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ABSTRACT OF THESIS 

POST-GLACIAL VALLEY EVOLUTION AND POST-DISTURBANCE CHANNEL 

RESPONSE AS A CONTEXT FOR RESTORATION, UPPER COLORADO RIVER, ROCKY 

MOUNTAIN NATIONAL PARK 

 

 In 2003 a human-caused debris flow initiated by a breach in Grand Ditch in Rocky 

Mountain National Park delivered ~36,000 m3 of sediment into the Colorado River.  The 

debris flow deposited up to ~1 m of sediment in the Lulu City wetland and major 

reworking of the Colorado River channel also occurred.  The objectives of this study are 

to determine 1) how the 2003 deposit in Lulu City wetland relates to the historic range 

of variability in rates and processes of aggradation during the Holocene; and 2) if 

recovery of channel forms and processes has occurred in the Colorado River during the 

six years following 2003.  Ground penetrating radar surveys, soil descriptions, and 

radiocarbon dating were used to quantify rates and processes of fill in Lulu City wetland.  

Channel recovery was assessed by comparing sediment transport rating curves to 

reference sites, monitoring changes in channel geometry, and quantifying bed material 

gradation.  Results indicate that aggradation rates in Lulu City wetland varied through 

the late Holocene at periods correlated with distinct climates, and have increased  

approximately sixfold during the past 1-2 centuries of anthropogenic influence.  Results 

from the Colorado River indicate channel forms and processes recovered between 2003 
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and 2009.  Bed armoring and removal of fine sediments occurred, and channel stability 

persisted from 2003-2009.  Results from the Lulu City wetland and impacted Colorado 

River can be used to guide effective restoration following the 2003 debris flow.    
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When it blows,     

The mountain wind is boisterous,    

But when it blows not,    

It simply blows not.     

 -  Ikkyu      
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1. Introduction 

The Context of This Research 

In May 2003, a breach in the Grand Ditch transbasin diversion channel initiated a 

debris flow in Rocky Mountain National Park that transported ~36,000 m3 of sediment 

into the Upper Colorado River and deposited up to 1 m of sediment in the Lulu City 

wetland.  Restoration of channels, riparian areas, and wetlands impacted by the debris 

flow is planned.  This thesis contains the results of two separate yet intertwined 

research efforts to provide context for restoration of the Lulu City wetland and the 

upper Colorado River, including:  1) an assessment of post-glacial valley aggradation to 

quantify the historic range of variability of rates and processes of fill (quantified by 

assessing the range of pre-impact aggradation rates and relative contributions of 

processes), and 2) an assessment of channel response and recovery of the Colorado 

River following the debris flow.  To understand the historic range of variability of 

disturbance and recovery, I investigated valley-bottom morphology (including channel 

planform) and aggradational history through a combination of aerial photography 

analysis, ground penetrating radar surveys, radiocarbon dating, and soil pits in the 

Colorado River headwaters.  Channel recovery was assessed through an analysis of post-

disturbance sediment transport, channel geometry, comparison with upstream 

reference conditions, and assessment of bankfull discharge.   
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This introductory chapter reviews strategies of stream restoration and provides 

an overview of the study site.  The second chapter presents research on post-glacial 

valley evolution and provides historical context for the 2003 debris flow and restoration 

opportunities in the Lulu City wetland.  The third chapter investigates post-debris flow 

hydrogeomorphic processes in the Colorado River upstream from the wetland and 

evaluates the trajectory of channel response and stability.  The second and third 

chapters present the research objectives, hypotheses, methods, results, and discussion 

specific to each chapter’s research emphasis.  A final concluding chapter discusses 

opportunities for restoration.   

1.1  River restoration in the United States 

Restoration of rivers, streams, and wetlands has received an increasing level of 

interest and funding in recent decades.  This trend will likely continue as the need for, 

and recognized value of, ecosystem services such as clean drinking water and fish 

habitat continue to grow throughout the world [Bernhardt et al., 2005].  Recent 

assessments suggest many rivers are currently in physically and/or biologically impaired 

conditions.  In the United States, 42% of wadeable streams were deemed to be of 

“poor” biological condition [Paulsen et al., 2008].  Freshwater ecosystems represent 

~0.01% of global area, but account for more than 9% of all known species [Balian et al., 

2008].  These freshwater ecosystems and the species they support are 

disproportionately threatened compared to terrestrial and marine ecosystems in the 

United States [Ricciardi and Rasmussen, 1999] as well as worldwide [Vie et al., 2009].  As 
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protection and restoration efforts increase, restoration efforts are under increasing 

scrutiny to ensure maximum efficacy. 

In the last decade, a great deal of attention has been paid to assessing what 

goals restoration can hope to accomplish and what methods of restoration are actually 

effective.  River restoration can have varied targets and can occur on many spatial and 

temporal scales.  Most commonly, “restoration” refers to reach-scale projects to 

improve water quality, instream habitat, bank stability, fish passage, or riparian 

vegetation [Kondolf, 1996; Bernhardt et al., 2005].  An increasing number of restoration 

projects, however, are larger scale efforts to implement environmental flows [Poff et al., 

1997; 2009], remove dams [Bednarek, 2001; Hart and Poff, 2002], or target landscape 

causes of riverine degradation.  Large, high profile examples of watershed-scale 

restoration include wetland restoration for flood abatement and water quality 

improvement throughout the Mississippi River basin [Zedler, 2003], restoration of 

floodplain connectivity and wetlands in the Kissimmee River [Dahm et al., 2006], and 

water allocation and levee setbacks in the San Francisco Bay Delta [Doyle and Drew, 

2008].  Many have argued that the watershed scale is the most appropriate for effective 

restoration because restoration of a watershed addresses the root causes of 

degradation rather than treating a single expression of a commonly fundamental 

problem [Williams et al., 1997; National Research Council, 1999; Wohl et al., 2005].  

Case studies such as Redwood Creek, where channel stability was enhanced 

downstream without addressing sediment inputs upstream, suggest the absurdity of 
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reach-scale treatments when upstream causes of degradation are not addressed 

[Ziemer, 1997].   

Because it is not always feasible to achieve restoration on the watershed scale, a 

growing number of restoration practitioners and scholars also argue for the importance 

of process-based restoration targets [Wohl et al., 2005; Kondolf, 2006; Kondolf et al., 

2006].  Process-based restoration seeks to re-establish the functions and trajectory of 

landscape evolution to which native species are adapted.  That is, process-based 

restoration is a pragmatic way of targeting the varied (and commonly unknown) habitat 

needs of all native species.  Because in most cases it is infeasible to quantify the natural 

spatial and temporal variability of biological organisms or systems, process-based 

restoration instead seeks to recover physical functions and therefore to benefit native 

species.  The process-based approach to restoration acknowledges the dynamic quality 

of landscapes by allowing variability and disturbance (a natural part of all systems) at 

reasonable levels, while permitting riverine landscapes to evolve and adapt to physical 

and biological processes of their watersheds.  The discussion herein follows the 

definition of disturbance offered by Resh et al. [1988], as discrete events outside the 

normal range of frequency, intensity, and severity that disrupt ecosystem habitat, 

community, or population structure and change resources or the physical environment.  

In the context of the Lulu City wetland and Colorado River restoration, it becomes 

important to not only identify disturbance events, but to distinguish altered disturbance 

regimes, so that the magnitude and frequency of non-human-induced disturbances such 

as floods, fires, droughts, and debris flows to which ecosystems are adapted are 
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differentiated from more extreme events, often human-caused, beyond the frequency 

or intensity present in the historic range of variability.  For the purposes of restoration 

planning, it is insufficient to describe an event as a disturbance; we must also investigate 

whether the event is fundamentally different in severity or frequency from the natural 

system. (The magnitude, frequency, and duration of a specific process such as stream 

flows or debris flows prior to intensive human resource use in an area define what will 

hereafter be referred to as the historic range of variability for that process.)  This 

distinction is fundamental to the research focus of this thesis, which seeks to determine 

whether the disturbance regime of the upper Colorado River has been significantly 

altered by humans during the past two centuries and thus establish a longer temporal 

context for setting restoration goals following a recent human-induced disturbance. 

The foundation of process-based restoration is to understand what the natural 

forms and functions of a watershed were and can be, given imposed climatological, 

ecological, and geological conditions, as well as land-use constraints.  Failure to 

appropriately assess the historic variability of a system, or to appropriately define 

contemporary flow and sediment dynamics, has resulted in several well-documented 

restoration failures such as Cuneo and Uvas Creeks in California, where restoration 

activities attempted to impose meandering channels in locations where watershed 

conditions suggested braided or unstable planforms [Kondolf, 2006], and Whitemarsh 

Run in Maryland [Soar and Thorne, 2000], where a channel was designed without the 

capacity to transport the inflowing sediment load.  Innumerable other restoration 

projects have not achieved any broad ecological benefit because restoration attempted 
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to impose forms that were inappropriate or unsustainable given present climate, land-

use, and watershed conditions [Wohl et al., 2005].   

The foundation of process-based restoration rests in accurately assessing 

process targets such as upstream/downstream, channel/floodplain, and 

surface/groundwater connectivity [Wohl et al., 2005].  In the case of river restoration, 

knowledge of process can be 1) extrapolated from theoretical or empirical knowledge of 

river process-form interactions in general, 2) based on historical records from the site to 

be restored, or 3) based on extrapolation from nearby, less impacted, reference sites.  

The tools used to investigate historical physical processes are typically limited.  Aerial 

photos, discharge and sediment gage records, specific gage analysis, surveys, and dating 

modern deposits with dendrochronology are the most common tools to provide a 

historical context for restoration [Soar and Thorne, 2000; National Resource 

Conservation Service, 2007; Watson et al., 2007].  Typically, the aforementioned 

methods are capable of categorizing impacts to channel form and process for a time-

scale on the order of 101 years.  Given the short time-periods available for “historical” 

investigations, restoration targets are commonly established to mimic forms 

immediately preceding a recent impact.  More likely, periods of 102 to 103 years are 

necessary to understand the natural disturbance regime and historic range of variability 

in processes [Turner et al., 1993].  By acknowledging a range of historic forms and 

processes, we gain insight into the potential for a system to recover from anthropogenic 

impacts.   
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 Once an appropriate context for restoration has been established through 

assessment of historic processes, reference reaches, and/or theoretical inference, a 

variety of restoration procedures may be recommended based on the current condition 

of the upstream channel, watershed land-use, and climate.  Restoration treatments are 

often active alterations of stream form and process, such as channel reconfiguration, 

instream structures, riparian planting, bank stabilization, grade control, and grazing 

exclosures [Allen and Leech, 1997; Bentrup and Hoag, 1998; Wohl et al., 2005].  Channel 

restoration may also be passive, with targets such as reforestation, modified flow 

regulation, changes in land-use, or land-cover, and changes in groundwater withdrawals 

to restore water-table depths [Kondolf and Curry, 1986; Poff et al., 1997; Webb et al., 

1999; Wohl et al., 2005].  Humans have sought to manage rivers for societal benefit for 

millennia.  River restoration emerges from that tradition, and commonly rethinks and 

seeks to undo harm from prior management decisions and attitudes.   

1.2   Post-disturbance channel recovery 

Ecological disturbances are important processes that eliminate organisms, 

destroy habitat for certain species, and create opportunity for others [Pickett and 

White, 1985; Benda et al., 2004].  Landscape stability devoid of disturbances is a concept 

to be viewed suspiciously, and should be carefully avoided in the context of restoration 

planning.  Schumm and Lichty [1965] suggest that steady-state conditions are never 

present at the watershed scale or at long time spans.  That is, disturbance is a relativistic 

concept that varies according to the spatial and temporal scales of the observer [Rykiel, 
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1985].  At scales relevant to land managers and restorationists, however, a more 

functional view of disturbance is necessary.   

Geomorphologists distinguish between transient and persistent features of 

landforms.  A 100-year-flood, for example, can cause substantial deposition.  The flood 

deposits are transient if subsequent smaller flows remove the deposits and restore the 

original configuration of the channel and floodplain prior to the next 100-year flood.  

The deposits are persistent if they last until the next 100-year flood.  This concept offers 

a potential tool for discerning the threshold between normal disturbance events and 

altered disturbance regimes marked by unusually severe or frequent disturbances.  

Brundsen and Thornes [1979] differentiate transient and persistent features with a 

transient-form ratio (TFr). 

 ,   1.1 

where a ratio greater than 1 suggests there will be no steady-state, stable forms.  

Brundsen and Thornes suggested this ratio as a measure of sensitivity of a landscape to 

internal and external change.  Similarly, this ratio can be applied to organisms, 

communities, or particular processes within a system [Phillips, 1995].  I use the 

transient-form ratio as a framework for viewing the impact of the 2003 debris flow in 

the Lulu City wetland.  The transient-form ratio is also applied qualitatively, as a 

framework for viewing channel recovery of the 2003 debris flow. 
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1.3  Research overview  

 The objective of this research is to investigate the historic range of variability in 

hydrogeomorphic processes and provide context for restoration of a riverine 

environment affected by a human–caused debris flow in Rocky Mountain National Park, 

Colorado during 2003.  To investigate the historic range of variability over a time scale of 

102 to 103 years, analysis of aerial photography, ground penetrating radar surveys, 

radiocarbon dating, and soil descriptions were conducted in a portion of the Colorado 

River headwaters known as the Lulu City wetland.  In addition, I quantified post-debris 

flow processes and assessed the geomorphic stability and trajectory of the impacted 

Colorado River since 2003.  To investigate current conditions, I monitored flow, 

sediment transport, bed particle size distribution, and channel cross sections at selected 

locations between the entry point of the debris flow and the upstream end of the 

wetland (Figure 2.1). 

 

  



10 
 

 

2. Study Area 

The study area is the headwaters of the Colorado River on the west side of Rocky 

Mountain National Park, with particular focus on the Lulu City wetland and the ~29 km2 

upstream (Figure 2.1).  The watershed is bounded by the Never Summer Mountains on 

the west, La Poudre Pass on the Continental Divide to the north, and the Front Range of 

the Rocky Mountains to the east.  The Never Summer Mountains consist primarily of 

Oligocene granitic magmas, and the Front Range consists primarily of Proterozoic biotite 

schist with some Oligocene rhyolitic lava flows and tuff [Braddock and Cole, 1990].  The 

elevation of the watershed ranges from ~2830 m (9300 ft) at the Lulu City wetland, to 

3944 m (12,940 ft) at Mount Richthofen. 

Pleistocene glaciers in the Colorado River Valley extended ~ 24 km from the 

Continental Divide to Grand Lake [Meierding, 1980] and thus completely covered the 

study area.  Although little work has been done in the upper Colorado River valley to 

define the chronology of glacial retreat, an estimated age of 14,000 yr BP is suggested as 

the end of valley glaciation throughout the Front Range in northern Colorado (R. 

