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ABSTRACT 

 

 

 

LONGITUDINAL ANALYSIS OF CYTOKINE PROFILES DURING PRION INFECTION 

 

 

 

Prion diseases, or transmissible spongiform encephalopathies (TSEs), are invariably fatal, 

typically species-specific neurodegenerative disorders affecting a number of mammalian species, 

including felids, caprids, cervids, mustelids, and humans. Propagated by a misfolded cellular 

protein that is ubiquitously expressed among all mammals, prion diseases are unique in that the 

infectious agent lacks nucleic acid and is able to persist in the environment for many years, 

maintaining infectivity through multiple routes of transmission. The role of the immune system 

during the acute and chronic phases of TSE infection is not well understood and is complicated by 

the fact that the infectious prion protein (PrPSc) shares the same primary structure as the normal 

cellular PrP protein (PrPC). Neuropathological lesions associated with prion disease have no 

apparent inflammatory infiltrate, although extensive gliosis and neuronal loss are hallmark 

observations. Additionally, the adaptive immune response does not appear to recognize PrPSc 

prions as foreign due to primary biochemical structure homology with PrPC. However, a number 

of recent findings have revealed a strong association between PrP and the immune system.  

 

While the physiological function of PrPC remains unclear, it has been shown to play a role in 

binding and transporting copper, and it also provides neuroprotection by inhibiting pro-apoptotic 

pathways. PrPC is most abundant in the central nervous system (CNS), with the second highest 

level of expression on the surface of various immune cells, including follicular dendritic cells 

(FDCs) and B cells. Expression of PrPC in the lymphoreticular system (LRS) has been linked to 
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PrPSc trafficking and replication in the periphery, perhaps by sequestering PrPSc-containing 

aggregates on the surface of immune cells and perpetuating the conversion of PrPC into the 

pathogenic form. Fibril depositions accumulate in the brain later in the course of disease and 

correspond to astrogliosis in affected neuronal tissue, implicating CNS immune involvement. 

Central nervous system immune responses likely play a role in prion neurodegenerative disease, 

potentially by contributing to neuronal cell death and spongiosis, or by initiating neuroprotective 

mechanisms.  

 

Identifying cytokines present throughout prion disease pathogenesis will help determine if 

immunopathology is initiated and may tease out other information about PrP-expressing immune 

cells and cytokine expression levels. In a pilot study, cytokine profiles were measured 

longitudinally in transgenic mice infected with prions as compared to control animals inoculated 

with normal brain homogenate (NBH). Serum cytokine levels were measured in cervidPrP-

expressing mice infected with chronic wasting disease (CWD) prions and control mice inoculated 

with NBH using the BioPlex suspension array system. We analyzed IL-1β, TNF-α, IFN-γ, GM-

CSF, IL-2, IL-6, IL-10, IL-4, and IL-5 at baseline levels, day one post-inoculation, and at two-

week intervals through terminal disease (data not shown). At the time of sacrifice, mouse serum 

and brain homogenate cytokine levels were also analyzed. As a distinct continuation of this study, 

TgA20 mice over-expressing murine PrPC 4- to 10-fold were infected with Rocky Mountain 

Laboratories (RML) mouse-adapted prions and serum cytokines analyzed in a similar longitudinal 

fashion. Additional sacrifices were made at 40, 60, and 80 days post-inoculation for cross-sectional 

comparison of cytokine profiles present in brain homogenate, where prion-induced lesions are 

most concentrated. We aimed to account for age- and sex-related cytokine variations, and, in 
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addition to the cytokines listed above, IL-12p70, IL-13, and IL-18 were also analyzed. This study 

represents the first longitudinal experiment analyzing systemic and neuro-inflammation in the 

same prion-infected animals throughout their entire disease course.  

 

Based on literature from other protein-misfolding diseases, we hypothesized a small increase in 

serum pro-inflammatory cytokines, specifically IL-1β, IL-6, IL-13, IL-18, TNF-α, and IFN-γ, 

present at 1 day post-inoculation (dpi), immediately following neuroinvasion around roughly 

60dpi, and prior to terminal disease. As with any inflammatory response, we anticipated a counter-

immune response through activation of immune regulatory pathways, represented by expression 

of the anti-inflammatory cytokine IL-10. Eventually, near terminal disease, severe 

neurodegeneration and chronic gliosis would exhaust central immune responses and presumptively 

cause any existing neuroprotective pathways to shut down. This loss of a chronic inflammatory 

state in the brain was projected to be represented by a decrease in—or absence of—pro- and anti-

inflammatory cytokines. 

 

Oxidative stress from a chronic pro-inflammatory state has been identified in a number of 

neurodegenerative diseases as a mechanism leading to neuronal vacuolation and apoptosis, but 

remains to be distinctly identified in prion disease models and is complicated by propagation of 

PrPSc in the LRS prior to neuroinvasion. The aims of the current study are to unveil significant 

pro- and anti-inflammatory responses as represented by cytokine profiles in the brain and periphery 

throughout the course of disease following intraperitoneal (IP) inoculation in a murine scrapie 

animal model.   
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Our findings show IL-2 and IL-5 had the most significant and consistent expression throughout 

the disease course. As both treatment groups were affected similarly, cytokine data is suggested to 

reflect over-expression of PrPC in TgA20 mice or relate to transgene insertion of Prnp gene copies 

within the transgenic model. Intermittent cytokine spikes among individual and grouped animals 

from both treatment groups were observed occasionally throughout the range of time points that 

were sampled and correlate to non-specific transient inflammatory responses unrelated to prion 

infection. Cross-sectional analysis of cytokines in brain homogenate showed a profile distinct of 

that observed in the periphery, with a single male RML-infected mouse showing a pro-

inflammatory response comparable to LPS-induced controls.  

 

The observed cytokine profiles provide insight into the alterations of immune cellular pathways 

resulting from PrPC overexpression and reinforce the physiologic role of PrP in T lymphocyte 

activation and subsequent B lymphocyte activation by T helper subsets. The role of mononuclear 

cell involvement was investigated through quantitation of MCP-1 via ELISA, and revealed 

expression levels well below LPS-induced controls in mouse serum but significantly increased 

expression levels in pooled brain homogenate of RML-male TgA20s. Unexpected cytokine profile 

expression, taken together with the survival curve and neuropathology from this study, reveal 

unique relationships and patterns of PrPC in the immune system and prion disease progression to 

terminal disease.  

 

Our findings support those of others, such as the involvement of cofilin-actin rods disrupting 

neuronal transport and contributing to synaptic loss prior to neuronal vacuolation and cell death. 
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Amyloid fibrils participate in interactions with PrPC to induce neuroinflammation via NOX 

activity. Similarly, Aβ and pro-inflammatory cytokines signal through similar, PrPC-dependent 

pathways to form axonal rods and contribute to synaptic loss. Additionally, metal cations (Cu, Mn, 

Mg, Fe) with unknown implications in prion pathogenesis were investigated in cervidized mice to 

determine their role in cervid disease progression. These results show that increased [Cu] resulted 

in decreased survival times and confirmed alterations in pro-inflammatory gene mRNA transcripts 

as well as protein expression in these same mice, further reinforcing the involvement of the 

immune system in neurodegenerative diseases.   
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CHAPTER 1: 

 

 

 

Introduction 

 

 

Prion diseases are described as invariably fatal neurodegenerative disorders caused by 

disseminated deposition of misfolded protein plaques throughout the central nervous system 

(CNS), resulting in vacuolation and eventually neuronal loss. Once believed to be a chronic 

infection induced by a slow virus, overwhelming evidence indicates infectious agent, PrPSc, is a 

misfolded version of the cellular prion protein (PrPC), lacking informative genetic material while 

retaining transmissibility (Prusiner, 1982). This “protein-only” hypothesis paved the way for 

research on transmissible spongiform encephalopathies (TSE) and led to the coined term “prion.” 

 

Scrapie was first described in 1732 and is the oldest known prion disease affecting captive sheep 

and goats. While scrapie is classified as a naturally occurring prion disease, Kuru and Bovine 

Spongiform Encephalopthy (BSE, aka mad cow disease) occur “unnaturally” as a result of 

ritualistic cannibalism and consumption of prion-contaminated bone meal product, respectively. 

Other factors tie into the infectivity of prions, with evidence of sporadic disease (Hsiao et al., 

1989), genetic susceptibilities (Hsiao et al., 1989; Collinge, 1997), and important biochemical 

properties of the prion protein itself (Rogers et al., 1993; Silveira et al., 2005). 

 

The exact structure of PrPSc and how it causes neurotoxicity is not known, however, once 

misfolded it has the ability to convert cellular, alpha-helical PrPC into the infectious, beta-pleated 

form which contains a resilient protease-resistant core (McKinley, Bolton, & Prusiner, 1983). 

PrPSc oligomers and fibrils persist in the environment for extremely long periods of time due to 
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their resistance to high temperatures, ultraviolet irradiation, proteinase K degradation, as well as 

other decontamination methods and denaturing conditions commonly used against bacteria and 

viruses (Prusiner, 1982, Weissmann et al., 1996). This begs the questions of how a protein that is 

ubiquitously expressed among all mammalian species: 1. Misfolds to become infectious? 2. Causes 

irreversible, chronic neurodegenerative disease? 3. Gains resistance to common decontamination 

practices? 4. Achieves strain properties among certain like-species, while other species appear to 

be resistant to infection? 5. Accomplishes all of this without eliciting a response from the body’s 

primary defenses—the immune system?       

 

Humans suffer from a number of distinct prion diseases including Creutzfeldt-Jakob Disease 

(CJD), Gerstmann-Straussler-Scheinker (GSS) syndrome, and fatal familial insomnia (FFI) - all 

of which can be inherited through extremely rare, autosomal dominant mutations of the Prnp gene 

encoding PrPC (Doh-ura et al., 1989; Goldfarb et al., 1991; Hsiao et al., 1989; Hsiao et al., 1990a/b; 

Owen, 1989), or can arise sporadically (Palmer et al., 1991). In addition, variant CJD (vCJD) is a 

new CJD-like syndrome that appears to be linked to consumption of prion-contaminated meat 

distributed from the UK following the emergence of bovine spongiform encephalopathy in the 

early 1990s (Aguzzi & Weissmann, 1996b; Bruce et al., 1997; Chazot et al., 1996; Collinge et al., 

1996; Hill et al., 1997a). Clinical presentation of certain human prion diseases can be strikingly 

similar to other human neurodegenerative disorders, but differences in the time to terminal disease 

and lesion profiles within the CNS typically sets them apart (Aguzzi & Weissmann, 1996b; 

Lasmezas et al., 1996). Despite this, and without a reliable ante-mortem diagnostic assay, it is 

estimated that a large number of prion-infected people are misdiagnosed as having frontotemporal 

dementia or Alzheimer’s Disease (AD), creating a legitimate public health concern (Doran & 
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Larner, 2004; Roberson et al., 2005; Tsivgoulis et al., 2014). Confirmed cases of prion diseases 

being acquired iatrogenically or from sub-clinically infected blood and tissue (dura graft) donors 

(Houston et al., 2000; Kobayashi et al., 2015; Llewelyn et al., 2004) add to this concern.  

 

Chronic wasting disease (CWD) is a prion disease affecting wild and captive populations of deer, 

elk, and moose in North America, Canada, and, as of 2001, South Korea. Classified as the only 

naturally-occurring prion disease of free-ranging animals, CWD was first described just 48 years 

ago, and the origin remains unclear. Multiple hypotheses exist to explain the sudden appearance 

of CWD - the most plausible involves horizontal or environmental transmission from scrapie-

infected sheep housed at an outdoor facility in Fort Collins, CO, in 1967, where it was first reported 

by Colorado Parks and Wildlife. However, scrapie was first described in 1732, and without nucleic 

acid or any previous evidence of prions crossing a species barrier, the emergence of CWD still 

eludes us. Little evidence exists supporting the hypothesis that consumption of CWD-infected 

meat puts humans at risk of developing prion disease. Although, the spike of vCJD cases in the 

UK, presumptively from the BSE outbreak, suggests that we exercise caution.  

 

Bovine Spongiform Encephalopathy (BSE) tells a different story than CWD.  Prions from BSE-

infected animals have crossed multiple species barriers, including humans, felines, and ungulates. 

It is unknown how BSE prions gained the ability to cross multiple species barriers, and, while all 

potential vCJD cases cannot definitively be traced back to the BSE outbreak in the UK, evidence 

strongly suggests a correlation (Aguzzi and Weissmann, 1996b, Bruce et al., 1997; Collinge et al., 

1996; Ziedler et al., 1997). In order to understand the phenomena being observed with BSE, we 
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must gain a stronger understanding for the physiological role of PrPC and how it behaves once 

converted to PrPSc.  

 

The cellular prion protein is a 36 kDa glycoprotein that is rich in alpha helices and linked to the 

cellular membrane through a glycophosphatidylinositol (GPI) anchor (Stahl et al., 1992). The 

primary protein consists of roughly 200 amino acids - give or take for different species – with a 

structured C-terminal domain and a non-structured N-terminal domain (AA 23-120). One of three 

glycosylation sites is present on the N-terminus, as well as an octapeptide repeat region and two 

histidines which bind copper with high affinity (Brown et al., 1997a). The protein’s GPI anchor 

and remaining glycosylation sites compose the C-terminal domain, in addition to a single disulfide 

bond connecting helices two and three. Cellular PrP is typically concentrated to lipid rafts of the 

plasma membrane and has a number of proposed, redundant functions, due to the fact that PrP 

knockout (PrP0/0) mice do not exhibit any overt dysfunctions and live relatively normal lives 

(Bueler, 1992; Bueler, 1993 Hsiao et al., 1989). 

 

Interestingly, PrPC itself appears to be an essential factor for fatal prion infection, ultimately 

elicited by PrPSc (Bueler et al., 1993). PrP0/0 mice inoculated with prions are completely resistant 

to prion-induced neurodegeneration but may display altered behavior or physiology (Bueler et al., 

1993; Prusiner et al., 1993; Tobler et al., 1996). Mouse models where PrPC is anchorless (i.e. 

lacking the GPI-portion of PrP) rather than attached to the cell membrane show a decreased 

infectivity of PrPSc, as well as distinct, minimal clinical disease, more similar to that of AD than 

scrapie (Chesebro et al., 2005). This suggests that PrPC being “used up” by autoconversion to PrPSc 

is not sufficient enough to cause disease (i.e. loss of function of PrPC alone cannot account for 
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prion neurodegeneration). If animal models can live relatively normal lives without expression of 

PrP in its normal form, then it suffices to say that formation of PrPSc must induce pathologic 

alterations to result in terminal disease. Since both forms of the prion protein are required (Bueler 

et al., 1993), however, it implies that PrPC-PrPSc interaction initiates an intracellular signal through 

GPI-linked PrPC, inducing neurotoxicity (Chesebro et al., 2005; Mallucci et al., 2003).  

 

Interestingly, new paradigms of prion formation have been found in mammalian innate immune 

systems. Analogs of PrPC that display conformational changes and reversible fibril formation have 

been found to be crucial cytoprotective immune mechanisms (Hou et al., 2011). Viral infection of 

murine cells activates RIG-I-like pathways, which, in turn activate mitochondrial antiviral 

signaling proteins (MAVS) to fibrilize like prions and causes activation of the transcription factors 

IRF-3 and NFκB. Type I interferons are then produced in order to establish an antiviral state. One 

can see how reversible fibril formation—with similar structure to prion fibrils—as an essential 

factor for important antiviral immune pathways, is an incredibly valuable finding. It has since been 

proposed that PrPC may be cytoprotective under stress (Flechsig and Weissmann, 2004; Roucou 

and LeBlanc, 2005; Westergard et al., 2007) as seen in other prion models, and a physiological 

change in the fibril somehow makes fibril formation irreversible, and, over time, failure to clear 

these structures becomes pathogenic.  

 

PrPC is translated from Prnp gene transcripts, some polymorphisms of which are linked to a variety 

of inherited human prion disorders, as mentioned above. The prion protein proceeds through the 

endoplasmic reticulum and Golgi apparatus for post-translational modifications and glycosylation 

before being transported to the cell surface. Once there, it is thought that PrPC plays a role in cell 
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adhesion, cell signaling, and/or binding copper in a pH dependent manner to cause PrPC 

internalization into the cell (Kiachopoulos et al., 2004; Pauly & Harris, 1998; Perera & Hooper, 

2001). While it is known in other neurodegenerative diseases such as AD, PD, and ALS that the 

cellular toxicity is mediated by oxidative stress in apoptotic pathways, the cellular mechanisms 

underlying neurotoxic prion diseases are less clearly defined (Giese et al., 1995; Williams et al., 

1997). 

