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Fault Tolerance for Kinematically
Redundant Manipulators: Anticipating

Free-Swinging Joint Failures
James D. English,Member, IEEE,and Anthony A. Maciejewski,Member, IEEE

Abstract—Fault tolerance is an important design criterion for
robotic systems operating in hazardous or remote environments.
This article addresses the issue of tolerating a free-swinging
joint failure by focusing on how to best configure a slow-moving
manipulator before a failure. Three scalar measures of fault
susceptibility are defined using joint torques/forces, accelerations,
and swing angles. Minimizing these measures is an approach to
achieving fault tolerance, and for this, algorithms to calculate
their gradients are also given. The formulas are valid for general
n-link manipulators.

Index Terms—Fault/failure tolerance, free-swinging failure,
kinematics, kinematically redundant, manipulators, redundant
robots/manipulators, robots.

I. INTRODUCTION

ROBOTS that operate in remote or hazardous environ-
ments must be used in a manner that reflects the im-

plications of failure scenarios on system performance [1]–[3].
Kinematically redundant robots have been proposed for use in
such environments due to their dexterity before a failure and
ability to continue operation after a failure [4]–[6]. A crucial
component of any system designed to tolerate failures is the
ability to detect and address different failure modes [7]. Much
of this previous work has focused on failures that are modeled
as locked joints, either because the failure directly results in
an inability to move or because brakes are applied to prevent
unpredictable behavior.

In contrast, the study of free-swinging failures is still
in its infancy and presents fresh problems and additional
possibilities for usefulness after a failure [8]. The termfree-
swinging failure refers to a hardware or software fault in a
robotic manipulator that causes the loss of torque (or force)
on a joint. Examples include a ruptured seal on a hydraulic
actuator, the loss of electric power and brakes on an electric
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actuator, and a mechanical failure in a drive system. After a
free-swinging failure, the failed joint moves freely under the
influence of external forces and gravity, hence the descriptive
label.

This article addresses the issue of how to best configure
a slow-moving kinematically redundant manipulator in an-
ticipation of a free-swinging failure. Manipulators used in
hazardous or remote environments are typically slow moving.
Kinematic redundancy allows the best configuration to be
found by establishing fault tolerance as a secondary criterion
to be met without affecting the end-effector task. To this end,
three secondary criteria will be developed, each addressing
a different aspect of a failure: torque/force, acceleration, and
swing angle.

II. A M ATHEMATICAL FRAMEWORK FOR

ESTABLISHING FAILURE-SUSCEPTIBILITY MEASURES

The method for reducing the likelihood or negative con-
sequences of a failure is this: A scalar measure of failure
susceptibility is defined as a function of the joint variables,
then it is minimized using the manipulator’s kinematic redun-
dancy. The approach to defining an overall measure will be
to first establish for each joint a measure of susceptibility to a
failure of that joint alone, then combine these in a meaningful
way to form the comprehensive scalar measure.

Let be the failure-susceptibility measure of joint
alone. Then, for an -degree-of-freedom manipulator, a

column of joint measures, , is formed as

(1)

For positive semidefinite weighting matrix , the form
of the comprehensive failure-susceptibility measureto be
used in this work is

(2)

To reduce the effects of an impending free-swinging joint
failure, is minimized. Several widely known methods of op-
timizing secondary cost functions under the constraint of com-
pleting a primary task have been presented. The augmented-
Jacobian technique [9], [10] can be used to track a desired
value of the secondary criterion function. For precise tracking
of critical points, the extended-Jacobian technique is appro-
priate [11]. And to track a local minimum or maximum,
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the gradient-projection method can be used [12], [13]. These
techniques require knowledge of the gradient of the function.

Application of the chain rule to (2) gives the gradient of
as

(3)

where

(4)

With this, is established as a function of the jointwise
measures ( ’s) and their gradients ( ’s). Sections III, IV,
and V to follow will develop values for the ’s (each
addressing a different failure aspect) and methods to calculate
their gradients.

III. A T ORQUE-BASED MEASURE

In this section, a fault-susceptibility measure will be given
that is based on the joint torques/forces (hereafter “joint
torque” will be used to denote either torque or force for rota-
tional or prismatic joints, respectively). A joint-torque-based
measure is appropriate in that the torques at a manipulator’s
joints are related to both the effect and likelihood of a
failure. Should joint undergo a free-swinging failure during
operation, the torque on jointis precisely the instantaneous
force-domain change induced by the failure. It is related to
the joint acceleration after a failure (this relationship will be
detailed in Section IV), and if it is zero the failure will have no
immediate effect. Moreover, a joint under less torque is less
likely to fail. (The load to induce a failure in a mechanical part
is reasonably assumed to have a normal distribution [14].)

