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ABSTRACT

THE DISTRIBUTION OF LOTIC INSECT TRAITS IN RELATIONTO REFERENCE
CONDITIONS AND PROJECTED CLIMATE CHANGE IN THE WEERN UNITED

STATES

The use of species traits (e.qg., life history, nhofpgical, physiological, or ecological
characteristics of an organism) to describe comtyuasponses to environmental change has
become a common practice in stream ecosystemspw@h900 papers describing
macroinvertebrate trait-environment relationshipstreams. The use of traits provides some
advantages over traditional taxonomic metrics, @scproviding a mechanistic link between an
organism and its environment, but also presentesdrallenges, such as many traits being
correlated with other traits and multiple enviromta variables. Various methods have been
recommended to address these challenges, sucingswdtiple traits, posing priori
hypotheses, and evaluating streams across largedsggales. The vast majority of studies have
not incorporated these recommendations, howeveicpiarly in North America. My research
had two general objectives: 1) describe the dontitrait-environmental relationships in natural
streams in the western United States and 2) uselistioct traits-based methods to evaluate how
stream aquatic insect communitae currently distributed in terms of multiple enovimental
variables and how species and communities may nelsfgoclimate change.

Traits are often used to evaluate the ecologit¢agity of streams and a baseline
understanding of agquatic insect trait-environmetdtronships is needed for the western United

States. | used logistic regression, multinomigression, and redundancy analysis to explore the



relationships between 20 trait distributions ancB@ironmental variables in 253 least-disturbed
streams across 12 western states. Traits hadrdmgest relationships with regional climate and
local stream habitat conditions (e.g., air tempegggtconductivity, mean annual runoff) rather
than elevation, land use, or measures of extrerdeological events. Traits such as thermal
tolerance, size, swimming strength, rheophily, medtn, and armoring exhibited strong
relationships with the environmental data and wdodddeal for large-scale stream assessments.
Aquatic insect communities contain many taxa thatsgnsitive to temperature increases
and changes to runoff. Two traits, cold water @refice and erosional obligate (i.e., needs to
live in fast-water habitat) have been used in th&t o estimate the effect of climate change on
stream insect communities, but no study has acedunt both climatic and non-climatic effects
on these two traits. | developed a Bayesian padlyais describing how the distributions of
these two traits respond to multiple environmegtatients, not just temperature, and
discovered that the distribution of cold-adaptectaas strongly correlated with changes in air
temperature in the wet, cool ecoregions, but wataded with thermal buffers and refuges in
most dry, warm ecoregions, indicating that tempeeasensitive taxa are likely on the brink of
their thermal tolerance in those ecoregions. @sd approach to assess community sensitivity
to climate change is to determine the specificrtiaitolerance of each taxon individually. |
computed the thermal and stream runoff threshdidemmon stream taxa and compared the
World Climate Research Programme’s climate modatligtions to these thresholds. | found
that the stream communities most at risk to clinchi@nge were found in some dry ecoregions,
concurring with the previous results, and in wedrmw ecoregions with a high proportion of
spatially restricted and endemic taxa, such aheaontCalifornia. These two approaches

describe possible mechanisms of climate changstaesie and identify sensitive ecoregions.
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CHAPTER 1: THE USE OF MACROINVERTEBRATE TRAITS INQTIC SYSTEMS: A
SHORT REVIEW OF THE HISTORY OF TRAIT RESEARCH IN REAMS AND AN

ASSESSMENT OF STUDY CHARACTERISTICS

Summary

Traits-based descriptors of communities (e.g., @rogn of taxa in the community that
are small, breathe with gills, or are predators)ehgome distinct advantages over more
traditional taxonomic descriptors (e.g., proportadnndividuals in the community that are of the
genusBaetig. Traits provide a mechanistic, causal link betwbiology and environment, are
more spatially and temporally consistent, and hheeability to distinguish the effects of
multiple environmental variables on the stream camity. There are specific challenges that
arise from using traits-based approaches, howewduding correlations with other traits and
environmental variables, issues with trait assigmna@d trait designation, and trait tradeoffs.
These challenges can be mitigated by using multiples, multiple environmental variables,
multivariate statistical analysespriori predictions, the appropriate spatial scale, and
incorporating natural or near-natural stream comast Studies comparing aquatic insect trait
distributions to environmental conditions in streamave been around for almost 40 years.
Many of these studies have aimed to use traitibigions in an applied context by
discriminating the effect of human disturbance twaasn systems. | reviewed 905 trait studies in
lotic ecosystems and found that the majority ofi&si were conducted in small or medium
streams and found in one geo-political region, Ugdlae temperate climatic regions in North
America and Europe. The vast majority of studesiged on the Functional Feeding Group trait

and measures of human disturbance, possible fardessy and habitat or substrate



characteristics. Very few studies (6) incorporatezisuggested techniques (e.g., multiple traits,

multivariate statistics) to deal with the challea@é using traits.

Introduction

One of the fundamental goals of ecology is to cahend the underlying causes of
species distribution and abundance (Begon et 86200rganismal, population, community,
and ecosystem ecology have developed various agpedo address this goal, most
incorporating some component of species interastwith their abiotic or biotic environment
(Begon et al. 2006, McGill et al. 2006, but see bkIb2001). If an organism’s fitness, and
ultimately the evolutionary success of the spedgedetermined by its interactions with the
surrounding environment and other biota, then tigamism’s traits will arbitrate the effect of
those interactions. Traits are behavioral, morpgickl, physiological, or ecological
characteristics of an organism and can be contsuobaracteristics (e.g., size), but are often
defined categorically (e.g., small, medium, largéh each trait category referred to as a state.
Traits have long been important components of egcdb theory since the earliest developments
of ecology as a formal discipline. Statzner e{2001b) highlighted three historical and
theoretical pathways that integrated species tr&itst, early ecologists understood that traits
are constrained by environmental conditions antbgioal interactions (Forbes 1887, Steinmann
1907). Second, the relationship between a spaeigs and environmental conditions
determines the spatial and temporal niche in wthiehspecies can operate (Shelford 1913,
Grinnell 1917, Pearse 1926, Elton 1927). Thirdlysdemographic studies formalized the
concepts of growth and resource use and lead tootieept of traits-based ecological strategies,

such as the r-K concept by MacArthur and Wilsor6{)9 Statzner et al. (2001b) contended that



these three theoretical pathways culminated irh#iBtat template concept by Southwood (1977,
1988). Southwood argued that the spatial and temhpabitat provides a template that selects
for specific species traits and drives evolutidmaits and ecological strategies evolve from
organisms adapting to variations in habitat stabéind resource availability, resulting in
organisms sorted along environmental gradientsrdoggto their traits (Webb et al. 2010).
Species traits have long been an important compaietological theory, but traits
have traditionally been used in conjunction witkot@omy. For example, the traits of an
individual organism or a species may have been tessedaluate that organism’s fitness or
distribution. In this case, traits were an impotteomponent of the analysis, but the focus was
on the taxonomic unit. Recently, however, commulavel measures of traits have been
proposed as an alternative to taxonomic-based appes in community ecology (McGill et al.
2006), focusing on the distribution and abundariaecific traits or trait states in a community
instead of the distribution or fitness of a taxomoomit. The use of traits lieu of taxonomy is
appealing because it is theoretically groundedcéhentheory (Chase and Leibold 2003, McGilll
et al. 2006) and has the potential to develop a&maiversal theoretical understanding of
community composition. For example, while taxonogomposition in a community type, such
as stream systems, changes over a landscape deedmphic and evolutionary constraints,
traits are omnipresent by definition, and shouldrmee closely aligned to changes to
environmental conditions in streams. Thereforeymainity trait distributions should be similar
in streams or rivers with similar environmental dbions, irrespective of proximity between
sites. The one exception to this argument is teegnce of phylogenetically constrained traits,
traits found only in particular groups of taxa, whérait distributions become dependent on taxa

present in the community Poff et al. (2006). Bl general application of phylogenetically



unconstrained traits would allow for the possipibf predicting community responses along
existing gradients of environmental conditionsmnéw environmental conditions facilitated by
anthropogenic disturbance, climate change, oritaxasion, irrespective of the specific
taxonomic designations. McGill et al. proposed ttoncept in 2006, but traits have been used in
this fashion in streams for over 40 years.

Early examples exist of trait usage in stream aepglparticularly with feeding groups
(e.g., Nelson and Scott 1962, Minshall 1967) amoic pollution tolerance (e.g., Kolkwitz and
Marsson 1909), but the formalized use of commuleitygl, traits-based analyses in stream
ecosystems stems from two distinct developmengsr@am ecology. The first was the
development of functional feeding groups (FFG) by Cummins (Cummins 1973, Cummins
and Klug 1979) and their incorporation into thedttetical framework of the River Continuum
Concept (RCC; Vannote et al. 1980). Taxa wereggassi to functional feeding groups based on
mouth morphology and food acquisition and wereudel in the first edition o&An introduction
to the aquatic insects of North Ameri@derritt and Cummins 1978), which became the stathd
text in aquatic insect identification for North Anea and many other parts of the world. The
RCC incorporated Southwood’s ideas into streanesystand predicted distributions of FFGs
along a stream continuum, from small, heavily sdasteeams to large, open rivers. Thus, FFGs
and the RCC provided the first widely availablettdatabase and the first specific, theoretiaal,
priori predictions to test trait-environmental relatiapshn streams. The 1980s saw a series of
studies that tested RCC predictions of FFG distigmg, particularly predictions related to
stream order (e.g., Hawkins and Sedell 1981, Mantcéal. 1985, Bruns et al. 1987), habitat
type (e.g., Benke et al. 1984, Huryn and Wallad&7).9and food availability/distribution (e.g.,

Hawkins et al. 1982, Cowan and Oswood 1984, McDbarel Naiman 1986, Dudgeon 1989).



Studies also began to look at the influence ofrapthgenic disturbance on functional feeding
group distributions (e.g., Hawkins et al. 1982, Hatieff et al. 1984, Specht et al. 1984, Rabeni
et al. 1985). Functional Feeding Groups also becamintegral component in U.S. stream
bioassessment protocols (Plafkin et al. 1989, Barkbbal. 1999) and the use of FFG in
conjunction with taxonomic metrics in bioassessnm&atcommon practice today, often used in
a univariate fashion, tracking the response ohglsitrait-state to a single environmental
stressor.

The second development that expanded and formatlmeedse of traits in streams was
the adaptation of Southwood’s habitat templaterhémstream disturbance by Townsend and
Hildrew (1994), which made specific theoreticalgiotions about trait distributions in streams
according to a spatial and temporal disturbancekati® (see also Poff and Ward 1990). The
habitat concept was further adapted to the straatistream systems by Poff (1997), filtering
the regional species pool according to the intevastbetween traits and the hierarchical
structure of streams. These papers provided aetieal framework to test priori hypotheses
about trait distributions according to variatiomiatural environmental conditions as well as
anthropogenic influences. The theoretical develamshat this time focused on detecting the
responses of multiple traits to multiple naturad amthropogenic disturbance gradients.
Additionally, multiple trait databases were devedmluring this time period (e.g., Tachet et al.
1991, Thorp and Covich 1991, Moog 1995, Merritt @&uwmmins 1996, Tachet et al. 2000, Poff
et al. 2006), making trait data more accessibleeorfetical underpinnings and abundant trait
data provided ideal conditions for an explosiotrait research and applications to stream

bioassessment.



Townsend and Hildrew’s application of the habiahplate was first tested in New
Zealand (Scarsbrook and Townsend 1993, Townseald E297) and along the Rhéne River in
Europe (Juget and Lafont 1994, Marmonier et al418&sh et al. 1994, Richoux 1994, Tachet
et al. 1994, Usseglio-Polatera 1994, Usseglio-Batnd Tachet 1994). While these multi-trait,
often multivariate, analyses had mixed resultsyéisearchers from the 1994 Rhéne study began
to test the merits of applying traits-based mettackioassessment techniques. Charvet et al.
(1998) and Dolédec et al. (1999) compared traitsetanetrics to more traditional taxonomic
metrics in small regional systems in Europe anchdothat traits-based metrics performed as
well or better than taxonomic metrics, indicatihgtttraits may be a more effective
bioassessment tool. The next step in applyintsttaased metrics to bioassessment was to
determine how traits respond to environmental grasiin natural or semi-natural streams,
establishing a baseline understanding of traitibistions against which anthropogenic
disturbances may be judged. Charvet et al. (28863ssed environment-trait relationships and
trait stability across sites in semi-natural Freattkams and Statzner et al. (2001a, 2005)
expanded this research to least-impacted or ng¢aratgtreams across Europe. From these
baseline studies, more recent studies have foauséke impact of various forms of disturbance
on the trait composition of stream communities undpe and New Zealand (e.g., Gayraud et al.
2003, Bonada et al. 2006, Dolédec et al. 2006, ifetal. 2006, Bonada et al. 2007b, Dolédec
and Statzner 2008, Statzner et al. 2008, Dolédak 2011, Feio and Dolédec 2012). This
multi-trait approach has been used, to lesser gxteNorth America (e.g., Richards et al. 1997,
Finn and Poff 2005, Béche et al. 2006, Griswoldle2008, Tullos et al. 2009), although the

majority of these studies have covered small areaglly within a single ecoregion or state.



These two developmental pathways of trait rese@rstreams has resulted in two
distinct approaches in stream bioassessment, diyariate approach incorporating one or two
traits, usually as a small part of an overall bsegsment index, and 2) an often standalone traits-
based bioassessment, incorporating multiple teatsmultiple environmental gradients, often
assessed using multivariate statistics. Traite@dasmmunity ecology research in streams has
recently been reviewed by multiple authors, althoompst reviews focus solely on the
multivariate, multiple trait development proces€urope. Wallace and Webster (1996)
summarized the then current theoretical underpgsof functional feeding group distribution,
Resh and Rosenberg (2010) highlighted the developaral use of traits in life history research,
and Statzner and Béche (2010) discussed techmsipatts of trait research in streams (e.g.,
development of trait databases, trait syndromasntamic resolution, etc.). Finally, Menezes et
al. (2010), Dolédec and Statzner (2010), and Cuih. €2011) reviewed the major steps in
developing traits-based analyses as a tool to moaitd assess stream health. Each review has
provided a unique contribution to trait researcktieams, often reviewing the theoretical
constructs of traits-based stream research, maj@ldpments, and a selection of examples.
But, no review has attempted to provide a comprsiiercoverage of trait research in streams,
accounting for all papers using traits as indicatdrenvironmental change in stream systems,
particularly the univariate FFG approach, which basome prevalent in stream ecology
research, not just bioassessment. | have collestex published paper that has used
macroinvertebrate traits in a community-level assesnt of stream ecosystems. My goal with
this data is to understand: 1) when and where thteskes have occurred, 2) what traits have
been used, 3) what environmental gradients have b&ed, 4) how have these relationships be

analyzed, 5) what deficiencies there are in ourewstdnding of trait research, and 6) what has



been learned (i.e., what trait-environment relaiops have been detected in stream systems).
The purpose of this review is to study the ‘dempbres’ of stream trait studies, dealing with
points 1, 2, 3, 4, and part of point five aboven alditional forthcoming review will deal with

point 6: the results of these studies, what has esgned.

Advantages, challenges, and recommendations of ttaesearch in streams

Previous reviews of trait research in streams laagaed that traits-based research and
bioassessment provides a series of distinct adgestaver more traditional taxonomic-based
research and bioassessment. They also acknowadigels challenges to trait research and

make recommendations to deal with those challenges.

Traits provide the following advantages over triadial taxonomic metrics:

1. A mechanistic, causal link between biology and emment(Culp et al. 2011). This

causal relationship would allow for speciéiqriori predictions of community response
to natural and anthropogenic disturbance (DolédecStiatzner 2010).

2. Spatial and temporal consistenciraits occur in each taxon, but a specific tason

constrained by geographic and temporal limitationsus, traits-based metrics can be
applied across regions, while many taxonomic-basetlics cannot (Dolédec and
Statzner 2010, Culp et al. 2011)

3. Ability to distinguish multiple environmental vabkes, including multiple anthropogenic

stressorgFeio and Dolédec 2012), with greater detectiors#ity to mild impairment

than taxonomic metrics (Culp et al. 2011).



Challenges from a traits-based approach include:

1. Disentangling a true trait-environment relationsigm correlations with other traits and

environmental variable@Culp et al. 2011). Traits may be correlated tigto

physiological constraints, similar responses tosdo@e environment gradient,
evolutionary history, or through a trait syndronf&yndromes are groups of traits that
may respond, in concert, to an environmental stres&dditionally, an environmental
variable may be correlated with or only a comporérhe true environmental condition
eliciting a trait response. Trait and environméntarelations may lead to the use of
variables tangentially related to a true trait-eonment relationship and possibly
reducing the predictive power (Chessman 2012).

2. Trait assignment Most macroinvertebrate trait databases are odteg and do not

capture trait variation within the genus or spe¢@glp et al. 2011). A fuzzy coding
approach (Chevenet et al. 1994) attempts to adthissgroblem by assigning multiple
trait states proportionally to taxa. For examglegxon consumes detritus as an early
instar, but adopts a predatory lifestyle as a nedanva, then each record of this larva in
a dataset would be partitioned into the two feedjrayps based on established
proportions, such as 40% detritivore and 60% paedathe fuzzy approach is
advantageous if the intra-taxon trait state vaorais static or linked to physiology or life
history development and not environmental gradjdnisit requires detailed life history
knowledge of each taxon, unavailable in most pafrtee world. If intra-taxon trait state
variability is correlated to an environmental cdiuis, then the fuzzy approach may be

as inaccurate as a binary assignment (i.e., eaoh &ssigned a single trait state).



3. Trait designation Some traits cannot be easily binned into categar are often

misapplied. For example, Resh and Rosenberg (38i6) out that functional feeding
groups were originally based on mouthpart morphplgd method of food acquisition.
Many studies now assign functional feeding grougeseld on food type, which may or
may not correspond with mouthpart morphology, rasgilin a possible misapplication of
the original trait. Additionally, they point outdat many macroinvertebrates are
omnivores and cannot be easily assigned a fundtieading group (Mihuc 1997). Taxa
are often broken in to 4-5 functional groups, saslpredators, shredders, grazers, or
collectors of detritus. If a taxon is a true onore, it would not adequately belong in any
of the trait states.

4. Trait tradeoffs Multiple traits may provide solutions to a fitisesonstraint imposed by an
organism’s environment, but an organism may natnparate all traits due to
physiological or evolutionary constraints, resugtin a trait tradeoff. In trait syndromes,
described above, multiple traits work togethemirease fitness under particular
environmental conditions. Thus, most taxa woulslsgess that particular syndrome and
community-level measures of trait abundance woeliéct that syndrome’s dominance.
Traits involved in a trait tradeoff also increagadss under particular environmental
conditions, but no single trait may become domirsamte different organisms employ
different traits to survive. In such cases, tlagdrmay not be correlated and attempts to
measure the strength of single trait-environmelatimnships may be confounded, where
no single trait exhibits a strong correlative nelaship with that environmental condition

(Menezes et al. 2010).
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Recommendations to deal with challenges:

1. Use multiple traits Since traits are often correlated or may exfbieoffs, it has been

argued that a multiple traits should be used tly ftdpture a community’s response to an
environmental gradient (Menezes et al. 2010, S¢gatand Béche 2010, Verberk et al.
2013).

2. Use multiple environmental variable3raits simultaneously interact with multiple

environmental variables. For example, stream egpcddtheory posits that prevalence of
multivoltinism (having more than one generation year) should be related to
temperature, latitude, stream nutrients, pH, las® atream flashiness, drought, substrate
size, stream scouring, and predation intensityingJsultiple environmental variables in
an analysis gives the ability tease out the mostidant relationships from multiple
natural and anthropogenic stressors (Menezes 20HD).

3. Use multivariate statistical analyseshis approach accounts for multiple trait-

environment relationships (Culp et al. 2011) anckgithe ability to detect the strongest
trait-environment relationships.

4. Establishment of specifi& priori predictions The complex interactions between

multiple traits with multiple environmental gradtsrcan result in a single trait
responding to many different environmental gradieristablishment & priori
predictions based on ecological theory will allaw & mechanistic understanding of trait
responses (Statzner and Béche 2010), however madigs conduct a mogela carte
approach, using every trait available, resultinghiemy correlatins, but few explanations.

5. Use appropriate spatial scal®ne of the major debates concerning trait ustream

bioassessment has revolved around what appropaates should be used to build traits-

11



based bioassessment tools. Much of this developmé&iurope has been based on the
assumption that trait distributions are similatgast-impacted streams across ecoregions
and even continents (Bonada et al. 2007a, StasmmteBéche 2010). If this is true then a
single , universal bioassessment protocol coulddweloped for a nations or continent
(Statzner and Béche 2010). This veiwpoint hasniicbeen challenged, however, with
some evidence that trait distributions are cons¢idiat the scale of ecoregions (Poff et al.
2010, Zuellig and Schmidt 2012, Heino et al. 201@8gally, a traits-based bioassessment
protocol should be developed to detect anthropag#isturbances across at a large-scale
and across a wide range of habitats and such @istbave been developed in Europe,
(Bis and Usseglio-Polaterra 2004) and the U.S.[{8ar et al. 1999), but such large-scale
analyses should reflect speciéiqriori predictions and bioassessment objectives, which
is often not done in stream ecology (Heino et @1.3).

6. Incorporate reference condition trait responsBse goal of traits-based ecology is not

the mere prediction of trait distributions alonyieonmental gradients, but to also
understand how and why trait patterns deviate fnataral conditions due to
anthropogenic disturbance. Trait patterns must lie established under reference or
semi-natural conditions in order to provide a baselesponse in which to judge
potential traits-based community responses to aptigenic disturbances on stream

systems (Statzner et al. 2001a, Statzner et ah)200

The last two recommendations are often made icdhé&ext of incorporating traits into a
large-scale (i.e., continental) bioassessment emndat applicable to every situation. For

example, Cowell et al. (2004) compared FFG betweelaimed mining sites and sites under
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agricultural or mining use. To address their gattir question there was no need to work at
large-scale or incorporate natural streams intsthdy. As | review the when, where, and how
of stream trait studies below, | will discuss howny incorporated the recommendations listed

above.

Review of Studies
The amount of literature incorporating stream mex@rtebrate traits is immense. For
example, | found 7505 papers listed in the Webai®é€ database [Institute for Scientific
Information; http://apps.isiknowledge.com/, checkedlune 15, 2014] which refer to 1)
macroinvertebrates (using the search terms TS=nmaent* or TS=invert*), 2) a freshwater
system (TS=stream* or TS=river* or TS=reservoirT@=lake* or TS=wetland* or TS=pond*),
and to 3) some iteration of functional feeding gr®urophic groups, or traits (TS=guild* or TS=
functional feeding or TS=shred* or TS=graz* or T&=ap* or TS=collecto* or TS=filter* or
TS=troph* or TS=trait* or TS=function* or TS=burréwer TS=voltin* or TS=size*). The goal
of my review is determine how aquatic macroinvendéd communities respond to lotic
conditions using traits as the metric of resposed,refined my search by reviewing titles and
abstracts, scanning figures and tables in the &ext searching text for terms that incorporate the
following criteria:
e They derived a community-level, trait metric foruatic macroinvertebrates, such as
richness, abundance, or diversity of taxa withi@aar trait state.
e They conducted the study in a freshwater, lotitesys (e.g., streams, rivers)
e They measured a trait response to a specific almotbiotic condition, gradient, or

disturbance.
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e Studies published up to and including 2012.
These criteria excluded a wide range of studiesrparating traits in aquatic systems, including
those which use lentic habitats (e.g., Cereghirad. 2008, Verberk et al. 2008, Gallardo et al.
2009), lack a distinct trait-environment relatioipsfe.g., Yanoviak and McCafferty 1996,
Gayraud et al. 2003, Gonzalez et al. 2003, Staetnal 2008, Jiang et al. 2010), or only focus
on one or a few taxa instead of a community-widpoase (e.g., Hill and Knight 1987, Bastian
et al. 2007, Lopez-Rodriguez et al. 2009, Silveele2009, Wellnitz and Poff 2012). 1 also did
not include studies that measure the flow of enélngyugh a trait group, often using isotope
analyses (e.g., Li and Dudgeon 2008, Riva-Murrasl.e2013), since these studies do not
measure how trait distributions change acrossttiears environment. | did not include studies
that use a general metric, possibly based on nheiligits, which cannot discern relationships
between individual traits and environmental gratiehis type of metric includes biological
indices, tolerance scores, ratios of functionaligsy or functional diversity, which describes the
overall trait diversity, but provides no measurenafividual trait responses (e.g., Cushing et al.
1983, Cummins et al. 2005, Heino 2005, Bresslat.€2006, Angradi et al. 2009, Béche and
Statzner 2009, Dang et al. 2009). Finally, | did imcorporate studies that clustered taxa
according multiple traits, but used many traits le@bale and did not select traits based on the
underlying theory (e.g., Usseglio-Polatera et @012 Carlisle and Hawkins 2008, Merigoux et
al. 2009). The two latter approaches incorporagestmultaneous analysis of multiple traits and
can be important in detecting synergistic trait bomations, but also make it difficult or
impossible to detect the relationship between argenvironmental condition and specific trait,

which is the goal of this review.
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| found 905 studies that met the criteria abovighe earliest study was published in 1975
and the number of studies has increased exporlgr{iajure 1.1), at a rate similar to the growth
rate in overall publication numbers in my initiallgication search. Many of the studies
occurring in the 1980s dealt with validating thediContinuum Concept. The number of
papers dealing with trait-environment relationsihpsdl a marked increase in the early to mid-
1990s, with a greater focus on bioassessment foltpthe incorporation of functional feeding
groups and habits into bioassessment protocolsitJhited States (e.g., Plafkin et al. 1989,
Barbour et al. 1999) and adaptation of the habataiplate concept to stream systems in

conjunction with the 1994 Rhone study (Resh et@94, Townsend and Hildrew 1994).
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Figure 1.1: Number of studies per year addressingitaenvironment relationship at the
community-level.

Early emphasis on approaches developed in thet/Sitates and Europe has, not
surprisingly, resulted in a geographic distributairstudies heavily skewed towards northern
temperate regions, particularly in the U.S. andteresEurope, followed by southern temperate

regions such as Argentina, southeastern Austiaatid New Zealand (Figure 1.2). Three hundred
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and ninety (43.1%) papers included at least ongtilme in the U.S., followed by France, with 63
papers, Canada (49), Spain (47), New Zealand Rt8jugal (40), and Australia (37).
Conversely, 20 (2.2%) papers included sites fromcAfand 40 papers included sites from Asia.
Additionally, the vast majority of papers conducgtddies within limited spatial scope. Eight
hundred and twenty-five (91.2%) studies were cotetliwithin a single political region (which |
define here as a country except in the five largeantries, which | define as their component
states, provinces, territories, or federal dist)ictOf these papers, 568 used ten sites or less.
Eighteen papers included sites from more thandgions. Classifying sites according to
general climate demonstrated a bias towards tertgpana cold climates. Using the Koppen
climate classification (Peel et al. 2007), | folB&% papers included sites from the maritime
temperate climate (Cfa, Cfb, Cfc); 382 papers idetuhumid continental climate (Dfa, Dfb,
Dfc) sites; and 158 included Mediterranean sitesa(@sb). Conversely, only two papers
included sites from the polar tundra (but, 39 papecorporated alpine tundra), while 17 papers
included desert (Bwh, Bwk), and 53 included tropatemates (Af, Am, Aw).

These studies included a wide range of stream aizé€nvironmental characteristics,
but were biased towards small streams. Six hunainddseventy-eight papers included streams
that they defined as small (ot-3" Strahler order), 241 included medium streams (&8
order), 69 included large rivers (¥ 6rder), 31 included intermittent streams, and faaluded
ephemeral streams. Thirty-six papers did nosliam size, but included a large number of
sites (>50) and probably incorporated a diversayaof stream sizes. | could not determine
stream size for an additional 109 papers. A wiggety of stream conditions were also
represented. | did not attempt to formally defameundisturbed or disturbed stream, but rather

recorded the authors’ own assessments of streaditiocon For those papers with no condition
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Figure 1.2: The number trait-environment stud@soading to country. The five largest
countries (Australia, Canada, China, the Russialeiation, and the United States of America)
were divided into their component states, provintasitories, or federal districts (in the case of
Russia).

stated, | attempted to detect major anthropogefiigences (e.g., roads, urbanization,
agriculture, dams) within the watershed using adeagahic Information System (GIS;

ArcMap™ 9.3, ESRI, Redlands, California) and Google E4&bogle, Mountain View,
California) if spatial coordinates were given. &mhese criteria, 263 papers used only streams
relatively free from anthropogenic disturbance, 226d only disturbed streams, and 356 used
both. | could not determine stream condition f2rp@pers.

A wide variety of environmental variables haveodieen used to assess and predict trait
distributions in streams. | recorded over 500edléht environmental variables, with over 10,000
recorded relationships with traits. The most comiypased type of environmental variable was
some measure of stream size, such as stream ardstance from headwaters, which was used

in 98 papers. This metric was commonly used in®®0s and 1990s to assess the predictive
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capabilities of the River Continuum Concept. Measwf stream habitat type (92 papers) were
also commonly used, followed by leaf litter (91¢tmtus or organic matter (80), and discharge,
velocity or stream power (66). | further binnedlea&nvironmental variable into one of 17
general categories, including chemistry (e.qg., pkopgen), human disturbance (e.qg., logging,
chemical exposure), food (e.g., organic mattef,ligar, invertebrate prey), and natural
disturbance (e.g., glaciation, channel stabilitfuman disturbance, food, and substrate/habitat
were the most common environmental variables (EiduB). The majority of studies, 546,
analyzed a single environmental variable, whileyd studies measured relationships for >10
environmental variables. Some studies measured than ten variables, but only recorded
trait-environment relationships for less than tanables. For example, Poff et al. (2010)
included 45 environmental variables in their anialylsut their classification and regression tree
analyses only selected a few of these variabldberapers had a large number of
environmental variables, but only described the $&wng relationships highlighted by
multivariate techniques (e.g., Minshall and Robm&698, Weigel and Robertson 2007).

A total of 77 different traits were used in thesalgises. Most research has focused on
the distribution of functional feeding groups inestms with 706 papers exclusively using this
trait, while an additional 133 included FFG witthet traits. Functional habit (101 papers), size
(81), voltinism (64), and respiration (51) wereeatbommonly used traits. The use of many
traits in an analysis was uncommon, with only &&l&ts using more than three traits with 49 of
these in Europe alone (North America had 22).

The majority of studies (620) used univariate sta$, with 54 using multivariate
approaches and 172 using no statistical analysad opting for non-statistical comparisons.

Many of the studies lacking statistical analysesanwerformed in the 1980s. Fifty-nine studies
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used some combination of none, multivariate, ovamate statistical approaches. Dividing up
statistical preferences according to continent sitban inclination toward multivariate
approaches in Europe, with 15% of European studasding a multivariate approach opposed
to only 7% in North America. The use of multivaeiatatistics did not necessarily mean that a
multi-trait approach was used. A multi-trait apgeb incorporated multiple traits into a single
analysis. Often multivariate techniques were usedultiple states from a single trait or, if
multiple traits were used, each trait was analyssgghrately. | did not define these approaches as
multi-trait. A multi-trait approach can incorpoeatraits in one of two ways. The most common
technique, which I will call the multivariate muttiait approach, is to include multiple states
from multiple traits as response variables in ativailiate analysis (e.g., Usseglio-Polatera and
Tachet 1994, Statzner et al. 2004, Finn and Pd&i52Béche et al. 2006, Tomanova et al. 2008).

This approach can account for trait syndromesnbutrait tradeoffs. A much less common
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approach is to integrate multiple trait states mteew composite trait, which was described as
the Functional Trait Niche (FTN) in Poff et al. 38) or a life history strategy in Verberk et al.
(2013). These approaches are different from argatitolerance score or other multiple trait
metrics because the composite trait retains thdnamestic link between the environment and the
organism by selecting trait stataspriori, based on ecological theory. For example, Rader
(1997) used multiple traits, including size, emaebehavior, mobility, and habitat preference,
to develop a drift propensity index for macroinedértates. The ecological understanding as to
why the organism would have a high or low drift peasity was maintained. The composite
trait can be derived for a very specific environtaégradient or ecological question (in the case
of the FTN) or in terms of a general fithess sggtén the case of Verberk et al.’s life history
strategies). A simple tolerance score, in contethils if an organism is resistant to pollution
or disturbance, but cannot explain why that organsresistant. Either the multivariate multi-
trait or the composite multi-trait approach wasyamded in 46 studies with 28 occurring in
Europe. While a multi-trait approach has beenmeuended by multiple reviews, it is not
necessarily appropriate for all situations. It@dy is trying to capture the total community
response to multiple environmental factors, themudi-trait approach would be preferred, but
many of the studies | reviewed in this paper adr@specific ecological questions that required
only one trait or trait-state.