 

If PrPC  PrPSc conversion is causing oxidative stress or activating certain cellular pathways to 

cause neurotoxicity, analyzing cell signaling molecules such as pro- and anti-inflammatory 

cytokines may reveal clues about the pathological processes taking place and the cellular players 

involved. Indeed, neuropathological lesions associated with prion disease do not recruit immune 

cells, as shown by a complete lack of inflammatory infiltrate near PrPSc deposits or spongiform 

lesions (Aucouturier et al., 2000; Berg, 1994). Additionally, prions do not appear to induce an 

adaptive antibody response, possibly due to the identical primary amino acid sequence of PrPC and 

PrPSc (Porter, Porter, & Cox, 1973). Instead, once in the brain, prions hide undetected, silently 

disturbing neuronal homeostasis until PrPSc deposition and neuronal vacuolation become apparent 

histologically along with extensive astrogliosis and microgliosis. Eventually, synaptic loss and 

spongiosis is so great that clinical symptoms arise and disease progresses uninhibited to complete 

paralysis and/or multi-organ shutdown.  

 

But what is happening during these long incubation periods, prior to neuroinvasion? How do prions 

enter the body, make their way to the brain, and what takes them so long to do so? Multiple routes 

of transmission have been proposed for acquired prion diseases, including horizontal transmission 
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via contact/ingestion of contaminated bodily fluids, environmental transmission via ingestion or 

inhalation of prion-contaminated fomites (soil, water, etc.), and transfusion or transplantation of 

blood and/or various medical devices. The potential of vertical transmission is currently being 

investigated. Once ingested, prions are found in tonsils (Hill et al., 1997), survive the acidic 

environment of the stomach, and proceed to the small intestine, where they are sampled by M cells 

and taken up into mucosal associated lymphoid tissues, such as the Peyer’s patches (Donaldson et 

al., 2012). This process is expedited in the presence of inflammation/epithelial damage (Sigurdson 

et al., 2009).  Conversely, prions have also been shown to efficiently transmit disease via intranasal 

inoculation with shorter incubation times, possibly by entering the olfactory epithelium and 

bypassing peripheral replication (DeJoia et al., 2006; Kincaid & Bartz, 2007).  

 

Surprisingly, the hallmark neuropathological profile seen in prion disease is not observed in the 

periphery. Prion diseases are characterized by species tropism, pathological profiles in the brain, 

clinical presentation, and time course of disease, but that doesn’t mean that infectious PrPSc 

deposits are exclusively neurotropic. Following central or peripheral inoculation, in the end-stages 

of disease PrPSc depositions are found in many areas throughout the body with no apparent 

pathological changes in the parenchyma of peripheral organs. Numerous secondary lymphoid 

organs, muscle tissue, and other areas of chronic inflammation are shown to have high titers of 

PrPSc at terminal disease (Heikenwalder et al., 2005), but with no interruption of the physiological 

function of that organ (Fraser et al., 1996). Only when PrPSc contacts a GPI-anchored, PrPC-

expressing cell within the central nervous system is the result pathologic (Baldwin et al., 1992; 

Brown, Schmidt, & Kretzschmar, 1995; Gellman & Gibson, 1996). If we understand which cells 

are harboring, transporting, and aiding replication of prions in the periphery during the 
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months/years of incubation period, we could potentially intervene prior to neuroinvasion and stop 

the progression of disease.  

 

Involvement of the LRS during prion disease is intriguing because of an apparent failure to induce 

an inflammatory or adaptive immune response yet clear association with PrP, suggesting a role in 

sequestration, replication, and/or transport of the prion protein. Prion replication in peripheral 

lymphoid tissues prior to neuroinvasion is a key component in a number of prion diseases, 

including scrapie (Fraser et al., 1996), CWD, vCJD, and BSE. By looking closely at the cellular 

signals present throughout prion infection, we hope to tease out more information about which 

cells are involved and how/or when certain events related to prion propagation and neuroinvasion 

are taking place. The normal linear progression of activation of the immune system in response to 

pathogen-associated molecular patterns involves positive feedback mechanisms and cell-specific 

signaling pathways for initial stimulation and continued activation. It is no wonder then, that 

immune components and cellular players involved in prion disease pathogenesis also display a 

certain degree of cellular interdependence, with monocytes and dendritic cells bridging the gap 

between innate and adaptive immunity.  

 

A number of these immune cell types have already been identified, and not surprisingly they 

involve a variety of immune cells which express PrPC at levels second highest to the CNS 

(Cashman et al., 1990; DeArmond et al., 1986). Amongst these are B lymphocytes, T lymphocytes, 

natural killer (NK) cells, platelets, erythrocytes, monocytes, dendritic cells (DCs), and, most 

importantly, follicular dendritic cells (FDCs) (Cashman et al., 1990; Clarke & Kimberlin, 1984; 

Dodelet & Cashman, 1998; Fraser & Farquhar, 1987). Dürig et al. (2000) further characterized 
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PrPC expression patterns on peripheral cells in circulation and discovered similar expression levels 

among T lymphocytes, NK cells, and monocytes, while B cells displayed significantly lower levels 

of PrPC, contrasting the findings of Cashman et al. (1990).  

 

The complement cascade has also been verified in prion and AD pathogenesis, shown by direct 

binding of C3, C1q, and Factor H to abnormal prion protein (Blanquet-Grossard et al., 2005; 

Mitchell et al., 2007; Sim et al., 2007) and amyloid (Jiang et al., 1994). Accelerated peripheral 

prion pathogenesis is correlated with complement factors C3, C1q, and CD21/CD35 receptors on 

the surface of FDCs (Aucouturier, 2001; Beringue et al., 2000; Zabel et al., 2007), and inhibition 

of neuroinvasion was observed following low-dose prion inoculation into C1q- and/or Bf/C2-KO 

mice (Klein et al., 2001). Previous researchers within our lab also demonstrated that CD21/CD35-

/- mice do not develop terminal disease (Michel et a., 2012) and C3 expression in murine CWD 

models accelerates disease (Michel et al., 2013).   

 

It is well known that FDCs play a key role in peripheral prion propagation (Brown et al., 1999; 

Fraser & Farquhar 1987; Montrasio et al., 2000), however, DCs, monocytes, and macrophages 

show conflicting results (Aucouturier et al., 2001; Beringue et al., 2000; Beringue et al., 2002; 

Wathne & Mabbott, 2012). Indeed, PrPC expression on myeloid cells is important for their 

maturation, and PrP-/- models display compromised stimulation of T cells by DCs (Ballerini et al., 

2006; Dürig et al., 2000).     

 

Evaluation of prion disease progression during the time between inoculation and terminal stages 

of disease has largely been neglected. This is partly due to the exceptionally long incubation 
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periods observed in chronic neurodegenerative diseases and is exacerbated by the fact that prion 

protein species barriers have limited the development of animal models. Various experimental 

methods have now been established to overcome these issues, such as transgenic rodent models 

over-expressing the prion protein, mouse-adapted scrapie prion strains, cervidized mice, and 

alternative routes of inoculation (i.e. intracerebral, or IC) which expedite disease progression. 

Different prion disease strains, animal models, and routes of inoculation all result in variable 

clinical and pathological prion disease manifestations. While one experimental model might not 

necessarily be better than another, certain disease models are preferable in studies of prion 

pathogenesis and immune involvement.  

 

A few investigators have looked at cytokine and chemokine gene transcript levels during prion 

infection through RT-PCR, and found these results to be non-representative of the actual functional 

protein levels being translated. The majority of experimental models investigating prion 

immunopathogenesis choose to employ IC inoculation, as opposed to peripheral routes. While this 

may reduce incubation period, IC inoculation bypasses peripheral lymphotropic prion replication 

and induces a level of traumatic injury to the brain which is undesirable when analyzing immune 

cellular pathways.  An ideal—but unrealistic—model would closely resemble the natural host and 

natural route of inoculation, express a normal level of prion protein and have an intact immune 

cell phenotype, but have a reasonable incubation period and retain pathologic lesions characteristic 

of that particular prion disease/strain. For this study, a mouse-adapted scrapie inoculum (RML) 

was injected intraperitoneally (IP) in TgA20 mice overexpressing the murine prion protein 4- to 

10-fold (Chandler, 1961; Fischer et al., 1996). This transgenic model and inoculum combo have 



11 

 

been used in prion research by other groups also investigating prion immunopathogenesis, making 

for more relevant data comparison.  

 

In order to analyze functional protein levels of immune cell signaling molecules, we chose to 

employ the BioPlex suspension array system to quantitate serum cytokine levels. This relatively 

new multiplex immunoassay combines the sample preparation of an ELISA with the technology 

of flow cytometry for sensitive measurement of multiple analytes from a single, minute sample 

size (~25µl). Magnetic beads conjugated to antibody specific for different analytes (via kits from 

eBioscience) are distinctly colored using ratios of internal red and infrared dyes, allowing the 

BioPlex machine to differentiate between analytes (Figure 1). An antibody mixture is incubated 

with a small sample of serum and cytokine levels are determined using a secondary biotinylated 

detection antibody (Figure 2). A streptavidin-PE reporter dye is excited by lasers and quantitated 

based on the standard curve generated. This assay allows for the measurement of multiple 

cytokines from a small sample size, and, for our study, was easily optimized for analysis of mouse 

brain homogenate supernatant as well. The variety of eBioscience magnetic bead kits also provided 

a somewhat customized cytokine array, with a comprehensive Th1/Th2 cytokine 11-plex kit 

combined with an IL-10 simplex kit to include anti-inflammatory responses.  
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Figure 1 (a-c): BioPlex Suspension Array System-Beads 
Magnetic beads are impregnated with different ratios of red and infrared dyes, making them 

distinctly recognizable by the red classification laser (a & b). Bead region ratios are assigned to a 

particular analyte depending on the detection antibody conjugated to that bead and entered into the 

BioPlex machine. Sample is incubated with a customized bead mixture, similar to an ELISA (c).   

 

Figure 2: BioPlex Suspension Array Overview 
Samples are prepared similar to an ELISA, except detection antibodies are conjugated to magnetic 

beads rather than the plate bottom to allow for multiple analyte detection from a single sample. 

Flow Cytometry is then used to quantitate protein expression through detection of biotinylated 

antibody with streptavidin-PE.  

 

 

Specifically, we wanted to investigate the presence of inflammatory mediators and regulators that 

may play a role in prion pathogenesis, including certain analytes (IL-1B, IL-6, TNF-a) which have 

been previously reported in the literature for playing a role in neurodegeneration or 

neuroprotection (Blum-Degena et al., 1995; Campbell et al., 1994; Lindholm et al., 1987; Mogi et 
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al., 1994, Mogi et al., 1996; Tribouillard-Tanvier et al., 2009). Cytokines not only play a role in 

cell signaling and recruitment, but also function in cell proliferation and differentiation. In the 

periphery, the LRS and complement are known to play a role in prion pathogenesis through 

propagation of PrPSc, however, immune responses within the CNS, are much more tightly 

regulated for the obvious reason of limited space to accommodate inflammatory cells. The blood-

brain-barrier (BBB) and additional regulatory mechanisms may cause immune responses in the 

periphery to vary greatly from what is observed in the CNS, therefore separate analysis of these 

immune responses is necessary.  

 

Histopathological findings associated with scrapie infection include spongiosis, neuronal and 

neuropil vacuolation, PrPres, gliosis (Fraser et al., 1988; Jendroska et al., 1991), as well as synaptic 

loss (Budka, 2003). A lack of inflammatory infiltrate of peripheral immune cells during TSE 

infection make studying central immune responses important. Astrocytes and microglia make up 

the two most important cell types contributing to neuroinflammation, as they are stimulated to 

undergo proliferation early on during prion disease (Betmouni, Perry, & Gordon, 1996; Block, 

Zecca & Hong, 2007; Campbell et al., 1994; DeArmond, Kristensson, & Bowler, 1992; Giese et 

al., 1998; Williams et al., 1994; Williams et al, 1997), and both cell types have been shown to 

produce cytokines and have an impact on neuronal survivability (Williams et al., 1994; Kim et al., 

1999; Campbell et al., 1994).   

 

NF-κB is a ubiquitously expressed transcription factor shown to be involved in a number of 

inflammatory processes and stimulated by many different ligands. Within the CNS, these include 

TNF-α, Fas ligand, nerve growth factor (NGF), and secreted amyloid-β (Aβ) precursor protein, 
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resulting in neurotoxic, neuroprotective, and anti-apoptotic effects depending on the stimulus and 

cell type (Mattson & Camandola, 2001). Its involvement in neurodegenerative disorders has been 

studied extensively, and also linked with prion disease pathogenesis (Bacot et al., 2003; Fabrizi et 

al., 2001; Zhou et al., 2008). Stimulation of NF-κB through PrPC-dependent signaling pathways 

and by PrP106-126 has been shown to upregulate pro-inflammatory cytokine gene expression and 

inducible nitric oxide synthase (iNOS) (Lu et al., 2012; Sonati et al., 2013). iNOS is involved in 

immunity acting as a catalyst in the formation of reactive oxygen (ROS) and nitrogen intermediate 

species, such as nitric oxide (NO), through reaction with NADPH oxidase (Barth et al., 2009).  

 

This study represents the first and only to assess cytokine profiles in the serum of the same prion-

infected mice from baseline levels, chronically throughout the delayed onset of disease following 

IP inoculation, until terminal morbidity score warrants euthanasia. Additional sacrifices were made 

at time points leading up to terminal disease (40, 60, and 80dpi) for cross-sectional comparison of 

cytokine profiles present in the brain homogenate of mice prior to prion neuroinvasion (40dpi), 

and afterwards (60dpi—based on previous observations), and were compared with cytokines 

present in brain homogenate of terminally-ill mice.   
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Methods 

 

 

Bioassay: 

 

 

Mice:  

TgA20 mice (n=31) overexpressing murine PrPC 4- to 10-fold over wild type were genotyped by 

H. Bender and housed at Colorado State University Laboratory Animal Resources (LAR) facility. 

Animals were inoculated IP with 1% brain homogenate of either normal brain homogenate (NBH) 

or Rocky Mountain Laboratories (RML) mouse-adapted scrapie prions, with 1% pen strep in 

sucrose solution. Due to colony breeding problems, mice from this study were inoculated in two 

separate groups but followed identical study design and sample collection procedures. Mice were 

euthanized at 40 (n=6), 60 (n=6), or 80 (n=7) days post inoculation, or once terminal disease was 

apparent (n=12) for cross-sectional brain homogenate cytokine analysis (Figure 3). Morbidity 

scoring was used for impaired extensor reflex, tail rigidity, akinesia, tremors, ataxia, and weight 

loss, with the presence of any three of these symptoms indicating terminal illness.  

 

 
 

Figure 3: Timeline of Longitudinal Cytokine Study 
Schematic of longitudinal cytokine study showing the overall timeline of events as well as the 

numbers of mice starting out and ending the study. Photos show actual IP inoculation of TgA20 
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mice as well as tail bleeding set-up. Additional sacrifices were made at 40, 60, and 80dpi, shown 

by a small brain picture overlapping tail-bleed photos to represent cross-sectional brain 

homogenate cytokine analysis. Mice that were carried out to terminal disease were analyzed for 

serum and brain homogenate cytokine levels as well.  

 

 

Euthanasia and Tissue Harvest:  

At the time of sacrifice, CO2 euthanasia was carried out and the following tissues were harvested 

and immediately frozen at -80°C: mediastinal lymph node; mesenteric lymph node; half spleen; 

and small half of brain (brains cut just off-center). The other half of the spleen and larger half of 

the brain were placed in 10mls of 4% buffered formalin together for 24 hours then transferred to 

70% ethanol until cut into cassettes for histopathology. After allowing 20-30 min for clotting, 

whole blood samples from post-euthanasia heart-stick were centrifuged at 3000rpm for 10 min and 

serum transferred to Eppendorf tubes for immediate freezing with other tissues.   

