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Dr. Fischer's paper on geostrophic adjustment in a stratified fluid 

was published in Berichte des Deutschen Wetterdienstes, 12 (87), l 963. 

It is one of the 

through Blumen's 

few papers in the literature on this topic and, 
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ABSTRACT 

A disturbance of geostrophic equilibrium in the form of an unbalanced 

vortex of finite lateral extension or an unbalanced zonal current of finite 

width is suddenly、 injected into upper atmospheric layers between 8 and 

16 km at time t = 0. We consider the changes of motion, temperature and 

pressure caused by the initially unbalanced velocity field which seeks to 

gain a stationary geostrophic equilibrium, and compare the final to the 

initial state. To this end the linearized hydro-thermodynamical equations 

are solved on the assumption that the basic state of the horizontally 

unlimited atmosphere is in rest and the lapse rate of temperature vanishes 

or, in a second example, is adiabatic. We s~ow that the solutions for 

these baroclinic disturbances are obtained by a superposition of solutions 

for barotropic disturbances; these latter are therefore discussed in 

detail. The following questions are dealt with: which general initial 

conditions lead to adjustment, which energy transformations take place, 

how does the lateral and vertical extension of the initial disturbance 

influence the results, which conclusions can be drawn from the resu lts 

with respect to the dynamics of the true atmosphere . 

• 1 .l 



.- 

CONTENTS 

孿
．11
1
4
6
1
0
1
4
1
9
2
2
3
2
4
4
5
0
5
7

............ ............ ............ ............ ............ ............ ............ ............ ............ ............ ............ ............ ............ ............ ............ ............ ............ ............ ............ ............ ............ ............ ............ ............ ............ ....... 

s 

... 

. 

e 

... 

. 

....... ....... 

c 

... 

. 

....... 

n 

... 

. 

... 

s 

... 

a 

...• 

.•. 

n 

..• 

b 

•..• 

... 

o 

... 

r 

.... 

•.. 

1 

••. 

u 

•.•. 

... 

t 

.. 

st 

.... 

... 

1.tnsss 

.. 

... 

d.eo1tt 

.. 

... 

n 

.. 

J1d11 

.. 

... 

oxtuu 

.• 

... 

ce1ucss 

.. 

... 

ta11ee 

.. 

... 

1rnoprr 

.. 

... 

aooso 

.. 

... 

1vzree 

.. 

..

.
. 

tethh 

•. 

... 

1eehott 

.. 

... 

nhhtr 

.. 

... 

1ttaff 

.• 

... 

fboo 

.. 

. 

n.drro 

.• 

. 

0.noofnns. 

·1.affnooons .tso11oe 
tcnynn1stt1c cuoroosepasn ad1a11s11nue rotdttupra1r tranuucmc1ce stuu11saspnf bnqooo1xexoe AIEBSSDEDE

.
CR . 

......... 

o 

1234567891 

I ` I 

1 .' .' 



1. I n trod u ct i on 

From the beginning of meteorological research the question of the 

deviations from the geostrophic equilibrium has attracted great interest. 

Although the equilibrium between Coriolis force and pressure gradient 

force is present to a large extent in the free atmosphere of higher 

latitudes, it cannot exist exactly because no energy transformations 

would take p:lace. Weather maps show also that velocity and pressure 

fields are non-stationary in the atmosphere and that air masses are sub­

ject to individua.l accelerations. 

Experience shows, however, that the atmosphere of higher latitudes 

is approximately in geostrophic equilibrium, which is a result of the 

fact that masses are always trying to restore their equilibrium between 

Coriolis force and pressure gradient force. The process is called 

adjustment, after Shaw. 

How the adjustment process takes place in the atmosphere, how the 

different variables change, and finally, how the stationary geostrophic 

final state is reached will be examined in this work with the aid of 

simple models. It will be assumed as is generally done that deviations 

from the geostrophic equilibrium other than those in the friction layer 

near the surface occur mainly in the upper troposphere. For example, 

one could consider a cyclonic vortex (a mass of cold air) orginally in 

geostrophic equilibrium which becomes supergeostrophic by traveling 

southward in the upper layers of the troposphere and then tries to regain 

its equilibrium (latitudinal adjustment). Although the Coriolis parameter 

is assumed to be constant in this work one can suppose a small meridional 

displacement of the vortex and investigate how the then-ageos trophic 

vortex assumes its equilibrium at the fixed location. · A deviation from 
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the geostrophic equilibrium also has to occur in the inflow and outflow 

regions of an upper tropospheric frontal zone since the air masses passing 

through these regions are exposed to a pressure gradient which varies 

with time. This leads to subgeostrophic winds in the inflow region and 

supergeostrophic winds in the outflow region. In this case also the air 

masses will seek to gain their geostrophic equilibrium (gradient adjust­

ment). 

Two simple models were selected and treated mathemati·cally to in­

vestigate in more detail the two situations described above: 1) a super­

geostrophic vortex of finite extent and 2) a supergeostrophic current of 

finite width. Both perturbations shall occur suddenly and be limited to 

a relatively thin layer at the tropopause level. Our problem then is to 

examine how the adjustment of this vortex or current, respectiviely, takes 

place, how the pressure, temperature and velocity fields change in all 

layers, what the final geostrophic state looks like and what influence 

the horizontal and vertical extent of the perturbation has on the 

solution. 

These two models assume a geostrophic imbalance in the initial state 

which is caused by a perturbation of the velocity field. At first sight 

it might seem more appropriate to assume, following Stumke (21), an 

initial perturbation in the temperature and thus in the pressure field 

as is caused by the differential heating of continent and ocean and ·of 

different latitude zones. A thermal model of this kind could perhaps 

describe the generation of the monsoon circulation. This was not done, 

though, since the disturbances apparent in the weather maps which occur 

over short periods of time (on the order of days) appear as perturbations 

of the velocity fields, where thermal effects evidently play a second 

order role. 
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The translation of the preceding models into a halfway comprehensive 

mathematical system is unfortunately not possible without certain simpli­

fications. Thus, only small deviations from a basic state of rest are 

assumed. Our theoretical results can be generalized only to a limited 

extent to a basic state in geostrophic equilibrium, as will be shown 

later. Another assumption is that the atmosphere is isothermal in the 

basic state. The influence of the stability on the adjustment processes 

can be estimated, though, through a comparison with an atmosphere with 

neutral stratification. 

A basically similar model has been treated by Raethjen (14). The 

differences lie mainly in the mathematical execution; nevertheless, the 

results are similar. Rossby (17) gave the incentive to theoretical 

investigations of the adjustment of simple non-geostrophic velocity 

fields in the ocean, with the wind-produced ocean currents in mind. 

Continuing the work of Rossby, Cahn (2) computed the adjustment of a 

current in a barotropic ocean with the aid of the linearized hydrodynamic 

equations; Bolin (1) followed with a similar investigation in the baro­

clinic ocean. Fjeldstad (7) described the mathematical basis for the 

computation of the adjustment with respect to oceanic current. 

The latter three works have in common that they solve an initial 

value problem. This work follows the same approach. At the time t = 0 

a horizontally and vertically limited perturbation is prescribed in an 

otherwise horizontaily unlimited region, and, since no external forces 

shall occur, the final state is dependent only on the initial conditions. 



2. Equations 

In the "basic state" the atmosphere shall be at rest and be stratified 

isothermally; the deviations from the basic state shall be so small that 

quadratic terms can be neglected. With 

P (x, y, z, t) = 鈺） 十 t:, P 三 祏斗 ( 1 十 c)

e (x, Y, z. t) =丑）十凸 9 三祚） （ 1 十 a) , _ [1] 

T (x , y, :, t) = T + 6 T.= . T ( 1 十 r )

where the barred quantities correspond to the basic state ands, a, T 

as functions of the three space coordinates x, y, z and the time t 

represent the relative pressure, density and temperature perturbat ions , 

the linearized equations can be written as 
au 

RT 
ae 

—一 fv = - RT ;..: at - - - ox 
av —+fu = - RT 

- 8e 
0t ay 

= ae 
一 g (c-(J) = - RT -az 
竺十些十竺十竺＿主－ w=O
8 t 3x ay aZ RT 
ae 砷 g_ _ % － 一位1) w = 0 a t 0 t + -

RT 
E 一 6 == t 

[2] 

u, v, ware· the velocity components in the x, y, z - direct i ons, f is the 

Coriolis parameter, K = c .. Jc.. the ratio of the specific heats, R the gas p v 

constant of atmospheric air and g the gravitational accelerat ion . The 

first two equations are the dynamic equations of motion, followed by the 

hydrostatic relation, continuity equation, the adiabatic equation and 

the gas equation. It is thus ass!)med that vertical acceleration can be 

neglected and that hydrostatic equilibrium always prevails; furthermore, 

it is required that no heat is added to or taken out of the system. 

The above equations correspond to a basic state at rest in a coor­

dinate system which is fixed with respect to the earth. With less 

accuracy, they also describe the perturbation movements r e l ative to a 

4 
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geostrophically adjusted vortex or (zonal) current extending over all 

layers as a basic state, where the coordinate system is fixed with respect 

to the rotating basic current; then f represents the rotation of the 

absolute vortex. In this case additional terms related to the pressure 

gradient of the basic field would appear in the linearization of the 

continuity equation as well as the adiabatic equation. To a certain 

approximation the equations should also describe this case satisfactorily, 

though, as will be shown later. 