So, how many studies have used the recommendatiatesi above to deal with
challenges of traits-based research, namely usirgphe traits, multiple environmental
variables, a large spatial scale (> one region}tivawiate analyses, incorporating some
reference sites, and using a multi-trait approaElghty-one papers used more than one trait and

more than one environmental variable, 34 from Eey&i from North America, 13 from
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Australia/Oceania, one from South America, one fAssra, and one from multiple continents.
Fifteen of those studies included sites from mbeantone region. Seven of the 15 studies
(Corkum and Ciborowski 1988, Statzner et al. 20@Btabec et al. 2004, Lecerf et al. 2007, Poff
et al. 2010, Vandewalle et al. 2010, Carlisle eR@l 1) described trait-environment relationships
for 2-6 traits and 2-8 environmental variables erand North America, but used univariate
approaches to describe trait-environment relatigsshZuellig and Schmidt (2012) described
trait-environment relationships across 46 U.Sest&20 traits, two environmental variables) and
incorporated a multivariate ANOSIM analysis, bud dot use a multi-trait approach. The seven
remaining studies did include a multi-trait, muétiate statistical approach. Morais et al. (2009)
compared 11 traits to 11 environmental variablessscwestern Europe and Israel using a multi-
trait, multivariate approach, but did not incorgerany reference condition streams in their
analysis. The remaining six studies did includem&fce streams. Four studies are from Europe
(Usseglio-Polatera and Beisel 2002, Bis and Ussdlatera 2004, Haybach et al. 2004,
Statzner et al. 2004), describing trait-environnretdationships for 7-17 traits and 2-4
environmental variables. The two remaining studiesfrom the Great Lakes region and
Canada in North America (Horrigan and Baird 2008tdHens et al. 2009) describing trait-
environment relationships for 5-20 traits and 8eh@ironmental variables. If the goal of traits-
based community ecology in streams is to underdtamdomplex interactions between multiple
environmental factors and multiple traits acrosgade range of climatic, habitat, and disturbance
conditions and incorporate that knowledge intodasgale bioassessment, then much work needs
to be done.

The contribution of each of the remaining studiesuld not be discounted, either. In

some studies, some recommendations simply do pbg.apor example, the recommendations
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to assess streams across multiple geo-politicadmegr in multiple climates make no sense for
New Zealand streams, a climatically homogenousefims of our climate classifications) island
nation. In other studies, the nature of the agiokd question in the paper precluded the
incorporation of some recommendations. The goatadt small studies was not to develop a
large-scale multi-use bioassessment techniqueduiress specific question. A typical trait
study in this review would have compared the dsition of functional feeding groups to one
environmental variable (commonly human disturbafmeq type, or substrate/habitat type) in a
single country using a univariate analysis. Soanelargued that the univariate approach may
not as ecologically meaningful nor be as effectivdiscriminating human impact in stream
systems (Statzner et al. 2001a), but the statigteesnore tractable and interpretations are often
more straight-forward, making it a vital componehtmany stream bioassessment techniques.
Single trait responses, if consistent across a wadety of stream types and conditions, may be
all that is needed for a biomonitoring metric. Esample, 24 studies (e.g., Sedell et al. 1975,
Gessner et al. 1991, Albarifio and Balseiro 2002galves et al. 2012) compared the
distributions of functional feeding groups, partarly the distribution of shredders, to different
types of leaves found in streams. Each study stetsbf a small-scale experiment using leaf
packs at 1-3 sites used to answer a single quesii@s the distribution of shredders change if
different leaves are introduced in the streamni&ariate, single-trait approach is appropriate.
But, if the question is expanded to ask if disttitw of shredders is affected by leaf type in the
context of different land use, habitat types, dindatic regions, the use of a large-scale,
multivariate, multi-trait approach would be morgegpriate. The influence of environmental
conditions, both natural and anthropogenic, on thiatributions is still poorly understood,

particularly at large-scales (Heino et al 2013hisTreview showed that few studies have been
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performed in streams ecosystems using the six nemrdations for effective traits-based
bioassessments and further studies are neededvwad@ma holistic understanding of trait

responses in streams.
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CHAPTER 2: LOTIC INSECT TRAIT-ENVIRONMENT RELATIONBIPS IN

REFERENCE STREAMS ACROSS THE WESTERN UNITED STATES

Summary

Species trait distributions are increasingly usestieam research and in bioassessments
to evaluate stream health, but bioassessmentgeegbaseline understanding of how traits
respond to environmental conditions in least impa&treams in order to detect trait distribution
deviations due to anthropogenic disturbance. l-aogde assessments of trait distributions
across multiple environmental gradients for leagiacted streams have mainly occurred in
Europe, while North American assessments have ynfagtlised on a few traits, such as
Functional Feeding Groups, and small-scale studi¢e.used macroinvertebrate and
environmental data from 253 least-impacted sitesstablish a baseline understanding of how
traits are distributed across highly variable stremvironments in the western U.S. We
compared 20 life history, morphology, mobility, amcblogy traits to 81 environmental variables
encompassing major aspects of the stream envirarusery logistic regression, multinomial
regression, and redundancy analysis. We also a@ahpar results ta priori predictions for 11
environmental variables taken from 108 publicationstream ecology. Mean annual runoff,
catchment precipitation, conductivity, mean Juhtamperature of catchment, total nitrogen and
phosphorus, substrate size, slope, and coeffiofevdriation in daily flows had the strongest
relationships with trait states, while thermal talece, size, swimming strength, rheophily,
voltinism, armoring, synchronization of emergeraa] female dispersal had the strongest
relationships with environmental variables. Exdeptunoff and daily flow variability, other

measures of hydrological timing, duration, and ig{e.g., frequency of low flows, duration of
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flood free days) did not exhibit strong relationmhwith traits. Elevation was also not a strong
predictor of trait distributions. While some tgisuch as thermal tolerance, matched raost
priori predictions, most traits had mixed results, widingnnot matching any predictions. Our
results indicate that for large-scale analysegstraay be effective in detecting changes in
stream flow magnitude and daily variability, habi@imate, chemistry, and geomorphology, but
not for measures of natural hydrological extremé@ile some trait distributions shift along
large-scale environmental gradients, small-scaldiss may be needed to detect the effect of
some types of hydrological disturbance. One ampre@uld be to account for climate and
stream habitat variation in their analyses or aamnsisite selection by climatic or ecoregion

regionalization.

Introduction

The study of species trait distributions for comitiea of benthic invertebrates is an
increasingly integral part of stream community eggl(Heino et al. 2013, Verberk et al. 2013).
Analysis of the distribution of traits in resporteechanges in stream conditions has some
advantages over more traditional analysis of taruaalistributions. Traits provide the
ecological link between an organism and its envitent, encapsulating the process of how the
environment affects the fitness of the organisrsulteng in species sorting across environmental
gradients (Poff 1997, Chase and Leibold 2003, Maial. 2006, Webb et al. 2010, Culp et al.
2011). Taxonomically-based distributions are c@mséd by biological, environmental, and
regional factors, but every organism can be desdrdzcording to its biological attributes,
making traits a general feature of species acrivess® regions (Dolédec and Statzner 2010,

Culp et al. 2011). This leads to traits being nepatially and temporally consistent than
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taxonomic descriptors. These two factors, a sttbegretical connection between the trait and
the environment and the ubiquitous distributiotraits, should give traits-based, community-
level metrics greater ability to detect multipléural and anthropogenic disturbances in stream
systems than taxonomically-based approaches (Balat Yuan 2010, Culp et al. 2011, Feio
and Dolédec 2012). Traits-based metrics shoulgbloel candidates for bioassessment of stream
disturbance, since they are tied to ecologicalhdwave potential to discriminate human
impacts, and can be applied across regions (P6ff,19olédec et al. 1999, Bonada et al. 2006,
Culp et al. 2011).

The use of traits in an applied context, such aassessment, has generated a
considerable amount of interest and applicatiora(@t et al. 1998, Usseglio-Polatera et al.
2000, Statzner et al. 2001, Carlisle and Hawkir@32@olédec 2009, Menezes et al. 2010). But,
using traits in an applied context requires thahaee a good baseline understanding of how
they are distributed along reference or semi-naamaironmental gradients in order to make
proper inference about changes due to anthropogestiocbance (Statzner et al. 2001, 2005,
Poff et al. 2010). Inferences about anthropogenpacts on trait distributions are sensitive to
the number and type of traits and environmentahbées used in the analysis and the scale of
the analysis. Traits can be correlated or exlvadeoffs and environmental variables are often
correlated (Poff et al. 2006, Verberk et al. 201Bhe use of multiple traits and a wide array of
environmental variables can provide insight intavlemmmunities are structured along large
environmental gradients and how they may chandge meétv conditions (Menezes et al. 2010,
Statzner and Béche 2010).

Development and application of large-scale, muliata, traits-based biomonitoring has

occurred mostly in Europe (for a detailed timeloienajor developments, see Menezes et al.
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2010). The results of these studies indicatetthétdistributions can be effective indicators of
stream condition, but they require the use of mpldttraits to assess the effect of multiple
environmental factors (Menezes et al. 2010, Stataneé Béche 2010). Additionally, studies
should account for the effect of natural variatioistream conditions across large spatial extents
(Statzner et al. 2001, Statzner et al. 2005, Boeadh 2007a, Poff et al. 2010, Heino et al.
2013). Many European studies have had a wide rahgait data and large biological
databases, but were limited by the number of aviglanvironmental variables and thus did not
capture the full variation in stream conditionsr Example, Statzner et al. (2004) compared
seven traits to only four environmental variableater hardness, elevation, stream width, and
latitude) across 17 countries in Europe.

The use of traits in spatially extensive studieBlanth America has focused less on
incorporating and understanding a wide range dftrand more on the application of a few
traits, especially Functional Feeding Groups (FrGhioassessment protocols (Plafkin et al.
1989, Barbour et al. 1999). Hundreds of studighénUnited States have incorporated a FFG
metric, and the majority of these studies have lsaeall spatial scale. A few studies have used
traits-based metrics to assess stream conditistreams across more than one or two U.S. states
or Canadian provinces in North America. Of theseéiss, most used only one trait, typically
FFG (e.g., Benke and Wallace 2003, Weigel et @32@\ngradi et al. 2009a, Pollard and Yuan
2010, Yuan 2010, Cuffney et al. 2011, Qian et @L2) or one environmental variable (e.qg.,
Astin 2006, Angradi et al. 2009b, Béche and Stat2089). Four studies incorporated multiple
sites across large regions, multiple traits, anttiple environmental variables. Corkum and
Ciborowski (1988) compared two traits, size anctfiomal habit of Ephemeroptera, to eight

environmental characteristics across western Caaadi@laska. Horrigan and Baird (2008)
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compared 20 traits (the same used in this papéentenvironmental variables describing
climate, hydrology, chemistry and geomorphologyasifour Canadian provinces. Poff et al.
(2010) compared two traits (thermal tolerance drephily) to 45 environmental variables
across 253 sites in 12 western U.S. states. Tlseycategorized sites according to the
dominance of eight traits at each site, but didoomhpare these traits individually to
environmental gradients. Zuellig and Schmidt (20ddnpared 20 traits (the same used in this
paper) to two environmental variables, ecoregiahland use type, across 1987 minimally-
disturbed sites in 46 U.S. states. They also coedp@ait similarity between sites to a similarity
matrix derived from nine environmental variablegt there were no direct comparisons between
traits and environmental variables (except fortthe listed above).

All of these studies have contributed to our un@erding of how traits are distributed in
North American streams, but no single study haspawed a large number of traits to a diverse
array of environmental variables encompassing mmagor aspects of the stream environment
across a large geographic extent. The objectitRisfpaper is to compare multiple insect traits
across many major environmental gradients for stseia the western United States and
compare our results to those found the publistiethture. Specifically, we aim to establish a
baseline understanding of how traits are distridbateross highly variable stream environments
in 253 relatively undisturbed streams in 12 wesgtates where data were available (covering
over 3,100,000 kf an area roughly equal to 30% of the Europeanimemt). Further studies in
western North America can use this understandiragtount for natural variation in trait

distributions and predict how anthropogenic pewrtidns may disrupt these distributions.
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Methods

For this study, we selected sites in the U.S. Emvitental Protection Agency’s (USEPA)
Environmental Monitoring and Assessment Programestfn Pilot Study (WEMAP), which
collected samples from 1340 perennial streams igadsrin the western U.S. from 2000 to 2004
(Stoddard et al. 2005a). Streams in this regrerdarerse, reflecting the complex topographic,
geologic and climatic conditions prevailing acrtss western U.S. WEMAP streams were
selected using a stratified random design, destiilb&toddard et al. (2005a) as being stratified
according to state, Strahler order (Strahler 18&id) an ecoregion classification modified from
Omernik (1987). Sites were selected in the sttégizona, California, Colorado, Idaho,
Montana, Nevada, North Dakota, Oregon, South Dakdtizh, Washington, and Wyoming.

At each site, biological, chemical, and physicdlitet data were collected following the
procedures in Peck et al. (2006). Streams wer@lsaihmostly during the summer (June—
September) with a few sites sampled in May or Catolstoddard et al. (2005a) assessed the
reference condition of each stream site using pghargis, nitrogen, chloride, sulfate
concentration, pH, turbidity, a riparian disturbamedex, % fine substrates, and canopy density.
Of the 1340 sites, 326 (24%) met their criteria“f@ference” conditions; however, we were
concerned that these definitions might be too &ibbecause they did not incorporate catchment-
scale anthropogenic influences, particularly infices associated with hydrologic disturbance.
Using a geographic information system (GIS; ArcMap.3, ESRI, Redlands, California), we
guantified various anthropogenic disturbances é&mhecatchment (e.g., dams, reservoirs, canals,
roads, land use) and removed 11 sites that showadtavely high proportion of these
disturbances relative to the remaining dataset.ald@ examined the sites and found 50 that did

not have biological samples or well defined catchisie
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An unavoidable issue with this dataset, and witlstnherge stream datasets, is the lack of
complete site independence. Although sites wdeetssl randomly, the large number of sites
and dendritic nature of stream systems resultsoime cases where a site was nested within the
catchment of another site further downstream. Algh streams may be in the same hydrologic
unit (i.e., HUC), we only focused on sites with dapping upstream catchments. To determine
if nested sites are more similar than sites fropasse watersheds (i.e., independent sites), we
computed the Bray-Curtis similarity index (Bray addrtis 1957) between sites for each group
of environmental variables (e.g., geology, land hyerology). We then performed two
regression analyses between similarity values aodmphic distance between sites, one for
sites within the same catchment and one for indégretrsites. For catchment geomorphology,
hydrology, land use, precipitation, and temperatnested sites were distinctly more similar than
independent sites if they less than 6 km apartstétesites and independent sites had the same
similarity values for stream habitat regardlesdisfance while nested sites were consistently
more similar for geology metrics, regardless ofatise. Based on these results, if two sites
resided in the same stream network, had overlagpatchments, and were6 km apart, we
randomly removed one of the sites from the datadét.removed 12 such sites, resulting in a
final dataset with 253 sites (Figure 2.1). Althbubese sites were selected randomly within the
WEMAP study, the reference condition criteria nesions resulted in underrepresentation of
some stream types and conditions. For exampl&waland perennial streams in desert and
Mediterranean ecosystems are substantially modifyeagricultural and urban development in
the contributing catchments. Reference sitesasdlecosystems were found only where
anthropogenic development is restricted, sucheassawith steep slope. Thus, most of our sites

in drier climates were found in mountain or fodthélgions.
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Figure 2.1: Location of the 253 reference-condisdas in the western United States.

Environmental variables

We selected our variables from an environmentallztege of 289 variables across three
spatial scales. Reach-scale variables were cetleatteach EMAP site (Stoddard et al. 2005a,
Stoddard et al. 2005b) and catchment and vallelge saiiables were derived by at Colorado
State University (Cuhaciyan 2006), or at the USG&lisle et al. 2010), with measures of bed
stability being derived elsewhere (Kaufmann eR808). Catchment-scale variables were
derived in a GIS following the delineation of thestream contributing catchment area for each
site from the National Elevation Dataset 30-megsolution Digital Elevation Models (Gesch
2007). Catchment-scale precipitation and tempegatata were derived from the 800-m-
resolution Parameter-elevation Regressions on krtgnt Slopes Model (PRISM) database
(30-y period of record from 1971-2000; PRISM Clim@&roup, Oregon State University,
Corvallis, Oregon; http://www.prismclimate.org; eadted 5/17/2012), while soil metrics were
derived from the U.S. general soil map (U.S. Daparit of Agriculture 2006), land use metrics

from the 2001 National Land Cover dataset (Home.€2004), geology from Reed and Bush
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(2005), and habitat and geomorphology from DEMsgisnethods from Cuhaciyan (2006).
Valley-scale geomorphology metrics were also derivem DEMS using methods from
Cuhaciyan (2006). Catchment-scale hydrology waiseld from catchment location,

topography, geology, geomorphology, soil properti@sd cover, and climate variables using a
random forest method described in Carlisle et28l10). This method estimates long-term,
average flow metrics (e.g., mean annual runoffdifrequency, etc.) at each site based on
models calibrated to regional, reference-qualit.WGeological Survey (USGS) stream gauges
(see Carlisle et al. 2010 for details). For tHenence sites used in that study, the mean values o
the estimated metrics were calibrated to withio 8%, with standard deviations between 15 and
40%, of the 1272 observed values from existingastiftow gauge data. Reach-scale
environmental variables were collected at the samglite by the WEMAP collection team

using the procedures from Peck et al. (2006), Kanfmet al. (1999), and Kaufmann et al.
(2008).

Our resulting dataset had 289 environmental vaglilut we reduced their number by
grouping them into their respective scale (e.@c¢lne catchment) and category (e.g., hydrology,
land use, geomorphology) and performing a PCA amalyn each group to assess the correlation
between variables and determine which variableswuaddor the most variation in each group.
We selected variables from each scale/categorhtmhhighest loadings with the PCA axes.

Our reduced dataset contained 81 variables (Talh)e ¥Ve normalized the variables using
power transformations and tested the normalitya@heenvironmental variable using the

Lilliefors test (Thode 2002), D'Agostino-Pearsost t@ar 1999), and visual assessments.
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Table 2.1: Environmental variable descriptions,axdinits of measure, data transformations, ancrigése statistics, including
mean, standard deviation (SD), and range. If #r@aklle’s minimum value was <1, then the absolalee/ of the minimum value
plus 1.01 were added to the data before transfawmadxcept for arcsine transformed data, whictehalues between 0 and 1.

Description Label Unit Tran. Mean + SD Range
Location
Latitude S.L.Lat DD None 42.00 +£4.63 31.44 - 48.84
Longitude S.L.Long DD X2 -114.92 + 6.65 -124.17 - -96.47
Catchment Scale
Geology
Prop. of crystalline rock underlying catchment CH. proportion None 0.33+0.45 0.00-1.00
Prop. of sedimentary rock underlying catchment Sdad. proportion None 0.47 £0.47 0.00-1.00
Hydrology
Median annual coefficient of variation of dailys HXCV unitless -1/% 1.64 £0.68 0.77 - 4.62
Estimated mean of daily flows in December C.H.Dec t*/sdc -1/X* 37.14 +116.51 0.06 - 1,338.82
Mean flood-free days C.H.FIdFree days/year 2 X 176.81 + 49.83 76.07 - 246.26
Mean high flood pulse count C.H.HCnt numberfyear /x*4 5.49 +2.75 2.30-16.78
Estimated mean of daily flows in July C.H.Jul ¥/dec -1/X® 45.76 + 118.40 0.12 -1,359.51
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Description Label Unit Tran. Mean + SD Range
Mean low flood pulse count C.H.LCnt number/year ' x 5.21+1.03 2.80 - 9.54
Mean total low flow pulse duration per year C.HWY proportion -15° 0.32£0.05 0.25-0.52
Mean annual runoff (Carlisle method) C.H.MAR ¥/$ec/milé -1/xM2 1.94 +1.96 0.04 - 9.47
Prop. of mean of daily flows - March-June C.H.SprFl  proportion R 0.57+£0.11 0.32-0.81
Prop. of mean of daily flows - July-October C.H.8HF proportion None 0.19+£0.08 0.03-0.40
Topographic wetness index C.H.TopWet In(m) -1/x 8%t6l.20 7.07-13.17

Habitat
Prop. of stream network that is plane-bed C.Ha.PB ropgrtion arcsin(x) 0.01+0.01 0.00-0.05
Prop. of stream network that is pool-riffle C.hR. proportion -1/ 0.22+0.23 0.00 - 0.97
Land Use
Prop. of the catchment with barren C.L.Bar proporti  arcsin(x) 0.05+0.11 0.00-0.64
Prop. of the catchment with evergreen forest C.erkv proportion arcsin(x) 0.50+0.31 0.00-1.00
Prop. of the catchment with mixed-forest C.L.Mix oportion arcsin(x) 0.02 £0.07 0.00-0.43
Prop. of the catchment with wetland C.L.Wet projport  arcsin(x) 0.01 £0.02 0.00-0.17
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Description Label Unit Tran. Mean + SD Range
Geomorphology
Catchment drainage area C.M.Area ’km -1/ 159.48 + 543.04 0.66 - 5,864.54
Mean catchment elevation C.M.Elev meters None 1/08812.97 231.87 -3,821.61
Mean relief ratio C.M.RR unitless 5 0.48 +0.09 0.18 - 0.85
Standard deviation of catchment elevation C.M.SBEle m X2 202.71 + 108.79 12.24 - 558.86
Mean catchment slope C.M.Slp % None 28.76 £ 13.66 .46 162.11
Precipitation
Mean annual precipitation for the catchment C.P.Ann cm -1 114.68 + 70.15 30.24 - 379.05
Mean July precipitation for the catchment C.P.JulP cm X2 4.08 +2.93 0.00 - 16.82
Mean relative humidity of catchment C.P.RH propmrti None 0.59 £0.09 0.38-0.84
Soils
Mean bulk density C.S.Bulk g/ém exp(x) 1.33+£0.15 0.82-1.63
Prop. of soils in hydrologic group C CSs.C propammti  arcsin(x) 0.20£0.15 0.00-0.81
Prop. of soils in hydrologic group D C.S.D proponti -1/x 0.33+£0.20 0.00-1.00
Prop. organic matter content C.S.0rg proportion  sia(g) 0.01+0.01 0.00-0.05
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Description Label Unit Tran. Mean + SD Range
Rainfall and Runoff factor C.S.R 100s fi-tonflh/aclyr In(x) 88.13 £ 75.27 7.23 - 405.87
Prop. of soil, < 3 inches, passing a No. 200 sieve C.S.Size20 proportion -1/x 0.35+0.15 0.01-0.75

Temperature (air)
Mean annual air temperature of the catchment Ci.An degrees C -1/x 1.45+3.13 -0.89 - 15.00
Mean December air temp. of the catchment C.T.DecT  egraksC ¥ -2.62 +5.03 -9.98 - 10.56
Mean July air temperature of the catchment C.T.JulT  degrees C >3 16.37 + 3.92 8.64 - 25.88
Mean max. monthly air temp. of catchment C.T.Max grdes C -1/ 3.79+5.25 0.42 - 22.30

Valley Scale

Geomorphology
Mean hillslope connectivity V.M.Conn m " 5.70 + 4.27 0.01-21.64
Coefficient of variation for hillslope connectivity V.M.CVConn unitless -1A 0.45+0.30 0.00-2.48
CV for width based valley entrenchment V.M.CVEntW nitless -1/R? 0.31+0.14 0.00 - 0.99
Distance from site to*ltributary upstrearh V.M.Dist_1 m None 110.91 + 68.39 10.00 - 257.99
Mean valley entrenchment (width based) V.M.EntW tlens 1R 15.76 + 13.34 3.76 - 109.21
Catchment area of mainstem above tributdry 1 V.M.MArea_1 knt -1/x8 163.93 + 553.32 0.18 - 5,849.82



Description Label Unit Mean + SD Range
Mean slope of the valley above the outlet point \E unitless 0.03+0.03 0.00-0.17
Mean specific stream power, site valley ($*A V.M.SSP knf® 0.11 +0.09 0.00-0.77
Reach Scale
Chemistry
Conductivity R.C.Cond uS/cm 286.04 £+ 467.22 11.91 - 2,959.00
Dissolved Organic Carbon R.C.DOC mg/L 1.67 £2.02 0.20-19.00
Nitrate R.C.NO3 ueqg/L 5.34 +13.74 0.00 - 181.33
pH R.C.pH unitless 7.82+£0.48 6.15 - 8.88
Silica R.C.Si02 mg/L 14.71 +10.45 1.14 - 61.00
Total Nitrogen R.C.TN ug/L 188.89 + 283.16 17.00 - 3,314.00
Total Phosphorous R.C.TP ug/L 16.75+ 31.13 0.00 - 303.00
Total Suspended Solids R.C.TSS mg/L 4.44 +13.65 0.00-173.00
Dissolved Zinc R.C.Zn mg/L 9.02 £12.22 0.00 - 88.00
Stream Flov} R.H.Flow fé/sec 12.22 + 43.08 0.00 - 429.37
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Description Label Unit Tran. Mean + SD Range

Habitat and Land Use

Mean fish cover from aquatic macrophytes R.Ha.AgMac proportion arcsin(x) 0.06 £0.13 0.00-0.85
Mean fish cover from brush, small woody debris RBtish proportion arcsin(x) 0.08 £0.10 0.00-0.88
Prop. of reach that is fast water habitatiffle) R.Ha.Fast proportion arcsin(x) 0.52+0.28 0.00-1.00
Prop. of reach that consists of Pools (all types) .HaRPool proportion -1 0.19+0.17 0.00-1.00
Presence of all human disturbance along reach Rrh.H index None 0.37 £0.50 0.00-1.71
Geomorphology
Mean bank angle R.M.BnkAng degrees In(x) 42.04 &7 8.05-101.95
Mean elevation of reach R.M.Elev m Yx  1,431.32+784.55  95.00 - 3,660.00
Mean specific stream power at site (S*A R.M.OutSSP kih arcsin(x) 0.08 +0.10 0.00 - 0.95
Mean vertical profile area of residual podls R.M.RPArea rfipool -1/x 2.05+4.25 0.04 - 35.65
Channel sinuosity R.M.Sinu m/m -1/% 1.14+£0.16 1.00 - 2.53
Mean slope of reach R.M.Slp % -¥ix 5.14 +5.23 0.00 - 34.92
Mean width/depth ratio of reach R.M.WD m/m M¥x 20.08 £ 10.76 2.73-125.99
Mean width*depth product R.M.WxD m -1/x2 2.67 +3.57 0.01 - 25.04
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Description Label Unit Tran. Mean + SD Range

Riparian
Prop. of reach with coniferous riparian canopy Rdt proportion None 0.28 £0.37 0.00-1.00
Mean riparian vegetation ground cover R.R.Grnd Copnop. None 0.55+0.23 0.02-1.02
Prop. of reach with mid- and herb. ground layers .R.RchMGH proportion arcsin(x) 0.62 £0.36 0.00-1.00
Prop. of reach with mid-, woody ground layers RERGW proportion arcsin(x) 0.90+0.20 0.00-1.00
Prop. of reach w 3 layers: ground, mid, canopy RdRVeg proportion arcsin(x) 0.74 £0.33 0.00-1.00
Substrate
Prop. of substrate that is bedrock R.S.BdRk progort  arcsin(x) 0.06 £0.12 0.00-0.74
Mean bed surface particle diameter R.S.Dgm mm In(x) 123.28 + 240.60 0.01-2,702.60
StDev of mean bed surface particle diameter R.S.[Rn mm -1 26.89 £ 50.97 2.99-668.11
Relative bed stability (no bedrock/hardpan) R.S.RBSNo mm/mm -1/ 0.32+£0.52 0.00-4.55
LWD vol. in bankfull channel - all sizes R.S.WAIISq m/m? arcsin(x) 0.02 + 0.04 0.00 - 0.37
Temperature (streafh) R.T.Temp degrees C v 13.08 + 4.61 3.00 - 29.00

aVariables absent for some sites. Number of sitesing for each variable is: V.M.Dist_1 (98), V.MAvka 1 (98), R.H.Flow (82), R.M.Sinu (13),

R.M.RPArea (13), and R.T.Temp (24)
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Trait data

At each site, the WEMAP crews collected a biolobgzanple from each of the 11
transects and composited them into a single safaptie site. In the lab, up to 500 (£50)
individuals were identified to the lowest feasitd@onomic level (usually genus) using a fixed
count procedure (Stoddard et al. 2005a), produgidgtaset with abundance and richness data.
For this paper, we transformed taxonomic richnesstrait relative richness by summing the
number of taxa at a site exhibiting a specificttséate (i.e., category) and dividing that number
by that site’s total number of taxa, a technigueilair to Poff and Allan (1995). We computed
richness for genus-level taxa designations withetteeption of Chironomidae, which was
computed at the tribe level. We used a modifiedioa of the trait database described in Poff et
al. (2006), with some additional taxa added todhabase since publication. The database
consists of 20 traits with six life history traifsje mobility traits, five morphology traits, and
four ecology traits (Table 2.2). Each trait cotssif 2-5 nominal categories (hereafter referred

to as states) for a total of 58 states, with eaxbrt belonging to only one state per trait.

Table 2.2: Traits and states sorted accordinguodeneral categories, adapted from Poff et al.
(2006).

Trait State and label

Life History Traits

Adult exiting ability Absent (not including emgeence) — Exit.Absnt
Present - Exit.Prsnt

Adult life span Very short (< 1 week) — Life.Wi$
Short (< 1 month) — Life.Shrt
Long (> 1 month) — Life.Long

Desiccation resistance Absent (i.e., cannatigaidesiccation) — Desi.Absnt
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Development

Present — Desi.Prsnt
Fast seasonal — Devl.Fast
Slow seasonal — Devl.Slow

Non-seasonal (all stages present at all timesgw.Ron

Synchronization of emergence  Poorly synchrah{p¥er weeks) — Sync.Poor

Voltinism

Mobility Traits

Adult flying strength

Female dispersal

Maximum crawling rate

Occurrence in drift

Swimming ability

Morphology Traits

Armoring

Attachment

Well synchronized (over days) — Sync.Well
Semivoltine (< 1 reproductive gené@vatyear) — Volt.Semi
Univoltine (1 reproductive generation/year) — \dhi

Bi- or multivoltine (> 1 rep. generation/year) -eN/Multi

Weak flyer (e.g., canrlytinto light breeze) — Flgt. Weak
Strong flyer — Flgt.Strng
Low (< 1 km flight before tayieggs) — Disp.Low
High (> 1 km flight before laying eggs) — Disp.Hig
Very low (< 10 cm/hr) +@.VLow
Low (< 100 cm/hr) — Crwl.Low
High (> 100 cm/hr) — Crwl.High
Rare (Catastrophic onh)rft.Rare
Common (Typically observed) — Drft.Cmmn
Abundant (Dominant in drift samples) — Drft.Abun
None — Swim.None
Weak — Swim.Weak

Strong — Swim.Strng

None (soft-bodied forms) — Armr.None
Poor (heavily sclerotized) — Armr.Poor
Good (e.g., snails, some cased caddisflies) — Boud

None (free-ranging) — Atch.Free
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Some (sessile, sedentary) — Atch.Sed
Both — Atch.Both
Respiration Tegument — Resp.Teg
Gills — Resp.Gill
Air (via plastron, spiracle, etc.) — Resp.Air
Shape Streamlined (flat, fusiform) — Shpe.Strm
Not streamlined (cylindrical, round or bluff) —@hNtStrm
Size at maturity Small (<9mm) — Size.Small
Medium (9-16 mm) — Size.Med
Large (>16 mm) — Size.Large
Ecology Traits
Functional feeding group Collector-gathererreplCGath
Collector-filterer — Trop.CFilt
Herbivore (scraper, piercer, and shredder) — Hergb
Predator (piercer and engulfer) — Trop.Pred
Shredder (detritivore) — Trop.Shrd
Functional habit Burrow — Habt.Brrw
Climb — Habt.CImb
Sprawl — Habt.Sprwi
Cling — Habt.Cing
Swim — Habt.Swim
Rheophily Depositional only — Rheo.Depo
Depositional and erosional — Rheo.Both
Erosional — Rheo.Eros
Thermal tolerance Cold stenothermal or Cooytermal — Ther.Cold
Cool/warm eurythermal — Ther.CIWm

Warm eurythermal — Ther.Warm
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Statistical analyses

A traits-based response to an environmental cheagde assessed using at least three
approaches. The first approach would be to detexrnmwhich of the 58 individual trait states are
correlated with any of the 81single environmentaiables. This approach determines which
traits may be adequate as stand-alone tools is®esament, but it does not necessarily detect
shifts in community composition between trait ssater does it incorporate the relationship
between multiple traits and multiple environmeniiiables. If a trait has more than two states,
a steady increase in one trait state may not rgsaldistinct decrease of another state, but may
be mitigated through multiple states. A secondaggh would be to detect community
composition shifts between multiple states of @righit to address the question of whether the
increase in a trait state (e.g., multivoltine) asran environmental gradient (e.g., temperature) is
associated with a corresponding decrease in anstier of the trait (e.g., semivoltine). If so,
that would be a strong indication of a communitglevitrait-level response to a change in
environmental conditions. A complication in theselyses is the fact that traits do not act
independently of each other; many traits are cateel and particular combinations of trait states
are incompatible (Townsend and Hildrew 1994, Pb#le2006, Verberk et al. 2013).
Environmental variables are also frequently coteelavith each other. A third approach to
address this issue would be to use a multivarisg#haa to detect the relationships between
multiple trait states and multiple environmentaliables. This latter approach is of interest,
although it is more difficult to interpret and inde in bioassessment tools. Therefore, we used
all three approaches to provide insights by sephrateasuring 1) the univariate responses of

single trait states to single environmental vagabP) the shifts in multiple state distributions
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within a single trait to single environmental véiies, and 3) correlations between multiple trait
states and multiple environmental variables.

1. Detecting responses of single trait state§he occurrence of trait states within a
community is described by their relative richnegish values between 0 and 1; therefore, we
used a logistic regression analysis to model mahips between single traits and a single
environmental variable. Logistic regressions wesdormed using thiem function in therms
package (Harrell 2011) in the R statistical progfaersion 2.15.2; R Core Team 2012). The
resulting R value from this analysis is the Nagelkerkeiflex, which is a measure of
improvement over the null model, with a fully fitenodel equaling 1 (Nagelkerke 1991).