  

Longitudinal Serum Collection:  

Serum was obtained via tail bleeding per LAR’s mouse bleeding guidelines. One hundred 

microliters of whole blood was collected in BD Microtainer serum separator tubes (ref# 365959) 

and allowed to clot for 20-30 min. Samples were spun down at 3000rpm for 10 min on Micromax 

benchtop centrifuge and serum placed in new eppendorf tubes and stored at -80°C until analysis 

on BioPlex.  

 

LPS-Induction Experiment:  

Two TgA20 mice (1 male, 1 female) negative for PrPres were intraperitoneally injected with 100ul 

of 1μg/ml of LPS (generously provided by Ron Tjalkens’ lab) in PBS. After three hours, both mice 

were euthanized and tissues were collected per above euthanasia protocol. Serum and brain 
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homogenate from LPS-induced mice were analyzed on the BioPlex Suspension Array system as a 

positive control/visual comparison for cytokines observed in prion-infected mice. 

 

Histopathology:  

 

 

Brains and spleens were cut in coronal sections and GFAP and H&E staining were performed by 

Todd Bass at the CSU Diagnostic Medicine Center.  

 

IHC was done in-house using unconjugated BAR224 for PrPres. Prepared slides were deparafinized 

by heating in an incubator for 45 minutes then exposed to xylene, twice, for 10 minutes each. 

Tissues were rehydrated then digested via a 30 minute, 88% formic acid treatment. Antigen 

retrieval was carried out using 1X Dako Antigen retrieval solution then washed in 1X PBS. 

Quenching was achieved using 3% hydrogen peroxide in MeOH for 30 minutes and were 

subsequently washed and blocked in FACS buffer (5% BSA mixed 1:1 with superblock) for 30 

minutes. Tissues were incubated with unconjugated BAR224 mAb (Cat# 10009035) at 1:500 

overnight and then developed using AEC (3-amino-9-ethylcarbazole) until signal was visualized. 

After another wash, slides were counterstained with hematoxylin, rinsed with tap water, and then 

incubated with bluing reagent for 5 minutes. After a final wash, slides were cover-slipped, 

visualized, and photographed on the Olympus BX41 microscope equipped with Olympus DP72 

camera with Colorado State University pathologist, Dr. Terry Spraker, at the Diagnostic Medicine 

Center. 
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Western Blot:  

 

Ten percent brain homogenate from all TgA20 mice in the cytokine study (including LPS mice) 

were Proteinase K-digested at 200µg/ml of recombinant, PCR grade PK (Roche, ref# 03 115 887 

001) for 30 minutes at 37°C at 800rpm on heat block (Eppendorf Thermomixer R). One sample 

(136539-1 RML_M) was left undigested as a control. TgA20 NBH (PK -), the above PK-digested 

samples, and TgA20 RML (used for inoculum—PK+) were loaded onto 12% NuPage 12-well gels 

(10μl undigested, 15μl PK-digested loaded). Ten microliters of 3X loading buffer (Novex NuPage 

LDS 4X sample buffer, ref# NP0007; and 10X reducing agent, ref# NP0009) were added to 

undigested samples (diluted 1:5 in PBS) and to 20μl of digested samples (18ul sample, 2ul PK). 

All samples were then placed on heat block at 95°C for 5min at 800rpm before being loaded onto 

the gels. Samples were run at 110V for 10 minutes, then 150V for 60 min with a Coomassie gel 

marker with BSA to confirm transfer of protein onto membrane. Protein was completely 

transferred onto membrane after 30 minutes at 110V.  

 

Blots were allowed to block for 1 hour in 5% nonfat dry milk + PBS and 0.1% tween before being 

probed with BAR 224 antibody at 1:20,0000 in superblock (Thermo Scientific ref# 37517), in the 

fridge on a rocker overnight. Blots were washed 6X with PBST for 10min each and then developed 

using Millipore HRP Substrate (Immobilon Western, Cat# WBKLS0500). Blots were exposed and 

bands visualized on Luminescent Image Analyzer, ImageQuant LAS 4000 gel dock.   
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BioPlex: 

 

Sample and Standard Preparation: 

Serum samples were thawed on ice, vortexed for 3-5 seconds, and re-centrifuged at 3000rpm for 

10min. Mouse serum was placed in separate Eppendorf tubes and diluted 1:6—brain homogenate 

1:10—in Universal Assay Buffer (UAB). Serum and brain homogenate dilutions were determined 

via optimization experiments using eBioscience 11-plex kits combined with IL-10 simplex to 

accurately quantitate protein expression in both sample types as well as kit standards. During 

sample centrifugation, cytokine standards (S1-S8) were prepared as 4-fold serial dilution in UAB, 

according to eBioscience protocol. Control wells were comprised of extra reconstituted standard, 

diluted 1:64 to equate S4 and placed at the end of the plate to ensure the assay worked throughout 

entire plate reading.  

 

96-Well Bead Plate Preparation: 

Two U-bottom, untreated, 96-well plates were labeled for either beads or samples (in duplicate). 

Sixty microliters of UAB, S1-S8, samples (up to n=37) and controls were loaded into sample plate, 

for blank, standard, sample (diluted serum/brain homogenate) and control wells, respectively—

this plate was kept on ice until bead plate was prepped. Antibody magnetic bead mixture (11-plex) 

and IL-10 beads were vortexed for 30 sec each prior to being loaded.  Fifty microliters of the 11-

plex bead mixture was loaded into all blank, standard, sample, and control wells (in order of bead 

plate reading). The bead plate was secured onto magnetic plate and beads were allowed to settle 

for two min. Bead plate + magnet apparatus was inverted over sink to decant excess fluid, quickly 

dabbed on paper towel, then returned to benchtop where plate was removed from magnet and 

freshly-vortexed IL-10 beads were added and gently mixed by pipetting. The bead plate was re-
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secured to magnetic plate, allowed two minutes for bead-settling, then washed two times, as 

follows:   

 

Washing Protocol: 

The bead plate + magnet apparatus was inverted over sink to decant excess fluid and then quickly 

dabbed onto paper towel to dry plate surface. Wash buffer (100µl—previously diluted to 1X 

solution) was quickly added to all wells using multi-channel pipette to prevent bead drying. Beads 

were allowed to settle for another 30 sec to 1 min, then the plate was decanted over sink again. 

Wells were washed with 100µl UAB a total of two to three times using the same method as above.  

 

Magnetic Antibody Bead-Sample Incubation:      

Using a multi-channel pipette, 50µl of well contents from sample plate were transferred to bead 

plate, and mixed gently by pipetting. Once all samples were transferred, the bead plate was 

removed from magnet, wells covered with plate cover, wrapped in foil to protect beads from light 

and placed on a plate shaker at room temp for 90 min at 600rpm.  

 

BioPlex Machine, Protocol Setup:  

Protocol details saved for each BioPlex run. Bead regions entered for 11-plex (IFN-g, GM-CSF, 

IL-1β, IL-2, IL-4, IL-5, IL-6, IL-12p70, IL-13, IL-18, TNF-a) and IL-10 simplex, per eBioscience 

manual. Standard concentrations calculated using S1 concentration (provided by eBioscience) and 

4-fold serial dilution through S8. Controls matched to S4 concentration (S1 diluted 1:64 for each 

analyte). Details for specific protocol and samples described, and associated dilutions entered (1:6 
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for serum, 1:10 for brain homogenate). One hundred beads per region specified, run at low RP1 

target value settings, with a sample size of 100µl. Gates set at 5000-25,000.  

 

Detection Antibody: 

Following 90 min sample incubation, plate was returned to magnet and left for 2 min prior to three 

plate washes (see washing protocol above). Detection antibody 50X concentrate, for 11-plex and 

IL-10 simplex, each diluted to 1X working solution based off 25µl/well calculation, plus extra to 

account for pipetting error. Detection antibody 1X solution vortexed gently then added in 25µl 

increments to each row using multi-channel pipette. A new plate sealer was placed over wells and 

beads protected from light during 30 min, room-temp incubation on plate shaker at 600rpm. 

 

Streptavidin-PE: 

Plate returned to magnet and washed a total of three times. Total volume of strep-PE estimated 

using 50µl/well calculation. Once plate removed from magnet, 50µl of Strep-PE added to each 

well using multi-channel pipette. Plate re-sealed, protected from light and incubated on plate 

shaker at room temp for 30 min at 600 rpm.  

 

Preparation for BioPlex: 

Plate returned to magnet and washed an additional three times. Once the plate was removed from 

magnet, beads resuspended in 120µl of reading buffer (provided in eBioscience 11-plex kit) and 

plate covered and placed on plate shaker for 1 min at 800rpm. BioPlex machine (warmed-up and 

calibrated prior to plate-reading) ejects calibration plate, and bead plate inserted into BioPlex 

machine for analysis.   
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Statistical analysis:  

A repeated-measure analysis between treatment (TX) groups and over time for IL-2 and IL-5 

performed by Ann Hess in SAS.  Adjusted raw and Tukey p-values were obtained to show 

significant differences over the time course of the study for IL-2 and IL-5. Additional GraphPad 

Prism (version 5.0d) statistical analysis was also performed.  

 

ELISA:  

 

 

Monocyte Chemoattractant Protein-1 (MCP-1) expression was quantitated in pooled mouse sera 

via R&D mouse MCP-1 duoset sandwich ELISA (catalog # DY479, Lot# 1320396) performed by 

Dr. Valerie Johnson of Dr. Steven Dow’s laboratory. Due to a limited amount of remaining sample 

volume following BioPlex protein array analysis, mouse sera and brain homogenates from each 

treatment group (NBH males, NBH females, RML males, and RML females) were pooled and 

analyzed.   

 

CLARITY: 

 

 

CLARITY protocol: 

 

This novel 3-dimensional brain imaging technique was originally developed by Chung et al. (2013) 

at Stanford University. The CLARITY protocol was carried out as described by Chung et al. and 

adapted by our group to incorporate our immunohistochemistry and other histological staining 

techniques. Briefly, hydrogel monomers (acrylamide and bisacrylamide), formaldehyde, and 

thermally triggered initiators were infused into mouse tissues at 4°C and held at this temperature 

for 1-3 days, allowing for tissue crosslinking and covalent linking between hydrogel monomers 
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and mouse biomolecules (proteins, nucleic acids, etc.). Polymerization of biomolecule-conjugated 

monomers into hydrogel meshwork was thermally-initiated by incubating infused tissue at 37°C 

for 3 hours. Lipids and other molecules lacking functional groups remain unbound, and the 

following electrophoresis step (4 days) allows for tissue clearance of all unbound material. The 

end result is a full or large section brain tissue that is transparent and able to be stained and 

unstained as desired, allowing for visualization of 3-dimensional stain uptake within intact cellular 

architecture (except lipids).  

 

The availability of NFκB-GFP mice, along with development of a new lab protocol for CLARITY 

prompted us to investigate NFκB activation in a RML-infected mouse sacrificed at 60dpi (mouse 

provided by Dr. Val Johnson). For this experiment, we used a 1mm section of brain tissue (to 

expedite the tissue-clearing process) and assessed brain regions expressing GFP using confocal 

microscopy. 

 

CLARITY Imaging- Zeiss Confocal Inverted Scope: 

Argon laser (λ 488) used to visualize a 1mm section of brain from GFP/NFκB mice. DIC channel 

as well as Ch3 LP505 (GFP=530) were turned on for Z-stack. Z-settings: Start:0.300μm; Interval 

10 (Optimal 9.89μm); Pixels 512 X 512; Scan speed 3; DIC scan 5μm. Image of GFP expression 

within the caudal medulla and cerebellum obtained at 10X magnification.  
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Flow Cytometry: 

 

 

Four TgA20 mice were euthanized and brains and spleens harvested then placed in 5mls of FACS 

buffer (recipe from Coldspring Harbor: 1 X PBS, 2% FBS, and 1mM EDTA). Organs were mashed 

through cell strainer screen (BD Falcon) and resulting homogenates were placed in Eppendorf 

tubes (500μl for spleens, 200μl for brains). Samples were spun at 3000rpm in IEC Micromax 

benchtop centrifuge for 5 minutes. Supernatant was removed and pellet was washed in 1ml FACS 

buffer. Samples were then subjected to a soft centrifugation at 1000rpm for 5 minutes.  Wash and 

soft spin (1000rpm for 5 min) was repeated two times.  

 

Cells were FC blocked at 1:100 FC block in FACS buffer for 30 minutes. Cells were washed twice 

then incubated with BAR224 antibody at 1:100 with 7% mouse serum in FACS buffer for 20 

minutes in the dark at room temp. Excess antibody was washed away using 1ml FACS buffer, 

followed by a soft spin. Lysis buffer (155mM NH4Cl, 12mM NaHCO3, and 0.1mM EDTA) was 

used in place of FACS buffer for the final wash. Cells were centrifuged one final time, supernatant 

disposed of, resuspended in 1ml FACS buffer, transferred to library tubes, and kept in the dark 

until analysis on the Cyan Flow Cytometer at the Colorado State University, Veterinary Teaching 

Hospital. PE-Texas red channel, Brain 700V, Spleen 600V.  
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Results 

 

 

Bioassay: 

 

 

Mice were euthanized at 40dpi, 60dpi, 80dpi, or when prion disease morbidity scores indicated 

terminal illness (Table 1). RML-female mice reached terminal illness and were euthanized prior 

to the first RML-male who showed any clinical symptoms (Figure 4). NBH control mice were 

allowed to survive out to 158dpi for the terminal time point and no clinical signs of prion disease 

were apparent at the time of euthanasia (see appendix for supplementary URL link to YouTube 

videos). 

Table 1: Cytokine Study TgA20 Information Table 
TgA20 mice from the longitudinal cytokine study are separated by euthanasia time point to show 

the division of treatment groups and genders of mice, as well as ages at the time of inoculation and 

euthanasia. Mice were euthanized at 40dpi (average age of 154 days old), 60dpi (averaging 160 

days old), 80dpi (averaging 178 days old), or when terminal illness became apparent. NBH control 

mice for the terminal time point were allowed to live 14 days past the euthanasia of the RML-

inoculated mouse, 134097-3, which had the longest incubation period for the RML treatment 

group. 

Cytokine Study TgA20 Information Table 

Animal ID TX Group Gender Age at 

Inoculation 

(days) 

Age at euth 

(days) 

DPI @ euth Incubation Period 

(days to terminal 

illness) 

133157-5 NBH M 103 145 40 n/a 

136540-1 NBH F 117 159 40 n/a 

136539-2 RML M 117 159 40 n/a 

136539-3 RML M 117 159 40 n/a 

136550-3 RML F 110 152 40 n/a 

136550-4 RML F 110 152 40 n/a 

133157-4 NBH M 103 163 60 n/a 

136540-2 NBH F 117 177 60 n/a 
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133707-4 RML M 92 152 60 n/a 

134097-1 RML M 77 137 60 n/a 

135588-2 RML F 103 163 60 n/a 

136550-1 RML F 110 170 60 n/a 

133157-3 NBH M 103 183 80 n/a 

133158-5 NBH F 103 183 80 n/a 

133707-1 RML M 92 172 80 n/a 

133707-2 RML M 92 172 80 n/a 

134098-1 RML F 77 157 80 n/a 

135588-4 RML F 103 183 80 n/a 

136550-2 RML F 110 193 80 n/a 

134098-3 RML F 77 177 100 100 

134098-5 RML F 77 177 100 100 

134098-4 RML F 77 188 111 111 

134098-2 RML F 77 193 117 117 

134097-2 RML M 77 197 120 120 

136539-1 RML M 117 238 121 121 

134097-4 RML M 77 205 128 128 

134097-3 RML M 77 220 144 144 

133157-1 NBH M 103 260 158 n/a 

133157-2 NBH M 103 260 158 n/a 

133158-1 NBH F 103 260 158 n/a 

133158-3 NBH F 103 260 158 n/a 

141158-1 LPS M n/a 114 n/a n/a 

140726-1 LPS F n/a 114 n/a n/a 
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Figure 4: Kaplan-Meier Survival Curve of Cytokine Study TgA20 Mice 

Kaplan-Meier survival curve generated using Prism software (version 5.0d). RML-Males and 

RML-females were euthanized when prion disease morbidity score indicated terminal illness. 

NBH animals were euthanized at 158dpi with no outward signs of prion disease. RML-females 

were euthanized an average of 107dpi, whereas RML-male mice averaged 128dpi with no overlap 

between the two groups.  