Madole, pers. comm., 2009). 
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Figure 2.1.  The project area is the upper Colorado River in northern Colorado on the west side of Rocky Mountain 
National Park, USA.  Blue arrows indicate direction of water flow.  Tributaries that flow into the Colorado River are 
diverted out of the basin to the north by the Grand Ditch (northward pointing blue arrow).  Stream gage locations 
are indicated with corresponding abbreviations: LL is lower Lulu Creek, LY is Colorado River at Little Yellowstone, CT 
is Colorado River at Crooked Tree, GB is Colorado River at Gravel Beach.  The coordinates of the Lulu City wetland 
are ~40.45 N, 105.83 W. 

 

Holocene climate records have been investigated in the Rockies through 

correlations of pollen and insects.  Post-glacial warming occurred from ~14,000- 11,000 

yr BP [Doerner, 2007].  The Younger Dryas cooling interrupted the warming from 

~11,000- 10,000 yr BP, causing glaciers to advance and tree line to shift downward by as 
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much as 120 m [Short, 1985; Menounos and Reasoner, 1997; Doerner, 2007].  The 

middle Holocene Altithermal was categorized by warmer and wetter conditions ~9,000-

4,500 yr BP [Elias, 1985; Fall, 1985; 1997].  Cooler and drier conditions persisted from 

~4,000 to 2,000 yr BP and created another small-scale advance of alpine glaciers known 

as the Neoglacial [Fall, 1997].  The last 2000 years have been generally similar to the 

modern climate [Vierling, 1998], although cooler and more severe temperatures were 

present during the Little Ice Age from ~700-100 yr BP [Fall, 1985; Doerner, 2007].  The 

Medieval Optimum (~1050-750 yr BP) is not specifically identified in local climate 

reconstructions, but has been documented in North America and throughout the world 

as a warm period [Mann et al., 2009]. 

More recently, as inferred from tree-ring reconstructions of climate, significant 

variation in precipitation has occurred over the past centuries.  An extended drought in 

the late 1800’s-early 1900’s was more severe than any others in the past 600 years 

[Woodhouse and Lukas, 2006; Www.Treeflow.Info/Upco/Coloradogranby.Html, 2010].  

An extended wet period of the early-mid 1900’s was similarly unique in the 600-year 

record.  This period of abundant precipitation has been identified in several other 

paleoclimate reconstructions including one for Lee’s Ferry in northern Arizona [Stockton 

and Jacoby, 1976], and has been identified throughout the western United States and 

the Great Plains [Fye et al., 2003].  Despite those decadal extremes of the 20th century, 

inferred precipitation appears to be generally consistent in the upper Colorado basin 

over the past six centuries (Figure 2.2). 
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Figure 2.2.  10-year running average of streamflow reconstructed from tree-ring records.  The dashed line is the 
mean annual flow of the period of record for the Granby gage (1951-1999).  Image from 
www.treeflow.info/upco/coloradogranby.html 

 

The Colorado River at the Lulu City wetland is a 3rd order stream in the Strahler 

[1952] classification.  Channel slope in the wetland is ~0.9%, while upstream the pool-

riffle Colorado River slope is generally 2-3%.  Tributaries such as Lulu Creek are typically 

step-pool channels with slopes of up to 20%.  Hydrology is snowmelt dominated, with 

annual peaks typically occurring in late May and early June.  Over 80% of annual runoff 

occurs during the early summer melt period of May, June, and July [Woods, 2000].  

Annual precipitation is estimated at 107 cm [Capesius and Stephens, 2010], with ~84% 

as snow at the nearby Lake Irene SNOTEL station (CO05J10S, elevation 3260 m) 

[Westbrook et al., 2006]. 

Vegetation in wide portions of the valley bottom along the upper Colorado River 

is a mix of riparian shrublands dominated by willow (Salix monticola, S. geyeriana, S. 

drummondiana), dry meadows with Deschampsia cespitosa and Calamagrostis 

canadensis, and peat-accumulating fens dominated by willow (Salix planifolia) and Carex 
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aquatilis. Hillslope vegetation is dominated by Engelmann spruce (Picea engelmannii), 

lodgepole pine (Pinus contorta), and subalpine fir (Abies lasiocarpa) [Woods, 2000; 

Westbrook et al., 2006].  Willow communities throughout Rocky Mountain National Park 

have been in drastic decline in recent decades, likely a result of multiple stressors 

including browsing pressure from increased moose and elk populations [Hess, 1993; 

Kaczynski et al., 2010].   

2.1  Impacts of the Grand Ditch 

The Grand Ditch water diversion was constructed in stages from 1890- 1936, first 

with hand laborers and later with machinery [Woods, 2000].  The Grand Ditch captures 

tributary runoff from the Never Summer Mountains and diverts water from the 

Colorado basin, over the Continental Divide to Long Draw Reservoir and the Cache la 

Poudre watershed.  The Grand Ditch impacts the upper Colorado River in two primary 

ways: water withdrawal and sediment input.   

Water diversion from Grand Ditch has pronounced effects on the downstream 

hydrology that include less total flow volume, a shortened period of elevated flows, and 

rapid fluctuations in discharge [Woods, 2000; Rubin et al., 2010].  Although the Grand 

Ditch captures runoff from approximately the upper 50% of the watershed, peak runoff 

exceeds Grand Ditch capacity in most years, and peak flows are thus reduced by less 

than 50%.  Receding limb flows, however, driven by late-season snowmelt at high 

altitude areas, are almost completely captured by the Grand Ditch, shortening and 

reducing the recession [Woods, 2000].  The flow reduction changes sediment transport 
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capacity and lowers the water table, which contribute to conjunctive impacts to willow 

and other riparian plant communities [Woods and Cooper, 2005], benthic invertebrate 

abundance [Clayton and Westbrook, 2008], and beaver that are dependent on the 

aforementioned vegetation types and channel processes [Collen and Gibson, 2000]. 

The most visible impact of the Grand Ditch is the repeated occurrence of 

breaches or failures along the Ditch, and subsequent debris flows that have caused 

increased sediment loads down Lulu Creek and adjacent channels, resulting in extensive 

aggradation in the Lulu City wetland.  Aerial photos dating back to 1937 (Appendix A) 

show evidence of Grand Ditch-initiated debris flows and gully erosion as well as debris 

flow and splay deposits in the Lulu City wetland [Rathburn and Rubin, 2009].  This 

suggests an elevated sediment and disturbance regime that has persisted for at least 70 

years.  The specific mechanisms of debris flow initiation at the Grand Ditch are not 

known.  In the Lulu City wetland the Ditch-related sediment inputs changed the 

meandering single thread channel (visible in the 1937 air photo) to a bifurcated zone of 

deposition at the head of the wetland.  The 2003 debris flow deposited up to ~ 1 m of 

sand and gravel in the wetland. There was no a priori assumption about pre-Grand Ditch 

debris flow frequency, but the appearance of debris flow deposits on sequential air 

photos suggests that frequency likely increased following ditch construction.  The 2003 

breach resulted in a lawsuit between Rocky Mountain National Park and the Grand Ditch 

operators that led to a settlement out of court which will subsequently fund restoration 

efforts.  In order to provide a context for the 2003 debris flow and subsequent 
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restoration planning, this study investigated pre-Grand Ditch processes and 

aggradational history of the Lulu City wetland.   

2.2  19th and 20th century history of the upper Colorado River basin 

Human impacts to the upper Colorado River basin follow a pattern similar to 

many parts of the central Rocky Mountains including water diversion, mining, and 

beaver trapping [Wohl, 2001].  Development of the “Lulu City” mining town just 

upstream of the wetland occurred the 1880’s.  Lulu City, now a one-hour walk from the 

nearest road, reached a population of several hundred people during its brief existence, 

possessing a post-office, hotel, and even a “red light district” of two cabins [Buchholtz, 

1983; Kaye, 1983; Brown, 2003].  In addition to disruption of valley-bottom sediments 

for placer mining, and associated downstream increases in sediment yield, inhabitants 

of the mining area started fires and likely created localized deforestation that may have 

destabilized hillslopes and further exacerbated sediment yields to the valley bottom 

[Wohl, 2001].  

When beaver are present along a river, their dams can help to slow the passage 

of seasonal flood peaks, increase the extent of overbank flooding and groundwater 

recharge [Westbrook et al., 2006] and retain sediment [Butler and Malanson, 2005; 

Westbrook et al., 2010].  Beaver present in the vicinity of Lulu City were likely removed 

within the decades immediately preceding the existence of Lulu City [Wohl, 2001]; any 

recovery of beaver populations following initial trapping in the 1820s was likely 

decimated during the existence of Lulu City.  Beaver populations subsequently began to 
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recover, but during the latter 20th century a drastic decline in beaver populations 

throughout Rocky Mountain National Park reduced an estimated Colorado River Valley 

population from 600 beavers in 1940 to 5% that amount (0 in the Lulu City wetland or 

anywhere upstream of the Colorado River Trailhead) by 1999 [Packard, 1947; Mitchell et 

al., 1999].  Some, if not most, of this decline may be associated with increasing elk 

populations and heavy grazing pressure [Hess, 1993] that reduce or eliminate woody 

riparian plants on which both beaver and elk feed, and which influence stream bank 

stability, overbank roughness, and thus sediment transport in channels and overbank 

environments. Beaver populations prior to European settlement and trapping were 

likely even higher than the 1940 levels, although specific estimates for the Colorado 

River are not available [Seton, 1953; Wohl, 2001; Westbrook et al., 2006].  In aerial 

photos of Lulu City wetland (Appendix A), no new beaver-dammed ponds appear after 

1969, although the resolution is poor in the earlier photos and the ponds that are 

present may be several decades older than 1969.   

The cumulative effect of historical changes during the past two centuries has 

thus likely been to increase sediment yields to the valley bottom along the upper 

Colorado River and to alter the manner in which sediment is transported or retained in 

the valley bottom by changing flow volumes, removing beaver populations, and altering 

valley-bottom vegetation communities.  Furthermore, the legacy of the 2003 debris flow 

and previous impacts may facilitate future instability if triggered by heavy rainfall or 

high streamflow. 
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3. Aggradational History of Lulu City Wetland 

3.1 Introduction: post-glacial history of alpine and subalpine 

valleys in the central Rocky Mountains  

Understanding landscape history is a critical step towards understanding 

ecosystem functions.  Geomorphic forms and processes such as alluvial fans, flood 

plains, and abandoned channels dictate the fundamental physical attributes of 

ecosystem habitat [Swanson et al., 1988].  Near-surface deposits also influence many 

geomorphic and biogeochemical processes [Leopold et al., 2009].  Despite the ecological 

significance, no comprehensive effort to describe variability in post-glacial processes of 

valley fill has been conducted in the Rocky Mountain National Park region.   

Several relevant case studies investigating valley fill have been conducted in 

Rocky Mountain National Park and surrounding regions.  In the higher elevation (~3470 

m) alpine environment east of the Continental Divide at Niwot Ridge, a thin veneer of 

soil (~2.5 m) overlying a thicker sequence (~10 m) of coarse periglacial deposits and 

regolith was identified with seismic reflection and ground penetrating radar surveys 

[Leopold et al., 2009].  Similarly, in Beaver Meadows (elevation ~2520 m) on the east 

side of Rocky Mountain National Park, limited shallow augering revealed 1-2 m of fine-

grained organic-rich sediment underlain by cobbles and boulders of unknown thickness 

[Graf, 1997].  In a tributary valley of the Colorado River ~16 km downstream of the 
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current study site, stratigraphic and seismic reflection studies of Big Meadows (elevation 

2865 m) identified ~45 m of till overlain by ~2 m of peat with few layers of fine sediment 

[Shuter, 1988; Cooper, 1990].  In the Colorado River valley ~8 km downstream of the 

study site, a groundwater well constructed in 1953 at Holzworth Ranch (now in Rocky 

Mountain National Park) consisted of 0.3-0.6 m of topsoil underlain by ~19 m of fine 

gravel and sand.  The well “bottomed out” at 19.2 m, providing an estimated minimum 

depth to bedrock [Colorado Water Conservation Board, 1953].  Seismic surveys at 

unknown locations in the Kawuneeche Valley of the Colorado River (8-20 km 

downstream of the study site) estimate bedrock at 15-122 m [Braddock and Cole, 1990].  

Several investigations have also been conducted at La Poudre Pass, a col on the 

Continental Divide (elevation 3100 m) at the head of the Colorado River ~5 km up-valley 

from the study site.  Peat (~1.7 m thick) was described overlying glacial gravely sand 

deposits (estimated at 10 m thick from roadcut exposures).  An accelerator mass 

spectrometry radiocarbon date of a thin layer of organic sediments over the glacial 

gravel was dated as ~11,165 yr BP (J. Doerner, unpublished report, 2005).  Aggradation 

rates from seven dates in the profile by Doerner range from 1.0 to 1.7 cm/100 yr back to 

6750 yr BP, with higher rates of 1.6 to 2.7 cm/100 yr from 6750 to 11,165 yr BP.  It is 

unknown how total thicknesses and processes of fill at those sites compare to the Lulu 

City wetland, but differences in topography and lithology between these sites and the 

wetland make it unlikely that the other sites have received as much post-glacial colluvial 

sediment contributed by either natural- or human-induced debris flows as has the Lulu 

City wetland.   
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Given the limited site-specific assessments of the range of variability for depths 

to bedrock and processes of fill in the vicinity of Rocky Mountain National Park, this 

research seeks to provide insight into post-glacial valley processes in a previously 

unstudied portion of the upper Colorado River valley.  To provide context for the 2003 

debris flow, this research seeks to quantify the historic range of variability of 

aggradation rates and mechanisms of aggradation at the Lulu City wetland during the 

Holocene.  Two end-member scenarios were hypothesized as follows (Figure 3.1):  

H1) Valley fill is predominantly coarse, deposited during and shortly after 

deglaciation, with little accumulation since glacial retreat ~14,000 years ago 

[Madole, 1980; R. Madole, pers. comm., 2009].  Valley configuration in this 

scenario can be considered in a state of equilibrium, wherein post-glacial 

sediment inputs are not stored in the wetland, but transported downstream.   

H1A) Valley fill is composed of fluvial and hillslope inputs deposited continuously 

since deglaciation.  This scenario represents a trajectory of aggradation wherein 

sediment inputs to the valley are preserved in the wide, low gradient Lulu City 

wetland. 

Within hypothesis H1A, four scenarios were proposed: 

H1A-1)   Rates of post-glacial deposition did not change significantly during the 

Holocene.   