While this pseudo-Ris not a true measure of variance explained byrtbeel, we found that the
Nagelkerke Rvalues in our logistic regression models were woge to R values in linear
regression models built from the same data (resoltshown, but the mean Nagelkerkis For
values> 0.20 were within 8% of the mean calculatedrBm linear regressions). Another more
commonly used measure of model fit is the area th@deReceiver Operating Characteristic
curve (AUC) which is a measure of model classifaastrength (Hosmer and Lemeshow 2000).
An AUC value of 0.7 or greater indicates that a ei@tlequately discriminates between true
positives and false positives. We compared theetagke B and AUC values using a

quadratic regression analysis and found them highigelated, with an Rof 0.969 using values
for all but two traits states. The two remainingttstates, warm eurytherms and air breathers,
had results that diverged from the remaining trstitsges. These two states were not found at
most sites and had relatively low proportions ghtat the sites where the trait state was present
and these two states tended to be present onlp®@emd of many environmental gradients. This

tendency to be on one end of the environmentaligmathcreased classification strength even if
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the model improvement over the null model was prepresented by the Nagelkerke RVe
decided to use the Nagelkerké ecause of this discrepancy. We also discovéraithe

logistic regression models were very sensitivedtedting even a minor change in slope, given
the size of our dataset. A relationship betwetmaiastate and an environmental variable would
be found to be statistically significant even it was only 0.02. Such relationships were not
insightful or ecologically meaningful. Since thteomgest relationship had af R 0.53, we
decided to assess relationships only for environatemriables with an &> 0.20 for at least one
trait state (roughly equivalent to an AUC of 0.66)alue we consider to usefully explain
variation in the data and to provide some ecoldgiezaning.

2. Detecting shifts in multiple state distributiomghin a single trait. We used a
multinomial regression model to determine if arr@ase or decrease in a trait state distribution
results in a corresponding decrease or increagedther state of the same trait. Since all the
relative richness of all states within a singléttsam to 1, a multinomial regression is the most
appropriate way to model these relationships (@taad. 2012). The multinomial regression sets
one trait state as a baseline and models the piitpahtios (log odd ratios) of the remaining
trait states over the baseline state. If the s=yo@a coefficient for the environmental variable is
significantly different from zero, then the ratibtbat state over the baseline state can be idferre
to increase (or decrease) along the environmerddignt (i.e., one state becomes more
dominant in the community while the other statedmees less so). We performed the
multinomial regression using tmeultinomfunction in thennetpackage (Venables and Ripley
2002) in R. Thenultinomfunction fits a multinomial model using neuralwetks and requires
that the explanatory variables be scaled betwesmQlL to avoid convergence problems. We

determined that a model coefficient was signifigatite 95% confidence interval did not
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include 0. We plotted the estimated relative regscurves and the 95% credible intervals for
select trait-environment relationships, generdilyse with the strongest relationships. We
derived credible intervals using a Monte Carlo datian that drew 10,000 random samples for
each coefficient from a multinomial distributioMethods and code to derive the estimated
values and credible intervals are found in the agpeof Qian et al. (2012).

3. Detecting correlations between multiple traitelanultiple environmental variables. —
We used redundancy analysis (RDA) to determine hvimdividual or groups of trait states had
the strongest relationships with environmentalalagas accounting for all other trait states and
environmental variables. Redundancy analysis nsatiel relationships between two matrices of
data using a combination of linear regression adédhation (i.e., principle components analysis)
and has commonly been used in aquatic trait stwdieg) nominal traits (Feld and Hering 2007,
Heino et al. 2007, Weigel and Robertson 2007, ewdfl. 2010). This RDA used a forward
stepwise model selection criterion that selectecfivironmental variables that maximized the
adjusted R We used theda function for the RDA andrdiR2stepfunction for the stepwise

selection procedure in ttveganpackage (Oksanen et al. 2011) in R.

A priori predictions and literature review

Townsend and Hildrew (1994) advocated a rigom@psiori approach to traits-based
analyses, by hypothesizing theoretical, niche-baskadionships between trait distributions and
environmental gradients and then testing thesethgges. Many studies, however, have taken a
less restrictive approach, describing relationsbigtsveen all available traits and environmental
variables. We believe both approaches can bema#tve. The less restrictive approach

provides a more complete picture of the trait-emvwinent dynamics in stream systems, but these
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patterns may lack an adequate ecological explama#ma priori approach provides the
theoretical underpinnings for each relationshig,bdyufocusing only on published, priori
relationships we may inadvertently exclude impdstgat poorly understood relationships. We
therefore incorporated both approaches, analydlngpasible relationships, but focusing on
relationships supported by niche theory.

Niche theory posits that an organism’s traits stiqubvide an adaptive advantage (or
disadvantage) in a given environmental conditiéhthe level of the individual and along
evolutionary time scales, this translates into retselection, where traits in a population can
evolve according to environmental constraints.th&tlevel of the community and along
ecological time scales, this translates into spgesieting, where the environment selects (or
“filters”) for species possessing a given traisaite of traits (Webb et al. 2010, Verberk et al.
2013). Many publications in stream ecology haweliad phenotypic plasticity, natural
selection, or species sorting reasoning to exmapredict the distribution of particular trait
states in aquatic macroinvertebrate communitidsesé& explanations were commonly based on
experiments on individual taxa, expert knowledgéagh or stream systems, or reviews of
previous studies.

We reviewed the literature (108 papers and bosdes, Table 2.3) and extractegriori
trait-environment hypotheses advanced by the asithéfe found two common lines of thought
in describinga priori predictions of trait distributions of aquatic io&®in streams. These
generally follow the reasoning of species sortilugn@ environmental gradients (Webb et al.
2010). First, a trait state may be constraineddaynal (non-extreme) environmental conditions.
For example, organisms that are multivoltine regj@minimum level of energy for growth to

achieve the fast development needed for multipteeggions per year. Thus, multivoltinism
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should not occur abundantly in streams with inadégjdegree-day accumulation and/or nutrient
levels (Hynes 1970b, Resh and Rosenberg 1984y @il Malmqvist 1998, Thorp and Covich
2010a, and many other references in Table 2.3co®, specific trait states may exhibit
resistance or resilience to extreme environmemtaditions. For example, with the ability to
complete life cycles between disturbances, multiveltaxa may be more common in streams
with frequent hydrologic disturbances (Ward 199@ff R997, McCafferty 1998, Merritt et al.
2008). Some of these trait states may be enealfgtexpensive (e.g., multivoltinism, fast
development, desiccation resistance) and only acccwnditions where the advantage against
disturbance mortality risk outweighs the energetist. In some instances, local selection for
these traits has been demonstrated or inferrede(P@02, Lytle et al. 2008). Regardless of the
reasoning behind authora’priori predictions, we have extrapolated these predistamn
community-level responses to specific environmevaailables based on niche concepts.

For the 20 traits used in this analysis, we idexdibl6a priori trait-environment relationships
with 129 environmental variables in 108 publicatiomhese relationships were not derived from
the results of studies, but from predictions aad ttescriptions the authors developed using
ecological theory. We used our data to developiecaprelationships to test these literature-
based, theoretical predictions. For this analysesrestricted our testing afpriori predictions

to those environmental variables we had with ptezhe across many traits and were found in
multiple publications. That reduced our 12friori variables down to 11 general variables.
About half of thesa priori variables are hydrological, with flow or runofefiresented in the
dataset by variable C.H.MAR), flow predictabilitg¢.H.CV, C.H.SpFIl, C.H.SuFaFl), flood
frequency (C.H.Fldfree, C.H.HCnt), low flow frequsn(C.H.LCnt), low flow duration

(C.H.LDurY), and stream flashiness (C.H.CV, C.H.HCrlhe other predictions relate to a
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variety of stream conditions, such as elevatiolatmiude (C.M.Elev, S.L.Lat), temperature
(C.T.JulT), stream size (R.M.WxD, C.M.Area), substrsize (R.S.Dgm, R.Ha.Fast), and
nutrients (R.C.Cond, R.C.DOC, R.C.TN, R.C.TP). &hwiori predictions, with references, are

found in Table 2.3.

Table 2.3:A priori predictions of trait distributions along environmed gradients. General
environmental variables are represented by vasdbden this dataset (in parentheses). Source
references are located below the table. The syfalepresents a unimodal relationship, “N”
no expected change, and “+/-" or “+/U” contradigtpredictions. The trait and trait state

abbreviations are in Table 2.2.
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40-41, 46, 62-63, 74
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2,6,8-9, 16-17, 21, 28, 32-35, 38,
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78
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43, 56, 59, 70, 72-73, 77
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Sources: 1 - Cordone and Kelley 1961, 2 - Hyne®493 - Macan 1974, 4 - Vannote et al. 1980, 5dI&uand
Anderson 1982, 6 - Ward and Stanford 1982, 7 - Ciunset al. 1984, 8 - Resh and Rosenberg 1984, 6ldaV
1988, 10- Plafkin et al. 1989, 11 - Poff and Wa®89, 12 - Jeffries and Mills 1990, 13 - Barnes Rtahn 1991, 14
- Mackay 1992, 15 - Power 1992, 16 - Ward 1992, Williams and Feltmate 1992, 18 - Scarsbrook aodisend
1993, 19 - Kerans and Karr 1994, 20 - TownsendHiflttew 1994, 21 - Cushing et al. 1995, 22 - Barbetal.
1996, 23 - Fore et al. 1996, 24 - Koehl 1996, R#allace and Webster 1996, 26 - Williams 1996, Pérenz et al.
1997, 28 - Poff 1997, 29 - Smith and Voshell Jr7,9D - Townsend et al. 1997, 31 - Wood and Arneitag97, 32
- Giller and Malmqvist 1998, 33 - McCafferty 1998l - Barbour et al. 1999, 35 - Dudgeon 1999, 3asith and
Resh 1999, 37 - Harrington and Born 1999, 38 -i@o#ind Winterbourn 2000, 39 - Huryn and Wallacé®a10 -
Cushing and Allan 2001, 41 - Royer et al. 2001; ¥2etzel 2001, 43 - Angelier 2003, 44 - Johnsoal €2003, 45 -
Dodds et al. 2004, 46 - Ofenbotck et al. 2004, Weéino 2005a, 48 - Heino 2005b, 49 - Robson et@05250 -
Statzner et al. 2005, 51 - Lancaster and Belye&,28®- Lepori and Hjerdt 2006, 53 - Ziglio et 2006, 54 - Allan
and Castillo 2007, 55 - Battle et al. 2007, 56 n&ta et al. 2007a, 57 - Dobson and Frid 2008,3&lgeon 2008,
59 - Merritt et al. 2008, 60 - Polunin 2008, 61tat3ner 2008, 62 - Heino et al. 2009, 63 - Thompstoal. 2009, 64
- Clarke et al. 2010, 65 - Dolédec and Statznef26@ - Elosegi et al. 2010, 67 - Hamilton et 8l1@a, 68 - Larsen
and Ormerod 2010, 69 - Miller et al. 2010, 7eznikova et al. 2010, 71 - Robertson and Wood 2010, 72
Statzner and Béche 2010, 73 - Thorp and Covich 20449 - Boyero et al. 2011, 75 - Culp et al. 2028, ; Walters
2011, 77 - Demars et al. 2012, 78 - Feio and Dal@®d 2, 79 - U.S. Environmental Protection Ageng@$2 80 -
Yoshimura 2012, 81 - Mondy and Usseglio-Polaters320

A This trait has two states; the distribution of $econd state is a compliment of the first. Tthessecond state is
not shown.
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Results
1. Detecting response of single trait states

Using the traditional criterion of § 0.05, all trait states were found to have sigaiffic
relationships with some environmental variableshwemivoltinism having the fewest number
of relationships with environmental variables (ahy cool/warm eurytherms having the most
(67). The use of a traditionakp0.05, as opposed top0.005 or x 0.001, has recently been
called into question (Johnson 2013) and our amalysmonstrates the futility of this criterion.
Of the possible 4756 relationships, 2667 were Saamt at p< 0.05, but most had very low
Nagelkerke Rvalues, indicating limited ecological meaning.r Egample, 1931 of the 2667
significant relationships (72%) had a Nagelkerke<®R.10. Using our criterion of Nagelkerke
R?>0.20, 17 of the 20 traits exhibited at least csteshg” relationship (all but attachment,
desiccation resistance, and shape). Converselgttbngest univariate relationship was between
the distribution of cold stenotherms and mean anmumff (R* = 0.54). Of the remaining 17
traits, a total of 30 states (out of a possible&) strong relationships, with cold stenotherms
having the most at 22 followed by warm euryther@®) (weak swimmers (18), small size (17),
and cool/warm eurytherms (17) (Figure 2.2a). Amengironmental variables, 28 were involved
in strong relationships (which we defined as Nageéd& R > 0.20), with mean annual runoff
having the most (22 relationships) followed by cactdvity (21), annual precipitation (19), and
mean July air temperature (17) (Figure 2.2b).

We also found that for many traits with three stge=g., voltinism, armoring, life span,
swimming ability), two of those states had consiljestrong relationships with environmental
variables while the third state consistently hadkveslationships. This may reflect, in part, the

method of trait state designations, as discusskavbdf this was the case, we determined if the
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relative relationships between the two remainiagest matched priori expectations (see
footnotes in Tables 2.4 and 2.6). For exampleesthe semivoltine trait state had consistently
weak (Nagelkerke R< 0.20) relationships, we assessed if the relalimbetween
multivoltinism and univoltinism matchealpriori expectations.

A priori variables included hydrological variables and ssoagment of geographic,
climatic, chemistry, and substrate variables. ldialyical variables included variables

describing mean annual stream runoff (C.H.MAR)jaraze in stream flow (C.H.CV), frequency
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Figure 2.2: Number of univariate logistic regressielationships with a Nagelkerké Rdex>

0.20 for each A) environmental variable and B)ttsgate. Only variables and states with at least
one relationship with & 0.20 are shown. All other variables are represkhy the term

“Etc.”.
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(C.H.LCnt) and duration (C.H.LDurY) of low flowsieflquency (C.H.HCnt) of high flows and
time between (C.H.FIdFree) floods, and measuregagonality in flow (C.H.SprFl,

C.H.SuFaFl). Only two of these variables, meamuahrunoff (C.H.MAR) and Median annual
coefficient of variation of daily flows (C.H.CV)x&ibited relationships with 8 0.20 (Table

2.4). All other measures of hydrological timingydtion, extreme conditions had only very
weak relationships. The relative community comgpiasiof high female dispersal, small size,
medium size, and multivoltinism matchagbriori predictions for variance in stream flow. Low
crawling ability and weak swimming ability contratida priori expectations for their
relationship with variance in stream flow, whilegp@rmor both matched and contradicted some
a priori expectations. Low crawling rate, very low crawlirate, depositional preference, and
thermal tolerance matchadpriori expectations for mean annual runoff, but voltinism
swimming ability, size, and armoring did not. Meamual precipitation was highly correlated
with mean annual stream runoff (Spearman r = 0.@id)exhibited similar relationships with
traits.

Othera priori environmental variables included measures of él@v4dC.H.Elev) and latitude
(S.L.Lat), stream size (C.H.Area, V.M.MArea_1), aird stream temperature in the summer
months (C.T.JulT, C.T.Max, R.T.Temp), stream nutsgR.C.Cond, R.C.DOC, R.C.TN,
R.C.TP), and substrate size (R.Ha.Fast, R.S.Ddagh of these variables exhibited
relationships with B> 0.20, except elevation. The three measures gieesture all exhibited

the same relationships with traits, but the stiemgthose relationships varied, with one (mean
July air temperature) having the strongest relatgps. The same was true for the four measures
of stream nutrients, two measures of substrate amtwo measures of stream size, each set of

variables exhibiting the same relationships, bubhwne variable having stronger relationships
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Table 2.4: Results of logistic regression betwesedt traits and hydrological variables descrilpetthéa priori section above. The
number is the Nagelkerke? dex from the univariate logistic regression gais and the sign in the parentheses represents the
direction of the relationship. The superscriptigates if the result matchaspriori predictions (see footnotes). Only traits withRfn
> 0.20 with at least one hydrological variable agtided in the table. Relationships with=R0.20 are in bold. The abbreviations
for the environmental variables names (i.e., columames) are described in Table 2.1. The abbremsfor the trait state names
(i.e., row names) are described in Table 2.2.

CHCV CHMAR S.L.Lat C.M.Area C.T.JulT R.C.Cond .RTN R.S.Dgm

ArmrNone 0.10() 011(+) 0.04(+) 007() 026() 020() 0.04() 0.04(+)
Armr.Poor 021 (+] 026() 0.14() 0.06(+) 034(+) 0.35(+) 0.09(+) 0.11()
Crwllow 025() 027(f 0.11(+) 003() 018() 020() 015() 0.10(+)
CrwlVlow 020+ 0.32(f 0.11() 0.05(+) 0.14(+) 020(+) 019(+) 0.13()
Devl.Slow 0.07() 0.19(+)  0.02(+) 0.04() 06® 019() 0.21(+)
Disp.High 0.23(+f 0.39() 011() 0.13(+) 026(+) 033(+) 0.23(+) 0.17 ()
DritAbun  0.09 (+) 028 (} 0.02() 0.08(+) 0.03(+) 0.14(+) 021 0.22(F
Flgt.Stng  0.18 (+) 0.23() 0.12() 0.09(+) 0.28(+ 021(+) 0.15(+) 0.06()
Habt.Clng  0.17() 0.17(+)  0.03(+) 0.10(-) 0.21() 0.10() 0.22(+F
LifeLong  0.08(+) 022() 0.06() 005(+) 022(+f 021(+) 0.13(+) 0.13()
Life.Shrt ~ 0.11() 0.31(+) 0.06(+) 0.08() 0.08() 0.15() 0.22() 0.26(+)

Resp.Gil 0.11() 0.18(+)  0.09 (+) 0.13(-) 020() 0.06() 0.11(+)
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Rheo.Depo 0.30 (+) 0.34() 0.08() 0.18(+) 0.25(+) 042(+) 024(+) 0.22()
Rheo.Eros  0.05()  0.12 (+) 0.03() 010() 99O 0.24(+)
SizeMed 025(f 040(+f 0.10(+) 0.07() 025(f 0.32() 025() 0.24(%
Size.Small 029 (+} 049(f 0.13() 010(+) 026(+f 0.33(+) 033(+) 0270
Swim.None 0.17 (+) 0.40(f 0.16() 017 (+) 029(+) 034(+) 017(+) 0.13()
Swim.Weak 0.22(-f 048 (+) 023(+) 021() 031() 036() 0@f 0.17(+)
SyncWell 0.16() 0.32(+) 017(+) 012() 036(f 034() 017() 0.18(+)
Ther.CIWm 0.26 (+) 049() 024(-) 0.16(+) 043(+f 044(+) 026(+) 0.22()
Ther.Cold 0.33() 0.53(+#) 0.24(+} 0.20(f 048(} 049() 031() 0.26(+)
TherWarm 0.40 (+) 041() 0.06() 0.25(+ 0.40(+} 043(+) 0.4 (+) 0.16 ()
Trop.Shrd  0.08 ()  0.14(+) 0.30(f 0.03() 006() 014() 0.05(+)
VoltMulti  0.25(+}] 038() 0.15() 0.47(+) 0.12(+) 021(+}] 0.28(+f 0.19(-)

Volt.Uni 0.14() 033¢+P 009(+) 0.10() 016() 0.17() 025(F 0.19(+

A The result matches at least soanpriori predictions
B The result contradic priori predictions
C The result matchespriori predictions if substituted for an ineffective sté.g., medium size used in lieu large size)
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with traits (conductivity, mean substrate size eatthment area, respectively). The correlations
for the variables with the strongest relationstapsin Table 2.4. Thermal tolerance matched
priori predictions with latitude, catchment area, andpemrature; long adult life span for July air
temperature; size for July air temperature andtsafigssize; voltinism for stream nutrients;
shredder functional feeding group for catchmendaaed clinger habit for measures of substrate
size. The abundant-in-drift trait state contragtic priori expectations for fast water habitat and
total nitrogen (representative of stream enrichinefhe remaining &> 0.20 relationships had
noa priori predictions.

Several environmental variables lackengriori expectations exhibited strong
relationships with traits. Proportion of barrenda in the catchment and silica had strong
positive and negative relationships, respectiwelth the trait state of high emergence
synchronization. Eleven other variables had stretefionships with at least two traits (Table
2.5), including topographic wetness (C.H.TopWetpportion of riffle-pool sequences in the
catchment (C.Ha.PR), slope (C.M.SlIp), proportiofireé soils in the catchment (C.S.Size20),
bulk soil density (C.S.Bulk), aquatic macrophytBsHa.AgMac), proportion of reach with

coniferous riparian canopy (R.R.Con), and longit(8li¢..Long) .

2. Detecting shifts in multiple state distributiomghin a single trait

Nine of the 20 traits had significant multinomiagression models using the 32
environmental variables (Table 2.6) as explanatanables. One example of a multinomial
regression is given for each of the nine traitBigure 2.3. Seven traits (armoring, adult life
span, voltinism, female dispersal, synchronizatibamergence, swimming ability, and size at
maturity) had significant relationships for one ladds ratio, indicating that only two states

exhibited a strong response along the environmgnéalient. The two remaining traits, thermal
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Table 2.5: Results of logistic regression betwesedt traits and environmental variables not dieedrin thea priori section above,
but have relationships ofR 0.20 with at least two trait states. Valley aadah slope had relationships to traits similaratzloment
slope, but the relationships were weaker. Theyewet included in the table. See Table 2.4 ferdéscription of table symbols.

C.HTopwet C.HaPR C.MSIp C.P.RH C.S.Bulkk C.S.3ke RHa.AgMac R.R.Con S.L.Long

Armr.Poor  0.10 (+) 0.08(+) 0.14() 011() o0@ 012(*)  0.12(+ 0.14(HU  0.02 (+)
Crwl.VLow  0.12 (+) 0.12(+) 0.17() 020() 0.14(+) 0.13(+)  0.15(+) 0.06(-)  0.15(+)
Disp.High  0.25 (+) 0.22(+) 027() 013() 0.10(+) 026(+)  0.16 (+) 0.12()U  0.15 (+)
DritAbun  0.14 (+) 017 (+) 0.14() 0.11() 00§ 011(+)  0.15(+) 0.02 (AU 0.34 (+)
Exit.Prsnt  0.04 (+) 0.09(+) 0.07() 0.04() 86)  0.11(+) 0.21 (+)
Figt.Strng  0.14 (+) 0.08(+) 0.10() 0.08() 08 020(+)  0.07(+) 0.16 ()U  0.03 (+)
Rheo.Depo  0.25 (+) 0.17(+) 0.25() 0.08() 0.09(+) 027(+)  0.13(+) 0.16 ()U  0.14 (+)
SizeMed  0.16 (-) 0.16 () 0.26(+) 0.17(+) 020() 0.19()  0.24() 012(+) 0.18()
Size.Small  0.19 (+) 019 (+) 0.29() 021() 0.23(+) 021(+)  026(+) 014() 0.23(+)
Swim.None  0.17 (+) 015(+) 0.18() 0.18() 0@ 0.16(+)  0.12(+) 0.21()  0.08 (+)
Swim.Weak 0.24 (-) 0.20(-) 0.23(+) 0.24(+0.18() 0.19() 0.12 () 0.25(+) 0.13()
Sync.Well  0.19 (-) 013() 022(+) 0.10(+) 0.14() 0.18() 006 ()  025(+) 0.03()
Ther.CIWm  0.23 (+) 020(+) 0.26() 0.19() 0.18(+) 029(+)  0.13(+) 0.28(-)  0.08 (+)
Ther.Cold  0.29 (-) 024() 032(+) 020(+)0.18() 035(-) 0.17() 028(+) 0.12()
Ther.Warm 0.31 (+) 026 (+) 0.27() 0.07() 0.07(+) 035(+)  0.12(+) 0.22()U  0.21 (+)
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Trop.Shrd  0.24 (-) 0.16 () 0.09(+) 0.02(+)
Volt.Multi  0.23 (+) 017 (+) 0.17() 0.19()
Volt.Uni 0.19 (5 017 () 0.20(+) 0.12(+)

0.17 (+)

0.14 ()

0.07 () 0.06 ()
0.18 (+) 0.1 (
0.16 (-) 0.14 (-)

062 0.18()
0.12()  0.26 (%)
0.14 (+)  0.18(

Table 2.6: The coefficients of the statisticallgrsficant (p < 0.05) multinomial regression moddlgait labels are in the first row and
the ratio of two trait states from each model afeeled in the second row. The superscript indsctde result matches priori
predictions (see footnotes). If the model wassmptificant, then the cell was left blank.

Female  Adult Sizeat Swim.  Sync. of
Armor Rheophily Thermal Tolerance Voltinism
Disp. Lifespan Maturity  Ability Emerg.
Poor/ Low/ Long/ Both/ Ero./ Med./ Weak/ Poor/ Cold/ Warm/  Warm/ Uni./
None High Short Depo. Depo. Small None Well ClwWm ClwWm Cold Multi
C.H.cv -2.26 -2.61 -1.49 -2.16 7.56
C.H.MAR 1.34 -1.86 2.02 2.48 1.39 1.51 -1.23 1.94 -10.13 1.57
C.H.TopWet -2.77 -3.13 -1.37 -1.46 -2.03 7.04 9.07
C.Ha.PR -1.80 -1.22 6.13
C.L.Bar 1.19
C.L.Ever 1.97 1.16
C.M.Area -2.17 -1.58 7.10
C.M.Slp 1.35 2.16 2.73 1.35 1.24 -1.24 1.81 -7.52
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Female  Adult Sizeat Swim.  Sync. of
Armor Rheophily Thermal Tolerance Voltinism
Disp. Lifespan Maturity  Ability Emerg.
Poor/ Low/ Long/ Both/ Ero./ Med./ Weak/ Poor/ Cold/ Warm/ Uni./
None High Short Depo. Depo. Small None Well CIwWm Cold Multi
C.P.Ann 1.43 -2.02 2.14 2.70 1.55 1.64 -1.27 2.02 -7.75 1.68
C.P.RH 1.42 1.59
C.P.Snow 1.70 1.91 1.06 1.17 -1.28 1.80
C.S.Bulk -1.54
C.S.Size20 -1.61 -2.65 -3.12 -2.29 9.18
C.T.JulT 1.36 -1.32 -2.27 -2.46 -1.28 -1.52 1.59 -2.28 9.67
C.T.Max -1.12
R.C.Cond 1.26 -1.41 -2.50 -2.93 -1.38 -1.53 1.45 -2.18 9.14
R.C.DOC -2.45 -3.00 -1.43 -1.71 8.48
R.C.pH -1.58
R.C.TN -2.63 -3.28 -1.72 -1.52 -2.14 8.50 -2.0%
R.C.TP -2.33 -1.32 -1.39 1.41 -1.91 6.98
R.C.TSS -1.99 -1.21
R.Ha.AgMac -2.49 -1.72 -1.80
R.Ha.Fast 2.21 3.06 -1.28 1.77 -6.76
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Female Adult

Size at Swim.

Sync. of

Armor Rheophily Thermal Tolerance Voltinism
Disp. Lifespan Maturity  Ability Emerg.
Poor/ Low/ Long/ Both/ Ero./ Med./ Weak/ Poor/ Cold/ Warm/  Warm/ Uni./
None High Short Depo. Depo. Small None Well CIwWm CIWm Cold Multi
R.M.Slp 2.35 2.84 1.76 -7.24
R.R.Con 0.76 -0.86 0.98
R.R.RchVeg 1.59
R.S.Dgm 1.99 3.06 1.44 1.74 -5.93
R.S.WAIISq 1.78
R.T.Temp -1.73 1.94 -2.73 9.04
S.L.Lat 1.25
S.L.Long -2.09 -1.15
V.M.SIp 1.71

A The result matches at least soapriori predictions
B The result contradic® priori predictions

C The result matchespriori predictions if substituted for an ineffective sté&.g., medium size used in lieu large size)
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Relative richness
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Figure 2.3: Predicted and actual relative richvedses from the multinomial regression models
for A) armoring and conductivity, B) female disparand conductivity, C) adult lifespan and
mean annual runoff, D) rheophily and mean bed sarfarticle diameter, E) size at maturity and
median annual coefficient of variation of dailyvls, F) swimming ability and mean annual
runoff, G) synchronization of emergence and medynalutemperature, H) thermal tolerance
and mean July air temperature, and [) voltinism mweén annual runoff. The lines represent the
model predictions, the shaded areas the 95% ceeutitdrvals for those predictions, and the
points the actual data. Note that the scale okthris is not linear. The x-values are

transformed, but the actual un-transformed valuedisted on the x-axis.
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tolerance and rheophily, had significant relatiopsior more than one log odds ratio, indicating
a strong interaction effect between all statesedphily had two significant ratios, Erosional
obligate over depositional obligate and both emai@and depositional over depositional
obligate. Both ratios shared the same coeffigag, indicating that the depositional state is
negatively associated with the other two stategfmironmental variables such as mean annual
runoff and fast water habitat. The thermal tolesatrait had at least one significant relationship
for all three possible ratios. The two ratios wilte warm eurythermal trait as the numerator
shared the same coefficient sign, indicating thatmveurytherms were negatively associated
with the two other states for one environmentailalde: topographic wetness (an index of slope
and catchment area). The other two ratios, wamytleermal over cold stenothermal and cold

stenothermal over cool/warm eurythermal had 183fhslignificant relationships, respectively.

3. Detecting correlations between multiple traitlanultiple environmental variables.

All 77 environmental variables in the RDA accounted62.7% of the total variation in
the trait data. The stepwise selection procedelected 17 environmental variables that
accounted for 47.5% of the total variation in tftettdata. For the stepwise selection analysis,
the first RDA axis accounted for 71.9% of explainagiation (34.2% of total variation) and the
second RDA axis accounted for 13.4% of explainedtian (6.4% of total variation). The first
RDA axis appears to represent a gradient of stieamtat conditions consisting of a
combination of flow, temperature, and physical betbiariables (Figure 2.4a). Mean annual
runoff and mean July air temperature had the sastnigelationships with the first axis, followed
by mean bed surface particle diameter, median droe#icient of variation of daily flows, and

proportion fine soils in the catchment. Trait esastrongly associated with the first RDA axis
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included short adult lifespan (Figure 2.4b), wghchronized emergence (Figure 2.4b), weak
and no swimming ability (Figure 2.4c), high femdlspersal (Figure 2.4c), small and medium

size (Figure 2.4d), cold stenothermal and cool/waunythermal thermal tolerance (Figure 2.4e),
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Figure 2.4: A) Location of the 17 environmentalrgjdhe first two RDA axes superimposed
with the location of the prominent traits from tBglife history, C) mobility, D) morphology,
and E) ecology categories.
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and clinging habit (Figure 2.4e). The second RR& eepresents a gradient of catchment
climate and geomorphology. Mean July precipitagod proportion of mean of daily flows
from July-October were strongly associated withgbeond RDA axis, followed by proportion
of the catchment with barren land use, mean Julieaperature, and standard deviation of
catchment elevation. Trait states strongly assediaith the second RDA axis were fast
seasonal development (Figure 2.4a), very short ithdpan (Figure 2.4a), and clinger habit

(Figure 2.4d).

Discussion

We had mixed results concerning @upriori predictions. Nineteen of the 58 states had
36 strong univariate relationships?(R0.20) with variables witl priori predictions, but of
those relationships 28 matchagbriori predictions while only eight contradicted predos.
Environmental variables that had consistently gfnalationships with traits in our 253
“reference” streams reflected general stream cmmditinstead of measures of hydrological
extremes, valley configuration, land use, or rigartondition. Mean annual runoff, catchment
precipitation, conductivity, mean July air temparatof catchment, total nitrogen and
phosphorus, substrate size, slope, and coeffioievdriation in daily flows had the strongest
relationships, overall, with trait states. Othezasures of stream hydrological disturbance (e.qg.,
flood frequency, low flows) or natural land use dmt have strong relationships, at least at the
large scale. Some previous studies have foundgteationships between traits and measures
of low flow. Miller et al. (2010), Brooks (2011and Walters (2011) found traits such as exiting
ability, life spans, crawling rate, armoring werelated with stream diversions. Béche et al.

(2006) found that lifespans and desiccation resitgtavere correlated with low seasonal flows,
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but only if intermittent streams were includedie dataset. Conversely, Feld et al. (2014)
evaluated trait diversity across a wide range alrblgical disturbance ranging from least
impacted to straightened, stagnant, and/or unshiggdnot desiccated) streams in Germany,
Poland, and the Netherlands. They found that twaseminimal change in trait diversity across
these hydrological gradients and if some specigs vezluced or lost, they were replaced by taxa
with similar traits. They suggested that one radso this result is that their traits only
indirectly respond to hydrological disturbance. r@nalysis, however, did incorporate traits that
should have directly responded to hydrologicalutizince (e.g., rheophily, development time),
but we still found that, at a broad regional s@aleompassing many climatic zones and
hydrological conditions, traits did respond to thagnitude (C.H.MAR) and flashiness
(C.H.CV) of flow, but did not respond other measunénatural hydrological variation in
perennial reference-condition streams. The pa@si@sponse of traits in the previous studies
involving intermittency and diversions, but lackreSponse to the same variables in our study,
which only includes perennial streams, indicates ¢hlarge-scale, traits-based approach may not
be effective in detecting some levels of disturleaimcperennial streams, such as
anthropogenically induced low flows that fall welithin the range of natural flow regimes.
Traits in our analysis did respond strongly to demin the general condition of streams (e.g.,
stream chemistry, runoff, temperature) and it mayécessary to account for variation in these
variables before using traits detect some anthrepicglisturbances. For example, runoff and
substrate variation between sites would need tomibemized in order to use a traits-based
approach to detect changes in agricultural land aséood frequency.

One of the more remarkable results of this study tha lack of strong relationships with

elevation. Most of the variables with the strongetationships across all analyses, including
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mean July air temperature, mean annual runoff,canductivity, had a high correlation with
elevation, which is often considered as a generabgate for these metrics (e.g., Finn and Poff
2005, Tomanova et al. 2007). Some previous studiend that traits were correlated with
elevation (Finn and Poff 2005, Cabecinha et al720@manova et al. 2007, Sporka et al. 2009),
while others did not or had mixed results (Marchetrdl. 1985, Ward 1986, Statzner et al. 2004).
Our results suggest that elevation is not an ap@tepsurrogate for important climatic and
geomorphic variables in large-scale studies th@ude a diverse array of climatic regions and
land forms. Hawkins et al. (1997) has similar dosions in the Sierra Nevadas, where aquatic
insect assemblages tracked temperatures, but tatopes were unrelated to elevation.