 

 

Western Blot: 

 

 

Western blot confirmed the presence of PK-resistant material in brain homogenate from RML-

inoculated mice at 60dpi, 80dpi and at terminal disease (Figure 5, A&B). The absence of PrPres at 

40dpi confirms our hypothesis that RML-prions, when inoculated IP, do not enter the brain until 
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after 40 days post inoculation. NBH-inoculated animals from all time points were negative for 

PrPres.  

 

5A.

 
 

5B. 
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Figure 5 (A & B): Western Blots of TgA20 Brain Homogenate from Longitudinal Cytokine 

Study 

TgA20 NBH - negative for prions - was included in well 1 on both blots as a representative of 

undigested negative brain material and TgA20 RML was loaded into well 12 on both blots as a 

positive control. (A) 10% brain homogenate from NBH-inoculated animals is shown in wells 2-6 

and RML-inoculated animals in wells 8-11 in the order of 40dpi, 60dpi, 80dpi and terminal. Well 

7 was left blank to prevent sample spill-over. (B) NBH-inoculated brain material from each time 

point is shown in wells 2-5 and RML-inoculated animals from each time point are shown in wells 

7-10. Well 11 shows undigested brain material from RML-infected mouse 136539-1, whose PK-

digested sample is shown in well 10. Well 6 was left blank to prevent sample spill-over. 

 

 

BioPlex: 

 

 

Cytokine levels for GM-CSF, IFN-γ, IL-1β, IL-4, IL-6, IL-12p70, IL-13, IL-18, TNF-α, and IL-

10 were overall below detection limit (out-of-range low, OOR<), set by the lowest value from the 

standard curve. IL-2 and IL-5 showed the most robust and consistent signals throughout the 

longitudinal study, with a few mice showing pro- and/or anti-inflammatory cytokine responses at 

varying time points (see Appendix, Table 1A—Supplementary, Cytokine Mega Table). A 

repeated-measure statistical analysis using SAS revealed that although no significant differences 

were observed between the RML and NBH treatment groups, there was a significant difference 

over time for IL-2 and IL-5 (Table 2). Due to unequal numbers between treatment groups and 

numerous OOR< values, a repeated measures analysis could not be performed using SAS for the 

other cytokines. In an attempt to overcome this issue, and not miss other significant differences 

between genders, treatment groups and time for other analytes, cytokine data was bootstrapped to 

fill in missing values and a repeated measures two-way ANOVA was performed using Prism 

software (version 5.0d). This secondary statistical analysis revealed a number of additional 

significant differences for the other cytokines, as well as confirmed the statistical significance seen 

for IL-2 and IL-5 in the SAS analysis (Table 3).      
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Table 2 (A - D):  

Results of SAS analysis (repeated measures performed by Ann Hess). Tables 2A and 2B pertain 

to IL-2, and tables 2C and 2D pertain to IL-5. Tables 2A and 2C show maximum and minimum 

(usually <OOR) observed cytokine concentration (pg/ml) along with mean and standard deviation 

for longitudinal data. Tables 2B and 2D show p-values associated with factors that were analyzed, 

such as gender, time, treatment groups, etc.  

 

Table 2A: IL-2 SAS Statistical Analysis 

At 20dpi, the observed serum concentration of IL-2 peaks for both NBH and RML treatment 

groups, but is overall expressed at higher levels in the RML-infected mice at this time point. 

 

Treatment 

Group 

DPI N Obs Mean Std Dev Minimum Maximum 

NBH 0 10 2.827 5.836 0.140 16.550 

 1 10 8.044 8.378 0.080 23.880 

 20 10 24.369 18.920 0.080 51.160 

 40 10 11.375 10.503 0.080 26.180 

 60 8 11.109 11.365 0.090 31.490 

 80 6 14.940 6.623 7.520 23.500 

 Term 4 0.085 0 0.080 0.085 

RML 0 21 4.973 9.779 0.080 41.030 

 1 20 12.689 11.176 0.080 31.120 

 20 21 21.014 18.154 0.090 63.950 

 40 21 14.132 11.278 0.090 37.920 

 60 17 11.278 9.132 0.085 27.020 

 80 13 12.237 11.195 0.085 30.420 

 Term 8 2.696 6.092 0.080 17.460 

 

Table 2B: IL-2 SAS Type 3 Tests of Fixed Effects 

IL-2 was only shown to have a significant differences over time (p-value <0.0001), but not for any 

other interactions.   

 

Effect F Value Pr > F 

Gender 0.06 0.8010 

TX_Group 0.12 0.7277 

Gender*TX_Group 0.33 0.5703 

DPI 9.48 <0.0001 

Gender*DPI 0.61 0.7220 

TX_Group*DPI 0.73 0.6285 

Gender*TX_Group*DPI 0.52 0.7882 
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Table 2C: IL-5 SAS Statistical Analysis  

Similar to IL-2, IL-5 peaked at 20dpi for the NBH animals, whereas the peak was observed at 

40dpi for the RML-inoculated cohort.  

 

Treatment 

Group 

DPI N Obs Mean Std Dev Minimum Maximum 

NBH 0 10 1.893 2.351 0.300 7.190 

 1 10 8.009 10.341 0.305 27.970 

 20 10 5.143 8.680 0.305 29.180 

 40 10 7.457 7.389 0.220 27.200 

 60 8 4.151 5.944 0.220 17.330 

 80 6 1.227 1.587 0.210 3.570 

 Term 4 2.780 1.858 0.210 4.590 

RML 0 21 1.532 2.044 0.210 7.190 

 1 20 2.828 3.553 0.210 12.800 

 20 21 4.153 5.527 0.210 20.730 

 40 21 4.903 5.355 0.210 22.770 

 60 17 4.405 3.960 0.210 16.650 

 80 13 3.115 3.333 0.210 10.170 

 Term 8 3.279 4.834 0.210 13.230 

 

 

Table 2D: IL-5 SAS Type 3 Tests of Fixed Effects 

IL-5 showed significant differences between males and females (p-value 0.0021), as well as a 

statistically significant variation over the course of disease (p-value 0.0016).  

 

Effect F Value Pr > F 

Gender 11.19 0.0021 

TX_Group 1.29 0.2647 

Gender*TX_Group 0.14 0.7061 

DPI 4.30 0.0016 

Gender*DPI 1.07 0.3961 

TX_Group*DPI 1.07 0.3941 

Gender*TX_Group*DPI 0.87 0.5274 
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Table 3: Repeated Measures Two-Way ANOVA of Cytokine Data  

Two-way ANOVA repeated measures analysis performed using PRISM software (version 5.0d) 

on bootstrapped cytokine data. IL-2 and IL-5 significance over time was reconfirmed using this 

method of statistical analysis with IL-2 having a p-value of <0.0001 (same as SAS analysis), and 

IL-5 also at <0.0001 (compared with 0.0016 on SAS). Additionally, IL-6, TNF-α, and IL-18 were 

shown to have significance over time, IFN-γ and IL-5 were significantly different between 

treatment groups, and IL-5, IL-6, and TNF-α had statistically significant interactions between 

treatments and time.     

 

Cytokine Significant Trends        

(p-value) 

Significant DPI 

IFN- Treatment* (0.0286) n/a 

IL-2 Time**** (<0.0001) Baseline to 20dpi: NBH 

Males**** (<0.0001),  

NBH Females* (<0.05), RML 

Males*** (<0.001)  

 

20dpi to Terminal: NBH 

Males**** (<0.0001),  

NBH Females**** (<0.0001), 

RML Males ****  

(<0.0001) 

IL-5 Interaction** (0.0029) 

Treatment*** (0.0005) 

Time**** (<0.0001) 

NBH Females 1dpi** (<0.01), 

80dpi** (<0.01) 

IL-6 Interaction* (0.0344) 

Time** (0.0021) 

NBH Females 40dpi*** 

(<0.001) 

IL-18 Time *** (0.0003) n/a 

TNF- Interaction** (0.0019) 

Time* (0.0130) 

NBH Females 1dpi**; NBH 

Males 40dpi*  

IL-10 n/a RML Females 20dpi* (<0.05) 
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Figure 6: TNF-α Longitudinal Expression Levels in NBH- and RML-infected mice 
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Figure 7: IL-18 Longitudinal Expression Levels in NBH- and RML-infected mice 
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Figure 8: IL-6 Longitudinal Expression Levels in NBH- and RML-infected mice 
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Figure 9: IL-2 Longitudinal Expression Levels in NBH- and RML-infected mice 
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Figure 10: IL-5 Longitudinal Expression Levels in NBH- and RML-infected mice 
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Figure 11: IFN-γ Longitudinal Expression Levels in NBH- and RML-infected mice 
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Figure 12: IL-10 Longitudinal Expression Levels in NBH- and RML-infected mice 
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Flow Cytometry: 

 

 

TgA20 mice overexpress PrPC in the CNS at reported levels of 4- to 10-fold higher than wild type 

mice. We performed an experiment utilizing flow cytometry to determine whether peripheral PrPC 

expression level correlated to the higher expression level seen in the CNS. If PrPC expression is 

much lower in the spleen—an organ known to play an important role in peripheral prion replication 

and propagation as well as immunity—then the overall cytokine expression could be altered and 

may influence downstream effects in disease progression and resulting pathology. Since PrPC is 

required for prion-associated neuronal death, expression level in the periphery versus the brain 

could directly affect cellular signals of neurotoxicitiy/neuroprotection and ultimately cellular 

survival. In order to investigate this, we euthanized four TgA20 mice—two males and two 

females—and analyzed filtered brain and spleen homogenates tagged with PE-Texas Red and 

antibody-probed for PrPC. Cells were analyzed via flow cytometry and the percent of PrP-

expressing cells from brain and spleen homogenates was determined using mean fluorescence 

intensity (MFI).  

 

We found that males showed slightly higher PrPC-expression in both the brain and the spleen over 

females, although this difference was subtle (Figure 13).  Interestingly, we observed PrPC 

expression levels 20-fold higher in the brain than the spleen in TgA20s (Figure 13, C & D).  
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A. 
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Figure 13 (A-D): Flow Cytometry Characterization of PrPC Expression Levels 
Four age-related TgA20s, two male (M1 & M2) and two female (F1 & F2) were euthanized and 

brains and spleen homogenates were stained for PrPC and quantitated by flow cytometry. (A) 

Levels of PrPC(+) splenic cells compared to unstained (Spl Un) in grey. (B) Levels of PrPC(+) 

brain cells compared to unstained (Un Br) in grey. (C) Overlap of Figure 13, A & B with spleen 

represented in red and brain in grey, solid background correlates to unstained. (D) Graphical 

interpretation of MFI for PrPC(+) 

 

 

ELISA: 

 

 

Overall, MCP-1 levels in the serum of study animals are lower in prion-infected animals, with 

animals from both treatment groups displaying low levels compared to LPS-induced positive 

control mice. Whereas in the brain, MCP-1 levels from RML male mice increase above the levels 

seen in LPS-controls. Likely due to a single mouse which showed chronic, significantly increase 

inflammatory responses.  

A. 
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B.  

 

 
 

Figure 14 (A & B): MCP-1 ELISA in serum (A) and brain (B)  

Pooled samples due to limited volume show lower MCP-1 expression in the serum of RML-

infected mice compared to NBH, but both were significantly below LPS average (A). MCP-1 in 

the brain homogenate from RML males is exceptionally high (B), likely due to the chronic 

inflammation from expression of other pro-inflammatory cytokine signals apparent in a single 

mouse in the cytokine multiplex assay (see supplementary cytokine Mega Table).  

 

 

IHC/H&E/GFAP: 

 

 

Histological staining techniques are often used for assessing prion-induced neuropathology and 

include immunohistochemistry for PrPres and H&E stain for neuronal vacuolation and spongiosis. 

Glial Fibrillary Acidic Protein (GFAP) is an intermediate filament protein encoded by the GFAP 

gene. Within the CNS, GFAP is expressed during reactive gliosis and is mostly associated with 

astrocytes, and thus is a classic stain used to illustrate the astrogliosis associated with prion 

infection.  
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Figure 15 (A-C) shows IHC staining of PrPres material in mice sacrificed at 80dpi and at terminal 

disease. Staining for GFAP and H&E for spongiosis yielded unexpected results, showing mild 

vacuolation in both RML- and NBH- inoculated mice (pictures not shown), with atypical GFAP 

staining in the hypothalamus and caudal medulla region, ventral to the cerebellum at the level of 

the cerebellar peduncles and lateral cerebellar nuclei (Figure 16).     

 

A.     
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B.  

C.  
 

Figure 15: IHC for PrPSc in the brains of mice infected with RML mouse-adapted scrapie 

IHC + staining in RML-infected female mouse sacrificed at 83dpi in the hypothalamus near the 

3rd ventricle (A) and in the region of the cerebellar peduncle (B), coinciding with the region where 

higher intensity GFAP staining was observed. PrPres was also detected in and surrounding the 3rd 

ventricle of a male mouse with terminal prion disease, sacrificed at 121dpi (C).   
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Figure 16, A-D: GFAP Staining in NBH- and RML-Inoculated TgA20 Mouse Brains 

A & B show GFAP stain uptake in caudal medulla of NBH-inoculated male and female mice, 

respectively. This diffuse, light staining is indicative of normal, low-level astrogliosis present in 

overexpressing mouse models. Compared to figures C and D, which display darker, heavier GFAP 

staining with occasional “hotspots” in RML-inoculated mice. This stain pattern is suggestive of 

more extensive astrogliosis in prion-infected animals, in spite of overall low-level PrPSc 

accumulation, and atypical location of early astrogliosis (usually near hippocampus).  

 

CLARITY: 

 

 

Due to IHC/GFAP/H&E histologic findings that were atypical for naturally-occurring and other 

experimental models of prion disease, we investigated the activation of the NFκB transcription 
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factor in GFP-NFκB expressing mice infected with RML and euthanized at 60dpi. We used a 

newly-developed CLARITY protocol to clarify intact whole sections of mouse brains, ridding 

them of lipid content following crosslinking of proteins and cytoskeletal elements, allowing for 3-

dimensional visualization of GFP expression where NFκB activation was present. Using confocal 

microscopy, we found the only significant GFP expression within the region of the caudal medulla 

underlying and extending into the cerebellum (Figure 17).  

 

 

Figure 17: CLARITY brain section from NFκB-GFP mouse  

Confocal microscopy of a 60dpi scrapie-infected GFP-NFκB mouse showed GFP expression in 

the region of the caudal medulla, underlying and extending into the cerebellum (WM).  
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Discussion 

 

 

Prion diseases are characterized by a state of progressive and invariably fatal neurodegeneration 

manifesting as cognitive decline and chronic wasting. Prions are misfolded, infectious, 

proteinaceous particles that break the biological dogma of what we understood of transmissible 

disease prior to their discovery (Prusiner, S., 1982). In the normal cellular form, the prion protein 

appears to be ubiquitous among mammals with highly conserved primary biochemical structure 

(Krakauer et al., 1998; Schätzl et al., 1995). High PrPC homology, auto-conversion to 

pathogenicity, and striking environmental persistence of prions in the face of common 

decontamination methods would suggest widespread distribution and a high prevalence of disease 

among host species—however, naturally-occurring prion diseases seem to maintain host-

specificity (Gajdusek, D., 1977), with certain mammalian species showing complete resistance to 

prion-induced neurodegeneration (Bartz et al., 1994; Diaz-San Segundo et al., 2006; Lysek et al., 

2005). The low prevalence of “naturally-occurring” human prion diseases is evidenced by a one-

in-a-million chance of developing sCJD. Naturally-occurring animal prion diseases, however, are 

a larger problem with historical reports of scrapie extending back to the 1700s and a new 

emergence of CWD in North American cervid populations. The distribution of CWD continues to 

expand, along with environmental contamination, and current studies are underway revisiting the 

zoonotic potential of both scrapie and CWD prions (Saunders, Bartelt-Hunt, & Bartz, 2012). It is 

difficult to ascertain the risk factors involved with the consumption of CWD positive brain or 

peripheral tissues from hunter-killed deer, elk, and moose when so much remains unknown about 

the prion protein’s behavior.  
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The outbreak of BSE in the UK heightened our awareness of the unknowns of prion disease and 

stands as an important reminder that species barriers in prion disease transmission are not well 

understood (Billeter et al., 1997). Additionally, recent comparisons between prion disease and 

other “proteinopathies” such as AD, Parkinson’s, ALS, traumatic brain injury (TBI), and dementia 

provide helpful insight into cellular and molecular pathways that potentially cause disease. In the 

absence of informative genetic material, little is known about the structure and function of PrPSc, 

making the studies of prion epidemiology and pathogenesis challenging—other factors potentially 

involved in prion propagation between different host species become an appealing focus. This 

study recognizes lymphoid involvement as a key feature unique to specific prion diseases and 

quantitated cellular immune signaling molecules in the same animals throughout their disease to 

expose information pertinent to prion disease mechanisms.  