In order to arrange the system of equations [2] into a more tractable 

form, the density perturbation and vertical velocity in the continuity 

equation are eliminated with the aid of the hydrostatic relation and the 

adiabatic equation. With 
RT ae z RT 2 o% 

w = - - - - (- )— g a[ `-l \ g I ctt v: 

as well as 
RT 褓

(1 = E －一 ·一
g a z 

and 

RT ae 
t = --- g a z 

[2] yields the differential equations 

[3a] 

[3b] 

[3c] 

Ou - 0e - - fv = - R T -ac ax 
av - 8e 
一十 fu = - RT -
0t ay 

』；~口－ R＼ E) －竺（吉）＼芷十認） = O 

[4] 



3. Boundary and Initial Conditions 

The following boundary conditions in z are prescribed: the vertical 

velocity w vanishes at the ground (z = 0) 

sat a yet to be specified height z = h. 

w = 0 for z = 0 

and s = 0 for z = h 

as does the pressure perturbation 

Thus 

[5] 

While the vertical velocity necessarily has to vanish at the ground (with 

a horizontal surface), requiring the pressure perturbation to vanish at 

so me h i g h 1 eve 1 is just a "reasonable" assumption. 

The 

s as well 

latter condition is 

as for u 

satisfied by the following express i on f or 

and v which also conforms with the system of equations 

[4]: 

CX) - o 

(,,u,v/ - I 伝， u k, vk )e這\n曰
k = I 

)·k 

[6] 

where 
z 

r=1 一 一·h 

The coefficients ck' Uk' v,, are functions of x, y and t. k The eigenvalues 

入 are determined for the condition that the vertical k 
veloci ty has to 

vanish at the ground. 

relationship: 

The above . series 

From [3a] 

1 x RT 
rg ik ＝二戸 Ak

For later computations we set 

入＝ 0 with 入＞入1 k+1 k. 

and [6] one obtains the transcendental 

k = I , 2. 3 

2 x R T 
=l 

2 - x g h 

1 
·
l 

ru -- 

then 

[6] togethe:r with the relation 

it follows that 

[7] constitutes an 

"anharmonic Fourier series"; the r k `^ n .' s form an orthogonal 

l The abbreviations tg stands for tangent. 

sys t em, 

6 
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through which any arbitrary function can be approximated, especially the 

initial conditions which will be described in more detail in the following. 

At time t = 0 a perturbation of the geostrophic equilibrium shal 1 

exist in the form of an additional wind field which is superimposed on 

the basic field. If one denotes the initial state by superscript 0, then 

the vertical distribution of the vorticity perturbation is described by: 

<J'l = TO = \VO = 0; 抨＝ D0 = 0 

_

J 

c-
兀

1

一2

8V .̀; 
。
cV -o 1 

c\r 

。

-_
2Ef 

e )O y 
倉

x '
_ 

~C 「

'
4
·

·

__ '
_

J 

; 
, y . x ., 。

c for 

and 

3
l
4
1

釘

V 

V[ 

,,n; V 

V 
4· 

1

一2
/

3 

where 
0vau au av 

C = —-_ D =-+- 
ax 0y'ax 0y 

The above initial dis tri but-ion c0 (x,y, r,;) can be described by the 

anharmonic Fourier series accord i ng to [6] such that 
CO - g h 

O (x,y, 9 = 2 虛 (x, y) e 2 R子 ;.. sm / 七 k 5 

).k 
k一 1

-- -.一－ - 

。Because of the orthogonality the coefficients C~ (x,y) are determined 
k 

from1 

co ( 1 主
2 RT ; c: (x,y) = 2 \ x, y, 9 e _ J.k Stn A已

6 1 －旵尸戶．

The horizontal distribution of the initial vorticity is given by: 

各 (x,y) － {const 千 0
。

for X2 十 y2 = r2 < a` 

for x2 十 y2 = r2 > a2. 
[9] 

Thus, the initial conditions show a supergeostrophic perturbation 

vorticity with rotational symmetry and limited radial extend which 

extends over just a partial layer in the "middle" of the atmosphere. 

Since the region in which the vorticity is embedded is assumed to be 

infinite in the horizontal direction, no boundary conditions are imposed 

on x and y, or r. 
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The limitation of the initial vortici.ty to the region r < a does not 

mean, however, that the associated velocity i·s limited to this region, 

too. The constant vorticity defined here corresponds to an angular 

velocity in the region r<awhich is the same everywhere and equal to 

exactly half the vorticity. Although the vorticity is zero for r > a, 

the angular velocity doesn't vanish there but approaches zero (beginning 

at r = a) with 1/r'-. 2 Thus, the initial velocity field extends over a 

larger area than the initial vorticity field. 

The same 

valid for an 

initial vertical distribution as given in [8] shall be 

initially supergeostrophic current extending in the zonal 

direction (x - direction) with a limited width (the derivatives 3/3.. vanish 
X 

in this case). This results in: 

6° = T° = w。 =0, 評 ＝ v。 ＝ 0

'
, 

t n 8 s 
。
c ` 1 ._

, 

; 
-T 

h
-R 
g'

t e ,̀ y ,
!
, 

~uu 
-
-
－

4
_
＿
一
一

．

__ '
, 

; 
, y '

,
' 

。u 

。
。

士

＿
＿

,̀ , 

, y 
, 

~ou 

o for o < t < ~ 1 

2 

for 

for 

and 

for 
3l4 < c-< 1

一2

3 

4 
-< ; < 1 

IYI < b 

IYI >b 
[10] 

Substitution of [6] 

system of equations 

into the equations [4] results in the following 

for the coefficients: 

蚵－叭
刁t- f Uk= - RT 一ax 
8vk _ ae 

at 十 f Uk = - RT k 

ay [11] 

工[~+ 
Y 2' 

k 

Rf 

3c k 
at 

十 = o. 

Where .d 
;,

f 

.r 『

｀

.' · a 

'.` I. 

.. 

"' 
％一 1 RT 

Ik 一 4 了二鬥三）＇－
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which corresponds to each eigenvalue ::\k'is the squared phase velocity 

of long gravity waves which would occur in a non-rotating coordinate 

system (in the rotating coordinate system dispersion occurs). (See also 

Ha 11 man n (11).) 

The system of equations [11] is identical with the system which 

describes the motions in an autobarotropic medium, e.g. i n a homogeneous 

incompressible fluid of depth H, if one interprets Rf E:k/g as the devia-

tion of the free surface from the basic state and yk =河 as the velocity 

of the gravity waves, or in an atmosphere with indifferent stratification 

in which all displacements take place adiabatically. The latter case of 

an "adiabatic atmosphere" will be treated later. 

The solution of the system of equations [4] is thus- composed of the 

solutions of the system of equations [11]. For that reason one can limit 

oneself in the following discussion to barotropic perturbations. 
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4. Solution for the vortex 

In the following it is more convenient to use the relative vorticity 

C and the hori'zontal divergence Das dependent variables 

wind components. One then obtai'ns 

instead of the 

the following equations: 
ack 

十

ac ' 

aok 
at 

kk DC ff 
= 0 

=— RT 7 2 Ek [12] 

2 

a Ck 「k—+ —- Dk= 0 ot RT 
7 2 = 2-' －竺vx2 I 

' 0y2 

The first equation is the vorticity equation; for it to be valid in this 

form, Ck has to be small compared with f. The first and last equations 

combine together to form the (linearized) potential vorticity equation, 

which relates the pressure field and the vorticity field: 

1 ack RT a1-k - = f at r~ at · 

reduces to the follow.ing (hyperbolic) differential 

[13) 

The system 

equation: 

[12] 

[。2. - + f 2̀ 一 y;l clt2 

The solution of this differential 

is well known. 

Cauchy initial 

E~ = D~ = 0 

It was shown 

value problem 

司｛ ~.~,Dk}i.J t, cl t, 
Dk =O 

l 

equation, under the 

I c~ = +（警）°十 0

by Hadamard (8) 

[H] 

that the 

initial conditions 

(see Fjeldstad (7)) 

solut i on of this 

is 

cos vPt2 －竺
Dk (x.y.t) = =\＼竺 (a. ＇)＇竺 dad(:/

2ny;.,s VPt2 ＿卫：
'1 .I£ 

[15] 

1 RT + (ck (x, y, t) - C~ (x, y)) = — cl{. (x, y, t) 

'; 
! 

- - ＼匡 (x, y, 11) d>J 
。

10 
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2 2 2 where p'" = (x - a)'" + (y - S)'", and where the integration is performed over 

the area S for which p<y,~t. If the initial disturbance - k 

c; －+（警－）°
2 2 2 2 is non-zero only within a region x,... + y'- = r'"" < a'"", then the solution for 

a point outside this regi_on will vanish as long as the integration region, 

i.e. the area of the circle around the point in question with radius p, 

does not overlap the disturbance region. This means physically that 

nothing happens at the point in the undisturbed region until the edge 

of the initial disturbance which is traveling with the velocity y k 

reaches the point. ~he edge thus forms a wave front, the velocity of 

which is independent of the rotation of the coordinate system. The 

conclusions from this can be found in a work by Rossby (18). 

