
Parallel Algorithms for Singular Value Decomposition

Renard R. Ulrey], Anthony A. Maciejewski], and Howard Jay Siegelj

tNCR Corporation, 2001 Danfield Ct., Ft. Collins, CO 80525 USA
:j:ParallelProcessing Laboratory, School of Electrical Engineering

Purdue University, West Lafayette, IN 47907-1285 USA

Abstract
In motion rate control applications, it is faster and eas­

ier to solve the equations involved if the singular value
decomposition (SVD) of the Jacobian matrix is first deter­
mined. A parallel SVD algorithm with minimum execution
time is desired. One approach using Givens rotations
lends itself to parallelization, reduces the iterative nature
of the algorithm, and efficiently handles rectangular matri­
ces. This research focuses on the minimization of the SVD
execution time when using this approach. Specific issues
addressed include considerations of data mapping, effects
of the number of processors used on execution time,
impacts of the interconnection network on performance,
and trade-offs between modes of parallelism. Results are
verified by experimental data collected on the PASM par­
allel machine prototype.

1: Introduction

Decreasing the execution time of computerized tasks is
the focus of a tremendous amount of study. The use of
parallel computer systems is one method to help decrease
these times. The performance of a parallel system. how­
ever. is dependent on the algorithm implementation and
the parallel machine characteristics. Performance opti­
mization is therefore complicated, due to the wide variety
of algorithm characteristics [7] and the rapidly growing
variety of parallel machines that have been built or pro­
posed. Thus. the study of mapping algorithms onto paral­
lel machines is an important research area.

The singular value decomposition (SVD) of matrices
has been extensively used in control applications. e.g .• dur­
ing the computational analysis of robotic manipulators [8.
22]. The decomposition aids the computational solution

This research was supported in part by the National Science Foundation
under grant CDA-9015696, by Sandia National Laboratories under con­
tract 18-4379B. and by Rome Laboratory under contract
F30602-94-C-0022.

0-8186-5602-6/94 © 1994 IEEE
524

of system equations such as the motion rate control for­
mula x= J iJ. where!ERMspecifies the end effector veloc­
ity, ~ERN specifies joint velocities. and JERM,N is the
Jacobian matrix [21]. For systems with many cooperating
manipulators. the value of N can reach into the hundreds.
resulting in a severe computational burden for achieving
real-time control.

In general. computation of the SVD of an arbitrary
matrix is an iterative procedure, so the number of opera­
tions required to calculate it to within acceptable error lim­
its is not known beforehand. The control of many sys­
tems, however. is based on equations involving the current
Jacobian matrix, which can be regarded as a perturbation
of the previous matrix. i.e .• J(t+Lit) = J(t)+M(t). It has
been demonstrated that for these cases knowledge of the
previous state can be used during the computation of the
current SVD to decrease execution time [12]. This paper
describes and analyzes two SVD algorithm implementa­
tions for these cases. Experimental data obtained on the
PASM prototype parallel computer [1, 19] is provided that
supports the conclusions of the algorithm analyses.

Section 2 provides background information about SVD,
Givens rotations, and PASM. Descriptions of the two par­
allel SVD implementations being analyzed are presented
in Section 3. Section 4 demonstrates an analysis approach
to determine which implementation has the shorter execu­
tion time. The performances of SVD implementations on
PASM are evaluated in Section 5.

2: Background information

The SVD of a matrix JERM,N is defined as the matrix
factorization J=UDVT• where UERM.M and VERN•N are
orthogonal matrices of the singular vectors. ~d :QERM'N

is a nonnegative diagonal matrix. The singular values of J,
<Ii. are ordered from largest to smallest along the diagonal
ofD. It is assumed here that M:s:N.

The Golub-Reinsch algorithm [6] is the standard tech­
nique for determining the SVD of a matrix. This method.

however. has two unattractive aspects. The first is that the
algorithm, as it is defined. cannot use knowledge of a pre­
vious matrix decomposition. The second is that the tech­
nique is relatively serial in nature. making more paralleliz­
able algorithms desirable.

Several parallel SVD algorithms have been imple­
mented for various machine architectures. including those
proposed in [3, 4, 10. 11. 16]. These implementations also
do not allow their iterative natures to be reduced. Algo­
rithms being studied in this paper are based on a method­
ology presented in [12]. which exclusively uses Givens
rotations [6] to orthogonalize matrix columns.

Successive Givens rotations are used to generate the
orthogonal matrix V that will result in JV =B, where the
columns of ~ERM'N are orthogonal. A matrix with
orthogonal columns can be written as the product of an
orthogonal matrix U and a diagonal matrix D (i.e.,
B =00) by letting the columns of U, Uj. equal normalized
columns of B. b.,

u, = bJllbdl (where IIbjll = ~bi f b). (1)
and defining the diagonal elements of D to be equal to the
norm of the columns of B

O"i =Ilbili. (2)
This results in the SVD of J.