 

A number of past studies have described neuroinflammation involved in neurodegenerative 

processes. In AD it is thought that expression of pro-inflammatory cytokines such as IL-1β, IL-6, 

IFN-γ, and TNF-α contribute to astrocytosis and exacerbate neuronal oxidative stress through the 

production of NO through the iNOS pathway (Chiarini et al., 2005; Eikelenboom et al., 1994, 

McGeer & McGeer, 1995; Sudduth et al., 2013). Chiarini et al. further characterized this signaling 

and found that cytokines themselves were mildly neurotoxic, but when combined with the presence 

of Aβ the neurotoxic effect significantly increased. Their group also looked at the involvement of 

p75, a neuronal cell surface receptor in the same family as other death receptors, which has been 

shown to bind both Aβ and NGF (Lu et al., 2005; Nagata et al., 1997; Smith et al., 1994). It was 

determined that Aβ-p75 binding can in fact induce cell death through generation of ROS (Chiarini 

et al., 2005). Within a murine scrapie model, it was demonstrated that IL-1 is a significant inducer 
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of astrogliosis, and IL-1-/- mice had prolonged incubation periods (Schultz et al., 2004). However, 

they also noted increased microgliosis in the murine IL-1-/- model and progression to terminal 

disease in the absence of IL-1.  

 

Histopathological findings associated with scrapie infection include spongiosis, neuronal and 

neuropil vacuolation, PrPres, gliosis (Fraser, 1988; Jendroska et al., 1991), as well as synaptic loss 

(Budka, 2003). A lack of inflammatory infiltrate of peripheral immune cells during TSE infection 

makes studying central immune responses represented by cytokines important. Astrocytes and 

microglia make up the two most important cell types contributing to neuroinflammation, as they 

are stimulated to undergo proliferation early on during prion disease (Betmouni, Perry, & Gordon, 

1996; Campbell et al., 1994; DeArmond, Kristensson, & Bowler, 1992; Giese et al., 1998; 

Williams et al., 1994; Williams et al, 1997), and both cell types have been shown to produce 

cytokines and have an impact on neuronal survivability (Campbell et al., 1994; Kim et al., 1999; 

Williams et al., 1994).  Microgliosis co-localizing with areas of pathology (i.e. PrPres deposition 

and/or vacuolization) is commonly observed in CJD brains and murine scrapie models (Sasaki, 

Hirato, & Nakazato, 1993; Williams et al., 1994).  

 

Other groups have reported that the typical pro-inflammatory cytokine profile was not observed in 

certain prion disease models, as was the case for the ME-7 form of murine scrapie (Cunningham, 

Boche, & Perry, 2002; Walsh, Betmouni, & Perry, 2001). Studies in this animal model show a 

preponderance of TGF-β1 expression, which can directly down-regulate iNOS (Minghetti & Levi, 

1998). While we were interested in the possibility of anti-inflammatory cytokine expression, the 

unstable nature of TGF-β prompted us to, instead, analyze IL-10 in the multiplex assay. Multiple 
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investigators have demonstrated involvement of TGF-β and IL-10 in prion disease models (Baker 

et al., 1999), as both TGF-β and IL-10 negatively impact cytokine expression from microglia in 

vitro (Lodge & Sriram, 1996). Additionally, it has been shown that IL-10 can down-regulate IL-

1β and TNF-α (Bogdan et al., 1992; Chao et al., 1995; Lodge & Sriram, 1996). 

 

It should be noted that specific cytokine expression and cellular pathways vary depending on 

disease, genetic factors, PrP expression level, and chosen experimental animal model. For 

example, oxidative stress and apoptotic pathways are a known component of AD pathogenesis and 

other protein-misfolding disorders. The cytokine profiles and mechanisms of neuronal death are 

less clear for prion-induced TSEs, but may also involve apoptotic pathways (Giese et al., 1995; 

Williams et al., 1997). The findings from this study cytokine variations possibly relevant to the 

physiologic role of PrPC and unveil a distinctive neuropathological profile that may provide clues 

about early stage neuroinvasion and disease progression.  

 

BioPlex  

 

A repeated measures statistical analysis revealed significant differences for both IL-2 (p-value 

<0.0001) and Il-5 (p-value 0.0016) over time for the longitudinal cytokine data (Table 2, A-D). 

However, no significant difference was observed between treatment groups throughout the disease 

for these two cytokines, suggesting that either the TgA20 transgenic mouse model or over-

expression of the prion protein resulted in continual expression of IL-2 and/or IL-5 in the study 

animals.  
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Interleukin-2 acts as a T cell growth factor in an autocrine manner to induce proliferation and 

activation of T lymphocytes. The consistent expression of IL-2 throughout the longitudinal study 

in both infected and uninfected mice is somewhat surprising, as the involvement of T cells in prion 

pathogenesis appears to be non-essential (Klein et al., 1997). Disease progression and incubation 

periods in prion-infected SCID mice, a strain devoid of functional B and T cells (Bosma et al., 

1983) as well as FDCs (Szakal et al., 1990), show resistance to murine CJD through peripheral 

route of inoculation (Kitamoto et al., 1991).  

 

Another hypothesis relating IL-2 expression to the TgA20 transgenic model involves the location 

of the insertional transgene for Prnp. Zabel et al. (2009) characterized the immune composition of 

lymphocytes in PrPC-expressing transgenic models at 0- (PrP-/-), 1- (wild-type), 3-5 (Tg19), and 

4-7- (TgA20) fold higher than wild-type and found an altered T lymphocyte phenotype in TgA20 

over-expressing mice. Their TgA20s showed a lower number of αβ(+) T cells compared to γδ(+) 

T cells, reflected in overall lower numbers of CD4 and CD8 T cells. Despite an atypical T 

lymphocyte phenotype, the normal 2:1 ratio of CD4+:CD8+ T cells remained and T cell function 

was not compromised. It was suggested that this is due to the Prnp transgene insertion centrally 

within murine chromosome 17, a location correlated to a number of genes involved in T cell 

development (Fehling et al., 1995; Havelkova et al., 1999).  TgA20 mice have reduced TCR 

mRNA transcript and protein, which has been shown to induce expression of the high affinity IL-

2receptor (Kim & Leonard, 2002).  Failure to up-regulate IL-2R could cause increased 

compensatory expression of IL-2 that we observed for this mouse line. 
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Interleukin-2 is multifunctional and displays roles extending beyond T lymphocyte activation and 

proliferation. In fact, within the rat brain IL-2 is expressed, with the highest concentration of its 

binding sites localized to the hippocampal formation (Arujo et al., 1989; Lapchak & Hefti, 1991; 

Nieto-Sampedro & Chandy, 1987). Within the brain it is proposed that IL-2 contributes to 

elongation and branching of neurites and positively effects neuronal survival in a dose-dependent 

fashion (Awatsuji et al., 1993; Sarder, Saito, & Abe, 1993; Sarder et al., 1996; Shimojo et al., 

1993). This effect was blocked when anti-IL-2 antibodies were added (Awatsuji et al., 1993). 

Although IL-2R may be most concentrated in the hippocampal formation, Awatsuji et al. (1993) 

proved IL-2 to have similar effects on cortical, septal, and striatal neurons. Importantly, IL-2 

appears to be involved in spatial learning and memory, as well as hippocampal neurodevelopment 

(Petitto et al., 1999). 

 

It is clear that IL-2 plays a crucial role in neuronal survivability and neurite elongation and 

branching, promoting spatial learning and memory. However, the current findings from this study 

demonstrate consistent IL-2 expression in both NBH- and RML- inoculated TgA20s, perhaps 

suggesting a correlation between IL-2 and the over-expressed PrPC protein. It has been 

documented that PrP-/- mice show impaired T cell activation and proliferation in response to 

mitogens, compared with PrP +/+ mice (Bainbridge & Walker, 2005). PrPC has also been 

implicated in human lymphocyte activation (Cashman et al., 1990). T lymphocytes may not be 

essential for prion disease progression, but Prnp -/- mice inoculated with rα-PrP or rβ-PrP 

exhibited proliferation of T cells and appear to recognize the same epitope (Khalili-Shirazi et al., 

2005). It was mentioned that the observed proliferation was weak, however, because PrP 

expression plays a role in T cell activation it could be that proliferation was dampened in the 
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knockout model. PrPC is significantly upregulated on the surface of T cells stimulated with 

concanavalin-A, while PrP-/- mice display a reduction in PrPC upregulation, further supporting the 

idea that PrPC participates in T cell activation (Mabbott et al., 1997). This group also observed the 

importance of the GPI anchor of the prion protein in this process.  Ingram et al. (2009) found that 

activated T cells in PrP-/- mice displayed a significant reduction in Th1, Th2, and Th17 cytokine 

expression levels, although others such as TNF-a and IL-9 were unchanged. It could be that the 

opposite is true in this study, and the over-expression of PrPC in TgA20s altered T lymphocyte 

phenotype, as well as increased cytokine expression for IL-5 and/or IL-2.  

 

Interleukin-5 expression showed a significant variation over time (p-value 0.0016), as well as 

between genders (p-value 0.0021) (Table 2, C & D), perhaps suggesting a role for IL-5 in sex-

related differences in prion pathogenesis. Figure 4 from the current study shows terminal clinical 

illness and morbidity scores warranting euthanasia in RML-infected female mice prior to onset of 

apparent clinical symptoms in any of the male RML-infected mice. Within the literature, reports 

of IL-5 acting independently are extremely limited, as it is usually co-expressed with IL-4 in a Th2 

immune response to allergens and parasites. Within a prion disease model, a Th2 immune response 

in PrP-/- mice inoculated with rα-PrP showed IL-5 and IL-10 expression, whereas inoculation of 

rβ-PrP induced a Th1 response shown by IFN-γ (Kahlili-Shirazi et al., 2005). More importantly, 

IL-5 is involved in B-cell growth and proliferation (Takatsu, K., 1998) and may have a relevant 

function in the induction of nerve growth factor (NGF) synthesis/secretion in astrocytes (Awatsuji 

et al., 1993)—the former possibly involved in B cell stimulation of FDCs, an immune cell under 

significant investigation for its proposed role in prion protein propagation within the LRS prior to 

neuroinvasion (Fraser et al., 1989; Fraser et al., 1996; Fraser & Farquhar, 1987). 
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FDCs play a key role in stimulation and viability of memory B cells through antigen presentation 

on the cell surface via CR21/CR35, in contrast to internalized antigens that are processed for T 

cell activation (van Nierop & de Groot, 2002). Within the scope of prion disease, FDCs express 

the prion protein at high levels compared to other immune cells and are an essential component of 

peripheral prion propagation (Brown et al., 1999, McBride et al., 1992). PrPC has been shown to 

co-localize with FDCs in lymph node germinal centers (Kitamoto et al., 1991; McBride et al, 1992; 

Muramoto et al, 1992) and accumulation of the abnormal prion protein is diminished in the spleens 

of mice lacking functional FDCs (Montrasio et al., 2000). Normal maturation of FDCs is 

dependent upon normal functioning B lymphocytes, but interestingly PrPC expression is only 

required on FDCs to sustain peripheral prion replication and initiate neuroinvasion (Klein et al, 

1998; Montrasio et al, 2001). B lymphocytes provide TNF-α and lymphotoxins (LTα and LTβ) as 

required signals for FDC development and maintenance within lymph node germinal centers and 

splenic white pulp (Alimzhanov et al., 1997; Koni et al., 1997; Matsumoto et al., 1997; Montrasio, 

2000). This is supported by the fact that down regulation of the LTβ-R reduces prion pathogenesis 

(Mabbott et al., 2000; Mabbott et al., 2003; Montrasio et al., 2000) and FDCs in an autoimmune, 

chronic-inflammatory disease state resulted in prion detection and replication in atypical organs 

where PrP-expressing FDCs were found, such as the kidney, pancreas, and liver (Heikenwalder et 

al., 2005). Prinz et al. (2002) demonstrated the necessity of B cell follicles for successful FDC-

associated prion replication, and later, that KO of the CCR5 chemokine placed FDCs in closer 

proximity to arterioles and nerves, resulting in accelerated prion neuroinvasion in WT and CCR5-

/- mice (Prinz et al., 2003). B cells were also found to comprise the majority of prion-bearing cells 

within lymph nodes early after IP infection with prions, suggesting an important role in intranodal 

prion trafficking to FDCs (Michel et al., 2013).  Therefore, B lymphocytes are crucial players in 
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peripheral prion replication (Klein et al., 1997) through interdependence with FDCs, and altered 

B cell or FDC development/function can affect prion pathogenesis (Brown et al., 1999; Fraser et 

al., 1996; O’Rourke et al., 1994; Prinz et al., 2002; Prinz et al., 2003).   

 

While it has been shown that IL-4 and IL-5 induce the synthesis and secretion of NGF, this did not 

have any positive effect on neuronal survivability (Awatsuji et al., 1993). NGF has many functions 

pertaining to neurons within the CNS, but one function that may be pertinent to prion-induced 

disease is the induction of B cell growth and differentiation (Otten, Ehrhard, & Peck, 1989). This 

same group also identified the presence of functional NGF receptors on B and T lymphocytes. 

Adding to this idea is the finding that T cell-derived B cell growth factors (i.e. cytokines produced 

by T cells that stimulate B cell growth) induce astrocytic proliferation and GFAP expression 

(Benveniste et al., 1989) in response to cytokines IL-1 (Otten et al., 1989) and IL-6 (Frei et al., 

1989) and possibly others. This is likely through NF-κB activation from cytokine signal 

transduction. Interestingly, NGF may be expressed following activation of certain T-helper 

subtypes (Ehrhard et al., 1993), and it has been shown that NGF stimulates expression of IL-2R, 

and vice versa (Brodie & Gelfand, 1992). If PrPC overexpression in TgA20s is responsible for 

constant IL-2 and IL-5 expression, positive signals sent to B and T cells directly from the above 

cytokine signaling pathways and indirectly through NGF expression may result in up-regulation 

of PrPC in the immune cell compartment (Mabbott et al., 1997; Wion et al., 1988) and over 

stimulation of FDCs, promoting prion propagation. PrPC-mediated cytokine-induction could 

potentially be activating NF- κB as well as up-regulating NGF, but whether the overall effect of 

this activation is anti-apoptotic (Mattson & Camandola, 2001) or cytotoxic through p75 signaling 

and generation of NO (Chiarini et al., 2005) is unknown. The fact that this transgenic model shows 



58 

 

expedited disease in the presence of scrapie prions suggests that possibly these cell signaling 

pathways are contributing to neurodegeneration. 

 

Flow Cytometry 

 

There are mixed reports about the level of PrPC-overexpression in the TgA20 mouse model 

(Fischer et al., 1996; Zabel et al., 2009) and as to whether this level of overexpression is observed 

equally in brain and lymphoid compartments. Flow cytometry of spleens and brains from TgA20 

male and female mice revealed a 20-fold increase of PrPC expression in the brain over what was 

observed in the spleens of these mice (Figure 13). While this finding contradicts PrPC expression 

patterns reported by others (Glatzel & Aguzzi, 2000), we hypothesize that peripheral cytokine 

levels may have been influenced by PrPC-expression in the periphery of TgA20s more similar to 

that of wild-type mice. If this is true, then a decreased inflammatory state in early stages of disease 

in the LRS may have affected overall prion pathogenesis, including neuroinvasion and 

neurodegeneration, contributing to the atypical cytokine profile observed.   