Now let the initial conditions be defined such that 

ck (r) = { 
const. = ck 子 。 for r<a 

，弓＝ D~ =O 
0 for r>a 

(16] 

This distribution corresponds completely to the one given in the previous 

paragraph under [9], except that it is defined for the coefficients here. 

Based on this assumption the integration for the centra 1 point r = 0 can 

be performed easily. One obtains for the horizontal divergence: 
for yk t < a 

Dk (r = o· t) - {g sinft __ 

C((sin ft - si 
F a2 k 一 sin l1f2 t2 -—r ) 

for)'kt> a. 
i'k [17) 

In the center of the initial disturbance the masses perform pure 

inertial oscillations with the period 2n/f until the edge of the distur­

bance which is traveling with the velocity yk reaches the central point 

at time ft= fa/y,✓• After that osci 11 ati ons due to inertia 1 and gravity k 

waves occur. 
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For very large time, strictly speaking for ft>> fa/y 
k' 

solution can be written in the following form: 

the above 

a f2 計 cos ft 
Dk (r = o, t ~—) = C' 

在 2 i'~ ~k ft 

From the point in t i me ft = fa/ y k on, the rad i al 

[18) 

oscillations of the vor-

tex are thus strongly damped and for large time approach zero with 1/ft; 
I 

the same holds also for the pressure and vorticity variations. 

damping occurs even without friction by loss of a part of the 

This 

initial 

energy to infinity (meteorological noise), while the other part finds 

its equilibrium. More details will be discussed in the next section, 

where solutions are obtained for the zonal current. 

To compute the time variation of the relative 

perturbations the above expressions [17] have to be 

pressure and vortex 

integrated over time. 

The final stationary state 

given by: 

十 (c了－ c;)- 鬥 Er－孚｛（cos*- "一

- f』 (sm ft 一 SIn vFt2 －贊） d t} for r = o 

The integral on the 

with respect to the 

(superscript 00) for the central point is then 

right hand side is easily evaluated by differenti ating 

lower limit and then integrating twice. 

.,' 
1 - \

l
_

I

丶
l
_

I

f
a＿
在f
a一
八

,_\

1'_

\ 

11 
KK 乜

＿r
k
f
a
-
y
k

.., "-~
k"kk 
cc ____ ,_,_

, 

0 

0 

__-

l 

rr '_ 8k8k EC 罡 [19] 

Here K n is the order n modified Bessel function of the second kind. 

One obtains the same solution from equation 

geostrophic equilibrium fort-+OO It follows 

[13] if one requires 

in general 

One obtains: 

from equation 

[13]: 

RT 1 RT T 可 (r) 一了 e「 (r) 一十伺 (r) -—性 (r)
yk 戎

[20] 
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The geostrophic relation yields: 

一 f 守 (r) = - RT ~-2 E尸 (r) [21) 

This leads to the equation: 
··-

2 ?0 
f2 

CX) P 1 1 -·· RT 弋 Ek －互 Ek 一石 ( -f- c; － ;Ei) [22] 

The same equation for the final stationary state is obtained, of course, 

from the time-independent differential equation [14] after integrating 

over time from Oto 00 with the given initial conditions. 

The 

。state of the entire field with i::,v = 0 is k 

－厚£芒 Id - K,(¾ 'l ＼伺 （祖｀ （旦） n 扛十
。

)'k i 

where I n 

solution of the foregoing differential 

下

+I 由＼吋 (n) K。鳴 )n dn 

is the order n modified Bessel 

equations for the final 

[23] 

function of the first kind. 

Considering the soecial 

r
.
＿
一
－
－L
·
-
`
1
·
_＿＿
＿
＿
＿
_
·
_
＿
_
＿
－

｀

-l 

initial 

RT 
一 f ~ e~ (r) = 

2 
yk 

conditions 

c; 卜－弋曰［怀（¾)}

c; K。( fr 
一） h

fa 、. fa 
.Ik 信）·亢

守 (r) = ci (r) 十門 EOO
',; 

k (r) 

[16] 

for 

for 

it follows from [23 ] that: 

r < a 

. r>a 

{24] 

D「
For r = 0 the solution is 

the central point. 

Properties of the Bessel 

= o. 

identical to the one previously obtained for 

functions used here: 

.'.' O1 == 、
`
·
,
)

00 (( 10 II 
r K1 (r) = 0 

r K1 (r) = 1 

for 
for 

「一 O;

「一 x;

Ko (r) = 0 for 
2 

Ko (r) ~ In 
r • 1,781 .. 

「一 OO

for r~l 



5. Solution for the zonal current 

3 From the system of equations [11], with —=0, one obtains 
3x 

{ a2 a2 8ek 0uk 面十 P- yi 亨｝ ｛了｀了'vk } = O [25) 

With the initial condition 

Ek = vk = O, uk (y) =－十鹵）0~ 0 

there follows the solution 

f 
yk t l 

Vk (y, 1) - -~]>。 (l½ —鬥）吐 (y-n) drl 

Uk (y, t) = n d '
,

' 
' 位

i
k v 

tr\JU 
"' 

[26] 

r; t av 
Ek (y, t) = -—— k RT \ ay(y,,J)dn 

。

where J_ is the order zero Bessel function of the first kind. 
。

In spite of the similarities between the differential equation [14] 

and [25] the solutions are quite different, a situation generally found 

in solutions of the wave equations for one and two dimensions. However, 

the solution of [25] is included in the more general solution of [14]. 

The adjustment of a barotropic zonal current perturbation of constant 

zonal velocity and width 2b was studied by Rossby (17) and Cahn (2). 

The initial conditions used in their work were: 

吐 (y) = 
{ const =U； 十 0 for|y| < b , t; =vi = O. 

o for !YI > b 
(27] 

Some aspects not explicitly explained in these papers will be discussed 

briefly in the following. 

For the middle 1 ine of the zonal current (y = 0) the integration to 

ti me ft << fb/y,., is easily performed again. It turns out t hat the masses 
k 

perform pure inertial oscillations with a period of 21r/f up to that time, 

14 
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just as in the case of the vortex. However, for larger times (ft>> fb／望

the solutions differ; the oscillations of a particle in the center of 

the zonal current approach zero as l ／沉， wheras the oscillations of a 

particle in the center of a vortex are damped as l/ft as was shown before. 

Thus, the final stationary state of a vortex perturbation will be reached 

earlier than that of a zonal current perturbation. 

The equation for the final geostrophic state is: 

a2 ̀ ° （鬥o=¾~t? cr －祜 一5y`－ = ＼)t2 ＝石 ay [28) 

The solution of this differential equation for an arbitrary initial state 

is: - I I/ 

Uk 园 e yk dn -- 

8r
\
;

Y 

fY
-yk e 

f
` 1

一2
= ,̀

· 
y , 8k 
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_Tf R
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·fy 

- e ;'k 

8k u -l 

y.\·8 

8k

y 

-ar

_a 
lRT_f 

扭

吐（引 e)'k d,l } 

[29] 

or ~. / au芒 au~ 、-f(—－二－一 RT 
- 0y ay) 了钅

k 
CC 

vk = O 

For the case of the Rossby-Cahn model 

e芒＝－＇，＼ : ：．二[ l 
十立OO －十今 回 fb
一 yk

k + % ＝一 ut e 1'k sinh 一
i'k 

It can be seen from these equations that a velocity and pressure 

special 

°° = Uk 

for !YI< b 

[30] 

for 
Y>+b 
y <-b 

field have formed outside the 

has 

initial 

formed at the edge of the original 

current, 

current. 

and that a countercurrent 

The energy transformations which took place during the adjustment 

process are easily computed. From the differential equations one obtains 

the following expression for the time variation of the kinetic and 

potential energy per unit mass of the entire field: 
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CO -o . 
百＼十[ u;+ v~ + ( RT V -— Ek r I dy 

• 7k 
• CO 

CO 
. 

= - ~ RT ¾ (vk fk ) dy (31] 

-co 

From there it follows with the initial conditions [27]: 
CO 2 

＼ 竺｝ dv =bu;' - ; \{ %~'－（鬥 ， 丫 ｝ d y 十
- C3 - CO 

CO CO 

十 RT \ dt \ 卫－ 凶引 dy
O － 今 ay

[32] 

2 Here b•u~'"" is the k initial energy of the entire field which consists just 

of the kinetic energy of the zonal current. The final energy of the field 

consists of kinetic and potential energy; the last term on the right hand 

side of [31] or [32] does not vanish as it might appear at first sight, 

but it represents the energy loss to infinity, as will be shown i n the 

next paragraph. If, for instance, only the non-geostrop hi c component 

咕 (y) were prescribed as the initial disturbance in a limited region, 

. ,. e. the final state would be at rest. no adjustment would take place, 

While the initial 

+ 00 

」½ vt2 dy is not equal energy to zero, the kinetic 

- 00 

and potential energy of the final state do vanish. Thus, t he last t erm 

on the right hand side of [32] has to be identical to the energy lost to 

infinity; in this special example it is the entire initia l energy. 