The orthogonal matrix V that will orthogonalize the
columns of J is formed as a product of Givens rotations.
each of which orthogonalizes two columns. Considering
the i-th and k-th columns of an arbitrary matrix A, a single
Givens rotation results in new columns. a; and ak,given by

ai = a, cos(;) + a.. sin(;) (3)
ak = a.. cos(;) - a,sin(;). (4)

The cos(;) and sin(;) terms necessary to achieve orthogo­
nality are computed using the formulas in [14]. which are
based on the quantities

p = a,Tak. q = 8jTaj-akTak' and c = -V4p2+q2. (5)

Using these quantities, when q ~ 0

cos(;) = -V(c+q)f(2C) and sin(;) =p/(c·cos(;)). (6)

Whenq c O,
sin(fl) = sgn(p) . -V(c- q)!(2C) and (7)

cos(;) = p/(c' sin(;)) •
where sgn(p) equals 1 if p ~ 0 and -1 if p < O. Two sets of
formulas are given so that ill-conditioned equations result­
ing from the subtraction of nearly equal numbers can
always be avoided.

To orthogonalize each possible pair of columns requires
N(N -1)/2 rotations, referred to as a sweep [6]. The
matrix V can be computed by iteratively forming the prod­
uct of a set of sweeps and testing for convergence. While
the number of sweeps required to orthogonalize the
columns of J is not generally known beforehand. it was
shown in [12] that by using the V matrix from the SVD of

525

the previous J to find an initial estimate for B.
B(t+6t) =J(t+6t)"V(t) , (8)

one can obtain a good approximation to the new SVD
using a single sweep if M(t) is small. Therefore. in this
WOIX the current V matrix is calculated using

N-l N

V(t+6t) = V(t)"IT IT Gik . where Gik denotes the
i-l Iooi+l

Givens rotation to orthogonalize columns i and k. Only a
single sweep is performed to update the matrix V.

The PASM (partitionable ,S,IMD/MIMD) parallel pro­
cessing system [lI9] was used to implement these algo­
rithms. PASM. designed at Purdue University. supports
mixed-mode parallelism. i.e.. it can operate in either
SIMD or MIMD mode of parallelism. and can switch
modes at instruction level granularity with generally negli­
gible overhead. A small-scale 30-processor PASM proto­
type has been built with 16 PEe> (processor/memory pairs)
in the computational engine. For inter-PE communica­
tions. PASM uses a partitionable circuit-switched multi­
stage cube interconnection network [18], also called an
Omega [9]. The network can be used in both SIMD and
MIMDmodes.

PASM is capable of employing barrier synchronization
[5] in MIMD mode. called Barrier MIMD (BMIMD).
Each PE executes its code independently until it arrives at
a synchronization point called a barrier. Then. each PE
waits at the barrier until all PEe> indicate they have reached
it. One use for this is to synchronize inter-PE transfers
performed in MIMD mode.

3: Data mapping

3.1: Overview

Based on the equations in Section 2, Fig. 1 gives an
algorithm to calculate V. D. and U using Givens rotations.
This algorithm assumes that the SVD of the Jacobian
matrix from the previous control sample period has been
computed. Thus. for step I. the previous V matrix is avail­
able on the system. It is assumed that the algorithm then
converges with a single sweep of rotations in step 2.

Referring to the parallel execution of a Givens rotation
by all PEs as a rotation step. N - 1 rotation steps must be
performed on N/2 column pairs to form all N(N - 1)/2 col­
umn pairs. With unique column pairs distributed among
N/2 PEs. inter-PE communication is avoided within each
rotation step. After the initial rotation step. however. an
inter-PE communication is required before each remaining
rotation step. This rotate-transfer-rotate sequence is
required both to form all column pairs and to converge the
B and V matrices to their single-sweep values. Newly
updated columns are being transferred in each communi­
cation step.

columns are shifted to all other PEs in the subgroup by
applying the function Shift, (i, S) a total of S - 1 times. In
the second step. the subgroup is split in two by exchanging
x and y columns between subgroup halves using
Shifts/2(i.S) and reducing S by a factor of two for the next
iteration.

A model of the inter-rotation transfers for this algo­
rithm is shown for N=8 in Fig. 2. Each row of blocks in
the figure represents a rotation step where calculations are
being performed in each of 8fl PEs. Number pairs in the
blocks denote the columns being updated/rotated in each
PE. Arrows illustrate the inter-rotation column transfer
steps. Beside each transfer step. the communication func­
tion used to achieve the interconnection pattern is speci­
fied. as well as the columns being exchanged (x is the left
column number in each box. y is the right).

step 1:
calculate initial estimate for B from J and previous V, using (8)
step 2:
for all column pairs (i,k) do /* one sweep */

calculate p, q, and c using (5)
calculate oos(;) and sine;) using (6) or (7)
perform rotation on columns i and k of B. similar to (3) and (4)
perform rotation on columns i and k of V. similar to (3) and (4)

end for
step 3:
calculate D from B. using (2)
calculate U from B and D, using (I)

Fig. 1: High-level algorithm tor finding SVD using Givens
rotations.

As presented in Section 2. the calculations involved in
this algorithm are straightforward. Of greater interest are
ways to effectively map matrix elements to particular par­
allel machines. and the types of inter-PE communication
these mappings dictate. Various implementations of col­
umn transfer operations have been devised. including
those in [3. 4. 16]. Each of these methods map a unique
column pair to each of N/2 PEs. The availability of a mul­
tistage cube network on PASM allows matrix data to be
distributed across more PEs than allowed by implementa­
tions in [3. 4. 16]. and thus increases the number of PEs
that can perform useful work while still performing all
necessary inter-PE communications in single transfer
steps.

Two different methods for mapping matrices to PEs are
presented. These implementations assume that
M=2m",N=2n for the Jacobian matrix JERM •N . If the
matrix does not have these dimensions. it can always be
padded with zeroes. This section explains the data layout
and communication patterns for each method. The algo­
rithmic details for each are in Section 4.

