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ABSTRACT

NUMERICAL SOLUTION OF THE BLACK-SCHOLES EQUATION USING FINITE

ELEMENT METHODS

The Black-Scholes model is a well known model for pricing financial options. This model takes

the form of a partial differential equation (PDE) that, surprisingly, is deterministic. In the special

case where the option only has one single underlying asset, what is called the one dimensional

version of the Black-Scholes model, there exists an analytical solution. In higher dimensions,

however, there is no such analytical solution. This higher dimensional version refers to what

is called a Basket-Case Option. This means that to get a solution to this Basket-Case Option

PDE, one must employ numerical methods. This thesis will first discuss the stochastic calculus

theory necessary to derive the Black-Scholes model, then will explain in detail the time and space

discretization used to solve the PDE using a Finite Element Method (FEM). Finally, this thesis will

explain some of the results and convergence of this numerical solution.
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Chapter 1

Introduction

The Black-Scholes Equation is a famous equation used to model the value of financial options

[8]. There are two types of financial options that are generally talked about, those being the Call

Option and the Put Option [1]. In this paper, I will discuss a slight variant of the call option, called

a European Call Option.

A European Call Option is a contract in essence. It is a contract between a buyer and seller

of an asset where at a set time in the future, or the expiration date, the buyer has the right to buy

the asset, but not the obligation, at an agreed upon price, called the strike price[4]. This may seem

like a fairly abstract financial concept, but it is essentially like purchasing insurance on a financial

asset.

An example of this in the real world is in the airline industry. Airline companies will frequently

purchase an option for purchasing jet fuel. The reason for this is that fuel prices change rapidly,

but airline companies book reservations for flights well into the future. This means that they have

to make a good estimate for how much it will cost to fly an aircraft on a specific day in the future

so that they can still make money off of the tickets that they are selling. One way that this is done is

buy purchasing an option for jet fuel. This allows for them to have an upper limit on the fuel prices

at a specific day. If the fuel prices go above the strike price, then they will exercise the option and

purchase the fuel at the strike price. If the fuel prices fall below the strike price, then they will not

exercise the option, and will simply purchase the fuel at the market price for that day. This allows

the airline companies to create plane ticket prices, because they have a reasonable estimate for the

price of the fuel on a specific day.

This way of protecting, or insuring, yourself against market fluctuations is called hedging [4].

Market fluctuations are what has prompted research into trying to accurately predict prices of

financial assets. Because call options derive their value from the value of their underlying asset,

such as a collection of stocks, then it is of particular interest to accurately assign a value to these
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options. By assigning a value to the option, I mean assigning an appropriate premium price. If

these prices are too high, then this would cause the option to be overvalued and unfairly favor the

seller of the option. If these prices are too low, then this would cause the option to be undervalued

and unfairly favor the holder, or buyer, of the option.

Fischer Black and Myron Scholes introduced a model that would attach a value to these call

options [8]. The model that they introduced was a partial differential equation (PDE) with a unique

solution that assigns a value to the option [8].

Now, although a financial call option can describe a contract to buy any kind of asset, in this

thesis I will only consider a stock call option. This is simply a call option where the underlying

asset is a stock.

The Black-Scholes Model PDE is a linear advection-diffusion-reaction equation. For the one

dimensional case, or the case where our portfolio only contains one stock, this PDE actually has

an analytical solution. This solution is realized by doing several changes of variables and arriving

at the one-dimensional heat equation, for which there is a known analytical solution [8]. Although

there is an analytical solution to the one-dimensional problem, it is still a problem of interest

to look at solving numerically. This is because the PDE is advective-diffusive-reactive, so one

needs to handle the equation carefully to produce a stable and accurate solution, and also because

the one-dimensional solution sheds some light on how to solve the multi-dimensional problem.

By multi-dimensional, I am referring to what is called a Basket-Case Option, or an option with

more than one underlying stock. Diffusive equations are generally forgiving when it comes to the

time and space discretization, but because of the advective nature of this problem one needs to be

careful.

Numerical solutions to PDEs are useful when it comes to solving problems that may or may

not have analytical solutions. They are useful, of course, when there are no analytical solutions

available because we are still able to produce a solution, or at least an approximation of one.

This PDE has previously been solved numerically through the use of Finite Difference Methods

[4], and through the use of Monte-Carlo Simulations [19]. Although this PDE has also been solved
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using the Finite Element Method [10], I intend to develop my own understanding of the Finite

Element solution in this thesis. This thesis then, will attempt to solve this PDE with the Finite

Element Method.

In this thesis, I will first discuss the underlying stochastic calculus that is necessary to derive

the Black-Scholes model for the Basket-Case Option. Then, with the problem well defined, I

will explain the time and space discretization I will use in my Finite Element Method solution.

Finally, I will discuss the convergence and accuracy of this numerical solution using the Method

of Manufactured Solutions (MMS) [24].

In Chapter 2, I will give an overview of the stochastic calculus necessary to derive the Black-

Scholes Basket-Case Option PDE. This will include a discussion on the basic building block of

Stochastic Calculus: the Wiener Process [26]. Then, with this process understood, I can describe

some important lemmas and theorems in Stochastic Calculus that will be important to deriving the

Black-Scholes Basket-Case Option PDE, most notably Itô’s Lemma [26].

In Chapter 3, I will use the basics of Stochastic Calculus discussed in Chapter 2 to derive the

Black-Scholes Model in one dimension and in multi-dimensions. The latter case of course being

called the Basket-Case Option Model.

In Chapter 4, I will describe the discretization I will use for solving the Basket-Case Option

PDE. I will discuss how to handle the diffusive and advective terms separately using an Implicit-

Explicit (IMEX) method that will maintain a high order of accuracy in time and space [11]. Implicit

schemes are generally more accurate, but suffer the consequence of being more computationally

expensive and require certain properties of the problem [7]. One property that implicit schemes

require is the cheap computation of a matrix inverse. Because diffusion operators generally result in

cheaply invertable matrices, these types of operators are well suited for implicit schemes. Explicit

schemes, on the other hand, require much less regularity in the problem and can be quite cheap to

compute, but they are conditionally stable [7]. Since advective operators typically don’t result in

matrices that have cheaply computable inverses, then explicit schemes are necessary for solving

problems with this operator. It does mean, however, that care must be taken when it comes to the
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stability of the solution when solving with an explicit scheme. In this chapter then, I will describe

the IMEX method that I will be using in my discretization. This will involve using an implicit

scheme on the diffusive operator and an explicit scheme on the advective operator.

Finally, in Chapter 5, I will discuss the results of the program I wrote to compute the solution

to the Black-Scholes Basket-Case Option Model. This will include diagrams of the solution and

discussions on what these diagrams represent, as well as a discussion on the convergence of my

solution with the discretization that was described in Chapter 4.

My thesis will conclude with a summary of these chapters and my results.
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Chapter 2

Stochastic Background

The Black-Scholes Model is about pricing financial options. Recall that a call option is a con-

tract to potentially buy some amount of stocks at a date in the future. Thus, in order to understand

how to price a call option, I must first consider how the price of the underlying stock behaves.

When trying to determine how to model the price of a particular stock, there are so many

factors that it becomes necessary to model the general behavior and then add in some sort of

randomness. This randomness in the price of the stock means that it will be necessary to have a

basic understanding of random processes that evolve in time, or Stochastic Processes.

This chapter will focus on the stochastic knowledge necessary to understand how the price of

the underlying stocks behave, and subsequently, the value of the call option. The ultimate goal of

this chapter is to understand an important stochastic calculus theorem, called Itô’s Lemma [17].

Understanding Itô’s lemma will require some knowledge about the subject of Stochastic Cal-

culus. This is, as the name implies, calculus on stochastic processes.

I will start out by discussing the most basic element I will need in order to understand stochastic

processes, the Wiener Process. This concept will allow me to construct the stochastic integral

through concepts similar to Riemann Sums. Then, I will define the stochastic differential and

talk about some basic Stochastic Calculus theorems. This, will finally lead me to the most useful

theorem in my thesis, which is Itô’s Lemma. This lemma will be crucial in deriving the Black-

Scholes PDE.

2.1 The Wiener Process

Stock prices are extremely difficult to predict and model [14]. Because of this, in my thesis I

will be using a model with some amount of randomness to describe the value of these stocks. As I

stated in the introduction above, this means that I first need to understand one of the more simple,

but important, stochastic processes: the Wiener Process. This stochastic process is important
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because it will allow me to talk about more complicated stochastic processes, such as the price of

a stock.

I will begin by giving the definition of a Wiener Process.

Definition 1. A real-valued stochastic process W (·) is said to be a Wiener Process if

1. W (0) = 0 a.s.,

2. W (t)−W (s) ∼ N(0, t− s) ∀t ≥ s ≥ 0,

3. for all 0 ≤ t1 ≤ t2 ≤ ... ≤ tn, the random variables W (t1),W (t2) − W (t1), ...,W (tn) −

W (tn−1) are independent (independent increments).

In this definition, a.s. means almost surely and N(m, s) means normally distributed with mean

m and standard deviation s. These definitions can be explored further in [15].

The first part of the definition simply means that there are only a finite number of times that

the random event W (0) will not be equal to 0. The second part of the definition describes the

distribution of the difference of a change in the random variable in some unit of time. The last

part of the definition simply describes that these differences are independent, so long as the time

intervals are disjoint.

In Figure 2.1, I have simulated a Wiener Process to show how these stochastic processes evolve.

In this figure, I show 5 realizations of this stochastic process.

This is an important stochastic process, although simple, because it is going to allow me to

discuss the next important topic: The Stochastic Integral.

2.2 Stochastic Integral

The Black-Scholes Model is a partial differential equation that describes the value of a call

option. This option, since it depends upon the value of its underlying stocks, will also have its

value be described by a stochastic process. It will be important, then, to be able to talk about dif-

ferential equations involving stochastic processes. Unfortunately, the Wiener Process is nowhere-
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Figure 2.1: Simulated Realization of Wiener Process

differentiable [15]. This will obviously be a problem if I hope to talk about differential equations

involving stochastic processes, often called Stochastic Differential Equations (SDEs).

What I will do then, is to define the stochastic integral first. Surprisingly, this is somewhat

easier to define. This is somewhat backwards to how “regular” calculus is taught, but because of

the nowhere-differentiability of the Wiener Process, this is the path that I will take. Then, I will

use the definition of the stochastic integral to define the stochastic differential.

For this thesis, I will limit the discussion of a stochastic integral to integrating with respect to

a Wiener Process. Mathematically, I am trying to understand the integral

∫ T

0

GdW, (2.1)

where G is a stochastic process. In fact, G is not just any ordinary stochastic process, but is a “well

behaved” stochastic process. I am putting quotes around this because there are several restrictions

on G that must be true that I will not be going into in this thesis. For more information, see [15].

Loosely, the restrictions are:

1. For each time t ≥ 0, G(t) must only depend upon the information available up to time t

from a Wiener Process and

2. E
[∫ T

0
G2dt

]
< ∞.
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In order to understand the integral in Equation (2.1), it seems reasonable to consider trying a

Riemann-like sum similar to how integrals were constructed in “ordinary” calculus.

I will start this section by giving some basic stochastic lemmas, and then defining the stochastic

integral in Equation (2.1).

2.2.1 Basic Stochastic Lemmas

This section will describe some basic stochastic lemmas that will be necessary in defining the

stochastic integral in Equation (2.1). In particular, these will be useful in showing that a very

important property of Wiener Processes holds: Quadratic Variation. The first of these lemmas

talks about the distribution of a normalized difference of Wiener Processes. The second lemma

talks about the expectation of a random variable that is related to the normalized difference random

variable in the first lemma.

Lemma 1. Let [a, b] be an interval in [0,∞) and suppose that this interval has been partitioned

into mn equally sized intervals such that

P n := {a = tn0 < tn1 < ... < tnmn
= b}

are partitions of [a, b]. Also suppose that W (t) is a Wiener Process and that

τk := λtnk+1 + (1− λ) tnk ,

where λ ∈ (0, 1). Finally let

Y n
k :=

W (τk)−W (tnk)√
λ
(
tnk+1 − tnk

) .

Then Y n
k ∼ N(0, 1).

Proof. First, I will define a new random variable:

Rn
k := W (τk)−W (tnk) ∼ N(0, τk − tnk).
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This is the numerator of the random variable Y n
k . Now, because τk = λtnk+1 + (1 − λ)tnk ≥ tnk , I

have

Rn
k ∼ N

(
0, λ

(
tnk+1 − tnk

))

by Definition 1. The variance came from the simplification:

τk − tnk = λtnk+1 + (1− λ)tnk − tnk

= λ
(
tnk+1 − tnk

)
.

This was all to make the next few calculations a bit simpler to do. Notice that:

Y n
k =

Rn
k√

λ
(
tnk+1 − tnk

)

because of my definition of Rn
k . Now, the denominator of Y n

k is simply a constant, and not a

random process. This means then, that the distribution of Y n
k must be a normal distribution since

Rn
k is normally distributed. So, all that is left to show is the mean and variance of Y n

k . First, for the

mean I have:

E [Yk] = E


 Rn

k√
λ
(
tnk+1 − tnk

)




=
E [Rn

k ]√
λ
(
tnk+1 − tnk

)

=
0√

λ
(
tnk+1 − tnk

)

= 0.

Thus, I have that the mean of Y n
k is 0. All that is left then, is to show that the variance is 1. First,

recall that

var (Y n
k ) = E

[
(Y n

k )
2]− (E [Y n

k ])
2
.

9



This is sometimes taken as the definition of variance, but I will leave the reader to read [13] for

more information.

Now, using the definition of variance from above, I have:

var (Y n
k ) = E

[
(Y n

k )
2]− (E [Y n

k ])
2

= E




 Rn

k√
λ
(
tnk+1 − tnk

)2




2
−


E


 Rn

k√
λ
(
tnk+1 − tnk

)2






2

= E

[
(Rn

k)
2

λ
(
tnk+1 − tnk

)
]
−


 E [Rn

k ]√
λ
(
tnk+1 − tnk

)2




2

=
E
[
(Rn

k)
2]− (E [Rn

k ])
2

λ
(
tnk+1 − tnk

)

=
var (Rn

k)

λ
(
tnk+1 − tnk

) .

I showed at the beginning of this proof that var (Rn
k) = λ

(
tnk+1 − tnk

)
. Thus, I can go ahead and

substitute this into the numerator of my expression to see that

var (Y n
k ) =

var (Rn
k)

λ
(
tnk+1 − tnk

)

=
λ
(
tnk+1 − tnk

)

λ
(
tnk+1 − tnk

)

= 1.

Thus, I have shown that Y n
k ∼ N(0, 1).

Now that I have shown the distribution for a normalized difference of Wiener Processes, I can

move on to the second important lemma in this section.

Lemma 2. Suppose that the interval [a, b] ∈ [0,∞) is defined the same as in Lemma 1 and let Y n
k

be defined similarly as well. Then,

E
[
(Y n

k − 1)2
]
= 2.

10



Proof. I will start by recalling that the variance of Y n
k − 1 is given by:

var (Y n
k − 1) = E

[
(Y n

k − 1)2
]
− (E [Y n

k − 1])2 .

Rearranging these terms, I see that

E
[
(Y n

k − 1)2
]
= var (Y n

k − 1) + (E [Y n
k − 1])2 .

The first part of this sum will simply be equal to var (Y n
k ) because 1 is a constant number [25].

Thus, I have

E
[
(Y n

k − 1)2
]
= var (Y n

k ) + (E [Y n
k ]− 1)2 .

This is because the expectation operator is linear. [25]. Expanding the second term, I get

E
[
(Y n

k − 1)2
]
= var (Y n

k ) +
(
E
[
Y k
n

])2 − 2E
[
Y k
n

]
+ 1

= 1 + 1

= 2.

This follows from Lemma 1 that Y n
k ∼ N(0, 1).

I have now shown two basic lemmas that will be used to show a very important property

about Wiener processes: Quadratic Variation. This is a property that will allow for a well posed

definition of the integral, because without this, the Riemann-like sums would not converge and I

would not be able to define the stochastic integral properly.

2.2.2 Quadratic Variation

As stated previously, Wiener Processes have the unfortunate property that they are nowhere-

differentiable. This, of course, makes it quite difficult to define things like stochastic differential

equations when derivatives don’t exist. It turns out, that although Wiener Processes lack differ-
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entiability, they do have a rather important property that allows for a well posed notion of inte-

grability: Quadratic Variation. This property allows one to construct a notion of integrability for

stochastic processes because it causes the Riemann-like sums that will be used, to converge.

In order to continue, however, I will need to give a definition for what convergence means

with respect to stochastic processes. I will start by giving a definition of an important space for

stochastic processes.

Definition 2 (L2(Ω) Space). Given a set Ω ⊆ R, then define the set L2(Ω) to be the set of all

random variables X such that

∥X∥ =
(
E
[
X2
]) 1

2 < ∞.

This definition is important because it allows me to give a norm to random variables, and

therefore, allows me to talk about what it means for random variables to converge. So, I will now

define convergence for random variables.

Definition 3 (Random Variable Convergence). Given a sequence of random variables {Xn}n∈N,

this sequence is said to converge to a random variable Y in L2(Ω) if

∥Xn − Y ∥ → 0 as n → ∞.

This will be denoted as

Xn
L2

−→ Y.

Now that I have defined what convergence for random variables will mean, I can discuss the

quadratic variation property that Wiener Processes have. This property, as I have previously men-

tioned, is what allows for the stochastic integral to be well defined.

Lemma 3 (Quadratic Variation). Let [a, b] be an interval in [0,∞) and suppose

P n := {a = tn0 < tn1 < ... < tnmn
= b}
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are partitions of [a, b], with |P n| → 0 as n → ∞. Also, let

τk = λtnk+1 + (1− λ) tnk .

Then
mn−1∑

k=0

[W (τk)−W (tnk)]
2 L2

−→ λ(b− a).

Here, this lemma says that the sum of the square of the differences converges. Notice that this

does not say anything about the sum of the differences. This quadratic variation property is slightly

weaker of a property, but it is going to be very useful.

I will show the proof here, which comes from [15].

Proof. First, let Qn :=
∑mn−1

k=0 (W (τk)−W (tnk))
2
. Instead of showing that Qn converges to

λ(b− a), I will prove the quadratic variation property by showing that the difference between Qn

and λ(b− a) converges to 0. In other words, I will show that

Qn − λ(b− a)
L2

−→ 0.

Notice that, I can rewrite the above difference as follows:

Qn − λ(b− a) =
mn−1∑

k=0

[
(W (τk)−W (tnk))

2 − λ(tnk+1 − tnk)
]
.