H1A-2)   Rates are variable at intervals that correlate with Holocene climatic 

variability (Altithermal, Medieval Optimum, Little Ice Age, or other regionally 

documented periods of climatic variation).  This suggests the historic range of 

variability of aggradation rates is significant relative to recent (post Little Ice Age) 

variability, and driven by known climatic variation.   
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H1A-3)   Rates did not change significantly during the Holocene, but a substantial 

increase in aggradation rates occurred since construction of Grand Ditch.  This 

suggests that modern anthropogenic inputs have altered the rate of deposition 

beyond what has occurred in the historical range of variability, and may suggest 

a fundamentally different depositional regime.    

H1A-4)   Rates are variable through the Holocene, but have substantially 

increased since construction of the Grand Ditch.  This suggests the Grand Ditch 

has altered the rate of deposition beyond what has occurred in the historical 

range of variability, and may suggest a fundamentally different depositional 

regime.   

 
Figure 3.1. Scenario H1 represents a potential process of valley fill where a thin layer of fluvial and colluvial 
sediment is overlying a thick sequence of glacially derived coarse sediment.  H1A would be identified by continuing 
aggradation in the 14,000 years since glacial retreat with several layers of alternating fine and coarse deposits. 

Debris flows have occurred in areas not affected by the Grand Ditch, such as the 

east side of the Colorado River valley (Figure 2.1), so coarse sediment has presumably 

entered the valley bottom throughout the postglacial period. The absence of continuing 
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sediment accumulation on the valley bottom would suggest that the channel and 

floodplain are in steady-state such that incoming sediment is transported downstream 

with little long-term storage. In this case, the upper Colorado River might be capable of 

transporting the sediment from the 2003 Grand Ditch failure downstream with little or 

no restoration, and the effects of the failure would be transient. Alternatively, the 

increase in frequency and volume of sediment entering the valley bottom as a result of 

repeated failures along the Grand Ditch might overwhelm sediment transport capacity 

and establish a new regime of sediment accumulation that would result in persistent 

features.  In scenario H1A, the valley fill consists of alternating layers of fine (fluvial) and 

coarse (colluvial) sediment. Alternating fluvial and colluvial deposition is more likely to 

reflect continuing sediment deposition since deglaciation, suggesting that the upper 

Colorado River is limited in its ability to transport sediment.  The 2003 sediment inputs 

in scenario H1A are more likely to create persistent impacts along the channel and 

floodplain and restoration measures might be necessary to return the valley to desired 

conditions.  

3.2 Methods 

Multiple field methods were used to investigate pre-2003 debris flow processes 

in the Lulu City wetland and to develop the information necessary to test the 

hypotheses posed in the previous section.  Analyses included historic aerial photograph 

interpretation, ground penetrating radar (GPR) surveys, and trenching, coring, and 

radiocarbon dating of valley-bottom sediments to map sediment deposits, assess 
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aggradational rates, and quantify processes (channel, overbank, hillslope, beaver dams, 

peat) of alluvial fill within the Lulu City wetland.   

3.2.1 Aerial photo analysis 

Aerial photographs were assembled and analyzed for evidence of previous 

debris-flow deposits, channel planform changes, channel migration, and beaver ponds 

in the Lulu City wetland.  The wetland area was defined as non-forested valley bottom, 

the extent of which has not changed substantially since 1937.  Imagery from 1937 (1: 

23,0001

                                                                 
1 No documentation with photo.  Scale assumed based on the relatively consistent scale of aerial photos 
of Colorado in 1937. 

), 1953 (1: 63,360), 1969 (1: 15,840), 1987 (1: 15,840), 2001 (1: 4,000), 2004 

(digital image, resolution= 15 cm), and 2009 (resolution =1 m) cover the entire study 

area (Appendix A).  The 1937 and 1953 images are black and white while later images are 

in color.  Photos were scanned, imported into ArcGIS v9.3, and rectified.  Debris-flow 

deposits, channel location, beaver ponds, and vegetation changes in the wetland were 

interpreted by comparison with contemporary examples; i.e., modern beaver ponds and 

debris-flow deposits were identified in the field and in recent imagery, and similar 

features were recognized in historical imagery.  Debris-flow deposits were identified 

primarily through identification of unvegetated sediments, and an investigation of 

hillslope and tributary scars from hillslopes and the Grand Ditch was conducted to 

corroborate the interpretation of wetland debris-flow deposits with possible source 

areas.  Channel migration was assessed by tracing channel centerlines in each image 

wherever a dominant channel was present.  Beaver ponds were identified from ponded 
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water or broad, unvegetated sections of the channel upstream of a defined, cross-

channel obstruction (beaver dam).  In general, temporal and spatial variations in 

vegetation were not distinguished due to the resolution of the aerial photos, although 

establishment of trees in the imagery is discernable and noted.  The short growing 

season at the high elevation site and the inherent obstacles to aerial photo 

interpretation suggest that trees would likely have to be a decade or more in age before 

being recognized in photos. 

3.2.2 Ground penetrating radar (GPR) 

GPR has proven to be an efficient, non-invasive, and effective method of imaging 

sedimentary deposits in a number of environments including internal structures in 

sediment [Hugenholtz et al., 2007; Schrott and Sass, 2008], pond and reservoir 

sediments [Buynevich and Fitzgerald, 2003; Hunter et al., 2003], peatlands [Comas et al., 

2004; Jol, 2009; Rosa et al., 2009], alluvial fill [Woodward et al., 2003; Hickin et al., 

2007], deltas [Roberts et al., 2003], rock glaciers [Berthling et al., 2000; Degenhardt et 

al., 2003], and wetlands [Bristow and Jol, 2003; Baker and Jol, 2007; Jol, 2009].  GPR is a 

method in which a high-frequency electromagnetic pulse is transmitted into the ground 

and partially reflected back to the surface where there are changes in the electrical 

properties of the sub-surface materials.  These reflections may identify contacts 

between deposits of different grain size, mineralogy, water content, organic content, 

and bedrock [Davis and Annan, 1989].   
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Because of the remote location and corresponding logistical challenges of 

conducting backcountry field work, a trial survey was conducted at the study site to test 

different frequencies prior to the comprehensive survey of the wetland.  Frequencies of 

50, 100, and 200 MHz were tested, with depths of penetration of approximately 8, 4, 

and 2 m, respectively.  Theoretical vertical resolution of the radar signal is calculated 

using the equation 

 =                         (3.1) 

Where Rv is the vertical resolution (m), λ is the wavelength (m), V is the wave 

velocity through the soil, and F is the central frequency of the antenna [Reynolds, 1997].  

The calculated theoretical vertical resolutions for the 50, 100, and 200 MHz antennas 

are 0.25, 0.125, and 0.063 m, respectively.  However, since the central frequency 

actually returned to the antennas is lower (~40, 70, and 125 MHz, respectively, for the 

data collected), the actual resolutions are calculated to be 0.31, 0.18, and 0.1 m for the 

50, 100, and 200 MHz antennas, respectively.  The 100 MHz antennas were selected for 

the comprehensive survey, providing a balance of penetration and resolution. A pilot 

study along XS2 was conducted in October 2008.  The comprehensive survey was 

conducted during July 2009.   

A reflection-type survey in step mode using a Sensors and Software PulseEkko 

100 GPR system was used for all surveys.  Seven cross-sectional (perpendicular to the 

strike of the valley) transects and two longitudinal (parallel to the strike of the valley) 
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transects were surveyed with the 100 MHz antennas (Figure 3.2).  XS0, XS1, XS2, and the 

portion of Long W between XS0 and XS2 were additionally surveyed with the 200 MHz 

antennas to provide higher resolution of the near-surface deposits.  In sum, ~3 km of 

GPR surveys were conducted.   
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Figure 3.2.  Location of GPR transects, cores, radiocarbon-dated cores, and excavator pits, Lulu City wetland.  Cores 
were obtained using hand augers and reached maximum depths of 3.5 m; excavator holes were dug using a Bobcat 
excavator and reached maximum depths of 1.9 m.  Radiocarbon samples were collected from augered cores and 
submitted for analysis.  GPR cross sectional and longitudinal transects were conducted primarily with 100 MHz 
antenna and reflections collected every 25 cm.  Streamflow is from top of figure toward bottom. 
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Antennae were oriented parallel to the direction of the motion along transects.  

Antenna separation was 1 m for the 100 MHZ antennas and 0.5 m for the 200 MHz 

antennas.  Common midpoint (CMP) surveys were conducted on cross sections 2 and 4 

to measure radar velocities.  Both CMP surveys yielded average radar velocities of ~ 0.05 

m/ns (Figure 3.3).  This velocity is consistent with established rates for wet sand [Baker 

et al., 2007], a widespread sediment in the Lulu City wetland.   

 
Figure 3.3.  XS2 CMP survey velocities are indicated by warm colors over depth.  Warm colors indicate 
electromagnetic propagation velocities and can be used to convert the time of radar return signals to depth in the 
GPR reflection surveys.  In XS2 as well as XS4, a velocity of 0.05 m/ns was observed.  The velocity of 0.05 m/ns was 
applied to all GPR transects to convert reflection time to depth.  

 A topographic survey was conducted along the GPR transects using a TOP-CON 

Total Station.  Points were surveyed at a spacing of ~5 m across the low gradient 

wetland, with additional points surveyed at breaks in slope.   The topographic survey 

was applied to GPR transects so that reflections throughout the wetland were 

referenced to a fixed datum rather than the ground surface.   
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3.2.3 Data processing 

GPR data were processed using Ekko View Deluxe software from Sensors and 

Software.  The data were dewowed to remove low-frequency, slow decay noise, often 

associated with GPR signals.  A timezero correction was applied to account for timezero 

drift and ensure that ground-surface reflections were aligned horizontally.  Surveyed 

topography was then added to each transect so that reflections were displayed relative 

to an absolute datum.  Three versions of each transect were generated: 1) with an 

Automatic Gain Control (AGC) with window width = 3 and maximum gain = 50; 2) with a 

Spreading and Exponential Compensation (SEC) gain of attenuation = 1.5 and maximum 

gain = 40.  The AGC gain is useful in stratigraphic analysis to amplify reflections and 

define continuity of strata, but the AGC processing obscures the relative amplitude of 

different reflections, whereas the SEC preserves relative amplitude information 

although continuity may be lost; and 3) a migration filter was applied to the data with 

the AGC gain.  The migration filter is a method of de-scattering diffractions that may 

occur at point targets such as boulders.  Several different migration velocities were 

tested and a velocity of 0.10 m/ns was selected as the velocity that best collapsed 

diffractions while preserving other reflection data [Annan, 1993; Sensors and Software 

Inc., 2003].  Interpretation of the GPR data was conducted using all three of the 

aforementioned methods, as each expresses and preserves different qualities of interest 

in the data.  Images from all migrated transects are presented in Appendix C.   
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GPR penetration depths averaged ~4 m, with a range from 2-6 m.   Penetration 

was shallowest in coarse substrate (e.g., XS0 and XS6) and deepest in fine deposits (e.g., 

XS3). In general, GPR penetration depth is similar to the maximum depths reached with 

hand augers and the depths of the oldest radiocarbon samples.  Thus, GPR surveys 

generally represent the last 4000 years and interpretations of how GPR signals relate to 

grain-size distributions were ground-truthed both laterally and vertically by auger cores 

and excavator pits.   

The processed GPR reflection images were exported from Ekko View Deluxe into 

a JPEG image file and interpreted in Adobe Photoshop.  GPR data were initially 

categorized and interpreted using a radar facies analysis [Beres Jr and Haeni, 1991] in 

which packages of reflections were identified from the GPR data based on the spatial 

continuity, configuration, amplitude, and frequency (thickness) of the reflections.  Those 

packages were colored in Adobe Photoshop and compared to soil descriptions from the 

hand-augered cores and excavator-dug pits.  The interpretation of radar images was 

then iteratively adjusted as needed so that the categorization of radar-facies was in 

agreement with soil observations.  Differentiated packages of facies may, and often do, 

include different types of deposits.  Dominant trends are distinguished, not individual 

deposits. 

3.2.4 Sediment descriptions and inferred depositional processes 

Sediment descriptions from 15 hand-augered and 19 excavator-dug soil pits 

were used to verify GPR interpretation and quantify depositional processes (Figure 3.2).  



31 
 

Hand-augered holes were dug with an 8.3 cm (3.25 inches) diameter, bucket-type auger.  

The maximum depth was 3.5 m, and depths typically ranged from 1-3 m.  The excavator- 

pits were dug using a 46 cm (18 inches) bucket.  Maximum depth was 1.9 m.  Deposits 

were described based on grain size, sorting, angularity, color, and organic content 

(Appendix B), with approximate depth of major changes in any of these characteristics 

noted in the descriptions. 

Depositional processes were inferred primarily based on observations of 

contemporary deposits in Lulu City wetland of overbank, in-channel, beaver pond fill, 

peat, and debris-flow deposits.  In the literature, and as observed at the Lulu City 

wetland, overbank deposits are described as well sorted, planar features of sand and 

finer material that is deposited out of suspension [Brookfield, 2004].  Contemporary in-

channel surficial deposits were observed and described as rounded to sub angular 

gravels.  Peat is identified as anaerobic preservation of dead vegetation, commonly as 

intertwined fibrous mats of plant material.  It is important to acknowledge that peat 

production is not a sedimentation process.  Peat is generated in groundwater-

dominated systems that do not receive substantial sediment inputs [Cowardin et al., 

1979; Nichols, 2009].  Peat production occurs in stable, groundwater-fed locations, such 

as bogs and fens that accumulate organic matter faster than it is decomposed.  Organic 

content of peat can be as high as 95% [Bell, 1992].  Organic-rich pond sediment (gyttja) 

is a facies of fine, black sediment and particulate organic matter [Hansen, 1959] and 

does not have the fibrous, woody character of peat.  In the modern wetland, such 

deposits were found in relic beaver ponds, and thus I assume gyttja to be beaver-pond 
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fill, which is characterized in the literature as fine, organic-rich, stratified sediments 

[Dalquest et al., 1990; Butler and Malanson, 1995].  In contrast, in the contemporary 

Lulu City wetland, there are also several abandoned beaver ponds, no longer in the 

active channel, that are filled with thick deposits of sorted sand from recent debris flows 

(Appendix A).  It is therefore plausible that historic ponds were similarly filled with 

sorted fluvial or debris-flow sand deposits.   

The 2003 debris-flow deposit varies spatially throughout the upper Colorado 

River watershed.  Along Lulu Creek near the initiation point (Figure 2.1), the deposit 

consists of sand to boulder size sediment and logs.  Along the Colorado River 

downstream of the confluence with Lulu Creek, the deposit is sand to cobble sized 

material.  In the Lulu City wetland, the deposits are well-sorted sand and gravel.  Debris-

flow deposits are characteristically poorly sorted [Nichols, 2009].  However, because the 

debris-flow initiation zone was ~2 km upstream from the wetland and occurred during 

high discharge, deposits are well sorted and indistinguishable from high energy, high 

sediment load fluvial deposits.  This exemplifies the concept of a disturbance cascade 

presented by Nakamura et al. [2000], who proposed a down-watershed gradient of 

processes and severity of disruption initiated by a single hillslope failure.   