PEO PEl PE2 PE3

3.2: Mappings being analyzed

A two columns per PE (2CPP) data mapping is the first
to be considered. Assume that Nfl PEs are used. num­
bered from 0 to (N/2) - 1. Let S be the number of PEs in a
communicating subgroup (S a power of two). and let i be
the address of a PE that is transferring a column through
the network. The 2CPP method uses the interconnection
function Shift.(i. S) = SLitSJ+ ((i+j) mod S). where j is

--~ ..
the Shift length. to determine the address of the destination
PE. This function allows the destination PE address to
remain within a current communicating subgroup of size
S. The resulting communication patterns are conflict-free
transfers on a multistage cube network [9. 18].

Let each PE contain columns x and y. All possible col­
umn pairs are formed by iteratively performing a two-step
process. To begin. S = N/2 so that all PEs being used are
in a communicating subgroup. In the first step. all y

526

Fig. 2: Column transfer model for 2CPP mapping.

A second implementation was developed that allows all
three algorithm steps to be implemented with a one col­
umn per PE (lCPP) distribution. Using the capabilities of
the multistage cube network. a communication pattern was
derived that forms all possible column pairs using N - 1
column transfers. Assume N PEs are used. numbered 0 to
N - 1. PE i always contains the most recent version of
column i. In the k-th rotation step. 1 S; k < N. PE i
exchanges data with PE iek, where e is the bit-wise exc1u­
sive-or, These transfers are conflict-free on the multistage
cube [2].

Operations in step 2 require data from both columns of
the pair being rotated. Therefore. the 1CPP mapping
requires column transfers within each rotation step (intra­
rotation transfers) rather than between rotation steps (inter­
rotation transfers). A performance trade-off is immedi-

- I

ately apparent with respect to the 2CPP method. Steps I
and 3 can execute with half as many operations using the
I CPP mapping. but step 2 requires one additional column
transfer to complete a full sweep. Later sections compare
both the expected performance and observed performance
between the two methods.

A model of the intra-rotation transfers for this imple­
mentation is shown in Fig. 3 for N = 8. Having the
columns sequentially ordered after the decomposition may
be an advantage for post-SVD operations.

PEO PE 1 PEZ PE3 PEA PE5 PE6 PE7

rot.l~ ~ U U
rot.2~ ~f2J

rot. 31:t1 U ~ ~~ f2J
rot. 4 @ CO dJ [?J m~'m9

<;

rot. 5~ en G{~ ~bJ~9
t

~bJrot. 6 of] OJ~
rot. 7 [Q] oj
~~bJ

Fig. 3: Column transfer model for 1CPP mapping.

With the 2CPP and ICPP column distribution models
now formed. it is a goal of this study to further utilize par­
allelism in the SVD algorithm to possibly decrease execu­
tion times. The approach taken divides each column of the
B and V matrices into :B. =2r segments. The total number
of PEs that are used increases by a factor of R. For this
study.Rs Ms N,

In the 2CPP mapping. because RNa total PEs are
being used. r + n - I PE address bits can be used to fully
define the. column segment distribution. To map column
segments onto PASM. PEs whose addresses agree in the
n - I most significant bits contain different segments of
the same column. and PEs with the same r least significant
bits have corresponding segments of different columns.
Similarly. for the ICPP mapping, r +n address bits define
the column segment distribution among the RN PEs. PEs
with the same n most significant bits contain segments of
the same column. and PEs with the same r least significant
bits have the same segment number.

These segment mappings allow the system network to

527

still perform the column transfer communications as
explained for both the I CPP and 2CPP methods. These
communications will occur between PEs that have the
same segment number. i.e.• agree in a given set of address
bits. All PEs can also perform simultaneous communica­
tions between PEs containing different segments of the
same column as a conflict-free transfer. The addresses of
these PEs will agree in a different set of bits. This is due
to the partitioning properties of the multistage cube [18].

Communication patterns between PEs that have differ­
ent segments of the same column have not been discussed.
The patterns that provide the fastest algorithm execution
were found to be dependent on both the column mapping
(lCPP or 2CPP) and the current operation being per­
formed. The communication patterns providing the best
performance are detailed in [20].

4: Performance analysis

4.1: Analysis overview

There are three goals of this analysis. The first is to
demonstrate some considerations when examining algo­
rithm performance. The second is to see whether a
speedup of the SVD algorithm can always be expected
when more PEs are used (this is not always the case. e.g .•
[15]). The third is to determine the conditions when one
of the ICPP and 2CPP implementations performs better.

An operation count analysis for the SVD implementa­
tions is the first step toward predicting the better algorithm
mapping. The two main components of the SVD algo­
rithm are considered to be computation and inter-PE com­
munication. The number of floating-point operations
~ performed by each PE will be used as the mea­
sure of the amount of computation for this analysis.

In general. the time to perform FLOPs on a machine
will depend on the operation to be performed. and possibly
on the operands. For this analysis. it is assumed that all
FLOPs and their associated address calculations take the
same constant amount of time. It was shown in [15] that
using an experimentally-derived average time as the
execution time of each FLOP can provide good results.

The time it takes to set up a valid network configuration
in SIMD mode on the PASM prototype is close to that to
perform a floating-point ® data transfer. For this rea­
son. and because the inter-PE transfers performed through­
out the SVD algorithm involve different numbers of data
items. the time spent performing communications in this
analysis is represented by the total number of single data
transfers <!IT§) performed by each PE. Experimental
results presented in Section 5 will show that this is a good
approximation.