Recall from Definition 3 that in order to show that this converges to 0, I must show

E
[
(Qn − λ(b− a))2

]
= 0.
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Therefore, I will evaluate exactly this expectation. So, I have

E
[
(Qn − λ(b− a))2

]
=

mn−1∑

k=0

mn−1∑

j=0

E
[(

[W (τk)−W (tnk)]
2 − λ

[
tnk+1 − tnk

] ) ([
W (τj)−W

(
tnj
)]2 − λ

[
tnj+1 − tnj

])]

This is a somewhat complicated expression, but it simplifies quite a bit because of the independent

increments property of Wiener Processes. Notice that when k ̸= j, the intervals [tk, τk] and [tj, τj]

are non-overlapping. This follows directly from the fact that [tk, tk+1] ∩ [tk, tk+1] = ∅ because of

the construction of the partitions. So, because these intervals are non-overlapping, then I can break

the expectation of the product to be the product of the expectation. In this case, when k ̸= j, the

term inside of the double sum becomes:

E
[
(W (τk)−W (tnk))

2 − λ(tnk+1 − tnk)
]
E
[(
W (τj)−W (tnj )

)2 − λ(tnj+1 − tnj )
]

Then, because (W (tns )−W (tnt )) ∼ N(0, s− t), this product is 0. This means that the sum is only

non-zero when k = j. So, I can simply replace the double sum with a single sum. This simplifies

the equality greatly, and I am left with

E
[
(Qn − λ(b− a))2

]
=

mn−1∑

k=0

E
[(
(W (τk)−W (tnk))

2 − λ(tnk+1 − tnk)
)2]

.

At this point, I perform a clever trick of factoring out a λ(tnk+1 − tnk) from each term in the expec-

tation term. This will result in

E
[
(Qn − λ(b− a))2

]
=

mn−1∑

k=0

E







(
W (τk)−W (tnk)√

λ(tnk+1 − tnk)

)2

− 1


 [λ(tnk+1 − tnk)

]



2


=
mn−1∑

k=0

E
[(
Y 2
k − 1

)2 (
λ(tnk+1 − tnk)

)2]
,

14



where

Yk = Y n
k :=

W (τk)−W (tnk)√
λ
(
tnk+1 − tnk

) ∼ N(0, 1).

This follows from Lemma 1. Continuing the proof, I see that

E
[
(Qn − λ(b− a))2

]
=

mn−1∑

k=0

E
[(
Y 2
k − 1

)2 (
λ(tnk+1 − tnk)

)2]

=
mn−1∑

k=0

(
λ(tnk+1 − tnk)

)2
E
[(
Y 2
k − 1

)2]

=
mn−1∑

k=0

2
(
λ(tnk+1 − tnk)

)2
,

where this last equality follows from Lemma 2. Finishing the proof, I see that

E
[
(Qn − λ(b− a))2

]
=

mn−1∑

k=0

2
(
λ(tnk+1 − tnk)

)2

= 2λ2

mn−1∑

k=0

(
tnk+1 − tnk

)2

≤ 2λ2|P n|
mn−1∑

k=0

(
tnk+1 − tnk

)

= 2λ2|P n|(b− a) → 0 as n → ∞ by assumption.

At this point, I’ve shown some basic stochastic lemmas and, most importantly, I’ve shown that

Wiener Processes have the useful property of quadratic variation. As stated before, this is what

will allow me to define what it means to integrate with respect to a random variable (namely the

Wiener Process).

First, it will be helpful to try and integrate a much simpler random process

∫ T

0

WdW, (2.2)
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instead of trying to integrate the very general random process given by G in Equation (2.1).

2.2.3 Integrate Wiener Process

Even though I could give a definition of the integral in Equation (2.1) at this point, it will be

more helpful to discuss the easier integral

∫ T

0

WdW,

as given in Equation (2.2).

This integral will be considered first because the Wiener Process is a much simpler stochastic

process than the general stochastic process G. The idea will be to understand this simple integral,

and then extend the ideas to the general integral.

Lemma 4. Suppose P n is a partition of the interval [0, T ] such that |P n| → 0 as n → ∞. Suppose

also that

τk = λtnk+1 + (1− λ)tnk .

Then

lim
n→∞

mn−1∑

k=0

W (τk)
(
W (tnk+1)−W (tnk)

)
=

1

2
W (T )2 +

(
λ− 1

2

)
T.

In this case, I will define

∫ T

0

WdW := lim
n→∞

mn−1∑

k=0

W (τk)
(
W (tnk+1)−W (tnk)

)
.

Proof. This proof will rely mostly on Lemma 3 and comes largely from [15]. Here, I will finally

use the quadratic variation property that I have been talking about so much. So, I will first start out

by rewriting W (τk) as the following:

W (τk) = [W (τk)−W (tnk)] +
1

2

[
W (tnk+1) +W (tnk)

]
− 1

2

[
W (tnk+1)−W (tnk)

]
. (2.3)
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This may seem not seem intuitive, but it allows me to rewrite the infinite sum as several quadratic

variation-looking sums. So, using 2.3 to rewrite W (τk), I get

mn−1∑

k=0

(
[W (τk)−W (tnk)] +

1

2

[
W (tnk+1) +W (tnk)

]
− 1

2

[
W (tnk+1)−W (tnk)

])

×
(
W (tnk+1)−W (tnk)

)

=
1

2

mn−1∑

k=0

W (tnk+1)
2 −W (tnk)

2 − 1

2

mn−1∑

k=0

(
W (tnk+1)−W (tnk)

)2

+
mn−1∑

k=0

(W (τk)−W (tnk))
(
W (tnk+1)−W (tnk)

)

=
1

2

mn−1∑

k=0

W (tnk+1)
2 −W (tnk)

2 − 1

2

mn−1∑

k=0

(
W (tnk+1)−W (tnk)

)2

+
mn−1∑

k=0

(W (τk)−W (tnk))
(
W (tnk+1)−W (τk) +W (τk)−W (tk + 1)

)
.

At this point, it is helpful to go ahead and clean up a few terms. The first term in the above sum

will telescope to give:

1

2

mn−1∑

k=0

W (tnk+1)
2 −W (tnk)

2 =
1

2

[
W (T )2 −W (0)2

]

=
1

2
W (T )2 (W (0) = 0 a.s). (2.4)

Notice that this equality will hold even when this sum is passed to the limits.

The second term, −1
2

∑mn−1
k=0

(
W (tnk+1)−W (tnk)

)2
, will be evaluated using Lemma 3. Here, I

will use λ = 1. So, passing this sum to the limits, and using Lemma 3, I conclude that

−1

2

mn−1∑

k=0

(
W (tnk+1)−W (tnk)

)2 L2

−→ −1

2
T. (2.5)

The only term left to handle then, is the third term. This is a slightly trickier term but it is very

close to being of the quadratic variation form. What I will do here, then, is to slightly rewrite what
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is inside of the sum. Doing this, I get

mn−1∑

k=0

(W (τk)−W (tnk))
(
W (tnk+1)−W (tnk)

)

=
mn−1∑

k=0

(W (τk)−W (tnk))
(
W (tnk+1)−W (τk) +W (τk)−W (tnk)

)

=
mn−1∑

k=0

(W (τk)−W (tnk)) (W (τk)−W (tnk)) +
mn−1∑

k=0

(W (τk)−W (tnk))
(
W (tnk+1)−W (τk)

)

=
mn−1∑

k=0

(W (τk)−W (tnk))
2

(2.6)

+
mn−1∑

k=0

(W (τk)−W (tnk))
(
W (tnk+1)−W (τk)

)
. (2.7)

This simplification splits the sum into two easier sums. The sum (2.6), when passed to the limit,

results in

mn−1∑

k=0

(W (τk)−W (tnk))
2 L2

−→ λT (2.8)

by Lemma 3 directly. The only thing left to show then, is that the sum (2.7) converges to 0. This

proof is actually very close to the proof of Lemma 3.

I want to know what the expectation of the square of this term is. In other words, I would like

to know what

E



(

mn−1∑

k=0

(W (τk)−W (tnk))
(
W (tnk+1)−W (τk)

)
)2

 (2.9)

converges to, when passed to the limit.

I will start by expanding the square to rewrite Equation (2.9) as

E

[
mn−1∑

k=0

mn−1∑

j=0

[W (tk+1)−W (τk)] [W (τk)−W (tk)] [W (tj+1)−W (τj)] [W (τj)−W (tj)]

]
.

(2.10)
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When k ̸= j, all four of these products are independent because of the independent increments

property of Wiener Processes. Thus, Equation 2.10 results in

mn−1∑

k=0

mn−1∑

j=0

E [(W (τk)−W (tnk))]E
[(
W (tnk+1)−W (τk)

)]

× E
[(
W (τj)−W (tnj )

)]
E
[(
W (tnj+1)−W (τj)

)]
.

Notice that, by the second property of Wiener Processes, each of these terms in the product is 0.

Thus, this entire sum is simply the sum of zeros.

So, Equation (2.10) can be simplified to combine the summing indices to result in

E

[
mn−1∑

k=0

([W (tk+1)−W (τk)] [W (τk)−W (tk)])
2

]
. (2.11)

Because the intervals tnk ≤ τk ≤ tnk+1, then the random variables (W (τk)−W (tnk)) and

(
W (tnk+1)−W (τk)

)
are independent by the independent increments property of Wiener Processes.

This means that I can split the expectation one last time to result in

mn−1∑

k=0

E
[
[W (tk+1)−W (τk)]

2]× E
[
[W (τk)−W (tk)]

2]
. (2.12)

Then, by properties of Wiener processes, this simplifies to

mn−1∑

k=0

(
tnk+1 − τk

)
(τk − tnk) =

mn−1∑

k=0

(1− λ)
(
tnk+1 − tnk

)
λ
(
tnk+1 − tnk

)

=
mn−1∑

k=0

λ (1− λ)
(
tnk+1 − tnk

)2

≤ λ (1− λ) |P n|T → 0 as n → ∞.
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So, since sum (2.7) converges to zero when passed to the limit, I can deduce that

lim
n→∞

mn−1∑

k=0

W (τk)
(
W (tnk+1)−W (tnk)

)
=

1

2
W (T )2 +

(
λ− 1

2

)
T a.s.

Notice that this integral will converge to different values depending on the “evaluation” point τk

that is chosen in each interval. This is very much unlike the “normal” integral, where the evaluation

point doesn’t matter. So, a choice must be made on the evaluation point. This is actually a topic

of debate, and has led to what is known as the Itô-Stratonovich Controversy [20]. For this thesis,

however, I will be making the decision to use what is called the Itô Definition. This corresponds

to making the choice of setting λ = 0. Thus, with this choice of the evaluation point, I can finally

define this integral completely as

∫ T

0

WdW :=
1

2
W (T )2 − 1

2
T. (2.13)

2.2.4 General Stochastic Integral

With the integral of the very specific stochastic integral in Equation (2.2) defined, I can now

define the general stochastic integral given in Equation (2.1). Because this chapter of the thesis

is meant to give a very brief overview of stochastic calculus, then I will not be going into the full

details of the proof of the general stochastic integral. There are some subtleties in the proof that

go beyond the scope of this thesis, but for more information, see [15]. I will, however, give a brief

overview of the logic but leave the details to the reader. The ideas outlined here come from [15].

The idea is that I will consider a simpler stochastic process, called a step process. I will define

the stochastic integral for this simpler process, and then approximate the more general stochastic

process with a series of these step processes.

First, I will give a definition of an important space, L2(0, T ).
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Definition 4. L2(0, T ) is defined to be the space of all real-valued, progressively measureable

stochastic processes G(·) such that

E

[∫ T

0

G2dt

]
< ∞.

Similarly, the space L1(0, T ) is the space of all real-valued, progressively measureable stochastic

processes G(·) such that

E

[∫ T

0

|G|dt
]
< ∞.

These spaces of stochastic processes are essentially the “well-behaved” stochastic processes

that I mentioned at the beginning of this chapter. I did not give a definition of progressively

measureable, becuase it goes outside the scope of this thesis, but think of it as only depending

on the history of Wiener Processes.

It will also be useful to define what a step process is.

Definition 5. A process G ∈ L
2(0, T ) is called a step process if there exists a partition P = {0 =

t0 < t1 < ... < tm = T} such that

G(t) = Gk for tk ≤ t < tk + 1 (k = 0, ...,m− 1).

This just means that there is some partition where the value of G is given by the value at the

beginning of each interval. The beginning of each interval is important, because when I defined

the integral of a Wiener Process with respect to a Wiener Process in Equation (2.2), I evaluated

the process at the beginning of each interval. The fact that my step process only depends on the

value at the beginning of each interval will allow me to give a consistent definition to the stochastic

integral.

I went through the work of defining the stochastic integral of a Wiener Process because it

showed me that for these stochastic integrals, I will probably have to care about the evaluation

point in each interval. Then, because I chose to evaluate my Wiener Process at the beginning
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of each interval, I should probably make a similar decision in all other cases too, in order to be

consistent.

So, with the perspective from the stochastic integral of the Wiener Process, I will define the

stochastic integral of this step process to be

Definition 6. Let G ∈ L2(0, T ) be a step process. Then,

∫ T

0

GdW :=
mn−1∑

k=0

Gk (W (tk+1)−W (tk)) .

As mentioned previously, because of the choice of evaluating the step process at the beginning

of each interval, this integral is really called the Itô Integral, although in this thesis I will sometimes

refer to this as simply the stochastic integral. It is also good to note that this integral is a random

variable. This is somewhat hard to remember because of being used to integrals resulting in a

number, but in this case, the integral results in a random variable.

This integral, as defined in Definition 6, has many of the same properties that an integral would

be expected to have, such as linearity, but I will not be discussing them here. Refer to [15] for more

information on these properties.

The only thing left to talk about, is the general stochastic (or Itô) integral mentioned in Equation

(2.1). Again, I will not be going into the details of the full proof of this here, but the idea is that

I can approximate any stochastic process G ∈ L2(0, T ) by a series of step processes. I will then

define the integral below.

Definition 7. Let G ∈ L2(0, T ). Then let {Gn} be a series of step processes that approximates G.

Then define ∫ T

0

GdW := lim
n→∞

∫ T

0

GndW.

It turns out that this integral is well defined, and so this definition gives a well posed definition

of the stochastic integral. For details on the proof of the well-posedness of this definition, refer to

[15].
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So, finally I have a definition for what it means to integrate a stochastic process with respect to

a Wiener Process. I started this section by talking about some basic lemmas that were important in

the proof of a very important property of Wiener Processes: Qaudratic Variation. Then, with this

property understood, I looked at how I could define the stochastic integral of a Wiener Process.

This lead me to understand that a choice needed to be made when it comes to the evaluation

point of the Wiener Process. I chose to make the decision to evaluate the Wiener Process at the

beginning of each interval, which turns out to be the definition of the Itô integral. Then, with

this understanding of where to evaluate my stochastic process, I extended this insight to define the

general stochastic integral. This integral has been defined through a Riemann-like argument, and

with this definition, I will finally be able to talk about the most important part of this stochastic

background: the stochastic differential.

2.3 Stochastic Differential Equations

Recall that the Black-Scholes Model is a PDE, but the underlying stocks will be modeled as

stochastic processes. This means that at some point, I will need to understand how stochastic

processes fit into differential equations. Put another way, I will need to understand the topic of

Stochastic Differential Equations to some degree.

Regular differential equations, which take the form of





dx
dt

= f(t),

x(0) = x0,

(2.14)

are well understood to mean

What is the function x(t) such that its derivative with respect to time is equal to f(t),

and x(0) = x0?

It seems reasonable to extend this definition to stochastic processes by adding effects of ran-

domness. This could be done by letting X(t) be a stochastic process, and looking at its differential
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equation given by





dX(t) = F (t)dt+G(t)dW (t),

X(0) = X0,

(2.15)

where F (t) and G(t) are stochastic processes. I will show later that they will need to satisfy some

conditions, but for now, I will simply think of them as stochastic processes.

The statement given in Equation (2.15), cannot be taken to mean the same thing that the differ-

ential equation in Equation (2.14) means. This is because of the nowhere-differentiability problem

of Wiener Processes. It turns out, that because of this property, a derivative of the stochastic pro-

cess X(t) just doesn’t exist. This means then, that I cannot take the statement in Equation (2.15)

to mean the same thing that the statement in Equation (2.14) means. I will have to come up with

another understanding of what Equation (2.15) means.

This is where all of the work from Section 2.2 will be useful. Since I cannot understand the

Stochastic Differential Equation (SDE) in Equation (2.15) in terms of derivatives, then maybe I

can understand it in terms of integrals. This takes inspiration from the Second Fundamental Theo-

rem of Calculus, which (loosely) states that a function is equal to the integral of its derivative. I will

take that inspiration and make sense of the SDE in Equation (2.15) through stochastic integration.

Definition 8. Let X(t) be a stochastic process that satisfies

X(T ) = X0 +

∫ T

0

F (t)dt+

∫ T

0

G(t)dW (t)

for F ∈ L1(0, T ), G ∈ L2(0, T ), and X(0) = X0. Then, the differential of X(t), denoted dX(t)

is given by

dX(t) = F (t)dt+G(t)dW (t).

One important thing to note here is that the terms dX , dt and dW don’t really mean anything

more than simply being a mathematical abbreviation.
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With this definition, there is now meaning to what the differential of a stochastic process is

and how to interpret what a the related SDE means. To be explicit, when given the SDE given in

Equation (2.15), this is to be interpreted as finding the stochastic process X(t) given by

X(t) = X0 +

∫ T

0

Fds+

∫ T

0

GdW.

This is extremely interesting because it defines the differential in terms of the integral. This is in

contrast to “ordinary” calculus where the differential is defined in terms of the derivative.

The goal of this section is to now to get an understanding of the most important lemma in this

chapter: Itô’s Lemma. This is a fairly complicated and profound lemma that essentially extends

the chain rule to stochastic calculus. Therefore, I will first provide some basic stochastic calculus

lemmas that will ultimately lead to a proof of the famous Itô’s Lemma.

2.3.1 Basic Stochastic Differentials

This section aims at describing some basic stochastic differentials in order to gain an under-

standing of these somewhat strange differentials. Because these SDEs are given meaning through

the context of integrals, they are somewhat difficult to understand. Therefore, I find it helpful to

first look at some basic differentials that will also be useful in some proofs in later sections.

The first of these basic differentials I will outline in this thesis is d(W 2). The reason for this

one is because I have already done much of the work in Section 2.2.3. Recall that at the end of this

section, I came to the conclusion that

∫ T

0

WdW =
1

2

(
W (T )2 − T

)
.

Notice that I can rearrange some of these terms to get the following expression

W (T )2 = T + 2

∫ T

0

WdW. (2.16)

25



Here, I notice that I can rewrite the term T to be an integral with respect to time. In particular, this

can be rewritten as

T =

∫ T

0

dt.

Substituting this into Equation (2.16), I get

W (T )2 =

∫ T

0

dt+ 2

∫ T

0

WdW.

This looks just like the expression in Definition 8 with

• W(0) = 0,

• F(t) = 1 and

• G(t) = 2W(t).

Therefore, by definition, I say

d(W 2) = dt+ 2WdW. (2.17)

One thing to note at this point is that this looks almost like what I would expect this differential to

be if I were using “normal” calculus. If so, I would expect this differential to be 2WdW , but here

I have the extra dt term. This term is sometimes called the Itô Correction Term [15].