A shortcoming of the torque-based measure is that a low-
torque solution may result in a large swing angle for a
rotational joint after a failure. This issue will be addressed
in Section V.

A. Definition of the Measure,

Joint torques are functions of the manipulator’s motion and
configuration. For a viscous friction model, this relationship
is expressed mathematically as

(5)

Here, is the vector of joint torques; is the vector of joint
positions; is the manipulator inertia matrix; is
the matrix specifying centrifugal and Coriolis effects, each row

of which has the form is the viscous-friction
matrix; and is the vector of joint torques due to gravity.

Local optimization of the total torque given by (5) has been
addressed [15], but it was found that this approach has regions
of inherent instability [16]. The task of globally optimizing a
function of the torques from (5) over a path has also been
addressed [17], [18], but such global optimizations are com-
putationally complex and not appropriate for on-line control.
For a slow-moving manipulator, however, an approximation
can be made that allows stable on-line optimization.

For a given robotic system, a slow moving trajectory can be
defined in terms of a column vector of positive maximum

Fig. 1. Vector quantities used in calculating the torque on joint`. Unit
vector ẑ`�1 is the z-axis of D-H frame ` � 1. Vector ~s �

`�1
is the

first-moment-of-inertia vector for the composite rigid body formed by links`
throughn. Vector~g is the upward-pointing gravity vector. ScalarM` is the
composite mass of links̀ throughn.

torque magnitudes by requiring

(6)

where the operations and apply on an entry-by-entry
basis. Note that (for the viscous friction model) from the
dependence of on and in (5), for any twice-
differentiable joint trajectory and any , a trajectory sat-
isfying (6) can be found simply by scaling the trajectory
time.

For a sufficiently slow trajectory, the torques can be reduced
to those of the static case, whereand vanish, and (5)
becomes

(7)

This gives the vector of joint torques needed to counter gravity
in a stationary manipulator, and each individual torque forms
a measure through its magnitude of susceptibility to a free-
swinging failure of its joint.

Using in (2) gives , the scalar failure-susceptibility
measure for the torque-based approach. Here
is a positive semidefinite matrix that weights the relative
importance of the joint torques. Example weighting matrices
will be given in Section VI.

B. Calculating the Gradient,

For , (3) establishes the gradient of the overall cost
function as a function of the joint torques () and the torques’
gradients ( ). The remainder of this section describes a
method for finding these quantities.

Joint Rotational When joint is rotational, the torque
can be calculated as

(8)

where is the unit vector along joint , the -axis of
the th Denavit–Hartenberg (D-H) coordinate frame; is the
first moment of inertia of the composite rigid body formed
by links through referred to the origin of D-H frame
; and is the gravity vector in the upward direction. These

vector quantities are illustrated in Fig. 1.



568 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 4, AUGUST 1998

Let be the composite mass of links through ,
calculated independently of joint type as

(9)

Here is the mass of link . Using these values, the
composite first-moment-of-inertia vector as expressed in
the th D-H frame can be calculated independently of joint
type as

(10)

Here, is the 3 3 rotation matrix representing D-H
frame in frame is the first-moment-of-inertia vector
for link referred to and expressed in its own D-H frame; and

is the vector from the origin of D-H frameto the origin
of frame , expressed in frame. Note that and should
reflect any payload that is present.

The gradient of has entries . For joint rotational,
using (8), the values of these entries are given by

(11)

provided and are found with respect to the
base frame and is constant in the base frame. This allows
calculation of the gradient once the vector partial derivatives
are found. Equation (11) is given in coordinate-free form, and
after calculation of and it can be evaluated
in any frame.

Joint Prismatic When joint is prismatic, the force is
a function only of the orientation of the joint (as compared to
the dependence on the first moment of inertia when jointis
rotational). The value is now given by

(12)

and the elements of the gradient are

(13)

provided is found with respect to the base frame and
is constant in the base frame. Like (11), this can be evaluated

in any frame once the vector partial derivatives are found.

