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ABSTRACT 

 

 

 

PHENOTYPIC AND EXPERIMENTAL VARIATION IN BEAUVERIA BASSIANA ISOLATES 

FROM THE ROCKY MOUNTAIN REGION 

 

 

 

The ubiquitous insect-killing fungus Beauveria bassiana is widely used as a biological control 

agent to treat a variety of arthropods ranging from mites to beetles. Dendroctonus rufipennis has 

been responsible for the death of 17 million Picea engelmannii trees over the past two decades 

and is currently considered to be one of the major forest pests in western North America. Despite 

the promise that B. bassiana brings as a form of augmentative biological control against D. 

rufipennis, a recent laboratory evaluation did not lead to successful field application likely due to 

a lack of cohesion between environmental conditions that D. rufipennis and B. bassiana prefer. 

Chapter 1 describes the previous literature on B. bassiana as a biological control agent of 

Hylesinini bark beetles. In 32 studies to date, not one has studied the pathogenicity of potential 

strains against a range of abiotic and biotic conditions representative of bark beetle habitats. 

Therefore, I summarize findings of how B. bassiana might respond to abiotic and biotic factors 

representative of Hylesinini beetle systems extrapolating from findings in other systems. There is 

a particular dearth of literature in how B. bassiana responds to competition with other 

microorganisms and plant secondary metabolites. 

In chapter 2, I tested 14 B. bassiana isolates from the Rocky Mountain region for their 

growth, pathogenicity, and virulence in a series of environmental assays representative of the D. 

rufipennis study system such as a range of temperatures, competition with the spruce beetle 

symbiotic fungus Leptographium abietinum, constitutive and induced concentrations of five 
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Picea engelmannii monoterpenes, varying levels of osmotic potentials, a nutrient limited 

environment, and sunlight. Three major findings emerged from this chapter: (1) genetically 

related B. bassiana isolates from similar habitats and sources exhibit considerable variation in 

their growth response to environmental conditions; (2) low temperatures and monoterpenes are 

highly inhibitory to B. bassiana growth, pathogenicity, and virulence; and (3) the interpretation 

of isolate virulence and pathogenicity can differ substantially depending on bioassay design. 

These collective findings have implications for the field application of B. bassiana as a bark 

beetle control agent and could help explain discrepancies between laboratory field assessments. 
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CHAPTER 1: BEAUVERIA BASSIANA (ASCOMYCOTA: HYPOCREALES) AS A 

BIOLOGICAL CONTROL AGENT OF BARK BEETLES: ABIOTIC AND BIOTIC 

FACTORS THAT LIMIT APPLICATION SUCCESS 

 

 

 

INTRODUCTION 

Insect-infecting fungi are ubiquitous natural enemies of many arthropod populations ranging 

from the tropics to the arctic. Coevolution between fungi and the most diverse class of animals 

(insects) has produced an estimated 700 species of fungi in approximately 90 genera that attack 

and kill insects in 20 of the 30 orders, in addition to several arthropods such as ticks and mites 

(Araújo and Hughes 2016). The entomopathogenic fungi most commonly employed as biological 

control agents are Ascomycetes from the genera Beauveria, Isaria, Lecanicillium, and 

Metarhizium due to their ease of commercial-scale production, wide geographic host range, and 

their ability to infect many target organisms (de Faria and Wraight 2007; Araújo and Hughes 

2016). In particular, a considerable literature has developed around the application of the genus 

Beauveria as an arthropod killer and plant endophyte. Since 2015, approximately one paper has 

been published each day on the genus. This, coupled with predictions that the mycoinsecticide 

market is expected to greatly increase in the near future (Arthurs and Dara 2018), indicates that 

direction may be warranted to ensure that redundant studies on entomopathogenic fungi are not 

taking place. 

 Bark beetles (Coleoptera: Curculionidae: Scolytinae) of the tribe Hylesinini are 

“landscape engineers;” pests that cause substantial destruction of forests by attacking vulnerable 

trees from the family Pinaceae in temperate regions around the world (Raffa et al. 2015). In 

general, Hylesinini beetles emerge as adults from phloem galleries during the late spring or early 
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summer to search for a mate and a new host tree with the help of aggregation and anti-

aggregation semiochemicals (Saint-Germain et al. 2007). Their bodies are often home to phoretic 

mites (Hofstetter et al. 2013) and mycangial structures which aid in transportation of symbiotic 

fungi (Harrington 2005; Six 2012). Hylesinini beetles are generally monogamous (Bleiker et al. 