In this differential, I actually started with the integral to expose the differential. This will be a

common theme when showing what stochastic differentials equal.

The next basic differential I would like to discuss is d(tW ). If I were using “regular” calculus,

I would guess that this differential would be

Wdt+ tdW

by the product rule. It turns out that this happens to be what this differential equals, but I will show

this below.
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Lemma 5. The following is true:

d(tW ) = Wdt+ tdW.

Proof. This proof is taken from [15]. I will add a few of my own notes and understanding to this

proof, but it is largely taken from this source.

To begin, I will note that I am trying to show

TW (T ) =

∫ T

0

Wds+

∫ T

0

tdW.

It is helpful to note that, by definition, I have

∫ T

0

Wds = lim
n→∞

mn−1∑

k=0

W (tnk)(t
n
k+1 − tnk).

Because Wiener Processes have continuous sample paths, then this can be interpreted as a regular

Riemann integral. Therefore, I am not restricted to evaluating my stochastic process at the left

endpoint of each interval. I am allowed to evaluate my stochastic process at any point in each

interval. So, I will take the liberty of evaluating my stochastic process at the right endpoint of each

interval. The reason for this will become obvious later. Therefore, I actually have

∫ T

0

Wds = lim
n→∞

mn−1∑

k=0

W (tnk+1)(t
n
k+1 − tnk).

Next, I will tackle the second integral. Again, by definition I have:

∫ T

0

tdW = lim
n→∞

mn−1∑

k=0

tnk(W (tnk+1)−W (tnk)).
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Now that I have expanded each of these integrals into their Riemann-like sums, I am going to

combine them and see what happens. So, I have

∫ T

0

Wds+

∫ T

0

tdW = lim
n→∞

mn−1∑

k=0

W (tnk+1)(t
n
k+1 − tnk) + lim

n→∞

mn−1∑

k=0

tnk(W (tnk+1)−W (tnk))

= lim
n→∞

mn−1∑

k=0

tnk+1W (tnk+1)− tnkW (tnk+1) + tnkW (tnk+1)− tnkW (tnk)

= lim
n→∞

mn−1∑

k=0

tnk+1W (tnk+1)− tnkW (tnk).

This last line is because the middle two terms cancelled out. Notice that at this point, this sum

forms a telescoping sum. When this sum is simplified, I arrive at the following:

∫ T

0

Wds+

∫ T

0

tdW = TW (T )− 0W (0) = TW (T ).

So, I have indeed shown that

TW (T ) =

∫ T

0

Wds+

∫ T

0

tdW,

which means that I am done, and therefore have shown that

d(tW ) = Wdt+ tdW.

This is interesting because in this case I don’t have an Itô Correction Term. The differential is

exactly what I would have expected if I were using “regular” calculus. The reason for this is really

because the term t is deterministic. Because of this deterministic term, the Itô Correction Term

becomes zero, and the result is what “regular” calculus would yield.

At this point I have given examples of a few simple stochastic differentials, along with their

proofs. Unfortunately, these have all been one dimension, or have all only had a single Wiener
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Process involved. Because this thesis focuses on the Muti-Asset Black-Scholes Model, then it

seems reasonable that I will want to extend some of these ideas to multiple dimensions, or multiple

Wiener Processes.

In the next section, I will discuss some basic stochastic differentials in higher dimensions to

get an understanding of how the things discussed in this section generalize to higher dimensions.

2.3.2 Basic Multi-Dimensional Stochastic Differentials

In this section, I will extend some of the concepts discussed in Section 2.3.1. This will include a

generalization of Lemma 5 as well as a multi-dimensional version of the differential of the product

of two independent Wiener Processes.

First, I will start with a generalization of Lemma 5.

Lemma 6. Suppose {Wi}i∈N are independent Wiener Processes. Then

d(tWi) = Widt+ tdWi, ∀i ∈ N.

The proof of this lemma will be omitted, because it is an easy extension of the proof of Lemma

5.

Before I can introduce the more interesting lemma about the differential of a product of inde-

pendent Wiener Processes I need to introduce a lemma. This is a lemma discussing the distribution

of a normalized sum of independent Wiener Processes.

Lemma 7. Suppose that Wi and Wj are two independent Wiener Processes. Then, define

X(t) :=
Wi(t) +Wj(t)√

2
.

Then, X(t) is a Wiener Process.

Proof. This proof is outlined in [15], but I have added the details of the proof here.

To prove this, there are three things that need to be shown
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1. X(0) = 0 a.s.,

2. X(t)−X(s) ∼ N(0, t− s), ∀0 ≤ s ≤ t,

3. ∀0 ≤ t1 ≤ ... ≤ tn, the random variables X(t1), X(t2) − X(t1), ..., X(tn) − X(tn−1) are

independent.

The first part is somewhat trivial. Because both Wi(0) = Wj(0) = 0 almost surely, and because

X(0) is simply the sum of these two random variables, then X(0) = 0 almost surely as well.

Before I can show the second part, it is necessary to note that X(t) ∼ N(0, t). This mainly

comes from the fact that X(t) is the difference of two independent normally distributed random

variables. This fact immediately leads to the conclusion that X(t) is normally distributed. To show

that the mean is zero, I can employ the fact that the expectation behaves linearly. So,

E [X] =
E [Wi] + E [Wj]√

2

=
0 + 0√

2

= 0.

The variance also behaves fairly nicely as well. The only catch is that the coefficient needs to be

squared. Therefore, I have

var (X) = var

(
Wi +Wj√

2

)

=

(
1√
2

)2

(var (Wi) + var (Wj))

=
1

2
(t+ t)

= t.

Therefore, X(t) ∼ N(0, t).
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Now, to prove the second part of the definition for Wiener Processes is true, I will need to show

that X(t) − X(s) ∼ N(0, t − s) for all t ≥ s. In order to show this, I will look directly at the

random variable X(t)−X(s):

X(t)−X(s) =
Wi(t) +Wj(t)√

2
− Wi(s) +Wj(s)√

2

=
Wi(t)−Wi(s)√

2
+

Wj(t)−Wj(s)√
2

. (2.17)

At this point, I will need to show that the two random variables in Equation (2.17) are independent.

The reason for this is because I need these to be independent in order to show that the X(t)−X(s)

is normally distributed. So, to show the independence, I will show that the expectation of the

product is the product of the expectations. I have:

E

[
Wi(t)−Wi(s)√

2
· Wj(t)−Wj(s)√

2

]

=
1

2
E [Wi(t)Wj(t)−Wi(t)Wj(s)−W )i(s)Wj(t) +Wi(s)Wj(s)]

=
1

2
(E [Wi(t)Wj(t)]− E [Wi(t)Wj(s)]− E [Wi(s)Wj(t)] + E [Wi(s)Wj(s)]) .

Because Wi(t) is independent of Wj(t) for all t ≥ 0 by assumption, then the arguments for each

of the expectations above are independent. This results in

1

2
(E [Wi(t)Wj(t)]− E [Wi(t)Wj(s)]− E [Wi(s)Wj(t)] + E [Wi(s)Wj(s)])

=
1

2
(E [Wi(t)]E [Wj(t)]− E [Wi(t)]E [Wj(s)]− E [Wi(s)]E [Wj(t)] + E [Wi(s)]E [Wj(s)])

=
1

2
(E [Wi(t)]− E [Wi(s)]) · (E [Wj(t)]− E [Wj(s)])

=
1

2
E [Wi(t)−Wi(s)] · E [Wj(t)−Wj(s)]

= E

[
Wi(t)−Wi(s)√

2

]
· E
[
Wj(t)−Wj(s)√

2

]
.
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This then, shows that the random variables in Equation (2.17) are independent because the ex-

pectations of their products is the product of their expectations. This is to be expected, however,

because both Wi and Wj are independent. Now, because of the independence, I can say that

X(t)−X(s) is normally distributed because it is the sum of two independent normally distributed

random variables. The expectation and variance, are more easily shown. For the expectation,

E

[
Wi(t)−Wi(s)√

2
+

Wj(t)−Wj(s)√
2

]

= E

[
Wi(t)−Wi(s)√

2

]
+ E

[
Wj(t)−Wj(s)√

2

]

= 0.

The last line uses the definition of Wiener Processes. For the variance,

var

(
Wi(t)−Wi(s)√

2
+

Wj(t)−Wj(s)√
2

)

=
1

2
(var (Wi(t)−Wi(s)) + var (Wj(t)−Wj(s)))

=
1

2
((t− s) + (t− s))

= t− s.

Therefore, X(t)−X(s) ∼ N(0, t− s).

The last step is to show the independent increments property. The exact steps of this will not

be shown in this thesis because it follows similar steps to what is shown above. To summarize,

however, it is done through an induction process. At each step, one will need to show that the

expectation of the product is the product of the expectations. Then, when expanding the terms,

one will need to use the properties of the Wiener Process and the assumption that Wi and Wj are

independent.

With all three properties shown, I can conclude that X(t) is a Wiener Process.
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Now to the more interesting lemma. This lemma talks about the differential of a product of

independent Wiener Processes. This will be useful in the next section when I prove the product

rule for stochastic differentials.

Lemma 8. Suppose {Wi}i∈N are independent Wiener Processes. Then

d(WiWj) = WidWj +WjdWi, i ̸= j.

Proof. This proof is also taken from [15], where again, I have added some of my own personal

annotations and understanding.

I will start by considering the random variable

X(t) :=
Wi(t) +Wj(t)√

2
. (2.18)

This is the same definition as given in Lemma 7. So, because of this and Equation (2.17), I have

the following equalities





d(X2) = 2XdX + dt

d(W 2
i ) = 2WidWi + dt

d(W 2
j ) = 2WjdWj + dt.

Also, I will note that

WiWj = X2 − 1

2
W 2

i − 1

2
W 2

j .

Then,

d(WiWj) = d

(
X2 − 1

2
W 2

i − 1

2
W 2

j

)
.
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Since the differential operator is linear (because the integral is linear), then I have the following

d

(
X2 − 1

2
W 2

i − 1

2
W 2

j

)
= d

(
X2
)
− 1

2

(
W 2

i

)
− 1

2

(
W 2

j

)

= 2XdX + dt−WidWi −
1

2
dt−WjdWj −

1

2
dt

= 2XdX −WidWi −WjdWj

= (Wi +Wj) · (dWi + dWj)−WidWi −WjdWj

= WidWj +WjdWi

This is interesting because, in this case, there is no Itô correction term. It turns out, that this is

because the two Wiener Processes are independent.

So far, I have shown a few important stochastic differentials. These differentials were mostly

differentials of products of simple processes. During the first few differentials, I showed the equal-

ity of the differentials through the definition, which took the path of using the stochastic integral.

This was important because it showed the usefulness and necessity of having the stochastic inte-

gral before talking about the stochastic differential. Then, in the last differential, I took the path of

looking at a related stochastic process and showing that this process, which I called X(t) was itself

a Wiener Process. This then allowed me to use some of the theorems that I had shown already to

rewrite the differential into an easier form.

All of these differentials will be useful in the next section, where I talk about the product rule

for stochastic differentials. I have spent quite a bit of time in this section describing the differential

for products of simple processes, and now I will use these results to talk about the differential of a

generalized product.
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2.3.3 Product Rule

With all of the knowledge so far, I can finally talk about the product rule for stochastic differ-

entials. This is useful in its right, but it will be particularly useful in proving the most important

result of this chapter: Itô’s Lemma.

In this section, and in the next section, I will be talking about the multi-dimensional version

of these theorems. This is because my goal is to be able to use these theorems in the Basket-Case

version of the Black-Scholes Model.

From this point onward, I will also be using what is called Einstein Notation [6]. This makes

the calculations and notation quite a bit simpler, and is the main reason for adopting this convention

from here on out.

One other notational thing to discuss is how I will be representing vectors and matrices. I have

already chosen to represent random variables with a capitol letter, so it seems natural to represent a

vector of random variables as a capital bold faced letter. This conflicts with the common notational

choice to represent matrices with a capital bold faced letter, so I will make the following notational

choice:





a− z for vectors in R
n,

A−M for matrices and

N− Z for vectors of random variables.

With that out of the way, I will move on to the statement and proof of the product rule.

Lemma 9 (Product Rule). Suppose
{
W k
}
0≤k≤n

are i.i.d. Wiener Processes. Then, let





dX1 = F1dt+Gk
1dW

k

dX2 = F2dt+Gk
2dW

k.
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for Fi ∈ L1(0, T ) and Gk
i ∈ L2(0, T ) for i ∈ {1, 2} and k ∈ {1, ..., n}. Note that Einstein Notation

is being used so that Gk
1dW

k should be taken to mean
∑n

k=1 G
k
1dW

k. Then,

d (X1X2) = ∇X(X1X2) · dX+
1

2
(GG

T ) : ∇2
X(X1X2)dt, (2.19)

where Gij = G
j
i , ∇X(·) represents the gradient operator and ∇2

X(·) represents the Hessian.

Proof. A one dimensional version of this proof was given in [15], but I have adapted this proof to

multi-dimensions.

I will assume that Fi(t) and G
j
i (t) are step processes. For the sake of this thesis, I will only

show this is true for step processes. This won’t quite prove the lemma itself, but the remainder of

the proof can be seen by approximating the general random processes with series of step processes

to complete the proof.

I will start by partitioning my interval up into n sub-intervals, corresponding to the sub-intervals

where Fi and G
j
i are constant.

Recall from the definition of the stochastic differential, that I need to show

X1X2 =
mn−1∑

k=0

(∫ tk+1

tk

∇X(X1X2) · dX+
1

2

∫ tk+1

tk

(
GG

T
)
: ∇2

X(X1X2)dt.

)
(2.20)

This equation is slightly different than the definition, but the difference is simply that I am inte-

grating over each sub-interval and then adding up these integrals.

So, I will evaluate this expression and validate that it equals X1X2. It will be easier if I first

rewrite the integrands using Einstein Notation.

Looking at the first integrand, I see

∇X(X1X2) · dX = (∇X(X1X2))i (dX)i

=
∂

∂Xi

(X1X2) · dXi.
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Since i = 1, 2, then this can easily be explicitly written out:

∇X (X1X2) · dX = X2dX1 +X1dX2. (2.21)

The second integrand is somewhat more complicated, but when it is expanded, I have:

(
GG

T
)
: ∇2

X (X1X2) dt =
(
GG

T
)
ij

(
∇2

X (X1X2)
)
ij
dt

= GikGjk

∂

∂Xi∂Xj

(X1X2) dt. (2.22)

This looks complicated, but it turns out that I have the following:





∂
∂Xi∂Xj

(X1X2) = 0 , i = j

∂
∂Xi∂Xj

(X1X2) = 1 , i ̸= j,

where i, j ∈ {1, 2}. This means that I can use the Kronecker Delta symbol to rewrite this term as

the following:

∂

∂Xi∂Xj

(X1X2) = 1− δij.

Now, substituting this into (2.22), and using the symmetry of i and j, I have

GikGjk ·
∂

∂Xi∂Xj

(X1X2) dt = 2Gk
1G

k
2dt. (2.23)

At this point, I am going to substitute both (2.21) and (2.23) into the right hand side of (2.20).

I am also going to evaluate these integrals for a fixed k, and then do the summing at the end. This
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is because the notation is easier to follow this way. So, I have:

∫ tk+1

tk

X2dX1 +

∫ tk+1

tk

X1dX2 +
1

2

∫ tk+1

tk

2Gl
1G

l
2dt

=

∫ tk+1

tk

(F2t+G
p
2W

p) (F1dt+G
q
1dW

q) +

∫ tk+1

tk

(F1t+Gs
1W

s)
(
F2dt+Gd

2dW
d
)

+

∫ tk+1

tk

Gl
1G

l
2dt.

At this point, I will use the fact that each G
j
i is a step process. Because I chose my intervals in

such a way that each G
j
i is constant, then G

j
i is not time dependent in these integrals, so they can

be pulled out of the time integral above. Thus, I have:

∫ tk+1

tk

(F2t+G
p
2W

p) (F1dt+G
q
1dW

q) +

∫ tk+1

tk

(F1t+Gs
1W

s)
(
F2dt+Gd

2dW
d
)

+

∫ tk+1

tk

Gl
1G

l
2dt

=

∫ tk+1

tk

(F2t+G
p
2W

p) (F1dt+G
q
1dW

q) +

∫ tk+1

tk

(F1t+Gs
1W

s)
(
F2dt+Gd

2dW
d
)

+Gl
1G

l
2(tk+1 − tk).
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The next step here is to expand the other two integrals above. Distributing and collecting like

terms,

∫ tk+1

tk

(F2t+G
p
2W

p) (F1dt+G
q
1dW

q) +

∫ tk+1

tk

(F1t+Gs
1W

s)
(
F2dt+Gd

2dW
d
)

+Gl
1G

l
2(tk+1 − tk)

= 2

∫ tk+1

tk

F1F2tdt

+

∫ tk+1

tk

F2G
q
1tdW

q +

∫ tk+1

tk

F2G
s
1W

sdt

+

∫ tk+1

tk

F1G
d
2tdW

d +

∫ tk+1

tk

F1G
p
2W

pdt

+

∫ tk+1

tk

G
p
2G

q
1W

pdW q +

∫ tk+1

tk

Gs
1G

d
2W

sdW d

+Gl
1G

l
2(tk+1 − tk).

At this point, it is important to notice that many of the indices are “dummy” indices, and as long

as I am careful, I can rename them. Therefore, I will do some renaming of the indices to allow for

some of the terms to be grouped together.

2

∫ tk+1

tk

F1F2tdt

+ F2G
q
1

(∫ tk+1

tk

tdW q +

∫ tk+1

tk

W qdt

)
+ F1G

d
2

(∫ tk+1

tk

tdW d +

∫ tk+1

tk

W ddt

)

+G
p
2G

s
1

(∫ tk+1

tk

W pdW s +

∫ tk+1

tk

W sdW p

)
+Gl

1G
l
2(tk+1 − tk)

= 2

∫ tk+1

tk

F1F2tdt

+
(
F1G

d
2 + F2G

d
1

)(∫ tk+1

tk

tdW d +

∫ tk+1

tk

W ddt

)

+G
p
2G

s
1

(∫ tk+1

tk

W pdW s +

∫ tk+1

tk

W sdW p

)
+Gl

1G
l
2(tk+1 − tk).
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At this point, I have many integrals that look familiar. In fact, I derived many of them in Section

2.3.2. Substituting the results from Section 2.3.2, and using the fact that Fi is constant on the

interval of integration, I have

F1F2(t
2
k+1 − t2k)

+
(
F1G

d
2 + F2G

d
1

) (
tk+1W

d(tk+1)− tkW
d(tk)

)

+G
p
2G

s
1 (W

p(tk+1)W
s(tk+1)−W p(tk)W

s(tk)) (1− δps)

+G
p
2G

p
1 (W

p(tk+1)− tk+1 −W p(tk) + tk)

+Gl
1G

l
2(tk+1 − tk).

