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ABSTRACT

A PENALIZED ESTIMATION PROCEDURE FOR VARYING COEFFICIENT MODELS

Varying coefficient models are widely used for analyzing longitudinal data. Various

methods for estimating coefficient functions have been developed over the years. We revisit

the problem under the theme of functional sparsity. The problem of sparsity, including

global sparsity and local sparsity, is a recurrent topic in nonparametric function estimation.

A function has global sparsity if it is zero over the entire domain, and it indicates that the

corresponding covariate is irrelevant to the response variable. A function has local sparsity

if it is nonzero but remains zero for a set of intervals, and it identifies an inactive period

of the corresponding covariate. Each type of sparsity has been addressed in the literature

using the idea of regularization to improve estimation as well as interpretability. In this

dissertation, a penalized estimation procedure has been developed to achieve functional

sparsity, that is, simultaneously addressing both types of sparsity in a unified framework.

We exploit the property of B-spline approximation and group bridge penalization. Our

method is illustrated in simulation study and real data analysis, and outperforms the existing

methods in identifying both local sparsity and global sparsity. Asymptotic properties of

estimation consistency and sparsistency of the proposed method are established. The term

of sparsistency refers to the property that the functional sparsity can be consistently detected.
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CHAPTER 1

Introduction

1.1 Varying Coefficient Model and Its Interpretation

In today’s scientific studies, lots of observations are taken at different time points for

each subject, and the information collected in this way are called longitudinal data. To find

the linear relationship between response and predictors in longitudinal data, statisticians

introduced in varying coefficient model as an extension to linear regression model. Varying

coefficient model offers more flexibility in terms of allowing the coefficients varying over time

for the predictors. In other words, the impacts of predictors on response are no longer fixed

but changeable over observation time. The traditional multiple linear regression model is

defined as

y = xTβ + ǫ, (1.1)

where y is the response, x is the vector of predictors and ǫ is the random error, while the

varying coefficient model is defined as

y(t) = xT (t)β(t) + ǫ(t), (1.2)

where y(t) is the response at time t, x(t) = (x1(t), . . . , xp(t))
T is the vector of predictors

at time t, ǫ(t) is an error process independent of x(t) and β(t) = (β1(t), . . . , βp(t))
T is a

vector of time varying regression coefficient functions. This model assumes a linear rela-

tionship between the response and predictors at each observation time point but allows the

coefficients to vary over time, thus greatly enhances the utility of the standard linear model

formulation. Additional flexibility can be gained by employing nonparametric approaches

to estimating the coefficient functions, as a parametric approach is limited to capturing the

covariate effects in a pre-specified class of functions and is thus prone to model misspecifi-

cation error. A potential difficulty in using nonparametric regression models however is the

issue of interpretability. Although the issue has always drawn attention from statisticians
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and scientists alike, traditionally this was considered as a separate issue from estimation,

and is often used in practice as a ground for preferring parametric model specifications.

Interpretability in a narrow sense only concerns how to describe the effect of a particular

covariate from the fitted model. For a nonparametric component, the effect is expressed as a

complex functional form, which does not render an easily recognizable pattern. In this case,

some constraints in the functional form would be helpful. Interpretability in a broader sense

includes the problem of model selection, as we seek a parsimonious description of the data for

a simpler and better interpretable solution. With increasing number of measurable variables

available, this becomes more relevant, and can be helped by many new developments in the

area of variable selection. These new developments aim at obtaining sparse solutions and

are applicable to both parametric and nonparametric regression models.

These notions of interpretability were informally used in a rather separate context of

the analysis. We argue that both notions of interpretability could be used more formally

in relation to the sparsity of the estimates. To distinguish between those two cases, we

call the former local sparsity and the latter global sparsity, and both constitute functional

sparsity [Tu et al., 2012, Wang and Kai, 2015]. Our purpose is to take both types of sparsity

into consideration for model fitting. In particular we focus on situations where (i) some of the

predictors do not contribute to forming the relationship and (ii) those contributing predictors

are not necessarily active in the whole period. Our estimation procedure is adapted to these

cases, producing consistent estimates under these scenarios. The idea of using constrained

estimation in this context is not new, however, most available methods address one or the

other, but not both. Our contribution is to provide a unified framework for constrained

estimation to achieve functional sparsity for varying coefficient linear models.

1.2 Review of Existing Variable Selection Methods

The global sparsity is widely discussed under the realm of variable selection in multiple

linear regression. Akaike’s information criterion (AIC, Akaike [1973]), Bayesian informa-

tion criterian (BIC, Schwarz [1978]), and extended BIC (EBIC, Chen and Chen [2008]) are
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methods dealing with the trade-off between the goodness of fit and complexity of the model

in order to achieve variable selection. The regularized regression approaches opened a new

chapter in variable selection, such as ridge regression [Hoerl and Kennard, 1970], lasso [Tib-

shirani, 1996], and SCAD [Fan and Li, 2001]. The success of lasso has brought about many

variants of regularized regression approaches, such as bridge regression [Frank and Friedman,

1993]. The implement of grouping methods makes the existing variable selection methods

more efficient while treating models with large number of parameters, such as group lasso

[Yuan and Lin, 2006] and group bridge [Huang et al., 2009]. For nonparametric regression,

Lin and Zhang [2006] and Ravikumar et al. [2009] extended the idea of lasso to variable

selection for additive regression models. An extension to varying coefficient linear models is

found in Wang et al. [2008], who proposed a regularized approach based on SCAD penalty.

The ridge regression penalty is defined as

pλ(β) = λ‖β‖22 = λ

p∑

i=1

β2
i .

Since it is based on the L2 norm of the vector of parameters, it is also considered as an

L2-penalty. Then the ridge regression estimate β̂ridge for linear model (1.1) is given by

β̂ridge = argmin
β

‖y −Xβ‖22 + λβTβ

= (XTX + λI)−1XTy.

The ridge regression criterion is equivalent to minimizing the squared error loss function

subjecting to ‖β‖22 ≤ θ. Although biases are introduced while shrinking the least squares

estimator, the solution is more robust when XTX is singular.

The lasso penalty is an L1-penalty, since it is defined as

pλ(β) = λ‖β‖1 = λ

p∑

i=1

|βi|.

Then the lasso estimate β̂lasso for linear model (1.1) is given by

β̂lasso = argmin
β

‖y −Xβ‖22 + λ‖β‖1.
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The lasso penalized criterion is equivalent to minimizing the squared error loss function

subjecting to ‖β‖1 ≤ θ. Its solutions can be efficiently solved by the lars algorithm [Efron

et al., 2004].

The bridge penalty is a modified lasso penalty which is defined as

pλ(β) = λ

p∑

i=1

|βi|γ,

where the tuning parameter 0 < γ < 1. Hence, the constrained area for bridge regression is
∑p

i=1 |βi|γ ≤ θ. Notice that the bridge penalty is not a convex function. The algorithm to

solve the optimization problem of bridge regression is stated in Section 2.3.

Figure 1.1 gives a two-dimensional geometric illustration of the constrained areas for

ridge, lasso and bridge (γ = 0.5) penalty functions with θ = 1. From this figure, we notice

that the constrained area is a circle for ridge regression, a square for lasso, and a star for

bridge regression. The grey circles in the figure represent contour lines for loss functions.

The tangent points for lasso and bridge regression are (0, 1), while, for ridge regression,

the tangent point is (1/
√
5, 2/

√
5). This means that lasso and bridge method can achieve

sparsity, i.e., zero estimates, compared to ridge regression. And bridge regression is even

more likely to shrink small values to zeros than lasso.

The SCAD penalty function is defined as

pλ(|β|) =





λ|β| if 0 ≤ |β| ≤ λ

− |β|2−2aλ|β|+λ2

2(a−1)
if λ < |β| < aλ

(a+1)λ2

2
if |β| ≥ aλ

where a is a tuning parameter, and Fan and Li [2001] suggested to choose a = 3.7. Under

various model settings, the SCAD penalty has been demonstrated to yield consistent esti-

mates for parameter estimation, which also possess the oracle property [Fan and Li, 2001].

Figure 1.2 gives a graphical illustration of the penalty functions mentioned above. Compared

with lasso penalty, SCAD penalty overlaps with lasso penalty when |β| ≤ λ, but has less

penalty on large values and remains constant eventually.
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The group lasso penalty is defined as

pλ(β) = λ

G∑

g=1

cg‖βAg
‖2,

where Ag is subset of {1, 2, . . . , p}, and Ag ∩ Al = ∅ for g 6= l. Here, βAg
is the vector of

parameters for the g-th group, and cg is the corresponding weight. The group lasso penalty

can be considered as a combination of L1-penalty across the groups and L2-penalty within

the groups. Therefore, this method, instead of selecting variables individually, selects the

groups of variables. Due to the ridge regression within groups and non-overlapping between

groups, group lasso method lacks the ability to achieve sparsity within the groups.

The group bridge method enables the variable selection across groups and within groups.

It can be expressed as

pλ(β) = λ

G∑

g=1

cg‖βAg
‖γ1 ,

where the groups Ag are allowed to overlap. Compared with group lasso penalty, the grouping

method here is more flexible. The group bridge penalty can be considered as a combination

of bridge penalty across the groups and L1-penalty within the groups.

Further, the problem of estimating the models with diverging number of predictors, es-

pecially when p is larger than n is another challenge in model selection. Fan et al. [2014]

extended an independence screening procedure for linear models [Fan and Lv, 2008] to non-

parametric varying coefficient linear models to reduce model complexity. Xue and Qu [2012]

also studied the problem of model selection under large-p-small-n setting.

The local sparsity is an emerging issue, mostly attached to nonparametric components.

With a purpose of highlighting the effect of the subset of the covariates, current efforts

concentrate on simplifying the estimated functional form in order to separate zero estimates

from non-zero estimates. Given the underlying continuity assumption of the functions, it is

desirable that estimation methods simultaneously determine an active region and an inactive

region of the covariates, rather than an active or inactive set of points. Recently James

et al. [2009] demonstrated, in the case of functional linear regression with scalar response
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variable, that variable selection ideas could be used to achieve this aim. Using B-spline

basis representation, they imposed sparsity constraints on the derivatives of the underlying

function at a large number of grid points. The procedure uses L1 penalty on the coefficients

through lasso or dantzig selector [Candes and Tao, 2007] for estimation of the coefficients in

order to induce exactly zero values in the estimate of the coefficient function for a connected

region, and thus remove uncertainty around wiggly fluctuation around zero. It turns out that,

due to the overlapping contribution of each coefficient to neighboring regions, independent

shrinkage of the coefficients does not necessarily induce zero values in the coefficient function

in general, and thus the procedure tends to over-penalize to compensate for indirect control

of sparsity. A remedy has been suggested by Zhou et al. [2013] as a two-step estimation

procedure with an explicit control of zero and non-zero regions, at the expense of simplicity

of the original formulation.

In an attempt to achieve functional sparsity, Tu et al. [2012] considered an alternative

regularization method in the context of functional dynamic models. The method proposed is

successful in identifying global sparsity but not local sparsity due to the user-defined grouping

structure in function approximation. Wang and Kai [2015] focused on local sparsity for single

covariate by introducing a new grouping structure.

1.3 An Overview of Our Approaches

In this dissertation, we consider the problem of sparse function estimation under more

general setting with multiple covariates. Although detecting sparsity can easily appeal to

our intuition, it turns out that this is very difficult to properly formulate in the context of

nonparametric function estimation. The major challenge lies in the fact that, for parametric

sparsity, an underlying sparse vector is specified whereas for functional sparsity its true sparse

representation may not be well defined in their respective linear approximation. In fact, the

notion of global sparsity can be formulated as variable selection in nonparametric additive

models, whose solution exhibits an analogy to regularized variable selection problems in
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high dimensional linear regression models; while, for local sparsity, such connection is non-

trivial. Most methods proposed in the literature to achieve local sparsity are more in line

with (multivariate) parametric methods, likewise, the assumptions and proofs rely on the

parametric property. In comparison, our assumptions of smoothness of the functions and

proofs are more standard in nonparametric regression and exploit the functional property

in more natural manner. Hence, our contribution is to bridge the gap between parametric

variable selection and nonparametric functional sparsity in a coherent manner. We also

extend our results to high dimensional case. Our theoretical results are extended from

fixed dimension p to diverging p. When facing p > n, we incorporate the nonparametric

independence screening procedure [Fan et al., 2014] to reduce the model complexity and

then proceed with our proposed method to estimate relevant coefficient functions.