2013) though some polygamous activity does occur through re-emergence and re-mating (Six 

and Bracewell 2015). Females tunnel into trees during the summer and are met by a combination 

of resin and induced levels of chemical defenses in the form of monoterpenes and phenolics 

(Raffa 2014). After overcoming plant defenses, females form species-specific galleries within 

the phloem to lay their eggs (Wood 1982).  

Beauveria bassiana (Balsamo-Crivelli) Vuillemin (‘white muscardine’) is a promising 

biological control agent for population management of bark beetles, with little or no adverse 

effects on plants or vertebrates (including human applicators) (Zimmermann 2007), though host 

specificity against arthropods is unclear (Devi et al. 2008; Table 1.1). A cosmopolitan species, B. 

bassiana has been isolated from interior and exterior plant surfaces (St. Leger et al. 1992; 

Bidochka et al. 2002; Meyling and Eilenberg 2006a; Monzón et al. 2008; Yao et al. 2012), soil 

and water (Bing and Lewis 1992; St. Leger et al. 1992; Bidochka et al. 2002; Rehner and 

Buckley 2005; Quesada-Moraga et al. 2007; Yao et al. 2012; Popowska-Nowak et al. 2016), air 

samples (Basilico et al. 2007), insect cadavers (St. Leger et al. 1992; Bidochka et al. 2002; 

Rehner and Buckley 2005; Michalková et al. 2012; Schebeck et al. 2016), forest environments 

(St. Leger et al. 1992; Bidochka et al. 2002; Ormond et al. 2010; Davydenko et al. 2014; 

Popowska-Nowak et al. 2016), agricultural fields, (Bidochka et al. 2002; Meyling and Eilenberg 

2006b; Pérez-González et al. 2014), and urban areas (St. Leger et al. 1992). 
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Insects are the primary host of B. bassiana, but the fungus can also saprophytically or 

endophytically colonize secondary hosts, which may lead to multiple pathways for dispersal. 

Beauveria bassiana is the anamorph, or asexual stage, of Cordyceps spp. (Rehner and Buckley 

2005), and produces conidial spores which disperse, attach to, swell, and form a germ tube on 

suitable soft- and hard-bodied arthropod hosts (Samson et al. 1988; Shah and Pell 2003; Lacey et 

al. 2015). Following attachment, spore elongation increases exponentially until approximately 24 

hours after germination, to a size of ~230 μm, followed by linear growth (Liu et al. 2015). The 

functional enzymes chitinase and protease then allow the fungus to penetrate the cuticle and 

infect the arthropod body and circulatory system, usually resulting in death of the host within 

five to fifteen days (Samson et al. 1988; St. Leger 1995; Ortiz-Urquiza and Keyhani 2016).   

Following death of the arthropod host, the fungus releases infective spores within and 

around the cadaver or produces chlamydospores, which can tolerate long periods of dormancy 

that may or may not be obligate (Shahid et al. 2012). Once developed, conidia and 

chlamydospores are then transported passively via wind or actively via phoresy on arthropod 

species (Hemmati et al. 2001; Roy et al. 2001). The ability of fungi to infect arthropod hosts by 

direct penetration of the exoskeleton gives entomopathogenic fungi an advantage over other 

entomopathogenic organisms such as bacteria and viruses which often need to be ingested before 

killing the host.   

 There are substantial differences in pathogenicity and biology among isolates of B. 

bassiana (Shah and Pell 2003), which, along with genetic testing, has led to the recognition of B. 

bassiana as a species complex (Rehner and Buckley 2005). The ecological consequences of this 

genetic diversity remain unknown, but phenotypic variability in B. bassiana is well-described 

(Hajek and St. Leger 1994; Baverstock et al. 2010; Jackson et al. 2010). Numerous studies have 
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tested the ability of specific strains to sporulate, germinate, grow, and infect insects in response 

to various environmental factors (Doberski 1981; Morley-Davies et al. 1995; Fargues et al. 1996; 

Fargues et al. 1997; Ekesi et al. 1999; Bidochka et al. 2002; Devi et al. 2005; Fernandes et al. 

2007; Bugeme et al. 2008; Huang and Feng 2009; Ortiz-Urquiza et al. 2016, for example). 