If one computes the energy partitioning for the case of.,the zonal 

current perturbation for the different regions for both initial 

state, 

Initial 

the following result is obtained: 

energy in the entire field 

' Ek = u[ · b 

and final 
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Final 

Final 

Final 

Final 

Final 

kinetic energy in the current 

potential 

kinetic energy outside the current 
2fb 

Yk （訂 sinh2 曰］

potential 

- 2fb 
1 —' " 

= E~ I+ e ~ （菡 sinh.，fb 十 1
'k 

) ] 

energy in the current 
- 21b 

= Ek 丨
1 7k. 2f b k 了 e ;' k （霹 sinh 了 一 1)

= Eko [与 e [33] 

energy outside the current 
2fb 

yk 僖 sinh2 訂］= Eko[½ e 

energy of the entire field 

Energy loss 

E 
CX) 

k = E[ 
yk 
邛－ （ 1 一 e

to i nfinity 

-2 
yk) 

E「- E;= Eko [1 嘉十矗 e
-- 盡

Y
k

- 

The already mentioned work of Rossby (17) also gives a discussion of 

the energy transformations which is limited to the total energy of the 

initial and final 

E CO 

k = E? 
祀fb _ 

k 、－

1 十 rk /fb + + fl-Irk 

For sma 11 

state. 

values of the 

Rossby obtains: 

parameter fb/y,, << 1 k 

the same as the one given above. 

and final energy which is 

the result is practical ly 

The difference E,"'- E 。 00
k k between initial 

interpreted as an energy loss to infinity here 

was attributed by Rossby to inertial oscillations which he thought are 

not damped. 

of Cahn then 

Although it did not discuss the energetics , the later work 

showed that, even without frtction, energy dispersi on takes 

place and thus a final state free of oscillations can be reached. 
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<< l the foll owing statements can be 

made from the above expressions: The initial energy inside the zonal 

current decreases by about 100•2fb/yk% through the adjustment process. 

The gain in potential energy within the zonal current due to the forma­

tion of a pressure field is negligibly small in comparison with the 

energy loss there, so that it hardly contributes to the energy budget. 

Approximately half the energy loss of the initial current can be found 

outside the current, where potential and kinetic energy increased equally; 

the other half escaped to infinity and ·is thus lost to the field. 

Numerical examples will be given in Section 7. 

I 

`· , 



6. Discussion of the solutions 

The solution for the center of a vortex as well as a zonal current 

until time ft= fa/yk or ft= fb/yk, respectively, yielded, with the 

special initial conditions for (15) and (26) of the last two sections, 

pure inertial oscillations with a period of 21r/f, motions which would 

occur with a time-independent pressure field; the particles begin to 

describe an inertial circle. Strictly speaking: every particle inside 

the disturbance region moves on an inertial circle until the edge of the 

disturbance which is traveling with velocity yk reaches the particle. 

Normally, this period of time is so short that the particles pass over 

only a small portion of the inertial circle. The pure inertial oscil­

lations are followed by damped oscillations due to gravity-inerta waves. 

The fact that pure inertial oscillations occur at all is a result of the 

prescribed form of the initial d·fsturbance. As can be seen, the time 

evolution of the solutions at a fixed point is a modified image of the 

initial conditions, 面 ch also follows from the theory of the character­

istics of hyperbolic differential equations; in the case of a discontinuity 

at distance a, the behavior of the solution will be discontinuous at time 

t = a/yk. Since, with the given initial distribution, gravity waves can 

only form at the edge of the disturbance region, undisturbed inertial 

oscillation can occur in the inside until the gravity waves have penetrated 

into the region. Although the initial distributions might appear unnatural, 

they do not restrict the generality to any great extent; the solutions 

obtained demonstrate quite clearly the processes taking place during the 

adjustment. 

The initial conditions will be discussed in more detail: One can 

limit oneself to the more general case of the vortex disturbance. To 

19 
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obtain a final stationary geostrophic state the initial conditi ons have 

to be a perturbation of the geostrophic equilibrium, either in the form 

of an unbalanced wind field or an unbalanced pressure field; in both 

cases only the perturbation of the equilibrium 問 0 is important. A 

perturbation horizontal divergence as initial condition alone does not 

constitute a perturbation of the geostrophic equilibrium, however, and 

therefore does not lead to adjustment. A perturbation divergence could 

thus be superimposed on a perturbation vortex wi·thout influencing the 

final stationary state. The initial energy associated with the pertur­

bation divergence is thus completely lost to infinity. For t hat reason 

the formation of a cyclonic vortex associated with a high pressure 

region in the center of the perturbation divergence is avoided, a 

。° ° situation apparently not impossible from [20] with E,~ = C,~ = 0 , (D k k k 十 0) .

Only the differential equation [22] which follows from t he addition of 

the geostrophic relation [21] shows that the final state has to be at 

rest, since there are no edges. What is valid for the perturbation 

divergence is also valid for the vertical component of the velocity; 

it is proportional to the variation of the pressure field according t o 

[3a], which in turn is proportional to the horizontal divergence. Thus, 

prescribing a horizontal divergence or a pressure tendency al one as an 

initial co_ndition does not lead to adjustment, neither does prescri b~ng 

a vorticity tendency or a vertical velocity. 

If, on the other hand, a supergeostrophic cyclonic vortex is pre­

scribed, the vorticity will decreas·e with time and, at the same time, 

the pressure will drop; the vorte.:.< then remains cyclonic and the equi­

librium with the low pressure area will be reached thr ough damped 

oscillations. If an unadjusted low pressure area is prescribed initi~lly, 
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The pressure will rise with the simultaneous formation of a cyclonic 

vortex during the adjustment; the ini·tial low pressure area remains with 

decreased intensity and is in geostrophi'c equilibrium with the newly 

formed cyclonic vortex in the final state. The pressure and vorticity 

changes are determined in both cases by the potential vorticity equation 

[13]; the differences between initial and final state are then equal in 

both cases, if the initial perturbations of the equilibrium 問 0 were 

equal. 

The statement that an initial perturbation divergence cannot produce 

a geostrophically adjusted field can also be applied to the case where 

a forced divergence is acting for a finite period of time, and the fields 

are then left undisturbed. Starting form a situation without pressure or 

velocity perturbations the (positive) horizontal divergence will from 

[12] force a pressure drop as well as an anti-cyclonic vortex. Even in 

the moment when the field is freed from the forced divergence--one can 

transform this moment into time t = O for reasons of convenience--the 

1 o RT o re 1 at ion 7: C 1~ =— E:1~ holds. From equation [22] it can be seen, how­f k y 2 k 
k 

ever, for the same reason given before for the initial divergence, that 

the final state has to be at rest. To what extent these results can be 

applied to the dynamic processes ·in the 11non- linear atmosphere" is left 

for discussion. 



7. Examples for barotropic disturbances 

The statements of the previous section shall be explained further 

with a few examples. Fig. 1 shows the time evolution of the horizontal 

divergence, vorticity and the pressure in the center of a barotropic 

perturbation vortex with initial conditions [16]; numerical values are 

-4 -1 f= 10 ·sec · and fa/y1, = 0.5, whi.ch would correspond to an initial pertur­k 

bation radius of 500 km in an ocean 1 km deep or a perturbation radius 

of 1000 km in an ocean 4 km deep. The equilibrium is then reached when 

1 a Dk Rf 歪％___- - _g旦－
f Ck 缸 f Ck 1 = 1 = O _ t ck at f ck · - ck 

which, in this model, is practically after 5 hours, since at that time 

the adjustment is completed to 90%, as can be seen from the graph. After 

that damped oscillations about the geostrophic equilibrium state start 

in with relative deviations up to 10% to both sides. The vorticity 

decreased by 18% during the adjustment. The pure inertial oscillations 

which occur until time ft= fa/yk = 0.5 do not really materialize, since 

this time is just 1/13 of the inertial period; all that can be seen is 

an almost linear increase up to that time, and after that a very rapid 

decrease under damped oscillations with a period slightly shorter than 

the inertial period. 

To obtain a solution with a given perturbation divergence one just 

has to substitute D1, by C1, and C 。 by D 。k k k k in the 冇 rst equation of [15]. 

With accordingly permuted initial conditions [16] the time evolution of 

vorticity and thus also pressure perturbation in this case would be the 

same as the time evolution of diver~ence in Fig,. 1 (sol id 1 ine); the 

final state is thus at rest, as was discussed earlier. 

22 



23 

i I 

°` 

::1 / 
010 

[ 
] 

\, 
\ 

\ 

[·\ (ytr

\ 
\ 

.iJ. 0i,J 

\ ' 

· °'o 

·020 

, I ,。

` 。 OO[ I 

｀丶、丶丶丶丶，｀丶1 ·罡麫
一－- - - - - -一－ －一一－ - 

- －－一－ - - --- 
、---
丶 ---
` - - -- 

-- ～祆at,onore, 咔r1 -
、`- - -- -

一－
---

- －一一一－－ －一－ - --- - 
c-
-J _. c: 

·DJO 

Fig. 1. 