This may not look like the result that I am looking for, but I still need to sum over k. When I do

this, many of the terms above form a telescoping series, and thus cancel out nicely. This will result

in

mn−1∑

k=0

(∫ tk+1

tk

DX(X1X2) · dX+
1

2

∫ tk+1

tk

(
GG

T
)
: D2

X
(X1X2)dt.

)

= F1F2T
2 + (F1G

d
2 + F2G

d
1)TW

d(T ) +G
p
2G

s
1(W

p(T )W s(T ))

= F1T
(
F2T +Gd

2W
d(T )

)
+G

p
1W

p(T )
(
F2T +Gd

2W
p(T )

)

= (F1T +G
p
1W

p(T ))
(
F2T +Gd

2W
d(T )

)

= X1(T )X2(T ).

This equality proves the product rule for stochastic processes.

The product rule for stochastic processes is also almost the product rule for deterministic pro-

cesses. There is just a correction term, like I have shown before in Equation (2.17).
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I would also like to note that if we blindly did a Taylor’s Approximation on this differential

term, we would get the following:

d(X1X2) = ∇X(X1X2) · dX+
1

2
(dX)T ∇2

X(X1X2)dX+ ...

= ∇X(X1X2) · dX+ dX1dX2 + ...

= ∇X(X1X2) · dX+
(
F1dt+Gi

1dW
i
) (

F2dt+G
j
2dW

j
)
+ ...

= ∇X(X1X2) · dX+ F1F2(dt)
2 + F1G

i
2dtdWi + F2G

i
1dtdW

i +Gi
1G

j
2dW

idW j + ...

Comparing this with what we just proved to be the actual stochastic product rule, we see that in

order for the two things to be equal, we must have the following:





dW idW j = δijdt

dW idt = 0

dtdt = 0.

(2.24)

The reason that this is important to note, is because these are often given as properties of Wiener

Processes. Some of the intuition for the first equality actually comes from the quadratic variation

of Wiener Processes. These, of course, are not actual equalities, but more of heuristic equalities.

These heuristics also give a somewhat easier way of remembering the product rule: Simply

apply Taylor’s theorem and then use the above rules for simplifying the dX1dX2 term.

At this point, I have introduced everything necessary for proving Itô’s Lemma. The product

rule was the last necessary piece to be able to prove this lemma, so with this in hand, it is time to

move on to the most important stochastic lemma in this thesis.

2.3.4 Itô’s Lemma

Itô’s Lemma is the core lemma that will be necessary in deriving the Black-Scholes Model. The

reason is because the function that I will be looking for is a function of both a stochastic process
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and of time. Therefore, to find the differential of this function, I will need some sort of “stochastic

chain rule”. This is, in fact, exactly what Itô’s Lemma is: a stochastic chain rule.

Lemma 10 (Itô’s Lemma). Suppose
{
W k
}
1≤k≤m

are i.i.d Wiener Processes. Suppose also that

dXi = Fidt+Gk
i dW

k i = 1, 2, ..., n

are n stochastic processes where Fi ∈ L1(0, T ) and Gk
i ∈ L2(0, T ) for i ∈ {1, 2} and k ∈

{1, ...,m} as in Lemma 9.

Now, suppose that u(t,X(t)) is a function of both X(t) = (X1(t), ..., Xn(t))
T and t. Then,

d(u(t,X(t)) = utdt+∇X(u(t,X(t)) · dX+
1

2

(
GG

T
)
: ∇2

X(u(t,X(t))dt. (2.25)

Proof. This lemma has been shown in the [15] for the one dimensional case, but I have extended

this to the multi-dimensional case.

I will assume that u(t,X(t)) is a polynomial in X and t. Then, the proof can be extended

to apply to any analytic function u through approximations. The approximation step will not be

shown in this thesis because it is beyond the scope of this thesis.

First, suppose that v is only a monomial in X. Then,

v(X) = Xk1
1 ·Xk2

2 · ... ·Xkn
n .

I claim that the differential of v is

dv = ∇X(v) · dX+
1

2
(GG

T ) : ∇2
X(v)dt. (2.26)

I will show this through induction on k1, k2, ..., kn, however it is enough to simply show this

through induction on k1 because the other ki’s are similar.
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The base case here is trivial. If k1, ..., kn = 0, then v(X) = 1 and

dv = ∇X(1) · dX+
1

2
(GG

T ) : ∇2
X(1)dt = 0.

For the more interesting case, suppose that





u(X) = Xk1
1 ·Xk2

2 · ... ·Xkn
n , and

d(u) = ∇X(u) · dX+ 1
2
(GG

T ) : ∇2
X(u)dt.

Consider v(X) = X1 ·u. Then, because I would like to use the product rule, I will let Y 1 = X1

and Y 2 = u.

At this point, because I will need the coefficients in front of each dW k for k ∈ {1, ...,m}, then

it will be helpful to write both dY 1 and dY 2 slightly differently. I will start with dY 2 first, because

it will give insight into how to rewrite dY 1 in a helpful way. So, I have

dY 2 = ∇X(u) · dX+
1

2
(GG

T ) : ∇2
X(u)dt

=
∂

∂Xi

(
Y 2
)
·
(
Fidt+Gk

i dW
k
)
+

1

2
(GG

T ) : ∇2
X(u)dt

=

[
∂

∂Xi

(
Y 2
)
Fi +

1

2
(GG

T ) : ∇2
X(u)

]
dt+

∂

∂Xi

(
Y 2
)
Gk

i dW
k.

The important term that I am looking for is the coefficient in front of each dW k, which in this case

is ∂
∂Xi

(Y 2)Gk
i .

The term dY 1 is much easier, but I wanted to look at dY 2 first because it will allow me to write

the coefficient in front of each dW k term in a consistent way. So, for dY 1 I have

dY 1 = F1dt+Gk
1dW

k

= F1dt+
∂

∂Xi

(X1)G
k
i dW

k

= F1dt+
∂

∂Xi

(
Y 1
)
Gk

i dW
k.
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Now, putting all of this together, I see that the coefficients in front of each dW k is





∂
∂Xi

(Y 1)Gk
i for dY 1 and

∂
∂Xi

(Y 2)Gk
i for dY 2.

Therefore, I will construct a matrix for the random variables Y 1 and Y 2 that is very similar to the

matrix G in the product rule. This matrix will contain the coefficients in front of each dW k term,

which is why I went through all of the above work. I will call this matrix K, and it is given by

Kij =
∂

∂Xk

(
Y i
)
G

j
k. (2.27)

This matrix was important to construct because it will allow me to use Lemma 9 and apply the

product rule to find the differential dv = d (Y 1Y 2). So, using the product rule, I have

d (v) = ∇Y (v) · dY +
1

2

(
KK

T
)
: ∇2

Y (v)dt. (2.28)

The simplification of this will follow much of the logic used in Lemma 9. I will expand Equation

(2.28) to get:

d(v) = Y 2dY 1 + Y 1dY 2 +
1

2
KikKjk (1− δij) dt

= udX1 +X1

(
∇X(u) · dX+

1

2
(GG

T ) : ∇2
X(u)dt

)
+

1

2
KikKjk (1− δij) dt. (2.29)

Note that

∇X(v) · dX = ∇X (X1 · u) · dX

= (X1 · ∇X(u) + u · ∇X (X1)) · dX

= X1 (∇X(u) · dX) + udX1. (2.30)
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Notice that this expression appears in Equation (2.29). So, substituting (2.30) into Equation (2.29),

I get

d(v) = ∇X(v) · dX+
1

2
X1

(
GG

T
)
: ∇2

X(u)dt+
1

2
KikKjk (1− δij) dt.

Here, I am very close to the result that I am looking for. I only need to show that the last two terms

combine properly. So, looking at the last two terms, I see

1

2
X1

(
GG

T
)
: ∇2

X(u)dt+
1

2
KikKjk (1− δij) dt

=
1

2
Y 1Gk

iG
k
j

∂2

∂Xi∂Xj

(
Y 2
)
dt+

1

2

∂

∂Xl

(
Y i
) ∂

∂Xr

(
Y j
)
Gk

l G
k
r (1− δij) dt. (2.31)

Here, it is important to note that i, j ∈ {1, 2} because there are only Y 1 and Y 2. Therefore, I will

explicitly write out the sum over i and j. In order to make the notation a bit simpler, I will also

adopt the notational choice to let YXi
= ∂

∂Xi
(Y ). So, doing this explicit summing, I have

1

2
Y 1Gk

iG
k
jY

2
XiXj

dt+
1

2
Y 1
Xl
Y 2
Xr
Gk

l G
k
rdt+

1

2
Y 2
Xl
Y 1
Xr
Gk

l G
k
rdt

=
1

2
Gk

l G
k
r

(
Y 1Y 2

XlXr
+ Y 1

Xl
Y 2
Xr

+ Y 1
Xr
Y 2
Xl

)
dt. (2.32)

This expression is starting to look much simpler, but before I can do the final simplification, I must

think about what I am really looking for. I am trying to show that this expression above equals

1
2

(
GG

T
)
: ∇2

X(v)dt. It may be helpful then, to expand this and see what it looks like:

1

2

(
GG

T
)
: ∇2

X(v)dt =
1

2
Gk

iG
k
j

∂2

∂Xi∂Xj

(
Y 1Y 2

)
dt

=
1

2
Gk

iG
k
j

∂

∂Xi

(
Y 1
Xj
Y 2 + Y 2

Xj
Y 1
)
dt

=
1

2
Gk

iG
k
j

(
Y 1
XiXj

Y 2 + Y 1
Xj
Y 2
Xi

+ Y 2
Xj
Y 1
Xi

+ Y 2
XiXj

Y 1
)

=
1

2
Gk

iG
k
j

(
Y 1
Xj
Y 2
Xi

+ Y 2
Xi
Y 1Xj + Y 2

XiXj
Y 1
)
dt,
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where the last line comes from the fact that Y 1 = X1, and thus any second partial derivative will

be zero. Notice that this is exactly what I have in Equation (2.32). So, after substituting what I

have just found into Equation (2.31), I get

d(v) = ∇X(v) · dX+
1

2

(
GG

T
)
: ∇2

X(v)dt.

Therefore, I have shown the differential of a polynomial in X. This was quite a bit of work and

a long detour, but I am nearly done with the proof of Itô’s Lemma. Recall that this lemma is

concerned with a function of both X and of t. I therefore need to build upon the polynomial in X

that I have created above, and include the time variable. So, now suppose that

v (X, t) = f (X) g (t) ,

where f and g are both polynomials. Because g is a deterministic function, then there is no Itô

correction term. Therefore, the differential of this function is the “usual” product rule. So, I have

the differential of v to be

d(v) = d (f (X)) g(t) + d (g(t)) f (X)

= g(t)

(
∇X(f) · dX+

1

2

(
GG

T
)
: ∇2

X(f)dt

)
+ g′(t)f (X) dt

= vtdt+∇X(v) · dX+
1

2

(
GG

T
)
: ∇2

X(v)dt.

So, I have shown that the result from Itô’s Lemma is true for polynomials. The last step, which

I have mentioned is beyond the scope of this thesis, is to rigorously show that this result is true

for general analytic functions. The idea is that any analytic function can be approximated by

polynomials, so this result is in fact true for any general function. This then completes the proof

of Itô’s Lemma.
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2.4 Chapter Summary

In this chapter, I introduced the basic building block of stochastic processes: the Wiener Pro-

cess. This process was crucial to many of the theory introduced in this chapter.

I then talked about some of the basic properties of Wiener Processes, with one of the most im-

portant properties being the Quadratic Variation of Wiener Processes. This property was necessary

to being able to define the next important thing in this chapter: the stochastic integral.

I defined the stochastic integral through a Riemann-like sum in a similar fashion to determin-

istic integrals. This sum was able to converge because of the quadratic variation property of the

Wiener Process, however the sum converged to different values based on the evaluation point. This

led me to have to choose an evaluation point to define the integral, which in my thesis I chose to

be the left endpoint of each interval. This definition turned out to be what is called the Itô Integral.

With the stochastic integral defined, I defined the stochastic differential even though Wiener

Processes are nowhere-differentiable. I then gave several lemmas that ultimately led to proving the

stochastic product rule and chain rule. The latter of these is what is called Itô’s Lemma, which is

the most important stochastic lemma necessary to derive the Black-Scholes Model.

With all of this stochastic background understood, I can now move on to the Black-Scholes

Model.
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Chapter 3

Black-Scholes Model

As I mentioned in Chapter 1, the Black-Scholes Model is a mathematical model used to ac-

curately price options. This is important because, without an accurate way of pricing the options,

then there would be arbitrage opportunities in the market.

In reality, there are actually many different flavors of options, and they all behave slightly

differently. For this thesis, I will be focused on European Call Options. These give the owner the

right to purchase an asset at the expiration time, but not at any time before. From this point on,

when I use the term “option”, I am implicitly referring to the European Call Option.

This chapter will focus on the derivation of the Black-Scholes Model. This thesis is mainly

focused on what is called the Basket Case Model, which is mainly a generalization of the model

that was proposed in [8]. This Basket Case Model is about pricing options that are for more than

one underlying asset. This can be thought of as the multi-dimensional version of the Black-Scholes

Model.

I will start the chapter by giving a derivation of the original Black-Scholes Model as proposed

in [8]. I will sometimes refer to this as the one-dimensional version of the Black-Scholes Model.

Most of the derivation logic is taken from this paper, but it is helpful to walk through it in order

to gain a better understanding of the more complicated Basket Case Model. The reason is because

the one-dimensional derivation will motivate some of the derivation that I will do in the multi-

dimensional version.

After deriving the One-Dimensional Black-Scholes Model, I will generalize this process to

higher dimensions, or more underlying assets. This will involve some linear algebra techniques in

order to use the theorems discussed in Chapter 2.

This chapter will end then, with a formal statement of the Basket-Case Black-Scholes Model

that will be solved in later chapters.
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3.1 One-Dimensional Black-Scholes Model

This section will discuss the derivation of the One-Dimensional Black-Scholes Model, as well

as discuss the model itself. As mentioned in the introduction of this chapter, it is important to

discuss and understand the one-dimensional model before I can discuss the Basket Case Model.

The reason is that the derivation in both cases is very similar, but the process is slightly easier to

understand initially in the one-dimensional case.

In this section I will also discuss the boundary conditions for this model. These are often just

as interesting and important as the PDE itself is, so it is important that I talk about them as well.

At the end of this section, I will have a formal statement for the one-dimensional Black-Scholes

Model.

3.1.1 Delta Hedging

The derivation of the one-dimensional model will depend heavily on the idea of delta hedging.

This is the idea behind the original derivation by Fischer Black and Myron Scholes [8].

From the financial perspective, delta hedging can be understood as trying to remove the risk

in the price fluctuations of the option by also investing in some amount of the underlying asset to

cancel out any price fluctuations of the option induced by changes in price of the underlying asset

[12].

If the risk due to the price fluctuations of the underlying asset are removed, then the portfolio

should be expected to grow at the risk free interest rate. Then, it becomes much easier to value the

portfolio, and therefore the option.

The main idea with this approach is that a portfolio consisting of the option and some amount

of the underlying asset will be constructed in such a way as to remove risk. Then, the portfolio can

be valued fairly easily because it is expected to grow at the risk free interest rate. Finally, with the

portfolio valued, the value of the option can be deduced.
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3.1.2 One-Dimensional Derivation

With an understanding of how delta hedging works, I can now derive the one-dimensional

Black-Scholes model. Because this thesis is a mathematics thesis, however, I will take a more

mathematical approach to delta hedging.

First, I need to state an assumption on the underlying asset. For this model, I will be assuming

that the value of the underlying asset, given by S, follows a Geometric Brownian Motion. This was

not explicitly referenced by this name in Chapter 2, but was used in many of the lemmas. Formally,

this means that

dS = rSdt+ σSdW, (3.1)

where

• r is the risk-free interest rate and

• σ is the volatility of the asset.

With that assumption made, I can continue with the derivation of the value of the option. I will

let V (S, t) represent the value of the option. What I will do, is approximate this function at the

current stock price, Sk, and current time, tk. Using a first order Taylor Expansion, I have

V (S, t) ≈ V (Sk, tk) + VS(Sk, tk)(S − Sk) + Vt(Sk, tk)(t− tk). (3.2)

The function V (S, t) has some amount of randomness that is induced by the randomness of the

value of the underlying asset, given by S. If I could remove the randomness here, then the value

would be deterministic. So, what I will do is create another function, P (S, t), that represents the

value of a portfolio with no randomness. All I have to do to create this function is take V (S, t) and

subtract the random components. So, using my approximation in Equation (3.2), I have

P (S, t) = V (S, t)− VS(Sk, tk)S. (3.3)
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Notice that this doesn’t fully remove the randomness, because I am only subtracting the first order

term associated with the randomness. As long as the price doesn’t fluctuate too much, however,

this approximation will do.

Since I now have an equation for the value of a portfolio without randomness, I should expect

this portfolio to grow at the risk free interest rate. Mathematically, this means

dP = rPdt. (3.4)

In the above equation, I have suppressed the arguments to the function for clarity. From this point

onward, I will continue to suppress the arguments of the functions.

I can also express this differential in another way, based on the definition of P as

dP = dV − VSdS. (3.5)

Setting Equations (3.4) and (3.5) equal, I have

rPdt = dV − VSdS

=⇒ 0 = dV − VSdS + rSVSdt− rV dt, (3.6)

where I substituted P = V − VSS and moved all terms to the right hand side.

At this point, I can finally use the results from Chapter 2. In particular, I will use Itô’s Lemma

to rewrite the dV term. Recall, that I can rewrite this as

dV = Vtdt+ VSdS +
1

2
σ2S2VSSdt. (3.7)
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Substituting this into Equation (3.6), I get:

0 = Vtdt+ VSdS +
1

2
σ2S2VSSdt− VSdS + rSVSdt− rV dt

= (Vt +
1

2
σ2S2VSS + rSVS − rV )dt. (3.8)

The last step here is to realize that in order for Equation (3.8) to equal 0, the following must be true

Vt +
1

2
σ2S2VSS + rSVS − rV = 0. (3.9)

At this point, I have arrived at the one-dimensional Black-Scholes PDE.

The key with this argument was to use delta hedging, which is really just a first order approxi-

mation to remove the randomness, in order to deduce the value of the option. Of course, I haven’t

yet found the value of the option yet, but I do have a PDE with no random components that de-

scribes the value of the option. This is a purely deterministic PDE that I can solve to get the value

of the option.

What I will do next, is describe the boundary conditions for this model.

3.1.3 One-Dimensional Boundary and Initial Conditions

To describe the one-dimensional model fully, I need to define the boundary conditions as well.

These are just as important and interesting as the PDE itself, so I will go into the detail of them in

this section.

For the first boundary condition, I will consider what the value of the option should be when

the underlying asset is worthless. In this case, the holder of the option will never want to exercise

the option. The reason is because the strike price is non-zero, and no reasonable investor would

want to pay the strike price for a worthless asset. Therefore, the reasonable investor would never

exercise the option in this case, and it is providing no value to the investor. This leads to the first
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boundary condition:

V (0, t) = 0, ∀t ∈ [0, T ],

where T is the expiration time.