However, it has remained a challenge to broadly adopt B. bassiana as a reliable biological 

control agent across diverse environments, potentially due to an inconsistent phenotypic response 

and slow rate of kill (Lacey et al. 2015). As a result, commercial products have had trouble 

developing and often have not thrived in the market despite their appeal as potential alternatives 

to traditional chemical control methods (de Faria and Wraight 2001; Vega et al. 2009). 

Despite more than a century of research on entomopathogenic fungi as biological control 

agents of insects, a gap in our knowledge remains about why promising laboratory evaluations 

do not always lead to successful field application in several systems (de Faria and Wraight 2001; 

Vega et al. 2012; Lacey et al. 2015) including with Hylesinini beetles (Davis et al. 2018). 

Consequently, an improved understanding of the biotic and abiotic factors that contribute to the 

persistence and efficacy of entomopathogenic fungi could promote more efficient and cost-

effective applications for target pests, especially in the complex microhabitat that bark beetles 

inhabit (de Faria and Wraight 2001; de Faria and Wraight 2007; Vega et al. 2009; Hesketh et al. 

2010; Jaronski 2010; Vega 2018).  

In this literature review I discuss the previous research regarding the use of Beauveria as 

a biological control agent to limit bark beetle populations. I will focus on the Scolytinae tribe 

Hylesinini because of its unique behavior and managerial needs in temperate coniferous forest 

ecosystems. A vast amount of literature exists about the potential use of entomopathogenic fungi 

as biological control agents of other Scolytinae beetles such as Ips (Colepotera: Curculionidae: 
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Scolytinae: Tribe Ipini; Lipták et al. 2013) which are primarily secondary-colonizers of 

previously attacked trees, ambrosia beetles (Coleoptera: Curculionidae: Scolytinae: Tribe 

Xyleborini and Coleoptera: Curculionidae: Platypodinae: Tribe Platypodini; Popa et al. 2012) 

which are fungus farmers rather than phloem feeders, and Hypothenemus hampei Ferrari 

(Coleoptera: Curculionidae: Scolytinae: Tribe Cryphalini; Infante 2018), which is a pest of a 

tropical angiosperm (Coffea, Gentianales: Rubiaceae) rather than temperate and subtropical 

conifers. 

This review will expand upon a review by Popa et al. (2012), which assessed the current 

state of biological control as a management tool for Scolytinae and complement similar reviews 

on biological control of Ips (Lipták et al. 2013) and H. hampei (Coleoptera: Curculionidae: 

Scolytinae; Infante 2018). Since system-specific environmental factors are largely lacking from 

the current literature (Tables 1.1, 1.2, 1.3), I will (1) examine how Beauveria has responded to 

Hylesinini-relevant biotic and abiotic factors in other systems, and (2) discuss a framework for 

progressing the study of Beauveria spp. as a biological control agent of bark beetles from the 

tribe Hylesinini. 

 

ENVIRONMENTAL LIMITATIONS ON PERSISTENCE AND 

ENTOMOPATHOGENICITY OF BEAUVERIA BASSIANA IN THE BARK BEETLE 

STUDY SYSTEM 

Beauveria bassiana is a predominantly subterranean species that requires some degree of 

physical protection from adverse environmental conditions, and primarily relies on arthropods 

for medium- to long-distance spore dispersal (Villani et al. 1999; Bidochka et al. 2001; Vega et 

al. 2009; Lacey et al. 2015), as opposed to mycelial growth or wind dispersal. Since Hylesinini 
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beetles occupy complex above-ground habitats, there is the potential that Beauveria will have 

difficulty tolerating environmental factors that are unique to these habitats. Accordingly, a 

variety of abiotic and biotic factors most relevant to the Hylesinini system such as (1) 

temperature, (2) exposure to ultraviolet light, (3) moisture conditions, (4) competition with other 

microbes, and (5) plant secondary metabolites can inhibit or promote B. bassiana performance. 

Each of these factors are explored in detail below.  