] 

Time evolution of some field variables in the center (r = o) of an 

initially supergeostrophic barotropic vortex with constant vorticity 

C1..,* 十k 0 in the region fr/y1, < fa/y,, = 0.5 for t = 0. Here C,, and D,, ar.e k k k k 

vorticity and horizontal d ivergence, C 2 
kg = RT /f V k €1, is the geos trophic 

vorticity. Time tis given in hours, and 11Stationarer Wert" denotes 

the stationary value. 
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The parameter fa/yk, which basi:cal ly corresponds to the square of 

Raethjen's adjustment parameter, has a decisive influence on the solutions. 。

The larger the circumference of the initial disturbance and the smaller 

the phase velocity (e.g. water depth), the larger this parameter becomes. 

A larger parameter means that the adjustment will take a longer time, 

because it can on 1 y take p 1 ace for ft~ fa/y k. From the so 1 ut ions for the 

final stationary state [24] one sees further that the larger the parameter 

in question is, the more a perturbation vortex is weakened during the 

adjustment. On the other hand, the larger the initial disturbance radius 

and the smaller the phase velocity is, the larger are the relat i ve pres-

03 

sure perturbations in the final state (s,,-~). k 

Fig. 2 shows the final geostrophic state of an initially unadjusted 

vortex. The initial conditions and numerical values are the same as for 

Fig. 1. One can see that the vortex has weakened only a litt l e and 

essentially maintained its shape. A region with weak anticyclonic 

vorticity has formed at the edge of the initial cyclonic perturbation 

vorticity; this anticyclonic vorticity just outside the edge is equal 

to the decrease of cyclonic vorticity just inside the edge . The newly 

formed low pressure area has a larger circumference than the initial 

perturbation vortex; this is plausible since the initial velocity field, 

which has a larger circumference than the original perturbation vortex, 

is determining the formation of the pressure field. To illustrate this 

。 OOfact, initial as well as stationary angular velocity <t>t and <P1, have k k 

been entered into Fig. 2. It is also possible, of course, to prescribe 

a vortex with an associated wind field limited to r<a, which, for instance, 

。has a constant angular velocity <t>"v = C;-: /2 there, but has an angular k K 

velocity equal to zero for r > a. Such a vortex, again with fa/yk = 0.5, -
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Fig. 2. 

Initial state (solid line) and final state (dashed line) of a 

barotropic perturbation vortex with rotational symmetry and constant 

vorticity Ck* 十 0 in the region fr/yk < fa/yk = 0.5 for t = 0. The 

graphs show the following variables normalized by C,~*= initial k 

vorticity C~ (r) and angular velocity 玲 (r), vort icity and angular 
00. . _ 00 

velocity after completed adjustment Ck~(r) and <Pk (r), as well as k 

the corresponding pressure field (fRT/yt)s 2 \ 00 

k k. 
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would be weakened by just 6%, and the adjustment would proceed consider­

ably faster, it would be practically finished at time ft= fa/y._. 
k 

The case of an ageostrophic zonal current is similar, except that 

the parameter fb/yk governs the soluttons and that the oscillations are 

less damped compared with those of the vortex. Another example will 

explain this situation more closely and bring out the differences from 

the previous model. 

Figure 3 shows the time evolution of the velocity components in the 

center of an initially supergeostrophic zonal current as given by the 

initial conditions [27] (the pressure perturbation always remains zero 

in the center of the zonal current). The parameter fb/yk was chosen 

to be O. 1 here, which would correspond to a width of about 500 km in 

an ocean 6 km deep, or a width of 1000 km in an ocean 25 km deep. As 

can be seen, the oscillations go on for a longer time in spite of the 

samller parameter, and thus they are less strongly damped than in 

the case of the vortex. As the curves for 
-- aek 

- RT — 
1 三三

ukg - - -— - 1 f Uk. - Uk 

(relative deviation from the geostrophic equilibrium) show, the masses 

perform oscillations around the equilibrium state for ft> 0.1, but with 

such a small amplitude that one can say the adjustment is practically 

completed at time ft= fb/ k = 0.1. An analogous r~sult was also found 

for a vortex with a wind field 1 imi ted to the region r <a. The curve 
u k for —-1 indicates the relative weakening of the (zonal) velocity 
u * k 

during the adjustment as well as the meridional displacement (southward 

displacement for supergeostrophic west wind on the Northern hemisphe.re) 

of the center of the zonal current (y:::; 0) in units of fy/uk. This 

. 壎店祜·薫暹 '`
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Fig. 3. 

Time evolution of some field variables in the center (y = 0) of 

an initially supergeostrophic zonal current with constant zonal 

velocity uk* 十 0 in 

are the horizontal 

the region f I y I /y k < fb/y k = 0. l. 

velocity components, 

Here u._, 
k 

u kg = -(RT/f) (aE:1jay) k 
e 

kh vt 

geostrophic velocity. Time is given in hours, and "Stationarer 

Wert" denotes the stationary value. 
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3 follows form the first equation of system [11] (with —=0) after inte-3x 

gration over time. This equation expresses in simplified form that the 

absolute angular momentum stays constant. 

The path described by a particle from the center of the zonal current 

is given in Fig. 4 (fb/yk = 0.1). For comparison, a part of the inertial 

circle is shown, along which a ball starting on the same latitude with 

the same velocity would move, or an airmass, if no pressure field were 

formed. One can see that the particles start to move on the inertial 

circle but leave it after only a short time (ft= 0.1) and then move zonally 

under damped meridional oscillations at a lower latitude. Another example 

of the particle movement (ft= 1.0) can be found in the already mentioned 

work of Cahn. 

The energy transformations that have taken place during the adjust­

ment will be briefly discussed with the aid of this model. The different 

contributions to the energy budget will be normalized by the initial energy 

of the entire field. With fb/yk = 0.1 [33] yields the following situation: 

in the final state an energy of 82.42% remai·ns in the zonal current; 82.15% 

of that is kinetic energy, the rest potential energy. The increase of 

potential energy in the zonal current is thus very small compared to the 

total loss. This total loss of the zonal current of 17.58% has to be 

compared with an energy gain outside the zonal current of 8.22%, which is 

distributed evenly between potential and kinetic energy. The percentage 

of energy which has been actually lost to infinity is 9.36%. At the 

beginning it was stated that the equations [2] also describe in an ap­

proximate fashion motions relative to a barotropic geostrophic basic 

state. This statement is valid if this (zonal) basic velocity is small 

compared to the phase velocity Y,~· In the case of barotropic disturbances k 
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Trajectory of a particle initially at the center (y = 0) 

of the zonal current (solid line) and inertial circle 

(dashed line). Conditions are the same as for Fig. 3. 
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it is possible to solve the differential equations, if an infinitely wide, 

zonal and constant velocity field is given as the basic current, on which 

an ageostrophic zonal current with _ limited width is superimposed. The dif­

ferential equations are the same as [ll], except that an additional term 

頭／RT)• v k 面＝ geostrophic basic current) appears in the third equation, 

which describes the advection of the pressure of the basic field. Up to 

a ratio 1/10 of basic geostrophic velocity to phase velocity the differ­

ences between the two solutions are not noticeable. However, the extent 

to which this result can be generalized to a baroclinic zonal current 

disturbance cannot be determined. 

So far the principal statements and examples refer to a barotropic 

disturbance. The solution for the baroclinic disturbances in a compres­

sible atmosphere are composed of the solutions for barotropic disturbances, 

as was shown. The solution with the smallest eigenvalue Al= 0, or equiv-

alently with the largest phase velocity y1 = 2 ／行可［窟 corresponds to 

－音
an initial vertical distribution proportional to r; e'" ~ a distribution 

which leaves the sign of all perturbation quantities in all layers (0 三 z < h) 

unchanged. Such .a vortex extending over all layers with this initial dis­

tribution would have the same vertical structure in the final geostrophic 

state. Its solution with respect to the horizontal would be totally 

analogous to that ofan homogeneous ocean of depth 4(1-1/K)(RT/g). The 

examples given in the previous chapter which referred to a barotropic dis­

turbance are thus also applicable to, among others, this special non­

barotropic all-layer-disturbance which occurs in the atmosphere. 