4.2: Operation counts

Various methods were derived to perform each of the
three steps of the SVD algorithm with both the 2CPP and
lCPP approaches. A comparison of the operation counts
for the different methods is detailed in [20). The methods
with the smallest complexities were implemented.

Because of thedistribution of columns and column seg­
ments among PEs. many operations require the combining
of the partial sums of calculations performed by single
PEs. In most cases. some variation of recursive doubling
(described in [17]) allowed execution with the fewest FP
and DT operations. Other methods were also found to
reduce the number of operations. The similarity of (6) and
(7) is exploited so that both cos(l/l) and sin(l/l) are calcu­
lated using only 6 non-data-dependent H..OPs. regardless
of the mode of parallelism being used. For the 1CPP
approach. a method was developed for both SIMD and
MIMD modes to perform column rotations on all PEs
simultaneously. where half of the PEs rotate their own
columns according to (3) and the other half according to
(4). Again. the similarity of the equations is exploited.
These methods are detailed in [20].

The complete complexity equations for both
approaches are shown in Table 1. Because of the method
chosen to perform the 2CPP approach. its total operation
count has a special case when R = 1. For comparison pur­
poses. the total number of FLOPs needed to perform the
entire SVD algorithm using a single processor is also
shown in the table.

4.3: Relation of no. of PEs to operation count

To find the number of PEs to use so that the fewest
number of operations are performed. the derivative with
respect to R of the equations shown in Table 1 are found
and set to zero. Doing this for the FLOP count of the
2CPP implementation and rearranging the resulting equa­
tion reveals that the minimum number of H..OPs are per­
formed when R = (2N + (l6NM - 8M - 2N)/(3N- 2» .
Similarly. for the lCPP implementation.
R=(1.5N+(9NM-5M-1.5N)/(2N-1). Recall that as
R increases the number of PEs increases. and that for this
study it is assumed 1s R s M s N. Because R> M in these
two equations. the number of H..OPs used in each imple­
mentation continues to decrease as R (and the number of
PEs) increases. up to themaximum allowed when R = M.

Setting the derivative of the DT count of the 2CPP
approach to zero results in the mathematically optimal
value of R = «N2

- 2N + NM - 4M)/(3N - 2» . In this equa­
tion. R may be less than M. depending on the values of N
and M. Setting the derivative of the DT count of the 1CPP
approach to zero results in the mathematically optimal

528

Floating-point Operation Count

implementation total condition

ZCPP (l1R)(6N2 - 6N + 16NM - 8M)
I<R:s:M

(RN/ZPEs)
+r(3N -Z)+(9N -to)

6N2 +3N + 16NM - 8M-9 R=1

ICPP (lIRX3N2 -3N +9NM -5M) I:S:R:s:M
(RN PEs) +r(ZN -1)+(toN -10)

onePE
3N3 + (3/2)N 2 + 8N2M

- 5NM - (9/Z)N+ M2

Network Data Transfer Count

implementation total condition

ZCPP (lIRXN2 -ZN + NM -4M)
I<R:s:M

(RN/ZPEs)
+r(3N - Z)+(N +ZM -I)

N2_N +NM-ZM-Z R=I

ICPP (11R)(N2 -N +NM -ZM)
I:s:R:s:M

(RN PEs) + r(ZN - I) +(N + M - I)

Table 1: SVDalgorithm operation counttotals.

value of R = «N2 - N + NM - 2M)/(2N - 1)). Again. R
may be less than M. depending on thevalues of N and M.
An examination of this equation. however. provides inter­
esting results. Letting M = N. the equation reduces to
R = N - (2N/(2N - 1), so the optimal value of R will be
between N - 2 and N - 1. Therefore. when using the
lCPP algorithm with M = N. the number of DTs will
decrease as R increases from 1 to M - 2. Also. if M in the
original equation is reduced to less than N ~ 4 by some
power of two. the mathematically optimal value of R is
larger than its assumed maximum value of M ~ N/2. and
the minimum number of DTs is always reached when the
maximum number of PEs are used.

The possibility that the number of DTs performed by
an algorithm may increase as the number of PEs increases
means that there could be a case when the total algorithm
execution time increases when more PEs are used. A
method is presented in the next subsection for determining
whether this is true for a given system and problem size.

4.4: Performance prediction

A method is adapted from [15] to predict the number of
PEs to use that will minimize the execution time for the
SVD algorithm. This method gives relative weights to the
FP and DT operations by the determination of a communi­
cation ratio~. This ratio is used with the complexity
equations in Table 1 to predict only whether performance
improves as more PEs are used. Because the numbers of
FP and DT operations do not account for the total execu­
tion time. machine-dependent data was collected to use for
theprediction.

The CR is calculated in terms of average expected time
to perform a DT over the average expected time to per-

800

5: Performance evaluation

Fig.4: Comparison of PP2CPP and PP 1CPP ; CR-O.1l9.