Our formulation is given in Chapter 2. Our approach is a one-step procedure, and allows

us to directly control functional sparsity through the coefficient functions themselves, rather

than through their derivatives, hence removing the ambiguity of defining a sparse solution

in the latter. In Chapter 3, we study large sample properties of the proposed method and

establish consistency and convergence rates of function estimations. Chapter 4 describes

simulation studies under different scenarios and two examples of real data analysis are given

in Chapter 5. Main proofs are given in Chapter 6. The additional simulation results are

provided in Chapter 7.

This dissertation is based on a submitted paper [Tu et al., 2015].
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CHAPTER 2

Methodology

Suppose that, for n randomly selected subjects, observations of the kth subject are ob-

tained at {tkl, l = 1, . . . , nk} and the measurements satisfy the varying coefficient linear

model relationship in (1.2)

yk(tkl) = xT
k (tkl)β(tkl) + ǫk(tkl), (2.1)

where xk(tkl) = (x1(tkl), . . . , xp(tkl))
T and yk(tkl) is the response of the kth subject at tkl.

We assume that β(t) = (β1(t), . . . , βp(t))
T where βi(t), i = 1, . . . , p are smooth coefficient

functions with bounded second derivatives for t ∈ T . We use spline approximations to

represent β(t) and formulate a constrained optimization problem for parameter estimation.

2.1 Least squares estimation under B-spline approximation

B-spline approximation has been widely used for estimating smooth nonparametric func-

tions. For detailed discussion about B-splines, see de Boor [2001] and Schumaker [1981].

Specifically, for a smooth function β(t), t ∈ [0, 1], its approximant can be written as

β̃(t) =
J∑

j=1

αjBj(t), (2.2)

where {Bj(·), j = 1, . . . , J} is a group of B-spline basis functions of degree d ≥ 1 and knots

0 = η0 < η1 < . . . < ηK < ηK+1 = 1. Notice that K is the number of interior knots and

J = K + d + 1. Here we adopt the definition of B-spline as stated in Definition 4.12 of

Schumaker [1981]. In general, performance of B-spline approximation has been well studied.

For instance, under some mild conditions, there exists a function β̃(t) of the form (2.2) such

that the approximation error goes to zero. See Theorem 6.27 of Schumaker [1981] for more

details.
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We write the B-spline approximation for each smooth nonparametric coefficient function

as

β̃i(t) =

Ji∑

j=1

αijBij(t) = Bi(t)
Tαi, t ∈ [0, 1], i = 1, . . . , p, (2.3)

where Bi(t) = (Bi1(t), . . . , BiJi(t))
T , αi = (αi1, . . . , αiji)

T and Ji = Ki + d + 1. Here Ki is

the number of interior knots for β̃i(t) which may vary over i. For simplicity, we assume that

the knots are evenly distributed over [0, 1]. Define a block diagonal matrix B(t) as

B(t) = diag{BT
1 (t), . . . ,B

T
p (t)}.

Using (2.3) in the varying coefficient model (2.1) leads to

yk(tkl) ≈ xT
k (tkl)B(tkl)α+ ǫk(tkl) = Uk(tkl)α+ ǫk(tkl)

where Uk(tkl) = xT
k (tkl)B(tkl) and α = (αT

1 , . . . ,α
T
p )

T . The least squares criterion of α

[Huang et al., 2002] is defined as

ℓ(α) =
n∑

k=1

ωk‖yk −Ukα‖22

where yk = (yk(tk1), . . . , yk(tknk
))T and Uk = (UT

k (tk1), . . . ,UT
k (tknk

))T . Weights ωk, k =

1, . . . , n, are usually chosen as ωk ≡ 1 or ωk ≡ 1/nk [Huang et al., 2004]. In this dis-

sertation, for simplicity, we set equal weights to every subject, i.e., ωk ≡ 1. Putting

U = (UT
1 , . . . ,U

T
n )

T and y = (yT
1 , . . . ,y

T
n )

T , the least squares criterion l(α) can be written

in matrix form; that is, l(α) = ‖y −Uα‖22. Huang et al. [2004] proved that, under certain

assumptions, the matrix UTU is invertible for fixed p. We extended this result for diverging

p in Chapter 7. Consequently, l(α) has a unique minimizer

α̂LSE = (UTU )−1UTy,

which is the least squares estimator of α, and thus, the least squares estimators of coefficient

functions are

β̂LSE
i (t) =

Ji∑

j=1

α̂LSE
ij Bij(t), i = 1, . . . , p,

where α̂LSE
ij ’s are entires of α̂LSE.
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2.2 B-spline approximation and Sparsity

From the B-spline approximation theory, there exists a function of the form (2.2) which

is very close to the true underlying function. This function is not capable of characterizing

functional sparsity of the true function. Here the term “functional sparsity” is a generalization

of the “parameter sparsity" in regression models; see Wang and Kai [2015] for more details.

For better illustration, we consider a toy example in Figure 2.1. Here, in the top panel, a

smooth function β(t) (thick line) with two spline estimates (dashed, dottted) are depicted.

In the bottom, a family of cubic B-spline basis functions with 9 interior knots is shown. The

“best” fitted function from the L2 criterion is shown as the dashed line in the upper panel,

which signifies a good performance of the approximation. We further note that β(t) is zero

on [0, 0.1] and [0.9, 1]; while, its approximation is not zero except for some singletons. From

that aspect, this approximation does not capture the sparsity of the true underlying function.

In contrast, the dotted curve depicted in the upper panel, also a linear combination of the

B-spline basis functions, automatically corrects the function to preserve local sparsity with

almost indistinguishable performance.

Note that the least squares method produces consistent function estimates for coefficient

functions. Motivated by above discussion on functional sparsity, we develop a new procedure

that equips the least squares criterion with a regularization term. Usually, the regularization

on parameters is expressed in terms of penalty function. Below we introduce a composite

penalty based on the B-spline approximation of the coefficient functions.

2.3 Penalized Least Squares Estimation with Composite Penalty

It is not too difficult to see that global sparsity corresponds to group variable selection

of αi as a whole. To achieve local sparsity, these estimates need to be adjusted in such a

way that some of the estimates could be exactly zero. As demonstrated in Section 2.2, we

notice that for B-spline approximation, when αj = 0 for j = l, . . . , l + d, the approximation

β̃(t) = 0 on the interval [ηl−1, ηl), and especially, when αj = 0 for all j, β̃(t) = 0 over the
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Figure 2.1: Top: a graphical display of a smooth function (solid thick line type) and two
approximating functions from a family of cubic B-spline basis functions with 9 equally-
spaced interior knots. Bottom: a graphical display of the set of B-spline functions used in
the approximation.
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entire domain of [0,M ]. This suggests local sparsity needs to be imposed at the level of a

group of neighboring coefficients. To incorporate global sparsity in varying coefficient model,

there needs another layer of group structure. These considerations lead us to a composite

penalty defined as

Lγ
1(α) =

p∑

i=1

Ki+1∑

m=1

(
m+d∑

j=m

|αij|
)γ

,

which can be simply written as

Lγ
1(α) =

p∑

i=1

Gi∑

g=1

‖αAig
‖γ1 , (2.4)

where αAig
= (αig, . . . , αi(g+d))

′, i = 1, . . . , p, g = 1, . . . , Gi. The number of groups for the

ith coefficient function is Gi = Ki + 1.

Equipping the least squares criterion with penalty (2.4), we obtain the penalized least

squares (PLS) criterion

pl(α) = ‖y −Uα‖22 + λ

p∑

i=1

Gi∑

g=1

‖αAig
‖γ1 , (2.5)

where λ > 0 and 0 < γ < 1 are tuning parameters. The proposed penalized least squares

estimator (PLSE) α̂ = α̂(λ, γ) is defined to be the minimizer of pl(α). Consequently, the

functional estimate of βi(t) is given by β̂i(t) = Bi(t)
T α̂i, where α̂i is the subvector of α̂.

For γ ∈ (0, 1), the penalized criterion pl(α) is not a convex function of α. We implement

the iterative algorithm proposed and studied by Huang et al. [2009] to minimize (2.5). The

algorithm is outlined as follows.

Step 1. Obtain an initial value α(0).

Step 2. For a given tuning parameter λn, and for l = 1, 2, . . ., compute

θ
(l)
ig =

(
1− γ

τnγ

)γ

‖α(l−1)
Aig

‖γ1 , for i = 1, . . . , p, g = 1, . . . , Gi,

where τn = (λn/n)
1/(1−γ)γγ/(1−γ)(1− γ).
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Step 3. Compute

α(l) = argmin
α

‖y −Uα‖22 +
p∑

i=1

Gi∑

g=1

(θ
(l)
ig )

1−1/γ‖αAig
‖1.

Step 4. Repeat steps 2 and 3 until convergence.

2.4 Variance Estimation

In this section we consider the problem of finding the asymptotic variance of our proposed

estimator of the coefficient functions. Let α̂S denote the non-zero estimators of the coeffi-

cients αij’s, then by Step 3 in the aforementioned algorithm and the Karush-Kuhn-Tucker

condition, we have

α̂S =

(
UT

S US +
1

2
ΘS

)−1

UT
S y,

where US is the sub-matrix of U with each column corresponding to the selected αij, and

ΘS is a diagonal matrix

diag




∑

g:Aig∋j

θ̂
1−1/γ
ig /|α̂ij|, for α̂ij 6= 0



 .

The variance σ2 can be estimated by σ̂2 = ‖y −Uα̂‖22/n. Thus, similar to Wang et al.

[2008], the asymptotic variance of α̂S may be expressed as

avar(α̂S) =

(
UT

S US +
1

2
ΘS

)−1

UT
S US

(
UT

S US +
1

2
ΘS

)−1

σ̂2.

Let Bi(t) be the i-th row of the basis matrix B(t). Thus, the functional estimate of βi(t) can

be written as β̂i(t) = Bi(t)α̂. Correspondingly, the asymptotic variance of β̂i(t) is

avar(β̂i(t)) = BiS(t)avar(α̂S)BT
iS(t), (2.6)

where BiS(t) is the sub-vector of Bi(t) with each element corresponding to the selected αij.

Note that the estimator of α depends on the choice of λ, so the asymptotic variances of α̂S

and β̂i(t) are also tuning parameter dependent.
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2.5 Choice of Tuning Parameters

To implement the proposed method, it is necessary to select two tuning parameters,

0 < γ < 1 and λ > 0. The tuning parameter λ > 0 balances the trade-off between goodness-

of-fit and model sparsity. When λ is large, we have strong penalization and thus are more

likely to obtain a sparse solution with poor model fitting. On the other hand, with small λ,

we would select more variables and get better estimation results but lose control of functional

sparsity.

The tuning parameter γ influences the performance of group selection. Too small or too

large value of γ could lead to inefficient group variable selection. When γ is close to 1, (2.4)

is close to the L1 penalty. Consequently, the minimizer of (2.5) may not achieve the goal of

group variable selection. Small γ will results in large θig’s and will yield a sparse solution.

In this dissertation, we fix γ to 0.5 for computational purpose [Huang et al., 2009].

In classical nonparametric approaches, the criteria such as AIC, BIC and GCV [Wahba,

1990] are commonly used for choosing λ. It has been noted in previous analyses that the

AIC and GCV criteria tend to select more variables, and are better suited for prediction

purpose. We use a BIC-type criterion in our analysis reported in Chapter 4. However, when

comparing models with high dimensions, and the number of parameters also diverges with

sample size n, the ordinary BIC may not be as efficient as usual. Then we use the extended

BIC (EBIC) [Huang et al., 2010] to determine the choice of λ. The EBIC is given by

EBIC(λ) = log (‖y −Uα̂(λ)‖22/N) +K(λ) log(N)/N + νK(λ) log

(
p∑

i=1

Ji

)
/N,

where N =
∑n

k=1 nk, α̂(λ) is the penalized estimator of α given λ, and K(λ) is the total

number of non-zero estimates in α̂(λ). Moreover, 0 ≤ ν ≤ 1 is a constant and
∑p

i=1 Ji =
∑p

i=1(Ki+ d+1) is the total number of parameters in the full model. Note that when ν = 0

the EBIC is the same as BIC, but when ν > 0, EBIC puts more penalty on overfitting.
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2.6 Ultra-High Dimension Problem

We extend our proposed method to models with high dimensional p, in particular, to

models with the number of covariates p even larger than the sample size n. For ultra-high

dimensional models, it is inefficient to directly apply the interval-based group penalization

approach. To estimate large-p small-n models, we combine the nonparametric independence

screening method [Fan et al., 2014] with our proposed method. Those authors stated the

consistency of the screening step in model selection.