If this disturbance is only prescribed in a partial layer of the 

atmosphere, further terms of the Fourier series [6] have to be added to 

represent the initial vertical distribution. The smaller the vertical 
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extent of the initial disturbance is, the larger is the contribution of 

the higher order terms and the later the series converges. Since the 

higher order terms are associated with larger eigenvalues and thus with 

smaller phase velocities the following conclusion, which is important 

for the adjustment in the atmosphere, can be drawn: the smaller the 

vertical extent of the initial disturbance, the longer it takes for 

the adjustment, the more the initial disturbance is weakened, and the 

smaller are the relative pressure changes. Thus, the vertical extent 

of a baroclinic disturbance has an analogous influence on the adjustment 

as the depth (phase velocity) has in the case of a barotropic disturbance 

which was disc us sed in the previous chapter. 
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8. Description of the 

For the numerical 

results 

as was mentioned earlier. 

in a 

2K computation of the adjustment we set —- = RT 
2 - K gh 

temperature of f = 250°K this With a mean 

1, = 

results 

height h of 32 km at which the pressure perturbations are required 

to vanish. The initial velocity perturbation thus occupies the layer 

between 8 km 

above 12 km 

(z:; = 6/8) 

(z:;=5/8). 

and 16 km (r,:=4/8) and has its maximum a little 

Let us call this layer between 8 km and 16 km the 

primary layer and the other layers 

shall be defined as the core of the primary layer. 

initial vertical distribution 17 roots of the transcendental equation 

[7] had to be taken 

500 km. 

a 

into account. 

secondary layers; 

For the case of the vortex model the maximum vorticity at the 

-6 1 level was assumed to be C0 = 10-usec-

The total width of the zonal 

and the radial 

the height 12 km 

To represent the 

extent was 

12 km 

set at 

current sha 11 be 2b = 500 km, where 

1 inear decrease of the current velocity from the center y = 0 to both 

sides has been assumed for reasons of better graphical 

the initial velocity for y = O in the core of the primary layer sha 11 

u0 = 1 m/sec. Other details can easily be seen 

Let us first consider the results 

Fig. 5 is a diagram of isopleths of horizontal divergence at r = 0. 

prevailing imbalance 

out, whereas 

secondary layers at first. 

over all layers, 

on, in this model 

convergence) 

no 

initially forces the masses of the primary layer 

horizontal compensating motions are apparent in the 

This results 

after about half an hour, 

representation; 

in the figures. 

for the adjustment of a vortex. 

in a mass deficit averaged 

which will generally lead to a pressure drop. 

a contrary motion 

be 

The 

Later 

(horizontal 

starts to develop in the secondary layers which compensates 

the mass loss of the in it i a 1 1 ayer. After about 6 hours the divergent 
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7 - 1 Diagram of isopleths of horizontal divergence 10'0 (sec-') in the 

center (r = 0) of an initially supergeostrophic vortex, the vorticity 

of which at t = O is non-zero only in the region r <a= 500 km and 

4/8 < r; < 6/8. The abscissa shows time in hours, the ordinate heig.ht. 
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component of motion reverses in the primary layer. While the primary 

layer exhibits clearly structured radial oscillations with a period of 

about 14 hours, which is a little shorter than the inertial period of 

17 hours, the d~vergence in the secondary layers is less clearly struc­

tured; its absolute value is considerably smaller than that of the 

primary layer. A frequent alteration of horizontal divergence and con­

vergence is observed in the vertical direction, and the periods of the 

radial oscillations decrease as one moves up or down from the primary 

layer; for instance, a period of 4 hours is established at the ground 

compared with 14 hours in the primary layer. 

Closely related to the horizontal divergence are pressurk changes. 

Fig. 6 shows the pressure variables as a function of time at different 

levels for r = 0. The graph has been divided in two for graphi·cal reasons: 

11Unten11 (below) refers to the pressure variations in and below the primary 

layer, 110ben11 (above) denotes the pressure variations in and above the 

primary layer. Initially the pressure drops everywhere, which could 

already be concluded from the vertical distribution of the horizontal 

divergence. Aside from the fact that the relative pressur~ changes in 

the primary layer are by far the greatest, the pressure minimum in the 

other layers will be reached earlier with increasing distance from the 

primary layer. At the ground (c; = 8/8) for instance, the first pressure 

minimum appears after only one hour, whereas it can be seen after 5 hours 

in the core of the primary layer (c;=5/8). The pressure oscillations, 

just like the radial oscillations, thus have a much shorter period at 

the ground than in the primary layer; the pressure oscillations are 

strongly damped, especially in the secondary layers. The distance between 

the curves is proportional to the temperature perturbation Tin the 

I 
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intermediate layer [3c]. From there one sees the temperature perturbations 

are the largest at the upper and lower edge of the primary layer, and that 

the course of temperature in the lower layers is inverse to that of the 

upper layers. 11 Un ten II is marked by general cooling under damped osc i 1-

lations, "Oben" by warming. 

Fig. 7 shows the final state of the field at the center r = 0. On 

the left hand side of this graph the initial state of the vortex distur­

bance has also been entered. During the course of the adjustment the 

vortex has weakened but has increased its vertical extent, so that it also 

occupies the secondary layers in the final state. The maximum vorticity 

6 1 in the core of the pri·mary layer is now 0.58 x lO-usec-1 (initially 1.00 x 

-6 -1 10-vsec-') -6 -1 sec') compared with a value of O. 005 x l O vsec'at the ground. 

The tempera t ure change 11T 三 TT which took place during the adjustment 

can be seen in the center of Fig. 7. One sees that the temperature dropped 

in the lower layers and increased by about the same amount in the upper 

layers. These temperature changes can be attributed to the most part to 

adiabatic lifting (lower layers) or sinking (upper layers), respectively. 

The effect of the local pressure changes on the temperature is small, 

however. At the ground, where the vertical velocity is supposed to vanish, 

the temperature change is caused by the pressure decrease there alone. 

A maximum temperature decrease of about 0.05°C at the edges of the primary 

layer has to be compared with a change of about 0.001°C at the ground. 

The right half of Fig. 7 shows the pressure fall which took place 

during the adjustment. The relative pressure changes are by far the 

greatest in the primary layer, their absolute value is about 12 times 

larger than at the ground (l. 70 x 10-4 versus 0.14 x 10-4). 
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Fig. 8 shows the fi:nal state of the enti·re fi'eld. Plotted are the 

temperature and relative pressure perturbati•ons. One has to remember 

that the original vortex disturbance occupi·ed the region 1/4 < s < 3/4 ;·n 

the vertical and extended to a = 500 km i'n the horizon ta 1. Comp a red to 

this, the pressure and temperature disturbances occupy a larger space 

in the final state, and they are the strongest i'n the center r = 0, where 

a low pressure core has formed throughout all layers. The newly formed 

low pressure area is warm above and cold below. 

The next figures display the situation resulting from the adjustment 

of a zonal current. Here the time dependent representation of the dif­

ferent perturbation values was omitted and only the final geostrophic 

state was computed. 

In Fig. 9 the initial state of the velocity field is plotted to the 

right (the wind is blowing into the plane defined by the paper), as well 

as the final state to the left, where only half of the field is shown 

because of the syrm1etry about y = 0. A considerable weakening of the 

initial current is apparent in the final state, the maximum velocity 

decreased from l m/ sec to O. 64 m/ sec. On the other hand, an expansion of 

the current to the secondary layers took place. At both lateral edges 

of the initial current small countercurrents have formed, which occupy 

only the middle layers. 

Fig. 10 shows the corresponding pressure field. During the adjustment, 

the pressure did not change at the center of the zonal current. Looking 

in the direction of the current, a high pressure area ha.s formed to the 

right and a low pressure area to the left with centers at about y = 3/4 b. 

The pressure changes are again essentially limited to the primary layer. 
-4 The relative pressure changes have a.maximum of 1.48 x 10 • and decrease 

4 to 0.05xl0-~ at the ground. 

I 
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Fig. 11 shows the temperature fi.eld in equilibrium with the geo­

strophically adjusted pressure and velocity field. In the equilibrium, 

an increase of the zonal component of velocity with height has to be 

accompani•ed by a temperature decrease in the posi'tive y-direction. 

Because of this, a temperature decrease to· the left i·s to be expected 

below the core of the primary layer, and a temperature decrease to the 

right above that level. Since the pressure at the center did not change, 

no temperature change took place according to equation [3c]. Thus, the 

~ollowing situation results: a temperature increase (decrease) below 

(above) the core of the primary layer in the high pressure area, and a 

temperature decrease (increase) below (above) the core of the primary 

layer in the low pressure area, with maximum absolute values of 0.05°C. 

The changes of pressure and temperature which took place during the 

adjustment of the zonal current exhibit great si·milarity with the inter­

diurnal pressure and temperature changes as they are observed in the 

atmosphere mainly in the region of influence of a high-tropospheric 

jet-stream. This fact will be discussed in more detail in the last 

section. 

占令＇ •: ｀＾ 広
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9. Explanation of the results 

The mechanism of adjustment can be deduced form the obtained results 

without any difficulty. Let us consider the vortex model first. 

The initial imbalance forces the mass in the primary layer to move 

outward; this causes the vorticity to decrease in this layer, and due to 

the mass deficit a low pressure area begins to form statically in all 

layers with a core at r = 0. The forming low pressure area now produces 

a geostrophic imbalance in the secondary layers, too, since the mass 

there has no horizontal component of motion, which induces a movement 

toward the center of the low pressure area (horizontal convergence) and 

thus produces cyclonic vorticity. In the primary layer the processes 

taking place in i tially are: horizontal divergence ➔ pressure fall and 

vorticity decrea se. On the other hand, for the secondary layer the results 

indicate: pressure fall ➔ horizontal convergence ➔ formation of a 

cyclonic vortex. The counteracting divergences in the secondary layers 

have the result that the mass loss of the primary layer is compensated 

(dynamic compensation); as a consequence, the surface pressure stops 

fa 11 i ng. Furthermore, the vertical mot;· ons associated with the counter­

acting divergences induce a temperature decrease in the lower layer-­

underneath the core of the primary layer--and a temperature increase in 

the upper layers. This temperature decrease in the lower layers, which 

also takes place when the dynamic compensation stops the pressure fall 

at the ground, results in the continued pressure fall outside the surface 

. layer. According to the barometric height formula [3c], the absolute 

value of the relative pressure change increases with height and reaches 

a maximum in the core of the primary layer. Above the core of the 

primary layer, the relative pressure changes decrease with height due to 

the warming and vanish at height has required by the boundary condition. 