643216

number of PEs
log scale

4

100

Matrices of size 4><4. 4x8, and 8"8 allow timing data to
be recorded while using different numbers of PEs on the
16-PE prototype. Both the 2CPP and 1CPP implementa­
tions were executed on the PASM computer with matrices

log scale

5.1: Experimental algorithm performance

predicted
execution 400

times
(f1oating-

point
operation 200

units)

To compare the two approaches using NM!2 PEs. the
same method is followed. with different values replacing R
and r in the equations of Table 1. Analysis in [20] shows
that the 1CPP implementation uses fewer FLOPs when
NMI2 PEs are used. under the constraint that M> 2. which
is true for all values of M of interest. It is also shown that
the 1CPP implementation uses fewer DTs under the con­
straint (M(N- 1) . (m+ 1)+M2) > N2 • This inequality is
not true for all values of N and M. but it can easily be
shown to be true when M ~ Ns M(m + 1). which covers
many cases. Thus, for this range of N. the 1CPP imple­
mentation is expected to be the fastest when the maximum
common number of PEs are used. For N outside this
range, the PP of the two implementations can be com­
pared, taking into account the CRof the system.

PP2CPP and PP1CPP are directly compared for three
matrix sizes of interest and a CR=O.119 in Fig. 4. The
figure shows that as the number of PEs used increases
from N to NMI2. the execution times of both methods are
expected to decrease, and the fastest implementation is
predicted to change from the 2CPP approach to the 1CPP
approach. It also shows that the 1CPP implementation
with NM PEs is expected to provide the overall minimum
execution time.

4.5: Implementation comparison

The operation counts of the 2CPP and 1CPP
approaches are now compared. One comparison covers
when the number of PEs equals the minimum common
number that the two implementations can use (N PEs). A
second comparison is for when the maximum common
number of PEs are used (NM!2 PEs). These two cases are
focused on because various numbers of PEs can be used.
depending on the values N. M. and R. The third case
directly compares PP2CPP and PP1CPP '

To compare the two implementations with N PEs.
replacements are made for R and r in the equations of
Table 1 which correspond to using N PEs with either
approach. The 2CPP approach requires both fewer FLOPs
and fewer DTs under the constraints that M ~ 2 and N ~ 4
(details in [20]). Because these constraints are met for all
values of N and M of interest. the 2CPP implementation is
expected to be the fastest (neglecting differences in over­
head between the two approaches) when the minimum
common number of PEs are used.

form a FLOP (including memory access and array address
calculation times). The units of measure for the CR are
«secs./DT)/(secs./FLOP» =FLOPs/DT. Various meth­
ods can be used to determine the CR. The one chosen
executes one implementation of the SVD algorithm on a
small matrix. using the minimum number of PEs that the
implementation allows. The 1CPP algorithm was arbitrar­
ily selected to measure the CR. with four PEs being used
to decompose a random 4><4 matrix. Although the PASM
prototype can operate in different modes of parallelism,
SIMD mode is used throughout this analysis for consis­
tency. Hardware timers are used to measure the execution
times of the operations being considered. Because the
PASM prototype currently performs all FP calculations in
software and has a relatively fast inter-PE communication
network. its CR measured 0.119. It is assumed for this
analysis that the CR does not vary with the number of PEs
used.

Using the CR. the predicted performance <r£) of a
machine running an SVD implementation is approximated
by PP = (no. of FLOPs) +CR . (no. of DTs) , and is a func­
tion of both matrix size and the number of PEs. With this
definition. PP will have units of number of FLOPs.
Because the PP equations for the 2CPP and 1CPP
approaches (PP2CPP and PP1CPP) do not consider many
overhead operations. they do not provide absolute execu­
tion times. but they are reasonable estimates of relative
execution times as R, N. and M are varied. Therefore.
they can be analyzed to determine the number of PEs that
will provide minimum execution time on a particular
machine.

529

Fig. 5: Experimental performance of 2CPP vs. 1CPP.

5.2: Modes of parallelism

16

-_1CPP
--_- 2CPP

number of PEs
log scale

4

0.25

SIMDmode

log scale

normalized
average

experimental 0.5
execution

time

increases. These predictions were verified by experimen­
tal execution times on the PASM machine [20].

The 2CPP and 1CPP algorithms were performed on the
PASM prototype using SIMD. MIMD. BMIMD. and
mixed-mode parallelism. To determine themost effective
mode mappings. both algorithms were divided into several
code fragments. The fastest execution mode for each code
fragment was then determined.

The SIMD and MIMD modes of parallelism each have
several advantages and disadvantages [17]. An advantage
of SIMD is the ability to utilize CU/PE overlap. For the
SVD implementations. this overlap occurs when the CD
performs the overhead associated with loops while the PEs
execute the loop bodies. Another advantage of SIMD is
that the implicit synchronization after every instruction
broadcast to the PEs implies that explicit synchronization
is not required during communication. A SIMD disadvan­
tage is that data conditional "then" and "else" clauses
must both be broadcast to the PEs.

An advantage of MIMD is the ability to execute the
clauses of data conditional statements without underutiliz­
ing PEs. A block of instructions whose execution times
are data-dependent will complete faster [17]. A MIMD
disadvantage is that explicit sender/receiver synchroniza­
tion is required before inter-PE communication can take
place. On PASM. sending and receiving PEsmust be syn­
chronized for every value sent through the network in
MIMD mode. In the BMIMD implementations. all opera­
tions are executed in MIMD with the exception that a bar­
rier is executed once for every network setting. After the

of these sizes. Jacobian matrix data consisted of randomly
generated FP values within the range (-5. + 5). Algo­
rithms were coded using a combination of a C language
compiler. AWK scripts (for pre- and post-processing). and
library routines for data-conditionals. network transfers.
and data transfers from the control unit (QD to the PEs.
Matrix and column elements were stored in arrays. Values
for M. N. and R were left as variables that could be
updated before each execution so that several data points
could be obtained easily. But. because M. N. and R were
variables. all column and column segment operations
involved loops that could not be unrolled.