The outline of algorithm including initial screening step is stated as follows:

Step 1. For i = 1, . . . , p, compute

ui =
n∑

k=1

nk∑

l=1

[(β̂LSE
0i (tkl) + xi(tkl)β̂

LSE
i (tkl))

2 − (β̂LSE
0 (tkl))

2]

where β̂LSE
0 is estimate of model with only intercept term, and β̂0i and β̂i are estimates

of model with intercept term and the covariate xi. Sort ui from highest to lowest and

select the variables corresponding to the top M ui values.

Step 2. Follow the iterative algorithm in Section 2.3 with selected M variables, and find

the penalized least squares estimates.

For instance, when we start with a model with p = 1000 covariates while only a few of them

are important, in the screening step, M = 8 covariates are selected, and the original ultra-

high dimensional model is reduced to a model with 8 covariates. Afterwards, the penalized

method is applied to the reduced model for further investigation.
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CHAPTER 3

Large Sample Properties

We study large sample properties of our proposed penalized least squares estimator β̂i(t),

i = 1, . . . , p, when the number of sampled subjects n goes to infinity. We assume in the proofs

that the number of observations for each subject nk is bounded but a similar argument can

be applied to the case when nk increases to infinity with n [Huang et al., 2004]. The number

of interior knots increases with n, so we write Ki = Kin for each i = 1, . . . , p, and denote

Kn = max0≤i≤pKi. The standard regularity conditions for varying coefficient linear models

[Huang et al., 2004, Wang et al., 2008] are given in Chapter 6.

It is known that, by Theorem 6.27 of Schumaker [1981], any smooth coefficient function

βi(t) with bounded second derivative has a B-spline approximant β̃i(t) of form (2.3) and

the approximation error is of order O(K−2
in ). Denote its sparse modification introduced in

Section 2.3 by β̃0
i (t) with its coefficients α̃0.

For our mathematical convenience, we classify all group indices {1, . . . , Gi} for the coef-

ficient function βi(t) into two groups defined as

Ai1 = {g : max
t∈[ηg−1,ηg)

| βi(t) |> CiK
−2
n },

Ai2 = {g : 0 ≤ max
t∈[ηg−1,ηg)

| βi(t) |≤ CiK
−2
n },

for some positive constant Ci. For sufficiently large Ci, the zero region {t : βi(t) = 0} is a

subset of ∪g∈Ai2
[ηg−1, ηg).

Note that for a vector-valued square integrable function A(t) = (a1(t), . . . , am(t))
T with

t ∈ [0,M ], ‖A‖2 denotes the L2 norm defined by ‖A‖2 = (
∑m

l=1 ‖al‖22)1/2 where ‖al‖2 is the

usual L2 norm in function space.

Now, we establish the consistency of our proposed penalized estimator.

Theorem 1 (Consistency). Suppose that assumptions (A1)-(A5) in Chapter 6 are satisfied.

If 0 < γ < 1 and Kn = O(n1/5) and the following assumption
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(S1) for α̃0 defined above,

λn(d+ 1)1/2

(
p∑

i=1

∑

g∈Ai1

‖α̃0
Aig

‖2(γ−1)
1

)1/2

= O(n1/2)

holds, then we have ‖β̂ − β‖2 = Op(n
−2/5), where β = (β1, . . . , βp)

T .

Assumption (S1) provides a bound on the rate of λn growing with n. The convergence

rate established in Theorem 1 is essentially the optimal one [Stone, 1982]. In fact, the

result remains valid for more general class of functions, e.g., the collection of functions

whose derivatives satisfying the Hölder condition. Next, Theorem 2 states that our proposed

penalized method is consistent in detecting functional sparsity. That is if βi(t) = 0 for

t ∈ [ηl−1, ηl), then the proposed estimator will produce α̂Ail
= 0 to identify local sparsity

with probability converging to 1. And if βi(t) = 0 for all t, then the proposed method will

have α̂Ail
= 0 for all l = 1, . . . , Ki + 1 with probability converging to 1.

Theorem 2 (Sparsistency). If assumptions in Theorem 1 and the following assumption

(S2) λnK
γ−1
n n−γ/2 −→ ∞

are satisfied, then we have for every i, i = 1, . . . , p, (α̂Aig
: g ∈ Ai2) = 0 with probability

converging to 1 as n goes to ∞.

It is not surprising that our proposed method will yield a slightly more sparse functional

estimate. This is due to the fact that, for all intervals belonging to Ai2, the value of βi(t) is

quite small, the same order as the optimal rate, and is indistinguishable from zeros.

Theorem 3 (Diverging p). Suppose that assumptions (A1)-(A5) in Chapter 6 are satisfied.

In addition, assume that

(A0) limn p
2Kn(log p+ logKn)/n = 0 ,

and the number of relevant covariates p0 < p is fixed. If 0 < γ < 1 and Kn = O(n1/5) and

the following assumption
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(S1′) λn(d+ 1)1/2
(∑p

i=1

∑
g∈Ai1

‖α̃0
Aig

‖2(γ−1)
1

)1/2
= O(p1/2n1/2)

holds, we have ‖β̂ − β‖2 = Op(p
1/2n−2/5). In addition, if

(S2′) λnK
γ−1
n n−γ/2p−1+γ/2 → ∞

is satisfied, the sparsistency result in Theorem 2 holds.

Assumptions (S1′) and (S2′) are in parallel to assumptions (S1) and (S2), but allow p to

increase with n. Different from the classic large-p small-n models, the diverging order of p is

constrained by (A0) as well as these two assumptions. In fact, for finite p, this assumption

can be simplified as limn Kn logKn/n = 0, which is satisfied when Kn = O(n1/5). Moreover,

we assume that the number of relevant covariates is a fixed value, independent of p and n,

which is comparable to the assumption in Xue and Qu [2012]. This enables us to control

overall approximation errors for nonparametric coefficient functions.
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CHAPTER 4

Simulation Study

We conducted simulation studies to assess the performance of our proposed method.

Relative performance is measured against those from LSE and Lasso methods. Since our

penalty function relies on the accuracy of the B-spline representation of the true coefficient

functions, we also investigated the impact of the approximation error on the sparsity detec-

tion. We conducted Monte Carlo simulations under three different scenarios to study the

effect of increasing dimension with p = 5, 20, 1000. In each repetition subjects are randomly

selected according to the following varying coefficient model specification

yk(tkl) =

p∑

i=1

xki(tkl)βi(tkl) + ǫk(tkl), l = 1, . . . , nk, k = 1, 2, . . . , n,

where x1(t) is constant 1, xi(t), i = 2, 3, 4 are similar to those considered in Huang et al.

[2002]: x2(t) is a uniform random variable over [4t, 4t + 2]; x3(t) conditioning on x2(t) is

a normal random variable with mean zero and variance (1 + x2(t))/(2 + x2(t)); and x4(t),

independent of x2(t) and x3(t), is Bernoulli(0.6). In Scenario 1, we add a redundant variable

x5(t) from normal distribution with mean zero and variance 0.1 exp(t) for illustration of

global sparsity. And thus, we have p = 5 with n = 200 and Scenario 1 represents models

with fixed and finite dimension. In Scenario 2, we increase p to 20 and consider two sub-

scenarios with different sample sizes n = 200 (Scenario 2.1) and n = 500 (Scenario 2.2). The

extra predictors with zero coefficient functions are defined as xi(t) = Zi(t) + 3/20
∑5

l=1 xl(t)

for i = 6, . . . , 20 with Zi(t)’s iid from standard normal distribution. In Scenario 3, p is further

increased to 1000 while keeping n fixed to 200 to demonstrate the estimation performance

of ultra-high dimensional models. The redundant variables are defined in the similar way as

those in Scenario 2.

The number of measurements available varies across the subjects. For each subject a

sequence of 40 possible observation time points between 0 and 1 are considered, but each
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Figure 4.1: A graphical illustration of the coefficient functions βi i = 1, . . . , 4 in Scenarios 1,
2 and 3.
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time point has a chance of 0.4 being selected. The random errors ǫk(tkl) are independent

of the predictors, and are generated as ǫk(t) = ǫ
(1)
k (t) + ǫ

(2)
k (t) where ǫ(1)(t) is a Gaussian

process with mean zero and covariance function cov(ǫ
(1)
k (t), ǫ

(1)
k (s)) = exp(−0.5|t − s|) for

the same subject k and uncorrelated for different subjects, and ǫ
(2)
k (t)’s are iid from normal

distribution with mean zero and variance 0.25. The nonzero coefficient functions used in all

scenarios are displayed in Figure 4.1. The coefficient functions do not belong to the B-spline

function space. We also considered the case where coefficient functions are the elements of

the B-spline function space. The additional simulation results are summarized in Chapter 7.

In Scenario 1, we use 10-fold cross-validation based on unpenalized LSE to select the number

of interior knots for B-spline approximation in each repetition. For models with large p, we

fix the number of interiors knots to 11 in Scenarios 2 and 3.

The proposed estimator PLSEγ is compared with LSE and Lasso estimator in terms of

bias and mean integrated squared error (MISE), based on R = 200 repetitions, computed as

B̂iasi(u) =
1

R

R∑

r=1

β̂i

(r)
(u)− βi(u), i = 1, . . . , p,

M̂ISEi =
1

R

R∑

r=1

∫ 1

0

(β̂
(r)
i (u)− βi(u))

2du, i = 1, . . . , p.

where β̂
(r)
i is the estimated coefficient function from the r-th repeated study. In addition,

we introduce the following summary measures for comparison of functional sparsity:

(a) C0: average number of correctly identified constant zero coefficient functions

(b) I0: average number of incorrectly identified constant zero coefficient functions

(c) Ci,0: average length of correctly identified zero intervals for the i-th coefficient function

(d) Ii,0: average length of incorrectly identified zero intervals for the i-th coefficient function.

Note that (a) and (b) summarize global sparsity; while, (c) and (d) summarize local sparsity.
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Figure 4.2: Comparison of bias of the coefficient functions based on LSE (dot-dashed), Lasso
(dashed) and PLSE0.5 (solid) in Scenario 1.

Table 4.1: Comparison of MISE for each coefficient function in Scenario 1.

Method MISE
β1 β2 β3 β4 β5

LSE 0.3644 0.0301 0.0107 0.0359 0.3506
Lasso 1.1223 0.0609 0.0099 0.0326 0.0046
PLSE0.5 0.4015 0.0234 0.0093 0.0262 0
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Table 4.2: Sparsity summary measures (a)-(d) in Scenario 1. Here, for the true model, Ii,0,
i = 1, . . . , 6 are the lengths of nonzero intervals, and Ci,0’s are the lengths of zero intervals.

estimator C1,0 I1,0 C2,0 I2,0 C3,0 I3,0 C4,0 I4,0 C5,0 I5,0 C0 I0
LSE 0 0 0 0 0 0 0 0 0 0 0 0
Lasso 0 0 0.018 0.001 0 0.010 0.065 0.003 0.838 0 0.41 0
PLSE0.5 0 0 0.182 0.031 0 0.019 0.355 0.031 1 0 1 0
true model 0 1 0.225 0.775 0 1 0.425 0.575 1 0 1 4

Figure 4.3: Comparison of bias of the coefficient functions based on LSE (dot-dashed), Lasso
(dashed) and PLSE0.5 (solid) in Scenario 2.1.
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Table 4.3: Comparison of MISE for each coefficient function in Scenario 2.1.