 Temperature. Ambient temperature strongly affects the efficacy of entomopathogenic 

fungi, and, due to the considerable differences observed between isolates at certain temperatures, 

is often argued to be the most important environmental factor when selecting isolates to develop 

as mycoinsecticides (Fargues et al. 1996; Fargues et al. 1997; Inglis et al. 1997; Blanford and 

Thomas 1999; Ekesi et al. 1999; Dimbi et al. 2004; Kiewnick 2006; Bugeme et al. 2008; 

Jaronski 2010). Partially due to ease of study and acknowledged importance, several hundred 

studies have recorded Beauveria response to temperature stresses through sporulation, 

germination, growth, and virulence over the previous four decades making it the most frequently 

tested environmental factor in Beauveria ecology. Despite differences between isolates at certain 

temperatures, overall radial or biomass growth rates are typically maximized at or near 25 °C 

(Walstad et al. 1970; Hallsworth and Magan 1996; Fargues et al. 1997; Ekesi et al. 1999; Yeo et 

al. 2003; Bugeme et al. 2008), with sporulation rates highest between 25 – 30 °C (Walstad et al. 

1970; Ekesi et al. 1999; Yeo et al. 2003; Bugeme et al. 2008). Optimal temperatures for 

virulence generally range from 15 – 35 °C, with the majority of studies reporting maximum 

virulence results between 20 – 25 °C (Doberski 1981; Ekesi et al. 1999; Bidochka et al. 2002; 

Yeo et al. 2003; Kikankie et al. 2010). Intolerance of temperature extremes is attributed to stress 
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caused by osmotic imbalance (Ortiz-Urquiza and Keyhani 2015) and tissue damage resulting 

from the production of reactive oxidative species (Lovett and St. Leger 2018).  

 Despite a wide range of arthropod taxa tested for susceptibility to B. bassiana, including 

Coleoptera (Doberski 1981), Acarina (Bugeme et al. 2008), Thysanoptera (Ekesi et al. 1999), 

Orthoptera (Inglis et al. 1996), Diptera (Kikankie et al. 2010), Heteroptera (Leland et al. 2005), 

and Hemiptera (Yeo et al. 2003), minimal differences between optimal temperatures for 

virulence have been observed, indicating that thermal thresholds for virulence are similar across 

isolates. Additionally, geographic range many not be a reliable predictor of isolate growth, 

germination, or virulence (Fargues et al. 1997; Ekesi et al. 1999; Bidochka et al. 2002; Yeo et al. 

2003; Devi et al. 2005; Bugeme et al. 2008). For instance, Ekesi et al. (1999) examined one 

isolate from Kenya and another from Maine, USA. The isolate from Maine experienced faster 

radial growth and was more virulent at the highest temperature tested, 30 °C, than the isolate 

from Kenya, where mean annual temperatures are typically much higher. 

Isolate response to diurnal temperature fluctuations (as opposed to multiple stable 

temperatures typical of chamber studies) is a characteristic of natural habitats that has been 

understudied. Such studies are particularly important as Hylesinini systems are characterized by 

extreme low and variable temperatures (Six and Bracewell 2015). Inglis et al. (1999) measured 

B. bassiana growth rates and virulence against Melanoplus sanguinipes Fabricius (Orthoptera: 

Acrididae) nymphs in temperatures ranging from a constant 25 °C to fluctuating temperatures of 

20 to 30 °C, 15 to 35 °C, and 10 to 40 °C. Growth and virulence rates tended to decrease as 

temperature variation increased, indicating again that B. bassiana is most virulent near a constant 

temperature of 25 °C. Devi et al. (2005) performed a similar in vitro test comparing fluctuating 

temperatures of 25 to 32 °C, 25 to 35 °C, and 25 to 38 °C against constant 25 °C. Similarly, 
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isolates grew and germinated best at a constant 25 °C and performed incrementally worse as 

temperature variability increased. This study identified an upper growth threshold of 38 °C for 

most isolates. Better modeling of how B. bassiana responds to fluctuating temperatures would 

enhance B. bassiana application in Hylesinini systems worldwide.  

 Ultraviolet light. Ultraviolet light, particularly UV-A and UV-B, is another limiting 

factor responsible for the short persistence of fungal entomopathogens in natural and managed 

environments (Jaronski 2010). Agostino Bassi, for which the species is named, recommended 

using exposure to sunlight as one way to disinfect silkworms exposed to B. bassiana during the 

Beauveriosis crisis of the 19th century (Steinhaus 1956). Beauveria bassiana, which lacks 

melanin, is not well-adapted to resist UV exposure. Like with temperature stress, UV radiation 

leads to oxidative stress in B. bassiana (Lovett and St. Leger 2018). Irradiance from the UV-A 

component of solar light (320 – 400 nm) can lead to conidial death and delayed sporulation 

(Braga et al. 2001). Additionally, the UV-B component (280 – 320 nm), while only accounting 

for around 5% of total solar irradiance, typically causes more tissue damage to fungal 

entomopathogens than UV-A (Moore et al. 1993; Inglis et al. 2001). Gardner et al. (1977) 

demonstrated that entomopathogenic fungi can become inactive within just hours of exposure to 

sunlight. 