The next boundary condition should describe the solution at the other extreme value for S(t).

Because the value of the underlying asset is limitless (in theory), then we must describe what the

solution does as S → ∞. In this case, the corresponding put option will almost certainly not be

exercised. Therefore, by the Put-Call Parity, I can deduce the value of the call option to be:

V (S, t) → S −Ke−rt, S → ∞, ∀t ∈ [0, T ],

where T is again the expiration time.

The last condition then, is the final condition. I am not using an initial condition here, because

the value of the option at expiration time is clearer to describe. The value of the option at expiration

time is simply the amount of payoff that we will receive. If the value of the underlying asset is

above the strike price K, then the holder will exercise the option and the payoff will simply be

the difference between the current price and the amount paid for the asset (the strike price). If the

value of the asset is below the strike price, then the holder will not exercise the option, and will

simply purchase the asset at the current market price, thus making the option worthless. This leads

to the final condition of:

V (S, T ) = max(S −K, 0), ∀S ∈ Ω,

where T is the expiration time, K is the strike price, and Ω is the set of possible values that the

asset can have.

With the boundary conditions defined, as well as the PDE, I can finally move on to formally

stating the one-dimensional Black-Scholes model.
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3.1.4 One-Dimensional Model Statement

With an understanding of the PDE itself, as well as the boundary conditions, I can actually

state the model.

Model 1 (One-Dimensional Black-Scholes Model). Suppose that a call option, with strike price K

and expiration time T , consists of one underlying asset whose value follows a Geometric Brownian

Motion given by

dS = rSdt+ σSdW,

where r represents the risk-free interest rate and σ represents the volatility of the asset’s value.

Also suppose that Ω is the set of possible values of the underlying asset. Then the value for the call

option, V (S, t), is modeled by

Vt +
1

2
σ2S2VSS + rSVS − rV = 0, ∀S ∈ Ω, t ∈ [0, T ], (3.10)

with boundary conditions given by

V (0, t) = 0, ∀t ∈ [0, T ] (3.11)

V (S, t) → S −Ke−rt S → ∞, ∀t ∈ [0, T ] (3.12)

V (S, T ) = max(S −K, 0) ∀S ∈ Ω. (3.13)

Although my thesis will not be focusing on solving this version of the Black-Scholes model, it

is useful to state it here. This is because the Basket-Case version will use many of the ideas from

this model.

3.2 Basket-Case Black-Scholes Model

This section will focus on the main problem that this thesis is concerned with solving. With an

understanding of both stochastic calculus and call options, I can start to discuss the more interesting

Basket-Case Black-Scholes Model. As a reminder, a Basket-Case option is an option that consists
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of more than one underlying asset. This will cause the value of the option to now depend on the

values of not one, but several assets, all of which will have some randomness to their value. So,

this Basket-Case model will be a model that prices one of these Basket-Case options.

These have a very good use in today’s markets, just as the one-dimensional (or single asset)

models do. Consider a multinational corporation that needs to do business in various currencies.

This corporation will then need to manage the risk of doing business in several different curren-

cies. One thing they could do to protect themselves, would be to use a Basket-Case option that

has the various currencies as the underlying assets. This way, instead of purchasing options for

each different currency, the corporation can simply purchase a single option that covers all of the

currencies. Some of the benefits of this approach are that only one option needs to be managed

instead of many, and there are fewer transaction costs.

This section will focus on the derivation and statement of the Basket-Case Black-Scholes

Model. I will start by rewriting the models for each of the underlying assets in order to use Itô’s

Lemma. Then, I will propose a vector model for the underlying assets. With a vector model, I

will be able to derive the Basket-Case model. Finally, I will state the Basket-Case Black-Scholes

Model.

3.2.1 Asset Modification

One of the assumptions of the Basket-Case model, just like in the one-dimensional model,

is that each underlying asset follows a Geometric Brownian Motion. This means that, given a

Basket-Case option with N underlying assets, I will model each of the underlying asset prices by

dSi = rSidt+ σiSidWi, ∀i ∈ (1, 2, 3, ..., N), (3.14)

where σi is the volatility of the ith underlying asset, dWi is the Brownian Motion that will con-

tribute to the randomness in the change in value of the asset and N is the number of underlying

assets in the option.
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Based on the derivation of the one-dimensional model in Section 3.1, I may be tempted to

construct a risk-less portfolio and then use Itô’s Lemma to rewrite the differential of the value

of the option. Unfortunately, this will not work. The reason is because the model for each of

the underlying assets given in Equation (3.14) does not match the assumptions in order to use

Itô’s Lemma. More specifically, each of the dWi’s is not necessarily independent from the rest.

Physically, this is because the “randomness” in the changes in price for each underlying asset is

not necessarily independent. A change in the price of one asset very well might influence a change

in price of another asset.

In order to use Itô’s Lemma then, I will need to adjust the models for each of the underlying

assets to make this “randomness” independent. To do this, I will take some inspiration from linear

algebra and do something similar to building orthonormal basis vectors from a spanning set.

In order to correct my model in Equation (3.14), I will need to impose the following conditions

on the dSi terms:

1. Each dWi needs to be represented as

dWi =
N∑

j=0

αijdŴ
j,

where
{
dŴ j

}
j=1,...,N

are differentials of a Wiener Process and are pairwise independent

and each αij is simply a real number, and

2. for each dWi, I should still have

dWi ∼ N (0, dt)

and lastly

3. the correlation between dSi and dSj should equal a prescribed value, given by ρij .

These restrictions are ultimately a problem of finding some very special coefficients that will

allow me to represent each dWi term as a linear combination of linear independent Wiener Process

56



differentials in a convenient way. With this new formulation of each dWi term, and therefore each

dSi term, I will be able to use Itô’s Lemma. This is because the Wiener Process differentials in the

model will be pairwise independent.

The algorithm I am going to use to solve for these coefficients is a modified version of the

Gram–Schmidt process.

First, I will start with a set of pairwise independent Wiener Process differentials

{
dŴ j

}
j=1,...,N

. (3.15)

These will be a starting point for rewriting the models for the asset differentials.

Next, I will simply set the first asset differential to

dS1 = rS1dt+ σ1S1dŴ
1. (3.16)

To get the second asset differential, I will first impose the first condition to rewrite it as

dS2 = rS2dt+ σ2S2

(
α21dŴ

1 + α22dŴ
2
)
. (3.17)

Imposing the second condition, I see that

α21dŴ
1 + α22dŴ

2 ∼ N (0, dt) .
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Because of the linearity of the mean, and because each dŴ i ∼ N (0, dt), then the above sum is

already normally distributed with mean zero. This simply leaves a restriction on the variance. So,

var
(
α21dŴ

1 + α22dŴ
2
)
= var

(
α21dŴ

1
)
+ var

(
α22dŴ

2
)

= α2
21 var

(
dŴ 1

)
+ α2

22 var
(
dŴ 2

)

=
(
α2
21 + α2

22

)
dt

=⇒ α2
21 + α2

22 = 1. (3.18)

Finally, imposing the third condition I see that

ρ12 = Corr (dS1, dS2) =
Cov (dS1, dS2)√
var (dS1) var (dS2)

=
Cov

(
dŴ 1, α21dŴ

1 + α22dŴ
2
)

√
var
(
dŴ 1

)
var
(
α21dŴ 1 + α22dŴ 2

)

=
Cov

(
dŴ 1, α21dŴ

1
)
+ Cov

(
dŴ 1, α22dŴ

2
)

√
dt · (α21 + α22) dt

=
α21 var

(
dŴ 1

)

dt

= α21. (3.19)

Thus, I see that α21 = ρ12. To find α22, I simply need to substitute this result into Equation (3.18)

α2
22 = 1− α2

21

=⇒ α22 =
√

1− ρ212. (3.20)
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Putting both Equations (3.23) and (3.20) together, I can substitute these results into Equation

(3.17) to get the full model for the second asset differential

dS2 = rS2dt+ σ2S2

(
ρ12dŴ

1 +
√
1− ρ212dŴ

2

)
. (3.21)

Because my thesis focuses on solving the three-dimensional Basket Case Model, I will continue

one more iteration of this process to get the model for the third asset differential.

So, using the first condition I have

dS3 = rS3dt+ σ3S3

(
α31dŴ

1 + α32dŴ
2 + α33dŴ

3
)
. (3.22)

Imposing the second condition will lead me again to the restriction that the variance of dS3

should equal dt. Thus,

var
(
α31dŴ

1 + α32dŴ
2 + α33dŴ

3
)
=
(
α2
31 + α2

32 + α2
33

)
dt

=⇒ α2
31 + α2

32 + α2
33 = 1. (3.23)

Finally, in order to impose the third condition, I need to consider two correlation coefficients:

ρ13 and ρ23. So, I will consider ρ13 first:

ρ13 =
Corr (dS1, dS3)√
var (dS1) var (dS3)

=
Corr

(
dŴ 1, α31dŴ

1 + α32dŴ
2 + α33dŴ

3
)

√
dt · dt

=
α31dt

dt

= α31. (3.24)
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Similarly, for ρ23, I have

ρ23 =
Corr (dS2, dS3)√
var (dS2) var (dS3)

=
Corr

(
ρ12dŴ

1 +
√

1− ρ212dŴ
2, α31dŴ

1 + α32dŴ
2 + α33dŴ

3
)

dt

=

(
ρ12α31 +

√
1− ρ212α32

)
dt

dt

= ρ12α31 +
√

1− ρ212α32 (3.25)

Now, I will substitute the result in Equation (3.24) into the above equation to obtain

α32 =
ρ23 − ρ12ρ13√

1− ρ212
. (3.26)

To get the last coefficient, I simply need to substitute the results from Equations (3.26) and

(3.24) into Equation (3.23)

α33 =

√√√√1− ρ213 −
(
ρ23 − ρ12ρ13√

1− ρ212

)2

. (3.27)

Finally, substituting the results from Equations (3.23), (3.24) and (3.26) into the model in

Equation (3.22)

dS3 = rS3dt

+ σ3S3


ρ13dŴ

1 +
ρ23 − ρ12ρ13√

1− ρ212
dŴ 2 +

√√√√1− ρ213 −
(
ρ23 − ρ12ρ13√

1− ρ212

)2

dŴ 3


 .

(3.28)
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This process will continue until a model for all N underlying assets is constructed. For my

three-asset case, I have the following models for the underlying assets:

dS1 = rS1dt+ σ1S1dŴ
1

dS2 = rS2dt+ σ2S2

(
ρ12dŴ

1 +
√

1− ρ212dŴ
2

)

dS3 = rS3dt

+ σ3S3


ρ13dŴ

1 +
ρ23 − ρ12ρ13√

1− ρ212
dŴ 2 +

√√√√1− ρ213 −
(
ρ23 − ρ12ρ13√

1− ρ212

)2

dŴ 3


 .

(3.29)

The benefit of rewriting my models for each underlying asset is that the Wiener Process differ-

entials are now independent, and the correlation between any two asset differentials, dSi and dSj ,

is ρij . In this way, I have prescribed the pairwise correlation between each asset differential, and I

have satisfied the conditions to be able to use Itô’s Lemma.

Before deriving the Basket Case Black-Scholes Model, I will do one more thing to my asset

models to make the derivation slightly easier: I will combine the three asset models above into

one vector model. This combining will make the use of the multi-dimensional Itô’s Lemma in

Equation (2.25) easier.

3.2.2 Multi-Asset Vector Model

The previous section described how to reformulate the underlying asset differential models into

a way that will allow me to use Itô’s Lemma. This section will focus on combining the models in

Equation (3.29) into one single vector model. The reason for doing this is to allow the easy use of

Equation (2.25).

Recall that a convenient way to represent the differentials of several stochastic processes is to

use what I will call the vector model of the stochastic differentials. This vector form is given by

dX = R (X, t) dt+G (X, t) dW(t), (3.30)
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where





Ri = Fi i = 1, . . . , N

Gij = G
j
i i, j = 1, . . . , N

dWi = dŴ i i = 1, . . . , N.

Here, Fi and G
j
i are the same as in Lemma 9 and N is the number of underlying assets that are

being modeled. Recall that F is a vector of random variables, and G is a matrix with random

variables as entries.

With this definition in mind, I will create a vector model for the models constructed in Equation

(3.29) as follows

dS = Rdt+GdW. (3.31)

Here I have suppressed the dependencies on S and t for clarity.

This model is not quite complete however, because I have not defined what R and G are. These

are not too difficult to get, luckily, as R simply describes the coefficients in front of the dt term

and G describes the coefficients in front of the dWi terms.

The R term is the easiest to extract, as this is simply given by

R =




rS1

rS2

rS3



. (3.32)

The G term is not quite as pretty, but after looking at the terms in front of each dW i term in

Equation (3.29), I have

G =




σ1S1 0 0

σ2ρ1,2S2 σ2

√
1− ρ21,2S2 0

σ3ρ1,3S3 σ3
ρ2,3−ρ1,2ρ1,3√

1−ρ2
1,2

S3 σ3

√
1− ρ21,3 − (ρ2,3−ρ1,2ρ1,3)2

1−ρ2
1,2

S3



. (3.33)
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With these two definitions, the vector model for the underlying assets differential is complete.

I have only shown the vector model for 3 underlying assets, but this of course can be extended to

N underlying assets.

This vector model will allow for the easy application of Itô’s Lemma, which is a core lemma in

deriving the Basket Case Black-Scholes Model, just as it was essential in deriving the single asset

model.

In the next section, I will use the vector model to derive the Basket Case model.

3.2.3 Basket-Case Derivation

I would now like to derive the Basket-Case Black-Scholes Model. Now that I have constructed

a model for the underlying assets that will be compatible with Itô’s Lemma, I will be able to

complete the derivation.

This derivation will follow a fairly similar pattern that was used in Section 3.1.2. I did com-

plete the jump from the single asset model derivation to this Basket-Case model’s derivation, with

most of the work being the vector and matrix representations of the statements in the single asset

derivation. This was particularly useful because it allowed for the concise writing of the derivation,

it will show clearly the parallels between the Basket-Case derivation and the single asset model,

and it will make the weak formulation much easier in the next chapter. Because most of the logic

was borrowed from the single asset model, however, this derivation is mostly credited to the book

by Evans [15].

First, I will start with a linear approximation of the value of the Basket-Case Option. If I

approximate this function at the current stock prices for each of the underlying assets, Sk, and at

the current time, tk, I have

V (S, t) ≈ V
(
S
k, tk

)
+∇S (V )

(
S
k, tk

)
·
(
S− S

k
)
+ Vt

(
S
k, tk

) (
t− tk

)
. (3.34)
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This is useful because, as long as the prices don’t fluctuate too much, then this is a good

approximation for the value of the Basket-Case option. This approximation also clearly separates

out the dependencies on both the asset prices and time.

What I will do then, is create a portfolio, whose price is given by P (S, t), that will remove the

“randomness” in the Basket-Case option’s price. To do this, just as in the single asset case, I will

subtract away the term that depends on S from the value of the Basket-Case option to get

P (S, t) = V (S, t)−∇S(V )
(
S
k, tk

)
· S. (3.35)

The usefulness of this specific portfolio, is that its change in value is very easy to calculate.

The reason for this is because this portfolio should have no risk associated with it, since I have

removed the only term from the Basket-Case option’s value function that contributes to the risk.

Now, because the portfolio P has no risk associated with it’s value, then it must grow at the risk-

free interest rate. In other words,

dP = rPdt. (3.36)

I have suppressed the dependencies on the asset prices and time here for clarity. I will continue to

do this to make things more clear.

Equation (3.36) is not the only way to represent the change in value of the portfolio P , however.

I can also use the original definition of the value of P given in Equation (3.34) to get

dP = dV −∇S(V ) · dS. (3.37)

With two equations for dP , I will set them equal to have

rPdt = dV −∇S(V ) · dS

=⇒ 0 = dV −∇S(V ) · dS+ r∇S(V ) · Sdt− rV dt, (3.38)

where I substituted P = V −∇S(V ) · S and moved all terms to the right hand side.
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At this point, I can use Itô’s Lemma to rewrite the dV term as

dV = Vtdt+∇S(V ) · dS+
1

2

(
GG

T
)
: ∇2

S(V )dt. (3.39)

Substituting this into Equation (3.38), I have

0 = Vtdt+∇S(V ) · dS+
1

2

(
GG

T
)
: ∇2

S(V )dt−∇S(V ) · dS+ r∇S(V ) · Sdt− rV dt

=

(
Vt +

1

2

(
GG

T
)
: ∇2

S(V ) + r∇S(V ) · S− rV

)
dt. (3.40)

The last step in the derivation is, just as in the single asset case, the only way for Equation (3.40)

to equal zero, the following must be true by the Fundamental Lemma of Calculus of Variations:

Vt +
1

2

(
GG

T
)
: ∇2

S(V ) + r∇S(V ) · S− rV = 0. (3.41)

This is the Basket-Case Black-Scholes PDE.

Just as in the single asset case, the crux of this derivation was delta hedging. It is also worth

noting that this derivation so closely parallels the single asset derivation because of the work to

write my models into a vector form, and that this derivation was only possible because of the

reformulation of the models for each underlying asset that was done in Section 3.2.1.

Next, I will discuss a few of the boundary conditions of the Basket-Case Model. These con-

ditions are just as important as the PDE itself, and are particularly interesting. The particular

boundary conditions that are of interest first, are the left-side boundary conditions. By left-side,

I mean boundary conditions that correspond to one of the underlying assets being equal to zero

for the lifetime of the option. As I will discuss in the following section, these particular boundary

conditions are very interesting because of how they require me to solve the Basket-Case Model.
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3.2.4 Left-Side Basket-Case Boundary Conditions

In order for me to fully state the Basket-Case Black-Scholes Model, I need to state the boundary

conditions as well. For this problem, the boundary conditions are particularly interesting because

they lead to a peculiar way of solving the PDE.

Suppose that I am trying to model a Basket-Case option with N underlying assets. As described

in Section 3.2.3, I can model the value of this option with a PDE. Instead of numerically solving

this one PDE, I will have to numerically solve several lower-dimensional versions of the PDE. The

reason is because of the boundary conditions: Each asset leads to a boundary condition that is the

solution to a lower-dimensional version of the Basket-Case Model. At the end of this section I will

detail exactly how many PDEs will need to be solved, but for now I would like to focus on why

the boundary conditions are what they are.

For a Basket-Case option with N underlying assets, then I will need 2N boundary conditions,

with N of these corresponding to one of the assets being zero for all times t. Let these N boundary

conditions be given by

V (S1, . . . , Si−1, 0, Si+1, . . . , SN) = Vi (S1, . . . , Si−1, Si+1, . . . , SN , t) , ∀i ∈ {1, . . . , N}.