Method MISE maxi≥5 MISEi

β1 β2 β3 β4

LSE 0.2300 0.0199 0.0091 0.0298 0.3104
Lasso 9.4774 0.4487 0.0176 0.0350 0.0009
PLSE0.5 0.3282 0.0157 0.0076 0.0252 0.0000

Table 4.4: Sparsity summary measures (a)-(d) in Scenario 2.1. Here, for the true model, Ii,0,
i = 1, . . . , 4 are the lengths of nonzero intervals, and Ci,0’s are the lengths of zero intervals.

Method C1,0 I1,0 C2,0 I2,0 C3,0 I3,0 C4,0 I4,0 C0 I0
LSE 0 0 0 0 0 0 0 0 0 0
Lasso 0 0 0.005 0 0 0.022 0.255 0.013 2.8 0
PLSE0.5 0 0 0.218 0.026 0 0.029 0.392 0.022 15.91 0
true model 0 1 0.225 0.775 0 1 0.425 0.575 16 4

Table 4.5: Comparison of MISE for each coefficient function in Scenario 2.2.

Method MISE maxi≥5 MISEi

β1 β2 β3 β4

LSE 0.0855 0.0075 0.0031 0.0123 0.1127
Lasso 3.2786 0.1549 0.0064 0.0241 0.0003
PLSE0.5 0.1036 0.0052 0.0027 0.0139 0.0000
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Figure 4.4: Comparison of bias of the coefficient functions based on LSE (dot-dashed), Lasso
(dashed) and PLSE0.5 (solid) in Scenario 2.2.

Table 4.6: Sparsity summary measures (a)-(d) in Scenario 2.2. Here, for the true model, Ii,0,
i = 1, . . . , 4 are the lengths of nonzero intervals, and Ci,0’s are the lengths of zero intervals.

Method C1,0 I1,0 C2,0 I2,0 C3,0 I3,0 C4,0 I4,0 C0 I0
LSE 0 0 0 0 0 0 0 0 0 0
Lasso 0 0 0.004 0 0 0.023 0.243 0.007 2.725 0
PLSE0.5 0 0 0.206 0.019 0 0.022 0.369 0.012 15.895 0
true model 0 1 0.225 0.775 0 1 0.425 0.575 16 4
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Figure 4.5: Comparison of bias of the coefficient functions based on LSE (dot-dashed), Lasso
(dashed) and PLSE0.5 (solid) in Scenario 3.

Table 4.7: Comparison of MISE for each coefficient function in Scenario 3.

Method MISE maxi≥5 MISEi

β1 β2 β3 β4

LSE 0.2249 0.0199 0.0086 0.0288 0.0080
Lasso 3.6944 0.1793 0.0101 0.0300 0.0014
PLSE0.5 0.3434 0.0167 0.0073 0.0252 0.0001
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Table 4.8: Sparsity summary measures (a)-(d) in Scenario 3. Here, for the true model, Ii,0,
i = 1, . . . , 4 are the lengths of nonzero intervals, and Ci,0’s are the lengths of zero intervals.

Method C1,0 I1,0 C2,0 I2,0 C3,0 I3,0 C4,0 I4,0 C0 I0
LSE 0 0 0 0 0 0 0 0 0 0
Lasso 0 0 0.009 0.001 0 0.02 0.245 0.006 0.045 0
PLSE0.5 0 0 0.211 0.022 0 0.024 0.375 0.013 4.875 0
true model 0 1 0.225 0.775 0 1 0.425 0.575 5 4

Bias of each method is compared in Figures 4.2 - 4.5 and MISE values for every coefficient

function are compared in Tables 4.1, 4.3, 4.5 and 4.7. The last column of MISE tables for

Scenarios 2 and 3 provides the maximum MISE among the zero coefficient functions, as the

selected variables vary from sample to sample. In general the results indicate comparable

performances across different scenarios. We also note that PLSE0.5 has zero bias and MISE

in estimating the zero coefficient function β5(·), successfully achieving global sparsity, and in

particular, has smaller squared error than Lasso method in Scenario 1. And such outstanding

performance in global sparsity also appears in high dimension scenarios. Local sparsity is

better demonstrated in Tables 4.2, 4.4, 4.6 and 4.8. In summary, the simulation results

demonstrate that our proposed method not only has an advantage in achieving local sparsity

compared with Lasso and LSE, but also can ensure global sparsity for finite dimensional

models. Moreover, this advantage is carried onto models with diverging dimension and

models with ultra-high dimension after incorporating a screening step.

In addition, in order to assess the usefulness of the asymptotic formula for the standard

errors in (2.6), both asymptotic and empirical standard errors based on 200 repetitions are

calculated with fixed number of knots and plotted in Figures 4.6, 4.9, 4.11 and 4.13, which

show a good agreement between them. In Scenario 1, we also calculated standard errors

with adaptive number of knots shown in Figure 4.7. It can be seen that the variation in

number of knots greatly increases the variation in estimation of coefficient functions. The
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corresponding empirical 95% confidence intervals (dash-dotted) are shown in Figures 4.8,

4.10, 4.12 and 4.14, with the average estimates (solid line), and the true coefficient functions

(dashed line) overlayed.

Figure 4.6: Asymptotic standard error (grey solid line), and empirical standard deviation
(black solid line) of the coefficient functions with fixed number of knots in Scenario 1.
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Figure 4.7: Asymptotic standard error (grey solid line), and empirical standard deviation
(black solid line) of the coefficient functions with adaptive number of knots in Scenario 1.
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Figure 4.8: Empirical confidence intervals in Scenario 1.
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Figure 4.9: Asymptotic standard error (grey solid line), and empirical standard deviation
(black solid line) of the coefficient functions in Scenario 2.1.
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Figure 4.10: Empirical confidence intervals in Scenario 2.1.
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Figure 4.11: Asymptotic standard error (grey solid line), and empirical standard deviation
(black solid line) of the coefficient functions in Scenario 2.2.
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Figure 4.12: Empirical confidence intervals in Scenario 2.2.
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Figure 4.13: Asymptotic standard error (grey solid line), and empirical standard deviation
(black solid line) of the coefficient functions in Scenario 3.
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Figure 4.14: Empirical confidence intervals in Scenario 3.

38



CHAPTER 5

Real Data Analysis

We apply our proposed method to two real data sets, a gene expression data [Lee et al.,

2002, Spellman et al., 1998] and the Boston housing data to illustrate the effectiveness of

our method.

5.1 Application to Yeast Cell Cycle Gene Expression Data
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Figure 5.1: Subplots of estimated coefficient functions for the 21 confirmed TFs using LSE
(dashed), Lasso (dot-dashed) and PLSE0.5 (solid).

In biological sciences, gene expression data are frequently collected. Scientists believe that

transcription factors (TFs) have effect on genome’s cell cycle regulation. They have made
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great effort in identifying key TFs in the regulatory network based on a set of gene expression

measurements. In this study, we analyze the relationship between the level of gene expression

and the physical binding of TFs from chromatin immunoprecipitation (ChIP-chip) data [Lee

et al., 2002]. One of the gene expression data sets comes from an α factor synchronization

experiment of 542 genes, in which mRNA levels are measured every 7 minutes during 119

minutes, resulting in 18 measurements in total [Spellman et al., 1998].

The ChIP-chip data contains the binding information of 106 transcription factors, among

which 21 TFs are confirmed to be related to cell cycle regulation by experiment. Wang et al.

[2007] demonstrated that a variable selection procedure is able to identify some of those

key TFs. It is believed that the effects of TFs vary during the cell cycle. In Chun and

Keleş [2010], the authors considered a varying coefficient model to study which TFs are

important in gene expression. But they did not focus on the active periods of TFs, which

is reflected in local sparsity of the coefficient functions. In this dissertation we apply our

method to identify the key TFs and estimate the effects of those selected TFs over time. In

addition, our approach allows us to investigate whether active and inactive periods during

the cycle could be identified for each TF. Let ykt denote the gene expression level for gene k

at time t for k = 1, . . . , 542 and t = 1, . . . , 18, and let xki denote the binding information of

transcription factor i for gene k, for i = 1, . . . , 106. Then the varying coefficient model can

be written as

ykt = β0(t) +
106∑

i=1

βk(t)xik + ǫkt,

where βi(t) models the effect of the i-th transcription factor on gene expression at time t, and

for the k-th gene ǫkt’s are independent over time. Similar to the simulation study, we apply

our method together with LSE and Lasso methods and compared the identification of active

period of each TF within the cell cycle process. Each coefficient function is approximated

with quadratic B-splines defined on time interval [0, 119] with four equally spaced knots.

The number of knots is selected by cross-validation. For easy comparison, we standardize

xik. It is not surprising that LSE does not identify the key TFs and selects all TFs. Lasso
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Figure 5.2: Asymptotic standard errors for confirmed TFs in yeast gene expression data.

method identifies 102 TFs as important, while our proposed method identifies 66 TFs. In

Figure 5.1, the estimated coefficient functions for 21 experimentally confirmed TFs are shown,

and corresponding standard error estimates are displayed in Figure 5.2. From this figure,

we could tell 13 of them are selected by our proposed method while 20 of them are selected

by Lasso method. In Chun and Keleş [2010], the authors selected 48 TFs, 15 of which are

verified TFs. In addition, our proposed method identifies some inactive period for selected

TFs. For example, SW15, FKH1, GCN4 and LEU3 are selected TFs which are inactive for

the later 60 minutes, and STR1 and REB1 are selected TFs which have some latency in

joining the expression. And for SKN7 is believed to be inactive at the beginning and at the

end of the process.
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5.2 Application to Boston Housing Data

Boston housing data is one of the widely used data sets in statistics literature. It is

publicly available at http://lib.stat.cmu.edu/datasets/boston. This data set includes

506 median values of owner-occupied homes in Boston area and 12 potential variables that

may impact housing value. Here we consider seven explanatory variables as suggested in

earlier studies [e.g., Fan and Huang, 2005]. These variables are CRIM (per capita crime rate

by town), RM (average number of rooms per dwelling), TAX (full-value property-tax rate per

$10, 000), NOX (nitric oxides concentration in parts per 10 million), PTRATIO (pupil-teacher

ratio by town), AGE (proportion of owner-occupied units built prior to 1940), and variable

B (1000(Bk − 0.63)2 where Bk is the proportion of blacks in town). Their influences on

housing value are assumed to vary with the level of LSTAT, the percentage of lower status of

the population. Similar studies with varying coefficient partially linear model were carried

out in Fan and Huang [2005] and Leng [2009]. The authors studied function estimation

and model selection, while their primary interest center on selecting the variables that are

important over the entire range of LSTAT, i.e., identifying global sparsity. Here, we are

interested in the question whether the impact of those variables on housing value when

LSTAT is large is as significant as the impact when LSTAT is small. This could be referred

to as local sparsity of the coefficient functions. In this study, such situation is taken into

account while fitting the model. Let t be the scaled
√
LSTAT on interval [0, 1] as an indicator

of LSTAT, and write the model as

ykt =
7∑

i=1

βi(t)xki + ǫkt,

where ykt represents the k-th median value, xki for i = 1, . . . , 7 are the standardized ex-

planatory variables CRIM, RM, NOX, PTRATIO, AGE, and B separately, and βi(t) is the coefficient

function of level t for the i-th variable. Figure 5.3 presents estimated coefficient functions by

our procedure and by Lasso method, and Figure 5.4 presents the corresponding asymptotic
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Figure 5.3: Subplots of estimated coefficient functions for the covariates in Boston housing
data using Lasso (dot-dashed) and PLSE0.5 (solid).

43



standard errors. In general, it shows that the crime rate (CRIM) has a negative effect on hous-

ing price, while the effect of tax rate (TAX), proportion of houses built prior to 1940 (AGE)

and index of proportion of blacks (B) have positive effect. The effect of the average number

of rooms per house (RM) and NOX is sensitive to LSTAT levels, and the effect of RM on housing

price is negative most of time. Except for RM and AGE, the effect of the remaining variables

varies a lot depending on the LSTAT levels among wealthy population, but is not significant

among poor population. For the variable of PTRATIO, in contrast to the result of monotone

increasing impact on housing price from Leng [2009], we believe its effect will reduce to zero

when LSTAT is sufficiently large, i.e, among poor population. Similarly, the impact of TAX

in Fan and Huang [2005] is modeled as monotone decreasing, but in our analysis it appears

to have no effect on housing price when LSTAT is above certain level. This applies to the

variable NOX as well.
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Figure 5.4: Asymptotic standard errors for Boston housing data.
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CHAPTER 6

Technical assumptions and proofs

6.1 Technical assumptions

The following assumptions are made for Theorems 1, 2 and 3 in Chapter 3. These are

standard assumptions used to establish asymptotic properties of nonparametric estimation

procedures for varying coefficient models; see Huang et al. [2004] and Wang et al. [2008] for

more details.