The similarity of debris flow, overbank, and episodically filled pond deposits 

presented a challenge for interpretation.  Furthermore, stratigraphic investigations were 

conducted using a hand auger, which disturbed bedding and sorting that may have been 

present and occasionally fractured gravels, disguising particle rounding.  The sampling 
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obstacles and facies similarities made refined facies descriptions impossible.  

Additionally, the resolution of the GPR did not allow thin beds to be distinguished.  An 

approach was therefore taken to broadly categorize depositional regimes.  Depositional 

environments were broadly grouped into higher energy (debris flow, overbank, and in-

channel fluvial) and lower energy (peat, beaver pond fill, and overbank) process 

regimes.  Overbank deposits are included in both low-energy and high-energy divisions.  

This was necessary because overbank deposits were ubiquitous throughout the wetland 

and the resolution of the GPR was commonly not sufficient to resolve individual 

deposits.  Thus, low-energy deposits are regimes that fluctuated between peat or pond 

accumulation and received overbank deposits of sand and silt, whereas the high-energy 

division received coarse (gravel and larger) fluvial and colluvial deposits, but also 

received finer overbank deposition.  This division proved extremely useful for the broad 

characterization of aggradational processes over thousands of years.   

3.2.5 Quantifying aggradation rates 

Eleven samples from four vertical profiles were dated using conventional 

radiocarbon analysis.  Eight of the samples were peat while three were gyttja.  

Radiocarbon analyses were conducted by the University of Arizona Environmental 

Isotopes Laboratory.  Aggradation rates were then computed for each vertical profile, 

assuming constant rates of fill between the dated samples and/or the modern ground 

surface.  Dated materials were composite samples: fine material of varied sources 

(gyttja), or accumulated in situ plant matter (peat).  Ages therefore represent averages 
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across the period of accumulation, rather than event-based dates such as can be 

acquired through dating wood or charcoal fragments.  Peat, however, has an advantage 

of being derived from short-lived material that is not transported.   

3.3 Results and discussion 

3.3.1 Aerial photo analysis 

The 1937 image shows a single-thread meandering channel in the center of the 

wetland (Figure 3.4).   Active deposition and minor braiding are visible at the head of the 

wetland.    One beaver pond is visible, although all five ponds visible in the 1969 image 

may have been present though not visible due to the low resolution of the 1937 photo.  

The 1953 image shows extensive deposition in the head of the wetland and no main 

channel is present.  Instead, a braided, delta-like environment exists.  The 1969 image 

shows additional deposition in the form of either debris-flow or splay deposits and a 

poorly defined channel in the northern wetland is pushed to the west side of the valley 

by the recent deposits.   The 1987 image shows minor deposition in the form of either 

debris-flow or splay deposits and sparse conifer growth in areas of previously identified 

deposition.   The 1969 and 1987 channel locations are the same.  The 2001 image shows 

minor splay deposition and channel position is generally unchanged, though there is no 

dominant channel.  The conifers visible in 1987 are more distinct in 2001.  The 2004 

image shows deposition from the 2003 debris flow (Figure 3.5).   Channel position is 

generally unchanged from prior photos, though there is no well-defined channel.  The 

2009 image shows reworking of the 2003 debris-flow sediment.   Channel position is 



35 
 

generally unchanged between 2003 and 2009, with no well-defined channel, although 

some channelization and migration towards the center of the valley is visible.  

In summary, the 1937 channel was a single-thread, meandering channel.  The 

current topographic low path through the wetland is in the location of the 1937 channel 

through the center of the wetland, but post-1937 deposits have pushed the channel to 

the west against the valley wall.  Substantial deposition visible in the 1953 and 1969 

photos, as well as minor deposition in 1987, suggest repeated debris flows and/or flood 

disturbances.  I interpret the 1937 channel as a model of “recovered” channel condition 

(recovered from debris flows prior to 1937).  The assumption inherent in this 

interpretation is that, in the absence of debris-flow related disturbance, the Colorado 

River in the Lulu City wetland would assume a single-thread planform.   
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Figure 3.4.  The 1937 aerial photo is the oldest available photo.  The image shows a single-thread meandering 
channel through most of the Lulu City wetland.   Only minor deposition and potentially minor braiding is visible at 
the head of the wetland.    One beaver pond is visible, though others are expected to have been present but not 
visible until later aerial photos.  

Channel

Beaver pond
Deposition

August 19, 1937
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Figure 3.5.  The 2004 image shows deposition from the 2003 debris flow.   The channel is against the western valley 
wall in the north, and bifurcated in the central and southern wetland.  Several abandoned beaver ponds are visible 
in the northeast portion of the wetland.    

 

The 1937 channel in Lulu City wetland is close to the braiding threshold based on 

discharge (estimated 3.6 m3/s from Table 4.4) and channel slope (0.09%) proposed by 

Leopold and Wolman  [1957].  Similarly, the van den Berg [1995] unit stream-power 

Channel
Beaver pond

Deposition

November 5, 2004
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braiding threshold predicts a braided planform if median grain size (D50) is less than 3-15 

mm for estimated channel widths of 2-4 m.  The historic D50 in the undisturbed wetland 

channel is unknown, but is expected to be in that range of 3-15 mm based on current 

grain sizes in the wetland and channel upstream.   The proximity to the braiding 

thresholds proposed by Leopold and Wolman and van den Berg suggests a system that 

can be either meandering or braided, depending on the substrate, bank material and 

vegetation, and especially discharge and sediment inputs.  In the Lulu City wetland, bank 

stability induced at least in part by thick wetland vegetation, suggests a tendency 

towards stable banks and a meandering planform during undisturbed periods [Knighton, 

1998; Bledsoe and Watson, 2001; Braudrick et al., 2009; Tal et al., 2010].  Furthermore, 

the single-thread, meandering planform identified in the 1937 aerial photo suggests that 

despite potential increases in sediment loads resulting from Grand Ditch construction, 

mining, deforestation, and fire, the Lulu City wetland tends towards a stable, 

meandering planform.   

The 1987 and 2001 images display minimal deposition and those images are 

interpreted as the most recovered condition in the period of record of aerial 

photography.  However, neither of those images suggests significant progress towards a 

single-thread channel, and deposits are expected to be persistent features.  This implies 

that the elevated disturbances and sediment inputs to the wetland since 1937 have 

dominated wetland processes.  The inability of the Colorado River in Lulu City wetland 

to rework deposits and re-establish a dominant channel is likely also a result of the 

water diversion that reduces the erosive and sediment-transporting capabilities of the 
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channel.   The absence of a distinct channel in 2009 is consistent with 1987 and 2001 

when major channelization was also absent.  

The presence of conifer trees barely visible in the 1987 photo, and clear in the 

2001 photo, suggests a shift to mesic species from riparian and wetland communities.  

While wetland to mesic succession is proposed as a natural process [Kangas, 1990; 

Glenn-Lewin et al., 1992], there is no specific reason to presume that shift was inevitable 

at the Lulu City wetland, and many have argued that peatlands can persist indefinitely in 

the absence of climatic change [Cooper, 1990; Klinger et al., 1990; Klinger, 1996].  Peat 

production has been temporally sporadic on the west side of the wetland, but the 

appearance of conifers suggests a shift that is likely unprecedented for several thousand 

years.  The complete series of aerial photos is presented in Appendix A. 

3.3.2 Ground penetrating radar 

GPR surveys assisted in distinguishing major differences in facies regimes or, for 

purposes of this thesis, the higher and lower energy depositional environments.  Low-

energy regimes (peat, overbank) are characteristically free of diffractions, and 

commonly horizontal and continuous where overbank deposition and peat are 

interbedded.  Massive peat is free of reflection horizons [Halleux, 1990] or may show 

weak reflections due to variation in composition.  High-energy environments may 

display diffractions from cobbles or larger material [Clement and Murray, 2007] and 

demonstrate fluvial reworking that prevents horizontally continuous reflections.  

However, sorted debris flows were similar to low-energy overbank deposits because 
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they may be laterally continuous and free from the diffractions caused by large clasts.  

In cases where subdivisions within the low or high energy categories were possible, I 

noted gyttja, peat, and coarse (cobble or boulder) sediment deposits. 

Distinct differences are apparent between deposits on the west and east sides 

throughout most of the wetland (Figure 3.6).  The east side of the wetland from XS1 to 

XS5 is distinctly horizontal or sub-horizontal and laterally continuous through the entire 

vertical section imaged by the GPR (Figure 3.7).  This form represents stable, low energy 

environments without any fluvial reworking or channel migration.   

 
Figure 3.6.  GPR surveys show distinctly different facies on the west and east sides of the Lulu City wetland.  The 
east side is dominated by peat and overbank deposits between XS1 and XS5 with no fluvial reworking.  The west 
side is vertically and laterally heterogeneous, although deposits are debris-flow dominated. 



41 
 

 
Figure 3.7.  The GPR survey of XS4 penetrated up to 4 m on the east side of the valley.  Labels at the top of the 
image are excavator or auger-hole identifiers.  Yellow lines are to scale and represent the depth of those holes.  At 
the bottom of the image, lines denote where XS4 crosses the Long W and Long E transects.  Gray bars are areas 
where GPR data could not be collected.  The west side of the valley is dominated by debris flows and overbank 
deposition.  The east side is stable, non-erosional, peat and overbank deposition.   

The west side of the valley is more complex.  In the west, where debris-flow 

deposits are visible in aerial photos from 1953, 1969, 1987, and 2004 (Appendix A), 

there is a surficial sequence, as expected, of several gravel to cobble sized deposits 

(Figure 3.8) that fine down-valley from gravel/coble at the north end to sand/gravel at 

the southern end.  The entire sequence of deposits from the last approximately two 

centuries has an estimated volume of ~80,000 m3 based on interpolated hole and GPR 

data.  At XS0-XS2 at the north end of the wetland, the surficial sequence of coarse 

deposits makes up the entire imaged sequence of 2-4 m.  At XS3, the debris-flow 

sequence is underlain by peat and vegetated fine sediments that appear to have 

hummocks or have been crossed by channels over time.  At XS4, debris flows comprise 

the upper ~1.5 m.  Below, pond sediments are identified by auger core XS4 @112.5 m.  

Below that is a sequence of debris-flow or other colluvial deposits.  At XS5, recent debris 
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flows composed of sorted sand and gravel comprise the upper ~1 m.  Below is a low-

energy sequence of peat, gyttja, and overbank deposits 1-2 m thick.  This is underlain by 

hillslope inputs, one of which I interpret as deriving directly from the valley wall because 

it is poorly sorted.  XS6 is different from upstream cross sections on both west and east 

sides of the valley, with direct hillslope inputs suggested by the alluvial fan on the east 

and by dipping strata on the west.  The center of XS6 has debris-flow deposits on the 

surface, underlain by peat and overbank deposits to the west of center, and coarse 

deposits to the right of center that may be coarse fan deposits from the east or coarse 

channel-lag deposits.   

Figure 3.8.  The west side of the wetland is vertically and laterally heterogeneous.  The northern wetland is 
dominated by coarse deposits throughout the imaged profile.  Central and southern regions indicate a more stable 
regime that was present prior to recent deposits. 

In summary, the west side of the wetland is vertically and laterally 

heterogeneous, with down-valley fining, although coarse deposits in the southwest 

suggest direct colluvial inputs in the form of debris flows, landslides, or avalanches.  The 

distance between GPR cross sections, however, makes it difficult to map individual 

deposits.  Finer grained soils and peat were present prior to the surficial series of coarse 
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deposits, although coarse deposits are identified below that, suggesting high-energy 

fluvial and colluvial inputs were a natural occurrence.  The east side of the wetland has 

been consistently dominated by peat and overbank deposition throughout the entire 

imaged and sampled sequence.  Debris flows are also documented in the northeast and 

southeast corners of the valley, likely from the tributary fans that enter the valley from 

the east (Figure 3.5).   

Interpretation of GPR relied heavily upon ground-truthing from auger and 

excavator holes.  The similarity of sorted debris-flow and overbank deposits makes 

extrapolation difficult and interpretation of strata distant from or deeper than holes has 

a potential for greater error than deposits near augered or excavated holes.  

Nonetheless, the distribution of auger holes and excavated holes provided good spatial 

coverage for interpreting the aggradational history of the valley up to the GPR and 

sampling depth limitations (~3.5 m).  All GPR transects are interpreted and presented in 

Appendix C.  

3.3.3 Aggradational processes 

Depositional processes were inferred from GPR surveys and stratigraphic 

descriptions from the 19 excavator-dug and 15 hand-augered holes.  In addition, 

radiocarbon dating of peat and gyttja was used to identify the timing of depositional 

transitions (Table 3.1). 
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Table 3.1.  Radiocarbon sample descriptions 
 

Location(1) Depth 
(cm) 

Age (years before 
present (2009)) 

Material 

Long W @ 150 m 80 189 ± 40 Peat 

Long W @ 150 m 115 734 ± 40 Peat 

Long W @ 150 m 175 2399 ± 65 Organic-rich fine sediment 
        

SW hole 50 109 ± 33 (2) Peat 

SW hole 144 2334 ± 45 Peat 

SW hole 313 4089 ± 50 Peat 

SW hole 337 4249 ± 50 Peat 
       

XS3 @ 158 m 110-125 679 ± 45 Organic-rich fine sediment 

XS3 @ 158 m 155-170 1459 ± 50 Peat 

XS3 @ 158 m 320-330 3389 ± 65 Peat 
        

XS4@ 112.5 m 125 299 ± 45 Organic-rich fine sediment and wood 
pieces 

1)  Figure 3.2    
2) <120 (99.4 ±0.4 pMC)   

Recent aggradational processes on the west side of the wetland are distinct from 

pre-settlement processes. Radiocarbon dates suggest peat and organic-rich soil 

development and accumulation ceased at Long W@150 m in the central west portion of 

the wetland (Figure 3.2) concurrent with human impacts of the 19th and 20th century.  

Long W@150 m (Figure 3.9) had been a peatland for ~545 years and accumulated 35 cm 

of peat until three sediment deposits occurred in the past ~189 years, accumulating 70 

cm of sediment (Table 3.1).  Furthermore, Long W@150 m was beyond the area of 

deposition in 2003, suggesting that higher-energy debris flows, capable of deposition in 

the southern wetland, have occurred in the past two centuries.   