C. Calculation of and

The elements of can be calculated directly from (11) or
(13) only after and have been evaluated. When

joint is rotational, and can be found in the base
frame as

(14)

(15)

and when joint is prismatic

(16)

(17)

IV. A N ACCELERATION-BASED MEASURE

The last section presented a fault-susceptibility measure
based on the stationary joint torques. Among the justifications
for this was joint torque’s relationship to joint acceleration
after a failure. In this section, the jointwise function will be
precisely the acceleration after a failure. Though this new
measure does not have the failure-prevention properties of
the torque-based approach, it relates more accurately to the
immediate failure dynamics. If failed joint acceleration is low,
more time is available to compensate for the failure before
significant arm motion. This principle, and the method, applies
to both rotational and prismatic joints. As in the torque-based
case, a stationary manipulator is assumed as an approximation
to a slow-moving manipulator.

A. Definition of the Measure,

The velocity of an inertial body cannot change instan-
taneously. So, at the moment of failure for a stationary
manipulator, the joint rates do not change,remains , and
(5) becomes

(18)

where, for failed joint

(19)

and since a stationary prefailure manipulator is assumed

(20)

With (19) and (20), (18) gives the following scalar equation
for , the acceleration of the failed joint

(21)

where is diagonal entry of . Since the manipulator
inertia matrix is positive definite [19], is strictly positive,
and the following is always valid:

(22)

With this, the column vector of joint measures is

(23)

Using and , a positive semidefinite
weighting matrix, the framework of Section II establishes,
the scalar failure-susceptibility measure for the acceleration-
based approach. Note this is an anticipatory measure (the
acceleration is manifest only if a failure occurs) and not a
measure of a current physical phenomenon as was the torque-
based measure.
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B. Calculating the Gradient,

With , (3) allows calculation of the gradient of
as a function of the postfailure accelerations () and their
gradients ( ).

The entries of (which forms row of ) can be found
by applying the quotient rule to (22)

(24)

Equations (22) and (24) allow calculation ofand once
, and are known. The joint torque can

be calculated using (8) for jointrotational or (12) for joint
prismatic. The partial derivatives of can be calculated using
(11) for joint rotational or (13) for joint prismatic. This
leaves and .

C. Calculation of the Diagonal Entries of the
Mass Matrix and Their Gradients

The methods for calculating and will be broken
down into cases for prismatic versus rotational joints and
inboard versus outboard variables for the gradients.

The Diagonal EntriesWhen joint is rotational, is
given by

(25)

where is the composite rigid-body inertia of links
through referred to D-H frame . It can be calculated
recursively as (adapted from [20])

(26)

(27)

The matrix is the cross-product matrix for (the matrix
such that for all vectors ), is the cross-product
matrix for is the cross-product matrix for , and

is the second moment of inertia of link referred to its
own D-H frame. Matrices without a preceding superscript are
expressed in their frame of definition (for ,
and ). Note that should reflect any payload that is
present.

When joint is prismatic, is simply the composite mass
of links through ; i.e.,

(28)

with the composite mass calculated using (9).
The GradientsFor joints and rotational, , from (25)

(29)

where the fact that is inboard from and therefore does
not change with was used. Taking the partial derivative of

with respect to gives, in coordinate-free form

(30)

where is the cross-product matrix for . Substituting (30)
into (29), exploiting the symmetry of , and simplifying
gives

(31)

This can be efficiently calculated in frame .
For joint rotational and joint prismatic, , taking

the partial derivative of with respect to (now a sliding
variable) gives, in coordinate-free form

(32)
Using with (32) in (29), which is valid
for all types of joint , gives

(33)

which can be efficiently calculated in frame .
For joint rotational and joint either prismatic or rota-

tional, is constant for changing , and thus

(34)

For prismatic joint , all , the composite mass of links
through is not changed by the value of joint variable, and
thus, from (28)

(35)

V. A SWING-ANGLE-BASED MEASURE

In this section, the failure-susceptibility measure will be
based on the angle through which a failed rotational joint
moves after a failure, that is, the angle between the prefailure
configuration and the settled, postfailure configuration. This is
defined as the swing angle. When it is small, a failure will
produce a displacement that will, in a relative sense, be small,
and when it is zero, a failure will have no effect (for the given
assumptions). The expectation is that with a small swing angle,
the manipulator is less likely to cause secondary damage to
itself or its environment. This measure is for rotational joints
only (prismatic joints do not settle through friction, but hit
stops), and, again, a stationary manipulator is assumed as an
approximation to a slow moving one.
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Fig. 2. The swing angle for joint one,^�1. Shown here is a manipulator
before (upper right) and after (lower) a failure of the first joint. The center of
mass of the manipulator is represented by the small polyhedron.