(A1) The response and covariate processes {yk(t),xk(t), k = 1, . . . , n} are iid as {y(t),x(t)}.

And the observation time points, tkl, l = 1, . . . , nk, k = 1, . . . , n, are iid from an

unknown density, f(t), on [0,M ], where f(t) is uniformly bounded away from zero and

infinity. That is, 0 < h1 ≤ f(t) ≤ h2 < ∞ for some positive constants h1 and h2.

Moreover, the observation time points are independent of the response and covariate

processes {yk(t),xk(t), k = 1, . . . , n}.

(A2) The eigenvalues of the matrix E[x(t)xT (t)] are uniformly bounded away from zero

and infinity for t ∈ [0,M ], that is, there exist positive constants M1 and M2 to be the

lower and upper bound of the eigenvalues for all t ∈ [0,M ].

(A3) There exists a positive constant M3 such that |xi(t)| ≤ M3 for t ∈ [0,M ] and i =

1, . . . , p.

(A4) There exists a positive constant M4 such that E{ǫ2(t)} ≤ M4 for all t ∈ [0,M ]

(A5) limsupn(maxiKi/miniKi) < ∞.

6.2 Proof of Theorem 1

The following lemma from Lemma A.3 of Huang et al. [2004] will be used in the proof.
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Lemma 4. Suppose that limn→∞ Kn logKn/n = 0. There are positive constants C1 and C2

such that, except on an event whose probability tends to zero, all eigenvalues of n−1KnU
TU

fall between C1 and C2, and consequently UTU is invertible.

Proof of Theorem 1. Note that

‖β̂ − β‖2 ≤ ‖β̃0 − β‖2 + ‖β̂ − β̃0‖2.

By B-spline property, ‖βi − β̃i‖2 = Op(K
−2
n ) where β̃i is an approximation in B-spline space

as defined in (2.3). It can be shown that the same rate holds true if β̃i is replaced by its sparse

approximation of β̃0
i (see Lemma 1 in Wang and Kai [2015]). Thus, ‖β̃0 − β‖2 = Op(K

−2
n ).

For the second term, by (A5) and B-spline property, we have ‖β̃i‖22 ≤ Di‖αi‖22/Kn

for some positive constant Di, i = 1, . . . , p [de Boor, 2001, Huang et al., 2004]. Denote

D∗ = maxiDi, and we have

‖β̃0 − β̂‖22 =
p∑

i=1

‖β̃0
i − β̂i‖22 ≤

p∑

i=1

Di

Kn

‖α̃0
i − α̂i‖22 ≤ D∗

‖α̂− α̃0‖22
Kn

Therefore,

‖β̂ − β‖22 = Op

(
K−4

n +
‖α̂− α̃0‖22

Kn

)
.

Below we concentrate on the term ‖α̂− α̃0‖2 and in particular we show that ‖α̂− α̃0‖22 =

Op(n
−1K2

n).

By the minimality of α̂, we have pl(α̂) ≤ pl(α̃0); that is,

‖y −Uα̂‖22 − ‖y −Uα̃0‖22 ≤ λn

p∑

i=1

Gi∑

g=1

‖α̃0
Aig

‖γ1 − λn

p∑

i=1

Gi∑

g=1

‖α̂Aig
‖γ1 . (6.1)

Note that, the right hand side of (6.1) can be decomposed into two terms,

λn

∑p
i=1

∑
g∈Ai1

‖α̃0
Aig

‖γ1 − λn

∑p
i=1

∑
g∈Ai1

‖α̂Aig
‖γ1 and λn

∑p
i=1

∑
g∈Ai2

‖α̃0
Aig

‖γ1−

λn

∑p
i=1

∑
g∈Ai2

‖α̂Aig
‖γ1 . For the first term, applying the inequality |bγ − aγ| ≤ 2|b− a|bγ−1,

for a, b ≥ 0, and Cauchy-Schwarz inequality yields that
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∣∣∣∣∣

p∑

i=1

∑

g∈Ai1

‖α̃0
Aig

‖γ1 −
p∑

i=1

∑

g∈Ai1

‖α̂Aig
‖γ1

∣∣∣∣∣

≤ 2

p∑

i=1

∑

g∈Ai1

∣∣∣‖α̃0
Aig

‖1 − ‖α̂Aig
‖1
∣∣∣ · ‖α̃0

Aig
‖γ−1
1

≤ 2

p∑

i=1

∑

g∈Ai1

‖α̃0
Aig

− α̂Aig
‖1 · ‖α̃0

Aig
‖γ−1
1

≤ 2(d+ 1)1/2
p∑

i=1

∑

g∈Ai1

‖α̃0
Aig

‖γ−1
1 · ‖α̃0

Aig
− α̂Aig

‖2

≤ 2(d+ 1)1/2

(
p∑

i=1

∑

g∈Ai1

‖α̃0
Aig

‖2(γ−1)
1

)1/2( p∑

i=1

∑

g∈Ai1

‖α̃0
Aig

− α̂Aig
‖22

)1/2

.

For the second term, note that ‖α̃0
Aig

‖1 = 0 for g ∈ Ai2. Thus, the second term is less than

or equal to zero. Combining above results and (6.1), we have

‖y −Uα̂‖22 − ‖y −Uα̃0‖22

≤ λn

∣∣∣∣∣

p∑

i=1

∑

g∈Ai1

‖α̃0
Aig

‖γ1 −
p∑

i=1

∑

g∈Ai1

‖α̂Aig
‖γ1

∣∣∣∣∣+ λn

(
p∑

i=1

∑

g∈Ai2

‖α̃0
Aig

‖γ1 −
p∑

i=1

∑

g∈Ai2

‖α̂Aig
‖γ2

)

≤ λn

∣∣∣∣∣

p∑

i=1

∑

g∈Ai1

‖α̃0
Aig

‖γ1 −
p∑

i=1

∑

g∈Ai1

‖α̂Aig
‖γ1

∣∣∣∣∣

≤ 2λnφn

(
p∑

i=1

∑

g∈Ai1

‖α̃0
Aig

− α̂Aig
‖22

)1/2

It follows that

‖y −Uα̂‖22 − ‖y −Uα̃0‖22 ≤ 2λnφn(d+ 1)1/2‖α̃0 − α̂‖2, (6.2)

where φn = (d+ 1)1/2
(∑p

i=1

∑
g∈Ai1

‖α̃0
Aig

‖2(γ−1)
1

)1/2
.

On the other hand, straightforward calculation gives that

‖y −Uα̂‖22 − ‖y −Uα̃0‖22 = (Uα̂)TUα̂− (Uα̃0)TUα̃0 − 2yTU (α̂− α̃0)

= (Uα̂+Uα̃0 − 2Uα̃0 − 2ǫ∗)
TU (α̂− α̃0)

= ‖U (α̂− α̃0)‖22 − 2ǫT∗U (α̂− α̃0)

≥ ‖U (α̂− α̃0)‖22 − 2
∣∣ǫT∗U (α̂− α̃0)

∣∣ ,
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where ǫ∗ = ǫ− e, e = (eT
1 , . . . , e

T
n )

T with

ek = (Uk(tk1)α̃
0 − xk(tk1)

Tβ(tk1), . . . ,Uk(tknk
)α̃0 − xk(tknk

)Tβ(tknk
))T .

Let δn = ‖α̂ − α̃0‖2, then by Lemma 4, ‖U (α̂ − α̃0)‖22 ≥ C1nK
−1
n δ2n with probability ap-

proaching 1. In addition, applying Cauchy-Schwarz inequality yields that (ǫT∗U (α̂−α̃0))2 ≤

δ2n(ǫ
T
∗UUTǫ∗). Further, E(ǫT∗UUTǫ∗) = E(ǫTUUTǫ) +E(eTUUTe). As a consequence of

Lemma A.3 of Wang et al. [2008], we have E(ǫTUUTǫ) = O(n) with nk uniformly bounded.

Similarly, we have E(eTUUTe) = O(n) since E(e(tkl)e(tkl′)) ≤ C‖β − β̃0‖2∞ for some con-

stant C and ‖β− β̃0‖∞ is bounded by O(K−2
n ). Therefore, E(ǫT∗UUTǫ∗) = O(n). Thus, we

have

‖y −Uα̂‖22 − ‖y −Uα̃0‖22 ≥ C1nKn
−1δ2n − δnOp(n

1/2). (6.3)

Combining (6.2) and (6.3), we have

nC1

Kn

δ2n − δnOp(n
1/2) ≤ 2λnφn(d+ 1)1/2δn,

and by (S1) we have ‖α̂− α̃0‖22 = Op(n
−1K2

n).

6.3 Proof of Theorem 2

Proof. First, for any i, define α̂∗
ij in the following way. Let α̂∗

ij = 0 if {j−d, . . . , j}∩Ai2 6= ∅,

otherwise, α̂∗
ij = α̂ij. Note that α̂∗

Aig
= 0 for g ∈ Ai2.

By Karush-Kuhn-Tucker conditions, for α̂ij 6= 0 we have

2(y −Uα̂)TU(ij) =

j∑

g=j−d

γλn‖α̂Aig
‖γ−1
1 sgn(α̂ij),

where U(ij) is the column of U corresponding to α̂ij. Multiplying both sides by (α̂ij − α̂∗
ij)
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yields

2(y −Uα̂)TU (α̂− α̂∗) =
∑

i,j

j∑

g=j−d

γλn‖α̂Aig
‖γ−1
1 sgn(α̂ij)(α̂ij − α̂∗

ij)

= γλn

∑

i,j

∑

g∈Ai2∩{j−d,...,j}

‖α̂Aig
‖γ−1
1 |α̂ij| ·

= γλn

p∑

i=1

Gi∑

g=1

‖α̂Aig
‖γ−1
1 (‖α̂Aig

‖1 − ‖α̂∗
Aig

‖1).

Note that, (α̂ij − α̂∗
ij)sgn(α̂ij) = |α̂ij| if {j − d, . . . , j} ∩ Ai2 6= ∅.

Since γbγ−1(b− a) ≤ bγ − aγ for 0 ≤ a ≤ b, we have, for g ∈ Ai1,

γ‖α̂Aig
‖γ−1
1 (‖α̂Aig

‖1 − ‖α̂∗
Aig

‖1) ≤ ‖α̂Aig
‖γ1 − ‖α̂∗

Aig
‖γ1 .

Consequently, we have

2
∣∣(y −Uα̂)TU (α̂− α̂∗)

∣∣ ≤ λn

p∑

i=1

∑

g∈Ai1

(‖α̂Aig
‖γ1 − ‖α̂∗

Aig
‖γ1) + γλn

p∑

i=1

∑

g∈Ai2

‖α̂Aig
‖γ1 . (6.4)

By the minimality of α̂, we have

λn

p∑

i=1

Gi∑

g=1

‖α̂Aig
‖γ1 − λn

p∑

i=1

Gi∑

g=1

‖α̂∗
Aig

‖γ1 ≤ ‖y −Uα̂∗‖22 − ‖y −Uα̂‖22.