Here, the i-th equation corresponds to the boundary condition where the i-th component of S

equals zero for all times t. But, if the value of this asset, Si, is worthless for all time t, then the

value of the option is not impacted by this asset whatsoever. This means that the value of the

option depends only on the other N − 1 assets. In other words, the value of the option when the

i-th underlying asset is worthless is simply the solution to the Basket-Case Black-Scholes PDE

with the underlying assets being the other N − 1 assets.

The only ‘kink’ in the above line of logic is at the dimensions of zero and one. A Basket-Case

option with one underlying assets and zero underlying assets doesn’t really make sense, so I will

have to define what is meant here. For the one-dimensional Basket-Case option, I will define this
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to be the single asset option, and for the zero-dimensional Basket-Case option, I will define this to

be an option that is always worthless.

The definition for the one-dimensional Basket-Case option follows from the fact that a sin-

gle asset option is simply a special case of the Basket-Case option. The definition for the zero-

dimensional Basket-Case option is because this is the boundary condition for the one-dimensional

Basket-Case option when the asset is worthless for all times t. Intuitively, however, this is because

if there are no underlying assets, then there is really nothing to trade.

These boundary conditions are extremely important and interesting because in order to solve

an N -dimensional Basket-Case Model, I must first solve N − 1 lower-dimensional problems. And

of course, to solve each of the N − 1 problems, I must solve N − 2 of their lower-dimensional

problems for their boundary conditions.

Therefore, to solve an N -dimensional Basket-Case Model, I will have to first solve for the

left-side boundary conditions. Following the pattern above, the number problems that I will have

to solve is

# of problems =
N∑

i=1

(
N

i

)
= 2N − 1.

The left-side boundary conditions for the Basket-Case Model are very important to the model

itself, and add some interesting complexity to the problem. Not only does the problem become in-

creasingly more difficult to solve numerically with each additional underlying asset because of the

“curse of dimensionality”, but there are several nested lower-dimensional Basket-Case problems

to solve as well.

With the left-side boundary conditions understood, I will move on to stating the other boundary

conditions as well as the initial condition.
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3.2.5 Basket-Case Boundary and Initial Conditions

This subsection will focus on a discussion of the boundary conditions and the initial condition

for the three-dimensional Basket-Case Model. These are just as important to the model as the PDE

itself, and it is important that I discuss them and what their physical interpretation is.

My thesis focuses on numerically solving the three-dimensional version of this model, which

corresponds to having three underlying assets. The choice of three underlying assets was made for

two reasons. The first being that three assets is enough to explain the theory behind the Basket-Case

Model. The second reason is because solving this problem with more than three assets becomes

computationally infeasible with my resources.

In the three-dimensional model, there are six boundary conditions and one initial condition.

The first three boundary conditions describe the case when one of the underlying assets is equal

to zero for the lifetime of the option. These have already been discussed in great detail in Section

3.2.4, but I will give a short summary here for completeness. These three boundary conditions all

have the same structure, so I will discuss only one of them. The others have a very similar physical

meaning as well. So, the first boundary condition takes the form of

V (0, S2, S3, t) = V1(S2, S3, t), ∀(S2, S3) ∈ Ω2 × Ω3, ∀t ∈ [0, T ].

This boundary condition states that when the first asset is worthless for the lifetime of the

option, then the value of the overall option only depends on the value of the other two underlying

assets and time. This is precisely the solution to the two-dimensional model using the other two

underlying assets. In other words, the value of the overall option when the first asset is worthless

for the lifetime of the option is simply the value of a different Basket-Case option for the other two

underlying assets.

The next three boundary conditions describe the value of the overall option when one of the

underlying assets is extremely large. They too, have the same basic structure, so I will only discuss
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one of them. The first of these three states

V (S, t) → S1 −Ke−rt, S1 → ∞, ∀(S2, S3) ∈ Ω2 × Ω3, ∀t ∈ [0, T ].

This boundary condition states that when one of the underlying assets grows very large, then

the corresponding put option will almost certainly not be exercised. Therefore, by Put-Call Parity,

I can derive the value of the call option to be simply the value of the asset minus the discounted

strike price.

Finally, the last condition is the “initial” condition. I put this in quotes because this is really

a condition at the expiration time, but with a simple change of variables (which will be done

later when I begin to solve the PDE), it is transformed into an initial condition. Nonetheless, this

“initial” condition takes the form of

V (S, T ) = max (∥S∥1 −K, 0) ∀S ∈ Ω.

This condition simply gives the value of the option at expiration time, t = T . The reason why

I am assigning a final value instead of an initial value here is because the value of the option at

expiration time is much easier to calculate, as it can only be one of two things. If the sum of the

values of the underlying assets is greater than the strike price, then an investor will exercise the

option and its value will be the difference between these two values. Otherwise, the option will not

be exercised and is worthless.

In the next section, I will state the entire Basket-Case Model for three dimensions.

3.2.6 Three-Dimensional Basket-Case Black-Scholes Model

With the PDE derived in Section 3.2.3, and the boundary conditions discussed in Section 3.2.4,

I can fully state the Basket-Case Black-Scholes Model.

The Basket-Case Black-Scholes Model in three-dimensions is stated as follows:
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Model 2 (Three-Dimensional Basket-Case Black-Scholes Model). Suppose that a Basket-Case

call option, with strike price K and expiration time T , consists of three underlying assets whose

values follows a Geometric Brownian Motion. Let their values be given by S1(t), S2(t) and S3(t).

Then, let

S = (S1, S2, S3)
T
.

Suppose the risk-free interest rate is given by r, the volatility of the i-th asset is given by σi and the

correlation between the i-th and j-th asset is given by ρij . Finally, suppose that

Ω = Ω1 × Ω2 × Ω3,

where Ωi represents the set of possible values of the i-th asset. Then the value for the call option,

V (S, t), is modeled by

Vt +
1

2

(
GG

T
)
: ∇2

S(V ) + r∇S(V ) · S− rV = 0, (3.42)

with boundary conditions given by

V (0, S2, S3, t) = V1(S2, S3, t), ∀(S2, S3) ∈ Ω2 × Ω3, ∀t ∈ [0, T ] (3.43)

V (S1, 0, S3, t) = V2(S1, S3, t), ∀(S1, S3) ∈ Ω1 × Ω3, ∀t ∈ [0, T ] (3.44)

V (S1, S2, 0, t) = V3(S1, S2, t), ∀(S1, S2) ∈ Ω1 × Ω2, ∀t ∈ [0, T ] (3.45)

V (S, t) → S1 −Ke−rt, S1 → ∞, ∀(S2, S3) ∈ Ω2 × Ω3, ∀t ∈ [0, T ] (3.46)

V (S, t) → S2 −Ke−rt, S2 → ∞, ∀(S1, S3) ∈ Ω1 × Ω3, ∀t ∈ [0, T ] (3.47)

V (S, t) → S3 −Ke−rt, S3 → ∞, ∀(S1, S2) ∈ Ω1 × Ω2, ∀t ∈ [0, T ] (3.48)

V (S, T ) = max (∥S∥1 −K, 0) ∀S ∈ Ω, (3.49)
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where Vi is the solution to the two-dimensional Basket-Case Model with all underlying assets

except for the i-th asset.

Here I have stated the problem that I will be solving in my thesis. In my thesis, I will numeri-

cally solve this problem using the Finite Element Method (FEM).

3.3 Chapter Summary

In this chapter, I discussed the theory required to understand the Basket-Case Black-Scholes

Model in three dimensions. This all lead to the main goal of this chapter, which was to state the

model.

I started by introducing the one-dimensional model, sometimes called the Single Asset Model,

because it helped me understand how to derive the Basket-Case Model. In this section, I talked

about how delta-hedging can be thought of as a linear approximation of the value of the option.

This was important, because it was a key piece in the derivation of the Single-Asset Model [8]. This

derivation is sometimes called the delta-hedging argument because of its use of delta-hedging.

I then moved on to trying to derive the Basket-Case Model. I started by noticing that I must do

some sort of modification to the models for each underlying asset in order to use Itô’s Lemma. I

modified these models by taking some inspiration from linear algebra and using something similar

to the Gram-Schmidt Algorithm. After rewriting the models for each of the underlying assets,

I used the same delta-hedging argument from the Single-Asset Model derivation to derive the

Basket-Case Model.

I then took the time to discuss the interesting boundary conditions with this Model. As I dis-

cussed in Section 3.2.4, the left-side boundary conditions are actually lower-dimensional solutions

to the Basket-Case Model. This was surprising, and lead to a rather interesting requirement when

trying to solve the original problem: I need to solve each of the lower-dimensional problems before

I can solve the original problem.

Lastly, I stated the Basket-Case Black-Scholes Model in three dimensions. The next chapter

will focus on numerically solving this problem using a Finite Element Method (FEM).
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Chapter 4

Numerical Solution

This chapter will focus on the numerical solving of the problem given in Section 3.2.6. For my

thesis, I will be solving this problem using the Finite Element Method (FEM).

I will start by first bounding the domain. In the original model, I pose no upper limits on the

domain, or the values that the underlying assets can take on. In order to solve the problem with a

numerical method, I will have to bound this domain, and then solve on this bounded domain.

Next, I will quickly describe a rewriting of the model. It will be helpful for me to rewrite the

model one last time in order to make the construction of the weak formulation of the PDE easier.

Then, I will talk about some of the important properties of the PDE that will justify the method

I will use to solve the PDE. I will be using an Implicit-Explicit (IMEX) method to discretize the

spatial domain, and thus I will need to justify the use of this method.

Finally, I will move on to the construction of the weak formulation of the PDE. This section

is where I will spend the most time in this chapter because it is one of the more important aspects

to the numerical solution proposed in my thesis. As mentioned above, I will be using an IMEX

method to discretize the spatial domain, and here I will explain in detail the particular discretization

I will be using.

At the end of this chapter, I will have the weak formulation for my PDE. This weak formulation

will then be used in a C++ program that I have written, using a Finite Element Library known as

deal.II, to solve the PDE [5].

4.1 Truncation of the Spatial Domain

Before solving the Basket-Case Model, I need to truncate the spatial domain. The original

model proposed in Section 3.2.6 did not impose any upper limits on the spatial domain, so in this

section I will discuss what restrictions I will use to truncate the domain.
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Recall that my spatial domain is simply the tensor product of the domains for each underlying

asset. Therefore, it will be sufficient to bound the domain for each underlying asset.

There are two values then, that I need to prescribe in order to bound an asset’s domain. These

values are the minimum and maximum values that each asset will obtain. Because the minimum

value is easier to understand, I will prescribe this value first.

Realistically, the asset’s lowest value is achieved when it is worthless. This means that the

lowest value that I will let each asset achieve in my model is a value of zero. So here, I have

0 ≤ Si(t), ∀i ∈ {1, 2, 3}. (4.1)

The upper bound for each asset’s value is a bit trickier to prescribe. In reality, there is no limit

to how valuable an asset can be. I therefore need to choose a value that is “big enough” in order

for me to still be able to understand the solution to the PDE and how it behaves. This “big enough”

value is for me to decide, but it should be something that will allow me to see mostly how the

solution to the PDE behaves. I will, therefore, look at the boundary conditions for my model to

see how the solution to the PDE should behave as an asset’s value gets very large. Recall, that this

condition takes the form of

V (S, t) → ∞, Si → ∞.

This equation holds for all assets, so I only need to consider one of them to understand the rest.

Now, with this condition, I see that the value of the option simply grows very large as the value of

one of the underlying assets grows very large. Notice that this tells me that the value of the option

doesn’t really depend on how large the strike price, K, is when the value of the underlying asset

gets “big enough”. This is intuitively because the cost of the strike price becomes insignificant

after a certain point. This means that any increases in the value of the asset after this “big enough”

value, won’t make a large difference in how the solution to the PDE behaves. So, to prescribe an

upper bound for the value of the underlying assets, I will choose an asset value that is on the order
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of 10 times the strike price. This value was chosen empirically by increasing the value of the upper

bound of the asset value until no differences in the solution were found. This condition gives me

the following

Si(t) ≤ 10K, ∀i ∈ {1, 2, 3}. (4.2)

Putting Equations (4.1) and (4.2) together, I arrive at the following bound for the values of each

underlying asset

0 ≤ Si(t) ≤ 10K, ∀i ∈ {1, 2, 3}. (4.3)

To construct the entire bounded domain, I will simply have the tensor product of all three of

these bounded domains.

These bounded domains are created to allow me to get an understanding of the solution to the

PDE. In my thesis, I am not actually concerned with the value of the solution at any time and asset

price, but I am more concerned with building an understanding of how the solution behaves. If I

wanted to know the value of the option when one of the assets had a value outside of this bounded

domain that I have constructed, then I could simply increase the size of the domain to include this

value. Since I am concerned with the behavior of the solution, then this domain will be sufficient

for my thesis.

In the next section, I will describe one final reformulation of my model so that the weak for-

mulation is easier to construct.

4.2 Conservative Formulation

This section will focus on the reformulation of my model into what is known as the Conserva-

tive Formulation. Recall that the Basket-Case PDE that I stated in Section 3.2.6 was

Vt +
1

2

(
GG

T
)
: ∇2

S(V ) + r∇S(V ) · S− rV = 0. (4.4)
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This form of the PDE is known as the non-conservative form. Unfortunately, in this form, the weak

formulation is not very easy to construct. If I reformulate the PDE into it’s conservative form, then

the weak formulation construction will be much easier.

The biggest reason for my desire to change to the conservative formulation is because of the

1

2

(
GG

T
)
: ∇2

S(V ) (4.5)

term, which will be difficult to integrate by parts when I am constructing the weak formulation.

To start, I will give a lemma that will help me rewrite the term in Equation (4.5). This lemma

is a special case of the product rule for vector valued functions.

Lemma 11. Suppose that M (S) is a matrix that is a function of the vector S. Suppose also that

V (S) is a function of the vector S. Then,

∇S · (M [∇SV ]) = (∇S ·M) · ∇SV +M : ∇2
SV. (4.6)

Here,

∇S · (M [∇SV ]) represents the divergence of the vector M [∇SV ] ,

∇S ·M represents the divergence of the matrix M,

and ∇2
SV represents the Hessian of the function V.

The proof of this lemma took inspiration from the proof of the multi-dimensional stochastic

product rule. This is seen through the use of Einstein notation in this proof to rewrite the left-hand

side of the equation. I will simply expand the term on the right using Einstein Notation to show

that it equals the right-hand side.
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Proof. Using Einstein Notation, I can rewrite ∇S · (M [∇SV ]) as

∇S · (M [∇SV ]) =
∂

∂Si

(
Mij (∇SV )j

)

=
∂

∂Si

(Mij)
∂V

∂Sj

+Mij

∂2V

∂Si∂Sj

.

At this point, I have simply expanded the left-hand side into its sum representation, and then

applied the “normal” product rule. I am allowed to do this, because each term is simply a partial

derivative of a real-valued function, instead of the original vector-valued function I started trying

to differentiate. Next, I notice that the term

∂

∂Si

(Mij)

is something very special. This term, by definition, is the j-th term of the divergence of a matrix.

So, I see that I can rewrite the equation as follows

∇S · (M [∇SV ]) = (∇S ·M)j (∇SV )j +Mij

(
∇2

SV
)
ij
.

Here, I almost have the right-hand side that I am looking for. The only thing that I need to do is

deal with the last remaining terms. This is done by interpreting the sums as their vector operations

to leave me with

∇S · (M [∇SV ]) = (∇S ·M)j (∇SV )j +Mij

(
∇2

SV
)
ij

= (∇S ·M) · ∇SV +M : ∇2
SV.

This then, completes the proof.

I am now ready to rewrite the Basket-Case PDE into its conservative form. I will do this by

using Lemma 11 to rewrite the “difficult” term in Equation (4.5). First, however, I will perform the
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following minor substitution to make the notation easier

A :=
1

2

(
GG

T
)
. (4.7)

With this substitution, the Basket-Case PDE becomes

Vt +A : ∇2
S(V ) + r∇S(V ) · S− rV = 0. (4.8)

I see here, that the second term in Equation (4.8) resembles one of the terms in Lemma 11. More

specifically, by applying Lemma 11 and rearranging some terms, I see that

A : ∇2
SV = ∇S · (A [∇SV ])− (∇S ·A) · ∇SV. (4.9)

So, substituting this into Equation (4.8) and combining like terms, I finally arrive at the Con-

servative Formulation for the Basket-Case PDE:

Vt +∇S · (A [∇SV ]) + [rS− (∇S ·A)] · ∇SV − rV = 0. (4.10)

In this section, I have rewritten the Basket-Case PDE from its Non-Conservative Formulation

into its Conservative-Formulation. This new formulation, seen in Equation (4.10), may appear

more complex, but will be much easier to deal with in the next section when I am constructing the

weak formulation. The reason is because the conservative form will be much easier to integrate by

parts.

I will use the conservative form in the following section to construct the weak formualtion for

the Basket-Case Black-Scholes PDE.

77



4.3 Weak Formulation

This section will focus on constructing the weak formulation of the PDE stated in Equation

(4.10). Constructing the weak formulation is a crucial step in generating a numerical solution

using the Finite Element Method, so I will go into great detail explaining this construction.

I will first explain the need for a slight change of variables in order to deal with the “final”

condition that I have for the Basket-Case Model. Then, I will describe how to use the weak

formulation to generate a system of linear equations that I will use to generate a solution to the

PDE. This part will be done in several subsections because I want to take the time to describe all of

the parts. After this, I will state the system of linear equations that are going to be solved. Finally, I

will give a bit of theory justifying a few of my decisions when constructing the weak formulation.

These will have to do with the convergence of the numerical solution.

4.3.1 Time Reversal

The Basket-Case Model stated in Section 3.2.6 has a somewhat peculiar condition. Instead of

an initial condition, I have a final condition. This means that I have a condition on the value of the

option at expiration time, instead of at the initial time. In order to correct for this, I will make the

following change of variables

τ = T − t. (4.11)

This change of variables simply reverses the time, which will let me solve the PDE in reverse.

So, with this change of variables, the Basket-Case PDE becomes

Vτ −∇S · (A [∇SV ])− [rS− (∇S ·A)] · ∇SV + rV = 0. (4.12)

This PDE will now be the one that I will actually generate a weak formulation for. With the

time reversal that I have done, the final condition now becomes a true initial condition. In the next

section, I will begin the weak formulation of this PDE. This process begins with the discretization

of the time domain.
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4.3.2 Time Domain Discretization

In order to construct a weak formulation to the Basket-Case PDE, I will first discretize my time

domain. This process is important because it allows me to construct solutions on small pieces of

the time domain, and then “stitch” these solutions back together at the end to create the complete

solution. For my numerical solution, I will do this by partitioning up the time domain into Nt

evenly sized intervals. This will result in the following partition:

[0, T ] = [τ0 = 0, τ1) ∪ [τ1, τ2) ∪ · · · ∪ [τNt−2, τNt−1 = T ). (4.13)

It is also worth noting that in this partition, each interval has a width of

k =
T

Nt

. (4.14)

I will call this value, k, the step-size. In my thesis, this value will remain constant. It should be

noted, however, that this value does not have to be constant. I am choosing to use a constant value

here because my thesis is focused on generating a numerical solution to the Basket-Case Model,

not optimizing the calculation of this numerical solution.