Fig. 3. The swing angle is the angle between the projection of~s �i�1

and the negative of the projection of~g. It is equal to the angle between
~s �i�1

� ẑi�1and ẑi�1 � ~g.

If the environment is well known, configuration-space anal-
ysis of the workspace could be used to specify a range of
swing angles that would not induce collision. No assumptions
about the environment, however, are made for this work, and
the approach will be to reduce the magnitude of the swing
angles. A shortcoming of a swing-angle based measure is that
it provides a limited amount of information on the Cartesian
motion of the manipulator [21].

A. Definition of the Measure,

The swing angle is the angle through which failed joint
moves to find its resting position after a failure. The resting

position is that for which the center of mass of the portion of
the manipulator outboard from the failed joint is at its lowest
position relative to the gravitational field. This is illustrated
for a failure of the base joint in Fig. 2.

With the definitions of , and as given in Section III,
the angle through which joint would swing were it to fail
is given by the angle between the projections of and

onto the plane perpendicular to (the axis of rotation).
This can be calculated as the angle between ( ) and

( ), as shown in Fig. 3; i.e.,

(36)

(37)

Provided neither nor is parallel to , (36) and (37)
give

(38)

where the range of Atan2 is to ; otherwise, from (8), the
torque on joint is zero, and since a stationary manipulator
is assumed

(39)

The jointwise measure for use within the framework estab-
lished in Section II will be the swing angle. The column vector
of joint measures will be given by

(40)

Using and , a positive semidefinite
weighting matrix, the framework of Section II establishes,
the scalar failure-susceptibility measure for the swing-angle-
based approach.

B. Calculating the Gradient,

The gradient of can be calculated using (3), which, for
, establishes the gradient of the measure as a function

of the swing angles and their gradients .
If or is parallel to , the gradient of is either
or undefined and should be set to. Otherwise, from (38),

the entries of are calculated as

(41)

where

(42)

and

(43)

Equation (41) is valid for all values of between and .
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C. Calculation of and

When all vector quantities are expressed in the base frame
and the gravity vector there is constant, (42) and (43) give

(44)

and

(45)

where and can be calculated using (14), (15),
(16), and (17).

VI. EXAMPLES

To illustrate the concepts of this article, two examples
will be given using a three-link planar manipulator. Hard-
ware experiments using a seven-link manipulator will then be
presented to demonstrate the applicability to spatial arms.

A. A Torque-Based Multi-Joint Example

The example planar manipulator used here is described as
follows: the link lengths are unity; the link masses are unity;
and the center of mass of each link is at the link center. The
task will be end-effector positioning only (i.e., orientation is
not considered), and with this perspective, the manipulator has
one degree of kinematic redundancy.

For this first example, a free-swinging failure is anticipated
at any joint, and the torque-based method will be used.
Values for will be determined by analyzing the worst-
case stationary joint torques. When the manipulator is fully
extended horizontally, the gravitational torques on joints one,
two, and three are at their global maximums of , and

, respectively, where is the magnitude of the acceleration
due to gravity. If the actuators are designed to be capable of
applying torque proportional to this worst case, then for the
purpose of failure prevention, the ratio of the applied torque
to the maximum is of concern. These are found by weighting
joint-one torque by , joint-two torque by , and joint-three
torque by . This gives, after normalizing

(46)

For this value of used as a weighting matrix in
(2), worst-case and best-case configurations for end-effector
position (.6, 1.9) are shown in Fig. 4. The worst-case con-
figuration has high relative joint-two and joint-three torque,
while the best-case configuration has low relative torques on
all three joints.

Using the measure defined through (46) over a linear
trajectory gave the results of Fig. 5. The method reduced the
relative torques over the path, as is most visibly demonstrated
for joint three, corresponding to the weakest actuator (the last
link is near vertical over the path). The worst-case criterion

Fig. 4. The worst-case (left) and best-case (right) configurations for a
stationary three-link planar revolute manipulator for prevention of a failure in
any joint. The manipulator on the left has the largest cost-function value using
Wg as given in (46) for end-effector position (.6,�1.9), and the manipulator
on the right has the smallest.