 

Histopathology 

 

Prion diseases have a complex diagnosis, involving clinical signs, sensitive  and time-consuming 

lab assays (western blot and protein-misfolding cyclic amplification, PMCA) of contaminated 

tissues or fomites, immunohistochemical detection of insoluble, partially PK resistant prion protein 

deposits—both ante mortem and post mortem via lymphoid biopsy, or brain IHC/H&E, 

respectively—or combinations of these. Unfortunately no in-house or field rapid detection assay 
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exists with a high efficacy for ante mortem diagnosis. Neurohistopathology is useful for detection 

of the prion protein within brain tissue and to visualize neuronal vacuolation and spongiosis. 

Attempts to classify clinical and histological characteristics of IHC and other special stain-uptake 

patterns in human CJD have been published (Budka et al., 1995; Parchi et al., 1999) but are 

complicated by many different disease manifestations (Gambetti et al., 2003; Kong et al., 2004; 

Monari et al., 1994).  Similarly, in experimental prion models, disease characteristics are skewed 

by the genetics of the animal model, transgenes, type and strain of prion inoculum, number of 

serial passages within endogenous/exogenous host, dose, and inoculation site/route. For example, 

murine scrapie strain ME7 inoculated intracerebrally into C57BL and VM/Dk mice showed PrP 

accumulation within the hippocampus as the first indicator of neurodegenerative disease (Jeffrey 

et al., 2001), whereas infection with 87V murine scrapie caused vacuolation primarily concentrated 

to the brainstem (Jeffrey et al., 1997).  

 

The findings in this study showed minimal vacuolation and PrPSc-deposition in the region of the 

caudal medulla of terminally ill, RML-infected TgA20s. IHC staining for PrPSc in RML-infected 

animals was in the region of hypothalamus near the 3rd ventricle and in the cerebellar peduncle 

(Figure 15). The most prominent finding supporting “hallmark” characteristics of prion-induced 

neuropathology was (+)GFAP staining in brain regions coinciding with PrPSc deposition and at a 

considerably higher intensity than in NBH TgA20s, but the extent of overall astrogliosis 

throughout other regions of the brain was low (Figure 16, A-D).  
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The presence of PK-resistant scrapie prions in the brain homogenates of RML-infected mice were 

confirmed by Western blot (Figure 5, A & B), and the presence or absence of clinical disease 

warranting terminal morbidity scores in RML- or NBH- infected animals, respectively, was 

documented on video and uploaded to the laboratory’s private YouTube library (see appendix for 

URL).  

 

Other prion researchers have documented cases of atypical histopathology in various disease 

models, with similar findings of low PrPres concentration, vacuolation and/or astrocytosis (Hegde 

et al., 1998; Hsiao et al., 1994; Jeffrey et al., 2001, Lasmezas et al., 1996; Lasmezas et al., 1997; 

Sisó et al., 2002). Furthermore, a number of papers exist supporting our observed lesion profile, 

involving the cerebellum, brainstem, and/or spinal cord in both natural (Parchi et al., 1999; Wood 

& Done, 1992) and experimental (Baringer et al., 1983; Glatzel & Aguzzi, 2000; Sisó et al., 2002; 

Tamgüney et al., 2009) prion disease models. However, there are different theories as to why this 

observation occurs.  

 

It is difficult to characterize the differences in disease caused by an agent that is a misfolded host-

encoded protein, lacking nucleic acids. While many researchers have recognized prion “strains” 

by variations in clinical signs, incubation period, neuropathology, and deposition patterns of PrPSc 

within host tissues, it is generally accepted that these variations are caused by differences in host 

genetics of Prnp and the biochemical conformation of PrPSc (Bessen & Marsh, 1994; Prusiner, 

1998; Telling et al., 1996).  Neuropathological profile can also be modified by route of infection, 

as inoculation-induced trauma from IC injection generated hippocampal plaques in a murine 
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scrapie model but are reduced or absent following IP inoculation (Bruce & Fraser, 1981). 

Modification of the prion protein itself can also alter neuropathological phenotype, as shown by 

cerebellar and brainstem deposits of amyloid-like plaques in mice not expressing the GPI anchor 

of PrP (Chesebro et al., 2005). 

  

Moreover, it is anticipated that these observations are providing clues about the timeline and 

mechanisms underlying prion pathogenesis. Focalized areas of neuropathology perhaps caught 

earlier in the progression of disease could provide insightful information about early 

neuropathological events preceding neuronal death but capable of causing terminal illness. Yun et 

al. observed the progression of lesion profiles in RML-infected C57BL/6J mice throughout 

multiple time points during disease. Specifically, his group witnessed lesions within the cervical 

spinal cord at 105dpi, in the brainstem at 123dpi, and then a more disseminated disease profile in 

142dpi terminally-ill mice. They also measured mRNA of heme oxygenase-1 (HO-1), as a maker 

of oxidative stress, and stained for GFAP and synaptophysin, a pre-synaptic vesicle membrane 

protein marker of synaptic loss (Honer, 2003). They found a progressive increase in HO-1 mRNA 

corresponding with later time points and advanced disease, an increase in GFAP over the course 

of time points sampled, and a significant decrease in synaptophysin expression. This study, and 

others, indicated an increased state of oxidative stress and evidence of synaptic loss as disease 

progressed (Johnston et al., 1997; Schipper, 2004; Yun et al., 2006). When considering the 

anatomy of the nervous system and the path of other neurotropic diseases (not disseminated to the 

brain through circulation), it makes sense that prions would result in a neuropathological lesion 

profile starting with peripheral nerves, ascend the spinal cord, affect brainstem and cerebellum 

then progress in a caudal to rostral fashion. This theory, however, would not take into account 
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prions that takes other routes for neuroinvasion, such as through circulation or olfactory 

epithelium.   

 

What is most interesting is how minimally-extensive apparent neuropathology was within clinical, 

terminally-ill mice infected with prions. Cases of prion-induced neuropathologies exist with both 

clinical symptoms in the absence of apparent disease—down to the histological level—as well as 

with evidence of significant PrPres deposition without fatal and/or transmissible disease (Piccardo 

et al., 2007). We believe that minimal neuropathology as evidenced by histological IHC/H&E 

staining and moderate but focal astrogliosis may have contributed to the overt lack of cytokine and 

chemokine expression within brain homogenates of infected mice. These findings, in addition to 

the considerations mentioned above, suggest that we do not have a good understanding of the 

cellular and signaling pathways that are resulting in apparent clinical disease. Clearly, it is 

warranted to further investigate synaptic loss and other potential mechanisms that might disrupt 

normal neuronal function prior to manifestation of histological and gross findings that are 

suggestive of disease   
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CHAPTER 2: 

 

 

 

PRO-INFLAMMATORY CYTOKINES AND MECHANISMS OF NEURONAL DEATH 

 

 

As extracellular signaling proteins involved in cell proliferation and differentiation, cytokines are 

useful for identifying the immune cellular players involved in prion pathogenesis. Certain 

cytokines have been proposed to play a direct role in neurodegeneration through activation of the 

transcription factor NADPH oxidase (NOX) (Griffin & Barger, 2010; Mrak & Griffin, 2005). 

Activation of NOX results in the production of reactive oxygen species (ROS) and may contribute 

to neuronal death and cognitive decline (Ansari & Scheff, 2011; Barth et al., 2009; Bruce-Keller 

et al., 2011). Interestingly, it has been shown that Aβ present in AD patients may activate the same 

NOX pathway as pro-inflammatory cytokines IL-1B, TNF-a, and IL-6 (Chiarini et al., 2005; Walsh 

et al., 2014). As mentioned previously, both PrPC-dependent signaling pathways and PrP106-126 

can upregulate pro-inflammatory cytokine gene expression and iNOS (Lu et al., 2012; Sonati et 

al., 2013). By blocking the interaction between Aβ and its co-receptor, PrPC, long-term 

potentiation and Aβ-induced cognitive deficits were prevented in an AD mouse model (Barry et 

al., 2011; Chung et al., 2010). 

 

Cofilin-actin rods are modified, space-occupying actin filaments within neuronal axons that 

interfere with vesicle transport and contribute to Aβ-induced synaptic loss (Bamburg et al., 2010; 

Cichon et al., 2012; Davis et al., 2009; Maloney et al., 2005; Minamide et al., 2000). A protein 

called RanBP9 is involved in cofilin activation, generation of ROS, and is also required in the Aβ-

induced apoptotic pathway (Roh et al., 2013). The biochemical environment necessary for rod 
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formation requires both dephosphorylation of cofilin and the presence of ROS to create disulfide-

linked cofilin dimers (Bernstein, 2012). Therefore, the neuroinflammation resulting from gliosis, 

which is present early on in TSEs and other neurodegenerative diseases, supports the formation of 

potentially neurotoxic rods. Conversely, rods may positively impact neuronal viability by blocking 

cofilin’s involvement in apoptotic pathways when it becomes completely oxidized (Bernstein et 

al., 2006).  

 

Longitudinal cytokine analysis of TgA20s over-expressing murine PrPC showed consistent 

expression of IL-2 and IL-5 in both scrapie-infected and NBH control mice. We attributed this to 

downstream effects associated with Prnp transgene insertion and/or over-expression of the prion 

protein itself. This transgenic model shortens incubation periods by expediting prion disease 

progression. One would hypothesize that prion-induced pathology would be increased in a disease 

model where the prion protein is over-expressed. However, we observed minimal vacuolation or 

spongiosis, and diagnosis of prion infection was made based off outward signs of terminal illness, 

PrPSc detection via Western blot, IHC staining in the caudal medulla and surrounding the third 

ventricle, and an increase in distribution and intensity of GFAP stain uptake in in RML-infected 

mice.  

 

These findings support the idea that cognitive decline and clinical disease during prion infection 

are a result of neuronal dysfunction (i.e. synaptic loss) prior to histologic evidence of neuronal 

loss. Both of these cytokines have indirect implications in immune-mediated peripheral prion 

replication (Alimzhanov et al., 1997; Koni et al., 1997; Matsumoto et al., 1997; Montrasio, 2000) 

as well as NGF synthesis/secretion (Awatsuji et al., 1993; Brodie & Gelfand, 1992; Ehrhard et al., 
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1993; Otten, Ehrhard, & Peck, 1989). Additionally, NGF appears to promote B cell growth and 

differentiation (Otten, Ehrhard, & Peck, 1989), is produced by specific T-helper subtypes (Ehrhard 

et al., 1993) and cooperatively stimulates expression of IL-2R on T lymphocytes (Brodie & 

Gelfand, 1992). This suggests some sort of feedback loop mechanism resulting in NF-κB 

activation and production of ROS through NOX expression and, ultimately, the production of 

cofilin-actin rods and synaptic loss.  

 

The presence of cytokines in neuronal cell culture was analyzed to confirm that Aβ was activating 

NOX-induced generation of ROS independent of cytokine signal transduction (Walsh et al., 2014). 

Aβ can stimulate the production of pro-inflammatory cytokines (Griffin & Barger, 2010), and it is 

known that cytokine profiles can vary widely between individuals affected by AD (Sudduth et al., 

2013). It appears that both Aβ and pro-inflammatory cytokines may be inducing the production of 

ROS in cells of the central nervous system, through a similar pathway but independent of each 

other.  Both Aβ and TNF-a can induce rod formation through a PrPC-dependent pathway, and 

importantly, overexpression of PrPC itself is sufficient to induce rod formation (Walsh et al., 2014). 

It may be that increased density of GPI-linked PrPC expression concentrated at lipid rafts within 

the cell membrane is influencing redox-signaling resulting in synaptic damage (Bate and Williams, 

2012; Brown & London, 1998), as lipid rafts are crucial players in synaptic development and 

maintenance (Mauch et al., 2001; Willmann et al., 2006). Mice lacking the GPI anchor of PrPC fail 

to develop clinical disease regardless of significant deposition of infectious PrPSc (Chesebro et al., 

2005).  
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We now know that oxidative stress plays a role early on in many neurodegenerative disorders 

(Keller et al., 2005). In getting at the molecular signaling pathways that could be influencing 

protein-misfolding diseases, it is relevant to investigate endogenous as well as exogenous 

molecules/compounds. Dietary and environmental constituents such as ursolic acid (UA) and the 

micronutrients copper (Cu), manganese (Mn), magnesium (Mg), and iron (Fe) are the recent and 

current focus of many investigators studying neurodegeneration. UA is derived from the skin of 

many fruits and plants—blueberries, cranberries, basil, and rosemary, to name a few—and has 

many proposed health benefits (Ikeda et al., 2008; Kim et al., 2011; Kunkel et al., 2012; Prasad et 

al., 2012; Zhou et al., 2013). Briefly, UA has been shown to inhibit rod formation in neurons 

stimulated by both Aβ and pro-cytokines, specifically, TNF-α (Barth et al., 2012; Walsh et al., 

2014), and attenuate cognitive deficits (Mortiboys et al., 2013; Wang et al., 2011; Wu et al., 2013). 

 

 

The role of micronutrients is more complex. Copper binds to PrPC with high affinity on octapeptide 

repeats within the N-terminal region, inducing conformational changes (Brown et al., 1997a; 

Hornshaw et al., 1995;  Stӧckel et al., 1998; Whittal et al., 2000; You et al., 2012), and may 

possibly increase infectivity of PrPSc (Sigurdsson et al., 2003). The uptake of Cu into cells appears 

to involve cellular PrP (Brown, 1999; Pauly & Harris, 1998) as wild-type mice have higher 

membrane-bound Cu than Prnp-/- mice within the CNS where Cu is abundant (Brown et al., 1997a). 

The brains of CJD patients are reported to be deficient in Cu (Wong et al., 2003) as well as mice 

infected with scrapie, with the lowest levels corresponding with onset of clinical disease (Thackray 

et al., 2002; Wong et al., 2001). Mn has been shown to competitively bind with Cu on PrPC 

octapeptide domains (Brown et al., 2000). Copper may not be essential for PrP  PrPSc 

conversion, but its levels within the CNS throughout disease may play a role in signaling, synaptic 
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loss, and/or oxidative damage (Collinge et al., 1994; Vassallo & Herms, 2003). Decreased copper 

binding and/or knockout of PrPC has been correlated with diminished neuronal integrity and 

increased susceptibility to oxidative stress when infected with PrPSc (Brown et al., 1997b; Brown 

& Besinger, 1998; Miranda et al., 2000; Rachidi et al., 2003; Wong et al., 2000). Conversely, Cu+ 

and Fe2+ are known to generate ROS via Fenton-like or Haber-Weiss physiologic reactions 

(Butterfield & Stadtman, 1997; Halliwell & Gutteridge, 1990) and experimentally when stimulated 

by Aβ (Huang et al., 1999). It may be that distinct levels of micronutrients, as well as expression 

of amyloid/fibril-forming peptides and their precursors, may dictate the outcome of the particular 

disease state (Huang et al. 2004; Kralovicova et al., 2009; Multhaup et al., 1998; Opazo et al., 

2000; Opazo et al., 2003; Ruiz et al., 1999, Sigurdsson et al., 2003).  

 

In order to investigate the potential effects of metal cations on CWD prevalence and pathogenesis, 

water and soil were analyzed from CWD-endemic and non-endemic areas to quantitate individual 

concentrations of Cu, Mg, Mn, and Fe, as well as their associated ratios. Initial sampling by 

Nichols et al. (in process of submission) revealed high Mg ratios [Mg/Cu, Mg/Mn, and Mg/Fe] 

present in the water of CWD-negative areas, with Mg/Cu having the highest significance and thus 

receiving the most emphasis within the study. Transgenic Tg12 mice expressing elk PrPC were IC-

inoculated with CWD-positive or -negative brain homogenate and were offered a customized diet 

lacking Mg and Cu (Harlan/Teklad), with different treatment groups receiving various Mg/Cu 

ratios supplemented in drinking water offered ad lib. It was discovered that mice fed the custom 

diet which received the highest Mg/Cu drinking water, and also contained the lowest concentration 

of Cu, lived significantly longer than mice in other treatment groups. Although, interestingly, the 

levels of Cu within the brains of CWD-positive and –negative mice within the same group did not 
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differ significantly, while Mg concentration was significantly increased in CWD-positive animals 

from this same group.  