Note that ‖α̂∗
Aig

‖1 = 0 for g ∈ Ai2. Thus, we have
∑p

i=1

∑Gi

g=1 ‖α̂∗
Aig

‖γ1 =
∑p

i=1

∑
g∈Ai1

‖α̂∗
Aig

‖γ1 ,

and

2
∣∣(y −Uα̂)TU (α̂− α̂∗)

∣∣+ (1− γ)λn

p∑

i=1

∑

g∈Ai2

‖α̂Aig
‖γ1

≤ λn

p∑

i=1

∑

g∈Ai1

(‖α̂Aig
‖γ1 − ‖α̂∗

Aig
‖γ1) + λn

p∑

i=1

∑

g∈Ai2

‖α̂Aig
‖γ1

= λn

p∑

i=1

Gi∑

g=1

‖α̂Aig
‖γ1 − λn

p∑

i=1

∑

g∈Ai1

‖α̂∗
Aig

‖γ1

≤ ‖y −Uα̂∗‖22 − ‖y −Uα̂‖22

= ‖U (α̂∗ − α̂)‖22 + 2(y −Uα̂)TU (α̂− α̂∗).
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By Lemma 4 we have

(1− γ)λn

p∑

i=1

∑

g∈Ai2

‖α̂Aig
‖γ1

≤ ‖U (α̂∗ − α̂)‖22 + 2(y −Uα̂)TU (α̂− α̂∗)− 2
∣∣(y −Uα̂)TU (α̂− α̂∗)

∣∣

≤ ‖U (α̂∗ − α̂)‖22

≤ nC2

Kn

‖α̂∗ − α̂‖22

Note that α̃0
Aig

= 0 for g ∈ Ai2. Thus, we have ‖α̂∗ − α̂‖22 ≤ ‖α̂− α̃0‖22, and

(1− γ)λn

p∑

i=1

∑

g∈Ai2

‖α̂Aig
‖γ1 ≤ nC2

Kn

‖α̂− α̃0‖22 = Op(Kn)

Since
p∑

i=1

∑

g∈Ai2

‖α̂Aig
‖γ1 ≥

(
p∑

i=1

∑

g∈Ai2

‖α̂Aig
‖1
)γ

≥ ‖α̂∗ − α̂‖γ2 ,

then if ‖α̂∗ − α̂‖2 > 0, we have

(1− γ)λn ≤ nC2

Kn

‖α̂∗ − α̂‖22

{
p∑

i=1

∑

g∈Ai2

‖α̂Aig
‖γ1

}−1

≤ nC2

Kn

‖α̂∗ − α̂‖2−γ
2

≤ Op(n
γ/2K1−γ

n ),

and thus

Pr
{
‖α̂∗ − α̂‖22 > 0

}
≤ Pr

{
λn

nγ/2K1−γ
n

≤ Op(1)

}
.

By assumption (S2), the right hand side converges to zero as n go to infinity, which implies

that (α̂Aig
: g ∈ Ai2) = 0 with probability approaching to 1.

6.4 Proof of Theorem 3

We will generalize Lemma 4 above to Lemma 4′ for the case of diverging p.

Lemma 4′. Suppose that limn p
2Kn(log p + logKn)/n = 0. There are positive constants

C1 and C2 such that, except on an event whose probability tends to zero, all eigenvalues of

n−1KnU
TU fall between C1 and C2.
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We will begin with the introduction of some new notations.

(i) For sequence of positive numbers an and bn, we call an ≍ bn if both an/bn and bn/an

are bounded.

(ii) For β(1)(t) = (β
(1)
1 (t), . . . , β

(1)
p (t))T and β(2)(t) = (β

(2)
1 (t), . . . , β

(2)
p (t))T , we define em-

pirical inner product as

〈β(1),β(2)〉n =
1

n

∑

k

1

nk

∑

l

(
p−1/2

∑

i

xi(tkl)β
(1)
i (tkl)

)(
p−1/2

∑

i

xi(tkl)β
(2)
i (tkl)

)
,

and the theoretical inner product as

〈β(1),β(2)〉 = E

[(
p−1/2

∑

i

xi(t)β
(1)
i (t)

)(
p−1/2

∑

i

xi(t)β
(2)
i (t)

)]
.

Denote the corresponding norms as ‖β‖2n = 〈β,β〉n and ‖β‖2 = 〈β,β〉.

In Huang et al. [2004], the authors considered similar notions of empirical inner product

and theoretical inner product for finite p. Inspired by their work, we rescale both quantities

by 1/p. As will be seen later, such treatment is essential for the new theoretical development.

Then we generalize the results of Lemma A.1 and Lemma A.2 in Huang et al. [2004] to

Lemma 5 and Lemma 6 respectively as below.

Lemma 5. Let βi(t) =
∑

j αijBij(t) and β(t) = (β1(t), . . . , βp(t))
T , then ‖β‖2 ≍

∑p
i=1 ‖βi‖22/p ≍ ‖α‖22/(pKn).

Proof of Lemma 5. Note that

‖β‖2 = E


1
p

(
∑

i

xi(t)βi(t)

)2



=
1

p

∫
E

(
∑

i

xi(t)βi(t)

)2

f(t)dt

=
1

p

∫
βT (t)E

(
x(t)xT (t)

)
β(t)f(t)dt.

Then by (A1) and (A2), we have ‖β‖2 ≍ 1/p
∫
βT (t)β(t)dt ≍ 1/p

∑p
i=1 ‖βi‖22. By B-spline

properties, ‖βi‖22 ≍ ‖αi‖22/Ki. Therefore, ‖β‖2 ≍ ‖α‖22/(pKn) under (A5).
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Lemma 6. Let βi(t) =
∑

j αijBij(t) for i = 1, . . . , p, β(t) = (β1(t), . . . , βp(t))
T , and G be

the collection of β. Then

P

(
sup

β(1),β(2)∈G

|〈β(1),β(2)〉n − 〈β(1),β(2)〉|
‖β(1)‖‖β(2)‖ > s

)
≤ Cp2K2

n exp

{ −n

p2Kn

· s2

b2 + b3s/p

}
, s > 0

for some positive constant C, b2 and b3. Further, if limn p
2Kn(log p + logKn)/n = 0, then

supβ∈G |‖β‖2n/‖β‖2 − 1| = op(1).

Proof of Lemma 6. Let Bij(t) be the p-dimensional vector with the i-th entry being Bij(t)

and all other entries zero. Then

〈Bij,Bi′j′〉n =
1

np

∑

k

1

nk

∑

l

[xi(tkl)Bij(tkl)xi′(tkl)Bi′j′(tkl)],

〈Bij,Bi′j′〉 =
1

p
E[xi(t)Bij(t)xi′(t)Bi′j′(t)].

Denote Riji′j′(t) = xi(t)Bij(t)xi′(t)Bi′j′(t), then

〈Bij,Bi′j′〉n − 〈Bij,Bi′j′〉 =
1

np

∑

k

1

nk

∑

l

(Riji′j′(tkl)− E[Riji′j′(t)]) .

By the fact that 0 ≤ Bij(t) ≤ 1 for t ∈ [0,M ] and (A3), we have

|Riji′j′(tkl)− E[Riji′j′(t)]| ≤ |xi(tkl)||xi′(tkl)|+ E[|xi(t)||xi′(t)|] ≤ 2M2
3 .

By B-spline property, (A1) and (A5), we have

V ar(Riji′j′(tkl)) ≤ E(x2
i (t)x

2
i′(t)B

2
ij(t)B

2
i′j′(t)) ≤ Ch2M

4
3K

−1
n ,

for some positive constant C. Then, as a consequence of Bernstein’s inequality, we have, for

s > 0,

P (|〈Bij,Bi′j′〉n − 〈Bij,Bi′j′〉| > s) ≤ b1 exp

{
− (nps)2

b2nK−1
n + b3nps

}
,

for some positive constants b1, b2 and b3.
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Let Ωn be the event on which |〈Bij,Bi′j′〉n − 〈Bij,Bi′j′〉| ≤ s/(p2Kn) for all j = 1, . . . , (Ki

+d+ 1), j′ = 1, . . . , (Ki′ + d+ 1), and i, i′ = 1, . . . , p. Then

P (Ωc
n) ≤ Cp2K2

n exp

{
− n

p2Kn

· s2

b2 + b3s/p

}
,

for some constant C. For k = 1, . . . , n, the nk are uniformly bounded.

For β(1),β(2) ∈ G, we have

|〈β(1),β(2)〉n − 〈β(1),β(2)〉| =
∣∣∣∣∣
∑

i,j

∑

i′,j′

α
(1)
ij α

(2)
i′j′(〈Bij,Bi′j′〉n − 〈Bij,Bi′j′〉)

∣∣∣∣∣ .

Let (i′, j′) ∈ A(i, j) if the intersection of the supports of Bi′j′ and Bij contains an open

interval. Then 〈Bij,Bi′j′〉n = 〈Bij,Bi′j′〉 = 0 if (i′, j′) /∈ A(i, j). The cardinality of A(i, j)

is bounded by Cp for some constant C for all i, j. Then, on Ωn, we have

|〈β(1),β(2)〉n − 〈β(1),β(2)〉|

≤
∑

i,j

∑

i′,j′

|α(1)
ij ||α(2)

i′j′ |
s

p2Kn

I{(i,j)∈A(i′,j′)}

≤ s

p2Kn

∑

i,j

|α(1)
ij |
(
∑

i′,j′

(|α(2)
i′j′ |I{(i,j)∈A(i′,j′)})

2

)1/2

(Cp)1/2

≤ s

p2Kn

(
∑

i,j

|α(1)
ij |2

)1/2(∑

i,j

∑

i′,j′

|α(2)
i′j′ |2I{(i,j)∈A(i′,j′)}

)1/2

(Cp)1/2

≤ Cs

pKn

‖α(1)‖2‖α(2)‖2

It follows from Lemma 5, |〈β(1),β(2)〉n − 〈β(1),β(2)〉| ≤ Cs‖β(1)‖‖β(2)‖ on Ωn for some

positive constant C. Therefore, the conclusion follows.

Proof of Lemma 4′. By Lemma 5 and Lemma 6, we have ‖α‖22/(pKn) ≍ ‖β‖2 ≍ ‖β‖2n ≍

αTUTUα/(np) except on an event whose probability tends to zero. Then the desired result

follows.

Now we will prove Theorem 3 of consistency followed by sparsistency.
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Proof of consistency in Theorem 3. Note that, for each i, i = 1, . . . , p, we have

‖β̂i − βi‖2 ≤ ‖β̃0
i − βi‖2 + ‖β̂i − β̃0

i ‖2.

By B-spline property, ‖βi − β̃i‖2 = Op(K
−2
n ) where β̃i is an approximation in B-spline space

as defined in (2.3). It can be shown that the same rate holds true if β̃i is replaced by its sparse

approximation β̃0
i (see Lemma 1 in Wang and Kai [2015]). Thus, ‖β̃0

i − βi‖2 = Op(K
−2
n ). It

is worth mentioning that, if βi = 0, we can set β̃i = 0 and thus, β̃0
i = 0.

For the second term, by (A5) and B-spline property, there exists some positive constant

D for each i = 1, . . . , p [de Boor, 2001, Huang et al., 2004] such that

‖β̃0
i − β̂i‖22 ≤

D

Kn

‖α̃0
i − α̂i‖22.

Therefore,

‖β̂i − βi‖22 = Op

(
K−4

n +
‖α̂i − α̃0

i ‖22
Kn

)
,

and

‖β̂ − β‖22 = Op

(
pK−4

n +

∑p
i=1 ‖α̂i − α̃0

i ‖22
Kn

)
,

Below we concentrate on the term
∑p

i=1 ‖α̂i − α̃0
i ‖2 = ‖α̂ − α̃0‖22. In particular, we will

show that ‖α̂− α̃0‖22 = Op(n
−1K2

np).

By the minimality of α̂, we have pl(α̂) ≤ pl(α̃0); that is,

‖y −Uα̂‖22 − ‖y −Uα̃0‖22 ≤ λn

p∑

i=1

Gi∑

g=1

‖α̃0
Aig

‖γ1 − λn

p∑

i=1

Gi∑

g=1

‖α̂Aig
‖γ1 . (6.5)

Note that, the right hand side of (6.5) can be decomposed into two terms,

λn

∑p
i=1

∑
g∈Ai1

‖α̃0
Aig

‖γ1 − λn

∑p
i=1

∑
g∈Ai1

‖α̂Aig
‖γ1 and λn

∑p
i=1

∑
g∈Ai2

‖α̃0
Aig

‖γ1−

λn

∑p
i=1

∑
g∈Ai2

‖α̂Aig
‖γ1 . For the first term, applying the inequality |bγ − aγ| ≤ 2|b− a|bγ−1,

for a, b ≥ 0, and Cauchy-Schwarz inequality yields that
∣∣∣∣∣

p∑

i=1

∑

g∈Ai1

‖α̃0
Aig

‖γ1 −
p∑

i=1

∑

g∈Ai1

‖α̂Aig
‖γ1

∣∣∣∣∣
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≤ 2

p∑

i=1

∑

g∈Ai1

∣∣∣‖α̃0
Aig

‖1 − ‖α̂Aig
‖1
∣∣∣ · ‖α̃0

Aig
‖γ−1
1

≤ 2

p∑

i=1

∑

g∈Ai1

‖α̃0
Aig

− α̂Aig
‖1 · ‖α̃0

Aig
‖γ−1
1

≤ 2(d+ 1)1/2
p∑

i=1

∑

g∈Ai1

‖α̃0
Aig

‖γ−1
1 · ‖α̃0

Aig
− α̂Aig

‖2

≤ 2(d+ 1)1/2

(
p∑

i=1

∑

g∈Ai1

‖α̃0
Aig

‖2(γ−1)
1

)1/2( p∑

i=1

∑

g∈Ai1

‖α̃0
Aig

− α̂Aig
‖22

)1/2

.