 UV exposure inhibits fungal growth, sporulation, germination, and pathogenicity for 

practically every isolate examined and is often considered the most limiting environmental factor 

in field applications of B. bassiana (Fernandes et al. 2015). In H. hampei systems, for example, 

application of B. bassiana as a biological control agent is extremely successful when the beetles 

are protected from sunlight by shade. However, once the beetles exit the shade of Coffea plants 

and enter into direct sunlight, they are able to avoid or limit infection by B. bassiana through UV 
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inactivation (Edgington et al. 2000). While Hylesinini beetles mainly occupy the phloem layer of 

trees and are thus safe from the damaging effects of UV, this presents a difficulty in the 

mechanism of exposing beetles during their summer flight. 

 Since isolates perform poorly in practically any amount of UV exposure, it is advisable to 

apply B. bassiana during times of indirect solar irradiation. Some authors have even concluded 

that despite cases where shade or dark environments has prolonged conidial survival, B. bassiana 

will eventually die as a result of indirect irradiation (Inglis et al. 2001). In a field-based study on 

B. bassiana response to UV radiation, Inglis et al. (1997) determined that high infection rates and 

a more rapid development of disease symptoms were observed in M. sanguinipes grasshoppers 

placed in shaded cages than in cages exposed to full sunlight or protected from UV-B radiation. 

Similarly, Zhang et al. (2011), examined entomopathogenicty of 12 Coleopteran-derived B. 

bassiana isolates on a Hylesinini species, Dendroctonus valens LeConte (Coleoptera: 

Curculionidae: Scolytinae), and their results corroborated Inglis et al. (1997): no tested isolates 

performed well under conditions of UV exposure and minimal insect infection was observed. 

Among the isolates characterized by Zhang et al. (2011) for biological control of D. valens, those 

which grew faster and germinated more quickly were generally more virulent, possibly because 

they were more tolerant of UV light. Additionally, Fernandes et al. (2007) concluded that 

tropical isolates can tolerate more light exposure than non-tropical isolates, indicating that 

converse to thermal tolerances, geographic range does potentially correlate to tolerance of solar 

radiation. 

Despite spending most of their time below the surface of a tree, application of Beauveria 

as a biological control agent of bark beetles still needs to take the effects of sunlight into account 

because most application methods rely on beetles becoming exposed while flying around outside 
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a tree. Thus, several additional methods have been explored for optimizing applications of B. 

bassiana in settings exposed to sunlight. The first is selecting genotypes, however rare, which 

are most resistant to UV damage. Genetic modification is another viable option for prolonging 

UV resistance or increasing virulence, which decreases the amount of time the fungus needs to 

tolerate environmental conditions (Lovett and St. Leger 2018). For example, utilizing 

photolyases (DNA repair enzymes that function in the repair of UV damage) from 

Halobacterium salinarum (Kingdom Euryarchaeota) improved entomopathogen spore 

germination rates by 32 times under UV conditions (Fang and St. Leger 2012). 

Another approach considers location within the application microhabitat. Studies have 

attempted to apply mycoinsecticides within plant canopies (Inglis et al. 1993), which serves as a 

natural barrier to direct sunlight exposure and is the primary habitat for many insect pests. This 

approach also includes application of B. bassiana to the abaxial surface of leaves; though has had 

mixed success attributed to the difficulty of execution involved with this application method 

(Wraight and Carruthers 1999).   

 Oil-soluble sunscreens provide a promising technique for remediating detrimental effects 

of UV exposure, but have not been largely successful outside of controlled environments (Moore 

et al. 1993; Inglis et al. 1995; Bernhard et al. 1998; Inglis et al. 2001; Fernandes et al. 2015). 

Edgington et al. (2000) tested 22 cost-effective substances for protection of B. bassiana from 

sunlight in a laboratory setting. The authors concluded that neither egg albumen nor skimmed 

milk powder improved control of H. hampei in the field. Clay-based solar blocks, however, have 

proven to significantly increase fungal survival compared to liquid-based control (Inglis et al. 

1995). Additionally, using B. bassiana as a plant endophyte has gained traction in recent years 
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and provides a possibility of alleviation from the UV damage problem especially if plants are 

grown in the shade (Vega 2018). 