Similarly, the core at SW Hole in the southwest indicates it had been a peatland 

with no substantial sediment deposition for ~2225 years until 50 cm of sand was 
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deposited in the past ~109 years (Figure 3.10).  Also, at XS3@158 m in the northeastern 

part of the wetland, aggradation was dominated by gradual processes of peat 

production and pond filling from ~3389-679 yr BP (Figure 3.11).  During this period, four 

sand-to-gravel sized deposits are preserved, with thicknesses ranging from 5 to 25 cm.  

Recent sand and gravel deposits are substantially larger in thickness, ranging from 15 to 

65 cm. 

Recent changes in depositional regime at XS4@112.5 m are not apparent, 

perhaps because the auger only penetrated through one deposit under the dated pond 

sediments and it is therefore difficult to infer the aggradational history there.  

Interpretation of the GPR image suggests previous coarse sediment deposition.  The 

most recent sample of organic-rich sediments is ~299 years old, though only 5 cm of 

that layer is preserved, suggesting only a brief period of gradual sedimentation in a 

regime dominated by episodic debris flows and overbank deposits.  
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Sediment Descriptions from Long W @150 m

 
Figure 3.9.  Long W @150 m is in the southwest portion of the wetland between XS4 and XS5.  Ages obtained from 
radiocarbon dating are outlined in red for emphasis. Dates from 1.15 m and 0.8 m depth indicate 35 cm of peat 
accumulation in the ~545 years prior to 65 cm of sediment deposition in the past two centuries.  
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Figure 3.10.  SW Hole is in the southwest portion of the wetland. This was dug with shovels to ~2 m, then augered 
to 3.5 m.  Radiocarbon dates from 0.5 and 1.4 m depth indicate 90 cm of peat accumulation in ~2200 years prior to 
~50 cm of sediment deposition in the past two centuries.   
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Figure 3.11.  XS3 @ 158 m is in the northeast portion of the wetland. The most recent radiocarbon date is from a 
historic beaver pond at ~1.2 m depth and is dated as ~679 yr BP.  Previously, peat was the dominant aggradational 
process, although four coarse deposits are present from ~679 to 2289 yr BP.   
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 Six of the deepest auger and excavator pits were selected from across the 

wetland to establish a quantitative estimate of the relative contributions of different 

aggradational processes (Table 3.2).  XS5 @240 m, Pit 17 on XS3, and Pit 11 on XS1 were 

selected to represent the western portion of the wetland (Figure 3.2).  XS5 @50 m, XS3 

@158 m, and Long E @429 m on XS2 were selected for the eastern portion of the 

wetland.   

Table 3.2.  Approximate relative contributions of aggradational processes 
 Debris Flow 

(%) 
Overbank or sorted 

debris flow (%) 
Peat (%) Gyttja (beaver pond) (%) 

West 50 35 10 5 
East 10 30 50 10 

 

The east side of the wetland aggraded primarily through peat (~50%) and 

overbank deposition (~30%).  The west side of the wetland has aggraded primarily 

through debris flows (~50%) and overbank deposition (~35%).  Differences in process 

from west to east are likely influenced by several factors including the tributary fan that 

forces the channel to the west, groundwater that supports peat production in the east, 

and more recently, localized deposition at the head of the wetland that pushed the 

active channel to the west.  Beaver dams in the northern part of the wetland may have 

encouraged deposition at the head of the wetland and facilitated the avulsion towards 

the west that occurred between 1937 and 1969 (Appendix A).   

Although recent deposits to the west side of the valley appear to differ from the 

immediately preceding deposits, several pre-impact debris-flow deposits of the past 

4000 yr show similar textures.   The increased frequency and greater magnitude 
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(thickness) of recent events, however, distinguishes them from older deposits.  Beaver 

pond fill was expected to be more common in the wetland, but less than ~10% of the 

wetland fill can be attributed to this process.  This result is supported by geomorphic 

investigations of modern beaver dynamics downstream on the Colorado River that 

suggest dams in higher order streams function primarily by encouraging overbank 

deposition.  In-channel deposition is less likely to be preserved due to frequent 

breaching of dams and removal of in-channel sediment [Westbrook et al., 2010].  

Stratigraphic descriptions from all 19 excavator-dug and 15 hand-augered holes are 

presented in Appendix B.   

3.3.4 Aggradation Rates 

Aggradation rates in Lulu City wetland range from 4 to 15 cm/100 yr for most of 

the period sampled for this study, but then increase to over 40 cm/100 yr during the 

past 100-200 years (Figure 3.12).  Similar rates of ~40 cm/100 yr for the past one to two 

centuries occur at three dated profiles: Long W @150 m, SW Hole, and XS4 @112.5 m.  

The fourth dated profile is at XS3@158 m where the uppermost (youngest) date is ~620 

yr BP and 1.1-1.25 m below the ground surface.  The aggradation rate of the past 1-2 

centuries at XS3@158 m is likely similar to that at the other profiles.  At a similar depth, 

Long W @150 m is dated at ~ 734 yr BP (Table 3.1), but because a later sample is dated 

at ~189 yr BP, the higher aggradation rates of the past two centuries can be 

distinguished.  This is not possible at XS3@158 m because temporal resolution of 

aggradation rates is limited by the samples collected and the assumption of constant 
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rates of aggradation between known dates is likely invalid.  It is possible that 

aggradation rates would be spatially heterogeneous throughout the wetland, although 

given the strong correlation of other dated samples, and the similarity in the depth of 

the Long W @150 m sample, XS3@158 is expected to have followed a similar pattern of 

rapid aggradation during the past two centuries (Figure 3.13).   

 
Figure 3.12.  Aggradation rates were calculated based on the mean radiocarbon age for each sample and assuming 
constant rates between each age control point. Each age control point is indicated by a symbol.  Locations of 
radiocarbon-dated cores presented in Figure 3.2. 
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Figure 3.13.  The ground surface over time at dated profile locations is generally consistent throughout the Lulu City 
wetland, assuming no loss of elevation (e.g., deposition and subsequent erosion, or compaction) between dated 
samples.  Steeper slopes indicate faster aggradation rates.  Each age control point is indicated by a symbol.  
Locations of radiocarbon-dated cores are presented in Figure 3.2. 

 Variation in pre-disturbance aggradation rates is also apparent.  Aggradation 

occurred faster during the period from ~4000-2500 yr BP than from ~2500-200 yr BP 

(Figure 3.12, and represented by the steeper slope seen on Figure 3.13).  The higher 

aggradation from ~4000-2500 yr BP corresponds to a period recognized as climatically 

distinct.  The period from ~4000-2000 yr BP was generally cooler and drier than present 

[Fall, 1997], while the last ~2000 yr were generally similar to the modern climate 

[Vierling, 1998], although cooler and more severe temperatures were present during 

the Little Ice Age from ~700 to 100 yr BP [Fall, 1985; Doerner, 2007].  Peat aggradation 

rates are positively correlated with precipitation and temperature, though local controls 
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can also influence growth [Ovenden, 1990].  Peat production is therefore expected to 

have been slower between ~4000-2500 yr BP.  However, variation in peat accumulation 

rates is expected to be low relative to the variability in sedimentary processes.  Long-

term variability in peat accumulation rates is  typically minimal [Blaauw and Christen, 

2005], while sediment deposition can vary over orders of magnitude depending on the 

time scale and magnitude of climatic change [Sadler, 1981].  Variability in aggradation 

rates is therefore more likely to be controlled by sediment inputs than by peat 

accumulation.  In forested watersheds, precipitation is negatively correlated with 

increased sediment yields because precipitation induces vegetative growth and soil 

stability [Langbein and Schumm, 1958; Knighton, 1998].  Sedimentation rates are 

therefore expected to have been higher between ~4000-2500 yr BP.  Following these 

expected results, the profile at SW Hole (Figure 3.10) demonstrates a regime from 

~4100-2300 yr BP dominated by sediment deposition, with peat persisting from ~2300 

yr BP until modern sediment deposits of the past century.  Conversely, the profile at XS3 

@158 m is peat-dominated from ~3400-1500 yr BP and sediment-dominated after 1500 

yr BP.  The processes of aggradation are spatially varied and the influence of climate on 

vegetative and erosive processes is complex.  With a limited number of samples, spatial 

and temporal correlation is uncertain, but results generally support H1A-2 and H1A-4: 

significant variations in Holocene aggradation rate associated with climatic variability, 

and significant increases in the recent aggradation rate beyond the range of earlier 

Holocene variability. 
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 Uncertainty emerges when comparing the modern (100-200 yr) aggradation rate 

to longer (~2000 yr) time periods because the episodic and spatially varied processes of 

sediment deposition make extrapolation difficult.  Previous investigators have shown 

that mean accumulation rates decrease with longer sample periods [Sadler, 1981; 

Mcshea and Raup, 1986; Schumm, 1998].  In this study, this uncertainty is minimized 

because climatic variability in the Colorado Rockies during the Holocene is much less 

than the variability seen at longer time scales [Short, 1985; Crowley and North, 1988].   

Additionally, there is the question of validity in comparing the currently 

deposited material to what will be ultimately preserved.  Even recognizing the Lulu City 

wetland to be a depositional zone in an overall trajectory of aggradation, it is reasonable 

to expect some fluvial reworking and transport out of the wetland.  Indeed, the question 

of transient versus persistent features is central to this assessment of the impacts from 

recent Grand Ditch-caused debris flows.  Comparing the rate of recent deposition to the 

historic rate of preservation is of limited usefulness.  Furthermore, as deposits to the 

head of the wetland increase the valley gradient, the aggradation itself should lead to 

greater transport capacity and a potential mechanism for lowering sediment 

preservation rates.  As mentioned previously, for more than 3000 years the eastern 

portion of the wetland has aggraded almost exclusively from peat production and 

overbank deposition without any fluvial reworking or channel migration into the region, 

whereas the west side of the wetland has filled primarily through debris flows and 

overbank deposition.  The uniform, horizontal reflections in the GPR surveys of XS2-XS5 

(Figures 3.6 and 3.7) indicate that the preserved deposits are from peat and overbank 
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deposition, and the absence of fluvial reworking of sediments suggests that the 

aggradation has been purely depositional.  Interestingly, although the east and west 

sides of the wetland have been dominated by different processes, over the past 3000+ 

years aggradation has occurred at roughly the same rates (Figure 3.12).  This suggests 

that the wetland topography is in a state of dynamic adjustment.  Aggradation in the 

west might disconnect the floodplain from the channel and thus overbank deposits 

would be confined to the east.  Peat production in the east may similarly elevate and 

disconnect the eastern side of the valley bottom from the river, encouraging overbank 

deposition in the west.  Similar equilibrium adjustments may also occur longitudinally.  

Deposition at the head of the wetland increases the channel slope and facilitates 

reworking of those deposits and/or deposition farther downstream.  The dichotomy of 

aggradational processes on the east and west sides of the valley suggests deposits will 

be preserved.  Because east and west have aggraded at similar rates historically and 

recent aggradation rates are of a similar magnitude throughout the radiocarbon-dated 

profiles in the wetland, I predict that the east side will continue to be purely 

depositional and I assume the recent debris-flow deposits will persist.  Modern 

aggradation rates thus can be compared to historic rates without introducing bias into 

the interpretations.   

3.4 Conclusions 

Modern deposits have substantially altered the rate of aggradation throughout 

the Lulu City wetland.  The conceptual models presented as H1A-2 and H1A-4 are 
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therefore supported.  Aggradation rates were variable through the late Holocene, 

perhaps in relation to climatically driven changes in sediment yield, valley-bottom 

depositional processes, and peat production rates.  The Grand Ditch and earlier land-use 

changes (mining, timber harvesting, etc.) have altered the rate of deposition beyond 

that present prior to Euro-American settlement of the region.  Inferred rates of 

aggradation range from 4-15 cm/100 yr from ~4250 yr BP until ~ 200 yr BP.  Rates are 

generally consistent throughout the Lulu City wetland.  Similarly, modern rates (~45 

cm/100 yr) of the past approximately two centuries are consistent throughout the 

wetland and approximately six times higher than historic rates.  The east side of the 

wetland has been stable for 3000+ years with peat accumulation and overbank 

deposition as the dominant processes of fill.  Deposits are therefore expected to be 

persistent features of the landscape.  Aggradation was primarily through debris flows 

and overbank deposition on the west side of the valley.  Beaver-pond fill makes up less 

than 10% of the upper 2-3 m of valley fill.  Peat was present in the west (SW Hole and 

Long W @150 m), the top of which was dated at roughly the time of human impacts 

(~130 yr BP).  This suggests that land-use and Grand Ditch sediment inputs shifted not 

only the rate of aggradation but also the mechanisms of fill.  Further corroborating 

these interpretations and scenarios of H1A-2 and H1A-4, aerial photos dating back to 

1937 suggest repeated large-scale deposition on the west side of the valley.   

Although debris-flow deposits are spatially heterogeneous in the wetland, 

making generalization difficult, the 2003 deposit is not unusually large in either 

thickness or spatial extent when compared to other deposits of the past two centuries.  
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The southernmost extent of the 2003 deposit was near Pit 28 (Figure 3.2).  Deposits at 

Long W@150 and SW Hole are ~60 and ~150 m farther south, respectively, and were 

therefore likely deposited by larger events.  Similarly, deposits equal to or thicker than 

2003 are visible in the majority of holes in the west side of the wetland (Appendix B).   

