population of warm-season precipitation in northern Colorado is short-lived and of weak intensity. When considering heavy rainfall-producing storms, deep convection is the most dominant storm mode in northern Colorado by up to three orders of magnitude over broader convective and stratiform systems. Deep convection most frequently occurred over the Rocky Mountains in the afternoon, while broader convective and stratiform systems most frequently occurred over the foothills and plains in the evening to nighttime hours. Therefore, diurnal forcing and orographic lift play important roles in the morphology of warm-season precipitation in northern Colorado, as has been seen in mountainous regions across the world. The frequent occurrence of deep convective storms directly over the Rocky Mountains, however, differs from the deep convective hotspots seen in the lowlands downstream of similarly large mountain barriers like the Andes and Himalayas. Ultimately, these radar-based analyses are important for the eventual comparison of heavy rainfall in a semi-arid midlatitude region (Colorado) and a moisture-rich tropical environment (Taiwan and Japan), thus providing an enhanced global understanding of the commonalities of heavy rainfall processes.