  Relative humidity and moisture content of substrate. Relative humidity (RH) and 

substrate water potential also limit B. bassiana survival because high water availability is 

required for germination (Hallsworth and Magan 1996; Devi et al. 2005), and, again, this form of 

abiotic stress contributes to production of reactive oxygen species (Ortiz-Urquiza and Keyhani 

2016). Additionally, water availability regulates conidiogenesis on cadavers which have suffered 

from mycosis (Inglis et al. 2001). A study by Devi et al. (2005) observed decreasing growth rates 

as water potentials decreased (from 0 to -1.76 MPa). Results varied from complete growth 

inhibition to just a 4% decrease when compared to the control under an osmotic potential of -

1.76 MPa for the 29 isolates. Results also varied when both temperature and water availability 

were implemented in conjunction, indicating that these environmental factors interact to drive 

growth responses in B. bassiana. Temperature proved to be more limiting than water potentials 

for the isolates overall, and nearly half of the isolates showed complete inhibition when 

temperatures were increased while water potential was brought to less stressful conditions. 

Two conclusions regarding B. bassiana response to RH have pervaded the literature. The 

first is that relatively low virulence is likely in environments with a relatively low RH ranging 

from 46 – 53% (Akbar et al. 2004; Lord 2011). In contrast, other authors have concluded that B. 

bassiana germination, growth and virulence is maximized in RH conditions ranging from 95 – 

100% (Walstad et al. 1970; Doberski 1981; Marcandier and Khachatourians 1987; Wraight et al. 

2000; Shipp et al. 2003). An example of B. bassiana preferring low humidity is the study by 

Akbar et al. (2004) who tested one B. bassiana isolate of unknown geographic and host source 

for the effects of differing RH on virulence of Tribolium castaneum Herbst (Coleoptera: 
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Tenebrionidae). This isolate was most virulent at 56% RH (LC50 of 248.9 mg/kg) compared to 

75% RH where the LC50 was 298.3 mg/kg. Doberski (1981) examined one isolate of unknown 

geographical origin and host source for its virulence against a bark beetle, Scolytus scolytus 

Fabricius (Coleoptera: Scolytinae), in relative humidity values ranging from 51 – 100%. While 

the isolate was able to infect and kill insects at all tested RH’s, it was most virulent at RH 

ranging from 95 – 100%. Similarly, Walstad et al. (1970) concluded that isolates generally prefer 

RH above 92.5% for spore germination, mycelial growth, and sporulation. 

Some studies have even shown that ambient humidity may not always be relevant to B. 

bassiana (Marcandier and Khachatourians 1987; Fargues et al. 1997; Inglis et al. 2001). As with 

thermoregulation in insects and shade provided by plants to reduce UV harm, boundary layers 

containing high moisture surround vegetation and arthropod exoskeletons which can allow for B. 

bassiana to persist in arid environments. Similarly, rainfall plays a role in conidial dispersal and 

the ability of entomopathogenic fungi to survive in varying environments, though it can also aid 

in dislodging B. bassiana from its host in many microhabitats (Inglis et al. 1995; Inglis et al. 

2000). The apparent discrepancy among these published results complicate the interpretation of 

effects of RH on B. bassiana life history traits and does not indicate any general conclusions. 

Hylesinini beetles, which spent the majority of their time in the phloem, an extremely humid 

environment, must tolerate gradually drier conditions as trees die. More research in this area, 

particularly emulating conditions representative of Hylesinini systems (e.g. Klepzig et al. 2004), 

could benefit our understanding of factors impacting field applications of Beauveria against 

Hylesinini.  

 Competition with other microorganisms. Studies on B. bassiana competition with other 

microbes are uncommon but extremely important to understanding the role that B. bassiana 
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plays within the Hylesinini microhabitat. In a field study in the M. sanguinipes system, Inglis et 

al. (1999) examined competition between two entomopathogenic fungi, B. bassiana and 

Metarhizium flavoviride Gams & Roszypal (Hypocreales: Clavicipitaceae). The authors found 

that M. flavoviride was a better competitor due to its ability to tolerate heat stress. Field studies 

on fungal competition can be difficult to interpret but can be very informative if done properly 

(Shearer 1994); yet, Petri dish studies are generally necessary for testing direct interactions 

related to primary (acquiring space) and secondary (maintaining space) resource capture 

mechanisms. Jaber and Alananbeh (2018) tested inhabitation between B. bassiana and several 

species of the plant pathogen Fusarium (Hypocreales: Nectriaceae) in in vitro tests and as an 

endophytic plant pathogen antagonist in Capsicum annuum L. (Solanales: Solanaceae). 