The execution times were recorded for both the 2CPP
and lCPP implementations executed in SIMD mode on
the PASM prototype. Matrices of each of the three dimen­
sions specified were decomposed using both implementa­
tions. with all allowable numbers of PEs between one and
16. inclusive. The recorded data is plotted in [20].

A comparison of the 2CPP and 1CPP implementation
execution times is illustrated in Pig. 5. The experimental
timing data represents the average execution times of an
algorithm run on 256 different Jacobian matrices of the
given size. The experimental data is normalized to the
average execution time of the SVD algorithm when
decomposing a 4><4 matrix with a single PE. For the 4"4­
matrix case. it is apparent that the fastest implementation
switches from the 2CPP approach to the 1CPP approach
when going from four to eight PEs. Also. the 1CPP
approach can use 16 PEs when working with a 4><4 matrix.
whereas the 2CPP approach cannot. Thedata obtained for
4><4 matrices is as expected. Similarly. for the 4><8 matrix
case. the fastest implementation switches from the 2CPP
to the lCPP approach when going from eight to 16 PEs.
When working with an 8'<8 matrix. the 1CPP implementa­
tion execution time approaches that of the 2CPP imple­
mentation when going from eight PEs to 16 PEs. All of
these observations of Fig. 5 match exactly the comparison
of the PPs shown in Fig. 4.

It was desired to determine how algorithm execution
times are affected by the number of PEs when the CR is
much higher than 0.119. as would be expected on a com­
mercially available machine with FP coprocessors or digi­
tal signal processors. For this purpose. the 2CPP and
lCPP programs were changed to operate on integer data
(the square-root FLOP. which is comparable to a FP divi­
sion with an MC68881 FP coprocessor [13]. was replaced
by a single integer division). This was done for experi­
mental timing studies only; FP operations are needed to
get the desired accuracy for this application. The CR for
this new code was determined to be 1.205. The PP for the
two algorithms with this CR are analyzed in [20]. It is
shown that for 4><4. 4><8. and 8x8 matrices. execution times
are still expected to decrease as the number of PEs

530

barrier. all required data transfers can be made as if the
P& were in SIMD mode. with less overhead than MIMD
network transfers.

Mixed-mode implementations incorporate advantages
of both the SIMD and MIMD mode implementations
while trying to avoid the disadvantages of each. Various
mode combinations were considered for the different pro­
gram fragments of both the 2CPP and lCPP approaches.
The following is an analysis of the implementations that
resulted in the shortest execution times of each method.

Table 2 shows how the 2CPP algorithm was divided
into code fragments. Fragment 1 is a nested loop calcula­
tion of partial sums of two columns of the B matrix. where
each of M column elements is determined from N/R
matrix elements of J and V. This fragment is implemented
in SIMD mode to maximize the advantage of CU/PE over­
lap. Fragment 2 is a set of transfers in a loop that com­
bines the partial sums of segments of b, and bj. Fragment
2 is also implemented in SIMD to utilize both CU/PE
overlap and implicit network transfer synchronization.

alg. code code fragment
step frag. description

1 I derive partial sums of columns bi and bj

2 combine segments of b, and bj

2 3 determine columns to transfer in Shifts12(i . S) op.

4 transfer colwnn segments via Shifts12(i . S) op.

5 transfer column segments via Shift j (i, S) op.

6 reorder left/right columns by their number

7 derive partial sums ofbiTbi• bjTbj• and p

8 combine biTbi. bjTbj• and p partial sums

9 calculate q, c. sin(ql), and cos(ql)

10 rotate bi. bj• Vi. and Vj

3 11 derive partial sums of biTbi and bjTbj

12 calculate 17i and 17j' R = 1

13 determine bTb value to combine, R"1

14 combine bTb term, and partners exchange 17. R'"1

IS conditional calculation of Uiand Uj

Table2: Code fragmentation of 2CPP implementation for
mixed-mode parallelism.

Inter-rotation column segment transfers are handled by
code fragments 3 through 6. Fragments 3 and 4 are per­
formed n - 1 times during the execution of 2CPP. once for
each Shifts/ii. S) operation. Fragment 3 performs a short
if-then-else conditional in MIMD mode to determine the
column segments to be transferred. In fragment 4. a col­
umn segment of B and V is transferred by each PE. The
matrix element transfers are performed in two loops.
SIMD mode is used to take advantage of both CU/PE
overlap and transfer efficiency. Code fragment 5 performs
the Shift, (i, S) operation N - n - 1 times throughout

531

execution of 2CPP. These transfers are again executed in
SIMD mode for the advantages of CU/PE overlap and
transfer synchronization. Fragment 6 is performed after
each inter-rotation Shift (i.e.. N - 2 times). It is an if-then­
else operation executed in MIMD mode that reassigns i/j
(left/right) column order.