For the second term, note that ‖α̃0
Aig

‖1 = 0 for g ∈ Ai2. Thus, the second term is less than

or equal to zero. Combining above results and (6.5), we have

‖y −Uα̂‖22 − ‖y −Uα̃0‖22

≤ λn

∣∣∣∣∣

p∑

i=1

∑

g∈Ai1

‖α̃0
Aig

‖γ1 −
p∑

i=1

∑

g∈Ai1

‖α̂Aig
‖γ1

∣∣∣∣∣+ λn

(
p∑

i=1

∑

g∈Ai2

‖α̃0
Aig

‖γ1 −
p∑

i=1

∑

g∈Ai2

‖α̂Aig
‖γ2

)

≤ λn

∣∣∣∣∣

p∑

i=1

∑

g∈Ai1

‖α̃0
Aig

‖γ1 −
p∑

i=1

∑

g∈Ai1

‖α̂Aig
‖γ1

∣∣∣∣∣

≤ 2λnφn

(
p∑

i=1

∑

g∈Ai1

‖α̃0
Aig

− α̂Aig
‖22

)1/2

It follows that

‖y −Uα̂‖22 − ‖y −Uα̃0‖22 ≤ 2λnφn(d+ 1)1/2‖α̃0 − α̂‖2, (6.6)

where φn = (d+ 1)1/2
(∑p

i=1

∑
g∈Ai1

‖α̃0
Aig

‖2(γ−1)
1

)1/2
.

On the other hand, straightforward calculation gives that

‖y −Uα̂‖22 − ‖y −Uα̃0‖22 = (Uα̂)TUα̂− (Uα̃0)TUα̃0 − 2yTU (α̂− α̃0)

= (Uα̂+Uα̃0 − 2Uα̃0 − 2ǫ∗)
TU (α̂− α̃0)

= ‖U (α̂− α̃0)‖22 − 2ǫT∗U (α̂− α̃0)

≥ ‖U (α̂− α̃0)‖22 − 2
∣∣ǫT∗U (α̂− α̃0)

∣∣

≥ ‖U (α̂− α̃0)‖22 − 2

p∑

i=1

∣∣ǫT∗U (i)(α̂i − α̃0
i )
∣∣ ,
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where U (i) is the columns of U corresponding to αi, and ǫ∗ = ǫ−e, e = (eT
1 , . . . , e

T
n )

T with

ek = (Uk(tk1)α̃
0 − xk(tk1)

Tβ(tk1), . . . ,Uk(tknk
)α̃0 − xk(tknk

)Tβ(tknk
))T .

Let δni = ‖α̂i − α̃0
i ‖2, then by Lemma 4′, ‖U (α̂ − α̃0)‖22 ≥ C1nK

−1
n

∑
i δ

2
ni. In addition,

applying Cauchy-Schwarz inequality yields that |ǫT∗U (i)(α̂i − α̃0
i )|2 ≤ δ2ni(ǫ

T
∗U

(i)U (i)Tǫ∗).

Further,

E(ǫT∗U
(i)U (i)Tǫ∗) = E(ǫTU (i)U (i)Tǫ) + E(eTU (i)U (i)Te). (6.7)

The first term on the right hand side of (6.7) equals

E(ǫTU (i)U (i)Tǫ) = E

[(
n∑

k=1

ǫTkU
(i)
k

)(
n∑

k=1

U
(i)T
k ǫk

)]
=

n∑

k=1

E
(
ǫTkU

(i)
k U

(i)T
k ǫk

)

where ǫk = (ǫ(tk1), . . . , ǫ(tknk
))T and U

(i)
k = (xi(tk1)Bi(tk1), . . . , xi(tknk

)Bi(tknk
))T .

By B-spline property and (A1), we have

E(Bij(tkl)Bij(tkl′)) = E(Bij(tkl))E(Bij(tkl′)) ≤ D2
1/K

2
i ,

and

E(B2
ij(t)) ≤ E(Bij(t)) ≤ D1/Ki

and for some positive constant D1. Then, by (A3), (A4) and (A5), we have

E
(
ǫTkU

(i)
k U

(i)T
k ǫk

)

= E

[(
nk∑

l=1

ǫk(tkl)xi(tkl)B
T
i (tkl)

)(
nk∑

l=1

ǫk(tkl)xi(tkl)Bi(tkl)

)]

= E

[
∑

l

∑

j

ǫ2k(tkl)x
2
i (tkl)B

2
ij(tkl) +

∑

l 6=l′

∑

j

ǫk(tkl)xi(tkl)Bij(tkl)ǫk(tkl′)xi(tkl′)Bij(tkl′)

]

≤ D2(nk + nk(nk − 1)K−1
n )M4M

2
3

for some positive constant D2. Therefore,

E(ǫTU (i)U (i)Tǫ) ≤
n∑

k=1

(nk + nk(nk − 1)K−1
n )M4M

2
3D2 = O(n)
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with uniformly bounded nk, k = 1, . . . , n.

The second term on the right hand side of (6.7) equals

E(eTU (i)U (i)Te) =
n∑

k=1

E(eT
kU

(i)
k U

(i)T
k ek) +

∑

k 6=k′

E(eT
kU

(i)
k U

(i)T
k′ ek′)

where U
(i)
k = (xi(tk1)Bi(tk1), . . . , xi(tknk

)Bi(tknk
))T .

Suppose that the first p0 covariates are the relevent ones, then βi = β̃0
i = 0 for i =

p0+1, . . . , p. And thus,
∑p

i=1 ‖βi− β̃0
i ‖∞ =

∑p0
i=1 ‖βi− β̃0

i ‖∞. Morover, ‖βi− β̃0
i ‖∞ ≤ C0K

−2
i

for some positive constant C0 by Lemma 1 of Wang and Kai [2015]. Then, by (A3) and (A5),

we have

|ek(tkl)| = |Uk(tkl)α̃
0 − xk(tkl)

Tβ(tkl)| =
∣∣∣∣∣

p∑

i=1

xi(tkl)(β̃
0
i (tkl)− βi(tkl))

∣∣∣∣∣

≤ M3

p∑

i=1

‖βi − β̃0
i ‖∞ = M3

p0∑

i=1

‖βi − β̃0
i ‖∞ ≤ p0CK−2

n ,

for some positive constant C. Thus, we have E(e(tkl)e(tk′l′)) ≤ O(K−4
n ) for all k, k′, l and l′.

Consequently, we have

E(eT
kU

(i)
k U

(i)T
k ek)

= E

[(
nk∑

l=1

ek(tkl)xi(tkl)B
T
i (tkl)

)(
nk∑

l=1

ek(tkl)xi(tkl)Bi(tkl)

)]

= E

[
∑

l

∑

j

e2k(tkl)x
2
i (tkl)B

2
ij(tkl) +

∑

l 6=l′

∑

j

ek(tkl)xi(tkl)Bij(tkl)ek(tkl′)xi(tkl′)Bij(tkl′)

]

≤ O([nk + nk(nk − 1)K−1
n ]K−4

n ) = O(K−4
n ),

and

E(eT
kU

(i)
k U

(i)T
k′ ek′)

= E

[(
nk∑

l=1

ek(tkl)xi(tkl)B
T
i (tkl)

)(
nk′∑

l′=1

ek′(tk′l′)xi(tk′l′)Bi(tk′l′)

)]

≤ O(nknk′K
−1
n K−4

n ) = O(K−5
n ).
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Therefore, E(eTU (i)U (i)Te) ≤ O(
∑n

k=1 K
−4
n +

∑
k 6=k′ K

−5
n ) = O(n), and then (6.7) yields

E(ǫT∗U
(i)U (i)Tǫ∗) = O(n). Thus, we have

‖y −Uα̂‖22 − ‖y −Uα̃0‖22 ≥ Op(nK
−1
n )

p∑

i=1

δ2ni −Op(n
1/2)

p∑

i=1

δni. (6.8)

Combining (6.6) and (6.8), we have

Op(nK
−1
n )

p∑

i=1

δ2ni −Op(n
1/2)

p∑

i=1

δni ≤ 2λnφn(d+ 1)1/2(

p∑

i=1

δ2ni)
1/2.

We further note that
∑p

i=1 δni ≤ p1/2(
∑p

i=1 δ
2
ni)

1/2, and then we have

Op(nK
−1
n )

p∑

i=1

δ2ni ≤ Op(n
1/2p1/2 + λnφn)(

p∑

i=1

δ2ni)
1/2

By assumption (S1’), we have ‖α̂− α̃0‖22 = Op(n
−1K2

np).

Proof of sparsistency in Theorem 3. First, for any i, define α̂∗
ij in the following way. Let

α̂∗
ij = 0 if {j − d, . . . , j} ∩ Ai2 6= ∅, otherwise, α̂∗

ij = α̂ij. Note that α̂∗
Aig

= 0 for g ∈ Ai2.

By Karush-Kuhn-Tucker conditions, for α̂ij 6= 0 we have

2(y −Uα̂)TU(ij) =

j∑

g=j−d

γλn‖α̂Aig
‖γ−1
1 sgn(α̂ij),

where U(ij) is the column of U corresponding to α̂ij. Multiplying both sides by (α̂ij − α̂∗
ij)

yields

2(y −Uα̂)TU (α̂− α̂∗) =
∑

i,j

j∑

g=j−d

γλn‖α̂Aig
‖γ−1
1 sgn(α̂ij)(α̂ij − α̂∗

ij)

= γλn

∑

i,j

∑

g∈Ai2∩{j−d,...,j}

‖α̂Aig
‖γ−1
1 |α̂ij| ·

= γλn

p∑

i=1

Gi∑

g=1

‖α̂Aig
‖γ−1
1 (‖α̂Aig

‖1 − ‖α̂∗
Aig

‖1).

Note that, (α̂ij − α̂∗
ij)sgn(α̂ij) = |α̂ij| if {j − d, . . . , j} ∩ Ai2 6= ∅.

Since γbγ−1(b− a) ≤ bγ − aγ for 0 ≤ a ≤ b, we have, for g ∈ Ai1,

γ‖α̂Aig
‖γ−1
1 (‖α̂Aig

‖1 − ‖α̂∗
Aig

‖1) ≤ ‖α̂Aig
‖γ1 − ‖α̂∗

Aig
‖γ1 .
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Consequently, we have

2
∣∣(y −Uα̂)TU (α̂− α̂∗)

∣∣ ≤ λn

p∑

i=1

∑

g∈Ai1

(‖α̂Aig
‖γ1 − ‖α̂∗

Aig
‖γ1) + γλn

p∑

i=1

∑

g∈Ai2

‖α̂Aig
‖γ1 . (6.9)

By the minimality of α̂, we have

λn

p∑

i=1

Gi∑

g=1

‖α̂Aig
‖γ1 − λn

p∑

i=1

Gi∑

g=1

‖α̂∗
Aig

‖γ1 ≤ ‖y −Uα̂∗‖22 − ‖y −Uα̂‖22.