 Correlation with other studies relating climatic variability and aggradation rates 

is not feasible.  Studies such as that at La Poudre Pass (J. Doerner, unpublished report, 

2005) were conducted in fens or other temporally stable peatlands because continuous 

preservation allows for unbroken pollen and fossil preservation throughout the entire 

sequence [Elias, 1985].  Aggradational processes at Lulu City wetland included colluvial 

and fluvial inputs in addition to the peat accumulation.  Furthermore, peat accumulation 

rates ranged from 1.0 to 1.7 cm/100 yr from 100 to 6750 yr BP at the La Poudre Pass 

site.  Peat accumulation rates (where basal and top of peat ages were obtained for 

individual peat sections) in the Lulu City wetland were 4.0 cm/100 yr at SW Hole from 

~109 to 2334 yr BP, and 6.4 cm/100 yr at Long W@150 from ~189 to 734 yr BP.  The 

difference in peat accumulation rates suggests that even in the absence of human 

disturbance or sediment deposition, substantial differences in peat accumulation rates 

exist between the Lulu City wetland and the La Poudre pass site (5 km and less than 300 

m higher than the Lulu City wetland).  Differences in peat accumulation rates at the two 

sites may be a result of climatic or groundwater differences.  Similarly, rates of 

aggradation in case studies throughout the Rocky Mountains are dominated by local-

scale watershed controls, as evidenced by significant variation in aggradation rates 

between five alpine bogs in the San Juan Mountains that are relatively close to one 
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another [Andrews et al., 1975]. In Yellowstone National Park, 30% of deposits were 

attributed to fire-induced erosion, and aggradation has been correlated with climates 

conducive to fire [Meyer et al., 1995].  In contrast, less than five pieces of charcoal were 

found in the Lulu City wetland.  The San Juan and Yellowstone examples highlight the 

complex dynamics of sedimentation and aggradation.  Comparison is therefore only 

useful when watershed characteristics, processes of fill (relative contribution of 

colluvial, fluvial, peat and beaver pond), and climatic variation are similar. 
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4. Post-Debris Flow Channel Response:   

Contemporary Hydrology and Sediment Transport in the 

Upper Colorado River  

4.1   Introduction 

Disturbance is an integral ecosystem process, as it drives habitat heterogeneity 

and encourages species richness by allowing for both colonizing species and resident 

species [Connell, 1978; Reice et al., 1990].  If the disturbances are too frequent, resident 

species will be uncompetitive.  If disturbances are too infrequent, the most competitive 

residents will proliferate and limit species richness by excluding colonizing generalist 

species.  The complex temporal and spatial dynamics of disturbance and recovery are of 

fundamental importance to the study of riverine geomorphology, water quality, and 

ecology [Niemi et al., 1990; Turner et al., 1993; Benda et al., 2004].   Commonly, post-

disturbance colonization is rapid, with most studies showing recovery of species 

richness and abundance within three years except in instances of persistent alteration 

to physical habitat [Yount and Niemi, 1990; Detenbeck et al., 1992].  Ecosystem recovery 

following a debris flow was studied at H.J Andrews Experimental Forest in the Cascade 

Mountains of Oregon [Lamberti et al., 1991].  Within one year, macroinvertebrates 

recovered to upstream densities and taxonomic richness.  Similarly, cutthroat trout also 

recovered to pre-disturbance population levels within the first year.  Populations 
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exhibited significant temporal variations in abundance, suggesting ecosystem volatility 

[Lamberti et al., 1991] that may have resulted from persistent geomorphic instability of 

the channel. Recovery of communities in the upper Colorado River watershed following 

the 2003 debris flow depends partly on recovery of pre-disturbance channel form. 

The transient-form ratio (TFr in equation 1.1) is used as a measure of channel 

recovery following the 2003 debris flow in the upper Colorado River watershed.  If 

significant recovery of geomorphic processes and forms occurred between 2003 and 

2009, the disturbance will be interpreted as transient and less problematic from a 

management perspective.  This research does not seek to quantify whether disturbance 

has become too frequent, but rather to quantify post-debris flow processes and to 

assess the geomorphic condition and trajectory of the upper Colorado River between 

the Crooked Tree (CT) and Gravel Beach (GB) gaging stations (Figure 4.1) after 2003.  

There are no pre-disturbance data, but after six years of post-disturbance monitoring, 

the trajectory of recovery is summarized to assess whether 1) the channel has adjusted 

to the imposed inputs of flow and sediment and 2) the current (2004-2009) sediment 

regime is expected to persist.  This chapter addresses only channel response to the 2003 

disturbance and does not consider floodplain, wetland, or biotic response. In order to 

address the research objectives, flow, sediment transport, bed particle size distribution, 

and channel cross sections were monitored from 2004-2009.  All data prior to 2008 

were provided by Sara Rathburn (pers. comm., 2009). 
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Figure 4.1.  Four gages are located in the study area: LY is Colorado River at Little Yellowstone, CT is Colorado River 
at Crooked Tree, GB is Colorado River at Gravel Beach,  LL is lower Lulu Creek.  Flow on Colorado River is from 
upper portion of figure toward bottom.  Grand Ditch flow is from the bottom of the figure to the top. 

 

As part of the evaluation of channel recovery, bankfull discharge (Qbf) of the 

2009 channel at CT and GB is compared to analogs of bankfull discharge, including 

effective discharge (Qeff) and the 1.5-year recurrence interval flow (Q1.5).  Alluvial rivers 

adjust channel geometry in response to imposed conditions of inflowing water and 
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sediment.  The concept of channel-forming discharge can be defined as the single 

discharge most responsible for maintaining channel form, or more precisely as the 

single discharge that would, if held constant over time, maintain a given channel 

geometry and slope [Copeland et al., 2000].  Two analogs of channel-forming discharge 

have been proposed; 1)  bankfull discharge, or the discharge that completely fills the 

channel [Leopold et al., 1964], and 2) effective discharge, or the discharge that 

transports the most sediment over time [Wolman and Miller, 1960].  Furthermore, 

linkages between channel-forming discharge, Qbf, Qeff, and Q1.5 have been investigated.  

Emmett and Wolman [2001] found the recurrence interval of Qeff at five Rocky 

Mountain streams ranged from 1.5 to 1.7 years, and averaged 1.6 years.  Leopold et al. 

[1964] suggested the 1.5-year flow typically approximates Qeff.   At 15 gaging stations in 

the Yampa basin of Colorado and Wyoming, Andrews [1980] found Qeff had a recurrence 

interval of 1.2 to 3.3 years, with 50% of sites between 1.25 and 1.75 years.  At all 15 

sites, Andrews also found Qbf and Qeff to be essentially equal.  Similarly, in a survey of 36 

streams in western North America, Williams [1978] found the 1.5-year flow best 

approximates Qeff.  Of these studies, the Emmett and Wolman [2001]  and Andrews 

[1980] field sites are most comparable to the study sites on the upper Colorado River, 

suggesting that Qeff would likely have a recurrence interval of ~1.5 years.  There is some 

concern that reducing the inherent variability in hydrology and sediment transport to a 

single discharge is a spurious oversimplification of complex geomorphic processes that 

evolve over varying time scales.  Infrequent floods exert a stronger influence on channel 

form in systems with variable hydrology and high boundary roughness (E. Wohl, pers. 
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comm., 2010).  Similarly, relationships between Qbf, Qeff, and Q1.5 have been shown to 

be unreliable in flashy or variable hydrologic systems [Stevens et al., 1975; Graf, 1988].  

Agreements between channel-forming discharge and Qbf, Qeff, and Q1.5 are strongest in 

snowmelt systems with coarse substrate [Doyle et al., 2007], such as the upper Colorado 

River in the study area. 

Because relationships between Qbf, Qeff, and Q1.5 have been established for 

stable systems, I investigated these relationships to test channel recovery.  All three 

analogs of channel-forming discharge should be equivalent in a stable system.  

Specifically, I compared Qbf of the channel present in 2009 to a value of Qeff that was 

based on observed sediment transport from 2004-2009.  If Qbf and Qeff are similar, this 

suggests that the 2009 channel has adapted to the imposed inputs of sediment and 

water of the post-debris flow system.  Additionally, Qbf was compared to Q1.5.  Q1.5 does 

not explicitly account for sediment transport in the potentially disturbed Colorado River.  

Therefore, if Qbf is similar to Q1.5, this supports the interpretation that the 2009 channel 

has recovered from the 2003 debris flow.   

A practical outcome is also achieved through the comparison of Qbf, Qeff, and 

Q1.5.  Channel restoration is typically based on a single design discharge [Soar and 

Thorne, 2000] incorporating Qbf, Qeff, Q1.5, or a combination thereof [Copeland et al., 

2000; Doyle et al., 2007].  When considering restoration strategies for the upper 

Colorado River downstream from the Lulu Creek junction (sites CT and GB, Figure 4.1), 

Qeff and/or Q1.5 can be used.  Therefore, if the current Qbf configuration is similar to Qeff 
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and Q1.5, channel restoration may not be necessary.  Three scenarios of channel 

recovery are proposed. 

H1)  The channel is still on a trajectory of adjustment to the disturbance of 2003.  
H1 is supported if: 1) channel geometry has not stabilized from 2003 to 2009, 2) 
sediment transport from 2003 to 2009 is elevated and variable due to pulses of 
debris-flow deposits being reworked by fluvial processes, and 3) effective 
discharge is substantially different from bankfull discharge. 
 
H1A) In response to the 2003 debris flow, channel form has achieved a stable 
state that is different than pre-disturbance conditions.  H1A is supported if 1) 
channel geometry has stabilized by 2009, 2) sediment transport is elevated and 
variable compared to the undisturbed Little Yellowstone (LY) site, and 3) the 
effective discharge and bankfull discharge are similar. 
 
H1B) The impact of disturbance is diminished such that recovered processes and 
forms are present.  The 2009 channel is similar to the pre-disturbance condition.  
H1B is supported if 1) channel geometry is stable by 2009, 2) sediment transport 
is not elevated or variable compared to LY, 3) the bed has armored, and 4) 
effective discharge, bankfull discharge, and the 1.5-year discharge are all similar.   

 

4.2 Methods 

4.2.1 Discharge 

Four Solinst Levelogger Gold recording pressure transducers were installed on 

Lulu Creek, Sawmill Creek, and the Colorado River (Figure 4.1) in 2008 and 2009 to 

record stage at 15-minute intervals.  The Lower Lulu Creek (LL), Colorado River at Little 

Yellowstone (LY), Colorado River at Crooked Tree (CT) and Colorado River at Gravel 

Beach (GB) gages were installed in June 2008 (Table 4.1).  Gages were operated only 

during summer runoff.  Prior to the recording gages, four discharge measurements in 
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2004 and four in 2005 occurred during summer runoff  when sediment samples were 

collected.  The Colorado River below Baker Gulch USGS stream gage (# 09010500) 

record was used to provide a context of stream flow conditions from 1953-present.  The 

Baker Gulch gage is ~13 km downstream of the GB site, with a watershed area of 166 

km2.  The GB watershed makes up ~17% of the area of the Baker Gulch gage watershed.  

Thus, stream flow trends are expected to be well represented by the Baker Gulch gage. 

Table 4.1.  Overview of stream gage locations 
Station Monitoring 

Period 
Automated Gage 
Period1 

Describes 

LY 2004-2009 2008-2009 Undisturbed reference reach for 
Colorado River 

CT 2004-2009 2008-2009 Reach impacted by 2003 debris flow 
GB 2004-2009 2008-2009 Reach impacted by 2003 debris flow 
LL 2008-2009 2008-2009 Reach impacted by 2003 debris flow 

1) 2008: gages operated June 25 to October 10 
2009: gages operated May 2 to September 16 

 

A record of streamflow was developed in two steps in accordance with U.S. 

Geological Survey (USGS) flow protocol [Rantz, 1982].  A record of water levels was 

compiled from the recorded electronic data and calibrated with field observations; the 

field observations of water level derive from staff plates, so that water levels can be 

referenced to a fixed datum. Second, streamflow was measured at a range of discharges 

using the velocity-area method with velocity measurements made at 0.6 of flow depth 

using a one-dimensional Marsh McBirney electromagnetic velocity meter and a USGS-

style top-setting wading rod.  An empirical stage-discharge relationship (rating curve) 

was developed for each site based on field measurements of stage and streamflow. This 

rating curve was then applied to the 15-minute stage record to produce a continuous 
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discharge record.  Flow measurements were conducted approximately bi-weekly during 

the snowmelt period to establish rating curves across a range of discharges.  To account 

for temporary changes in bed elevation that may have occurred, stage shifts were 

applied to the stage record as needed to make measured discharge match the stage-

discharge rating curve [Rantz, 1982].  Additional field measurements and observations 

at each station were used to verify the electronic record. Observations recorded during 

site visits included: water level (gage height) at the staff plate, high-water marks, the 

presence of log jams or snow bridges that may temporarily raise water levels, and signs 

of sedimentation or scour. 

4.2.2 Sediment transport 

4.2.2.1  Suspended sediment transport 

Suspended sediment transport measurements began during the snowmelt 

runoff period in 2004 at stations LY, CT, and GB (S. Rathburn, pers. comm., 2008) (Table 

4.2).  Measurements at LY, CT, and GB continued in 2005, 2008, and 2009.  Suspended 

sediment sampling at LL was added in 2008.  Samples were collected at a range of 

discharges to facilitate the development of sediment rating curves (Figure 4.2).  Results 

from LL are not presented here due to the limited number of samples after only two 

years of monitoring.  Suspended sediment was measured along fixed cross sections at 

established stream gage locations.  Samples were collected using a DH-48 depth-

integrated sampler with ~5 lateral sampling locations at equal-width increments across 

the channel [Thomas, 1985; Edwards and Glysson, 1998].  Sediment samples were 
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processed at the Colorado State University sedimentology lab, as follows: sample 

volume was measured, filtered through a 45 micron glass fiber filter, dried for 24 hours 

at 105 °C, and weighed.  A concentration of sediment mass per volume of water (mg/l) 

was calculated for each sample.   

Table 4.2.  Suspended sediment sampling dates.  Data for 2004 and 2005 from S. 
Rathburn. 

  LY CT GB LL 
4/1/04 X X     

4/29/04 X X X   
5/21/04 X X X   

6/7/04 X X X   
          

4/22/05   X X   
5/17/05 X X X   
5/24/05 X X X   

6/7/05 X X X   
          

6/12/08 X X X   
6/20/08 X X X   
6/26/08 X X X X 

7/1/08 X X X X 
7/8/08 X X X X 

7/16/08 X X   X 
          

5/28/09 X X X X 
6/5/09 X X X X 

6/15/09   X X X 
6/17/09   X X X 
6/24/09 X X X X 
7/16/09     X   
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Figure 4.2.  Discharge in 2004 was the lowest the during the study period with a peak discharge of 5.1 m3/s on June 
8.  Discharge in 2005 was the second highest the during the study period with a peak discharge of 14.8 m3/s on 
June 19.  Discharge in 2008 was the highest of the study period with a peak discharge of 15.2 m3/s on June 3.  
Discharge in 2009 was moderate with a peak discharge of 14.0 m3/s on June 23.  The Baker Gulch is used as a long-
term proxy for discharge in the study area.  Indicated sampling days are days when suspended and/or bedload 
samples were collected in the study area.   

4.2.2.2   Bedload sediment transport 

Bedload transport measurements began in 2004 at stations LY, CT, and GB, and 

continued in 2005, 2008, and 2009 (Table 4.3 and Figure 4.2).  No bedload was sampled 

at LL because the steep-gradient step-pool morphology made accurate bedload 

sampling difficult.  Bedload sediment transport was measured using a 76 mm Helley-

Smith bedload sampler.  Two-minute samples were collected at two locations on each 

cross section; approximately 1/3 channel width from the left edge of water and 1/3 

from the right edge of water.  An estimate of active bed width was calculated based on 

measured depths and velocities across the channel.  Active bedload transport was 
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assumed constant across the entire bed or until velocity and/or depth became very low 

at the channel margins.   Using this method of approximation, active channel widths 

were estimated at 50 to 80% of the total wetted channel width.  Experiments on the 

variability of bed-load transport across channels are mixed, though these estimates are 

appropriate based on visual observation and fit within the wide range presented in 

published literature.  A study on the Colorado River ~12 km downstream of the study 

site suggests equal mobility across the channel, with variation in grain sizes accounting 

for the transport in lower shear stress zones [Clayton and Pitlick, 2007].   