Code fragments 7 through 10 are performed N - 1
times during the execution of the 2CPP algorithm; once
for each rotation. Fragment 7 calculates three partial sum
values within a loop executed in SIMD mode. Fragment 8
combines these partial sums via recursive doubling trans­
fers that get performed r times in a loop. Again. this loop
is executed in SIMD to take advantage of both CU/PE
overlap and implicit transfer synchronization. Code frag­
ment 9 calculates the values q. c. sine;). and cos(;). This
is an in-line block of code requiring no loops. so MIMD
mode is used because the instructions' execution times are
data-dependent. Fragment 10 performs the rotation on
two column segments of B and of V. Rotating column
segments of B requires M/R iterations of a tight loop. and
rotating column segments of V requires N/R loop itera­
tions. These loops are again performed in SIMD mode to
take advantage of CU/PE overlap.

Calculation of partial sums of the values biTb, and bjTbj
occurs in fragment 11 as another tight SIMD loop. Frag­
ment 12 is performed only in the special case when R = 1.
In this case. the values biTbi and bjTbj found in fragment
11 are final values. not partial sums. and two square-root
fLOPs will yield CTj and CTj. Fragment 12 is performed in
MIMD mode because instruction execution times are data­
dependent. When R*l. fragments 13 and 14 are per­
formed to find the final CTj and CTj values. Fragment 13 is a
short if-then-else operation performed in MIMD that
determines the single bTb value a given PE will be calcu­
lating (i.e.• for column i or for column j). Fragment 14
performs transfers in a loop to combine the single bTb
term in each PE. then finds the square-root of this final
value to obtain CT. and exchanges CT with its partner PE (so
both have the final CTj and CTj values). These transfers are
performed in SIMD mode to take advantage of both
CU/PE overlap and implicit transfer synchronization.

The final code fragment. 15. calculates column seg­
ments of U by dividing elements of B by the correspond­
ing CT value. If CT is nonzero. the division is executed. If CT
is zero. the corresponding column of U is replaced with
zeroes. Fragment 15 is therefore performed in MIMD
mode to take advantage of parallel "then" and "else"
clause execution.

Fig. 6 shows the execution times of the 2CPP imple­
mentation when run in different modes of parallelism on
PASM. The data shown in the figure are the results of 4x4
matrix SVD. The minimum execution time was obtained
using mixed-mode parallelism.

Fig. 6: 2CPP algorithm execution time comparison for dif·
ferent modes of parallelism; 4x4 matrix.

From the figure, it is obvious that the advantage of
strictly SIMD mode over MIMD increases as the number
of PEs increases. It is also obvious that SIMD and
BMIMD execution provide similar execution times, mean­
ing that the greatest advantage that SIMD has over MIMD
for the SVD algorithm is implicit network transfer syn­
chronization. Using the 2CPP DT count equation in Table
I, it can be determined that for a 4x4 matrix. the number of
DTs increases as the number of PEs used increases. This
means that network transfers become a larger portion of
the operations performed. and that the SIMD advantage in
transfer times becomes a greater asset.

The execution times displayed in Fig. 6 also show that
the advantage mixed-mode parallelism has over strictly
SIMD increases as the number of PEs increases. It is
apparent from the code fragment analysis that the frag­
ments performed in MIMD generally do not operate on
column segments. and therefore their performance is gen­
erally independent of the number of PEs, i.e.• the value of
R. Thus. the MIMD code fragment execution times
become a larger fraction of the overall execution times as
more PEs are used. As the overall. execution times
decrease. the MIMD advantage of those code fragments
becomes more prominent.

The 1CPP algorithm was also fragmented to determine
the best combination of modes of parallelism for fastest
mixed-mode execution (details in [20]). The ICPP algo­
rithm has fewer code fragments than the 2CPP approach.
and each is analogous to one already presented in the
2CPP mixed-mode analysis. The observations made
between the different modes of parallelism with the 2CPP
approach held with the ICPP approach.

0.5

2CPP

normalized
average 0.375

experimental
execution

time

log scale

0.25

2 4

number of PEs
log scale

8

532

6: Conclusions

Several methods for performing SVDs using column
transformations have been previously developed. Many of
these use rotation operations in an iterative construct to
perform the decomposition. Those methods map a unique
pair from N columns to each of N/2 PEs. and implement
inter-PE communication patterns designed to accommo­
date their systems' interconnection network. This study
presents a similar method. 2CPP. which utilizes the capa­
bilities of a multistage cube network. Another method.
ICPP. was also developed. which maps one matrix column
to each of N PEs. The method introduced here for divid­
ing each matrix column into R segments provides the
greatest impact on performance. It allows the use of R
times the number of PEs previously used. by utilizing
more of the inherent parallelism of the SVD algorithms.
The approach works effectively with both the 2CPP and
ICPP mappings due to both the methods of data distribu­
tion and the capabilities of the multistage cube network.

The methods derived to implement one sweep of rota­
tions (step 2 of the SVD algorithm) can also be applied to
other SVD algorithms that iteratively perform multiple
sweeps of column rotations. These algorithms would be
useful when greater accuracy is needed in the decomposi­
tion. or when successive matrices being decomposed can­
not be considered as small perturbations of previous matri­
ces. Using more PEs by distributing column segments
among PEs may decrease the execution times of these
algorithms as well. The performance prediction method
presented in Section 4 can be used for this determination.

The analysis presented in Section 4 and supported by
experimental data in Section 5 provides the following
results. First. the PP analysis presented in Section 4 can
be used to determine the number of PEs to use in a system
to achieve the minimum execution time of either the 2CPP
or ICPP implementation. Second. the execution times of
both implementations depends on the size of the matrix
being decomposed. the number of PEs being used. and the
CR of the system executing the algorithm. Third. when
increasing the number of PEs being used from N to NM/2.
the fastest implementation generally changes from the
2CPP approach to the ICPP approach.