Traits exhibiting robust relationships with envinsental variables provide a baseline
understanding about how stream communities resfondtural variation and possibly provide
good indicators of anthropogenic changes to tleastrsystem. Thermal tolerance, size,
swimming strength, rheophily, voltinism, armorisgnchronization of emergence, and female
dispersal all exhibited strong multivariate andvaniate responses to our environmental data.
Thermal tolerance, size at maturity, rheophily, arimg, and voltinism are also evolutionarily
labile (Poff et al. 2006). Because these tragsralatively unconstrained according to
phylogenetic groups, they may robustly respondchtarenmental changes across large scales,
since traits restricted to specific phylogenetiougrs will also be constrained according to
evolutionary history and zoogeography. While swimgnstrength, emergence synchronization,
and female dispersal are not as evolutionarilyiéalbheir strong responses to environmental
conditions signify a taxonomic preference for speatream conditions. The lack of lability
across taxa may complicate the use of these imalii®assessment if the associated taxonomic

groups are not present in the regional pool of teesulting in an unpredictable trait response to
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anthropogenic induced changes to the stream sydtgher traits, such as maximum crawling
rate, occurrence in drift, adult life span, andelepment were less responsive to natural
gradients in streams, and thus of limited assesswadue. Other traits, including adult exiting
ability, shape, respiration, functional feedingupwpfunctional habit, and attachment were
largely responsive.

A priori hypotheses suggest that well synchronized emeegaetterns would be
advantageous if ideal conditions for reproductimmtamporally limited, which may occur if
temperatures are too low or high for the majorityh@ growing season (Williams and Feltmate
1992, Malmqvist 2002, Merritt et al. 2008). MeaiyJair temperature was negatively correlated
with well synchronized emergence, supporting Meetital.’s (2008) argument that this trait
would be advantageous at sites with very low teaipees most of the year. Infrequent,
predictable disturbances should also promote waltlsronized emergence, allowing all adults
to emerge between disturbances (Poff and Ward I98@geon 1999, Elosegi et al. 2010), but
poorly synchronized emergence would be advantagedusquent, unpredictable disturbance,
allowing at least some adults to be present betwletarbances (Yule 1996, Merritt et al. 2008).
In our analysis, the lack of strong relationshipthwany measure of hydrological disturbance
indicated that temperature may override hydrolaligturbance at large scales. This result may
also be due to the fact that thermal gradient$aarly consistent across the western U.S.A. (e.g.,
warm or hot summer, cool or cold winter) while hyldigical gradients vary greatly according to
stream type (e.g., snowmelt streams, rainfall sigzantermittent streams). It may be more
appropriate to detect emergence synchronizatigroreses to hydrological variation within

specific hydrological regimes.

82



Our results matcheal priori predictions concerning the positive influenceeshperature
and nutrients on the occurrence of multivoltineata¥ollowinga priori reasoning, the increase
of energy through temperature or nutrients woulohataxa to grow and develop at a rate fast
enough to complete multiple life cycles in a yeasulting in an evolutionary advantage (Ward
1992, Thorp and Covich 2010a). The positive refethips between multivoltinism and
temperature and nutrient levels did not concur wrévious studies of voltinism and stream
nutrient and climatic conditions (Griswold et 008, Lawrence et al. 2010), but those studies
were spatially limited, encountering a limited rargf climatic and stream conditions. No state
had any strong relationships with frequency or tlanaof low or high flows, but multivoltinism
was positively associated with flow variation (Q¥). Some studies have found that
multivoltinism is more common in disturbed stregftdsseglio-Polatera and Beisel 2002,
Mendez 2007, Tullos et al. 2009), but these stuelie®mpassed human-caused disturbance and
may have included more extreme conditions. Multinel relative richness increases with stream
flashiness, but not necessarily with charactesstgsociated with natural high and low flows.
But, that may change if the extremes of human thance are incorporated. M@spriori
sources proposed an inverse relationship betweedistributions of multivoltinism and
semivoltinism, but the distribution of semivoltitexa was not strongly associated with
multivoltinism or any environmental variable. Timeivoltine state did have an inverse
relationship with multivoltinism.

There has been much speculation as to how armoraygincrease the fitness of
organisms in streams. The presence of some folmaf armoring could convey resistance to
increased flows (Jeffries and Mills 1990, Gilledddalmqvist 1998), but also may be important

in low flow areas as a defense against predatiamyfHand Wallace 2000). We found that
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armoring was negatively correlated with stream fijrzorelationship also found in Walters
(2011), which may support an anti-predator rolen afpriori understanding of the relationship
between armoring and disturbance is based on twiticting concepts. Armoring may reduce
injuries and mortality from scouring and moving stuate associated with disturbance (Huryn
and Wallace 2000), but armoring may also reduceilitoand increase the time of growth,
increasing the risk of desiccation or injury frooosr (Gasith and Resh 1999). Our results did
not support either presupposition for most measofrégydrological disturbance, but some level
of armoring was positively correlated with variatim flows, indicating that a moderate amount
of armoring may have an advantage in flashy streaopporting the formea priori reasoning.
These results are somewhat speculative: howewam ghe rather general classification of
armoring we use and should serve as hypotheségttwe research.

High female dispersal was strongly correlated wahables associated with slow-
moving, highly eutrophic streams, such as high oetidity, low runoff, and high nitrogen. This
state should be selected for in streams with aeuandistribution of sites ideal for reproduction
and development and was positively correlated stitbam flashiness (as expected), but showed
only weak correlation with other measures of hyalgatal disturbance, contradictoryaaqoriori
expectations. Previous research (Dolédec et 8P,19olédec et al. 2006, Magbanua et al.
2010), did not find consistent relationships betvkrgh dispersal and anthropogenic
disturbance, but Vieira et al. (2004) found thabrsg) dispersal ability was positively associated
with wildfire disturbance and Fisher and Gray (1p®8Lind that some high dispersers recovered
quickly after desert flash floods. These latteuls may be due to the fact that high dispersers
can colonize a stream from nearby streams aftatiad, intense disturbances, but not be very

effective for long-term events, like low flow duia.
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The rarity of the strong swimming trait state irates it may not be suitable for lotic
systems. With that said, however, our resultscgtntradicteda priori predictions concerning
swimming ability distributions along runoff and iearce of flow gradients. Many authors in the
a priori literature we reviewed argued that an organisrmswing in high flow or runoff would
be swept downstream and be selected against (H@¥sa, Giller and Malmqvist 1998, Feio
and Dolédec 2012). We found, however, that theiligion of weak swimmers was positively
correlated with mean annual runoff. Organisms bmagwept downstream if they entered the
water column in high flows, but the ability to moaleng the benthos would be advantageous.
We found that some swimming ability was positivetyrelated with variation in daily flows, but
had no relationship with low flows. Tullos et @009) and Miller et al. (2010) did find that
strong swimming ability was positively correlatediwchannel reconfiguration and increased
variability, but also found that it was negativelysociated with water withdrawals. Localized,
short disturbance may facilitate dispersal via sming ability, but our dataset only included
perennial streams and we cannot determine if datsieccselects against swimming ability or for
it.

Size at maturity exhibited strong relationshipgwitultiple environmental variables.
Communities dominated by small-sized individuaks faund in warm, eutrophic streams, with
small sediment size, low slope, low runoff, andlashy streams. These results concur &ith
priori expectations, except predictions for runoff, whiatiicated that smaller size would allow
organisms to avoid flow by residing between sulbssréHynes 1970a, Angelier 2003, Dobson
and Frid 2008). We saw a decrease in proportidaxa with small size as runoff increased. It
is difficult to compare our results to other stigdilat use various classifications of size. Some

studies found that large taxa are negatively imgzhbly disturbance frequency (Scarsbrook and
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Townsend 1993) and sandy and smaller sediment &Rlsket al. 1997), which concur with our
results, but most studies have found no consisédationships between size and environmental
variables, often only having one or two specifates (e.g., 2.5-5 mm, 5-10 mm, etc.) correlated
with an environmental variable (Lamouroux et al020Bonada et al. 2007b, Tomanova and
Usseglio-Polatera 2007, Lawrence et al. 2010).

Rheophily and thermal tolerance had the strongdstionships in the dataset. Both traits
matched the priori predictions concerning substrate size/habitat &ypktemperature
respectively. Depositional preference was poditicerrelated with environmental variables
associated with low gradient, slow moving streams erosional preference with steep, fast
moving streams. These relationships have beenanilzed by other studies (Richards et al.
1996, Richards et al. 1997, Hutchens et al. 208dl)three thermal tolerance states had strong
relationships with environmental variables. Th&seng relationships have also been found in
other studies (Chessman 2009, 2012), although studess have found a regional or site effect,
with some sites having a strong relationship tempee and some having no relationship
(Hamilton et al. 2010b, Stamp et al. 2010).

Traits with weak (R< 20) correlations in our analysis may still bfeefive in detecting
anthropogenic change. Our dataset only dealspeitbnnial, reference condition streams and
traits that lacked variation in natural streamestatly become vital for survival when
environmental conditions are pushed beyond nalimngk. For example, we found no strong
relationships for desiccation resistance in oufyans but this result is not surprising given the
perennial nature of our streams. If perenniabstre become more intermittent due to climate
change or withdrawals, this trait is predicted éadme more vital for survival (Giller and

Malmqvist 1998, Béche et al. 2006). The same eaimferred for the respiration trait. While
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we could not confirm ang priori predictions concerning respiration, the abilitypteathe air is
likely to become vital for taxa as oxygen or flove aeduced (Ziglio et al. 2006, Thorp and
Covich 2010a). Tests of theagoriori presuppositions, however, have met with mixedltesu
Effective use of traits requires both a reasonahbierstanding of trait distribution under natural

conditions and effective application of trait toappropriate scale or question.

Trait categorization

The effective use of traits in bioassessment adgedds on how traits are categorized.
We discovered an interesting trend concerning maittial traits, particularly traits with three
states. Mosa priori predictions contrasted two dichotomous statesdas the assumption
that intermediate trait states are moderate entughow organisms to survive in most
environmental conditions and not track environmievaigiation. Some of our results supported
this expectation. For example, common occurrenakift, intermediate between rare and
abundant occurrences in drift, had no strong catigeis with any environmental variables in our
dataset. But, for most other trichotomous tragsfound a different trend, with one extreme
state lacking strong relationships with environmagérariables. There are at least four possible
explanations for this trend. First, the categatict designation may not reflect natural sorting
in the environment. For example, size at matunaBa continuous trait, but was separated into
three categories in our trait dataset. In thidyams we found that large and medium sizes had
similar univariate responses, with medium havingimstronger relationships. The similar
relationships may indicate that these two statetddee combined. A second possible
explanation is lack of non-insects in our datas€he strongest armoring state did not perform

well, possibly due to the lack of gastropods indh&aset. A third possible explanation for the
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poor results of this particular state is the amair@nergy required to create strong armor.
Extreme trait states may be too energetically esperto be a viable state for most organisms
and will be too underrepresented to strongly terwkironmental conditions. Good armoring,
semivoltinism, high maximum crawling rate, and vehprt adult life span require a large
investment of energy and resources as well asldesgecialized adaptations. A final possible
explanation would be the lack of environmental ¢bos outside of the reference lotic
environment. The strong swimming state may be rooreelated with environmental conditions

if lentic habitats were included in the dataset.

Scales of traits-based bioassessment

A scale and climate specific application of traitdioassessment contradicts the
conclusions made by many Europe-based assessnfi@gisatic macroinvertebrate trait
distributions in natural or semi-natural strear@harvet et al. (2000) found there was little
correlation between stream size, elevation, oreskopd trait distributions in France and Europe.
Statzner et al. (2001, 2005) argued that traitedhabanges along a stream continuum were
gradual and minimal, and trait distributions in &ue’s semi-natural streams were fairly
consistent. Statzner and Béche (2010) expands@thument using data from both the United
States and Europe. A relatively consistent trigirdbution across streams with natural
conditions would mean a general traits-based besassent technique could be developed for
the entire temperate region. Our results and attuglies, however, indicate a different trait
paradigm in the United States and elsewhere. &aff. (2010) found three distinct traits-based
communities in the western United States, stroagBociated with general ecoregions: humid

regions, desert mountains, and plains. A regidrats-based differentiation was also found by
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Zuellig and Schmidt (2012) when they examineddradross the entire contiguous United
States. They differentiated traits-based commemiiccording to three general regions: western
mountains, plains and lowlands, and eastern higklaihey also found that the use of traits to
differentiate between land uses also required aregmnal context. Schmera et al. (2013) also
found that traits-based communities were dissinmldhree catchments spread across northern
Finland. Our analysis indicated that large-scadrenmental conditions change gradually, but
those changes will result in very different trébtssed community types perhaps in conjunction
with ecoregional or climatic regions. One poss#tplanation for the discrepancy between our
and European results is the fact that westernragexperience greater shifts in climatic
variables as they leave relatively humid mountaimd enter the desert or plains. Zuellig and
Schmidt (2012) argued that the greater inclusiosuch streams in their dataset allowed them to
detect trait community differences, while Statzaed Béche (2010), which included data mostly
from humid regions, could not. We argue that glsitraits-based bioassessment reference-
condition would not work for the western United t8& but needs to be geographically
constrained, perhaps by climatic or ecoregion megliwation, an approach advocated in a recent
review of trait research in streams (Heino et @l3

This study establishes a baseline understandihgwfthe distributions of traits change
along environmental gradients in the heterogenaadgyeographically large western U.S. Our
results demonstrate that understanding and accguitti the climate and structure of stream
systems is important for stream traits-based bessssents. For large-scale analyses of
anthropogenic disturbance, it will be importantiegect anthropogenically-induced deviance
from natural trait-environment relationships andgome disturbances, such as anthropogenic

alteration of flood and low flood frequency or diiwa, it may be necessary to use small-scale
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studies controlling for stream climate and geomolpdly. We also believe that scale, stream
structure, and climate are important in defining eaderstanding of how streams shape

macroinvertebrate communities.

90



LITERATURE CITED

Allan, J. D. and M. M. Castillo. 2007. Stream egplostructure and function of running waters.
2nd edition. Springer, Dordrecht, Netherlands.

Angelier, E. 2003. Ecology of streams and riversece Publishers, Inc., Enfield, New
Hampshire, USA.

Angradi, T. R., D. W. Bolgrien, T. M. Jicha, M. Bearson, D. L. Taylor, and B. H. Hill. 2009a.
Multispatial-scale variation in benthic and snagfete macroinvertebrate assemblages in
mid-continent US great rivers. Journal of the Ndktherican Benthological Society
28:122-141.

Angradi, T. R., M. S. Pearson, D. W. Bolgrien, T. lMtha, D. L. Taylor, and B. H. Hill. 2009b.
Multimetric macroinvertebrate indices for mid-cor@nt US great rivers. Journal of the
North American Benthological Society 28:785-804.

Astin, L. E. 2006. Data synthesis and bioindicatevelopment for nontidal streams in the
interstate Potomac River basin, USA. Ecologicaldatbrs 6:664-685.

Barbour, M. T., J. Gerritsen, G. E. Griffith, RyBenborg, E. McCarron, J. S. White, and M. L.
Bastian. 1996. A Framework for Biological Critefaa Florida Streams Using Benthic
Macroinvertebrates. Journal of the North AmericamtBological Society 15:185-211.

Barbour, M. T., J. Gerritsen, B. D. Snyder, anB.JStribling. 1999. Rapid bioassessment
protocols for use in streams and wadeable rivemsppyton, benthic macroinvertebrates,
and fish. 2nd edition. EPA 841-B-99-002, U.S. Eonmental Protection Agency; Office
of Water, Washington, D. C., USA.

Barnes, R. S. K. and K. H. Mann, editors. 1991.daumentals of aquatic ecology. 2nd edition.
Blackwell Scientific Publications, Oxford, England.

Battle, J. M., J. K. Jackson, and B. W. Sweene@72@nnual and spatial variation for
macroinvertebrates in the Upper Mississippi RivesumCape Girardeau, Missouri.
Fundamental and Applied Limnology 168:39-54.

Béche, L. A., E. P. McElravy, and V. H. Resh. 2006ng-term seasonal variation in the
biological traits of benthic-macroinvertebratesvimo Mediterranean-climate streams in
California, USA. Freshwater Biology 51:56-75.

Béche, L. A. and B. Statzner. 2009. Richness gnaslief stream invertebrates across the USA:
taxonomy- and traits-based approaches. BiodiveasithConservation 18:3909-3930.

91



Benke, A. C. and J. B. Wallace. 2003. Influencevobd on invertebrate communities in streams
and rivers. Pages 149-1#vS. V. Gregory, K. L. Boyer, and A. M. Gurnell, tais.
Ecology and Management of Wood in World Rivers,hgsetla, Maryland, USA.

Bonada, N., S. Dolédec, and B. Statzner. 2007aoA@xic and biological trait differences of
stream macroinvertebrate communities between nreglitean and temperate regions:
implications for future climatic scenarios. Glol@tange Biology 13:1658-1671.

Bonada, N., N. Prat, V. H. Resh, and B. Statzn@®62Developments in aquatic insect
biomonitoring: a comparative analysis of recentrapphes. Annual Review of
Entomology 51:495-523.

Bonada, N., M. Rieradevall, and N. Prat. 2007b. Mdmwertebrate community structure and
biological traits related to flow permanence in adiderranean river network.
Hydrobiologia 589:91-106.

Boyero, L., R. G. Pearson, D. Dudgeon, M. A. S.dard. O. Gessner, R. J. Albarino, V.
Ferreira, C. M. Yule, A. J. Boulton, M. Arunachalakh. Callisto, E. Chauvet, A.
Ramirez, J. Chara, M. S. Moretti, J. F. Goncaldeg. Helson, A. M. Chara-Serna, A. C.
Encalada, J. N. Davies, S. Lamothe, A. CornejdQAY. Li, L. M. Buria, V. D.
Villanueva, M. C. Zuniga, and C. M. Pringle. 20Global distribution of a key trophic
guild contrasts with common latitudinal diversitgtierns. Ecology 92:1839-1848.

Bray, J. R. and J. T. Curtis. 1957. An ordinatiéthe upland forest communities of southern
Wisconsin. Ecological Monographs 27:325-349.

Brooks, A. J., B. C. Chessman, and T. Haeuslerl 2Bthcroinvertebrate traits distinguish
unregulated rivers subject to water abstractionrrdd of the North American
Benthological Society 30:419-435.

Cabecinha, E., P. Silva-Santos, R. Cortes, and GaBral. 2007. Applying a stochastic-dynamic
methodology (StDM) to facilitate ecological monitgg of running waters, using selected
trophic and taxonomic metrics as state variablesldfjical Modelling 207:109-127.

Carlisle, D. M., J. Falcone, D. M. Wolock, M. R. &t#or, and R. H. Norris. 2010. Predicting the
natural flow regime: models for assessing hydralalgalteration in streams. River
Research and Applications 26:118-136.

Carlisle, D. M. and C. P. Hawkins. 2008. Land usé the structure of western US stream
invertebrate assemblages: predictive models andgical traits. Journal of the North
American Benthological Society 27:986-999.

Charvet, S., A. Kosmala, and B. Statzner. 1998mBioitoring through biological traits of

benthic macroinvertebrates: perspectives for argétmol in stream management.
Archiv Fur Hydrobiologie 142:415-432.

92



Charvet, S., B. Statzner, P. Usseglio-PolateraBaridumont. 2000. Traits of benthic
macroinvertebrates in semi-natural French streamitial application to
biomonitoring in Europe. Freshwater Biology 43:2796.

Chase, J. M. and M. A. Leibold. 2003. Ecologicalhas: linking classic and contemporary
approaches. University of Chicago Press, Chicdgagis, USA.

Chessman, B. C. 2009. Climatic changes and 13tgeaals in stream macroinvertebrate
assemblages in New South Wales, Australia. GlobahGe Biology 15:2791-2802.

Chessman, B. C. 2012. Biological traits predicttshin geographical ranges of freshwater
invertebrates during climatic warming and dryingurhal of Biogeography 39:957-969.

Clarke, A., R. Mac Nally, N. Bond, and P. S. LaR@10. Flow permanence affects aquatic
macroinvertebrate diversity and community structarihree headwater streams in a
forested catchment. Canadian Journal of FishendsAguatic Sciences 67:1649-1657.

Collier, K. J. and M. J. Winterbourn, editors. 208w Zealand stream invertebrates: ecology
and implicaitons for management. New Zealand Liragimal Society, Hamilton, New
Zealand.

Cordone, A. J. and D. W. Kelley. 1961. The influemof inorganic sediment on the aquatic life
of streams. California Fish and Game 47:189-229.

Corkum, L. D. and J. J. H. Ciborowski. 1988. Usaltérnative classifications in studying
broad-scale distributional patterns of lotic inedrates. Journal of the North American
Benthological Society 7:167-179.

Cuffney, T. F., S. S. Qian, R. A. Brightbill, J. May, and I. R. Waite. 2011. Response to King
and Baker: limitations on threshold detection ahdracterization of community
thresholds. Ecological Applications 21:2840-2845.

Cuhaciyan, C. O. 2006. Hydrogeomorphic characteozand classification of pacific
northwest mountain streams for biomonitoring. Ditegéon. Colorado State University,
Fort Collins, Colorado, USA.

Culp, J. M., D. G. Armanini, M. J. Dunbar, J. M.l@iske, N. L. Poff, A. I. Pollard, A. G. Yates,
and G. C. Hose. 2011. Incorporating traits in aigusibmonitoring to enhance causal
diagnosis and prediction. Integrated EnvironmeAssessment and Management 7:187-
197.

Cummins, K. W., G. W. Minshall, J. R. Sedell, C.Gishing, and R. C. Petersen. 1984. Stream

ecosystem theory. Verhandlungen der Internationdeeinigung fur Theorestische und
Angewandte Limnologie 22:1818-1827.

93



Cushing, C. E. and J. D. Allan. 2001. Streamsr thenlogy and life. Academic Press, San
Diego, California, USA.

Cushing, C. E., K. W. Cummins, and G. W. Minshaf195. River and stream ecosystems.
Elsevier, Amsterdam, Netherlands.

Demars, B. O. L., J. L. Kemp, N. Friberg, P. Usge§lolatera, and D. M. Harper. 2012. Linking
biotopes to invertebrates in rivers: Biologicaltsataxonomic composition and diversity.
Ecological Indicators 23:301-311.

Dobson, M. and C. Frid. 2008. Ecology of aquatstemns. 2nd edition. Oxford University Press,
Oxford, UK.

Dodds, W. K., K. Gido, M. R. Whiles, K. M. Fritznd W. J. Matthews. 2004. Life on the edge:
the ecology of great plains prairie streams. Besce 54:205-216.

Dolédec, S. 2009. Running water bioassessmenin lfiotic indices toward traits-based
approaches. Houille Blanche-Revue Internationalé. Bau:100-108.

Dolédec, S., N. Phillips, M. Scarsbrook, R. H. Rjland C. R. Townsend. 2006. Comparison of
structural and functional approaches to determitanguse effects on grassland stream
invertebrate communities. Journal of the North Aicaar Benthological Society 25:44-
60.

Dolédec, S. and B. Statzner. 2010. Responsessifiiater biota to human disturbances:
contribution of J-NABS to developments in ecologic#egrity assessments. Journal of
the North American Benthological Society 29:286-311

Dolédec, S., B. Statzner, and M. Bournard. 199@cfs traits for future biomonitoring across
ecoregions: patterns along a human-impacted freshwater Biology 42:737-758.

Dudgeon, D. 1999. Tropical Asian streams: zoobes)tboology and conservation. Hong Kong
University Press, Hong Kong.

Dudgeon, D., editor. 2008. Tropical stream ecoldgy.edition. Academic Press, London, UK.

Dudley, T. and N. H. Anderson. 1982. A survey ofariebrates associated with wood debris in
aguatic habitats. Melanderia 39:1-21.

Eloseqi, A., J. Diez, and M. Mutz. 2010. Effectgfiromorphological integrity on biodiversity
and functioning of river ecosystems. Hydrobiolo§ty:199-215.

Feio, M. J. and S. Dolédec. 2012. Integration wértebrate traits into predictive models for

indirect assessment of stream functional integAtgase study in Portugal. Ecological
Indicators 15:236-247.

94



Feld, C. K., F. de Bello, and S. Doledec. 2014 dBiersity of traits and species both show weak
responses to hydromorphological alteration in lowdlaver macroinvertebrates.
Freshwater Biology 59:233-248.

Feld, C. K. and D. Hering. 2007. Community struetar function: Effects of environmental
stress on benthic macroinvertebrates at diffeneatial scales. Freshwater Biology
52:1380-1399.

Finn, D. S. and N. L. Poff. 2005. Variability andnvergence in benthic communities along the
longitudinal gradients of four physically similaoBky Mountain streams. Freshwater
Biology 50:243-261.

Fore, L. S., J. R. Karr, and R. W. Wisseman. 12@8essing invertebrate responses to human
activities: Evaluating alternative approaches. dabof the North American
Benthological Society 15:212-231.

Gasith, A. and V. H. Resh. 1999. Streams in Mexitexan climate regions: Abiotic influences
and biotic responses to predictable seasonal evemtsial Review of Ecology and
Systematics 30:51-81.

Gesch, D. B. 2007. The national elevation datdsges 99-118 D. Maune, editor. Digital
Elevation Model Technologies and Applications: THieM Users Manual. 2nd edition.
American Society for Photogrammetry and Remote iBgnBethesda, Maryland, USA.

Giller, P. S. and B. Malmqvist. 1998. The biolodystreams and rivers. Oxford University
Press, New York, New York, USA.

Gray, L. J. and S. G. Fisher. 1981. Postflood muahtion pathways of macroinvertebrates in a
lowland Sonoran Desert stream. American Midlanduiist 106:249-257.

Griswold, M. W., R. W. Berzinis, T. L. Crisman, aBdW. Golladay. 2008. Impacts of climatic
stability on the structural and functional asp@ftsacroinvertebrate communities after
severe drought. Freshwater Biology 53:2465-2483.

Hamilton, A. T., M. T. Barbour, and B. G. Bierwag@®10a. Implications of global change for
the maintenance of water quality and ecologicagrity in the context of current water
laws and environmental policies. Hydrobiologia &58-278.

Hamilton, A. T., J. D. Stamp, and B. G. Bierwag2d10b. Vulnerability of biological metrics
and multimetric indices to effects of climate changpurnal of the North American
Benthological Society 29:1379-1396.

Harrell, F. E., Jr. 2011. Package 'rms', versi®a(3.

Harrington, J. and M. Born. 1999. Measuring thetheaf California streams and rivers.
Sustainable Land Stewardship International Ingitut

95



Hawkins, C. P., J. N. Hogue, L. M. Decker, and JPé&minella. 1997. Channel morphology,
water temperature, and assemblage structure aihstiresects. Journal of the North
American Benthological Society 16:728-749.

Heino, J. 2005a. Functional biodiversity of macveiriebrate assemblages along major
ecological gradients of boreal headwater streameshiwater Biology 50:1578-1587.

Heino, J. 2005b. Metacommunity patterns of highlyetse stream midges: gradients,
chequerboards, and nestedness, or is there ordgmaress? Ecological Entomology
30:590-599.

Heino, J., H. Mykra, J. Kotanen, and T. Muotka. 20Bcological filters and variability in
stream macroinvertebrate communities: do taxon@mecfunctional structure follow the
same path? Ecography 30:217-230.

Heino, J., D. Schmera, and T.68r 2013. A macroecological perspective of traitgrat in
stream communities. Freshwater Biology 58:1539-1555

Heino, J., R. Virkkala, and H. Toivonen. 2009. Giternchange and freshwater biodiversity:
detected patterns, future trends and adaptationgrihern regions. Biological Reviews
84:39-54.

Homer, C., C. Q. Huang, L. M. Yang, B. Wylie, and @ban. 2004. Development of a 2001
national land-cover database for the United St&ketogrammetric Engineering and
Remote Sensing 70:829-840.

Horrigan, N. and D. J. Baird. 2008. Trait patteohaquatic insects across gradients of flow-
related factors: a multivariate analysis of Canadiational data. Canadian Journal of
Fisheries and Aquatic Sciences 65:670-680.

Hosmer, D. W. and S. Lemeshow. 2000. Applied logigigression. 2nd edition. John Wiley &
Sons, Inc., New York, New York, U.S.A.

Huryn, A. D. and J. B. Wallace. 2000. Life hist@myd production of stream insects. Annual
Review of Entomology 45:83-110.

Hutchens, J. J., J. A. Schuldt, C. Richards, LlJdnson, G. E. Host, and D. H. Breneman. 2009.
Multi-scale mechanistic indicators of MidwesternAJSiream macroinvertebrates.
Ecological Indicators 9:1138-1150.

Hynes, H. B. N. 1970a. The ecology of running watémiversity of Toronto Press Toronto,
Canada.

Hynes, H. B. N. 1970b. Ecology of stream insectsnual Review of Entomology 15:25-42.

96



Jeffries, M. and D. H. Mills. 1990. Freshwater egyl: principles and applications. John Wiley
& Sons, Ltd, Chichester, England.

Johnson, L. B., D. H. Breneman, and C. Richardé32Macroinvertebrate community structure
and function associated with large wood in low ggatistreams. River Research and
Applications 19:199-218.

Johnson, V. E. 2013. Revised standards for stlstvidence. Proceedings of the National
Academy of Sciences of the United States of Amekif@19313-19317.

Kaufmann, P. R., J. A. Faustini, D. P. Larsen, Bhd\. Shirazi. 2008. A roughness-corrected
index of relative bed stability for regional streanrveys. Geomorphology 99:150-170.

Kaufmann, P. R., P. Levine, E. G. Robison, C. §eeliand D. V. Peck. 1999. Quantifying
physical habitat in wadeable streams. EPA/620/REDU.S. Environmental Protection
Agency, Corvallis, Oregon, USA.

Kerans, B. L. and J. R. Karr. 1994. A benthic indékiotic integrity (B-IBI) for rivers of the
Tennesse Valley. Ecological Applications 4:768-785.

Koehl, M. A. R. 1996. When does morphology matt#nfual Review of Ecology and
Systematics 27:501-542.

Lamouroux, M., S. Dolédec, and S. Gayraud. 200dlogical traits of stream macroinvertebrate
communities: effects of microhabitat, reach, ansirbélters. Journal of the North
American Benthological Society 23:449-466.

Lancaster, J. and L. R. Belyea. 2006. Defininglithés to local density: alternative views of
abundance-environment relationships. Freshwatdo@ydb1:783-796.

Larsen, S. and S. J. Ormerod. 2010. Combined sftédtabitat modification on trait
composition and species nestedness in river invetes. Biological Conservation
143:2638-2646.

Lawrence, J. E., K. B. Lunde, R. D. Mazor, L. A.cBé, E. P. McElravy, and V. H. Resh. 2010.
Long-term macroinvertebrate responses to climaa@gé: implications for biological
assessment in mediterranean-climate streams. Jadith@ North American
Benthological Society 29:1424-1440.

Lepori, F. and N. Hjerdt. 2006. Disturbance andadigibiodiversitys; Reconciling contrasting
views. Bioscience 56:809-818.

Lorenz, C. M., G. M. Van Dijk, A. G. M. Van Hatturand W. P. Cofino. 1997. Concepts in

river ecology: Implications for indicator developmieRegulated Rivers: Research &
Management 13:501-516.

97



Lytle, D. A. 2002. Flash floods and aquatic indéethistory evolution: Evaluation of multiple
models. Ecology 83:370-385.

Lytle, D. A., M. T. Bogan, and D. S. Finn. 2008.dlistion of aquatic insect behaviours across a
gradient of disturbance predictability. Proceediafthe Royal Society B-Biological
Sciences 275:453-462.

Macan, T. T. 1974. Freshwater ecology. 2nd editiomn Wiley & Sons, Ltd, New York, New
York, USA.

Mackay, R. J. 1992. Colonization by lotic macroirigbrates: a review of processes and
patterns. Canadian Journal of Fisheries and Aq&atiences 49:617-628.

Magbanua, F. S., C. R. Townsend, G. L. BlackwellPNillips, and C. D. Matthaei. 2010.
Responses of stream macroinvertebrates and ecosfigtetion to conventional,
integrated and organic farming. Journal of Appksmblogy 47:1014-1025.

Malmaqvist, B. 2002. Aquatic invertebrates in rivexilandscapes. Freshwater Biology 47:679-
694.

Marchant, R., L. Metzeling, A. Graesser, and Pe6ut985. The organization of
macroinvertebrate communities in the major trinewof the La Trobe River, Victoria,
Australia. Freshwater Biology 15:315-331.

McCafferty, W. P. 1998. Aquatic entomology: thehsmen's and ecologists' illustrated guide to
insects and their relatives. Revised edition. JamekBartlett, Boston, Massachussetts,
USA.

McGill, B. J., B. J. Enquist, E. Weiher, and M. Wasy. 2006. Rebuilding community ecology
from functional traits. Trends in Ecology & Evoloi 21:178-185.

Mendez, P. K. 2007. Chapter 5: Biological traitbiomonitoring: A comparison of ecological
function and community structure in the benthic roawertebrates of the Fraser River,
British Columbia, Canada. University of Californierkeley, Berkeley, California,
USA.

Menezes, S., D. J. Baird, and A. Soares. 2010. igkyaxonomy: a review of macroinvertebrate
traits-based community descriptors as tools fahveater biomonitoring. Journal of
Applied Ecology 47:711-719.

Merritt, R. W., K. W. Cummins, and M. B. Berg, emt. 2008. An introduction to the aquatic

insects of North America. 4th edition. Kendall/Héhiblishing Co., Dubuque, lowa,
USA.