Table 4.3.  Bedload sediment sampling dates.  Data for 2004 and 2005 from S. Rathburn.  
  LY CT GB 

4/1/04   X   
4/29/04 X X X 
5/21/04 X X X 

6/7/04 X X X 
        

4/22/05   X X 
5/17/05 X X X 
5/24/05 X X X 

6/7/05 X X X 
        

6/12/08 X X X 
6/20/08 X X X 

6/26/081       
7/1/08   X X 

7/8/081       
7/16/081       

        

5/28/091       
6/5/091       
6/15/09   X X 
6/17/09   X X 
6/24/09 X X X 

7/16/091       
1) Only suspended sediment sampled on 6/26/08 7/8/08, 7/16/08, 5/28/09, 6/5/09, 7/16/09 
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Bedload sampling with the Helley-Smith sampler in coarse-bedded, Rocky 

Mountain rivers has been shown to oversample transport at lower discharges by as 

much as 2-4 orders of magnitude when compared to bedload traps [Bunte et al., 2004; 

Bunte et al., 2008].  The oversampling is likely a result of bed disturbance caused by 

placement of the sampler.  The sediment transport rates reported here are thus treated 

as representing maximum estimates of actual transport at low flows. 

Sampling was completed following USGS sediment transport sampling protocol 

[Edwards and Glysson, 1998].  Bedload samples were dried, weighed and sieved in the 

sedimentology lab at Colorado State University.  Total bedload transport was calculated 

by multiplying the active width by the average unit transport rate of the weighed 

bedload transport samples.    

4.2.3 Bed particle size distribution 

Wolman pebble counts were conducted in 2004, 2007, 2008, and 2009 at LY, CT, 

and GB to quantify the distribution of grain sizes on the channel bed and monitor 

channel adjustment following the sediment input of the 2003 debris flow [Wolman, 

1954].  A gravelometer and grid were used to conduct the pebble counts.  Forty to 100 

clasts were sampled across the entire channel at riffles on established stream gage cross 

sections.   
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4.2.4 Post-debris flow channel response 

Channel cross sections and adjacent floodplains were surveyed in 2003 and 2007 

at thirteen locations on the Colorado River and Lulu Creek using a TOP-CON Total 

Station (S. Rathburn, pers. comm., 2008).  X, Y, and Z positions were surveyed relative to 

established benchmarks.  Repeat cross section surveys quantify aggradation or 

degradation as well as channel migration.  Photographic documentation of channel 

change was also conducted throughout the area impacted by the 2003 debris flow.  

Channel migration, removal of large instream wood, aggradation, degradation, and bed 

material sorting were documented if present based on repeat grain-size counts, surveys, 

and photographs.  

4.2.5 Channel-forming discharge 

4.2.5.1  Recurrence interval estimate 

Channel-forming discharge was estimated using a recurrence interval of 1.5 

years from the annual maximum series. This represents an average of recurrence 

interval values suggested by Williams [1978], Andrews [1980], Leopold et al. [1964], and 

Emmet and Wolman [2001].  The 1.5-year flow at the Baker Gulch USGS gage is 12.3 

m3/s.  The peak flow at Baker Gulch in 2009 (June 23) was 14.0 m3/s.  Therefore, the 

discharge on June 23, 2009 (14.0 m3/s) can be scaled by 88%, to equal 12.3 m3/s, which 

is taken as the 1.5-year flow.  Due to the absence of a long-term gage at the study sites, 

I assumed that a value of 88% of the peak flow on June 23, 2009 would be an 

appropriate approximation of the 1.5-yr flow at the GB and CT reaches.   
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4.2.5.2  Effective discharge calculation 

Effective discharge is calculated by multiplying a sediment rating curve by a flow 

duration curve that is divided into bins.  Bedload sediment-discharge rating curves were 

established from samples collected at GB and CT from 2004-2009.   Flow duration curves 

for GB and CT were synthesized by creating a dimensionless discharge curve from the 

Baker Gulch gage due to the absence of a long-term gage at the study site [Biedenharn 

et al., 2000; Soar and Thorne, 2000].  The 2-year flow (Q2) was estimated from regional 

regression equations using StreamStats software from the USGS [Ries, 2004; Capesius 

and Stephens, 2010].  Each day in the long-term daily flow record at Baker Gulch was 

divided by the predicted Q2 for Baker Gulch.  This created a dimensionless curve of 

exceedance probability versus dimensionless discharge (Q/Q2) for Baker Gulch.  

Applying the same dimensionless curve to the CT and GB sites, the estimated Q2 values 

for GB and CT were multiplied against the dimensionless flow series to create a 

synthetic daily flow record.  The daily flow record was broken into ~20 bins.  The 

sediment rating curve was applied to each bin and multiplied by the probability of that 

range of discharges.   The peak of the effectiveness curve represents the range of flows 

that over time transports the most sediment [Biedenharn et al., 2000; Emmett and 

Wolman, 2001].  

This method of flow synthesis assumes the Grand Ditch diversion alters flows 

equally at the study area and the Baker Gulch gage.  Grand Ditch operations, however, 

control where excess water is spilled into the Colorado River.  During peak runoff, when 
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runoff from the upper tributaries exceeds the capacity of the Grand Ditch, excess water 

could be spilled into lower Lulu Creek or it could be spilled into streams downstream of 

the study site.   It is possible that water is diverted into Lulu Creek and then the 

Colorado River from tributaries up to 10 km to the south of Lulu Creek because Lulu 

Creek is the closest spillway to the worker’s camp on the Grand Ditch and is used as the 

northernmost location to spill water.  This suggests high flows may be more frequent at 

GB and CT than at Baker Gulch, and thus estimates of Qeff may be under-predicted.  

However, at CT and GB, ~40-50% of the watershed area is above the Grand Ditch, while 

at Baker Gulch ~35% is above the Grand Ditch.  This suggests there is the potential for a 

slightly higher percentage of flow extraction in the study area than at Baker Gulch, and 

estimates of Qeff may be over-predicted.  The relative magnitude of flow input into the 

study area by Grand Ditch spilling compared to the potential for greater diversion is not 

quantified.  However, because the two potential deviations from expected results are in 

opposite directions, the estimate of Qeff is considered to be acceptable.   

4.2.5.3  Morphologic bankfull observation 

Bankfull discharge was estimated using field observations of morphologic 

bankfull stage and stage-discharge rating relationships.  Alternatively, when possible, 

measurements of discharge were directly taken at bankfull flows (Figure 4.3).  Bankfull 

identification was clear at GB, as both banks had breaks in slope at the same elevation.  

The right bank at CT is bedrock controlled and therefore bankfull was identified solely 

on a break in slope from the left bank. 
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Figure 4.3.  Discharge measurement taken at bankfull discharge at GB, June 24, 2009.  View is looking downstream. 

 

4.2.6 Total yield 

The suspended and bedload sediment-rating curves were applied to the 15-

minute datalogger flow record, and the total quantity of bedload, suspended load, and 

total load was calculated for the period of record during 2008 and 2009.  The 2008 

record is from June 25 to October 10 and does not capture the rising limb or runoff 

peak.  The 2009 record is from May 2 to September 16 and captures the complete 

snowmelt period.  
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4.3  Results and discussion 

4.3.1 Discharge 

Flow and sediment monitoring were conducted at stations GB, LY, and CT in 

2004, 2005, 2008, and 2009.  At the Baker Gulch USGS gage, 2004 had extremely low 

flows and peak flows from 2005, 2008, and 2009 were all 10-20% less than the long-

term 2-year return interval flow (Figure 4.4).   

 
Figure 4.4.  Mean daily discharge at Baker Gulch USGS gage during the study period from 2003-2009.  All years after 
2003 were lower than the average peak.  The period of record at Baker Gulch is 1953-present.   

 

Flow monitoring in the study area during 2008 and 2009 was supported by 

recording stream gages and provides insight into flow manipulation and diurnal cycles.  
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The 2008 hydrograph suggests that Grand Ditch operations may be capable not only of 

an overall reduction in flow, but also of actually increasing flows in specific reaches 

(Figure 4.5).  For example, during receding flows in 2008, Grand Ditch capacity was 

exceeded and Lulu Creek was used as the primary spillway.  Pronounced daily 

fluctuations occur as water is released into Lulu Creek.  On July 5, 2008, Grand Ditch 

capacity appears sufficient to transport all inflowing runoff and a dramatic decline in 

flow occurred in Lulu Creek.  This suggests the impacts of the Grand Ditch diversion are 

most severe during late summer when high elevation snowmelt is the primary source of 

runoff and the Grand Ditch is capable of diverting all runoff. 

 
Figure 4.5.  15-minute discharge record for 2008 from LY, CT, GB, and LL sites shows discharges into Lulu Creek from 
the Grand Ditch.  After July 5 no discharges from Grand Ditch occur. 
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The summer of 2009 was unusually wet in the Front Range of Colorado, where 

farmers reduced irrigation and the Grand Ditch diversion was not needed.  By June 13, 

Long Draw Reservoir was full and the Grand Ditch diversion was shut off from June 13 to 

June 25, allowing natural runoff (Figure 4.6).  Based on the shape of the hydrograph, the 

true snowmelt peak likely occurred on May 21, yet the Grand Ditch shutoff in late June 

added sufficient water to cause peak discharge in the Colorado River on June 24.  A 

second period of “natural” flow occurred August 9 to September 9, when Grand Ditch 

repairs were conducted along the site of the 2003 breach.  These periods of natural flow 

allow visualization of the downstream impacts of the diversion (Figure 4.7).   

 
Figure 4.6.  Mean daily discharge for 2009 from LY, CT, GB, and LL sites shows two periods where the Grand Ditch 
did not operate and flow was not diverted out of the Colorado River.   
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Figure 4.7.  Repeat photo of the Colorado River at Lost Creek (~1 km downstream from the Lulu City wetland).  June 
24 is while the Grand Ditch diversion was not operating and “natural” flow occurred in the Colorado River.  July 2 
demonstrates the quantity of diverted flow.  Both views are facing downstream. 

 

4.3.2 Sediment transport 

4.3.2.1  Suspended sediment transport 

 For most discharges, the LY site transports as much or more suspended sediment 

than other sites (Figure 4.8).   The similar sediment transport relationship from LY to CT 

and GB is surprising as the LY site was unaffected by the 2003 debris flow, suggesting 

that the system, even in areas impacted by the debris flow,  is limited in fine sediment.  

The absence of fine sediment at CT and GB suggests that runoff in 2003 likely 

transported all available fine sediment introduced by the debris flow.  The higher loads 

at LY may be explained by the exposed bedrock lithology and lack of hillslope vegetation 

upstream, which includes steep and weathered volcanic bedrock that may produce a 

more consistent supply of fine sediment than the more vegetated hillslopes at other 

sites.   

    

June 24, 2009 July 2, 2009
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Figure 4.8.  Suspended sediment rating curves for LY, CT, GB, and LL sites are all similar. 
 

 A separate analysis was conducted at each sampling site to evaluate differences 

in suspended sediment transport in the years immediately following the debris flow 

(2004-2005) and later years (2008-2009).  Samples were categorized as rising or falling 

limb samples to investigate hysteresis.  Although there is considerable scatter in the 

data, regression lines are consistent at LY between the 2004-2005 and 2008-2009 

periods (Figure 4.9).  This is expected, as LY was not affected by the 2003 debris flow 

and is therefore not expected to exhibit temporal trends in the following years.  

Clockwise hysteresis is suggested by the data, but considerable scatter and a limited 

sample size prevent definitive analysis (Figure 4.10).
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Figure 4.9.  LY suspended sediment rating curve comparison of 2004-2005 with 2008-2009.  LY is upstream and 
unaffected by the 2003 debris flow, and no temporal trend is apparent.   
 

 
Figure 4.10.  LY suspended sediment rating curve comparison of rising and falling limb flows.  Data suggest 
clockwise hysteresis, which suggests depletion of fine sediment during the snowmelt period.   



81 
 

At CT, 2004-2005 suspended sediment samples can be distinguished from 2008-

2009 by the magnitude of scatter in the 2004-2005 samples (Figure 4.11).  This suggests 

that considerable fluvial reworking of debris-flow sediments was occurring during the 

earlier sampling interval, that pulses of fine sediment were alternately transported or 

stored, and therefore that the sediment-discharge relationship is poorly defined.  The 

consistent sediment rating curve from 2008-2009 suggests that most available 

sediments have been flushed from the system and that new sediment is now being 

steadily supplied as it is remobilized by gradual reworking of bed and bank material.  

Again, an apparent clockwise hysteresis is present, suggesting an overall limited supply 

of fine sediment for the period of 2004-2009 (Figure 4.12).   

Figure 4.11.  CT suspended sediment rating curve comparison of 2004-2005 with 2008-2009.  Variability decreases 
in 2008-2009.   
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Figure 4.12.  CT suspended sediment rating curve comparison of rising and falling limb flows.  Data suggest 
clockwise hysteresis.   
 

 At GB, the trends in suspended sediment are less apparent.  There are higher 

concentrations of suspended sediment during 2008-2009 than in 2004-2005 (Figure 

4.13).  This suggests that temporary storage immediately following the debris flow was 

stable during 2004-2005 and sediment delivery to the downstream GB site increased as 

upstream log jams were cleared and channelization and reworking occurred. Similarly, 

at low discharge there is no evidence of hysteresis (Figure 4.14).  This suggests sediment 

is controlled by a supply that may be introduced during or after peak runoff and 

supports the theory that upstream channel processes are introducing sediment. 
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Figure 4.13.  GB suspended sediment rating curve comparison of 2004-2005 with 2008-2009.  Suspended sediment 
concentrations are higher in 2008-2009.   

 

Figure 4.14.  GB suspended sediment rating curve comparison of rising and falling limb flows.  Data do not suggest 
hysteresis at low flows.  
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4.3.2.2  Bedload sediment transport 

No clear differences exist in the bedload transport rates of LY, CT, and GB (Figure 

4.15).  Furthermore, there is no evidence for a trend between the periods of 2004-2005 

and 2008-2009 (Figures 4.16-4.18).  This suggests there was, and continues to be, a 

supply of coarse material available for transport.   

 
Figure 4.15.  Bedload transport rating curves for LY, CT, and GB are similar at all three stations.   
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Figure 4.16.  LY bedload sediment rating curve comparison of 2004-2005 with 2008-2009.  LY was not affected by 
the 2003 debris flow and no change in bedload transport is seen.   
   

 
Figure 4.17.  CT bedload sediment rating curve comparison of 2004-2005 with 2008-2009.  There is no change in 
bedload transport. 
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Figure 4.18.  GB bedload sediment rating curve comparison of 2004-2005 with 2008-2009.  There is no change in 
bedload transport.  
 