Since ‖α̂∗
Aig

‖1 = 0 for g ∈ Ai2, we have

p∑

i=1

Gi∑

g=1

‖α̂∗
Aig

‖γ1 =

p∑

i=1

∑

g∈Ai1

‖α̂∗
Aig

‖γ1 ,

and

2
∣∣(y −Uα̂)TU (α̂− α̂∗)

∣∣+ (1− γ)λn

p∑

i=1

∑

g∈Ai2

‖α̂Aig
‖γ1

≤ λn

p∑

i=1

∑

g∈Ai1

(‖α̂Aig
‖γ1 − ‖α̂∗

Aig
‖γ1) + λn

p∑

i=1

∑

g∈Ai2

‖α̂Aig
‖γ1

= λn

p∑

i=1

Gi∑

g=1

‖α̂Aig
‖γ1 − λn

p∑

i=1

∑

g∈Ai1

‖α̂∗
Aig

‖γ1

≤ ‖y −Uα̂∗‖22 − ‖y −Uα̂‖22

= ‖U (α̂∗ − α̂)‖22 + 2(y −Uα̂)TU (α̂− α̂∗).

By Lemma 4′ we have

(1− γ)λn

p∑

i=1

∑

g∈Ai2

‖α̂Aig
‖γ1

≤ ‖U (α̂∗ − α̂)‖22 + 2(y −Uα̂)TU (α̂− α̂∗)− 2
∣∣(y −Uα̂)TU (α̂− α̂∗)

∣∣

≤ ‖U (α̂∗ − α̂)‖22

≤ nC2K
−1
n

p∑

i=1

‖α̂∗
i − α̂i‖22

Since α̃0
Aig

= 0 for g ∈ Ai2, we have ‖α̂∗
i − α̂i‖22 ≤ ‖α̂i − α̃0

i ‖22, and

(1− γ)λn

p∑

i=1

∑

g∈Ai2

‖α̂Aig
‖γ1 ≤ nC2K

−1
n

p∑

i=1

‖α̂i − α̃0
i ‖22 = Op(pKn)
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Since
p∑

i=1

∑

g∈Ai2

‖α̂Aig
‖γ1 ≥

(
p∑

i=1

∑

g∈Ai2

‖α̂Aig
‖1
)γ

≥ ‖α̂∗ − α̂‖γ2 ,

then if ‖α̂∗ − α̂‖22 =
∑p

i=1 ‖α̂∗
i − α̂i‖22 > 0, we have

(1− γ)λn ≤ nC2K
−1
n

p∑

i=1

‖α̂∗
i − α̂i‖22

{
p∑

i=1

∑

g∈Ai2

‖α̂Aig
‖γ1

}−1

≤ nC2K
−1
n ‖α̂∗ − α̂‖2−γ

2

≤ Op(n
γ/2K1−γ

n p1−γ/2),

and thus

Pr
{
‖α̂∗ − α̂‖22 > 0

}
≤ Pr

{
λn

nγ/2K1−γ
n p1−γ/2

≤ Op(1)

}
.

By assumption (S2’), the right hand side converges to zero as n goes to infinity, which implies

that (α̂Aig
: g ∈ Ai2) = 0 with probability approaching to 1.

61



CHAPTER 7

Supplementary Material

In this part, we provide additional simulation results for the case where the coefficient func-

tions live in the linear space spanned by B-spline basis functions.

For each scenario in Chapter 4, we conducted additional simulations in which the nonzero

coefficient functions belong to B-spline spaces. Our new simulation studies are called Scenar-

ios 1B, 2B.1, 2B.2 and 3B corresponding to the settings of Scenarios 1, 2.1, 2.2 and 3. Note

that, in each new scenario, there are four nonzero coefficient functions, shown in Figure 7.1.

In addition, we have

• Scenario 1B: n = 200 and p = 5

• Scenario 2B.1: n = 200 and p = 20

• Scenario 2B.2: n = 400 and p = 20

• Scenario 3B: n = 200 and p = 1000.

MISE values are summarized in Tables 7.1, 7.3, 7.5 and 7.7 and the measures of functional

sparsity are summarized in Tables 7.2, 7.4,7.6 and 7.8. The last column of MISE tables for

Scenarios 2B and 3B gives the maximum MISE values among the coefficient functions with

global sparsity. Bias plots of nonzero coefficient functions are displayed in Figures 7.2, 7.5,

7.7 and 7.9. The asymptotic standard errors are displayed in Figures 7.3, 7.6, 7.8 and 7.10. It

can be seen that all results are in accordance with the general conclusion drawn in Chapter 4.
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Figure 7.1: A graphical illustration of the nonzero coefficient functions βi i = 1, . . . , 4 in
Scenarios 1B, 2B.1, 2B.2, and 3B.

Table 7.1: Comparison of MISE for each coefficient function in Scenario 1B.

Method MISE
β1 β2 β3 β4 β5

LSE 0.3680 0.0297 0.0096 0.0319 0.3184
Lasso 1.0717 0.0584 0.0092 0.0209 0.0041
PLSE0.5 0.3906 0.0234 0.0086 0.0170 0
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Figure 7.2: Estimation bias of the coefficient functions based on LSE (dot-dashed), Lasso
(dashed) and PLSE0.5 (solid) in Scenario 1B.

Table 7.2: Sparsity summary measures (a)-(d) in Scenario 1B. Here, for the true model, Ii,0,
i = 1, . . . , 5 are the lengths of nonzero intervals, and Ci,0’s are the lengths of zero intervals.

Method C1,0 I1,0 C2,0 I2,0 C3,0 I3,0 C4,0 I4,0 C5,0 I5,0 C0 I0
LSE 0 0 0 0 0 0 0 0 0 0 0 0
Lasso 0 0 0.018 0.002 0 0.010 0.062 0.003 0.852 0 0.477 0
PLSE0.5 0 0 0.159 0.025 0 0.019 0.370 0.027 1 0 1 0
true model 0 1 0.2 0.8 0 1 0.425 0.575 1 0 1 4

64



Figure 7.3: Asymptotic standard error (grey solid line), and empirical standard deviation
(black solid line) of the coefficient functions with fixed number of knots in Scenario 1B.

Table 7.3: Comparison of MISE for each coefficient function in Scenario 2B.1.

Method MISE maxi≥5 MISEi

β1 β2 β3 β4

LSE 0.1949 0.0163 0.0074 0.0227 0.2474
Lasso 8.3178 0.3879 0.0127 0.0167 0.0006
PLSE0.5 0.2926 0.0146 0.0059 0.0106 0.0000

65



Figure 7.4: Asymptotic standard error (grey solid line), and empirical standard deviation
(black solid line) of the coefficient functions with adaptive number of knots in Scenario 1B.

Table 7.4: Sparsity summary measures (a)-(d) in Scenario 2B.1. Here, for the true model,
Ii,0, i = 1, . . . , 4 are the lengths of nonzero intervals, and Ci,0’s are the lengths of zero
intervals.

Method C1,0 I1,0 C2,0 I2,0 C3,0 I3,0 C4,0 I4,0 C0 I0
LSE 0 0 0 0 0 0 0 0 0 0
Lasso 0 0 0.009 0 0 0.022 0.282 0 3.385 0
PLSE0.5 0 0 0.189 0.001 0 0.024 0.392 0 15.89 0
true model 0 1 0.2 0.8 0 1 0.425 0.575 16 4
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Figure 7.5: Comparison of bias of the coefficient functions based on LSE (dot-dashed), Lasso
(dashed) and PLSE0.5 (solid) in Scenario 2B.1.
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Figure 7.6: Asymptotic standard error (grey solid line), and empirical standard deviation
(black solid line) of the coefficient functions in Scenario 2B.1.
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Table 7.5: Comparison of MISE for each coefficient function in Scenario 2B.2.

Method MISE maxi≥5 MISEi

β1 β2 β3 β4

LSE 0.0762 0.0064 0.0027 0.0087 0.0914
Lasso 2.2156 0.1022 0.0047 0.0058 0.0004
PLSE0.5 0.0752 0.0044 0.0022 0.0038 0.0000

Table 7.6: Sparsity summary measures (a)-(d) in Scenario 2B.2. Here, for the true model,
Ii,0, i = 1, . . . , 4 are the lengths of nonzero intervals, and Ci,0’s are the lengths of zero
intervals.

Method C1,0 I1,0 C2,0 I2,0 C3,0 I3,0 C4,0 I4,0 C0 I0
LSE 0 0 0 0 0 0 0 0 0 0
Lasso 0 0 0.01 0 0 0.019 0.29 0 2.11 0
PLSE0.5 0 0 0.164 0 0 0.018 0.39 0 15.81 0
true model 0 1 0.2 0.8 0 1 0.425 0.575 16 4

Table 7.7: Comparison of MISE for each coefficient function in Scenario 3B.

Method MISE maxi≥5 MISEi

β1 β2 β3 β4

LSE 0.1916 0.0164 0.0065 0.0211 0.0058
Lasso 3.2495 0.1536 0.0077 0.0128 0.0012
PLSE0.5 0.2584 0.0134 0.0055 0.0101 0.0001
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Figure 7.7: Comparison of bias of the coefficient functions based on LSE (dot-dashed), Lasso
(dashed) and PLSE0.5 (solid) in Scenario 2B.2.

Table 7.8: Sparsity summary measures (a)-(d) in Scenario 3B. Here, for the true model, Ii,0,
i = 1, . . . , 4 are the lengths of nonzero intervals, and Ci,0’s are the lengths of zero intervals.

Method C1,0 I1,0 C2,0 I2,0 C3,0 I3,0 C4,0 I4,0 C0 I0
LSE 0 0 0 0 0 0 0 0 0 0
Lasso 0 0 0.016 0 0 0.018 0.222 0 0.1 0
PLSE0.5 0 0 0.181 0.001 0 0.022 0.391 0.001 4.86 0
true model 0 1 0.2 0.8 0 1 0.425 0.575 5 4
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Figure 7.8: Asymptotic standard error (grey solid line), and empirical standard deviation
(black solid line) of the coefficient functions in Scenario 2B.2.
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Figure 7.9: Comparison of bias of the coefficient functions based on LSE (dot-dashed), Lasso
(dashed) and PLSE0.5 (solid) in Scenario 3B.
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Figure 7.10: Asymptotic standard error (grey solid line), and empirical standard deviation
(black solid line) of the coefficient functions in Scenario 3B.
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CHAPTER 8

Conclusions and Future Work

8.1 Conclusions

In this dissertation, we proposed a variable selection method to efficiently achieve globe

sparsity and local sparsity simultaneously. It was developed based on the group bridge

penalty and the natural properties of B-splines. In the simulation study, we compared the

performance of proposed penalized method (PLSE), lasso method and ordinary least squares

method (LSE). It was found that the LSE provides consistent estimation, but it had neither

global sparsity nor local sparsity. The lasso method achieved functional sparsity in some

degree, but cannot ensure global sparsity. However, our proposed method had outstanding

performance in achieving both global sparsity and local sparsity. Moreover, as the dimension

of model grew, i.e., diverging dimension and ultra-high dimension, the advantage of our

proposed method became manifest.

In Chapter 5, we applied the proposed method to the gene expression data and Boston

housing data, and obtained some sensible results. For gene expression data, our proposed

PLSE greatly reduced the size of the model and narrowed the range of possible active tran-

scription factors. It also indicated the active period for selected TFs. For the Boston hous-

ing data, the varying coefficient model characterized the impacts of seven interesting factors

(CRIM, RM, TAX, NOX, PTRATIO, AGE, B) on median housing values as functions of LSTAT. The

fitting results by PLSE suggested that some factors have no effects on people with high

LSTAT values.

Further, we established some theoretical properties for our proposed method described

in Chapter 3. In particular, we demonstrated the consistency in both functional estimation

and detecting functional sparsity under mild assumptions for nonparametric regression. In

addition, the convergence rate of our proposed method is the optimal rate of nonparametric
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regression. We also confirmed the properties of consistency and sparsistency under diverging

dimensional model.

8.2 Future Work

In Chapter 4, our proposed method was applied to varying coefficient models of ultra-

high dimension. The simulation results are promising. We plan to investigate the theoretical

properties of our proposed method under ultra-high dimension setting.

In Section 2.4, an asymptotic variance of the PLSE was provided; however, its consistency

has not been established. In the future, we will seek consistent variance estimators for the

estimated coefficient functions. In addition, we plan to derive the asymptotic distribution

of the estimated functions. Moreover, we will extend the proposed method to generalized

linear models with varying coefficients, and establish the consistency and sparsistency for

the cases of finite dimension and diverging dimension.
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