Fig. 5. Following a horizontal trajectory from right to left while minimizing
the susceptibility of a failure on any joint. The normalized (globally largest
value= 1) value of the cost function, based on the value ofWg given in
(46), is plotted in the gray region versus thex-coordinate of the end effector.
The gray dashed line corresponds to the criterion function plot that would
result were the trajectory traversed from left to right.

function over the path is 38% of the global maximum. The
asymmetry of the cost-function plot is due to the fact that a
local minimum, not a global minimum, is being tracked. Any
trajectory point ( ) has an optimal configuration at least
as good as that of the mirror trajectory point ( )—the
solutions over the right half of the trajectory are of better
quality than the solutions over the left half.

The displacement of the joints over the path of Fig. 5 is
relatively high, illustrating how reducing joint torque tends to
come at a cost of increased joint displacement. In cases where
displacement-induced wear and failure are of concern, an
optimization based on both the torque-based criterion function
and joint rates could be used, employing, for example,
Li égeois’s method [12]. Note, however, that in marginal
lubrication-deficient cases—where failure-prevention methods
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Fig. 6. Following a horizontal trajectory from right to left while minimizing
the joint-two swing-angle-based measure. The normalized value of the crite-
rion function (the joint-two swing angle squared) and the joint-rate norm (for
a 10 s constant-velocity trajectory) are plotted in the gray region versus the
x-coordinate of the end effector.

might be invoked—a modest reduction in load can reduce
the ratio of mechanical wear to displacement by several
orders of magnitude [22].

B. Swing-Angle-Based Single-Joint Example

Focusing on the joint-two swing angle, using

(47)

as a weighting matrix, over a linear trajectory gave the
results of Fig. 6. The cost-function was zero over most of
the trajectory, and where zero was not achievable, the joint-
two swing-angle magnitude was minimized, as is evidenced
by the tendency of the last two links to stay under the second
joint. Had joint two failed while the arm slowly traversed the
trajectory, the deviation of the arm from the desired path would
have been small—the worst-case criterion function value is
2.1% of its global maximum.

Also in Fig. 6, the joint-rate norm is plotted versus the end-
effector -coordinate for a 10 s constant-velocity trajectory,
and the spikes show that the manipulator experiences rapid
motion at two points along the path. These points correspond
to occurrences of algorithmic singularities—the manipulator’s
configuration at these points is not a differentiable function of
end-effector position under minimizing control. The nature of
the failure-susceptibility measure at and near the right-hand
point is detailed in Fig. 7. When the rank of equals
the degree of redundancy (as is the case here), either an
algorithmic or a kinematic singularity will always occur upon
entering or leaving a region where the criterion function can
be zero, provided the jointwise functions have continuous
second-order derivatives within a neighborhood of the crossing
minimum. A proof of this is given in [23].

(a)

(b)

(c)

(d)

Fig. 7. An illustration of the splitting-local-minimum phenomenon based
on the joint-two swing-angle-based measure. The manipulator is follow-
ing a horizontal trajectory while locally minimizing the swing-angle-based
measure (the same joint path as in Fig. 6). Four plots are shown of the
swing-angle-based criterion function versus the first joint angle in radians
(measured from horizontal) for configurations giving a desired end point. Each
plot corresponds to the end point of the black arm to its left. The first plot
(a) shows the range of all possible values, while the second through fourth
(b)–(d) plots show a subset. The local minimum is well defined in plots one
and two, but becomes poorly defined in plot three, with the end effector at
the boundary of the zero-criterion-function region—the system experiences an
algorithmic singularity at this point. In the fourth plot, the minimum has split
(the black arm corresponds to the right-hand minimum), and the end-effector
is now well within the zero-criterion-function region of the workspace

Rapid manipulator motion is undesirable and voids the slow-
moving assumption. Scaling the trajectory time (i.e., reducing
the end-effector trajectory speed) could prevent this [24], but if
constant velocity is desired, a solution is to restrict null-space
motion to reduce the joint rates without sacrificing end-effector
velocity tracking. The result of this approach is shown in
Fig. 8. Capping the joint rates had only a minor effect on
the joint values and criterion function and did not change the
end-effector trajectory. If error in the task were permissible,
a damped-least-squares type of solution could also be used to
limit the joint velocity.