Since the step-size is constant, I can express the left-hand side of each interval as

τn = nk, n ∈ {0, . . . , Nt − 1} . (4.15)

This is helpful because I can then discuss the value of the option at each of these points. Instead

of trying to get the value at each point in time, I will simply calculate the value at each of the

points in Equation (4.15). This is the first step in creating the system of linear equations that I will

ultimately solve. So, I will let

V n(S) = V (S, τn). (4.16)
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Next, I need to approximate the time derivative using this discretization. I will do this using a

first order explicit approximation of the form

Vt ≈
V n(S)− V n−1(S)

k
(4.17)

Not only do I need to rewrite the time derivative using this time discretization, but I also need to

rewrite all of the other terms in the PDE. In order to accomplish this, I will use a theta-scheme. This

method has been used to solve diffusion-reaction equations because of its usefulness in splitting

the diffusion and non-diffusion terms [3] [18]. This method allows for me to solve the diffusive

terms in a separate way than the non-diffusive terms. The PDE I am solving in my thesis is a

diffusive-advective-reactive PDE, but this method is still useful because of the ability to split the

diffusive terms from the non-diffusive terms.

So, using Equation (4.17) to rewrite the time derivative, and the theta-method to rewrite the

other terms, I have

0 =
V n − V n−1

k

− (1− θB)∇S ·
(
A
[
∇SV

n−1
])

− θB∇S · (A [∇SV
n])

− (1− θC) [rS− (∇S ·A)] · ∇SV
n−1 − θC [rS− (∇S ·A)] · ∇SV

n

+ (1− θM) rV n−1 + θCrV
n.

(4.18)

Here, I have suppressed the dependence on S, and I have also moved the non-zero terms to the right

side of the equation for clarity. Notice also, that I have allowed myself the liberty of assigning a

different theta value to each term. I will discuss in the following sections what exactly these thetas

should be, but I want to emphasize that I will be using different values depending on the properties

of each term.

With Equation (4.18) constructed, I have finished the time-discretization of the Basket-Case

PDE. In order to arrive at this equation I had to do several things. I first had to partition my time
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domain into evenly spaced intervals. Then, I approximated the time-derivative using a first order

approximation. Finally, I had to use a theta-method to rewrite the other terms in the PDE.

Next, I will perform the spatial discretization. A few more interesting things will happen there,

because I will have to deal with the diffusive, advective and reactive terms all separately since they

all have slightly different properties.

4.3.3 Spatial Discretization

The time discretization is only half of the creation of the weak formulation. The other half is

the spatial discretization.

For this, I will consider partitioning each of the asset price domains into Ns equally sized

intervals. Because my spatial domain is the tensor product of three of these asset price domains,

then this process will result in (Ns)
3 cubes.

At this point, I will define a test function that is piece-wise tri-linear on each of these cubes.

This will result in the the set

{
φi(S) | 1 ≤ i ≤ (Ns)

3
}

(4.19)

of test functions. These will be considered a set of basis functions for my space of solutions. What

this means, is that I will approximate my actual solution at each time-step, V n, by another function,

V n
h , that can be expressed as

V n
h (S) =

(Ns)3∑

j=1

V n
j φj(S). (4.20)

Expressing the numerical solution like this means that I really only need to solve for the coef-

ficients V n
j . How exactly I will solve for these coefficients is the major topic of this section. This

idea, however, is the main idea of the Finite Element Method, and it is how I am ultimately going

to construct a numerical solution to the Basket-Case Model.

So, in order to solve for these coefficients, I am going to construct the weak formulation of the

PDE. To do this, I will simply multiply Equation (4.18) by each test function, φj , and then integrate

over the domain, Ω. For convenience, I will also multiply this equation by k in order to get rid of
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fractions. Doing this, I arrive at the following equation:

0 =

∫

Ω

φi

[
V n − V n−1

]
dS (4.21)

− k

∫

Ω

φi

[
(1− θB)∇S ·

(
A
[
∇SV

n−1
])

− θB∇S · (A [∇SV
n])
]
dS (4.22)

− k

∫

Ω

φi

[
(1− θC) [rS− (∇S ·A)] · ∇SV

n−1 − θC [rS− (∇S ·A)] · ∇SV
n
]
dS (4.23)

+ k

∫

Ω

φi

[
(1− θM) rV n−1 + θCrV

n
]
dS. (4.24)

I have suppressed the dependencies on S in this equation for clarity. Also, note that this equation

must hold for all test functions in the set given in Equation (4.19).

This equation is quite complex and has several parts to it, so I will evaluate each part separately

in the following subsections. What is important to see here is that, when I eventually substitute

Equation (4.20) for the solution at each time-step, I will have a system of equations with (Ns)
3

unknowns and (Ns)
3 equations. This will be the system of linear equations that I will ultimately

solve in order to get the numerical solution.

First Integral

The first integral I am going to examine is given in Equation (4.21). This integral has two parts

that have the same general form ∫

Ω

φiV
ndS. (4.25)

There are some minor differences between the two parts, but I will account for these at the end of

this section.

First, I will approximate V n by Equation (4.20), to rewrite the integral as

∫

Ω

φiV
ndS ≈

∫

Ω

φi

(Ns)3∑

j=1

V n
j φjdS.

Recall that each V n
j is simply a scalar, and that I am trying to solve for these scalars.
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Now, I can pull out the sum, since it is a finite sum, and rearrange some terms to get

∫

Ω

φi

∑

j=1

V n
j φjdS =

∑

j

V n
j

∫

Ω

φiφjdS.

Here, I have taken the liberty of suppressing the limits of summation for clarity.

Next, I will use the following definition to further simplify the integral.

Definition 9. Suppose that f and g are integrable functions over domain Ω. Then, define

(f, g) :=

∫

Ω

fgdx.

Using this definition, I can rewrite the integral term and get

∫

Ω

φi

∑

j=1

V n
j φjdS =

∑

j

V n
j (φi, φj)

=
∑

j

V n
j Mij,

where Mij := (φi, φj). Recall that this equation must hold for all test functions, φi. Therefore, this

integral leads to the following set of linear equations:

MV
n. (4.26)

Finally, going back to the original integral in Equation (4.21), this integral leads to the following

set of linear equations:

MV
n −MV

n−1. (4.27)

It is worth noting that in the literature, this matrix M, is often referred to as the mass matrix

[21].

In this section, I started with a system of (Ns)
3 equations in the form of integrals and rewrote

them in terms of a matrix multiplied by a vector. This was accomplished by using Equation (4.20)
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to approximate the solution to the PDE, and then grouping terms together to arrive at the matrix-

vector product. With this representation, I will be solving for the coefficients that correspond to

each basis function. With these coefficients then, I will be able to construct the numerical solution

to the PDE.

I only need to construct these matrix-vector products for the other integrals.

Second Integral

The next integral I am going to examine is given in Equation (4.22). This integral also has two

parts that have the same general form

−
∫

Ω

φi∇S · (A [∇SV
n]) dS. (4.28)

As with the previous section, I will examine this integral and account for the differences at the

end.

One difference between this integral and the previous one is that here, I will have second-

derivative terms for the solution in this integral. For this reason, I cannot simply replace V n

with its approximation given in Equation (4.20). Recall, that this approximation has “kinks”, and

therefore I cannot have second-derivative terms. Therefore, I will use integration-by-parts to get

rid of this second-derivative term. Doing this, I will rewrite the integral as

−
∫

Ω

φi∇S · (A [∇SV
n]) dS = −

∫

∂Ω

φi (A [∇SV
n]) · dS+

∫

Ω

∇Sφi · (A [∇SV
n]) dS. (4.29)

At this point, I will use one last property of these test functions: they are all zero at the boundary

of the domain. This means then, that Equation (4.29) will simply become

−
∫

Ω

φi∇S · (A [∇SV
n]) dS =

∫

Ω

∇Sφi · (A [∇SV
n]) dS. (4.30)

In this equation, there are no more second-derivative terms for the solution. I am allowed,

therefore, to replace V n with its approximation. So, I will follow the same pattern I followed in
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Section 4.3.3 to derive the matrix-vector product version of these system of equations. I will go

ahead and take the liberty of suppressing the limits of summation when using the approximation

for V n for clarity. So,

∫

Ω

∇Sφi · (A [∇SV
n]) dS =

∫

Ω

∇Sφi ·
(
A

[
∇S

(∑

j

V n
j φj

)])
dS

=

∫

Ω

∇Sφi ·
(∑

j

V n
j A [∇Sφj]

)
dS

=
∑

j

V n
j

∫

Ω

∇Sφi · (A [∇Sφj]) dS

=
∑

j

V n
j (∇Sφi,A [∇Sφj]) .

Here again, just as in Section 4.3.3, I will create a matrix from the inner product term. There-

fore, I will let

Bij = (∇Sφi,A [∇Sφj]) , (4.31)

which will make the system of linear equations become

BV
n. (4.32)

Accounting for the differences between the general integral and the real integral in Equation

(4.22), I arrive at the following system of linear equations:

k (1− θB)BV
n−1 + kθBBV

n. (4.33)

In this section, I derived the matrix-vector form of the weak formulation. The main point

that I want to highlight in this section is the use of integration-by-parts. If I had not written the

Basket-Case PDE into its conservative form, then this step would have been very difficult. The

integration-by-parts step allowed me to substitute for the approximation of the solution, which

allowed me to derive the matrix-vector form of the weak formulation.
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Third Integral

The third integral I am going to examine is given in Equation (4.23). As before, this integral

has 2 parts and I will consider a general form of the integral. This general form looks like

−
∫

Ω

φi [rS− (∇S ·A)] · ∇SV
ndS. (4.34)

For simplicity, I will go ahead and distribute the negative sign in front of the integral to the

terms inside. This results in

∫

Ω

φi [(∇S ·A)− rS] · ∇SV
ndS. (4.35)

In the above integral, I have no second-derivative terms for V n, so I am allowed to substitute

V n for its approximation. Doing this is very similar to the previous sections, so I will be a bit more

brief. Doing the substitution and grouping terms together, I have

∫

Ω

φi [(∇S ·A)− rS] · ∇SV
ndS =

∫

Ω

φi [(∇S ·A)− rS] · ∇S

(∑

j

V n
j φj

)
dS

=
∑

j

V n
j

∫

Ω

(φi [(∇S ·A)− rS] ,∇Sφj)

=
∑

j

V n
j Cij

= CV
n,

where I defined the matrix, C, by

Cij := (φi [(∇S ·A)− rS] ,∇Sφj) .

Finally, after accounting for the differences between the general integral and the integral in

Equation (4.23), I have the following system of equations represented with matrix-vector multipli-
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cation:

k (1− θC)CV
n−1 + kθCCV

n. (4.36)

This system of linear equations was not much different than the previous two, so I took the

liberty of only highlighting the important steps. The key here again, was to substitute for the

approximation and group terms.

Fourth Integral

The final integral I need to examine is given in Equation (4.24). As I have done several times

already, I will first consider the general form of this integral:

∫

Ω

φiV
ndS. (4.37)

This integral is exactly the general integral considered in Section 4.3.3, so I will directly sub-

stitute the results from that section to obtain the following system of equations expressed as a

matrix-vector product:

kr (1− θM)MV
n−1 + krθMMV

n. (4.38)

With this system of equations represented as a matrix-vector product, I have completed the

spatial discretization of the Basket-Case PDE. In the past four sections, I have taken each set of

integral equations and expressed them as matrix-vector products. The importance of doing this, is

that these equations become much simpler to solve for each V n
j . These coefficients are what I am

trying to solve for as well, because with them, I can reconstruct the numerical solution.

In the next section, I will put the past four sections together to build the full weak formulation

model.

4.4 Complete Model

In the previous section, I outlined the spatial discretization. This section will focus on taking

the results from Section 4.3.3 and compiling them into one complete weak formulation. Once I
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have the complete system of equations that need to be solved, I can use a computer program to

calculate the individual coefficients, V n
j .

Putting together the results from the previous section, I have the following weak formulation:

0 = MV
n −MV

n−1

+ k (1− θB)BV
n−1 + kθBBV

n

+ k (1− θC)CV
n−1 + kθCCV

n

+ kr (1− θM)MV
n−1 + krθMMV

n.

(4.39)

This equation is the result of the time and spatial discretizations that I have done up to this

point. I am almost ready to solve this equation for the coefficients, but I have one more problem I

need to work out. I need to determine what each θ should be equal to. I stated at the beginning of

this chapter that I would use a theta-method in the time-discretization, but I would decide exactly

what values of θ to use later based on the properties of the problem.

I am going to ultimately want a system of equations that I can use to solve for Vn, given that

I already know V
n−1. The method for solving the linear system of equations I am going to use is

the Conjugate Gradient Method. For this method to work, however, I need to make sure that the

matrix that is being multiplied by V
n is Symmetric Positive Definite (SPD). So, I will choose each

θ to give me stability along with convergence.

First, I will look at the matrix C. Recall that this matrix is given by

Cij := (φi [(∇S ·A)− rS] ,∇Sφj) .

Because this matrix is not symmetric, it will not be allowed to be multiplied by V
n. In other words,

I will have to treat these terms in an explicit manner. So, I will choose

θC = 0. (4.40)
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Next, I will look at the matrix B. This matrix, as it turns out, is Symmetric Positive Semi-

Definite (SPSD). To show this, I will first take a look at the matrix A.

Lemma 12. The matrix A as given in Equation (4.7) is SPSD.

Proof. Recall that A is given by

A =
1

2

(
GG

T
)
.

To show symmetry, I need to show that AT = A. So,

A
T =

(
1

2
GG

T

)T

=
1

2

(
GG

T
)T

=
1

2
GG

T

= A

Therefore, the matrix A is symmetric.

To show positive semi-definiteness, I need to show

x
T
Ax ≥ 0, ∀x ̸= 0.

So, let x be a non-zero vector in R
3. Then,

x
T
Ax = x

T

(
1

2
GG

T

)
x

=
1

2

(
G

T
x
)T (

G
T
x
)

=
1

2
∥GT

x∥2

≥ 0.

Thus, the matrix A is SPSD.
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I needed to show that the matrix A was SPSD because this matrix is an important component

in the matrix B. My real goal is to show that the matrix B is SPSD, but I first needed to show this

for the matrix A. I want this SPSD property for the matrix B because then I will be able to use the

Conjugate Gradient Method to solve for terms that include B. So, I will now show that the matrix

B is SPSD.

Lemma 13. Suppose the matrix B is given by

Bij = (∇Sφi,A [∇Sφj]) .

Then this matrix is SPSD.

Proof. I want to show that the matrix B is both symmetric and positive semi-definite. So, I will

first show the symmetry of this matrix. To do this, I will show that Bij = Bji. So,

Bij = (∇Sφi,A [∇Sφj])

=

∫

Ω

∇Sφi ·A∇SφjdS

=

∫

Ω

∂φi

∂Sk

(A∇Sφj)k dS,

where I expanded the dot product using Einstein Notation in the last line. Continuing the expan-

sion, I have

Bij =

∫

Ω

∂φi

∂Sk

(A∇Sφj)k dS

=

∫

Ω

∂φi

∂Sk

Akr

∂φj

∂Sr

dS.
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Now, at this point, I will use the result from Lemma 12. More specifically, I will use the fact that

the matrix A is symmetric. Thus,

Bij =

∫

Ω

∂φi

∂Sk

Akr

∂φj

∂Sr

dS

=

∫

Ω

∂φi

∂Sk

Ark

∂φj

∂Sr

dS

=

∫

Ω

∂φj

∂Sr

(A∇Sφj)r dS

=

∫

Ω

∇Sφj ·A∇SφidS

= Bji.

Thus, the matrix B is symmetric because Bij = Bji. The next step, then, is to show the positive

semi-definiteness property. For this, I will consider a non-zero vector in R
n, say x. Then,

x
T
Bx = xi (Bx)i ,

where I have used Einstein Notation again to expand things. Continuing, I have

x
T
Bx = xiBijxj

= xi

(∫

Ω

∇Sφi ·A∇SφjdS

)
xj

=

∫

Ω

xi

∂φi

∂Sk

Akrxj

∂φj

∂Sr

dS.

At this point, I will make the following substitution

uk := xi

∂φi

∂Sk

. (4.41)
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The reason is because, with this substitution, some of the terms collect nicely:

x
T
Bx =

∫

Ω

xi

∂φi

∂Sk

Akrxj

∂φj

∂Sr

dS

=

∫

Ω

ukAkrurdS

=

∫

Ω

u
T
AudS.

At this point, I will use the other half of the result from Lemma 12. Because the matrix A is

positive semi-definite, I know that the integrand is never negative. Therefore, the overall integral

will never be negative either. So, I must have

x
T
Bx =

∫

Ω

u
T
AudS

≥ 0.

With this, I have proved that the matrix B is SPSD.

In fact, it comes as no surprise that the matrix B is SPSD. The reason is because this term

corresponds to the diffusive term in the Basket-Case PDE. Therefore, it should have this property.

Furthermore, because this term corresponds to the diffusive part of the PDE, I will want to solve it

with some sort of implicit scheme. Therefore, because of its good convergence rate, I will use the

Crank-Nicolson Scheme for the terms corresponding to the matrix B [22]. This corresponds to

θB =
1

2
. (4.42)

Finally, I simply need to choose a value for θM . For this, I will choose

θM =
1

2
(4.43)
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as well in order to keep the O(k2) convergence that I get from the Crank-Nicolson Method. So,

substituting these values for my various thetas, Equation (4.39) I get:

0 = MV
n −MV

n−1

+ k
1

2
BV

n−1 + k
1

2
BV

n

+ kCV
n−1

+ kr
1

2
MV

n−1 + kr
1

2
MV

n.

(4.44)

Finally, grouping terms together and moving all of the Vn terms to the left side of the equation,

I have ([
1 +

1

2
kr

]
M+

1

2
kB

)
V

n =

([
1− 1

2
kr

]
M− 1

2
kB− kC

)
V

n−1. (4.45)

This, finally, is the fully-discrete formulation for the Basket-Case Black-Scholes Model that I

will be using to solve the PDE.

Before I close this chapter, I should note one more thing about how this will actually be solved.

In order to solve for the coefficients at the n-th time-step, I will have to invert the matrix

[
1 +

1

2
kr

]
M+

1

2
kB. (4.46)

The need to invert this matrix is most of the reason that I went through the effort to prove

Lemma 13. Because the mass matrix, M, is SPD, then the matrix in Equation (4.46) must be SPD

as well. This is because, along with k and r being positive values, the matrix B is SPSD. Thus,

since this matrix is SPD, I can use the Conjugate Gradient Method to invert this matrix and solve

for the coefficients.

Recall that in the construction of the weak formulation in Equation (4.45), I decided to handle

the diffusive terms differently than the other terms. In particular, I handled them differently than

the advective term, which corresponds to the term with the matrix C. In some cases, this may lead

to instability if the advective terms are too “important” relative to the diffusive terms [16]. In the
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next section, I will discuss this topic slightly in order to give an understanding of why I did not

include any extra terms to handle instability.