98



Miller, S. W., D. Wooster, and J. L. Li. 2010. Dagzecies trait composition influence
macroinvertebrate responses to irrigation watendvawals: Evidence from the
Intermountain West, USA. River Research and Appbees 26:1261-1280.

Mondy, C. P. and P. Usseglio-Polatera. 2013. Usorglitional tree forests and life history traits
to assess specific risks of stream degradationrund#iple pressure scenario. Science of
the Total Environment 461:750-760.

Nagelkerke, N. J. D. 1991. A note on a generahitedn of the coefficient of determination.
Biometrika 78:691-692.

Ofenbdck, T., O. Moog, J. Gerritsen, and M. T. Bamb 2004. A stressor specific multimetric
approach for monitoring running waters in Austrsng benthic macro-invertebrates.
Hydrobiologia 516:251-268.

Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendr&. Minchin, B. O'Hara, G. L. Simpson, P.
Solymos, M. H. H. Stevens, and H. Wagner. 2011k&ge 'vegan': community ecology
package, version 2.0-3.

Omernik, J. M. 1987. Ecoregions of the conterminduged States. Annals of the Association
of American Geographers 77:118-125.

Peck, D. V., A. T. Herlihy, B. H. Hill, R. M. Huglse P. R. Kaufmann, D. J. Klemm, J. M.
Lazorchak, S. A. McCormick, S. A. Peterson, P. Ingeld, T. Magee, and M. R.
Cappaert. 2006. Environmental Monitoring and Assesg Program—Surface Waters
Western Pilot Study: field operations manual fodeable streams. EPA 620/R-06/003.
Office of Research and Development, U.S. EnviroraldProtection Agency,
Washington, D.C., USA.

Plafkin, J. L., M. T. Barbour, K. D. Porter, S. &ross, and R. M. Hughes. 1989. Rapid
bioassessment protocols for use in streams angriBenthic macroinvertebrates and
fish. EPA 440-4-89-001, U.S. Environmental Protatthgency, Office of Water
Regulations and Standards, Washington, D.C., USA.

Poff, N. L. 1997. Landscape filters and specieistréowards mechanistic understanding and
prediction in stream ecology. Journal of the Ndktherican Benthological Society
16:391-409.

Poff, N. L. and J. D. Allan. 1995. Functional orgaation of stream fish assemblages in relation
to hydrological variability. Ecology 76:606-627.

Poff, N. L., J. D. Olden, N. K. M. Vieira, D. S.if, M. P. Simmons, and B. C. Kondratieff.
2006. Functional trait niches of North Americandahsects: traits-based ecological
applications in light of phylogenetic relationshigsurnal of the North American
Benthological Society 25:730-755.

99



Poff, N. L., M. I. Pyne, B. P. Bledsoe, C. C. Culgan, and D. M. Carlisle. 2010. Developing
linkages between species traits and multiscaled@mwmental variation to explore
vulnerability of stream benthic communities to dit® change. Journal of the North
American Benthological Society 29:1441-1458.

Poff, N. L. and J. V. Ward. 1989. Implications triemmflow variability and predictability for
lotic community structure - a regional-analysiststEamflow patterns. Canadian Journal
of Fisheries and Aquatic Sciences 46:1805-1818.

Pollard, A. I. and L. L. Yuan. 2010. Assessing tbasistency of response metrics of the
invertebrate benthos: a comparison of trait- amahiitly-based measures. Freshwater
Biology 55:1420-1429.

Polunin, N. 2008. Aquatic ecosystems: trends anbailprospects. Cambridge University Press,
Cambridge, UK.

Power, M. E. 1992. Hydrologic and trophic controlseasonal algal blooms in northern
California rivers. Archiv Fur Hydrobiologie 125:388.0.

Qian, S. S., T. F. Cuffney, and G. McMahon. 2012ltMomial regression for analyzing
macroinvertebrate assemblage composition datahwedsr Science 31:681-694.

R Core Team. 2012. R: A language and environmerdtédistical computing. R Foundation for
Statistical Computing, Vienna, Austria.

Reed, J. C. and C. A. Bush. 2005. Generalized genfoap of the conterminous United States.
2nd Edition. National Atlas. U.S. Geological SuryBenver, Colorado, USA.

Resh, V. H. and D. M. Rosenberg, editors. 1984. ddwogy of aquatic insects. Praeger, New
York.

Reznikova, P., T. Soldan, P. flaand S. Zahradkova. 2010. Comparison of mayfly
(Ephemeroptera) taxocenes of permanent and intemhi€entral European small
streams via species traits. Biologia 65:720-729.

Richards, C., R. J. Haro, L. B. Johnson, and GHdst. 1997. Catchment and reach-scale
properties as indicators of macroinvertebrate gsettaits. Freshwater Biology 37:219-
230.

Richards, C., L. B. Johnson, and G. E. Host. 1886dscape-scale influences on stream habitats
and biota. Canadian Journal of Fisheries and Aq&tiences 53 (Suppl. 1):295-311.

Robertson, A. L. and P. J. Wood. 2010. Ecologyhefttyporheic zone: origins, current
knowledge and future directions. Fundamental anplid@ Limnology 176:279-289.

100



Robson, B. J., L. A. Barmuta, and P. G. Fairweath@?d5. Methodological and conceptual
issues in the search for a relationship betweemarthody-size distributions and benthic
habitat architecture Marine and Freshwater Resezgtii11.

Royer, T. V., C. T. Robinson, and G. W. Minsha002. Development of macroinvertebrate-
based index for bioassessment of Idaho rivers.rBnriental Management 27:627-636.

Scarsbrook, M. R. and C. R. Townsend. 1993. Stre@mmunity structure in relation to spatial
and temporal variation: a habitat templet studynaf contrasting New Zealand streams.
Freshwater Biology 29:395-410.

Schmera, D., T. Eros, and J. Heino. 2013. Hahitatihg determines spatial variation of
macroinvertebrate community traits in northern heatér streams. Community Ecology
14:77-88.

Smith, E. P. and J. R. Voshell Jr. 1997. Studigseotthic macroinvertebrates and fish in streams
within EPA Region 3 for development of biologicatlicators of ecological condition,
part 1: macroinvertebrates. Virginia Polytechnistitute and State University,
Blacksburg, VA.

Sporka, F., Z. Pastuchova, L. Hamerlik, M. Dobia@gand P. Beracko. 2009. Assessment of
running waters (Slovakia) using benthic macroireferates - derivation of ecological
quality classes with respect to altitudinal gratieBiologia 64:1196-1205.

Stamp, J. D., A. T. Hamilton, L. Zheng, and B. Geri&agen. 2010. Use of thermal preference
metrics to examine state biomonitoring data famelie change effects. Journal of the
North American Benthological Society 29:1410-1423.

Statzner, B. 2008. How views about flow adaptatioinisenthic stream Invertebrates changed
over the last century. International Review of Hhfmlology 93:593-605.

Statzner, B., P. Bady, S. Dolédec, and F. Sch8052Invertebrate traits for the biomonitoring
of large European rivers: an initial assessmentadif patterns in least impacted river
reaches. Freshwater Biology 50:2136-2161.

Statzner, B. and L. A. Béche. 2010. Can biologived¢rtebrate traits resolve effects of multiple
stressors on running water ecosystems? Freshwiatiegi 55:80-119.

Statzner, B., B. Bis, S. Dolédec, and P. Ussegtilatera. 2001. Perspectives for biomonitoring
at large spatial scales: a unified measure foftthetional composition on invertebrate
communities in European running waters. Basic apglidd Ecology 2:73-85.

Statzner, B., S. Dolédec, and B. Hugueny. 2004loBioal trait composition of European stream

invertebrate communities: assessing the effectmiebdus trait filter types. Ecography
27:470-488.

101



Stoddard, J. L., D. V. Peck, A. R. Olsen, D. P.sear, J. Van Sickle, C. P. Hawkins, R. M.
Hughes, T. R. Whittier, G. Lomnicky, A. T. Herlihy, R. Kaufmann, S. A. Petersen, P.
L. Ringold, S. G. Paulsen, and R. Blair. 2005a.iE&mmental Monitoring and
Assessment Program (EMAP): western streams anibretatistical summary. EPA
620/R-05/006., Office of Research and DevelopnEnvjronmental Protection Agency,
Washington, D.C., USA.

Stoddard, J. L., D. V. Peck, S. G. Paulsen, J. $iakle, C. P. Hawkins, A. T. Herlihy, R. M.
Hughes, P. R. Kaufmann, D. P. Larsen, G. LomniékyR. Olsen, P. L. Peterson, P. L.
Ringold, and T. R. Whittier. 2005b. An ecologicakassment of western streams and
rivers. EPA 620/R-05/005. Office of Research angddgpment, Environmental
Protection Agency, Washington D.C., USA.

Strahler, A. N. 1957. Quantitative analysis of wsited geomorphology. Transactions of the
American Geophysical Union 8:913-920.

Thode, H. C., Jr. 2002. Testing for normality. MerDekker, New York, New York, USA.

Thompson, R. M., N. R. Phillips, and C. R. Townse2@D9. Biological consequences of clear-
cut logging around streams-Moderating effects ohagg@ment. Forest Ecology and
Management 257:931-940.

Thorp, J. H. and A. P. Covich, editors. 2010a. Bgygland classification of North American
freshwater invertebrates. 3rd edition. Academis®r&an Diego, California, USA.

Thorp, J. H. and A. P. Covich. 2010b. Ecology aladsification of North American freshwater
invertebrates. 3nd edition. Academic, San Diegdif@aia, USA.

Tomanova, S., P. A. Tedesco, M. Campero, P. A.amme, N. Moya, and T. Oberdorff.
2007. Longitudinal and altitudinal changes of maurertebrate functional feeding
groups in neotropical streams : a test of the RG@mntinuum Concept. Fundamental and
Applied Limnology 170:233-241.

Tomanova, S. and P. Usseglio-Polatera. 2007. Rattérbenthic community traits in
neotropical streams: relationship to mesoscaleadpatriability. Fundamental and
Applied Limnology 170:243-255.

Townsend, C. R., S. Dolédec, and M. R. Scarsbrb@87. Species traits in relation to temporal
and spatial heterogeneity in streams: a test atdtalemplet theory. Freshwater Biology
37:367-387.

Townsend, C. R. and A. G. Hildrew. 1994. Specia#giin relation to a habitat templet for river
systems. Freshwater Biology 31:265-275.

102



Tullos, D. D., D. L. Penrose, G. D. Jennings, and3@VCope. 2009. Analysis of functional traits
in reconfigured channels: implications for the lsm@ssment and disturbance of river
restoration. Journal of the North American Bentlyadal Society 28:80-92.

U.S. Department of Agriculture. 2006. U.S. gensml map (STATSGO?2). Page Map. United
States Department of Agriculture,
http://websoilsurvey.sc.egov.usda.gov/App/HomeRdge.

U.S. Environmental Protection Agency. 2012. Implmas of climate change for bioassessment
programs and approaches to account for effects/&RAR-11/036A, Global Change
Research Program, National Center for Environmekdéabssment, USEPA,
Washington, D.C., USA.

Usseglio-Polatera, P. and J. N. Beisel. 2002. lodgial changes in macroinvertebrate
assemblages in the Meuse River: anthropogenictefiecsus natural change. River
Research and Applications 18:197-211.

Usseglio-Polatera, P., M. Bournaud, P. Richoux, ldn@lachet. 2000. Biomonitoring through
biological traits of benthic macroinvertebratesntto use species trait databases?
Hydrobiologia 422:153-162.

Vannote, R. L., G. W. Minshall, K. W. Cummins, J.$edell, and C. E. Cushing. 1980. The
river continuum concept. Canadian Journal of Figlseaind Aquatic Sciences 37:130-
137.

Venables, W. N. and B. D. Ripley. 2002. Modern AgglStatistics with S. 4th edition. Springer,
New York, New York, USA.

Verberk, W., C. G. E. van Noordwijk, and A. G. Higgv. 2013. Delivering on a promise:
integrating species traits to transform descript@mmunity ecology into a predictive
science. Freshwater Science 32:531-547.

Vieira, N. K. M., W. H. Clements, L. S. Guevaradds. F. Jacobs. 2004. Resistance and
resilience of stream insect communities to repehyeiologic disturbances after a
wildfire. Freshwater Biology 49:1243-1259.

Wallace, J. B. and J. R. Webster. 1996. The roleaxdroinvertebrates in stream ecosystem
function. Annual Review of Entomology 41:115-139.

Walters, A. W. 2011. Resistance of aquatic insectslow-flow disturbance: exploring a traits-
based approach. Journal of the North American Béogfical Society 30:346-356.

Ward, J. V. 1986. Altitudinal zonation in a Rockylhtain stream. Archiv Fur Hydrobiologie,
Supplement 74:133-199.

103



Ward, J. V. 1992. Aquatic insect ecology, |. biol@nd habitat. Wiley, New York, New York,
USA.

Ward, J. V. and J. A. Stanford. 1982. Thermal rasps in the evolutionary ecology of aquatic
insects. Annual Review of Entomology 27:97-117.

Webb, C. T., J. A. Hoeting, G. M. Ames, M. |. Pyaad N. L. Poff. 2010. A structured and
dynamic framework to advance traits-based theodypaadiction in ecology. Ecology
Letters 13:267-283.

Weigel, B. M. and D. M. Robertson. 2007. Identifyibiotic integrity and water chemistry
relations in nonwadeable rivers of wisconsin: Taivdwe development of nutrient
criteria. Environmental Management 40:691-708.

Weigel, B. M., L. Z. Wang, P. W. Rasmussen, J. UtcBer, P. M. Stewart, T. P. Simon, and M.
J. Wiley. 2003. Relative influence of variablesratltiple spatial scales on stream
macroinvertebrates in the Northern Lakes and Fe@stegion, USA. Freshwater
Biology 48:1440-1461.

Wetzel, R. G. 2001. Limnology: lake and river esisyns. 3rd edition. Academic Press, San
Diego, California, USA.

Williams, D. D. 1996. Environmental constraintd@mporary fresh waters and their
consequences for the insect fauna. Journal of drehMmerican Benthological Society
15:634-650.

Williams, D. D. and B. W. Feltmate. 1992. Aquatiseécts. CAB International, Wallingford,
Oxon, UK.

Wolda, H. 1988. Insect seasonality: why? AnnualiB®s&wof Ecology and Systematics 19:1-18.

Wood, P. J. and P. D. Armitage. 1997. Biologicéef of fine sediment in the lotic
environment. Environmental Management 21:203-217.

Yoshimura, M. 2012. Effects of forest disturbancasaquatic insect assemblages.
Entomological Science 15:145-154.

Yuan, L. L. 2010. Estimating the effects of excesgients on stream invertebrates from
observational data. Ecological Applications 20: 17%.

Yule, C. M. 1996. The ecology of an aseasonal tapiver on Bougainville Island, Papua New
Guinea. Perspectives in Tropical Limnology:239-254.

Zar, J. H. 1999. Biostatistical analysis. 4th exditiPrentice Hall, Upper Saddle River, New
Jersey, USA.

104



Ziglio, G., M. Siligardi, and G. Flaim. 2006. Bigal monitoring of rivers: applications and
perspectives. Wiley, Chichester, England.

Zuellig, R. E. and T. S. Schmidt. 2012. Characteginvertebrate traits in wadeable streams of

the contiguous US: differences among ecoregiondarttiuses. Freshwater Science
31:1042-1056.

105



CHAPTER 3: MODELING THE RESPONSE OF CLIMATE-SENSVHE, AQUATIC INSECT
TRAITS TO MULTIPLE ENVIRONMENTAL FACTORS IN THE WESERN UNITED

STATES USING A BAYESIAN PATH MODEL

Summary

Trait groups, where each species is grouped actptdia trait classification, have been
used in stream systems research for decades. tReten trait groups, cold stenotherms (taxa
found only in cold water) and erosional obligates& found only in habitat with fast flowing
water) have been used to assess the effect oftelioh@nge on macroinvertebrate communities
in streams. These studies, however, have mostbyrégl the regional variation in trait responses
to current climate conditions and the relative dbation of non-climatic variables (e.g., habitat,
stream size) on climate-sensitive trait distribngio We developed a Bayesian path model for
251 sites in the western United States to detertminethe distributions of cold stenotherms and
erosional obligates are influenced by climatic and-climatic variables in eight different
climatic ecoregions. The models accounted for 4%-85 variation in cold stenotherm
distributions in most ecoregions, but only accodritg 10-20% of the variation in erosional
obligate distributions. The distribution of coligsotherms was driven by different variables
according to ecoregion, with temperature and rudoffing distributions in the three temperate
ecoregions while other non-climatic variables dieeéd stenotherm distributions in some
warmer ecoregions. Our results indicate that ineniemperate ecoregions, we may see a slight
shift on cold stenotherm richness, but cold stesmoiis are at their thermal limits in warmer
ecoregions and are selecting non-climatic streamditions that mitigate the effect of high

temperatures.
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Introduction

A major goal in climate change research is to ustdaed how organisms respond to
current climate conditions and predict how they mespond to increased temperatures due to
climate change. The two most common approachassess organismal sensitivity to
temperature are to use thermal ramping experimerassess thermal thresholds (Cowles and
Bogert 1944, Lutterschmidt and Hutchison 1997) asel environmental niche modeling to
extrapolate potential habitat contractions and egjmams from a species current distribution
(Pearson and Dawson 2003). Both approaches adseate vulnerability at the organismal
level with the former requiring a significant inve®nt of time and equipment for each species
and the latter lacking the mechanistic link betward organism and the environment (Pearson
et al. 2014). A third approach is to assessdbpanse of organisms to their environment using
species traits — life history, morphological, ploysgical, or ecological characteristics that
provide a mechanistic link between the organismitmenvironment (McGill et al. 2006). This
approach is appealing because it can be appliad eémtire community and provides the
theoretical justification for species sorting asrasgiven environment (Webb et al. 2010). Traits
have been used to describe community responsdisia@e change in multiple animal and plant
systems (Foden et al. 2013, Frenette-Dussault 204B, Pearson et al. 2014).

Community-level trait groups (i.e., grouping taraai community according to a nominal
trait classification and using a community-leveltnog such as richness or abundance) have been
commonly used in aquatic ecosystems. Trait groape been incorporated in stream ecosystem
theory (Vannote et al. 1980) and used to assesffiet of various anthropogenic influences on
stream ecosystems (Townsend and Hildrew 1994), asittydrological alteration (Statzner et al.

2001, Carlisle et al. 2011), land use (Townseral.€t997, Zuellig and Schmidt 2012), and
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stream eutrophication (Morais et al. 2009, Feio Bntédec 2012). Climate change is expected
to alter thermal and flow regimes in streams (Paket@l. 2009, Poff et al. 2010, Filipe et al.
2013), which in turn should influence two ecologitaits that can be considered “climate
sensitive”, thermal preference and flow habitafgnence (i.e., rheophily), since both traits were
derived directly using taxa preference for tempegmand flow. Thermal preference has been
used to evaluate community responses to streamistngrfysseglio-Polatera and Beisel 2002,
Horrigan and Baird 2008), hydrological alteratidsil{er et al. 2010, Brooks et al. 2011),
glaciation (Fureder 2007, Brown and Milner 2012)J atream size (Usseglio-Polatera et al.
2000, Usseglio-Polatera and Beisel 2002). Flowthbpreference has been used to evaluate
community responses to flow and water velocity (kegyet al. 2009, Steuer et al. 2009, Walters
2011), habitat type (Brabec et al. 2004), and strgaomorphology (Richards et al. 1996).
Thermal preference and flow habitat traits havemdyg been used specifically to address
the effects of climate change in streams, with ohiseccess. Chessman (2009, 2012) found that
the distribution of taxa that prefer cold waterrgedter referred to as cold stenotherms) and taxa
associated with high flow habitats (hereafter mef@ito as erosional obligates) were being
negatively influenced by increased temperaturesradidced flows in southeastern Australia, but
attributed weak correlations between the climatesitiwe traits and climate over a 13-year
period to both the influence of non-climatic anchtydraulic environmental variables, as well
as regional variability in climate. Poff et alO@) found that the current distribution of cold
stenotherms and erosional obligates were associatieir temperature, precipitation, and
runoff, but also found that some non-climatic vialés, such as turbidity, had a strong influence.
Hamilton et al. (2010) and Stamp et al. (2010) tbthmat cold stenotherms were negatively

associated with warmer air temperatures for sotes,dbut no relationships for others. These
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analyses covered large geographic extents and agstinat these traits should respond in a
similar fashion across the entire study area.astiheen argued that the distributions of aquatic
insect traits in natural or near-natural streanddmns should be similar across large temperate
regions (Statzner and Béche 2010), but other sfudige found regional differences in trait
groups (Poff et al. 2010, Zuellig and Schmidt 201&yditionally, several studies have found
that while thermal preference and rheophily traiese correlated with temperature and flow
habitat respectively, they were also correlateth wther associated variables, such as water
guality, dissolved oxygen, and stream velocity @dgi®-Polatera and Beisel 2002, Horrigan and
Baird 2008, Poff et al. 2010). The influence ohrwimatic variables appears to confound the
relationship between these climate-sensitive temts$ climatic variables, possibly due to regional
variation in climate.

Predicting community response to climate changaires a 1) quantification of regional
variation in trait responses to current climatedibons and specification of the sensitivity of
species to climate variables across the regiorRanétermination of the relative contribution of
non-climatic variables (e.g., habitat, stream s@rejrait distributions. These two issues have
never been addressed together in stream ecosys@unsaim here is to develop predictive
models for aquatic insect traits in the westerntéthBtates using both a regional context and
incorporating variables, both climatic and non-@tro, described in the literature as drivers of
cold stenotherm and erosional obligate distribigiofihe western United States is climatically
variable, ranging from hot desert to temperatefoagst climates, and we hypothesize that the
distributions of cold stenotherms and erosionaigalés are more closely tied to temperature and
hydrology in the more temperate regions, but stheeadistribution of these traits would already

be constrained in more climatically harsh environtade.g., the Great Plains, Mediterranean
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California), other factors would mitigate the etfet high temperatures or low flows and would
therefore be more important in describing traitrébsitions. Our reasoning is that the cold
stenotherm and erosional obligate traits are elglidefined according to climate sensitivity and
if organisms with these traits are found in marpimearly unsuitable habitat, then they are
already at their thermal or flow limits and mustrgEensate by inhabiting portions of the stream
that buffer or insulate against such conditiorfghis reasoning is correct, then the distributions
of cold stenotherms or erosional obligates shotddgglly change with temperature or fast
water habitat well within their thermal or flow lite, but once they near their limits (i.e.,
approach a threshold), those relationships breakagmd non-climatic relationships begin to
emerge. To test this hypothesis, we developedyadtan path regression model for natural or
near-natural streams in eight different climatigioas (i.e., ecoregions) in the western United
States, incorporating anpriori understanding of how environmental factors drhee t
distribution of cold stenotherms and erosionalgdikes. The goal of our analysis not to make
specific quantitative predictions concerning comityuresponses to climate change, but instead
gain a greater understanding of how traits curyam$pond to their environment and infer how
those relationships may change due to climate aghaf@jher methods, such as niche modeling,

are more conducive to such predications and willtdezed in Chapter 4.

Methods

We selected 251 reference, or least-impacted, fsdasthe U.S. Environmental
Protection Agency’s (USEPA) Environmental Monit@riand Assessment Program — Western
Pilot Study (WEMAP. In the WEMAP study, streanesitvere selected in 12 western U.S.
states using a stratified random design (Stoddaatl 2005a), being stratified according to state,

Strahler order (Strahler 1957) and ecoregion (Oikdr®87). Thirteen hundred and forty sites
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were sampled from 2000 to 2004, mostly during summanths (with some May and October),
with biological, chemical, and physical habitatalaebllected at each site following the
procedures in Peck et al. (2006). The referenaditon of each site was assessed at the reach-
scale (Stoddard et al. 2005a) using phosphorusgeih, chloride, sulfate, pH, turbidity, a
riparian disturbance index, % fine substrates,@mbpy density. Reference condition was also
assessed at the catchment-scale (Chapter 2) usmng ahd reservoirs, pipes/conduits and
canals/ditches, roads, land use, population dersity National Pollutant Discharge Elimination
System polluters. Specific criteria for referegoadition are found in Stoddard et al. (2005a)
for the reach-scale and Chapter 2 for the catchuseale. We only included sites that met
reference criteria at both reach and catchmenéscale also eliminated some sites found in the
same stream network of another site. If two sitese found in the same stream network and
were< 6 km apart, we randomly eliminated one of thessitereduce the effect of spatial
autocorrelation between sites. Full details onldlok of independence between sites and our
rationalization for elimating sites 6 km apart are found in Chapter 2. Finally we oeed sites
with ambiguous placement in our Geographic InforamaBystem (GIS), poorly defined
watersheds, without biological samples, or withenxironmental variables used in this analysis.
We further separated the 251 sites into ecoregidhg goal of this analysis is to
understand how organisms restricted to low streampératures and fast flowing habitat respond
to their environment, but we would not expect thegmnisms to respond in a similar fashion
across different climatic regions. We separatadsdas according to eight ecoregions that we
modified from Omernik’s level-l ecoregions (Omerii887) in way that we felt best reflected
temperature and flow regimes in the western U.& Kapt Omernik’s desert, Mediterranean,

and plains ecoregion designations, but modifieddéimeaining five ecoregions. We combined
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Omernik’'s Southern Semi-arid Highlands and Tempee®rras ecoregions in Arizona into a
single ecoregion, our Southern Dry Highlands edoregvhich had drier climatic conditions
than other mountainous regions to the north. Welxoed the western and northern Cascade
Mountains with Omernik’s Marine West Coast Foresiregion into our Northwestern Wet
Forests, a region which experienced some of thieglsigprecipitation in the 48 states and
markedly different hydrological and thermal reginiesn other, drier mountainous areas in the
western United States. We broke the remaininggratof Omernik’s Northern Forested
Mountains ecoregion into three ecoregions. Ouni@th Mountains ecoregion in northern
California and southern Oregon contained mountarilowa and fauna, but had very dry, warm
summers. We divided the remaining mountains adcgriw latitude with the Middle Temperate
Mountains ecoregion (consisting of the Sierra NegadlVasatch and Uinta Mountains, and the
southern Rockies of Colorado) being lower in |lat@with warmer summers. The Northern
Temperate Mountains ecoregion (consisting of théheon and middle Rockies, eastern
Cascades, and Blue Mountains) had generally shadeler summers. Our resulting dataset
included 251 sites across eight ecoregions in 1steme U.S. states (Figure 3.1).

We selected two traits, thermal preference andpthigg to assess how stream insect
communities respond to the complex interactionnvir®enmental variables in streams. The two
traits are taken from a modified version of theffofal. (2006) database and are nominal, with
three categories each. We focused our analysimertategory for each trait, using cold
stenothermal/cool eurythermal (i.e., prefers 0-O} hereafter referred to as cold stenotherm, for
temperature preference and erosional obligatddar fiabitat preference. We transformed the
WEMAP biological richness data into a trait metricsumming the number of taxa at a site

assigned to that trait category and dividing bytttal richness. Richness was recorded at the

112



. [ Desert

[ Klamath Mtns
[N Temp. Mtns
[N Great Plains
[ Mediterranean
[ S Dry Highlands [
W 4 [ NW Wet Forests
600 Kilometers = [ Mid. Temp. Mtns

Figure 3.1: The distribution of WEMAP sites acrossdified ecoregions used in this paper.

genus-level for most taxa except Chironomidae, Wwikweas recorded at the sub-family level. The
WEMAP biological data was collected from 11 trarisext each site and were composited into a
single sample for the site and up to 500 (£50)vidlials were identified to the lowest feasible
taxonomic levels (usually genus) using a fixed ¢quocedure (Stoddard et al. 2005a).

We included environmental variables in our modeé have a theoretical connection to
the distribution of cold stenotherms and erosiatdigates at the catchment, valley, or reach
scale. The theoretical justifications for the setan of our environmental variables are further
elaborated in the model justification sectionshia methods. The reach-scale variables were
collected at each EMAP site (Stoddard et al. 208%addard et al. 2005b) using the procedures
from Peck et al. (2006), Kaufmann et al. (1999) Kaufmann et al. (2008) and are: 1) mean
width/depth ratio of reach, 2) mean mid-channebggrdensity, and 3) proportion of the reach
that is fast water habitat (e.g., riffle, run). elValley-scale geomorphology variables, valley
slope and valley entrenchment, were derived b\Btien Bledsoe lab at Colorado State
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University using the techniques found in Cuhaci{2006) and the National Elevation Dataset
30-meter resolution Digital Elevation Models (Ge2€®7) in a GIS. The watershed-scale
climatic variables, mean July air temperature aedmannual precipitation, were derived from
the 800-m-resolution Parameter-elevation Regressonndependent Slopes Model (PRISM)
database (30-y period of record from 1971-20003RRClimate Group, Oregon State
University, Corvallis, Oregon; http://www.prismclate.org). Finally, the three watershed-scale
hydrological variables were developed by the D&arisle lab at the USGS using the random-
forest methods found in Carlisle et al. (2010) arel 1) mean annual runoff (mean annual flow
standardized according to watershed), 2) propodfdiow attributed to baseflow (hereafter
referred to as baseflow), and 3) mean total low fiulse duration per year. We partitioned the
data according to ecoregion, transformed the enmental variables approximate normal

distributions, and standardized the environmerdéd.d

Path diagrams - relationships between variables

The relationships between environmental variabhesteaits are complex with multiple
possible pathways of influence. To adequately tsided these relationships, we developed
path diagrams using current theory about streamctsitte and stream ecology to outline the
causative relationships between environmental bkesaand their influence on trait distributions.
These path diagrams include direct causal relatipesand indirect relationships through an
intermediary environmental variable. We will fidgscribe the relationships between trait
groups and the environmental variables and thecritbesthe inter-relationships between
environmental variables.

Cold stenotherm model justificatienThe ultimate factor regulating cold stenotherm

distribution is water temperature, but a single soea of stream temperature at the time of
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collection is not adequate in predicting the dmttion of these organisms. A single measure
would not capture the spatial and temporal vamegtithat test thermal limits of cold stenotherms
as well as provide thermal refuges. Poole and Bar(@8001) describe three general categories
of environmental variables that influence and meedstream water temperature: drivers, buffers,
and insulators. Drivers are independent of stremacture and provide the temperature template
by adding or removing heat from the stream systm,(climate). Buffers and insulators are
components of the stream system and floodplainitiiaence stream temperature. Buffers
modulate heat transfer between components of thamstsystem (e.g., stream geomorphology),
resulting in temperature variation. Insulatorsigaite the addition or removal of heat into the
stream system (e.g., canopy cover). Only by inolythe effect of drivers, buffers, and
insulators can we attempt to determine how coldatteerms use the temporal and spatial
variations in stream temperature to avoid crosgiegmal thresholds and how increases in

temperature due to climate change may affect thiegamnisms.

We selected drivers, buffers, and insulators alblan our dataset that we felt most
influenced the distribution of cold stenothermsk{féa3.1). Cold stenotherms are influenced by
the seasonal means, extremes, and variance imsteeaperature as well as the availability of
thermal refuges, but recent research also indidatedhermal preference was influenced by
physiological constraints, particularly sensitivitythe amount of dissolved oxygen available
(Verberk and Calosi 2012, Verberk and Bilton 201BjJe selected the variables in Table 1 using
reasoning found in Hynes (1970), Poff et al. (19%i)er and Malmqvist (1998), Poole and

Berman (2001), Allan and Castillo (2007), Rollakt(2012), and Verberk and Bilton (2013).
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Table 3.1: The drivers, buffers, and insulatortugrficing the distribution of cold stenotherms in
streams with descriptions of the theoretical relahips. The +, -, or +/- signs at the end of the
description indicate positive, negative, or vargathleoretical relationships with the trait
distribution, respectively.

Environmental

Influence Variable Relationship with stream temperature
Drivers Mean July air The atmosphere conducts heat into or out of streatar
temperature of the and is a surrogate for solar radiation. This \@deas a

catchment (°C; Temp) measure of potential thermal maximum, since oua dat
consists of mean monthly temperatures and Julythead
highest temperature for most sites. (-)

Mean annual runoff The speed and volume of water movement in a stream

(ft3/sec/milé; MAR) system mitigates the influence of atmospheric heat
exchange (i.e., thermal inertia), provides dissblve
oxygen, and indicates the relative influence oftrgasn
thermal and chemistry conditions. (+)

Baseflow (total A higher proportion of baseflow potentially recesve

baseflow/total flow) more thermally stable water from subsurface patlsway
minimizing the influence of atmospheric temperature
fluctuations year-round and minimizing extreme air

temperatures during the summer months. (+)

Buffers Proportion of reach withFast water habitats may provide a habitat for
fast water habitat (Fast) oxyconformers, providing faster oxygen replenishimen
Some fast water habitats, such as riffles, alse agher

substrate complexity and larger open spaces between
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Mean width/depth ratio

of reach (m/m; WD)

Mean valley
entrenchment - width

based (Entrench)

Mean total low flow
pulse duration per year

(proportion; LowDurY)

substrate, providing physical refuges from surface
temperatures and close contact to thermally stable
hyporheic effluent where it occurs. (+)

The relative depth of stream describes the propouf
stream available to atmospheric convection and sola
radiation as well as how effectively heat is transdd
throughout the stream. (-)

A measure of valley morphology; influencing
topographic shading of the stream (i.e., shadiagnfthe
hillslope landmass), the potential size of the diglain
aquifer, and potential hyporheic inflow. (+/-)

A long period of reduced water volume, with
corresponding increases in surface air to volurtie;ra
decreases the ability of streams to buffer agaiasation

and extremes in air temperature. (-)

Insulators

Mean mid-channel
canopy density

(proportion; MidCan)

Canopy cover reduces insolation and radiant heaf)g

Mean slope of the valleyGreater slope increases stream turbulence andréitey

above the site (unitless;

Slope)

factors that can increase dissolved oxygen aviithabi

(+)
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These relationships are shown in the path diagrakigure 3.2. Precipitation does not have a
direct causal relationship with cold stenotherms,does have indirect effects through
hydrology, riparian, and stream habitat variablakhough, other variables, such as geology,
also have indirect effects on cold stenothermsuiinchydrology and habitat, they were not

included since the focus of this analysis is omatic variables.