C. Hardware Experiments

To verify the assumptions used in the development of
the algorithms, hardware experiments were performed on
a Robotics Research Corporation K-1207i manipulator. The
K-1207i has seven joints and therefore has one degree of
kinematic redundancy for the task of spatial positioning and
orienting. The kinematic and dynamic parameters and joint
limits for the K-1207i are given in [23]. This arm was used
to verify the joint-torque-based method by tracing a linear
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Fig. 8. Following the same horizontal trajectory as in Fig. 6 under the
constraint that the joint-rate norm not exceed one radian/s. Rapid motion
is avoided, yet the criterion function remains low.

trajectory while minimizing the torques squared on several
different joints. The case of a focus on joint two will be
presented here, and the results for other joints are given in
[23].

The end-effector trajectory begins with a hand pose given
by the following homogeneous transformation matrix relative
to the base frame

(48)

The end effector then travels in the negative-direction
without rotating and ends with a pose given by

(49)

A trapezoidal velocity profile was used to assign motion
along this path. Of the total trajectory time, the first 20% was
used to accelerate to the maximum speed and the last 20%
was used to decelerate to a stop.

To focus on the second joint, the weighting matrix
was set to a 7 7 matrix with a at position (2, 2) and
zeros elsewhere. The gradient-projection technique was then
used to track a local minimum along the example trajectory,
and three images of the arm along this path are shown in
Fig. 9. The minimization procedure here has a clear physical
interpretation: it aligns the second joint with the gravitational
field. With this, the model has no joint-two gravitational torque
regardless of the configuration of the outboard links over the
entire trajectory. This shows an optimization mechanism useful
for spatial manipulators that is not available in the planar
case—the reorienting of the focus joint.

The measured torques on the K-1207i’s second joint in
following the path of Fig. 9 are shown in Fig. 10 for three
trajectory times. Because the second joint is aligned with

Fig. 9. The K-1207i tracing the example trajectory from left to right while
locally minimizing the joint-two torque squared. The gravity vector points
toward the top of the page. The second joint is aligned vertically so,
independent of the configuration of the outboard joints, it has zero gravitational
torque.

Fig. 10. Measured joint-two torque on the K-1207i versus distance along the
end-effector trajectory as the arm locally minimizes the second joint torque
squared (as shown in Fig. 9). The trajectory timeT is halved with each
subsequent plot.

along the trajectory, the dynamic torques dominate, as can be
seen through the difference in the magnitudes of the torques
for the 3.25 s case versus the 13 s case. The visible
oscillations are due to the controller action. Yet even with
these dynamic torques, the magnitude of the total joint torque
is significantly reduced from what it potentially could be over
the trajectory. The arm tracking a localmaximum—under joint-
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Fig. 11. The K-1207i tracing the example trajectory from left to right while
locally maximizing the joint-two torque squared. The gravity vector points
toward the top of the page.

Fig. 12. Measured joint-two torque on the K-1207i versus distance along
the example trajectory while maximizing the second joint torque squared
(Fig. 11). The trajectory timeT is 13 s. This torque magnitude is much higher
than for the trajectories of Fig. 10, showing the benefit of the technique for
a real system.

limit constraints—of the joint-two gravitational torque squared
is shown in Fig. 11, and the resulting measured torque for a
13 s trajectory time is shown in Fig. 12. For this example,
minimizing the gravitational torque dramatically reduces the
total torque even for a fast trajectory time. This demonstrates
the merit of the stationary-manipulator assumption.

VII. CONCLUSION

This article defined three cost functions which quantitatively
reflected the susceptibility of a manipulator to a free-swinging
joint failure:

1) the torque-based function measured failure likelihood
and force-domain effects;

2) the acceleration-based function measured immediate
failure dynamics; and

3) the swing-angle-based function measured susceptibility
to secondary damage after a failure.

For use in minimization methods, algorithms were given for
calculating the gradient of each cost function for a general spa-
tial manipulator. These were used with the gradient-projection
technique to show the methods’ usefulness for a three-link
planar manipulator and demonstrate the concept’s practicality
for a commercial seven-link manipulator.

The three measures presented address diverse aspects of
a robotic system’s susceptibility to a failure. They can be

used independently or together. When employed to control the
motion of manipulators in remote or hazardous environments,
they have the potential to reduce the likelihood and negative
consequences of a failure and thereby expand the general
usefulness of robotic manipulators.
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