4.5 Peclet Number

This section will focus on a value called the Peclet Number. Because the Basket-Case PDE has

an advection and a diffusive term, there may be instability in solving for the numerical solution

using the weak formulation I proposed in Equation (4.45). In some cases, some extra terms are

needed to have stability, but as I will give evidence for in this section, this is not the case in the

numerical scheme I have presented in this thesis.

The Peclet Number, as it concerns to my thesis, is a number that relates the advection of the

value of the option to the diffusion of the value of the option. It is a dimensionless value, and is

defined on each cell of the mesh. Given a uniform mesh with each cell having a diameter of h, the

Peclet number is given by:

Pcell (S, h) =
β(S)h

κ(S)
. (4.47)

Here,

β(S) = ∥rS−∇ ·A(S)∥2 and, (4.48)

κ(S) = ∥A(S)∥2. (4.49)

Physically, this value is trying to find the ratio of the “advective-ness” of the PDE to the

“diffusive-ness” of it. The β term corresponds to the amount of this “advective-ness”, while the κ

term corresponds to the amount of “diffusive-ness”.

If Pcell (S, h) ≪ 1, then diffusion is dominating in a cell with diameter h. This is desirable,

because then there is no need to introduce an extra diffusion term for stability.

It is important to notice that the Peclet Number is dependent on both the width of the cell, h,

and the spatial values, or the underlying asset values, represented by S. Since the value of h → 0 as
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the mesh is discretized more, it is sufficient to show that a related value, that I’ll call the Modified

Peclet Number is simply less than 1. I’ll define the Modified Peclet Number, or MPN below as:

MPN(S) =
β(S)

κ(S)
. (4.50)

Although the condition that the MPN < 1 is not the same as the Peclet Number being much less

than 1, it is more stringent and easier to analyze. Thus, I will use this more stringent condition to

analyze the Peclet Number of the Basket-Case PDE.

Plotting the MPN in a 2-dimensional domain, I see two important features. One, is that

the MPN is very large for values of S close to 0. The second feature I notice in this plot is

that MPN → 0 as S → ∞. The first observation initially indicates that the PDE is advective

dominated in this region, and thus may require some stabilization techniques. It turns out that,

although the PDE is advection dominated in the region close to the origin, I do not need to use

any stabilization techniques here. One reason for this is because the solution is so smooth here.

The boundary conditions here are a constant value of 0. When looking at this through the lens of

a Fourier Analysis, I can see that there are virtually no high frequency components to the solution

in this area. This means that, although the PDE is advection dominated here, there are virtually

no high frequency components to cause instability in the solution. Thus, no stabilization is needed

here. The second observation indicates that very quickly after the values of the underlying assets

begin to have value, the MPN falls below 1. This tells me that when the values of the underlying

assets are not close to 0, then the PDE is diffusion dominated and thus needs no stabilization

techniques.

Altogether, after analyzing the MPN, I can see that I need no stabilization techniques to solve

this PDE, and thus my FEM discretization should result in a stable solution.

4.6 Chapter Summary

In this chapter, I developed the weak formulation for the Basket-Case Black-Scholes Model.
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Figure 4.1: Modified Peclet Number 2-D.

I started by truncating the spatial domain of my model. This was necessary in order for me to

apply the Finite Element Method. I simply chose a value that was “large-enough” in order for me

to understand the behavior of the solution to the PDE.

Next, I reformulated the PDE in order to help with the construction of the weak formulation.

Originally, I had the PDE stated in its non-conservative form. To make the weak formulation

easier to construct, I decided to convert the PDE to its conservative form. This was because the

conservative form was much easier to integrate-by-parts in order to get rid of the second derivative

of the solution, V n.

Then, I began the time-discretization. I began by partitioning the time domain into several

equally sized intervals. Then, with this partition, I used an approximation for the time derivative of

the value of my option. Finally, I used a theta-method to discretize the rest of the PDE with respect

to time.

Next, I discretized my spatial domain. I did this by also partitioning the space domain into

several equally sized “cells”. Then, I constructed some piece-wise linear basis functions on each

of these cells. With these basis functions, I was able to construct a weak formulation by multiplying

my PDE by these basis functions and integrating over the domain.
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Then, to complete my weak formulation, I had to choose values for the various thetas. These

values depended on the characteristics of each piece of the weak formulation that the thetas corre-

sponded to.

Finally, I discussed the reason for no stability terms being necessary in my numerical approach.

The reason was because the Basket-Case PDE is diffusion-dominated. I used the Peclet Number

to analyze the need for stability terms in my numerical approach, and decided that I did not need

artificial stabilization because of the PDE being diffusion-dominated.

With this weak formulation, I can now use a computer program to solve for the various coeffi-

cients. For my thesis, I used a C++ library called deal.II to write a program that solves for the

coefficients using the weak formulation given in Equation (4.45). The results of this program will

be discussed in the next chapter.
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Chapter 5

Results

Taking the weak formulation that I generated in Section 4.4, I wrote a C++ program using the

Finite Element Library called deal.II [5]. The source code for this program can be found on

my github page [2].

In this chapter, I will analyze the output from my program. First, I will look at two different

views of the three-dimensional solution. Looking at a solution with three spatial dimensions and

one time dimension would require a four-dimensional plot. I cannot hope to look at the entire

solution then, so I will look at two different views of the solution that can still give me some

insight into how the solution behaves.

Next, I will describe a way that I verified that the code was implemented in the way I described.

I will also show some output from this process and I will describe it in detail.

Finally, I will talk about the convergence of my numerical solution. In particular, I will be

concerned with the H1 and L2 convergence. I will also discuss the numerical error some.

5.1 Three-Dimensional Solution

This section will focus on the visualization of the solution to the Basket-Case Black-Scholes

Model. As I stated in the introduction to this chapter, I will have to be creative in order to visualize

the solution. The interesting thing in the solution, in fact, is the “kink” that is present along the

plane formed by

S1 + S2 + S3 = K (5.1)

at the initial time. Therefore, I will present two visualizations to show this “kink” and to explain

the physical interpretation of it. The first image I will present is a look at the iso-surfaces with

solution values that are small. By looking at these iso-surfaces, I hope to show how the kink gets

smoothed out.
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(a) Initial Time. (b) Expiration Time.

Figure 5.1: Iso-Surfaces of solution to 3D Basket-Case Model.

Iso-surfaces of the solution to a three dimensional Basket-Case option with strike price K = $0.5.

The second image I will present is an elevation of a two dimensional slice of the domain. I will

choose a non-boundary slice and show that the kink gets smoothed out in this case as well. With

this elevated slice, I will also be able to visualize a part of the kink very clearly.

The reason that I am concerned with the kink is because this is the most interesting part of

the solution. There are several reasons for this, but perhaps a simple explanation for this is the

following. Recall from Section 4.5, the PDE behaves in a largely diffusive manner. Therefore, I

should expect that the initial condition with the kink should smooth out some as time advances.

This is not a rigorous proof, but for the purposes of my thesis, this intuition is an explanation for

why I am interested in this kink.

I will begin by looking at the iso-surfaces of the solution.

5.1.1 Iso-Surfaces

The first images I will look at are found in Figure 5.1. These are images of iso-surfaces of the

solution when the solution values are between zero and five. I chose these values because I wanted
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to look at iso-surfaces for low values of the option, which is where I will be able to see properties

of the kink in the solution.

In these images, I see that at the expiration time, the iso-surfaces are all parallel planes. In

contrast, at the initial time, these iso-surfaces are not the same. At the initial time, these iso-

surfaces start to curve towards the origin and they curve more as the option’s value is less.

This shows the smoothing out of the kink in the solution. At the expiration time, the value of

the option is either zero, or it is a linear function. This means that the iso-surfaces at the expiration

time should all be flat planes. The option will suddenly have a non-zero value when the sum of the

values of the underlying assets is greater than the strike price. This is seen in Figure 5.1b because

the iso-surfaces are all flat planes, including the iso-surface for when the solution has a value of

zero.

In contrast, the iso-surfaces at the initial time look much different than they do at the expiration

time. These surfaces have a curvature to them, and get more curved as the solution value gets

closer to zero. From a diffusive perspective, this shows the smoothing out of the kink that was

present at the expiration time. This kink becomes a curve that becomes more curved as the sum of

the asset values approaches the strike price.

Physically, this has a very nice interpretation. At the expiration time, the value of the option

is very clear. Given the values of the underlying assets, I can give an exact value for the option

because the values of the underlying assets are known. As I get further away from the expiration

time, however, the value of the option becomes less clear because the values of the assets could

change. I do not know what they will be worth at the expiration time.

If the value of the option is very large, then the values of the underlying assets must be very

large compared to the strike price. In this case, the random fluctuations in the values of the assets

doesn’t matter very much, because they are already very valuable and it is unlikely that they will

fall dramatically in value. This is due to the distribution of the values of each asset being a log-

normal distribution. This is seen in the iso-surfaces being relatively flat as the value of the option

gets further from zero. Because the fluctuations in the asset values doesn’t matter very much in
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Figure 5.2: Two-Dimensional Slice of Domain.

this case, then the iso-surfaces will not be distorted very much from what they looked like at the

expiration time.

If, on the other hand, the value of the option is very low, then the values of the underlying

assets sum up to be very close to the strike price. In this case, the fluctuations in the asset values

could cause them to sum up to something other than the strike price. This would cause the value

of the option to be either worthless, or worth something. Unfortunately, it is not so clear what the

value of the option will be in this case. So, the randomness in the asset values heavily distorts the

iso-surfaces and results in introducing a curvature to them.

In conclusion, the iso-surfaces show that the kink was smoothed out from the expiration time.

This “smoothing out” effect comes from the diffusive nature of the Basket-Case Black-Scholes

PDE. At expiration time, the iso-surfaces are all flat planes, but become curved at the initial time.

This curvature, becomes more pronounced as the value of the option approaches zero as well.

In the next section, I will look at one more image, which is the elevated slice. This image will

actually show a kink in the solution that gets smoothed out.
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(a) Initial Time for Elevated Slice. (b) Expiration Time for Elevated Slice.

Figure 5.3: Elevated Slice at Initial Time and Expiration Time.

Two dimensional elevated slices with K = $0.5.

5.1.2 Two-Dimensional Slice

In this section, I will look at another visualization of the solution. I will take a two-dimensional

slice of the domain, and then plot the solution in this sliced domain. I have chosen to take a slice

that is perpendicular to the S1 − S2 plane and is at an angle of 45◦ off of the S1 axis. This slice is

visualized in Figure 5.2. I chose this slice because it will cut through the kink in the solution, and

therefore will give me a way to visualize part of the kink.

The elevated solution is plotted in Figure 5.3, with the initial and expiration times of the solu-

tion shown. At the expiration time, I can clearly see the kink in the solution where the value of the

option goes from zero to something non-zero. Then, at the initial time, I see that this kink has been

smoothed out. There is now a gradual curve going from a worthless option to a non-zero valued

option.

Plotting the solution along a slice of the domain allows for me to visualize the kink in the

solution as well as the smoothing out of the kink.

5.2 Method of Manufactured Solutions

In this section, I will discuss how my code was verified. Because I do not have a three-

dimensional solution to verify against, I must find another way to provide confidence that my

code is correct.
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Figure 5.4: MMS Solution Iso-Surfaces.

Iso-surfaces for f(S1, S2, S3, τ) = 6− S2
1 − S2

2 − S2
3 − τ2.

I will use something called the Method of Manufactured Solutions to verify not only the weak

formulation that I created in Section 4.4, but also the order of accuracy of my numerical solution

[23].

This approach, in essence, requires me to choose an analytical solution. This choice of solution

will bring with it boundary conditions and forcing terms. Then, I run my code against this new

problem to verify that my program constructs the chosen solution. If it does, then I can have

confidence that my code was implemented correctly. In addition to this, I can also refine the mesh

in a systematic way to calculate the convergence rate of the numerical solution.

The steps for how to perform this have been done many times, and I will direct the reader to a

paper by Patrick J. Roache for the steps and an example for how this process is done [23].

For my thesis, I will choose the analytic solution of

V (S, τ) = 6−
3∑

i=0

S2
i − τ. (5.2)

This solution is a three-dimensional version of an upside down parabola. This solution was chosen

because it is non-trivial, but also has an easily recognizable solution.
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In Figure 5.4, I have plotted the iso-surfaces of the solution generated by my program using

the Method of Manufactured Solutions. Here, I can see that the iso-surfaces are that of a three-

dimensional upside down parabola. This gives me some amount of confidence, at least visually,

that the code is correct.

The importance of this method is that it gives me a way to verify that my code is implemented

correctly. I selected a non-trivial analytical solution to use in this method. Then, I visually verified

that the solution was correct by looking at the iso-surfaces of the numerical solution generated.

Next, I will use the Method of Manufactured Solutions to calculate the convergence of my numer-

ical scheme and get the errors in the numerical solution.

5.2.1 Convergence and Error

It is good to visually inspect that the code is implemented correctly, but I also need to make sure

that my numerical scheme will converge to the correct solution. By this, I mean that as I refine the

mesh, I should get closer and closer to the exact solution to the Basket-Case Black-Scholes Model.

To do this, I used the Method of Manufactured Solutions again, but this time I solved on

several different meshes. In each iteration, I performed a global mesh refinement and then ran

my numerical simulation again and calculated the error. The results from this process are seen in

Tables 5.1 and 5.2.

In Table 5.1, I can see that the global error with respect to the L2 and L∞ norms get smaller

as the mesh is refined. I also see this same effect when looking at the H1 semi-norm. From

an application perspective, this is desirable because it shows that I should be able to accurately

calculate the value of a three-asset Basket-Case Model if I simply refine my mesh enough. It should

be noted that this “good enough” accuracy may be very computationally expensive, however.

In Table 5.2, I see that the convergence rates with respect to the L2 norm and H1 semi-norm are

what is to be expected based on common numerical analysis theory [9]. Two important columns

that I will point out are the Error Reduction Rate (ERR) column and the log2(ERR) column.
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Table 5.1: Error Table.

Table showing relationship between the refinement of the mesh and the global errors with respect to

various norms and semi-norms.

# cells # dofs L2-error H1-error L∞-error

1 8 1.314× 102 5.649× 101 1.643× 101

8 27 3.110× 101 2.821× 101 4.118
64 125 7.615 1.402× 101 1.036

512 729 1.878 6.995 2.598× 10−1

4096 4913 4.654× 10−1 3.495 6.505× 10−2

32768 35937 1.146× 10−1 1.747 1.627× 10−2

The ERR column describes how the error has reduced with respect to the previous error. With

respect to the H1 semi-norm, I see that the error gets cut in half for each global refinement that is

done on the mesh. With respect to the L2 norm, the error seems to drop by a factor of four with

each global refinement that is done on the mesh.

The log2(ERR) column is important to look at because of what a global refinement means. With

each global refinement done on the mesh, the diameter of each cell, given by h, is made smaller

by a factor of 2. Therefore, I can use this column to see what the convergence rate with respect to

different norms and semi-norms is. With respect to the H1 semi-norm, I see that the convergence

rate must be O(h). With respect to the L2 norm, the convergence rate is O(h2). These show me

that, in addition to the error getting smaller as the mesh is refined, I also have some sense as to how

much smaller the error gets with each refinement. This gives me an idea for how much refinement

I will need if I need a certain level of accuracy.

This section has covered how my numerical solution converges and what the errors are at vari-

ous levels of mesh refinements. I see that the numerical solution proposed in my thesis converges

on the order of O(h2) with respect to the L2 norm, and converges on the order of O(h) with re-

spect to the H1 semi-norm. These are exactly what should be expected based on numerical analysis

theory.
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Table 5.2: Convergence Rate Table.

Table showing the convergence rates with respect to the H1 semi-norm and the L2 norm.

H1-error L2-error

# cells Error ERR log2(ERR) Error ERR log2(ERR)

1 5.649× 101 - - 1.314× 102 - -

8 2.821× 101 2.00 1.00 3.110× 101 4.22 2.08

64 1.402× 101 2.01 1.01 7.615 4.08 2.03

512 6.995 2.00 1.00 1.878 4.05 2.02

4096 3.495 2.00 1.00 4.654× 10−1 4.04 2.01

32768 1.747 2.00 1.00 1.146× 10−1 4.06 2.02
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Chapter 6

Summary and Conclusion

In this thesis I have discussed a numerical solution to the Basket-Case Black-Scholes Model

with three underlying assets. In particular, this thesis focused on pricing a European Call Basket-

Case Option.

I began my thesis by giving an introduction into basic Stochastic Calculus that was necessary

in deriving the model in Chapter 2. This chapter gave many theorems that ultimately resulted in an

understanding of Itô’s Lemma, which was a crucial lemma in deriving the model.

Then, in Chapter 3, I gave a derivation of both the one and multi-dimensional model. The one-

dimensional model, which was originally proposed in [8], was important for understanding the

derivation of the multi-asset model. In this chapter, I also gave discussions on the rather interesting

boundary conditions that were present in the Basket-Case version of the model. These boundary

conditions were interesting because they were lower-dimensional solutions. This resulted in hav-

ing to solve not one, but seven Black-Scholes models in order to get a numerical solution to the

three-dimensional model. This chapter ended with a complete statement of the three-dimensional

Basket-Case Model.

Next, in Chapter 4, I presented a numerical scheme that I employed to construct a numerical

solution to the three-dimensional Basket-Case Model. I used a theta-method to discretize the time

domain, and then I used an IMEX scheme to discretize the spatial domain. An IMEX scheme was

used in order to handle the diffusion and advection terms separately. I also discussed the Peclet

Number for this model, which gave a reasoning for no stabilization terms being necessary in my

numerical scheme. This chapter concluded with a fully-discrete formulation to the Basket-Case

Model.

Finally, in Chapter 5, I presented the results from using the fully discrete formulation I pre-

sented in Chapter 4. I presented a few figures to show the ’kink’ in the solution. Then, I discussed

how I used the Method of Manufactured Solutions to validate my code. I used an upside down
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parabola as my manufactured solution, and I saw that my program was able to construct a numer-

ical solution for this manufactured solution correctly. Finally, I used this method to also calculate

errors and convergence rates. I saw that my numerical scheme was able to achieve a convergence

rate on the order of O(h2) with respect to the L2 norm, and a convergence rate on the order of

O(h with respect to the H1 semi-norm. These convergence rates are what is expected based on

numerical analysis theory.

In conclusion, the Finite Element Method is a useful tool in constructing a numerical solution

to the Basket-Case Black-Scholes Model with three underlying assets. Although other numerical

methods may be used to construct a solution to this model, I chose the FEM because of its use in

solving other diffusion-dominated PDEs and because of my interest in this method. This method

does become difficult to use when the option covers more than three underlying assets, however

it may be useful for options with a low number of underlying assets. Employing this method

has given me a greater understanding of the PDE in this model, and how to construct numerical

solutions to PDEs in practice using the FEM.
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