Geomorphology/

Slope WD Entrench Precip Temp
climate

LowDurY Baseflow MAR

Hydrology

Habitat/riparian

Trait response

Figure 3.2: The path diagram of the direct causiattionships between cold stenotherms with
climate, geomorphology, hydrology, riparian, an@ain habitat variables. Abbreviations are
listed in Table 3.1

Erosional obligate model justification The erosional obligate model is more
straightforward than the cold stenotherm model withproportion of fast-water habitat being
the ultimate driver of erosional obligate distrioat Erosional obligates need high flow
conditions to provide oxygen and food while a lasgbstrate size provides refugia and traps for
organic matter. Both conditions are typified istfavater habitat (Hynes 1970, Ward 1992,
Lancaster and Belyea 2006). Stream size, litho{ogjuding sediment size), valley
confinement, stream flow, and slope are the maitofa in developing fast water habitat types
(Brussock et al. 1985, Montgomery and Buffingto®3,9Montgomery and Buffington 1997,

Church 2002, Wohl and Merritt 2005). Changes apsland stream flow can also compensate
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for a lack of ideal fast water habitat for erosionlaligates. For example, erosional obligates
typically do not inhabit pools, but some pools ighhslope streams, such as plunge pools or step
pools, experience significant water velocity abtlence (Wilcox and Wohl 2007) and could be
provide conditions suitable for erosional obligatéglditionally, low flows can disrupt favorable
conditions in fast water habitat. Temperaturdyalgh an important component of climate
change, was not included in this model becausasitno mechanistic link to habitat preference
and the correlation between cold stenotherm ansi@ral obligate distributions is low
(Spearmanr: 0.176). We selected the variablasatitaas drivers, compensator, or disrupters of
erosional obligates (Table 3.2) using reasoningdon Brussock et al. (1985), Hawkins et al.

(1993), Wilcox and Wohl (2007).

Table 3.2: The drivers, compensators, and disraptduencing the distribution of erosional
obligates in streams with descriptions of the th&oal relationships. The +, -, or +/- signs & th
end of the description indicate positive, negatoreyariable theoretical relationships with the
trait distribution, respectively.

Environmental

Influence Variable Relationship with stream temperature

Driver Proportion of reach Erosional obligates require habitat with constant
with fast water habitat flowing water and coarse sediment typified by fast

(Fast) flowing water habitat. (+)

Compensate Mean slope of the Typically depositional habitat in streams sectiosth
valley above the site  high slope experience high water velocities and
(Slope) turbulence that can provide suitable habitat for

erosional obligates. (+)
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Mean annual runoff High runoff carries greater oxygen and food and may
(MAR) provide suitable conditions in some portions of

depositional habitat for erosional obligates. (+)

Disrupt Mean total low flow During long periods of reduced water volume, sestio
pulse duration per year of the reach that are typically defined as fastewat
(LowDurY) habitat can experience decreased flows and sediment
accumulation making it inhospitable for erosional

obligates. (-)

These relationships are shown in the path diagraRigure 3.3. Temperature has no effect on
erosional obligates, but precipitation has indieféects through hydrology and stream habitat

variables.

Geomorphology/ .
Slope WD Entrench Precip Temp

climate

Hydrology LowDurY Baseflow MAR

MidCan

Habitat/riparian

Trait response

Erosional

Figure 3.3: The path diagram of the direct causlationships between geomorphology,
hydrology, and stream habitat variables with enogi@bligates

Environmental model justification Five of the ten environmental variables usetthis

analysis are also influenced by other variablabémodel. Mean annual runoff, baseflow, and
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low flow duration are influenced by the amount cé@pitation in the watershed and the
geomorphology of the reach and valley. The proporf fast-water habitat in the reach is
influenced by hydrological and geomorphic facto@anopy cover is influenced by climate,
hydrology, and geomorphology. These relationshipsdescribed in Table 3.3. Other stream
and watershed characteristics with only an indimgtience on cold stenotherm or erosional
obligate distributions were not included in the mlod~or example, catchment geology, soil
configuration, and upland vegetation are all sigaift drivers of baseflow (Price 2011), but they
do not directly influence the distribution of catenotherms, rather indirectly through
hydrologic flow paths. The one exception to thislesion of strictly indirect factors is mean
annual precipitation (Precip). Because this stidys to determine how climate change
influences stream communities, it is importantnow how tightly linked precipitation is to the

environmental variables directly linked to coldrsitherm and erosional obligate distributions.

Table 3.3: The relationships between environmergtalbles in the Bayesian path regression
model. The +, -, or +/- signs at the end of thecdption indicate positive, negative, or variable
theoretical relationships with the trait distrilmrij respectively.

Variable Relationships with other environmental vaiables
Mean annual - Mean annual precipitation for the catchment (Pregipvides the
runoff (MAR) maximum volume of water available to the streamesys (+)

- A greater mean slope of the valley above the Sitepg) increases
the velocity of stream water. (+)

- Mean width/depth ratio of reach (WD), a measurstifam cross-
section during sampling time (approaching baseftomditions),

describes the dimensions of stream movement ane hg/e
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Baseflow

Mean total low
flow pulse
duration per year

(LowDurY)

Proportion of
reach with fast
water habitat

(Fast)

influence of bed friction on velocity. (-)

The amount of annual precipitation for the catchi{Brecip),
interacting with multiple variables, such as geglquovides the
major source of groundwater into the watershed. (+)

Mean slope of the valley above the site (Slopejiced the rate of
water infiltration and retention in the soil andtjraately, the
inclusion that water as a component of baseflow. (-

Mean valley entrenchment (Entrench) is an indicafdhe amount
of alluvial plain and valley storage available $mbsurface water. (-)
Mean annual precipitation for the catchment (Prepipvides the
maximum volume of water available to the streantesys (-)
Greater channel incision (WD) and mean valley exinenent
(Entrench) reduces the surrounding water tableljmgeto longer
low flow durations during the dry season. (-)

Greater mean valley entrenchment (Entrench) redihees
surrounding water table and soil infiltration rafe$

Mean slope of the valley above the site (Slope)iced precipitation
infiltration and storage, reducing the availablewgrdwater during
dry seasons. (+)

Streamflow, represented by total runoff (MAR) amdportion of
relatively stable flow (Baseflow), mean valley emichment
(Entrench), a measure of channel confinement, agmhrslope of

the valley above the site (Slope) influence thedpart capacity in a
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stream and what habitats result from substratespam. (+)
- Some fast water habitats, such as riffles, forny amider specific

range of mean width/depth ratios of the reach (Wb).

Mean mid- - Mean annual precipitation for the catchment (Pregpipvides the
channel canopy volume of water available for plant growth. (+)
density (MidCan) - High mean July air temperature of the catchmenm@)eplaces

additional stress on plants due to high transjpinaéind reduce
overall water volume available for plants. (-)

- Lengthy periods of low-flow (LowDurY), would not gvide
adequate water for some riparian vegetation. (-)

- Mean slope of the valley above the site (Slopdhuarfces stream
power, which influences bank degradation and thebéshment of
riparian vegetation. Slope also effects watemtgta in the soil
available for plant use. (-)

- Mean valley entrenchment (Entrench) can limit tire@ant of
suitable riparian corridor available for riparia@getation and can
affect valley storage available for water, whichyrimit plant

growth. (-)

References for relationshipdean annual runoff: Giller and Malmqvist (1998), Knighton (1998), aAtlan and
Castillo (2007)Baseflow Singh (1968) and Price (201Lpw-flow duration : Vogel and Kroll (1992), Marston
(1994), and Smakhtin (20015ast-water habitat Montgomery and Buffington (1993), Montgomery and
Buffington (1997), Church (2002), and Buffingtonaét (2003);Mean mid-channel canopy density Naiman and
Décamps (1998), Smakhtin (2001), and Naiman €RaD5).

Based on the reasoning above, we developed theoenwental path diagram shown in

Figure 3.4. The solid lines represent the cawdationships between variables and the dashed
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lines represent non-directional, correlative relaships between variables. The non-directional
correlations between the variables in the modebaaicfor confounding factors between
variables, such as elevation or watershed arearel@bons are shown in Figure 3.4a, causal
relationships between hydrologic metrics and ge@imalogy and precipitation shown in Figure
3.4b, causal relationships between fast water atabténopy cover and hydrology,
geomorphology and climate shown in Figure 3.4d.ti#dse relationships, plus the relationships
with the traits, are combined into one path analgsich for the two trait variables, shown in
figure 3.5, with Figure 3.5a showing the full moé&i cold stenotherms and Figure 3.5b

showing the full model for erosional obligates.

Model Development

Our data consist of multiple environmental varigtdé multiple scales that have complex
relationships with both direct influences on thattdata and indirect influences through an
intermediary variable (i.e., mediation; Warner 2D1Bath regression analysis is an ideal
approach to evaluate the validity of theoreticabdhi and indirect relationships between variables
in complex ecological systems (McCune and GracR0Path regression analysis performs
simultaneous regression analyses and allows fotipteu& priori causal pathways in the model
as well as correlation between independent vasalbléowing for a measure of both direct and
indirect effects. The strength of each direct ehusationship is represented by the regression
coefficient and the indirect effects are the pradicoefficients. For example, if annual

precipitation has a significant direct influenceraaan annual runoff with a coefficient of 0.75
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Figure 3.4: The environmental components of thea pagressions models showing the
correlations between environmental variables (Agd causal relationships for hydrology
variables (B), and direct causal relationshipgtierhabitat/riparian variables (C)

and mean annual runoff has a significant diredtierfce on the distribution of cold stenotherms
with a coefficient of 0.4, then the indirect caustiéct of precipitation on the distribution of dol
stenotherms would b&75 x 0.4 = 0.3. In order to compare the strength of relationsiig.,
coefficients), the environmental variables werasfarmed to approximate normal distributions
and standardized with a mean of 0 and a standaidtaba of 1. Finally, the use of the term
causal relationships somewhat of a misnomer in these models. Thaetsalo not determine
causality such as in an experiment, but insteadhesvalidity of ama priori hypothesis or

hypotheses.
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Figure 3.5: The full path models for cold stenothei(A) and erosional obligates (B).

Most path regressions analyses have been condusitegla frequentist statistical
framework with the assumption of normal distribngpbut the cold stenotherm and erosional
obligate data are nominal variables with a binordisfribution, each trait having two possible
designations for taxa: being a cold stenothermi@nas obligate or not. To account for this data
structure, we developed a Bayesian path regressountel. The Bayesian model was also
desirable in this analysis due to some ecoregiamsg a limited number of sites and the
Bayesian model allowed us perform a sensitivityysis, evaluating if the parameter estimates
were being driven by the data instead of the misiributions. The binomial trait variable
(either cold stenotherm of erosional obligate) vegsesented by = (tr,s; r= 1,2), wherer
represents the two possible states for each gage ¢old stenotherm and non-cold stenotherm)
ands represents the number of sites in the ecoredldwere were three groups of environmental
variables: 1) habitat/riparian variables represgieX = (xls, =1, 2) wherei represents the

number of variables andrepresents the number of sites in the ecoregiphy@ology variables
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represented by = (yj,s;j =1, 3) wherej represents the number of variables and
represents the number of sites in the ecoregiah3xgeomorphology/climate variables
represented b¥ = (Zk,s: k=1, 5) wherek represents the number of variables and

represents the number of sites in the ecoregi@ch Eait state (cold stenotherm and erosional

obligate) was distributed as

T ~ Binomial(P, N)

=Y,
r

with P representing the probability of a taxon being lad stenotherm or erosional obligate and
N representing the total number of taxa. The priityabf trait state membership is a response
to habitat/riparian, hydrology, and geomorpholotigiate variables and, thus, all sets of
environmental variables are included as predidtotee following logistic regression, which is

the appropriate link function for probability data

2 3 5
Logit(P) = B, + Z BiaX + Z BjpY + Z BrcZ
i1 = =1

wherep, represents the intercept afigd, 8, andpy. represent the regression coefficients for

the habitat/riparian, hydrology, and geomorpholotiylate variables respectively.
All of the environmental data were transformedpgpraximate normal distributions and

were centered with a mean of 0 and scaled withradsird deviation of 1. The habitat and
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riparian variables were not expected to be comdlatith each other based arpriori reasoning
(which they were not, with a Spearman correlatibf.06), so they were each assigned separate

normal distributions
X ~ Normal(y;, 7;)

where werey; represents the mean for variabbndz; represents the variance for variable
Fast water habitat and canopy cover are influegestream hydrology, geomorphology, and
climatic conditions. To account for these influescthe mean from the habitat/riparian normal
distributions were included as response varialolesgression equations including hydrology

and geomorphology/climate as the predictor vargble

3 5
ﬂi=yo+2yij+ZchZ
j=1 k=1

wherey, represents the intercept apg andy,. represent the regression coefficients for the

hydrology and geomorphology/climate variables resipely. The hydrology variables had
normal distributions, but also were expected tadreelated with each other (they had Spearman
correlations of -0.30, -0.21, and 0.22). We warttedetermine the correlation, so we assigned

the three variables to a multivariate normal disttion

Y ~ Multivariate Normal(vj, Zy)
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wherev; represents the model mean mean for varipalelZ, represents the model covariance

matrix. The hydrology variables were influencedgapmorphology and climatic variables,
which was represented in the following regressiguagions with the multivariate normal means

as the response variables

5
v, = 8o + Z ScZ
k=1

Whereé, represents the intercept afyd represents the regression coefficients for the
geomorphology/climate variables. Finally, we assdrthe geomorphology/climate variables
were correlated (due to the effect of elevatiotitude, and catchment area) and were assigned

multivariate normal distribution
Z; ~ Multivariate Normal(0, Z,).

whereX, represents the covariance matrix. The variantieeémormal distribution was assigned

the traditional vague gamma for linear regression
7,~ Gamma(0.1,0.1)

which has a mean of 1 and a variance of 10, adedoastandardized variables. The intercepts
and coefficients were assigned minimally informatpriors centered on zero due to the

standardization of the environmental data
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(Bo, Y0, 60) ~ Normal(0,0.01)
(ﬁla...ma' .Blb...nb' ﬁlc...pc) ~ Normal(0,0.l)

(Y1b...nb; Vlc...pc) ~ Normal(0,0.l)

81c..pc ~ Normal(0,0.1)

and prior for each covariance matrix had a Wistatribution, which is a generalized,
noninformative, multi-dimension gamma distributidime standard prior to use with multivariate

normal distributions

Xy ~ Wishart(I5, 3)

X, ~ Wishart(Ig, 5)

wherel; was an identity matrix with three rows and colurand/; was an identity matrix with
five rows and columns.

One potential problem with this type of model i®ditting; if the model was overly
complex even nonsensical data could explain the ofdke variation in the response variables
(Kline 2011), although this is a greater problemffequentist models than Bayesian models.
This is of particular concern with the cold steresth model with nine possible direct drivers of
cold stenotherm distribution and some ecoregiontgaa low number of sites, such as the
Southern Dry Highlands (15 sites) or Mediterran€atifornia (18 sites). A common technique
using path models is to reduce explanatory varsainiéhe model to only those relationships

with the largest coefficient values by comparing@del fit metric, such as AIC or DIC, between
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possible models (McCune and Grace 2002, Kline 20W¢ used the deviance information
criterion (DIC), a Bayesian-based selection criterito compare the reduced models and the full
model and selected the model with the lowest Diesc We also calculated af Rr the trait,

fast water habitat, canopy cover, and hydrologyabédes using the fraction of unexplained
variance method described in Gelman and Hill (200e regression coefficients were
considered significant if their 95% credible intairdid not include 0 and marginally significant

if their 90% credible interval did not include We interpreted significant or marginally
significant regression coefficients as direct é8eand multiplied these direct effects to get
indirect effects. Each model was run using threekdv chains with 100,000 iterations each
(burn-in of 10,000) in the WinBUGS 14 program (©nBugs, 2007, Imperial College and

MRC, UK), using the R2WinBugs interface packagei(&tet al. 2005) in R (version 2.15.2; R
Core Team 2012). We initially ran each model webression coefficients having priors with
normal distributions and a variance of 0.1 and theriormed the sensitivity analysis by
changing the variances of the coefficient priorf.@l and 0.001. We compared the coefficients
of the three model variants and looked for sigaificchanges in coefficient values, which would

indicate that results are being driven by the graord not the data.

Results

Our dataset consisted of eight unique ecoregidihg variations in the environmental
and trait metrics between ecoregions are showhigufe 3.6). The Northwestern Wet Forests
ecoregion was wet, cold and geomorphically variabtl high and variable precipitation and
mean annual runoff, low temperatures, and a widge®f slopes. The two temperate mountain

ecoregions also had lower temperatures, were witerlower runoff, and had the highest
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median baseflow, indicating fairly stable stream3he Northern Temperate Mountains also had
wide range of width/depth ratios. The Klamath Mi@ims had a combination of very high
precipitation and runoff, similar to the NW Wet Ests ecoregion to the north, and very high
temperatures, similar to the Mediterranean ecoreidhe south. The Klamath ecoregion also
had very high canopy density. The Mediterraneameggon had high temperatures and long low
flow duration, with low precipitation, runoff, arzhseflows, indicating hydraulically unstable
streams. The Southern Dry highlands had the @whesumbination of high temperatures, low
precipitation, low flows, and low slopes with higloportions of fast water habitat and canopy
cover density. The Desert ecoregion exhibiteddewange of temperature values, had low
flows and mean annual runoff, but a high proportbbaseflow, indicating small, stable
streams. The plains ecoregion should be the nussiidnto cold stenotherms and erosional
obligates with high temperatures and low flow diorag while having low precipitation, runoff,
baseflow, fast water habitat, and canopy coveainBlalso had high entrenchment reflecting the
highly incised channels of many plains streamsld Gtenotherm distributions varied according
to ecoregion, but could be generalized into twaigso(Figure 3.6a). The Northwestern Wet
Forests, Mid- and Northern Temperate Mountains,kadath ecoregions had higher median
proportions of cold stenotherms, with values betw@&0-0.50. The Desert, Plains,
Mediterranean, and Southern Dry Highlands had lonedian proportions between 0.05-0.25.
The distribution of erosional obligates was vemitar across ecoregions (Figure 3.6b), with
median values near 0.25, with the sole exceptidh@Plains, which had a median value near

0.10.
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The model reduction procedure for each ecoregiodyred different sets of significant
parameters for the cold stenotherm and erosiongaié models, shown in Tables 3.4-3.11.
The sensitivity analyses revealed little variatioparameter estimates as priors were adjusted,
indicating that the priors had a minimal impactoodel results, even for the ecoregions with

few sites.

Table 3.4: The model reduction process for the st#dotherm and erosional obligate traits in
the Desert ecoregion, starting with the full moaledl subsequent removal of single predictor
variables based on coefficient size. The DIC valre listed for each iteration of the model
with a single variable removed.
Cold stenotherm model

Erosional obligate model

Predictor Predictor

Response  variable Response variable

variable removed DIC variable removed DIC
Full model 1343.15 Full model 1342.17
Fast Slope 1340.73 LowDurY Entrench 1339.90
MidCan Entrench 1338.87 MidCan Entrench 1337.72
LowDurY Entrench 1336.75 Fast Slope 1335.21
Cold Slope 1334.22 MidCan LowDurY 1333.24
Cold LowDurY 1332.34 Eros MAR 1332.71
MidCan LowDurY 1330.34 Eros LowDurY 1329.75
Cold Baseflow 1328.67 MAR Slope 1328.97
Cold WD 1325.82 Fast Baseflow 1327.13
Cold MidCan 1324.71 Fast WD 1325.18
MAR Slope 1323.99 LowDurY WD 1323.43
Fast Baseflow 1322.05 MidCan Precip 1322.07
Fast WD 1320.17 Fast Entrench 1320.76
LowDurY WD 1318.38 Baseflow Slope 1320.27
MidCan Precip 1317.03 Baseflow Entrench 1319.86
Cold Entrench 1316.81
Fast Entrench 1315.67
Baseflow Slope 1315.28
Baseflow Entrench 1315.02
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Table 3.5: The model reduction process for the stddotherm and erosional obligate trait
models in the Klamath Mountains ecoregion, stanity the full model and subsequent
removal of single predictor variables based onftweht size. The DIC values are listed for
each iteration of the model with a single variaigieoved.

Cold stenotherm model

Erosional obligate model

Predictor Predictor

Response variable Response  variable

variable removed DIC variable removed DIC
Full model 663.18 Full model 651.40
Cold Slope 662.21 LowDurY WD 648.98
Cold Entrench 660.12 MAR WD 646.40
Cold LowDurY 658.59 Eros LowDurY 644.07
LowDurY WD 655.88 Baseflow Entrench 641.75
Cold MAR 652.72 LowDurY Entrench 639.40
MAR WD 650.32 Baseflow Slope 637.17
Baseflow Entrench 648.02 MAR Slope 635.19
LowDurY Entrench 645.58 MidCan Entrench 633.17
Cold Temp 644.55 Fast WD 630.76
Baseflow Slope 642.27 Eros Slope 629.31
MAR Slope 640.23 Eros Fast 628.98
MidCan Entrench 637.48 Fast Slope 627.71
Cold MidCan 636.86 Fast MAR 625.65
Cold Baseflow 635.81 MidCan Precip 623.88
Fast WD 632.03 MidCan Temp 622.31
Fast Slope 631.94 MidCan Slope 621.73
Cold Fast 629.94
Fast MAR 628.89
MidCan Precip 626.51
MidCan Temp 625.72
MidCan Slope 624.36

Table 3.6: The model reduction process for the stddotherm and erosional obligate trait
models in the Mediterranean ecoregion, startingy wie full model and subsequent removal of
single predictor variables based on coefficien¢ sizhe DIC values are listed for each iteration
of the model with a single variable removed.

Cold stenotherm model

Erosional obligate model

Predictor Predictor
Response variable Response variable
variable removed DIC variable removed DIC
Full model 581.04 Full model 582.41
MidCan Slope 578.17 MidCan Slope 579.82
Fast Baseflow 576.01 Fast Baseflow 577.44
Cold Baseflow 572.82 Eros Fast 575.24
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Cold
Fast
Baseflow
Cold
Fast

Fast
Cold
Cold
Cold
Cold
MidCan
LowDurY
LowDurY
Baseflow
LowDurY

WD
MAR
Slope
Fast
Entrench
WD
MidCan
Slope
Entrench
LowDurY
Entrench
Slope
WD
Entrench
Entrench

570.55
568.19
565.91
564.10
563.04
559.94
557.41
556.72
555.10
554.79
553.21
551.70
549.77
548.21
547.01

Baseflow
Fast
Fast
Eros
Fast
Eros
Eros
MidCan
LowDurY
LowDurY
Baseflow
LowDurY

Slope
MAR
Entrench
Slope
WD
LowDurY
MAR
Entrench
Slope
WD
Entrench
Entrench

573.06
570.45
568.13
565.71
563.61
563.01
560.97
559.29
557.74
555.96
554.51
553.19

Table 3.7: The model reduction process for the stddotherm and erosional obligate trait
models in the Middle Temperate Mountains ecoregtarting with the full model and
subsequent removal of single predictor variablegtan coefficient size. The DIC values are
listed for each iteration of the model with a senghriable removed.

Cold stenotherm model

Erosional obligate model

Predictor Predictor

Response  variable Response variable

variable removed DIC variable removed DIC
Full model 959.03 Full model 943.72
Cold WD 958.23 Eros LowDurY 941.60
MAR Slope 955.77 MAR Slope 939.24
MidCan Entrench 953.81 MAR WD 937.26
MAR WD 951.77 Eros Slope 935.83
Cold Slope 948.53 MidCan Entrench 933.70
Cold MidCan 948.37 Fast Slope 931.93
Cold LowDurY 945.73 MidCan Temp 929.55
Fast Slope 943.68 Fast Entrench 927.37
Cold Fast 941.70 Fast WD 925.14
Fast Entrench 940.46 LowDurY Slope 923.41
Fast WD 937.37 LowDurY WD 921.87
MidCan Temp 936.20 LowDurY Precip 920.46
Cold Baseflow 933.60 MidCan Precip 919.72
LowDurY Slope 931.89 MidCan LowDurY 918.89
LowDurY WD 930.67 Baseflow Entrench 917.72
LowDurY Precip 929.13 Baseflow Precip 916.37
MidCan Precip 928.20 Baseflow Slope 916.02
MidCan LowDurY 927.06 LowDurY Entrench 915.79
Baseflow Entrench 926.24
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Baseflow
Baseflow
LowDurY

Precip
Slope

Entrench

925.02
924.41
924.13

Table 3.8: The model reduction process for the stddotherm and erosional obligate trait
models in the Northern Temperate Mountains ecorggitarting with the full model and
subsequent removal of single predictor variablegtan coefficient size. The DIC values are
listed for each iteration of the model with a senghriable removed.

Cold stenotherm model

Erosional obligate model

Predictor Predictor

Response variable Response  variable

variable removed DIC variable removed DIC
Full model 1459.86 Full model 1439.22
LowDurY WD 1457.66 LowDurY WD 1436.97
Cold Entrench 1454.62 Eros Slope 1435.09
Cold Baseflow 1454.05 Eros MAR 1432.77
Cold LowDurY 1451.23 Eros LowDurY 1431.72
MAR Slope 1451.00 MAR Slope 1431.66
Cold WD 1450.38 MidCan Precip 1429.88
Cold MidCan 1449.00 MidCan Entrench 1428.37
MidCan Precip 1447.14 LowDurY Precip 1426.87
MidCan Entrench 1445.61 Fast MAR 1425.31
LowDurY  Precip 1444.00 Fast WD 1423.57
Fast MAR 1442.49 MidCan LowDurY 1422.73
Fast WD 1440.78 Baseflow Slope 1421.76
MidCan LowDurY  1439.66 Fast Slope 1421.41
Baseflow Slope 1438.69 LowDurY Slope 1420.65
Fast Slope 1438.35
LowDurY  Slope 1437.59

Table 3.9: The model reduction process for the st#ddotherm and erosional obligate trait
models in the Northwestern Wet Forests ecoregiantisg with the full model and subsequent
removal of single predictor variables based onfaweht size. The DIC values are listed for
each iteration of the model with a single variaigieoved.

Cold stenotherm model

Erosional obligate model

Predictor Predictor
Response  variable Response variable
variable removed DIC variable removed DIC
Full model 1287.78 Full model 1275.24
Cold WD 1284.59 MidCan LowDurY 1272.83
MAR WD 1282.00 MAR WD 1270.62
MidCan LowDurY 1279.86 Eros Slope 1267.55

138



Cold LowDurY 1278.65 LowDurY WD 1265.50
Cold MidCan 1276.97 MAR Slope 1264.80
LowDurY WD 1274.99 LowDurY Entrench 1263.05
MAR Slope 1274.20 Eros MAR 1262.94
Cold Baseflow 1272.14 Eros LowDurY 1260.47
LowDurY Entrench 1270.41 Fast Entrench 1258.73
Cold Fast 1269.31 MidCan Entrench 1257.60
Fast Entrench 1267.52 Baseflow Entrench 1257.28
MidCan Entrench 1266.34 Fast WD 1256.53
Baseflow Entrench 1265.84

Fast WD 1265.37

Table 3.10: The model reduction process for thd st#notherm and erosional obligate trait
models in the Great Plains ecoregion, starting wiehfull model and subsequent removal of
single predictor variables based on coefficient sizhe DIC values are listed for each iteration
of the model with a single variable removed.

Cold stenotherm model

Erosional obligate model

Predictor Predictor

Response  variable Response variable

variable removed DIC variable removed DIC
Full model 837.25 Full model 841.12
Cold Fast 835.08 Baseflow Entrench 838.96
Baseflow Entrench 832.81 Eros LowDurY 835.71
Cold Slope 829.60 Eros MAR 834.61
Cold WD 829.07 LowDurY Entrench 832.97
Cold MAR 825.49 MAR WD 832.59
LowDurY Entrench 823.72 Fast Slope 831.23
MAR WD 823.45 Fast Baseflow 829.63
Cold Entrench 823.11 MidCan Slope 828.10
Cold Baseflow 820.82 Eros Slope 826.81
Fast Slope 819.28 LowDurY Slope 826.17
Fast Baseflow 817.95
MidCan Slope 816.29
Cold Temp 816.14
LowDurY Slope 815.40
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Table 3.11: The model reduction process for thd st#notherm and erosional obligate trait
models in the Southern Dry Highlands ecoregiomntiatawith the full model and subsequent
removal of single predictor variables based onfaweht size. The DIC values are listed for
each iteration of the model with a single variaigieoved.

Cold stenotherm model

Erosional obligate model

Predictor Predictor

Response  variable Response variable

variable removed DIC variable removed DIC
Full model 483.94 Full model 482.44
Baseflow Slope 481.33 Baseflow Slope 479.84
Cold WD 478.44 MAR Slope 476.79
MAR Slope 475.54 MAR WD 473.73
MAR WD 472.86 LowDurY Entrench 471.51
LowDurY Entrench 470.48 Baseflow Entrench 469.24
Baseflow Entrench 468.06 Eros Slope 468.65
Cold MAR 466.33 Fast Baseflow 466.39
LowDurY WD 464.39 LowDurY WD 464.36
LowDurY Precip 462.29 LowDurY Precip 462.05
Cold MidCan 459.81 MidCan LowDurY 459.97
Cold LowDurY 458.01 Baseflow Precip 458.41
Cold Baseflow 457.25 Eros MAR 456.93
Cold Temp 454.89 Fast Slope 455.13
Fast Baseflow 452.37 Fast WD 452.73
Baseflow Precip 450.82 MidCan Entrench 451.46
MidCan LowDurY 448.62 Fast Entrench 450.63
Fast WD 446.72 Fast MAR 449.45
Fast Slope 444.29 MidCan Precip 449.07
MidCan Entrench 443.18
Fast Entrench 442.46
Fast MAR 441.28
MidCan Precip 441.05

Cold stenotherm and erosional obligate traits

The models performed fairly well accounting fotctstenotherm distributions, with’R
values between 0.40-0.85, except for the KlamathiMains ecoregion model, which had no
significant drivers of cold stenotherm distributiand a R of only 0.18. The total effects (direct
+ indirect effects) of environmental variables ba distribution of cold stenotherms indicated

two general groups of ecoregions, one consistiregofegions with temperature and mean
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annual runoff as the main direct drivers of cokhstherm distribution, with precipitation having
a strong indirect effect through mean annual floMnese ecoregions are the Northwestern Wet
Forests (Table 3.12), Northern Temperate Mount@iable 3.13), Middle Temperate Mountains
(Table 3.14) and Mediterranean California (Tablb3. The second group, consisting of the
Klamath Mountains (Table 3.16), Southern Dry Higlds (Table 3.17), Desert (Table 3.18), and
Great Plains ecoregions (Table 3.19), lacked sgamt coefficients from temperature and mean
annual runoff, instead having low flow, geomorplyylocanopy cover, and fast water habitat
acting as the main drivers of cold stenotherm ithigtion or no significant drivers of cold
stenotherm distribution, in the case of the KlamMthuntains. Precipitation had a moderate
indirect impact on cold stenotherms through hydygland canopy cover variables in all the
ecoregions except the Southern Dry Highlands amnidth Mountains. The erosional obligate
model performed poorly, only accounting for abod#2D% of the variation in the distribution of
erosional obligates (Tables 3.20-3.27). Most $igat direct effects were the fast water habitat
variable, the theoretical main driver of erosioolligate distribution. The exception was the
Southern Dry Highlands, where mean low flow durmaticas the dominant driver of erosional

obligate distribution.

Environmental variables

The models performed fairly well for canopy cowegcounting between roughly 20-60% of the
variation, with precipitation having a significgmdsitive direct effect in the Northwestern Wet
Forests, Mediterranean, and Great Plains. Temperhad a significant or marginally
significant positive direct effect on canopy coirethe Northwestern Wet Forests, Southern Dry

Highlands, and Desert ecoregions, while havinggative effect in the Mediterranean and
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Table 3.12: The total effects (direct effect + nedi effect) of environmental variables on therdisition of the cold stenotherm trait
state in the Northwestern Wet Forests ecoregiaauds in bold had direct effects with significab®® credible intervals, underlined
values had direct effects with significant 90% doéelintervals, and blanks mean the variable wasmthe reduced model with the

lowest DIC. Values with asterisks indicate onlglinect effects.

N R? Precip Temp  MAR Baseflow LowDurY  Entrench Slope WD Fast MidCan
NW Wet Forests 45 0.718 0.197* -0.209 0.201 -0.161 -0.218

Table 3.13: The total effects (direct effect + nedi effect) of environmental variables on therdisttion of the cold stenotherm trait
state in the Northern Temperate Mountains ecoregise Table 3.12 for descriptions of significance.

N R? Precip Temp  MAR Baseflow LowDurY  Entrench Slope wD Fast  MidCan
N. Temp. Mtns 49 0.495 0.139* -0.174 0.137 0.035* -0.038* 0.136 0.011* 0.136

Table 3.14: The total effects (direct effect + nedi effect) of environmental variables on therdisition of the cold stenotherm trait
state in the Middle Temperate Mountains ecoregi®ee Table 3.12 for descriptions of significance.

N R? Precip Temp  MAR Baseflow LowDurY  Entrench Slope WD Fast MidCan
Mid. Temp. Mtns 30 0.544 0.195* -0.343 0.207 -0.169

Table 3.15: The total effects (direct effect + nedi effect) of environmental variables on therdisttion of the cold stenotherm trait
state in the Mediterranean ecoregion. . See Tabfor descriptions of significance.