 

 

Differences in survival times between animals fed various ratios of Cu, Mg, Mn, and Fe, could be 

explained by metal cation effects on neuroinflammatory processes (Eikelenboom et al., 2002; 

Sigurdsson et al., 2003). In a murine scrapie model, experimental copper-chelation prolonged 

disease incubation period but simultaneously induced caspase-3—a pro-apoptotic factor—

overexpression in the cerebellum, midbrain, hippocampus and frontal cortex of infected mice 

(Bolea et al., 2010). In this same study yet another pro-apoptotic factor, Bax, was expressed in the 

medulla where it co-localized with PrPSc deposition, however caspase-3 nor Bax significantly 

contributed to neuronal loss. Although, caspase-3 has also been reported within the cerebellum of 

patients with CJD (Puig & Ferrer, 2001).  

 

 

To deduce whether or not pro-inflammatory mediators were present within the Tg12 cervidized 

elk mice, brain material was screened for a panel of chemokine and cytokine mRNAs using an 

RT-PCR, and protein quantitation was carried out using a Th1/Th2 cytokine multiplex assay. Some 

mice fed a high Cu diet showed alterations in mRNA transcripts for TNF-α and IFN-γ at terminal 

disease. To corroborate these results, it was determined that pro-inflammatory cytokines IL-1β, 

IFN-γ, and IL-18 were expressed in mice fed high [Cu], in addition to IL-2, IL-12p70, and IL-13. 

These results suggest that neuroinflammation may be occurring in CWD-infected mice exposed to 

high concentrations of Cu orally prior to and throughout disease.  
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APPENDIX 

 

 

 

Supplementary Material 

 

 

TgA20 Bioassay—YouTube Videos of Study Animals Sacrificed  

 

https://www.youtube.com/playlist?list=PLX3zsHGI0Yf0q5tko_MXLNsywtDbbIj_A  

 

 

 

Bioplex Cytokine Array 

 

Table 1—Supplementary (sA & sB): TgA20 Cytokine Mega Table  

Mega table showing cytokine expression in TgA20 mice from the longitudinal cytokine study. 

Cytokine levels are shown in tables that are separated by treatment group, and by serum cytokine 

analysis (table 2A) or brain-homogenate cytokine analysis (table 2B). LPS-induced positive 

control mice are shown at the top of each table as a positive control. Expression of any analyte 

(within detectable limit of the standard curve) is shown by a colored cell background 

corresponding with the color of the analyte listed at the top of each table. Samples that were below 

detection limit (OOR<) are shown with a white background and defined as half of the lowest 

detectable limit (LDL) as determined by the lowest point on the standard curve for each analyte. 

(sA) Serum cytokine levels broken down by individual animals for each treatment group, then by 

dpi. (sB) Cytokine expression in brain homogenate of TgA20s, with RML groups pooled by gender 

for 40, 60, and 80dpi.  
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Table 1(sA): Cytokine Mega Table - Serum 

 
 

Cytokine Data (Serum)

Animal ID TX Grp M/F DPI GM-CSF IFN-ϒ IL-1β IL-2 IL-4 IL-5 IL-6 IL-12p70 IL-13 IL-18 TNF-α IL-10

141158 LPS M n/a 0.2 0.05 0.115 0.09 0.12 10.15 8.46 0.17 0.22 3.315 7.09 0.145

140726 LPS F n/a 0.2 0.88 2.36 0.09 0.12 29.69 160.17 5.93 0.22 64.51 29.41 19.04

133157-1 NBH M 0 0.28 0.15 0.14 0.14 0.15 0.3 5.52 0.3 0.29 4.015 0.44 ND

1 0.29 0.155 0.145 0.13 0.15 0.305 0.59 0.305 0.285 3.3 0.46 0.145

20 0.29 0.155 0.145 22.91 0.15 0.305 0.59 0.305 0.285 3.3 0.46 0.145

40 0.205 0.045 0.115 11.41 0.12 0.22 0.44 0.17 0.23 3.51 0.32 0.29

60 0.205 0.045 0.115 12.44 0.12 0.22 0.44 0.17 0.23 3.51 0.32 0.29

80 0.205 0.04 0.115 12.14 0.12 0.21 0.425 0.17 0.22 3.58 0.32 0.165

Term 0.205 0.04 0.115 0.085 0.12 0.21 0.425 0.17 0.22 3.58 0.32 0.165

133157-2 NBH M 0 0.28 0.15 0.14 0.14 0.15 0.3 0.58 0.3 0.29 4.015 0.44 ND

1 0.29 0.155 0.145 7.64 0.15 0.305 0.59 0.305 0.285 3.3 0.46 0.145

20 0.29 0.155 0.145 20.9 0.15 0.305 0.59 0.305 0.285 3.3 0.46 0.145

40 0.205 0.045 0.115 4.67 0.12 4.23 0.44 0.17 0.23 3.51 3.82 0.29

60 0.205 0.045 0.115 4.8 0.12 0.22 0.44 0.17 0.23 3.51 0.32 0.29

80 0.205 0.04 0.115 17.98 0.12 2.95 0.425 0.17 0.22 3.58 0.32 0.165

Term 0.205 0.91 0.115 0.085 0.12 4.59 0.425 0.17 0.22 55.5 0.32 0.165

133157-3 NBH M 0 0.28 0.15 0.14 0.14 0.15 0.3 0.58 0.3 0.29 16.05 0.44 ND

1 0.29 0.155 0.145 9.54 0.15 0.305 0.59 0.305 0.285 39.6 0.46 0.145

20 0.29 0.155 0.145 51.16 0.15 0.305 0.59 0.305 0.285 140.37 0.46 0.145

40 0.205 0.045 0.115 21.45 0.12 4.23 0.44 0.17 0.23 98.37 0.32 0.29

60 0.205 0.045 0.115 12.44 0.12 0.22 0.44 0.17 0.23 3.51 0.32 0.29

80 0.205 0.04 0.115 20.29 0.12 0.21 0.425 0.17 0.22 3.58 0.32 0.165

133157-4 NBH M 0 0.28 0.15 0.14 0.14 0.15 0.3 0.58 0.3 0.29 4.015 0.44 ND

1 0.29 0.155 0.145 12.61 0.15 22.79 0.59 0.305 0.285 3.3 0.46 0.145

20 0.29 0.155 0.145 41.41 0.15 4.24 0.59 0.305 0.285 3.3 0.46 0.145

40 0.205 0.045 0.115 21.93 0.12 9.26 0.44 0.17 0.23 66.94 0.32 0.29

60 0.205 0.045 0.115 1.19 0.12 3.83 0.44 0.17 0.23 3.51 0.32 0.29

133157-5 NBH M 0 0.28 0.15 0.14 0.14 0.15 0.3 7.65 0.3 0.29 23.63 0.44 ND

1 0.29 0.155 0.145 0.13 0.15 0.305 0.59 0.305 0.285 3.3 0.46 0.145

20 0.29 0.155 0.145 0.13 0.15 0.305 0.59 0.305 0.285 3.3 0.46 0.145

40 0.205 0.045 0.115 0.09 0.12 8.49 10.77 0.17 0.23 3.51 0.32 0.29
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Cytokine Data (Serum)

Animal ID TX Grp M/F DPI GM-CSF IFN-ϒ IL-1β IL-2 IL-4 IL-5 IL-6 IL-12p70 IL-13 IL-18 TNF-α IL-10

141158 LPS M n/a 0.2 0.05 0.115 0.09 0.12 10.15 8.46 0.17 0.22 3.315 7.09 0.145

140726 LPS F n/a 0.2 0.88 2.36 0.09 0.12 29.69 160.17 5.93 0.22 64.51 29.41 19.04

133158-1 NBH F 0 0.28 0.15 0.14 0.14 0.15 0.3 0.58 0.3 0.29 4.015 0.44 ND

1 0.29 0.155 0.145 0.13 0.15 0.305 0.59 0.305 0.285 3.3 0.46 0.145

20 0.29 0.155 0.145 14.35 0.15 4.09 0.59 0.305 0.285 3.3 0.46 0.145

40 0.205 0.045 0.115 2.61 0.12 5.11 0.44 0.17 0.23 3.51 0.32 0.29

60 0.205 0.045 0.115 0.09 0.12 7.53 0.44 0.17 0.23 3.51 0.32 0.29

80 0.205 0.04 0.115 8.21 0.12 0.21 0.425 0.17 0.22 3.58 0.32 0.165

Term 0.205 0.04 0.115 0.085 0.12 2.85 0.425 0.17 0.22 3.58 0.32 0.165

133158-3 NBH F 0 0.28 0.15 0.14 0.14 0.15 3.62 0.58 0.3 0.29 4.015 0.44 ND

1 0.29 0.155 0.145 7.94 0.15 12.8 0.59 0.305 0.285 39.6 0.46 0.145

20 0.29 0.155 0.145 8.68 0.15 3.94 0.59 0.305 0.285 39.6 0.46 0.145

40 0.205 0.045 0.115 3.16 0.12 6.76 0.44 0.17 0.23 3.51 0.32 0.29

60 0.205 0.045 0.115 2.8 0.12 3.64 0.44 0.17 0.23 3.51 0.32 0.29

80 0.205 0.04 0.115 7.52 0.12 3.57 0.425 0.17 0.22 3.58 0.32 0.165

Term 0.205 0.04 0.115 0.085 0.12 3.47 0.425 0.17 0.22 3.58 0.32 0.165

133158-5 NBH F 0 0.28 0.15 0.14 0.14 0.15 3.54 0.58 0.3 0.29 25.36 0.44 ND

1 0.29 0.155 0.145 18.36 0.15 3.94 0.59 0.305 0.285 62.15 0.46 0.145

20 0.29 0.155 0.145 47.1 0.15 5.42 0.59 0.305 0.285 3.3 0.46 0.145

40 0.205 0.045 0.115 22.17 0.12 3.83 0.44 0.17 0.23 3.51 0.32 0.29

60 0.205 0.045 0.115 23.62 0.12 0.22 0.44 0.17 0.23 3.51 0.32 0.29

80 0.205 0.04 0.115 23.5 0.12 0.21 0.425 0.17 0.22 3.58 0.32 0.165

136540-1 NBH F 0 0.18 0.045 0.11 10.6 0.12 2.78 0.445 0.175 0.215 117.39 0.315 0.155

1 0.18 0.045 0.11 0.08 0.12 27.97 0.445 0.175 0.215 2.885 0.315 0.155

20 0.18 0.045 0.11 0.08 0.12 3.34 0.445 0.175 0.215 2.885 0.315 0.155

40 0.18 0.045 0.11 0.08 0.12 5.24 46.32 0.175 0.215 94.54 0.315 0.155

136540-2 NBH F 0 0.18 0.045 0.11 16.55 0.12 7.19 0.445 0.175 0.215 2.885 0.315 0.155

1 0.18 1.83 0.11 23.88 0.12 11.06 0.445 0.175 0.215 2.885 3.8 0.155

20 0.18 0.045 0.11 36.97 0.12 29.18 0.445 0.175 0.215 2.885 0.315 0.155

40 0.18 0.045 0.11 26.18 0.12 27.2 0.445 0.175 0.215 2.885 0.315 0.155

60 0.2 0.05 0.115 31.49 0.12 17.33 0.44 0.17 0.22 60.68 0.32 0.145
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Cytokine Data (Serum)

Animal ID TX Grp M/F DPI GM-CSF IFN-ϒ IL-1β IL-2 IL-4 IL-5 IL-6 IL-12p70 IL-13 IL-18 TNF-α IL-10

141158 LPS M n/a 0.2 0.05 0.115 0.09 0.12 10.15 8.46 0.17 0.22 3.315 7.09 0.145

140726 LPS F n/a 0.2 0.88 2.36 0.09 0.12 29.69 160.17 5.93 0.22 64.51 29.41 19.04

133707-1 RML M 0 0.28 0.15 0.14 0.14 0.15 0.3 0.58 0.3 0.29 4.015 0.44 ND

1 0.29 0.155 0.145 27.21 0.15 0.305 0.59 0.305 0.285 122.17 0.46 0.145

20 0.29 0.155 0.145 34.32 0.15 0.305 0.59 0.305 0.285 81.66 0.46 0.145

40 0.205 0.045 0.115 21.78 0.12 0.22 0.44 0.17 0.23 72.04 0.32 0.29

60 0.205 0.045 0.115 27.02 0.12 5.79 0.44 0.17 0.23 56.35 0.32 0.29

80 0.205 0.04 0.115 30.42 0.12 0.21 0.425 0.17 0.22 3.58 0.32 0.165

133707-2 RML M 0 0.28 0.15 0.14 4.48 0.15 0.3 0.58 0.3 0.29 4.015 0.44 ND

1 0.29 0.155 0.145 31.12 0.15 8.6 0.59 0.305 0.285 74.12 0.46 0.145

20 0.29 0.155 0.145 38.81 0.15 0.305 0.59 0.305 0.285 66.24 0.46 0.145

40 0.205 0.045 0.115 13.94 0.12 2.64 0.44 0.17 0.23 72.04 0.32 0.29

60 0.205 0.045 0.115 12.84 0.12 4.91 0.44 0.17 0.23 74.54 0.32 0.29

80 0.205 0.04 0.115 5.88 0.12 2.74 0.425 0.17 0.22 84.43 0.32 0.165

133707-4 RML M 0 0.28 0.15 0.14 0.14 0.15 0.3 0.58 0.3 0.29 4.015 0.44 ND

1 0.29 0.155 0.145 0.13 0.15 3.94 0.59 0.305 0.285 3.3 0.46 0.145

20 0.29 0.155 0.145 40.47 0.15 5.13 0.59 0.305 0.285 157.65 0.46 0.145

40 0.205 0.045 0.115 18.54 0.12 4.03 0.44 0.17 0.23 81.91 0.32 0.29

60 0.205 0.04 0.115 4.98 0.12 2.53 0.425 0.17 0.22 100.63 0.32 0.165

134097-1 RML M 0 0.28 0.15 0.14 1.56 0.15 0.3 0.58 0.3 0.29 4.015 0.44 ND

1 0.29 0.155 0.145 28.62 0.15 0.305 0.59 0.305 0.285 197.8 0.46 0.145

20 0.29 0.155 0.145 56.51 0.15 0.305 0.59 0.305 0.285 95.94 0.46 0.145

40 0.205 0.045 0.115 37.92 0.12 0.22 15.07 0.17 0.23 122.65 0.32 0.29

60 0.205 0.04 0.115 25.42 0.12 0.21 0.425 0.17 0.22 82.05 0.32 0.165

134097-2 RML M 0 0.28 0.15 0.14 0.14 0.15 0.3 0.58 0.3 0.29 4.015 0.44 ND

1 0.29 0.155 0.145 8.68 0.15 0.305 0.59 0.305 0.285 3.3 0.46 0.145

20 0.29 0.155 0.145 2.22 0.15 0.305 0.59 0.305 0.285 3.3 0.46 0.145

40 0.205 0.045 0.115 3.52 0.12 0.22 0.44 0.17 0.23 3.51 0.32 0.29

60 0.205 0.04 0.115 3.19 0.12 0.21 0.425 0.17 0.22 3.58 0.32 0.165

80 0.205 0.04 0.115 5.05 0.12 0.21 0.425 0.17 0.22 3.58 0.32 0.165

Term 0.205 0.04 0.115 0.085 0.12 0.21 0.425 0.17 0.22 3.58 0.32 0.165
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Cytokine Data (Serum)