4.3.3 Bed particle size distribution 

The channel at LY was altered in 2005 when a large tree fell and changed 

hydraulics in the channel.  This disturbed the cross section significantly and bed particle 

size distributions are not comparable between 2004 and later years.  No change is 

detected in size distribution between 2007, 2008, and 2009 (Figure 4.19).   
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Figure 4.19.  LY bed material size distribution 2007-2009.  No change is detected during this period.  LY was 
upstream of the 2003 debris flow and therefore not affected.   

 

At CT, bed fining occurs from 2004 to 2007, followed by coarsening in 2008 and 

2009, resulting in a bed grain-size distribution similar to 2004 (Figure 4.20).  This trend 

suggests there was a pulse of fine sediment deposited in 2007.  The removal of that 

material and subsequent coarsening suggest that bed armoring was occurring between 

2007 and 2009. 
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Figure 4.20.  CT bed material size distribution 2004 and 2007-2009.  Fining of the bed occurred in 2007, followed by 
coarsening in 2008 and no change in 2009. 
 

At GB, the 2005 bed particle distribution is bi-modal, with few clasts between 2 

and 16 mm in size (Figure 4.21).  The abundance of sand without small gravels suggests 

a backwater or other fine-sediment depositional zone with an otherwise coarse bed.  As 

at CT, the bed fined in 2007, then coarsened slightly in 2008, and further coarsened in 

2009.  In particular, the smallest particle sizes were removed from 2008 to 2009.  The 

general coarsening of the bed from 2007-2009 and the pronounced removal of the 

smallest fractions suggests bed armoring. 
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Figure 4.21.  GB bed material size distribution 2005 and 2007-2009.  Fining of the bed occurred in 2007, followed by 
coarsening in 2008 and 2009. 
 

4.3.4 Post-debris flow channel response 

No significant aggradation, degradation, or avulsion has occurred since 2003 

along the Colorado River (Figure 4.22).  Lulu Creek has undergone significant reworking, 

but the impacted area along the Colorado River has been stable.  The below-average 

runoff since 2003 and the reduced transport capacity from the diversion both likely limit 

channel migration.  Repeat photos show impressive reworking had already occurred by 

2004, with channelization, removal of large instream wood, and fining of bed-material 

grain sizes in the active channel (Figure 4.23).  Channel change is relatively minor after 

2004.  
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Figure 4.22.  Repeat surveys at cross section 5 (250 m downstream of CT) and cross section 3 (20 m upstream of 
GB), 2003 and 2007.  At cross section 5, 20-30 cm of aggradation occurred in the main channel.  At cross section 3, 
no net change was observed.   

 

 
Figure 4.23.  Repeat photos taken ~ 100 m downstream from CT in 2003, 2004, and 2008.  Photos show major 
reworking of bed material and removal of large instream wood occurred from 2003-2004.  After 2004, channel 
change is minor, with continued sorting of gravels.  This trend is consistent along the Colorado River.  Photos by 
Sara Rathburn 
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4.3.5 Channel-forming discharge 

 In 2009, Qbf was 1.7 m3/s at CT and 3.0 m3/s at GB (Table 4.4).  For both reaches, 

Qbf is ~10-25% less than estimates of Qeff and Q1.5.  The discrepancy between Qeff and 

Q1.5 is ~14% at CT and ~18% at GB.  This variation is considered to be well within the 

natural range of variation for relationships of Qbf, Qeff and Q1.5 [Williams, 1978; Andrews, 

1980; Emmett and Wolman, 2001].  The current channel configuration is therefore 

considered to be not only adapted to the post-debris-flow condition, but no evidence 

exists to suggest that present channel geometry is different than expectations of a 

completely recovered condition, suggesting that H1B describes the present condition of 

the upper Colorado River in the study area in that recovered processes and forms are 

present.   

Table 4.4.  Comparison of Qbf, Qeff and Q1.5 
Station Geomorphic 

bankfull 
(m3/s) 

Effective 
discharge- 
(m3/s) 

Recurrence 
interval 
(m3/s) 

Difference between Qbf 
and other estimates 

CT 1.7 2.2 1.9 11-23% 
GB 3.0 3.3 4.0 9-25% 

 

4.3.6 Total yield 

Bedload and suspended sediment transport rating curves were applied to stream 

gage records to create a continuous record of sediment transport.  The summed 

transport quantities are used to estimate the annual sediment budget (Table 4.5).  

Because the gages were not installed until June 25 in 2008 (after peak flow), the 

estimate for 2008 is significantly lower than the true quantity of transport.  The 2009 



92 
 

record captured almost the entire runoff period and is therefore expected to provide a 

reasonable estimate of total sediment transport.  An assumed sediment density of 2.65 

g/cm3 [Garde and Ranga Raju, 1985] was applied to the transport estimate, to provide 

an estimate of the volume of sediment transported.  The years 2008 and 2009 are 

slightly below average runoff years (Figure 4.4).  Sediment transport during those years 

is assumed to be similarly below average.   

Table 4.5.  Total load estimates 
Station Year 1 Bedload 

(kg) 
Suspended Load (kg) Total Load 

(kg) 
Total Volume 

(m3) 
LY 2008 571 2644 3215 1.2 
LY 2009 27487 15833 43320 16.4 
CT 2008 4825 6732 11557 4.4 
CT 2009 14629 19564 34194 12.9 
GB 2008 16252 16751 33003 12.5 
GB 2009 37296 39561 76857 29.0 
1)  2008 is June 25 to October 10 

2009 is May 2 to September 16 

 
The scenario presented as H1B is supported whereby sediment transport at CT 

and GB is not elevated relative to unaffected LY. The trajectory of recovery along the 

Colorado River at GB and CT indicates that a largely recovered channel form is present.  

The channel geometry of the Colorado River downstream from the confluence with Lulu 

Creek was stable from 2004-2009.  No significant changes in bed elevation or channel 

width have occurred.  However, the quasi-equilibrium suggested by stable channel 

geometry has not been tested by flows above bankfull.  It is unknown whether the 

channel is prone to major adjustment in the future due to available sediment from the 

2003 debris flow.  Sediment transport is not elevated, as demonstrated by the similarity 

in rating curves at GB and CT with the unimpacted reach at LY, the absence of available 
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fine sediment, and bed armoring indicated by pebble counts.  Effective discharge, 

bankfull discharge, and the 1.5-year discharge are all similar.   

4.4 Conclusion 

Results indicate that Grand Ditch operations play a considerable role in not only 

how much water is delivered to the Colorado River but also where.  Despite the 

potential instability caused by extreme fluctuations in stage, the post-2003 trajectory of 

natural channel recovery of geomorphic process seems to be rapid.  This suggests that 

the channel form and sediment transport processes were largely recovered by 2009, 

nearing conditions similar to LY, which has not received a debris flow in several decades.  

The present bankfull capacity is appropriate, not only to the current loads of flow and 

sediment (effective discharge capacity estimate), but also to long-term expectations 

(recurrence interval capacity estimate).  The bed shows signs of armoring, indicating fine 

material has been removed from the system.  Channel cross sections have been stable.  

This assessment of recovery suggests impacts to the Colorado River upstream of the 

Lulu City wetland are transient features.  Full geomorphic recovery time is understood 

to be less than the expected recurrence interval of disturbance.  Thus TFr < 1, indicating 

that stable channel forms will recover and persist.   

 

 The assessment of rapid recovery is limited, however, to in-channel physical 

forms and processes.  Impacts resulting from heightened sediment inputs and an 
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elevated disturbance regime may affect instream biologic processes, as well as riparian 

vegetation.  Debris-flow berms may prevent floodplain connectivity, and the reduced 

transport capacity due to the Grand Ditch diversion likely inhibits channel migration and 

reworking of the flood plain.  Those issues are beyond the scope of this project, but 

should be considered when assessing restoration opportunities.   

Ideally, restoration planning utilizes data and insights about the past and present 

to forecast for conditions of the future.  In the headwaters of the Colorado River, 

imminent change is expected due to the pine beetle kill now affecting lodgepole pine 

throughout the Rocky Mountains [Kegley and Safranyik, 2001].  Sediment yield and 

runoff may both change in the coming years as tree mortality changes hillslope 

conditions [Hélie et al., 2005].  Furthermore, climate change will likely alter hydrology 

and biogeochemical cycling regimes directly and may also lead to changes in vegetation, 

fire, and pest regimes that will in turn alter water and sediment delivery from the 

hillslopes.  High elevation areas may be particularly sensitive to pest invasion from 

warming temperatures [Logan et al., 2001; Williams and Liebhold, 2002].  A watershed-

scale approach is therefore mandated, as recreating specific channel forms in a 

transitional system is an unattainable and misguided aspiration [Williams et al., 1997; 

National Research Council, 1999; Wohl et al., 2005].    
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5. Opportunities for Restoration 

The purpose of this research was to investigate valley processes in the upper 

Colorado River watershed in order to provide a context for restoration.  My research 

objective was not to present restoration recommendations.  However, in the course of 

this work, a few points have been identified that may be useful for restoration planning.  

Whatever restoration measures are ultimately chosen, it is essential that physical and 

ecological goals be clearly established, comprehensive monitoring be conducted, and 

ongoing restoration measures be implemented accordingly to increase efficacy.  

Monitoring is especially critical in this restoration project because the ongoing presence 

of the Grand Ditch highlights the possibility that future impacts may one day require 

restoration.  Whatever restoration insights can be discovered through this project will 

likely be useful in the future management of the area. 

5.1 Lulu City wetland 

The GPR surveys and soil pits in the west side of the wetland identified organic 

soils 1-2 m below the present ground surface.  Mechanical excavation down to this 

surface would provide a soil conducive to vegetative restoration and may in fact still 

contain viable seeds of historically present wetland species.  Removal of the ~80,000 m3 

of coarse deposits over the organic soils in the west side of the wetland is one 

opportunity to recover ground-water levels on the west side of the wetland.  Similarly, 
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microhabitats from variation in soil properties and hyporheic connectivity to the main 

channel were likely present prior to the 2003 debris flow, and might be restored via 

surface excavation.  However, by recognizing that the wetland is in a state of 

longitudinal and cross-sectional topographic balance, it is understood that excavation on 

the west side of the valley will likely disconnect the east side of the valley from 

overbank processes, and may serve to lower groundwater levels on the east side by 

creating a groundwater drainage pathway towards the excavated topographic low.  

Because the west side of the wetland is a zone of active deposition, the excavated 

topographic low will be expected to aggrade, achieving an eventual re-balancing with 

the east side.  However, based on the calculated sediment yields from the past two 

years, in the absence of debris-flow inputs, a timespan of centuries to millennia is 

needed to transport 80,000 m3 of sediment into the wetland.  Furthermore, wetlands 

and peatlands along the Colorado River valley are already vulnerable due to decreased 

groundwater levels due to the Grand Ditch diversion [Woods, 2000].  A thorough 

investigation of potential impacts to the east side of the wetland should be conducted 

before considering excavation of sediments on the west side of the valley.   

An alternate recommendation would be to leave the coarse deposits and 

encourage overbank and in-channel fine-sediment deposition in order to maintain 

lateral connectivity with the east side of the wetland and restore hospitable conditions 

on the west side.  In-channel and overbank sediment trapping could be accomplished 

through the construction of artificial beaver dams.  Beaver dams historically played a 

critical role in mountain rivers for physical processes such as encouraging overbank 
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flooding, as well as groundwater hydrologic controls including maintaining an elevated 

and more stable water table [Westbrook et al., 2006].  These processes may be initiated 

through artificial beaver dam construction in order to restore the processes that sustain 

the riparian vegetation needed by the beaver [Pollock et al., 2007].  Encouraging in-

channel aggradation and overbank deposition through beaver dams (constructed or 

natural) accomplishes the dual goals of lateral connectivity and soil restoration [Beechie 

et al., 2007].  Artificial beaver dams have been constructed in Benewah Creek, Idaho 

[Devries et al., 2009] as a precursor to beaver re-introduction.  Other artificial beaver 

dam construction projects have been implemented to restore physical processes such as 

hyporheic exchange [Lautz et al., 2005].   

5.2 Colorado River between Lulu Creek and the Lulu City wetland 

The results from repeat cross-sectional surveys and sediment sampling suggest 

that no restoration is necessary to restore physical forms and processes in the Colorado 

River.  However, connectivity to the flood plain to sustain riparian vegetation may 

require the removal of sediment deposits in selected locations.  Also, the stability that 

has characterized the post-2003 channel should continue to be monitored, especially in 

the event of overbank flows.  Furthermore, if coarse sediments are excavated from the 

wetland, the resulting base-level change may potentially destabilize the upstream 

channel.  Grade control or other channel stabilizing measures may then be warranted.      
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Appendix A

Historic Aerial Photos



Channel

The 1937 image shows  a single-thread meandering channel through most of the wetland.   Active 
deposition and minor braiding is visible at the head of the wetland.    One beaver pond is visible, though 
more may be present and not apparent due to low resolution of the photo.

Beaver pond
Deposition

August 19, 1937
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The 1953 image shows  extensive deposition in the northwest corner of the wetland.   Except in 
segments where the 1937 channel is still intact, there is no main channel.   A second beaver pond is 
visible, though more may have been present but not visible due to low resolution.

Channel
Beaver pond
Deposition

Day unknown, 1953
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The 1969 image shows  moderate deposition in the form of either debris flow or splay deposits.   A 
poorly defined channel is present in the northern wetland, though now on the west side of the valley.   
In addition to previously identified ponds, three more are visible.

Channel
Beaver pond

Deposition

September 27, 1969

112



Beaver pond

Deposition

The 1987 image shows  minor deposition in the form of either debris flow or splay deposits.   The 1969 
channel is generally unchanged, though poorly defined.  Previously identified beaver ponds are still 
present.  A few conifer trees are green and visible, in northern and western portions of the wetland.

Channel

September 1, 1987
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Channel
Beaver pond

Deposition

The 2001 image shows  minor splay deposition.   Channel position is generally unchanged, though there is 
no dominant channel.  Previously identified beaver ponds are still present.  Conifer trees are green and 
visible in areas of previous deposition on the west side of the wetland.

September 25, 2001
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Channel
Beaver pond

Deposition

The 2004 image shows  deposition from the 2003 debris flow.   Channel position is generally unchanged, 
though there is  no well defined channel.  Previously identified beaver ponds are still present. 

November 5, 2004

115



Channel
Beaver pond

The 2009 image shows  additional reworking of the 2003 debris flow sediment.   Channel position is 
generally unchanged, with no well defined channel, although some migration towards the center of the 
valley is occurring.  Previously identified beaver ponds are still present. 

September 10, 2009
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Appendix B

Sediment Descriptions
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Appendix C

Ground Penetrating Radar 

Transects
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