N R® Precip Temp MAR Baseflow LowDurY Entrench Slope WD Fast MidCan
Mediterranean 18 0.579 0.236* -0.244 0.250
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Table 3.16: The total effects (direct effect + nedi effect) of environmental variables on therdisition of the cold stenotherm trait
state in the Klamath Mountains ecoregion. Valuesald had direct effects with significant 95% dldel intervals, underlined values
had direct effects with significant 90% credibléenvals, and values with asterisks indicate ontijrect effects. Blanks mean the
variable was not in the reduced model with the v C.

N R? Precip Temp MAR Baseflow LowDurY Entrench Slope WD Fast MidCan
Klamath Mtns 22 0.180 -0.106

Table 3.17: The total effects (direct effect + nedi effect) of environmental variables on therdisttion of the cold stenotherm trait
state in the Southern Dry Highlands ecoregion. T2dse 3.16 for descriptions of significance.

N R? Precip Temp MAR Baseflow LowDurY Entrench Slope WD Fast MidCan
S. Dry Highlands 15 0.814 0.404 0.259 0.310

Table 3.18: The total effects (direct effect + nedi effect) of environmental variables on therdisttion of the cold stenotherm trait
state in the Desert ecoregion. See Table 3.1@dscriptions of significance.

N R? Precip Temp  MAR Baseflow LowDurY Entrench Slope WD Fast  MidCan
Desert 43 0.413 0.170* -0.188 0.196 0.026* 0.221

Table 3.19: The total effects (direct effect + nedi effect) of environmental variables on therdisition of the cold stenotherm trait
state in the Great Plains ecoregion. See Tab&f8ridescriptions of significance.

N R® Precip Temp  MAR Baseflow LowDurY Entrench  Slope WD Fast  MidCan
Great Plains 29 0.416 0.352* -0.135* -0.237 -0.074* 0.083* 0.361
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Table 3.20: The total effects (direct effect + nedi effect) of environmental variables on therthsition of the erosional obligate
trait state in the Northwestern Wet Forests ecoregValues in bold had direct effects with sigrait 95% credible intervals,
underlined values had direct effects with signific@0% credible intervals, and values with astarisklicate only indirect effects.
Blanks mean the variable was not in the reducedeinaith the lowest DIC.

R? Precip MAR Baseflow LowDurY Entrench Slope WD  Fast
NW Wet Forests 0.191 0.01* 0.035* 0.061* 0.07* 0.141

Table 3.21: The total effects (direct effect + nedi effect) of environmental variables on therdisition of the erosional obligate
trait state in the Northern Temperate Mountaingegion. See Table 3.20 for descriptions of sigalffice.

R’ Precip MAR Baseflow LowDurY Entrench Slope WD Fast
N. Temp. Mtns 0.127 0.106

Table 3.22: The total effects (direct effect + nedi effect) of environmental variables on therthsition of the erosional obligate
trait state in the Middle Temperate Mountains egane See Table 3.20 for descriptions of signifioa

R? Precip MAR Baseflow LowDurY Entrench Slope WD  Fast
Mid. Temp. Mtns  0.260 0.073* 0.141 0.216

Table 3.23: The total effects (direct effect + nedi effect) of environmental variables on therdisition of the erosional obligate
trait state in the Klamath Mountains ecoregione $able 3.20 for descriptions of significance.

R? Precip MAR Baseflow LowDurY Entrench Slope WD  Fast
Klamath Mtns  0.190 0.118
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Table 3.24: The total effects (direct effect + nedi effect) of environmental variables on therdisition of the erosional obligate
trait state in the Mediterranean ecoregion. Valod®ld had direct effects with significant 95%dible intervals, underlined values
had direct effects with significant 90% credibléenvals, and values with asterisks indicate ontijrect effects. Blanks mean the
variable was not in the reduced model with the v C.

R? Precip MAR  Baseflow LowDurY Entrench Slope WD  Fast
Mediterranean  0.000

Table 3.25: The total effects (direct effect + nedi effect) of environmental variables on therdisition of the erosional obligate
trait state in the Southern Dry Highlands ecoregiorSee Table 3.24 for descriptions of signifman

R’ Precip MAR Baseflow LowDurY Entrench Slope WD  Fast
S. Dry Highlands 0.419 -0.348 -0.164* 0.147

Table 3.26: The total effects (direct effect + nedi effect) of environmental variables on therthsition of the erosional obligate
trait state in the Desert ecoregion. . See Tal#lé for descriptions of significance.

R’ Precip MAR Baseflow  LowDurY  Entrench Slope WD Fast
Desert 0.203 0.028* 0.033* -0.133  0.004* 0.138

Table 3.27: The total effects (direct effect + nedi effect) of environmental variables on therdisition of the erosional obligate
trait state in the Great Plains ecoregion. . Ba#e 3.24 for descriptions of significance.

R? Precip MAR Baseflow LowDurY  Entrench Slope WD Fast
Great Plains  0.280 0.218* 0.316* -0.080* 0.113* 0.176* 0.427
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Great Plains. Slope had a positive significanharginally significant direct effect on canopy
cover in the Northwestern Wet Forests, NorthernMidtlle Temperate Mountains, Southern
Dry Highlands, and Desert ecoregions. Low flowadian had, surprisingly, a significantly
positive direct effect on canopy cover for the KeemMountains and Mediterranean ecoregions.
Most of the significant or marginally significarffects for temperature, slope and low flow
duration on canopy cover contradicted aupriori expectations, which predicted that they would
have negative relationships.

Most models only explained a small amount of vata(5-15%) in the distribution of
fast water habitat for most ecoregions except fortiNvestern Wet Forests, Klamath Mountains,
and the Great Plains, which explained 40-70% ofdr@&ation. The model did not include
important predictors of fast water habitat, suclitaslogy, so the high Rvalues for those
ecoregions were somewhat surprising. The sigmfiparameters did mate@hpriori
expectations in most cases, but each ecoregiodiffacent array of significant or marginally
significant drivers of fast water habitat, with mesnnual runoff having a positive direct effect in
the Northwestern Wet Forests and Great Plainsewtaliing a negative effect in the Middle
Temperate Mountains. Baseflow had positive diedfeicts on fast water habitat in the
Northwestern Wet Forests, Northern Temperate Monsitand Middle Temperate Mountains.
Entrenchment had a negative direct effect on fasemhabitat in the Northern Temperate
Mountains and a positive direct effect in the Klamislountains, while slope had a positive
effect in the Northwestern Wet Forests, and widtpt ratio had a positive effect in the Great
Plains.

Precipitation explained the majority of variatiofD{95%) for mean annual runoff in all

ecoregions, according topriori expectations, with some minor positive direct eéfdrom
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slope and width-depth ratios in the Northern TerafgeMountains, Desert, and Great Plains.
Baseflow had higher & (36-57%) in the Northwestern Wet Forest, KlanMtuntains, and
Plains ecoregions (35-60%), but loisRn the remaining ecoregions. Precipitation had a
negative direct effect on baseflow in Northwestéfet Forests and Klamath ecoregions and a
positive effect in the Great Plains, while slopd hgositive direct effect on baseflow in the
Northwestern Wet Forests and Great Plains ecorsgibaw flow duration had a moderate
amount of variation explained by the models for trea®regions (20-40%) except the Middle
and North Temperate Mountains (0-5%). Precipitahiad a positive direct effect on low flow
duration in the Mediterranean, Desert, and GreanRlecoregions, accordingdgriori
expectations, but a negative effect in the Northeraswet Forest and Klamath Mountain
ecoregions. Slope also had a positive effect anflow durations in Southern Dry Highlands
and Desert ecoregions and width-depth ratio hagative effect in the Great Plains. It is
interesting to note that in the two wettest ecaregj the influence of precipitation on baseflow
and low flow duration showed responses contradjcipriori expectations, while expectations
were met in drier ecoregions. Finally, the cottielaanalyses showed that baseflow and low
flow duration were negatively correlated and meamual runoff and baseflow were positively
correlated for some ecoregions. The correlati@t&éen geomorphology and climate variables
were inconsistent between ecoregions, but theimakttips that were significant matched

priori expectations in most cases, indicating that elevalatitude or catchment size are

characteristics possibly influencing these varigble
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Discussion

We hypothesized that the distribution of organiswth climate-sensitive traits would be
influenced by climate and climate-driven variablescoregions with mild climatic conditions,
namely low temperatures and higher runoff, whilesthdistributions would be disconnected
from climatic variables in ecoregions with morerexrte climatic conditions, namely higher
temperatures and low precipitation/runoff. Oursaang for this hypothesis was that if
organisms with thermophilic and rheophilic tendesare currently found in regions with high
temperatures and low runoff, they are compensa&ynging in stream conditions that buffer or
insulate against warm temperatures and compensatieef lack of typical erosional conditions.
In the context of our models, this would mean thavarm ecoregions geomorphology, baseflow
and low flows, riparian, and habitat features wadidide the distribution of cold stenotherms. In
regions with little fast water habitat or low pneitation, geomorphology and hydrology would
drive the distribution of erosional obligates.

Our results mostly matched the hypothesis concgromid stenotherms but did not match
our hypothesis concerning erosional obligates. dikeibution of cold stenotherms was driven
by temperature and runoff in the three ecoregioitis w temperatures, the NW Wet Forest and
two temperate mountain ecoregions, as well asdarbisert ecoregion, which has a wide range
of temperature values. Precipitation also hadgelandirect effect in these regions due to its
significant relationship with mean annual runofihe Plains, Klamath Mountains, and Southern
Dry Highlands ecoregions also matched our hyposh&gh little or no effect from temperature
or runoff on the distribution of cold stenotherniastead cold stenotherm distribution was
driven by low flows, entrenchment, canopy coved &ast water habitat, or in the case of the

Klamath Mountains, nothing at all (at least sigrafitly). It is interesting to note that
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precipitation had a large indirect effect in thaiR$ ecoregion, but that effect was mediated
through low flows and canopy cover, not runoff.e™ole exception to our hypothesis for cold
stenotherms was the Mediterranean ecoregion. Widwiave expected this ecoregion to have
results similar to the other warm ecoregions. dis&ribution of erosional obligates was driven
mainly by fast water habitat across a wide rangecofegions (e.g., NW Wet Forest, Plains),
contrary to our hypothesis. The sole exception tivasSouthern Dry Highlands ecoregion,
where erosional obligates avoided stream sites laith low flow durations, regardless of fast
water habitat in the reach. Based on these regudamportant to understand the current
climatic setting in which cold stenotherms arerthstted, but not necessarily for erosional
obligate distribution. The erosional obligatettdid not perform well in this analysis, but our
dataset consisted of natural or near-natural pé&kstneams, found mostly in hilly or mountains
regions in the western U.S. If we had includednmittent and/or disturbed streams, erosional
obligate distribution likely would have more clogélacked variation on runoff and the
distribution of fast water habitat.

Some relationships between environmental variatdesistently contradicted oar
priori expectations, suggesting different dynamics thartheught. The influence of
precipitation on low flow duration per year met @xpectations of a negative relationship in the
dry ecoregions (Desert, Mediterranean, and Plamg)ywe saw a positive relationship in the
Klamath Mountains and Northwestern Wet Forest egors. This suggests that the low flow
metric encapsulated a different phenomenon in wetus dry ecoregions. In dry ecoregions low
flow represents extreme periods of very low preaaipn where streams begin to dry out. In wet
ecoregions with areas of extremely high preciptatthe low flow metric may merely be

describing the normal stream state, with the extrerrents being high precipitation events. Our
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a priori expectations were also inadequate in explainiagédmopy cover. Canopy cover was
positively correlated with temperature the NW Wetdsts, Southern Dry Highlands, and Desert
ecoregions. For the Northwestern Wet Forests, waareas may reflect a greater intensity in
temperate rainforest as opposed to cooler locatiéos the dry ecoregions, out dataset included
only perennial streams and the streams may becorakles as they enter warmer climate, yet
still maintain a riparian corridor. Canopy coveasialso positively related to slope in the NW
Wet Forest, temperate mountains, and desert ecoiggiontrary to our expectations. This
again may be due to the fact that slope may beragate for stream size along mostly forested
ecoregions. Finally, canopy cover was positivelgrelated with low flows for Mediterranean
and Klamath Mountains ecoregions. For the Meditezan, this may reflect the size of the
stream, but for the Klamath Mountains, low flowe positively associated with high

precipitation, which is usually positively assoe@twith vegetation density.

The potential effects of climate change

Previous studies have shown that in temperateegmors cold stenotherm distributions
were driven by temperature and flow (Hamilton e28i10, Stamp et al. 2010, Chessman 2012).
Thermal preference of taxa in Europe and Canadgedlalong gradients related to stream size,
such as flow, temperature, as well as other caa@laariables such as dissolved oxygen, and
turbidity, with cold water adapted species prefggsmall, clear, oxygen-saturated streams
(Usseglio-Polatera et al. 2000, Usseglio-PolatathBeisel 2002, Horrigan and Baird 2008).
Other studies also found that cold adapted taxanare dominant in glaciated watersheds
(Fureder 2007, Brown and Milner 2012). These tssak well as our own, suggest that the

distribution of cold stenotherms in temperate ragimay contract as temperatures rise and
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runoff falls, but the resulting impact may be mialmFor example, according to our model in
the Northern Temperate Mountains, a 2 °C increasemperature would result in a 6.3%
reduction in cold stenotherms. For a mountairastreonsisting of 25 taxa, this change would
translate into in a loss of 1-2 taxa.

The potential impact of climate change on colastieerms residing in warmer
ecoregions, such as our Southern Dry Highlands)&I&editerranean, and Klamath
Mountains, presents a more intriguing dilemma. dptdor the Mediterranean ecoregion, which
we will discuss below, the models for these ecanegrecorded no significant relationship
between temperature and runoff with cold stenotlerkive speculate that this may be due to the
fact that cold stenotherms are at their thermaitéimnd compensate by inhabiting stream
sections or habitats that buffer or insulate agahreymal extremes. |If this is true, then any
increase in temperature may eliminate the remaisinigble habitat for these organisms and
push them beyond their thermal limits (see ChaptemMost sites in the Plains and Southern Dry
Highlands ecoregions have low proportions of codsthetherms, so the overall community
impact may be small. The same is not true fotlaenath Mountains ecoregion, which has
high proportions of cold stenotherms and may beiheinpacted by climate change. The
climatic oddity of the Klamath, with high tempergeds, yet with high runoff and a high
proportion of cold stenotherms provide the perfiegtedients for a high potential for species
loss. The environmental variables in our modeliier Klamath Mountains did not account for
any significant variation in cold stenotherms, igipy missing variables, undetected scales, or a
random distribution. Cold stenotherms in this oagmnay be utilizing a microhabitat
characteristic to avoid extreme temperatures. Mbditerranean ecoregion also presents a

potential problem. Unlike the other warm ecoregidhe model for the Mediterranean
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ecoregion includes temperature and runoff as saamft drivers of cold stenotherm distribution
and if temperature were changed 2 °C in the maklelresulting loss would only be about a 4%
loss of cold stenotherm taxa. The concern forebmregion is that although the cold stenotherm
distribution does change along the temperatureg@ngdhe gradient is fairly narrow and
temperatures are already near the upper limit irdataset. Both facts indicate a potential
threshold, where increases in temperature may mast cold stenotherms past their thermal
limits in Mediterranean California, which has maaterto high proportions of cold stenotherms.
A few other studies have evaluated potential clex@ditange effects on aquatic
macroinvertebrates in an ecoregional context, @derly comparing arid with temperate
ecoregions. Bonada et al. (2007) compared mulbgical trait distributions (but not
including thermal preference) between temperateMediterranean Europe and found that traits
considered resistant and resilient to drought weree common in the Mediterranean. Hering et
al. (2009), Tierno de Figueroa (2010), and Conaélef2014) classified the climate vulnerability
Ephemeroptera, Trichoptera, and Plecoptera (ERX®&)uaing a set of traits they defined as being
climate sensitive (including thermal preferencej aompared climate vulnerability across the
major European ecoregions. They found that ERJeireral, and Trichoptera taxa specifically,
were more vulnerable in the Mediterranean climatiéls a gradual northward decrease in
vulnerability, while Plecoptera species were vudide across Europe. This contradicted
Bonada et al. (2007), but supports our resultsmilian et al. (2010) and Stamp et al. (2010)
compared cold stenotherms to 7-22 year temperdateefor 6-11 sites in three ecoregions in the
United States and found that cold stenothermsnmesgemi-arid sites in Utah had more

consistent relationships with temperature thars sitenore temperate ecoregions.
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Defining vulnerable taxa through categorical tréidsnada et al. 2007, Chessman 2012,
Conti et al. 2014) or niche models (Chapter 4) mlea valuable tool in projecting community
responses to climate change scenarios. Compaanglistributions to historical climate records
(Chessman 2009, Hamilton et al. 2010) can provaleable insight into current trait distribution
trajectories. But, our approach incorporatingexdnichical model using multiple climatic and
non-climatic variables provides two valuable ingggimto climate change research using traits.
First, we can determine which traits may good iattics of vulnerability to climate change in at
least some ecoregions and assess the potentiatslofthat trait. This has been apparent with
cold stenotherms, but we have paid scant attetitime erosional obligate trait in our
discussion. With the trait having Ralues only near 0.20 for most ecoregions, wetfeslit is
not particularly sensitive to the potential effectslimate change (at least using perennial
streams), although this may be reflect the varmble selected for this analysis. Second, we can
identify and evaluate possible environmental chtaratics that can be used to mitigate the
effect of climate change. For example, if therthsition of cold stenotherms in the Plains
ecoregion streams is driven mostly by canopy cawnershort low flow durations, then efforts to
maintain such conditions may provide suitable lahitese taxa, which were defined as climate-
sensitivea priori. By linking trait distributions to the theoreti@nstructs of stream ecology,
we can make informed decisions concerning the bicéd integrity of streams in the light of
climate change and anthropogenic disturbance. didm®nnect between “climate-sensitive”
traits and climatic variables in climatically extie ecoregions could mean one of two things: 1)
climate change won't affect these taxa in theseeggons and the model is appropriate, or 2)
climate sensitive taxa are at their thermal lirmtghese ecoregions and this model would not be

appropriate for quantitatively projecting commurgtyange according to climate change
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scenarios. If the latter is true, which we ardua it is, then other methods, such as niche
modeling, would be more appropriate to capture tagsponse to climate change, as is

demonstrated in Chapter 4.
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CHAPTER 4: VULNERABILITY OF WESTERN UNITED STATESTREAM INSECT
COMMUNITIES TO TEMPERATURE AND HYDROLOGIC CHANGE PBJECTED

UNDER GLOBAL WARMING

Summary

Stream insect species vary in their sensitivitbetemperature and runoff conditions and
thus should respond differentially to climate chaiagross their geographic ranges. We used
General Additive Models to classify sensitivitytafo responses to 1) increased temperature and
2) change in runoff for 88 insect taxa at 252 leagtacted sites in the western US. We used a
cumulative percentile technique to calculate theand runoff thresholds for sensitive taxa.
Climate change at each site was simulated by cgngtemperature (0 to 4 °C increase) and
runoff (up to +/- 80% change in mean runoff). Weahkated percent change in community
composition from potential loss of taxa due to potgd site temperatures and runoff crossing
taxa threshold values. Sixty-two taxa were serssitvtemperature increases, 59 to runoff
decreases and 23 to runoff increases. Most mouotenmunities were relatively invulnerable
to the range of climate change exposures, whepEses and communities in southern and
northern California were significantly modified. iShs the first study to predict how
simultaneous changes in temperature and runoffacité¢o regulate insect species distributions

and community structure and function in streamsssmultiple biomes.

Introduction
Species may be introduced to new climatic and Hgdroal conditions under

anthropogenically induced climate change, so kndgéeof species tolerances to climatic
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variables is vital in order to predict how specigsy respond. Commonly used approaches to
determine species tolerances are to record thaglbgal responses of a species while
performing thermal ramping experiments (Calosile2@08, Cottin et al. 2012) or using detailed
information on population growth (Deutsch et al0D These approaches require a significant
amount of effort per species and are usually stilito a few species considered economically
or culturally important, such as commercially fidhmearine invertebrates (Paschke et al. 2013),
salmonoids (Underwood et al. 2012, Zeigler et @13), pollinating insects (Jevanandam et al.
2013), invasive species (Coccia et al. 2013, Hille2013), and declining taxonomic groups
(Pandolfo et al. 2010, Scheffers et al. 2013)wdfwant to estimate the response of an entire
large and complex community to climate change elsgproaches have limited use. Alternative
approaches include using expert judgment (Segugtdb 2011) or using biological inference
models that estimate tolerances from species hligtoins across environmental gradients using
various statistical approaches (highlighted in Y2806, Segurado et al. 2011).

Biological inference models are most commonly usegstimate species tolerances to
temperature, but in aquatic ecosystems climategghennot the mere rising of temperatures.
For example, in marine systems climate changepsa@rd to affect ocean temperatures,
circulation, stratification, nutrients, and pH (Bynet al. 2012). Stream ecosystems may be
particularly vulnerable to climate change due ffsa on hydrologic processes (Fenoglio et al.
2010, Wenger et al. 2011, Chessman 2012). Chandastors such as flow and water quality
may have a greater effect on the distribution afedig organisms than changes in temperature in
some types of stream systems (Durance and Ormexf).2 Studies have recommended
including factors other than temperature in malgpgcies distribution predictions in light of

climate change (Filipe et al. 2013), but this held@m been done. Most studies of climate
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change in freshwater ecosystems have only lookezhgierature (Eaton and Scheller 1996,
Hamilton et al. 2010) or have looked at the oveztibcts of climate change without quantifying
temperature or flow (Chessman 2009, 2012, Li €2@l3). A few studies have described the
effects of the interaction of temperature with osiygsalinity, or flow (Lawrence et al. 2010,
Verberk and Calosi 2012, Verbrugge et al. 2012, Mx@nd De Los Santos 2013) on
invertebrate communities in streams, but at a setalle of 1-4 streams or rivers or in the lab.
Two studies in the western United States predibted changes in stream hydrology and
temperature may affect trout (Wenger et al. 20Irigi@m et al. 2014), but only for 2-4 species.
An additional study (Buisson and Grenouillet 20p8dicted distributional shifts in the 35
common fish taxa in France using temperature aadgtation, but did not use any direct
measure or climate prediction of flow. Our studysto project the aquatic insect community
response to climate change through both runofftangberature across a large study area.
Additionally, particular regions, such as the Medianean region in Europe (Filipe et al. 2013),
are expected to be particularly vulnerable to clanaNe assessed how community responses to
multiple climate-driven variables may vary acrokshatic regions, or ecoregions, in the western

United States.

Methods

Dataset

Our aquatic insect richness dataset came fromEh@ronmental Protection Agency’s

(USEPA) Environmental Monitoring and AssessmengRam — Western Pilot Study

(WEMAP), which selected sites in 12 western sté&sddard et al. 2005). Although over 1300

sites were sampled in the WEMAP study, we limitad analysis to 252 sites that were least-
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impacted by anthropogenic disturbance. The refmahis was two-fold. First, we wanted to
focus on temperature and hydrology changes fromaté change without needing to account for
the confounding factors of other anthropogenicullisinces. Second, the method used to
calculate mean annual runoff from catchment charestics could not be accurately estimated if
anthropogenic hydrological disturbances dominatdetnent hydrology. At each site,
biological data were collected mostly during thenawer (June—September), with a few sites
sampled in May or October, following the procedure@006). We used genus level
designations for most taxa, but grouped some ofatke according to family due to their

difficulty in identification (Capniidae, Leuctridaand Taeniopterygidae). Chironomids were
grouped according to sub-family.

The climate models make predictions concerningipitation, air temperature, and
hydrology and we focused on the latter two. Mdghe biological data were collected during
summer months and stream taxa are most likely teeatively affected by the thermal
maximums during this period, particularly in thentext of climate change, with July being the
warmest month for most of our sites. Mean annulgl dir temperature was calculated for each
site’'s catchment from the 800-m-resolution Paramelevation Regressions on Independent
Slopes Model (PRISM) database (30-y period of m¢am 1971-2000; PRISM Climate
Group, Oregon State University, Corvallis, Oredaitp://www.prismclimate.org) using methods
from Cuhaciyan (2006). Mean annual runoff (meamuaih flow/catchment area) was derived
using a random forest technique that derived hydyioal variables from catchment-scale

variables (e.g., precipitation, geology, land ute,; see Carlisle et al. 2010 for details).
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Taxa tolerances

We determined the thermal and runoff tolerancaadiVidual taxa using the biological
inference techniques described in Yuan (2006)st,Rive classified taxa as sensitive or tolerant
to changes in temperature and hydrology. Clasgitins were made according to the shape of
logistic general additive models (GAM) for eachdaxwhich estimated the probability of
observing a taxon along an environmental gradismmgurichness data. A generalized additive
model is based on the assumption that the resp@misdle has a non-linear relationship with
the predictor variable. The model estimates tBpanse variable by 1) modifying the response
variable using a function (e.g., logistic functi@nd 2) summarizing the relationship between
the response and predictor variable using a noanpetric function of the predictor instead of
simple linear coefficient (Zuur et al. 2007). Tinen-parametric function is usually some sort of
smoothing function, such as moving average (a raploothing function). We decided to use
the GAM model, as opposed to other niche modelsetoonsistent with results found in Yuan
(2006). We developed two GAMs for each taxon, wiidsan July air temperature as the
explanatory variable for one model and mean annunaff for the other. The response variable,
the probability of occurrence for a taxon, in oukN&s could have four possible responses: 1)
continually decrease, 2) continually increase,&8)ehno relationship, or 4) have a unimodal
relationship with increasing temperature or rundthe use of GAM is sensitive to the number
of observations in the model, so we only perforriesl analysis for aquatic insects found at 20
or more sites in our dataset, as suggested in Y2G06). Yuan (2006) performed a similar
analysis for stream temperature using 392 WEMA&ssand assigned taxa to three possible
thermal tolerance curve shape categories, whichsed for this analysis. Thermally tolerant

(T) taxa had an increasing curve or a uniform diigtron with increasing temperatures.
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Thermally intermediately tolerant (I) taxa had anwodal distribution with probability of
occurrence declining in very low and very high temgpures. Thermally sensitive (S) taxa had a
decreasing curve with increasing temperatures.détermined curve shape graphically; if the
highest probability was higher than the 95% confaieintervals at each end of the
environmental gradient, then the curve was defasednimodal. Under climate change
scenarios, taxa designated as | or S were expaxrteeinegatively affected by increases in
temperature. We then fit GAMs using mean annuabffuas the explanatory variable and
assigned taxa to four possible runoff toleranceeshape categories. High runoff (H) tolerant
taxa have an increasing curve, low runoff (L) taldrtaxa have a decreasing curve, intermediate
maxima (M) taxa have a unimodal curve, and taxa wit response (N) are present in most
runoff conditions. Under climate change scenakagggories H and M are expected to be
negatively affected by loss of runoff and categotieand M are expected to be negatively
affected by increases in runoff.

We calculated the area under the receiver operaliatacteristic curve (AUC) for each
GAM to determine model fit. The AUC measures theityg of a model to discriminate between
true positives and false positives (Hosmer and lsttow 2000) and accepted rule for adequate
model discrimination is 0.70, but this is intendedmodels that would be used in a predictive
fashion. Our GAM models were only used to class®a instead of being used predictively, so
we used a smaller AUC value of 0.55 as an acceptabhsure of model fit for classification
purposes, as suggested by Yuan (2006). If taxahrsetriterion, the model was deemed
acceptable for investigations of taxon vulnerapiitt temperature or runoff. All taxa except
Acentrellamet the model assessment criterion for temperathieh we assigned as tolerant.

The GAM models were produced using gamlibrary (Hastie 2013) in R (R Core Team 2012).
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Examples of GAM models are shown in Figure 4.1r GAM analysis assigned 57 taxa in the
same thermal tolerance category as Yuan (200@veilof our taxa were not found in his paper.
Fourteen of the remaining 20 taxa had somewhatguobs results. For example, Yuan
detected a unimodal relationship for the ge@psioservusand our results appeared unimodal as
well, but the maximum probability of our analysiaswmnot greater than the uppermost 95%
confidence interval on the right side of the grapHjcating a tolerant relationship. For the
remaining six taxa, our results strongly contragtictuan’s. These six are indicated in Table
4.2. For the remainder of our analysis, we dectdagse the Yuan (2006) designations for the
ambiguous and contradictory taxa, since his dassmimpassed a larger range of temperature
values than ours.

Once we classified each taxon, we defined a vdluregaeach environmental gradient
where the taxon would be theoretically vulnerablextirpation due to climate change. We
designated these risk threshold values using thrutative percentile technique, in which the
proportion of sites where a taxon is present ismsathalong an environmental gradient. We
then ran a logistic regression model on each cumalpercentile to estimate the temperature or
runoff values at a specific cumulative percenslech as 0.95. These temperature and runoff
values are thresholds, points along the environahg@nadient where the taxon is near their
environmental limits, would be ecologically or plotegically stressed, and at high risk of local
extinction. The selection of a cumulative perdens based on our opinion when a taxon would
be near its environmental limits in its currentgarand is thus somewhat arbitrary. The
selection of the cumulative percentile value alsEsents a tradeoff, with percentiles closer to 1
or 0 more likely representing a true threshold,thaterror also increases due to the fewer data

points on the other side of the threshold valueafy2006). Since the objective of this paper is
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Figure 4.1: General additive models for three repnéative taxa with the model for mean July
air temperature on the top row and mean annuaffronadhe bottom row. The genésneletus
is classified as vulnerable to high temperaturea(®) tolerant to high runoff (H)rallceonis
tolerant to high temperature (T) and low runoff.(Zaitzeviais intermediately tolerant to
temperature (I) and runoff (M). The solid lingli® GAM model, the two dashed lines
represent the 95% confidence interval, and thezbatal dot-and-dashed line represents the
highest response value in the GAM model.

to estimate the community vulnerability, we feltribre important to estimate thresholds using
cumulative percentiles near the edge of each taxaunrent distribution along the environmental
gradients. We picked the 0.95 cumulative pertefiirepresent the point in a taxon’s
distribution where it would become vulnerable toreases in temperature or flow and the 0.05
cumulative percentile to represent the point imxah’s distribution where it would become

vulnerable to decreases flow. Examples of threshwdels are shown in Figure 4.2.
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Figure 4.2: The cumulative percentiles of thregesentative taxa for mean annual runoff using
the 0.05 and 0.95 cumulative percentiles. Thdinedis the logistic regression model; the
dashed lines represent the mean annual runoff valieorresponds with the cumulative
proportions of 0.05 or 0.95, according to the lagisegression Ameletuss high runoff tolerant
(H), so we calculated the 0.05 threshokaliceonis low runoff tolerant (L), so we calculated
the 0.95 thresholdZaitzeviahas an intermediate runoff tolerance (M), so weutated both

0.05 and 0.95 threshold values.

To account for the uncertainty with our selectié® ®5/0.95 cumulative percentiles, we
also ran our analysis using thresholds estimated $.10/0.90 and 0.01/0.99 cumulative
percentiles. The 0.10/0.90 cumulative percentilesld represent a situation where taxa are less
resilient or resistant to climate change and t08&/0.99 cumulative percentiles would represent
a situation where they are more resilient/resistdime use of 0.01/0.99 cumulative percentiles
presents an additional issue since the logistices=gon extrapolates the environmental threshold
values beyond current distribution of the taxomug, the 0.01/0.99 cumulative percentiles
would represent the best-case scenario, but sth@Ngewed with caution. It is also important to
understand that this technique assumes that thentuistribution of a taxon already includes a
proportion of sites that we designated as vulnetakith taxa likely being extirpated from the

site. Taxa sensitive to increases in temperatufiew were assigned an upper threshold using a
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cumulative percentile of 0.95 (or 0.90, 0.99), tarasitive to loss of runoff were assigned a
lower threshold (using 0.01, 0.05, or 0.1), anctimermediately tolerant to runoff, such as
Zaitzeviain Figure 4.2, were assigned both an upper anavarlthreshold, with the taxon

becoming extirpated from the site if either runibfeshold is crossed.

Climate ecoregions

We modified Omernik’s level-l ecoregions (OmernB88Y) in a way we felt that best
grouped sites in the context of temperature anddigdical alteration due to climate change.
Our desert, Mediterranean, and plains ecoregioigui@sons are the same as Omernik’'s. The
remaining five ecoregions were carved from the is@abuntainous and more temperate
regions. The Southern Dry Highlands ecoregion istssf the mountainous regions in Arizona
with drier climatic conditions than other mountatoghe north. The Northwestern Wet Forests
ecoregion consists of the western and northernadasklountains and the coastal rainforests of
eastern Oregon, Washington, and northern Califoriilas region experiences some of the
highest precipitation in the 48 states with marketifferent hydrological and thermal regimes
than other, drier mountainous areas in the wedieited States. We broke the remaining
western mountains into three ecoregions. The KiamBuntains ecoregion in northern
California and southern Oregon contain mountairflawa and fauna, but have very dry, warm
summers and may be particularly sensitive to ckntliange. The two remaining mountainous
regions were divided according to latitude. Theldle Temperate Mountains ecoregion
(consisting of the Sierra Nevadas, Wasatch andallNduntains, and the southern Rockies of

Colorado) is lower in latitude with warmer summei$e Northern Temperate Mountains
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ecoregion (consisting of the northern and middlekres, eastern Cascades, and Blue

mountains) has generally shorter, cooler summigcaregions and sites are shown in Figure 4.3.