44 
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As time goes on the mass inflow in the secondary layers and through 

the top dominates the weakening mass outflow in the primary layer; the 

surface pressure rises and the pressure increase slowly expands into 

higher layers. Under damped oscillations a final state is reached which 

is qualitatively equivalent to the state of the system after the first 

time steps: A weakened cyclonic vortex in geostrophic equilibrium with 

a newly formed lo~ pressure area in the primary layer, and in the secondary 

layers a newly formed low pressure area in geostrophic equilibrium with 

a newly formed cyclonic vortex; cooling underneath, warming above the core 

of the primary layer. These results are qualitatively the same as those 

obtained in section 3 from the barotropic equations [11]: in the primary 

layer the adjustment takes place because of an initially supergeostrophic 

vortex, in the secondary layers an imbalanced pressure field appears as 

an initial condition, as it were. 

The above schematic picture of the processes taking place during 

adjustment was basically derived by Raethjen (14) under simplified as­

sumptions. However, this pattern appears only during the first time 

steps (until 2 hours) of the model described here, since later on the 

counteracting divergences are. not 1 imited to the primary 1 ayer on the 

one hand and the secondary layers on the other hand, but horizontal 

divergence and convergence occur alternately at different levels. 

How large is the mass deficit resulting from the adjustment process 

2 of a vertical column with crossectional area of 1 m'- extending from the 

ground to the height h at r = O; how much mass--this is the essence of 

the question--has flown through the lat~ral boundaries on the one hand 

and the top boundary on the other hand? This question can easily be 

answered with the aid of the tendency equation: 
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a h . -
一－瓦 乙 P。= g \ （」 Od: 十 g (;w)h [34] 

b 

where 
(~w)h =—辶＿ ~h R cl;; a A Th 

i'.-1,n- - ac 

(verti ca 1 mass flux through the upper boundary z = h). From the surface 

pressure change ~p 三 P,..s,.. = 0.0145 mb one obtains a mass deficit of about 
0 0 0 

2 2 150 g/m'"". 5 g/m'- entered through the top boundary; this 1 eaves a mass 

2 flux out of the lateral boundaries of about 155 g/m'"". Thus almost the 

entire mass deficit is caused by outflow through the lateral boundaries, 

i.e. a horizontal divergence averaged over all layers. 

The adjustment of a current takes place under similar conditions as 

the adjustment of a vortex. For the following it will be assumed that the 

current initially posesses a westerly velocity. Due to the Coriolis force 

all moving particles are displaced to the right at first, since no balanced 

pressure field is present yet. Hence, the entire current is shifted to 

the South, where the magni·tude of the shift is dependent on the 1 oca 1 

velocity. The center of the current then experiences the strongest dis-

p 1 acement; this requires hori zonta 1 convergence (av/ ay < 0) in the southern 

half of the primary layer and horizontal divergence (av/ay > 0) in the 

northern half; in the primary layer the associated mass inflow or outflow, 

respectively, which is initially not compensate~ by counteracting motions 

in the secondary layers produces a pressure increase in the South and a, 

pressure decrease in the North in all layers. The compensating motions 

which follow lead to warming in the lower part of the forming high pres­

sure area and the upper part of the low pressure area and to cooling in 

the upper part of the high pressure area and the lower part of the low 

pressure area. With the shift to the south the air parcels lose westerly 

momentum or acquire easterly momentum; i.e., the west wind in the center 
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of the current decreases while at the lateral edges an easterly wind is 

forming (in the primary layer). This meridional displacement does not 

occur uniformly during the adjustment out in the form of damped oscil­

lations; every point of the current describes a motion similar to that 

in Fig. 4. The meridional component produced by the initial imbalance 

leads to the weakening of the zonal component. The meridional component 

partially builds up the pressure field and the rest is lost to infinity 

as meteorological noise. 

The foregoing explanation was based on the acting forces and the 

resulting accelerations; the same result is obtained by considering 

deriv~d quantities, vorticity and horizontal divergence, as was done 

for the vortex model. The explanations mentioned there can be directly 

applied to the s ~tuation of the current if one keeps in mind that the 

northern part initially has cyclonic vorticity and the southern part 

anticyclonic vorticity. 

The stability of the basic flow without a doubt plays an important 

role during adjustment since to a large extent it determines the tempera­

ture changes associated with the vertical motions; the disturbances 

whould expand less from the primary layer into the secondary layers with 

increasing stability. On the other hand, no temperature changes should 

be caused by vertical motions in the case of an indifferent strati·fication, 

and the disturbances should be distributed evenly from the primary layer 

during the adjustment. This statement will be examined briefly in the 

following. 

In the case of neutral stratification of the basic field in [l] and 

一() -the fol lowing equations T must be replaced by T(z) = T,.. - r z, where T,.. is 
° ° 
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the temperature at the ground and r = g/cp the adiabatic temperature 

gradient; 

equation, 

in equations [2] the last term drops out of the adiabatic 

and the continuity equation takes the form: 

a6 
+D+ 1 aow 

丶

ac = = O. 
Q az 

From the adiabatic equation and the hydrostatic relation one obtains 

the following final stationary state of the mass field for an initial 

velocity disturbance: 
a 一 (T (z) • e00) = O az 

From this it follows further that the stationary velocity field is also 

not dependent on z, since the final state is required to be in geostrophic 

equilibrium. I t should be noted here that the assumption of hydrostatic 

equilibrium only has to be required for the final state. 

The final state of the entire field can also be derived. It is 

obviously not possible to use the same boundary conditions as in the 

isothermal model, since the condition c:=o at z=h would be in contra-

diction with the result [35] that T(z) c is independent of height. This 

can be resolved by assuming that the vertical mass flux not only vanishes 

at the ground but also at the top of the "adiabatic atmosphere" with 

height h* = To／户26km. After some manipulations one obtains the following 

final state for the (auto barotropic) "adiabatic atmosphere" for an 

initial velocity disturbance C~ (x,y,z): 
1 

h -
- gf · 

2 IT l 勺 － RT/ 2 (T,．芍 ＝ -R- ＼尘 C° dz 
0 . !J ,_. [36] 

C ' 
R 

= - f 
--:;- 2 \T 戶勺

The solution of this differential equation was already discussed in section 

4 [23]. The only assumption involved in the derivation of the above equation 
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is that the final state is in hydrostatic equilibrium; this is important 

since, before reaching the stationary state, vertical accelerations can 

be expected to be so large (especially during the first time steps of 

this 11adiabatic11 model) that hydrostatic equilibrium should not be assumed. 

The disturbances are thus evenly distributed over all layers during ad­

justment so that in the final state the velocity is independent of height. 

The temperature changes during adjustment, but only as a consequence of 

local pressure changes; the temperature changes thus have the same sign 

at every height. 

Let us now determine the influence of some parameters. The influence 

of the depth of the layer was already discussed (section 8). The influ­

ence of the radial extent of the initial disturbance on the adjustment 

process basically follows the considerations of the barotropic model: 

The larger the horizontal extent is, the larger are the changes of the 

field, in the primary layer as well as in the secondary layers, and the 

later the final geostrophic state will be reached. With a stable stra­

tification of the basic field a perturbation vortex with small diameter 

will practically be confined to the primary layer, it will be weakened 

only slightly during adjustment and the pressure and temperature changes 

will remain small. The larger the vortex, the larger are the divergences, 

the pressure and temperature changes, and thus the larger the influence 

on the other layers. This applies analogously to the lateral extent of 

a current. 
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10. Conclusions 

Comparing the results obtained in the previous sections with the 

processes in the atmosphere, certain similarities can be detected. For 

example, it is observed frequently that a mass of cold air traveling 

south at high levels increases its intensity: the vorticity increases 

and the tropospheric air mass continues to cool. The primary effect of 

the southward shift is the increase in relative vorticity, the tendency 

of the pressure field to adjust to the changed vorticity field being just 

a secondary effect; this leads to all the consequences described here, 

including the cooling of the lower layers. 

In the adjustment model of section 8, a supergeostrophic vortex 

with a maximum vorticity of C = 10-6 1 sec-• was assumed; this vorticity 

would occur without the associated pressure field if an air mass at mid­

dle latitudes at the tropopause level were shifted to the South by ap­

proximately 60 km. If the vortex which formed this way corresponded 

approximately to the model described here, then the tropospheric cooling 

due to the adjustment would be about 0.02-0.03°C in the case of half­

adiabatic stratification, and the warming in the stratosphere with iso 

thermal stratification would be about 0.05°C. Considerable meridional 

displacements are thus necessary to obtain an observable effect. The 

cooling of the troposphere is without a doubt not only due to the adjust­

ment, but is associated with the vertical motions caused by surface fric­

tion. As a consequence of the supergeostrophic vortex at the tropopause 

level a low pressure area also forms at the ground which will have a 

velocity component directed toward the center of the low pressure system 

due to friction, which in turn will induce an ascending air motion for 

reasons of continuity and thus cooling in the low. How strongly the low 

50 
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at the ground will develop depends on the stability of the troposphere; 

it should appear stronger with decreasing stability of the troposphere. 

