Research Data
Permanent URI for this collection
Browse
Browsing Research Data by Author "Fonte, Steven J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Data-land use as a driver of soil fertility and biodiversity across an agricultural landscape in the central Peruvian Andes(Colorado State University. Libraries, 2017-01) de Valença, Anne W.; Vanek, Steven J.; Meza, Katherin; Ccanto, Raul; Olivera, Edgar; Scurrah, Maria; Lantinga, Egbert A.; Fonte, Steven J.Land use change and intensification in agricultural landscapes of the Andean highlands have resulted in widespread soil degradation and a loss in soil-based ecosystem services and biodiversity. This trend threatens the sustainability of farming communities in the Andes, with important implications for food security and biodiversity conservation throughout the region. Based on these challenges we sought to understand the impact of current and future land use practices on soil fertility and biodiversity, so as to inform landscape planning and management decisions for sustainable agroecosystem management. We worked with local communities to identify and map dominant land uses in an agricultural landscape surrounding Quilcas, Peru. These land uses existed within two elevations zones (low-medium, 3200-3800 m and high elevation, 3800-4300 m). They included three types of low-medium elevation forests (Eucalyptus, Alder and mixed/native species), five pasture management types (permanent pasture, temporal pasture (in fallow stage), degraded pasture, high-altitude permanent pasture and high-altitude temporal pasture (in fallow stage)) and six cropping systems (forage crops, maize/beans, and potato under four types of management). Soil fertility was evaluated in surface soils (0-20 cm) with soil physicochemical parameters (e.g., pH, soil organic matter, available nutrients, texture), while soil biological properties were assessed using the abundance and diversity of soil macrofauna and ground cover vegetation. Our results indicated clear impacts of land use on soil fertility and biological communities. Altitude demonstrated the strongest effect on soil physicochemical properties, but management systems within the low-mid elevation zone also showed important differences in soil biological communities. In general, the less-disturbed forest and pasture systems supported more diverse soil communities than the more intensively managed croplands. Degraded soils demonstrated the lowest overall soil fertility and abundance of soil macrofauna, but this may be reversible via the planting of Alder forests. Our findings also indicated significant covariation between soil physicochemical parameters, soil macrofauna and ground vegetation. This suggests that management for any one of these soil properties may yield unintended cascading effects throughout the soil subsystem. In summary, our findings suggest that shifts in land use across the landscape are likely to have important impacts on soil functioning and biodiversity.Item Open Access Dataset associated with "Artefactual depiction of predator–prey trophic linkages in global soils"(Colorado State University. Libraries, 2021) Wyckhuys, Kris A. G.; Nguyen, Ha; Fonte, Steven J.Soil invertebrates contribute to multiple ecosystem services, including pest control, nutrient cycling, and soil structural regulation, yet trophic interactions that determine their diversity and activity in soils remain critically understudied. Here, we systematically review literature (1966–2020) on feeding habits of soil arthropods and macrofauna and summarize empirically studied predator–prey linkages across ecosystem types, geographies and taxa. Out of 522 unique predators and 372 prey organisms (constituting 1947 predator–prey linkages), the vast majority (> 75%) are only covered in a single study. We report a mean of just 3.0 ± 4.7 documented linkages per organism, with pronounced taxonomic biases. In general, model organisms and crop pests (generally Insecta) are well-studied, while important soil-dwelling predators, fungivores and detritivores (e.g., Collembola, Chilopoda and Malacostraca) remain largely ignored. We argue that broader food-web based research approaches, considering multiple linkages per organism and targeting neglected taxa, are needed to inform science-driven management of soil communities and associated ecosystem services.Item Open Access Dataset associated with "Land use conversion to agriculture impacts biodiversity, erosion control and key soil properties in an Andean watershed"(Colorado State University. Libraries, 2021) Galindo, Victor; Giraldo, Carolina E.; Lavelle, Patrick; Armbrecht, Inge; Fonte, Steven J.The conversion of natural vegetation to agricultural land uses in mountainous Andean landscapes threatens an array of key ecological processes and ecosystem services. In protected areas and buffer regions that provide water to cities, it is critical to understand how interactions between plants and soil communities sustain a range of ecosystem functions, associated with nutrient recycling, soil structure, and erosion control. We sought to understand how land use conversion within a mountainous tropical forest landscape influences the diversity of vegetation and soil macrofauna communities, soil physico-chemical properties, and hydrological regulation services. Biodiversity and a suite of key soil-based ecosystem services were compared in five major land uses of the Cali River watershed: 1) annual cropping systems, 2) coffee plantations, 3) pastures, 4) abandoned shrubland, and 5) secondary forests. The diversity of woody and herbaceous vegetation, as well as soil macrofauna was assessed in each land use. Soil chemical fertility and aggregate morphology were assessed via laboratory analyses and visual separation of soil aggregates based on their origin. Infiltration, runoff, and sediment production were measured using a portable rainfall simulator. We found a decrease in the diversity of woody vegetation across land-uses to be associated with lower diversity of soil macrofauna. At the same time, agricultural management, annual crops in particular, supports the largest earthworm populations, likely due to increased organic inputs and low impact tillage, which appears not to diminish soil fertility and water infiltration. In contrast, the low soil fertility in pastures was associated with the lowest values of soil C, poor aggregation, and high bulk density, and likely reflects overgrazing, with negative implications for water infiltration and erosion. Associations between the different sets of variables, evaluated with a co-inertia analysis, highlights the hierarchical relevance of plant cover and woody diversity on ecosystem services. The biological complexity associated with intact forest cover appears to generate "bundles" of co-occurring ecosystem services, with this land use demonstrating the highest infiltration, and low runoff and sediment losses. Our findings demonstrate that forests and tree-based agricultural systems may better contribute to the provision of multiple ecosystem services, including biodiversity conservation and hydrologic regulation.