[ Desert

[ Klamath Mtns

[ IN Temp. Mtns

[_IN Great Plains
[ Mediterranean
[ S Dry Highlands [
e _ & [ NW Wet Forests
0 290 580 Kilometers vy 9 [ Mid. Temp. Mtns

I T N T N S Y |

Figure 4.3: Ecoregions, represented by color, haddcation of sites in the western United
States (black dots; n = 252).
Climate predictions

Once we designated tolerance classifications amghiold values for each taxon, we
wanted to assess how climate change predictionsaffiest 1) individual taxa and 2)
communities grouped according to ecoregion. W tise approaches to do this. First, at each
site we incrementally increased the mean annuglalutemperature by four degrees Celsius and
incrementally changed mean annual runoff by +808fyes that encompassed the range of
temperature and flow changes predicted by the téimmodels. Once changes in temperature or
runoff crossed a taxon threshold, the taxon wa®wewh from the site. We added a stochastic

element to this process by allowing the removednare be randomly added back to the site
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based on the distance the temperature or run@fing the taxon’s threshold. For example, if the
temperature value crosses threshold based on@&B®®5 cumulative percentile for a taxon,
then that taxon could be re-inserted if a valuevdrtom a uniform distribution (minimum O,
maximum 1) is less than 0.05. The probability ey re-inserted decreases according to the
cumulative percentile after the threshold is crdggeg. 4% chance of re-insertion at the
0.04/0.96 thresholds, 3% chance at 0.03/0.97 thléshand a taxon cannot be re-inserted after
temperature or runoff equal the value associatéd the taxon’s 0.001/0.999 cumulative
percentile. For the taxon analyses, we summes 8d& missing the once-present taxon and
divided by the initial number of sites with the ¢gx This was the proportion of sites that are
considered lost for each taxon. For communityysigl we summed the total number of taxa
removed from each site and divided by that siteisal number of common taxa. This was the
mean proportion of taxa that are considered lostah site. Stream community composition is
shaped by both the regional species pool (dispersklnization) and species interactions under
local stream conditions (Townsend and Hildrew 19%a#f 1997), and we would therefore
expect stream communities in some climatic regtori® more sensitive to climate change than
others. To account for this, we averaged the ptapoof lost taxa per site within each of eight
ecoregions. We presented the proportion of lost peer community and lost sites per taxa for
each ecoregion as contour graphs.

A second approach to assess how climate changgsatiur communities and taxa was to
use actual climate model predictions, projectedoenature and hydrology data from the World
Climate Research Programme’s (WCRP) Coupled Madeldomparison Project phase 3
(CMIP3) multimodel data set. We used a middle atenscenario (Alb), with G&missions

leveling off in the mid-21st century. We selectedr climate change projections, each
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representing the extremes in projected runoff antperature change, and | averaged all 16
climate models as d"5mean model for both the taxa and ecoregion angly$he four extreme
model projections represented mild increases ipézature and reduced runoff (warm-dry),
mild increases in temperature and increased rynaffm-wet), high increases in temperature
and decreased runoff (hot-dry), and high increasemmperature and increased runoff (hot-wet).
Taxa are not constrained to a particular ecoregonye selected models that represented
extremes for the entire dataset in the taxa ans|yegleile we selected models for the ecoregion
analyses that represented extremes for each eonredihe individual models used for each
analysis are identified in Table 4.1. For eack'sitipstream catchment, we computed the mean
air temperature and runoff from 1971-2000 for eafcthe five models as a baseline climate
value, calculated the mean air temperature andifrénoan 2041-2070 as a future value, and
calculated the difference between the two valudse difference was retained as a value in
Celsius for temperature and a proportional changeuhoff. The climate model analyses were
produced using ArcMdp' 9.3 GIS software (ESRI, Redlands, California). tven applied the
changes in temperature and runoff to the meantduaiperature and mean annual runoff
variables at each site and calculated the numbtre$holds crossed for each site and taxon.
In addition to analyzing shifts in community compios), we also assessed the shifts in
the functional composition of aquatic insect comities at sites across ecoregions using the
0.05/0.95 cumulative percentile thresholds. Wegassl each taxon the following traits
according to Poff et al. (2006): functional feedgrgup (FFG), voltinism (i.e., number of
generations per year), development time and sebigpm@ault life span, and adult female

dispersal distance. We calculated the proportfdaxa lost from each trait category according
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to the five climate change model scenarios anddalistinct functional changes according to

ecoregion.

Table 4.1: The models used to represent extrema®jacted changes in temperature and
runoff. All taxa were found across multiple ecaoeg, so the extreme models for all sites were
used for the taxa analyses. For the communityyaasa) we selected climate models that best
represented extremes at sites for each ecoregion.

Analysis Warm-wet ~ Warm-dry Hot-wet Hot-dry
Taxa (all sites) ncrp2 mri4 ipsl ncrc6
NW Wet Forests mri2 mri4 ipsl ncrc3
N. Temp. Mtns ccem2 Csiro ipsl ncrcé
Mid. Temp. Mtns ncrp4 mri4 ipsl miro2
Klamath Mtns mril mri4 ipsl ukmo
Mediterranean ncrp2 mri2 ipsl ukmo
S. Dry Highlands ncrp2 mri4 inmcm mirol
Desert ncrp2 mri4 ipsl miro2
Great Plains ncrp3 giss4 ukmo ipsl

cccm?2 = Canadian Centre for Climate Modeling andlgsis, Canada, CGCM3.1 (T47) model, run 2

csiro = Commonwealth Scientific and Industrial Resh Organization, Atmospheric Research, Austr@lBlRO-

Mk3.0 model

giss4 = NASA/Goddard Institute for Space StudieSAUGISS-ER model, run 4

inmcm = Institute for Numerical Mathematics, RusgiéV-CM3.0 model

ipsl = Institut Pierre Simon Laplace, France, IRG44 model

mirol = Center for Climate System Research (Thevéhsity of Tokyo), National Institute for Environmezl
Studies, and Frontier Research Center for GlobahGé, Japan, MIROC3.2 (medres) model, run 1

miro2 = Center for Climate System Research (Thevéhsity of Tokyo), National Institute for Environmezl
Studies, and Frontier Research Center for GlobahGé, Japan, MIROC3.2 (medres) model, run 2

mril = Meteorological Research Institute, Japan H@ZBCM2.3.2 model, run 1

mri2 = Meteorological Research Institute, Japan H@ECM2.3.2 model, run 2

mri4 = Meteorological Research Institute, Japan H@&BCM2.3.2 model, run 4

ncrc3 = National Center for Atmospheric ResearcBAUUCCSM3 model, run 3

ncrc6 = National Center for Atmospheric ResearcBAUUCCSM3 model, run 6

ncrp2 = National Center for Atmospheric ResearcBAUPCM model, run 2

ncrp3 = National Center for Atmospheric ResearcBAUPCM model, run 3

ncrp4 = National Center for Atmospheric ResearcBAUPCM model, run 4

ukmo = Hadley Centre for Climate Prediction anddesh/Met Office, UK, UKMO-HadCM3 model

Results
Our dataset had 88 aquatic insects found at 2@ooe sites. Sixty-two of these taxa had

tolerance curves indicating they were vulnerabl@.&o, probability of occurrence decreased
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with) increases in temperature, 59 were vulnerebf@oportional decreases in runoff, and 23
were vulnerable to proportional increases in rundffiermal and runoff tolerance classifications
and the threshold values based on the 0.05/0.9%latine percentiles for each taxon are in
Table 4.2. The use of different thresholds (€@, 0.95, 0.99) showed a wide range of possible
responses by an individual taxon to climate chahgethe incremental method revealed about
ten groups of taxa with similar responses to ineesan temperature and changes in runoff. Five
taxa were tolerant to changes in both temperatue@noff, showing no response. Two groups
were tolerant of temperature increases with foxa tasing sites as runoff decreased and 16 taxa
losing sites as runoff increased (a representafivieis latter group is shown in row A in Figure
4.4). Eight taxa were tolerant of changes in rfjrimft lost sites with temperature increases (row
B in Figure 4.4). The largest contingent of te34, showed a gradual loss of sites as
temperature increased and runoff declined, sonte awtplified loss at about 75% runoff
reduction (row C in Figure 4.4). Six taxa losesias runoff decreased or increased, most having
the loss further amplified as temperature increds®a D in Figure 4.4). Six taxa showed only
a slight loss of sites as temperature increasédpbsi became more severe as runoff decreased
(row E in Figure 4.4). Six taxa showed the opposftect, with increases in temperature having
the strongest effect and runoff only minimally aifyshg the loss (row F in Figure 4.4). Two

taxa experience a moderate loss of sites with asa® temperature, but experienced much
greater losses with decreases in runoff (row Giguié 4.4). Finally, one taxon, the stonefly
family Taeniopterygidae, lost most sites with eséght increases in temperature and loss of
runoff (row H in Figure 4.4). The loss of sitesied greatly among taxa for the five climate
model projections as well, with 24 taxa having s 15% of sites lost for any model while

Taeniopterygidae had 72% of sites lost for the mbmodels (see Table 4.2).
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Table 4.2: Thermal and runoff tolerance curve shateesholds, and proportion of sites lost preéatist for aquatic insects found at
20 or more sites. The thresholds and proporticsite$ lost are based on the 0.05/0.95 cumulativeeptles. We used the three
thermal curve shape classifications described ianY(2006): thermally tolerant (T), intermediatadletant (1), and sensitive (S). The
four mean annual runoff curve shape classificatares tolerant to high runoff (H), tolerant to leunoff (L), intermediate maxima
along the runoff gradient (M), and no responsauteff (N). The thermal threshold is in °C and cangal for taxa sensitive to
increases in temperature (S and I). The mean anmuff thresholds are in¥sec/milé with the 0.05 threshold computed for taxa
sensitive to runoff reductions (H and M) while th&5 threshold was computed for taxa sensitiveimoff increases (L and M). The
proportion of risky sites are those sites wherdden is present in the dataset, but subsequertbsed the taxon’s thermal
tolerance or mean annual runoff thresholds whedigiens from the five climate models were applied.

Thermal tolerance Mean annual runoff tolerance Prop. of sites lost - climate models:
Curve 0.95 Curve 0.05 0.95 Warm, Warm, Hot, Hot,
Taxa shape threshold shape threshold threshold wet dry Mean wet dry
Coleoptera
Cleptelmis I 21.496 M 0.227 4.928 0.135 0.108 0.081 0.216 0.243
Eubrianax I 24.102 H 0.496 - 0.129 0.258 0.194 0.194 0.323
Heterlimnius S 20.002 H 0.442 - 0.139 0.190 0.165 0.228 0.291
Microcylloepus T - L - 1.009 0.156 0.000 0.031 0.125 0.000
Narpus I 20.292 H 0.289 - 0.208 0.208 0.208 0.375 0.333
Optioservus I 23.867 L - 5.403 0.132 0.088 0.132 0.228 0.167
Ordobrevia T - H 0.396 - 0.036 0.143 0.071 0.071 0.179
Oreodytes T - H 0.263 - 0.029 0.086 0.029 0.057 0.114
Zaitzevia I 23.137 M 0.184 5.775 0.176 0.132 0.187 0.297 0.275
Diptera
Antocha I 22.010 H 0.244 - 0.117 0.091 0.195 0.208 0.286
Bezzia T - L - 8.037 0.008 0.000 0.000 0.008 0.000
Chelifera S 19.916 H 0.262 - 0.121 0.152 0.167 0.227 0.258
Chironominae T - L - 9.744 0.004 0.000 0.004 0.008 0.000
Clinocera S 21.007 H 0.372 - 0.128 0.191 0.170 0.170 0.234
Diamesinae S 19.671 H 0.347 - 0.123 0.180 0.189 0.254 0.270
Dicranota S 21.755 H 0.212 - 0.128 0.141 0.167 0.192 0.244
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Thermal tolerance Mean annual runoff tolerance Prop. of sites lost - climate models:

Curve 0.95 Curve 0.05 0.95 Warm, Warm, Hot, Hot,

Taxa shape threshold shape threshold threshold wet dry Mean wet dry
Dixa s 24.483 N - - 0.057 0.086 0.086 0.086 0.086
Glutops S 23.158 H 0.773 - 0.030 0.091 0.121 0.152 0.303
Hemerodromia T - L - 4.560 0.000 0.000 0.000 0.095 0.000
Hexatoma I 21.437 H 0.243 - 0.163 0.174 0.233 0.267 0.291
Limnophila s 27.170 N - - 0.000 0.000 0.000 0.000 0.000
Maruina T - N - - 0.000 0.000 0.000 0.000 0.000
Neoplasta T - N - - 0.000 0.000 0.000 0.000 0.000
Oreogeton S 17.654 H 0.932 - 0.147 0.176 0.206 0.353 0.294
Orthocladiinae T - N - - 0.000 0.000 0.000 0.000 0.000
Pericoma s 22.859 M 0.219 5.238 0.054 0.162 0.189 0.189 0.324
Prosimulium S 16.551 H 0.430 - 0.241 0.241 0.310 0.345 0.379
Simulium T - L - 6.666 0.031 0.019 0.019 0.044 0.013
Tanypodinae T - N - - 0.000 0.000 0.000 0.000 0.000
Tipula S 21.233 N - - 0.125 0.167 0.250 0.292 0.292
Wiedemannia S 19.391 H 0.675 - 0.179 0.143 0.179 0.179 0.250

Ephemeroptera

Acentrella T - L - 3.675 0.033 0.033 0.033 0.067 0.033
Ameletus S 19.945 H 0.522 - 0.134 0.157 0.173 0.236 0.236
Baetis S 23.222 H 0.184 - 0.069 0.111 0.120 0.152 0.194
Caenis T - L - 1.644 0.054 0.054 0.054 0.054 0.054
Caudatella S 17.781 H 0.835 - 0.176 0.196 0.216 0.294 0.314
Centroptilum T - N - - 0.000 0.000 0.000 0.000 0.000
Cinygmula S 19.880 H 0.512 - 0.126 0.176 0.193 0.252 0.244
Diphetor I 23.694 N - - 0.024 0.024 0.037 0.098 0.134
Drunella S 20.598 H 0.510 - 0.145 0.178 0.217 0.217 0.263
Epeorus S 21.467 H 0.350 - 0.138 0.151 0.191 0.211 0.257
Ephemerella S 20.610 H 0.293 - 0.117 0.200 0.150 0.200 0.267
Fallceon T - L - 0.918 0.160 0.000 0.000 0.080 0.000
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Thermal tolerance Mean annual runoff tolerance Prop. of sites lost - climate models:

Curve 0.95 Curve 0.05 0.95 Warm, Warm, Hot, Hot,
Taxa shape threshold shape threshold threshold wet dry Mean wet dry
Ironodes S 23.193 H 0.532 - 0.063 0.156 0.125 0.125 0.281
Paraleptophlebia S 23.346 H 0.241 - 0.044 0.080 0.097 0.142 0.195
Rhithrogena S 20.078 H 0.777 - 0.139 0.165 0.191 0.209 0.235
Serratella I 21.944 H 0.342 - 0.108 0.189 0.176 0.216 0.270
Tricorythodes T - L - 3.248 0.098 0.073 0.073 0.146 0.049
Megaloptera
Sialis T - L - 8.246 0.026 0.000 0.000 0.026 0.000
Odonata
Argia T - L - 1.909 0.033 0.033 0.033 0.033 0.033
Plecoptera
Calineuria I 24.188 H 0.473 - 0.098 0.216 0.137 0.157 0.255
Capniidae S 19.290 H 0.523 - 0.128 0.205 0.205 0.205 0.231
Doroneuria S 17.968 H 0.497 - 0.192 0.212 0.250 0.269 0.365
Hesperoperla I 22.468 N - - 0.065 0.043 0.065 0.174 0.152
Leuctridae S 19.757 H 0.746 - 0.161 0.145 0.194 0.194 0.258
Malenka I 23.170 H 0.230 - 0.062 0.077 0.154 0.215 0.292
Megarcys S 16.446 H 0.924 - 0.232 0.161 0.286 0.464 0.464
Pteronarcys S 20.305 H 0.350 - 0.182 0.182 0.227 0.273 0.318
Skwala S 20.868 H 0.382 - 0.160 0.240 0.240 0.240 0.280
Suwallia S 16.644 H 0.632 - 0.130 0.130 0.217 0.348 0.348
Sweltsa S 20.305 H 0.494 - 0.154 0.169 0.185 0.231 0.262
Taeniopterygidae S 15.167 H 0.965 - 0.409 0.318 0.545 0.727 0.727
Visoka S 17.850 H 0.972 - 0.156 0.156 0.222 0.311 0.289
Yoraperla S 18.719 H 0.784 - 0.175 0.211 0.246 0.246 0.298
Zapada S 19.911 H 0.378 - 0.133 0.178 0.193 0.274 0.274
Trichoptera
Agapetus I 23.889 N - - 0.077 0.077 0.077 0.115 0.154
Apatania S 20.463 H 0.838 - 0.171 0.244 0.171 0.195 0.293
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Thermal tolerance Mean annual runoff tolerance Prop. of sites lost - climate models:

Curve 0.95 Curve 0.05 0.95 Warm, Warm, Hot, Hot,
Taxa shape threshold shape threshold threshold wet dry Mean wet dry
Arctopsyche S 21.500 H 0.765 - 0.111 0.111 0.194 0.194 0.389
Brachycentrus S 19.993 M 0.201 4.059 0.190 0.143 0.214 0.286 0.310
Cheumatopsyche T - L - 3.661 0.043 0.043 0.043 0.087 0.043
Dicosmoecus T - H 0.648 - 0.000 0.050 0.050 0.000 0.050
Dolophilodes S 19.943 M 0.372 5.255 0.167 0.167 0.167 0.333 0.417
Ecclisomyia S 19.922 H 1.113 - 0.190 0.238 0.286 0.333 0.333
Glossosoma S 21.331 H 0.704 - 0.171 0.145 0.211 0.211 0.276
Gumaga T - M 0.271 4.597 0.040 0.160 0.040 0.120 0.280
Helicopsyche T - L - 1.657 0.074 0.037 0.037 0.148 0.037
Hydropsyche T - L - 5.857 0.059 0.000 0.010 0.108 0.000
Hydroptila T - L - 3.796 0.063 0.021 0.042 0.125 0.021
Lepidostoma S 23.346 H 0.248 - 0.051 0.093 0.102 0.127 0.203
Micrasema S 22.875 H 0.290 - 0.058 0.115 0.135 0.163 0.288
Neophylax S 19.230 H 0.547 - 0.219 0.156 0.313 0.344 0.344
Neothremma S 15.818 H 0.908 - 0.171 0.257 0.286 0.486 0.486
Ochrotrichia T - L - 3.231 0.128 0.051 0.051 0.128 0.026
Oligophlebodes S 17.326 H 0.471 - 0.136 0.136 0.227 0.318 0.273
Parapsyche S 19.374 H 0.827 - 0.145 0.161 0.194 0.194 0.226
Polycentropus T - H 0.311 - 0.000 0.129 0.065 0.032 0.194
Rhyacophila S 20.982 H 0.470 - 0.136 0.191 0.210 0.216 0.272
Wormaldia I 24.889 N - - 0.038 0.038 0.077 0.154 0.154

A = Our analysis indicated a this taxon as theyrallerant. Yuan's (2006) analysis designatedtdixen as intermediately tolerant. We used the Y2806)
designation for this paper.

B = Our analysis indicated this taxon as thermt@llgrant. Yuan’s (2006) analysis designated tRertaas sensitive. We used the Yuan (2006) desamédr
this paper.

C = Our analysis indicated this taxon as thermadlysitive. Yuan's (2006) analysis designateddkert as tolerant. We used the Yuan (2006) desamédr
this paper.
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Figure 4.4.Projected proportions of sites considered “vulnierator representative taxa from

eight of the ten taxa groups that showed similapoases to projected climate change. Each row
represents a single taxon and each column repeeaetitferent threshold scenario. The colors
represent the projected proportion of sites pea that were defined as “vulnerable” as
temperature increased and runoff increased or deede with light blue representing 0 and

bright red representing 1. Each row represeras@ntand each column represents a different
threshold designation for the taxon.
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Figure 4.4, continued: Projected proportions @édssitonsidered “vulnerable” for representative
taxa from eight of the ten taxa groups that shosidlar responses to projected climate change.
Each row represents a single taxon and each cotaprasents a different threshold scenario.
The colors represent the projected proportiontekgoer taxa that were defined as “vulnerable”
as temperature increased and runoff increasedooeased, with light blue representing 0 and
bright red representing 1. Each row represeras@ntand each column represents a different
threshold designation for the taxon.
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The mean proportion of taxa vulnerable to changeanoff and temperature varied
across ecoregions (Table 4.3). The NorthwesternRbieests, Northern Temperate Mountains,
Middle Temperate Mountains, and Klamath Mountaihbad high proportions of taxa
vulnerable to temperature increases and runoffedses, followed by Desert, Mediterranean,
and Southern Dry Highlands with moderate proposgtiand the Northern Great Plains with low
proportions. Although some ecoregions have sinpfaportions of vulnerable taxa, such as the
Middle Temperate and Klamath Mountains, the incrai@eanalysis revealed very different
ecoregion-scale community responses to changesnperature and runoff (Figure 4.5).
Adjusting the environmental threshold values basedifferent cumulative percentiles resulted
in very different responses, with almost no lostagh at the 0.01/0.99 cumulative percentiles
(right column in Figure 4.5) and increasing losghwihe 0.05/0.95 (middle column in Figure 4.5)
and 0.1/0.9 (left column in Figure 4.5) cumulatparcentile scenarios. We felt that the 0.1/0.9
cumulative percentile scenario may have designabteas too sensitive to climate change (with
10% of their current distribution being vulnerabde)d the 0.01/0.99 scenario may not be
sensitive enough. With regards to the 0.05/0.@ha&co, the proportion of taxa lost in the
Northern Great Plains slightly with runoff decremsad temperature decreases (05-15% of taxa
lost), although this includes most vulnerable taxtnat ecoregion (row A in Figure 4.5). The
Desert ecoregion had as similar pattern to thehdont Great Plains, but with a greater loss of
taxa, up to 50% in the most extreme temperatui@eases and runoff loss (row B in Figure
4.5). The proportion taxa lost in the Southern Dighlands increased moderately (10-30%)
with either increases or decreases in runoff calplégh temperature increases (row D in Figure
4.5). The proportion taxa lost in the Northern adfiddle Temperate Mountains showed little

response to temperature increases, with loss offreficiting a greater, although minimal (O-

183



20%) response (rows F and G in Figure 4.5). Thegrtion of taxa lost in the Northwestern
Wet Forests increased slightly as temperature amafffrincreased (row H in Figure 4.5).
Finally, the Klamath Mountains and Mediterraneaoregions were the most severely affected
by changes in temperature (rows C and E in Figlsg while changes in runoff had little
impact. The proportion of taxa lost in these tworegions ranged from 20-60%. The five
climate model predictions (represented by the syminoFigure 4.5 and shown in Table 4.3)
demonstrate a range of reasonable scenarios foregacegion, with Middle Temperate
Mountains having the lowest proportion taxa losi (36 according to the 0.05/0.95 threshold
scenario) and the Klamath Mountains having the dsgproportion of taxa lost (21-43%

according to the 0.05/0.95 threshold scenario).

Trait responses

In addition to taxa lost from ecoregions, thislgsia also demonstrated shifts in
the trait composition of stream communities. korctional feeding groups, the collector-
filterers appeared to be most sensitive to mostatk change scenarios in the Northwestern Wet
Forests (Figure 4.6). This may be due to increasedff in the region and sensitivity of some
filter-feeders, such d@rachycentrusandSimuliumto extremely high runoff. Shredders
appeared to be most sensitive in desert, plaimstr@nSouthern Dry Highlands ecoregions, since
most shredders in these regions were classifisgstive to temperature increases. For the
voltinism trait, univoltine (one generation per geand semivoltine (one generation over
multiple years) were most sensitive in the Klam&kditerranean, Desert, Great Plains, and
Southern Dry Highlands ecoregions (Figure 4.7)miSeltinism is often associated with

organisms that prefer colder streams and may theeaitthermal limits in these ecoregions. For

184



Table 4.3: The number of sites (n), mean proponidtmermally and runoff vulnerable taxa per ecavegand mean proportion of
taxa lost for each ecoregion for five climate cheegenarios. The mean proportion of taxa lossperis based threshold values
derived from the 0.05/0.95 cumulative percentil€se numbers in parentheses are the standard.errors

Prop. of common taxa vulnerable to:

Prop. of common taxa vulnerable to climate model predictions:

Ecoregion n High Temp.  High runoff Low runoff Warm, wet  Warm, dry Mean Hot, wet Hot, dry
NW Wet Forests 45  0.82(0.02) 0.12(0.02) 0.80(0.02) 0.04(0.01)  0.03(0.01) 0.06(0.01) 0.10(0.02) 0.06(0.01)
N. Temp. Mtns 50 0.82(0.01) 0.15(0.02) 0.80(0.02) 0.04(0.01)  0.04(0.01) 0.05(0.01) 0.09(0.02) 0.09(0.02)
Mid. Temp. Mtns 30  0.77(0.02)  0.19(0.02) 0.72(0.02) <0.01 (0) 0.04(0.02) 0.03(0.01) 0.05(0.02) 0.09(0.03)
Klamath Mtns 22 0.74(0.02) 0.20(0.01) 0.70(0.02) 0.28(0.03)  0.21(0.03) 0.33(0.04) 0.42(0.04) 0.43(0.04)
Mediterranean 19 0.51(0.03) 0.39(0.03) 0.46 (0.03) 0.25(0.03)  0.29(0.03) 0.30(0.03) 0.34(0.03) 0.40(0.03)
S. Dry Highlands 15 0.38(0.05)  0.48(0.05) 0.35(0.04) 0.08 (0.03)  0.10(0.02) 0.09(0.03) 0.11(0.03) 0.16(0.03)
Desert 43  0.60(0.04) 0.39(0.03) 0.51(0.03) 0.11(0.02)  0.19(0.03) 0.17(0.03) 0.16(0.03) 0.26(0.03)
Great Plains 28 0.21(0.05)  0.62(0.03) 0.16 (0.04) 0.03(0.01)  0.12(0.03) 0.09(0.02) 0.10(0.02) 0.11(0.02)
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Figure 4.5: The projected proportion of taxa per,faveraged across ecoregions, which were
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change scenarios, with triangles representing tegtperature increases, circles mild
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runoff, and the X representing the mean of all aienrmodels. Each row represents an ecoregion
and each column represents a different threshajolation for the taxa in the ecoregion.
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Figure 4.5, continued: The projected proportioteaf per site, averaged across ecoregions,
which were defined as “vulnerable” as temperatocedgased and runoff increased or decreased,
with light blue representing O and bright red reprging 0.8. The five symbols represent the
five climate change scenarios, with triangles repnéing high temperature increases, circles
mild temperature increases, open symbols repreggelativ runoff, closed symbols representing
high runoff, and the X representing the mean otlathate models. Each row represents an
ecoregion and each column represents a differeeshbld designation for the taxa in the
ecoregion.
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the development trait, greater proportions of sk@asonal and nonseasonal taxa were lost in
most ecoregions under most climate scenarios (€ig). For adult life span, long and short
lifespans were lost in greater proportions in therdand warmer ecoregions (Figure 4.9). For
the adult female dispersal trait, the Klamath Maimg, Mediterranean, Desert, Southern Dry
Highlands, and Great Plains ecoregions lost muehtgr proportions of low dispersal ability
(Figure 4.10). Low dispersal, long adult lifespaasd semivoltinism are often associated with
organisms that may not be able to adapt to chargiiregm conditions and sites in the Great
Plains, Southern Dry Highlands, and Mediterranezmmegjions may experience a significant
shift in the functional composition of organismsthawveedy organisms — organisms with faster

life cycles and better dispersal abilities becommmyye prominent.

Discussion

This analysis revealed that the relative influeottdischarge and temperature on aquatic insect
communities varies according to taxa and ecoregi@hthat both, producing very different
community responses per ecoregion. Other studies tieveloped species distribution models
for stream macroinvertebrates using temperaturg-cdimhate change scenarios and found that
up 60% of European taxa will have decreases iniloigton (Domisch et al. 2013) and some
regions in Korea may lose up to 60% of taxa (Lale2013), similar to our own results for the
Klamath and Mediterranean ecoregions. But, expental approaches in other ecosystems have
found that that simple species distribution modbased only on current temperatures did not
perform well when temperatures were artificiallgn@ased (Diamond et al. 2012). To reason for
this discrepancy is not known, but the fact thatiticlusion of both temperature and runoff in

our analysis resulted in unique responses taxhnb@te change indicated that biological
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inference models may need to incorporate the effiectultiple environmental factors related to
climate change to effectively predict range shiftstream taxa and communities.

Our analysis indicated that communities in the Nerdanean and Klamath ecoregions
may be the most detrimentally impacted by clim&i@nge. Multiple studies have argued that
communities with the most cold-adapted and/or higtoff-dependent taxa should be the most
adversely affected by climate change and predi@ede reductions and distribution shifts in
cold-water regions (Mohseni et al. 2003, Buissath @renouillet 2009, Fenoglio et al. 2010,
Poff et al. 2010), such as the interior mountaich aorthwestern ecoregions in the western
United States. Our analysis, however, indicatedttiese ecoregions should be the least
susceptible to climate change. Although many maiardnd northwestern taxa are found in
cold-water streams, they may be tolerant of a waadge of thermal conditions. A thermal
ramping experiment on a single stonefly speciesicésd to alpine and glacial streams in
Montana showed high tolerances for temperatureasgs, maintaining behavior in
temperatures up to 2X original stream temperat(ire=sanor et al. 2013). One possible
explanation is that the variability in temperatare runoff in mountain systems may result in
greater tolerance breadth and greater adaptatalithmate change (i.e., the climate variability
hypothesis in Stevens 1989, Williams et al. 2008)is hypothesis has been upheld in some
aquatic systems (Hossack et al. 2013, Xu et akR@ut not in others (Mermillod-Blondin et al.
2013). A second possible explanation is that meioots taxa are living in conditions well
below their environmental limits. An experimentamts in North Carolina and Massachusetts
(Diamond et al. 2012) found that the southern gseciear their upper thermal tolerances,
responded negatively to experimental changes ipaeature while the northern species, found

well below their upper thermal limits, did not.
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A third possible explanation for the relative insigrity of mountain and northwestern
streams to possible climate change is that taxaglim cold, hydrologically variable streams
may be able to adjust life history traits to copthwhanges in climate. A study in Toronto,
Canada, increased temperature in a small springtfedm for two years and found no change in
richness nor extirpation of taxa from the streaut,did find that life history characteristics of
some taxa, particularly size, timing of emergerce] breeding times, did change (Hogg et al.
1995). In the Mediterranean and Klamath ecoregiovay typically cold-water species may be
at their environmental limits and have already msuteh life-history adaptations to survive.
Extreme thermal conditions in the Mediterranean lladnath ecoregions coupled with low
thermal variability may make California communiti@ere sensitive thermal increases.
Additionally, the mean proportion of taxa lost ietKlamath and Mediterranean ecoregions did
not show much change when we altered projectedftuauna in Mediterranean regions often
have to deal with stream intermittency and may dtéeb adapted to changes in runoff,
particularly in mountainous regions such as thertdth Mountains, which have regular cycles
of flooding (Fenoglio et al. 2010). Some streamthis climate can cycle through low flow-
adapted and high flow-adapted communities (BéclkeResh 2007) which might make them
more resilient to changes in flow, which our ressliggest. But, Béche et al. (Béche et al.
2009) found that many aquatic organisms could eatigt in a prolonged 5-year drought.

The Mediterranean and Klamath ecoregions are twheothree ecoregions in this study
(along with the Northern Great Plains) that havehiyhest mean temperatures and our results
might be an artifact of the cumulative percen@ehnique; since temperatures at these sites are
already high they are already amongst the sitgshidve crossed the thermal thresholds. This is

a legitimate concern and our dataset was too sSmaibst ecoregions to separate into calibration
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and evaluation datasets. There is, however, aadatifference between the
Klamath/Mediterranean ecoregions and the Northegatlains ecoregion. The Northern
Great Plains sites had much lower proportions xd tast due to changes in temperature and
runoff, even though they exhibited some of the agilduly temperatures and lowest runoff in
the dataset. This is due to the fact that Nortlizneat Plains sites have very few taxa that we
designated as being vulnerable to increases ingsatpe or changes in runoff (Table 4.3). In
contrast, the majority of taxa in the Mediterranaad Klamath ecoregions are vulnerable to
these changes. The California ecoregions représenown environmental limits for many
climate-sensitive taxa, while these taxa are nesgmt in the plains. It is important to incorporate
a large enough region to appropriately estimateeedistribution of a species (Sanchez-
Ferndndez et al. 2011) when estimating climatiereoices and while we are unsure if the
western United States is large enough, the arearaftudy was indeed large and indicates that
many taxa residing in much of California are atrtkmown thermal limit.

Our models indicate risk, but do not incorporateeofpossible scenarios, such as range
expansions, which have been recorded for someitaf aquatic insects during periods of
general temperature increases (Chessman 2009,.204}id not incorporate range expansions
into our models, but our results do indicate thieju@ nature of taxon responses to both
temperatures and runoff. Thus, possible rangerestpas may need to be analyzed on a taxon-
by-taxon basis. Additionally, some aquatic speeippear to be able to experience increased
temperature tolerances once they are acclimatbajb@r temperatures (Galbraith et al. 2012,
Majhi et al. 2013). The vulnerability of a taxandlimate change depends not just on its
physiological tolerance limit, but also on its beleaal responses, genetic diversity,

phylogeographic diversity, interspecific interaaso dispersal ability, population size dynamics,
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and trait plasticity (Williams et al. 2008, Wenggral. 2011, Chessman 2012). Stochastic
environmental processes influenced by temperatuteeecipitation change, such as fire, can
also have a large impact on taxon survival.

Most studies have estimated the effect of climhtange by estimating the response of
one or a few organisms to temperature change. Studess have incorporated flow or
precipitation in predicting fish responses climett@nge, but ours is the only analysis that
incorporated both temperature and runoff changearf@nimal community as large and as
complex as aquatic insects in streams. This aisaliggnonstrated that community responses to
multiple climate-driven variables can vary acrossregions and that the use of temperature

alone is not adequate in predicting the effectlioiate change on aquatic communities.
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