In this context it might be possible to explain why over warm ocean 

areas - e.g. the Mediterranean - low pressure areas suddenly form at the 

ground in the winter when a cold air mass is slowly moving south aloft. 

As long as the cold air mass was over mainland cyclogenesis at the ground 

was inhibited by the very stable stratification there. It is not until 

the relatively warm sea is reached that cyclogenesis occurs at the ground 

due to the decrease in stability. 

Even more interesting are the connections between the adjustment of 

a zonal current and the processes in the frontal zone. These connections 

will be briefly described in the following, although much of this might 

already be known since it can be directly derived from the equations 

without complicated computations. 

Since the parcels move faster or slower, respectively, than the pres­

sure field, supergeostrophic winds, i.e. Coriolis forces larger than the 

pressure forces, will dominate in the outflow of a frontal zone; conversely, 

subgeostrophic winds will dominate in the inflow regior:i of a frontal zone. 

The processes in these situations of course can not be directly compared 

with the models since in the atmosphere these fields persist for longer 

periods of time, which means adjustment and perturbation of the equilib­

rium go on constantly. The reason for these continuing disturbances can 

not be explained from the models, since all external forces such as 

friction, advection and dependence of the Coriolis parameter on latitude 

were neglected, and, what is the most important, a barotropic basic 

field was assumed which does not correspond to the actual conditions. 

It is still not useless to develop simple models since they do reproduce 
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much of what can be observed in nature. It should not be too disturbing, 

then, that in the atmosphere adjustment takes place constantly and thus 

the compensating motions develop continuously while in the model they 

only lasted for a short time. Qualitatively one should be able to obtain 

a correct conceptual idea of the processes in the atmosphere through a 

comparison with the corresponding results of the model computations (Fig. 

9, 10, 11). 

If one considers the inflow region and outflow of a high tropospheric 

frontal zone as one system, then the following processes should take 

place due to the gradient adjustment. In the inflow region pressure 

differences are decreased and wind velocities increased in the 11primary 

layer11 (upper troposphere): conversely, intensification of pressure dif­

ferences and a decrease of velocity takes place in the outflow. Asso­

ciated with this is an ageostrophic motion from high to low pressure in 

the inflow region, and from low to high pressure in the outflow. This 

distribution of the ageostrophic components was also documented empirically 

by Murray and Daniels (12). Due to the vertical motions induced by ad­

justment the temperature falls in the inflow region in the lower layers 

of the high pressure area (on the right hand side looking in the direction 

of the current) and rises in the low pressure region; the temperature 

changes in the outflow are exactly opposite. The temperature changes in 

the upper layers (lower stratosphere) are inverse to those in the lower 

layers. We will further discuss this point later in connection with 

the divergence theory. Energetically, the pressure does the work neces­

sary to increase the kinetic energy downstream in the inflow region, 

causing the internal energy to increase in the high pressure region and 

to decrease in the low pressure region (in the troposphere). The 
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circulation that develops between high and low pressure is thus thermally 

direct: it works as a heat engine. Conversely, in the outflow the kinetic 

energy is decreased by the amount that is necessary to build up the pres­

sure field and thus increase the internal energy in the high pressure 

region and decrease it in the low pressure area. Assuming symmetric 

conditions would result in the compensation of the increase of kinetic 

energy and decrease of potential energy in the inflow region by decrease 

of kinetic energy and increase of potential energy of the same magnitude 

in the outflow. If no energy is supplied externally the system inflow 

region-outflow is energetically balanced; what is gained on one side is 

lost on the other and vice versa, and the whole quasi-steady system could 

move slowly down stream. Symmetry can not exist, however, because during 

the process of obtaining geostrophic equilibrium a continuous energy dis­

sipation - not only through friction - takes place in the inflow region 

as well as in the outflow. To obtain a quasi-steady state as is often 

observed in nature, the gain of kinetic energy in the inflow region has 

to be larger than the loss in the outflow, i.e. the pressure field has to 

do more work in the inflow region than it gains energy in the outflow. 

This is only possible if in the inflow region the temperature field con­

stantly builds up the pressure field, e.g. by confluence of air masses 

of different temperatures as was assumed by Namias and Clapp (13) in 

their confluence theory. The driving mechanism then lies in the thermo­

dynamic energy, which is only reasonable; the thermally direct circula­

tions and thus also subgeostrophic winds then have to dominate in the 

mean. 

In contrast to this are the statistical findings of Faust (3, 4, 5, 

6) who found that the system inflow region and outflow of the high 
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tropospheric frontal zone is supergeostrophic in the mean and thus works 

as a cooling machine. This result followed from considerations of the 

mean interdiurnal pressure and temperature changes in the frontal zone 

as well as from the determination of the mean ageostrophic component. 

Exactly as in the model of the supergeostrophic zonal current, it followed 

empirically that in the mean the pressure falls on the left hand side of 

the frontal zone and rises on the right hand side and that an ageostrophic 

component toward the high pressure dominates. Faust further compared 

the relative pressure changes in the upper troposphere with those at the 

ground as they depend on stability; he found further, in analogy to our 

results, that the relative pressure changes at the ground get larger rela­

tive to those al oft with decreasing stability. Faust concluded from this 

that the origin of the pressure changes is in the upper layers. 

It is not easy to explain why the frontal zone should be supergeo­

strophic in the mean, since this finding is in contradiction with the 

general idea that the kinetic energy is supplied by the pressure field; 

the theoretical investigations by Hollman (10) and others which try to 

explain a supergeostrophic frontal zone are not quite convincing, as a 

generally satisfactory theory of the formation and maintenance of the 

frontal zone does not yet exist. 

Since we discussed the motions in the inflow region and the outflow 

of a frontal zone in such detail, we can not fail to mention the diver­

gence theory. Scherhag (20) found that in the outflow cyclogenesis at 

the ground occurs fairly often. This phenomenon was and still is explained 

by the fact that the divergence of the isobars in the outflow is associ­

ated with actual divergence; a pressure fall at the ground t hen has to 

occur when the mass divergence in the outflow level dominates (34). This 
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divergence theory is thus a purely kinematic-static theory which does not 

refer to dynamic processes. If one wanted to interpret it dynamically, 

one could not regard the predominant horizontal divergence of the out­

flow level as the primary cause of the surface pressure changes, because 

as was shown in section 7 it should not be possible for a primary hori­

zontal divergence to produce a pressure system which is almost in geo­

strophic equilibrium. From a dynamical point of view, the cause could 

only lie in the adjustment processes of the mass flowing into the outflow, 

and horizontal divergences would occur as a secondary effect which in­

fluence the pressure fields of all layers as well as change the vorticity 

or the velocity field toward a geostrophic equilibrium~ Let us consider 

the example of the initially supergeostrophic zonal current again. On 

its left-hand side horizontal divergence formed due to the adjustment in 

the primary layer; this caused a decrease of cyclonic shear vorticity in 

the primary layer as well as a pressure fall extending over all layers, 

followed by the formation of negative mean horizontal divergences in the 

secondary layers which led to the formation of cyclonic shear vorticity 

there, so that in the end a low pressure region was built up which ex­

tended over all layers and which was in geostrophic equilibrium. The 

temperature fell below and rose above the core of the primary layer. 

Applied to the outflow region, qualitatively similar processes should be 

expected on its cyclonic side, if one calls the upper troposphere the 

primary layer. 

The question of whether true horizontal divergence actually does 

occur in the outflow was addressed by Reuter (19). The horizontal diver­

gence was determined there from the vorticity field under the assumption 

of steady state. The result, which is based on just one case from the 

weather map, shows that in the outflow the decrease of vorticity in the 
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direction of the current and thus positive horizontal divergence is mainly 

concentrated in the left half, and that the strongest pressure fall 

ground can be observed there, too. 

which, 

leads 

From this 

when averaged over all layers, 

to a pressure fall. 

(15, 16) 

result Reuter concludes that 

in this example actual horizontal divergence does exist in the outflow 

produces a mass deficit 

This work was motivated by a jet-stream theory published by Raethjen 

which was empirically confirmed by Hoflich (16). 

a wind disturbance caused by convective overturning in the trough region 

of the jet stream was also assumed. The air masses which are slowed down 

by friction and convection are accelerated toward low pressure and de-

scribe an an ticyclonical ly curved perturbation path. In this theory the 

trajectories of t he disturbed air masses play a major role. 

the 

at the 

and thus 

In this theory 

Unfortunately 

"linearized" equations used here are simplified to such a degree that 

the connection with the anti-cyclonic jet-stream-trajectories 

reflected in them. 

is not 
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