Experimental data presented in Section 5 demonstrates
that the mode of parallelism used can have an affect on the
execution time of an algorithm. The results obtained show
that an SIMD implementation of either the 2CPP or ICPP
SVD approach performs better than an MIMD implemen­
tation regardless of the number of PEs used. By using bar­
riers to reduce the synchronization overhead involved in
MIMD mode network transfers. the BMIMD implementa­
tions outperformed the MIMD implementations. Finally. a
mixed-mode implementation can outperform SIMD.

MIMD. and BMIMD implementations by using the advan­
tages of each mode on different program fragments.

Acknowledgments: The authors gratefully acknowledge
useful discussions with J. Armstrong. R. Born, R. Gupta,
R. Palmer. P. Pero, L. Wang, and D. Watson.

References

[1] J. B. Armstrong, D. W. Watson, H. J. Siegel, "Software
issues for the PASM parallel processing system," in Soft­
ware for Parallel Computation, J. S. Kowalik, L.
Grandinetti, eds., Springer-Verlag, Berlin, Germany, 1993,
pp. 134-148.

[2] K. E. Batcher, "The multidimensional access memory in
STARAN," IEEE Trans. on Computers, C-26(2), Feb.
1977, pp. 174-177.

[3] R. P. Brent, F. T. Luk, C. Van Loan, "Computation of the
singular value decomposition using mesh-connected proces­
sors," J. VLSI and Computer Systems, 1(3), 1985, pp.
242-270.

[4] H. Chuang, L. Chen, "Efficient computation of the singular
value decomposition on cube connected SIMD machine,"
Supercomputing' 89, Nov. 1989, pp. 276-282.

[5] H. G. Dietz, T. Schwederski, M. T. O'Keefe, A. Zaafrani,
"Static synchronization beyond VLIW," Supercomputing
'89, Nov.1989,pp.416-425.

[6] G. H. Golub, C. F. Van Loan, Matrix Computations, Johns
Hopkins University Press, Baltimore, MD, 1983.

[7] L. H. Jamieson, "Characterizing parallel algorithms," in
The Characteristics ofParallel Algorithms, L. H. Jamieson,
D. B. Gannon, R. J. Douglass, eds., MIT Press, Cambridge,
MA, 1987, pp. 65-100.

[8] C. A. Klein, C. H. Huang, "Review of pseudoinverse con­
trol for use with kinematically redundant manipulators,"
IEEE Trans. on Systems, Man, and Cybernetics, 13(2),
1983, pp. 245-250.

[9] D. H. Lawrie, "Access and alignment of data in an array
processor," IEEE Trans. on Computers, C-24(l2), Dec.
1975,pp.1145-1155.

[10] F. T. Luk, "Computing the singular-value decomposition on
the lLUAC IV," ACM Trans. on Mathematical Software,
6(4), Dec. 1980, pp. 524-539.

[11] F. T. Luk, "A triangular processor array for computing sin­
gular values," Linear Algebra and its Applications, 77(5),
1986, pp. 259-273.

[12] A. A. Maciejewski, C. A. Klein, "The singular value
decomposition: Computation and applications to robotics,"
Int'l J. Robotics Research, 8(6), Dec. 1989, pp. 63-79.

[13] Motorola, Inc., MC6888IIMC68882 Floating-Point Copro­
cessor User's Manual, MC68881UM/AD, Motorola, Inc.,
1987.

[l4]J. C. Nash, Compact Numerical Methods for Computers:
Linear Algebra and Function Minimisation, John Wiley &
Sons, NY, 1979.

533

[15] G. Saghi, H. J. Siegel, J. L. Gray, "Predicting performance
and selecting modes of parallelism: A case study using
cyclic reduction on three parallel machines," J. Parallel and
Distributed Computing, 19(3), Nov. 1993, pp. 219-233.

[16] D. E. Schimmel, F. T. Luk, "A new systolic array for the
singular value decomposition," in Advanced Research in
VLSI, C. E. Leiserson, ed., MIT Press, Cambridge, MA,
1986, pp. 205-217.

[17] H. J. Siegel, J. B. Armstrong, D. W. Watson, "Mapping
computer vision related tasks onto reconfigurable parallel
processing systems," Computer, 25(2), Feb. 1992, pp.
54-63.

[18]H. J. Siegel, Interconnection Networks for Large-Scale Par­
allel Processing: Theory and Case Studies, Second Edition,
McGraw-Hill, New York, NY, 1990.

[19]H. J. Siegel, T. Schwederski, J. T. Kuehn, N. J. Davis IV,
"An overview of the PASM parallel processing system," in
Computer Architecture, D. D. Gajski, V. M. Milutinovic, H.
J. Siegel, B. P. Furht, eds., IEEE Computer Society Press,
Washington, DC, 1987, pp. 387-407.

[20]R. R. Ulrey, A. A. Maciejewski, H. J. Siegel, Parallel
Approaches for Singular Value Decomposition on Systems
with a Multistage Network, Tech. Rep. in preparation, EE
School, Purdue.

[21] D. E. Whitney, "Resolved motion rate control of manipula­
tors and human prostheses," IEEE Trans. on Man-Machine
Systems, 10(2), 1969, pp. 47-53.

[22] T. Yoshikawa, "Manipulability of robotic mechanisms,"
Int'l J. Robotics Research, 4(2), 1985, pp. 3-9.