Animal ID TX Grp M/F DPI GM-CSF IFN-ϒ IL-1β IL-2 IL-4 IL-5 IL-6 IL-12p70 IL-13 IL-18 TNF-α IL-10

141158 LPS M n/a 0.2 0.05 0.115 0.09 0.12 10.15 8.46 0.17 0.22 3.315 7.09 0.145

140726 LPS F n/a 0.2 0.88 2.36 0.09 0.12 29.69 160.17 5.93 0.22 64.51 29.41 19.04

134097-3 RML M 0 0.28 0.15 0.14 0.14 0.15 0.3 0.58 0.3 0.29 4.015 0.44 ND

1 0.29 0.155 0.145 0.13 0.15 0.305 0.59 0.305 0.285 3.3 0.46 0.145

20 0.29 0.155 0.145 0.13 0.15 0.305 0.59 0.305 0.285 3.3 0.46 0.145

40 0.205 0.045 0.115 0.09 0.12 2.64 0.44 0.17 0.23 3.51 0.32 0.29

60 0.205 0.79 0.115 0.085 0.12 0.21 0.425 0.17 0.22 3.58 0.32 0.165

80 0.205 0.04 0.115 0.085 0.12 0.21 0.425 0.17 0.22 3.58 0.32 0.165

Term 0.205 0.04 0.115 0.085 0.12 0.21 0.425 0.17 0.22 3.58 0.32 0.165

134097-4 RML M 0 0.28 0.15 0.14 0.72 0.15 0.3 0.58 0.3 0.29 4.015 0.44 ND

1 0.29 0.155 0.145 6.31 0.15 0.305 0.59 0.305 0.285 3.3 0.46 0.145

20 0.29 0.155 0.145 21.63 0.15 0.305 0.59 0.305 0.285 3.3 0.46 0.145

40 0.205 0.045 0.115 19.29 0.12 0.22 0.44 0.17 0.23 3.51 0.32 0.29

60 0.205 0.04 0.115 16.55 0.12 0.21 0.425 0.17 0.22 3.58 0.32 0.165

80 0.205 0.04 0.115 13.93 0.12 0.21 0.425 0.17 0.22 3.58 0.32 0.165

Term 0.205 0.04 0.115 0.085 0.12 0.21 0.425 0.17 0.22 3.58 0.32 0.165

136539-1 RML M 0 0.18 0.045 0.11 0.08 0.12 0.21 0.445 0.175 0.215 2.885 0.315 0.155

1 0.18 0.045 0.11 0.08 0.12 4.44 0.445 0.175 0.215 2.885 0.315 0.155

20 0.18 0.045 0.11 11.69 0.12 2.49 0.445 0.175 0.215 2.885 0.315 0.155

40 0.18 0.045 0.11 3.29 0.12 3.62 0.445 0.175 0.215 2.885 0.315 0.155

60 0.2 0.05 0.115 7.24 0.12 5.77 0.44 0.17 0.22 56.75 0.32 0.145

80 0.2 0.05 0.115 8.89 0.12 4.76 0.44 0.17 0.22 30.19 0.32 0.145

Term 4.08 0.05 2.04 3.61 0.12 4.76 0.44 0.17 0.22 102.32 0.32 0.145

136539-2 RML M 0 0.18 0.045 0.11 1.9 0.12 3.06 0.445 0.175 0.215 2.885 0.315 0.155

1 0.18 0.045 0.11 7.83 0.12 3.06 0.445 0.175 0.215 2.885 0.315 0.155

20 0.18 0.045 0.11 8.67 0.12 0.21 0.445 0.175 0.215 2.885 0.315 0.155

40 0.18 0.045 0.11 3.52 0.12 0.21 0.445 0.175 0.215 2.885 0.315 0.155

136539-3 RML M 0 0.18 0.045 0.11 41.03 0.12 6.55 0.445 0.175 0.215 79.39 0.315 0.155

1 0.18 0.045 0.11 17.59 0.12 0.21 0.445 0.175 0.215 2.885 0.315 0.155

20 0.18 0.045 0.11 36.28 0.12 3.89 0.445 0.175 0.215 49.63 0.315 0.155

40 0.18 0.045 0.11 23 0.12 0.21 0.445 0.175 0.215 34.64 0.315 0.155
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Cytokine Data (Serum)

Animal ID TX Grp M/F DPI GM-CSF IFN-ϒ IL-1β IL-2 IL-4 IL-5 IL-6 IL-12p70 IL-13 IL-18 TNF-α IL-10

141158 LPS M n/a 0.2 0.05 0.115 0.09 0.12 10.15 8.46 0.17 0.22 3.315 7.09 0.145

140726 LPS F n/a 0.2 0.88 2.36 0.09 0.12 29.69 160.17 5.93 0.22 64.51 29.41 19.04

134908-1 RML F 0 0.28 0.15 0.14 0.92 0.15 0.3 0.58 0.3 0.29 4.015 0.44 ND

1 0.29 0.155 0.145 28.46 0.15 0.305 0.59 0.305 0.285 3.3 0.46 0.145

20 0.29 0.155 0.145 63.95 0.15 7.74 0.59 0.305 0.285 3.3 0.46 0.145

40 0.205 0.045 0.115 37.15 0.12 10.97 0.44 0.17 0.23 3.51 0.32 0.29

60 0.205 0.04 0.115 24.24 0.12 4.18 0.425 0.17 0.22 3.58 0.32 0.165

80 0.205 0.04 0.115 25.99 0.12 3.37 0.425 0.17 0.22 3.58 0.32 0.165

134098-2 RML F 0 0.28 0.88 0.14 0.14 0.15 1.52 0.58 0.3 0.29 4.015 0.44 ND

1 0.29 0.155 0.145 0.13 0.15 0.305 0.59 0.305 0.285 3.3 0.46 0.145

20 0.205 0.045 0.115 4.25 0.12 20.73 0.44 0.17 0.23 42.15 0.32 25.06

40 0.205 10.05 0.115 4.46 0.12 22.77 10.77 0.17 0.23 3.51 0.32 28.07

60 0.205 8.54 0.115 6.92 0.12 16.65 0.425 0.17 0.22 42.96 0.32 0.165

80 0.205 7.32 0.115 6.35 0.12 10.17 0.425 0.17 0.22 3.58 0.32 3.53

Term 0.18 10.41 0.11 17.46 0.12 13.23 0.445 0.175 0.215 2.885 0.315 0.155

134098-3 RML F 0 0.28 0.15 0.14 0.14 0.15 1.44 0.58 0.3 0.29 4.015 0.44 ND

1 0.29 0.155 0.145 0.13 0.15 0.305 0.59 0.305 0.285 3.3 0.46 0.145

20 0.205 0.045 0.115 0.09 0.12 0.22 0.44 0.17 0.23 3.51 0.32 0.29

40 0.205 0.045 0.115 0.09 0.12 2.64 0.44 0.17 0.23 3.51 0.32 0.29

60 0.205 0.04 0.115 0.085 0.12 7.14 0.425 0.17 0.22 3.58 0.32 0.165

80 0.205 1.13 0.115 0.085 0.12 7.14 0.425 0.17 0.22 3.58 0.32 0.165

Term 0.205 0.04 0.115 0.085 0.12 0.21 0.425 0.17 0.22 3.58 0.32 0.165

134098-4 RML F 0 0.28 0.15 0.14 0.14 0.15 1.4 0.58 0.3 0.29 4.015 2.09 ND

1 0.29 0.155 0.145 31.07 0.15 12.8 0.59 0.305 0.285 3.3 0.46 0.145

20 0.205 0.045 0.115 16.96 0.12 5.21 0.44 0.17 0.23 3.51 0.32 0.29

40 0.205 0.045 0.115 25.2 0.12 6.28 0.44 0.17 0.23 3.51 0.32 0.29

60 0.205 0.04 0.115 20.77 0.12 6.94 0.425 0.17 0.22 3.58 0.32 0.165

80 0.205 0.04 0.115 28.79 0.12 0.21 0.425 0.17 0.22 3.58 0.32 0.165

Term 0.18 0.045 0.11 0.08 0.12 0.21 0.445 0.175 0.215 2.885 0.315 0.155
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Cytokine Data (Serum)

Animal ID TX Grp M/F DPI GM-CSF IFN-ϒ IL-1β IL-2 IL-4 IL-5 IL-6 IL-12p70 IL-13 IL-18 TNF-α IL-10

141158 LPS M n/a 0.2 0.05 0.115 0.09 0.12 10.15 8.46 0.17 0.22 3.315 7.09 0.145

140726 LPS F n/a 0.2 0.88 2.36 0.09 0.12 29.69 160.17 5.93 0.22 64.51 29.41 19.04

134098-5 RML F 0 0.28 0.15 0.14 0.14 0.15 0.3 0.58 0.3 0.29 21.84 0.44 ND

1 0.29 0.155 0.145 16.45 0.15 6.01 0.59 0.305 0.285 95.94 0.46 0.145

20 0.205 0.045 0.115 24.16 0.12 7.44 0.44 0.17 0.23 116.19 0.32 7.84

40 0.205 0.045 0.115 13.91 0.12 6.37 0.44 0.17 0.23 75.79 0.32 0.29

60 0.205 0.04 0.115 9.23 0.12 3.37 0.425 0.17 0.22 48.65 0.32 0.165

80 0.205 0.04 0.115 23.3 0.12 6.56 0.425 0.17 0.22 3.58 0.32 0.165

Term 0.18 0.045 0.11 0.08 0.12 7.19 17.82 0.175 0.215 2.885 0.315 0.155

135588-2 RML F 0 0.28 0.15 0.14 1.24 0.15 1.68 0.58 0.3 0.29 4.015 0.44 ND

1 0.29 0.155 0.145 12.15 0.15 0.305 0.59 0.305 0.285 3.3 0.46 0.145

20 0.205 0.045 0.115 20.65 0.12 5.69 0.44 0.17 0.23 3.51 0.32 0.29

40 0.205 0.045 0.115 18.35 0.12 5.21 0.44 0.17 0.23 3.51 0.32 0.29

60 0.205 0.04 0.115 17.58 0.12 2.95 0.425 0.17 0.22 3.58 0.32 0.165

135588-4 RML F 0 0.28 0.15 0.14 0.8 0.15 2.39 0.58 0.3 0.29 18.06 2.09 ND

20 0.205 0.045 0.115 2.61 0.12 0.22 0.44 0.17 0.23 3.51 0.32 0.29

40 0.205 0.045 0.115 1.08 0.12 11.07 0.44 0.17 0.23 53.61 0.32 0.29

60 0.205 0.04 0.115 0.085 0.12 5.38 0.425 0.17 0.22 42.96 0.32 0.165

80 0.205 0.79 0.115 0.085 0.12 0.21 0.425 0.17 0.22 3.58 0.32 0.165

136550-1 RML F 0 0.18 0.045 0.11 18.68 0.12 0.21 0.445 0.175 0.215 2.885 0.315 0.155

1 0.18 0.045 0.11 13.14 0.12 7.32 0.445 0.175 0.215 2.885 0.315 0.155

20 0.18 0.045 0.11 22.88 0.12 16.54 0.445 0.175 0.215 2.885 0.315 0.155

40 0.18 0.045 0.11 9.23 0.12 4.97 0.445 0.175 0.215 60.89 0.315 0.155

60 0.2 0.05 0.115 10.3 0.12 5.77 0.44 0.17 0.22 56.75 0.32 0.145

136550-2 RML F 0 0.18 0.045 0.11 9.31 0.12 7.19 0.445 0.175 0.215 2.885 0.315 0.155

1 0.18 0.045 0.11 11.02 0.12 4.17 0.445 0.175 0.215 2.885 0.315 0.155

20 0.18 0.045 0.11 10.02 0.12 4.97 0.445 0.175 0.215 2.885 0.315 0.155

40 0.18 0.045 0.11 14.74 0.12 2.49 0.445 0.175 0.215 2.885 0.315 0.155

60 0.2 0.05 0.115 5.19 0.12 2.67 0.44 0.17 0.22 3.315 0.32 0.145

80 0.2 0.05 0.115 10.22 0.12 4.5 0.44 0.17 0.22 3.315 0.32 0.145

136550-3 RML F 0 0.18 0.045 0.11 7.57 0.12 0.21 0.445 0.175 0.215 2.885 0.315 0.155

1 0.18 0.045 0.11 6.38 0.12 3.06 0.445 0.175 0.215 2.885 0.315 0.155

20 0.18 0.045 0.11 12.53 0.12 4.71 0.445 0.175 0.215 2.885 0.315 0.155

40 0.2 0.05 0.115 6.81 0.12 7.25 0.44 0.17 0.22 44.26 0.32 0.145

136550-4 RML F 0 0.18 0.045 0.11 15.02 0.12 3.62 0.445 0.175 0.215 2.885 0.315 0.155

1 0.18 0.045 0.11 7.14 0.12 0.21 0.445 0.175 0.215 2.885 0.315 0.155

20 0.18 0.045 0.11 12.46 0.12 0.21 0.445 0.175 0.215 2.885 0.315 0.155

40 0.2 0.05 0.115 20.87 0.12 8.71 0.44 0.17 0.22 117.75 0.32 0.145
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Table 1 (sB): Cytokine Trends - Brain 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cytokine Data (Brain)

Animal ID TX Grp M/F DPI GM-CSF IFN-ϒ IL-1β IL-2 IL-4 IL-5 IL-6 IL-12p70 IL-13 IL-18 TNF-α IL-10

141158 LPS M n/a 0.2 0.05 4.28 3.36 0.12 0.22 0.44 0.17 0.22 421.18 0.32 47.62

140726 LPS F n/a 0.2 0.05 4.79 2.71 0.12 0.22 0.44 0.17 0.22 335.1 0.32 33.17

133157-5 NBH M 40 0.2 0.05 0.115 0.09 0.12 0.22 0.44 0.17 0.22 504.64 0.32 44.87

133157-4 NBH M 60 0.2 0.05 0.115 0.09 0.12 0.22 0.44 0.17 0.22 3.315 0.32 0.145

133157-3 NBH M 80 0.2 0.05 0.115 0.09 0.12 0.22 0.44 0.17 0.22 3.315 0.32 0.145

133157-1 NBH M 158 0.2 0.05 0.115 0.09 0.12 0.22 0.44 0.17 0.22 3.315 0.32 0.145

133157-2 NBH M 158 0.2 0.05 0.115 0.09 0.12 0.22 0.44 0.17 0.22 3.315 0.32 0.145

136540-1 NBH F 40 0.2 0.05 0.115 0.09 0.12 0.22 0.44 0.17 0.22 3.315 0.32 0.145

136540-2 NBH F 60 0.2 0.05 0.115 0.09 0.12 0.22 0.44 0.17 0.22 3.315 0.32 0.145

133158-5 NBH F 80 0.2 0.05 0.115 0.09 0.12 0.22 0.44 0.17 0.22 3.315 0.32 0.145

133158-1 NBH F 158 0.2 0.05 0.115 0.09 0.12 0.22 0.44 0.17 0.22 3.315 0.32 0.145

133158-3 NBH F 158 0.2 0.05 0.115 0.09 0.12 0.22 0.44 0.17 0.22 3.315 0.32 0.145

136539-2/136539-3 RML M 40 0.2 0.05 0.115 0.09 0.12 0.22 0.44 0.17 0.22 3.315 0.32 0.145

133707-4/134097-1 RML M 60 0.2 0.05 0.115 0.09 0.12 0.22 0.44 0.17 0.22 3.315 0.32 0.145

133707-1/133707-2 RML M 80 0.2 0.05 0.115 0.09 0.12 0.22 0.44 0.17 0.22 3.315 0.32 0.145

134097-2 RML M 120 0.2 0.05 0.115 0.09 0.12 0.22 0.44 0.17 0.22 3.315 0.32 0.145

136539-1 RML M 121 0.2 1.71 0.115 6.36 0.12 0.22 0.44 0.17 4.81 478.03 0.32 44.87

134097-4 RML M 128 0.2 0.05 0.115 0.09 0.12 0.22 0.44 0.17 0.22 3.315 0.32 0.145

134907-3 RML M 144 0.2 0.05 0.115 0.09 0.12 0.22 0.44 0.17 0.22 3.315 0.32 0.145

136550-3/136550-4 RML F 40 0.2 0.05 0.115 0.09 0.12 0.22 0.44 0.17 0.22 3.315 0.32 0.145

135588-2/136550-1 RML F 60 0.2 0.05 0.115 0.09 0.12 0.22 0.44 0.17 0.22 3.315 0.32 0.145

135588-4/136550-2 RML F 80 0.2 0.05 0.115 0.09 0.12 0.22 0.44 0.17 0.22 3.315 0.32 0.145

134908-3 RML F 100 0.2 0.05 0.115 0.09 0.12 0.22 0.44 0.17 0.22 3.315 0.32 0.145

134098-5 RML F 100 0.2 0.05 0.115 0.09 0.12 0.22 0.44 0.17 0.22 3.315 0.32 0.145

134098-4 RML F 111 0.2 0.05 0.115 0.09 0.12 0.22 0.44 0.17 0.22 3.315 0.32 0.145
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Histopathology:  

 

A.  B.  

 

C.   D.  

 

(Figure 16—Supplementary): GFAP—Low Magnification Images 

Same images and mice as Figure 16 viewed here at low-power magnification to illustrate GFAP 

staining in the medulla at the level of the cerebellar peduncles. Intensity of GFAP staining is less 

in NBH-inoculated mice (A & B) compared with what was observed in RML-inoculated mice (C 

& D).   

 

 

 

 

 

 