Beauveria bassiana was able to significantly inhibit growth of every Fusarium species in the 

Petri dish studies and limit Fusarium establishment in planta. 

 Many bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae Latreille) are 

associated with a consistent community of symbiotic fungi (Harrington 2005). These fungi 

function as plant pathogens or nutritional mutualists; thus, in bark and ambrosia beetle systems 

B. bassiana is mainly competing for nutrients and space within a shared area. Using the bark 

beetle symbiotic fungus Leptographium abietinum (Peck) Wingfield (Ophiostomatales: 

Ophiostomataceae), Davis et al. (2019) showed that L. abietinum was a slightly better competitor 

than B. bassiana in assays testing acquisition of primary growth space, but both fungi were able 

to maintain captured space. Castrillo et al. (2016) observed the same deadlock in assays testing 

secondary resource capture behavior between B. bassiana and the ambrosia fungi Ambrosiella 

roeperi Harrington & McNew (Microascales: Ceratocystidaceae) and Ambrosiella grosmanniae 

McNew, Mayers, & Harrington when B. bassiana and the ambrosia fungi were allowed to start 
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competition at the same time. However, when the ambrosia fungi were given a head start, to 

mimic delayed entrance of B. bassiana into the system, the ambrosia fungi were able to capture 

primary resource space and grow over B. bassiana, suggesting that priority effects may occur 

among fungal species in situ. Zhou et al. (2018) examined B. bassiana competition with different 

ambrosia fungi (Raffaelea lauricola Harrington, Fraedrich, & Aghayeva; Ascomycota: 

Ophiostomatales), but also observed slower growth rates in B. bassiana than ambrosia fungi. 

Another study exposed volatile compounds produced by the yeast Ogataea pini Holst 

(Saccharomycetales: Saccharomycetaceae) to B. bassiana and the Dendroctonus brevicomis 

LeConte symbiotic fungus Entomocorticium sp. (Agaricomycetes: Peniophoraceae; Davis et al. 

2011) to examine how O. pini indirectly affects growth of each fungus individually. Growth was 

inhibited in B. bassiana, while growth of the Hylesinini-symbiotic fungus was significantly 

enhanced. Though B. bassiana appears to be a fairly poor competitor overall, an understanding 

of the complex multitrophic interactions between B. bassiana and beetle-symbiotic fungi is vital 

to addressing pathogenicity of B. bassiana against bark beetles. 

 Plant secondary metabolites. As plants are attacked by herbivores, they generally 

produce secondary metabolites which often function as their main line of defense; this is 

especially apparent in Hylesini systems. Most bark beetles and their fungal symbionts are 

exposed to significant quantities of monoterpene hydrocarbons during the process of tree 

colonization, and they are highly tolerant of these compounds. Since B. bassiana attacks insects 

to complete its life cycle, it is inevitable that B. bassiana will come into contact with plant 

secondary chemicals, especially monoterpenes, and that their response could have dramatic 

effects on the tri-trophic interaction between plants, insects, and fungi. Tomato plants upregulate 

monoterpene production in response to the presence of beneficial fungi such as B. bassiana 
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(Shrivastava et al. 2015). However, one study indicates that when looking at the interaction from 

the perspective of B. bassiana, induced levels of monoterpenes produced by conifers could have 

detrimental effects on B. bassiana growth (Davis et al. 2018). Another study found that B. 

bassiana was very tolerant of Pelargonium graveolens L’Hér (Geraniales: Geraniaceae) plant 

secondary metabolites in the form of essential oils (Nardoni et al. 2018). A lack of literature on 

this subject is problematic, especially from a Hylesinini management perspective. As research on 

the application B. bassiana as a plant endophyte increases, it will be necessary to understand 

tolerance of the fungus to plant secondary compounds which might limit colonization or 

virulence. The few available studies that examine B. bassiana growth responses to plant 

secondary metabolites indicates that few isolates are likely to be tolerant of acute exposure to 

plant defensive chemicals.  

 

INSECT BEHAVIOR AS A LIMITATION TO ENTOMOPATHOGENICITY 

Insects explore and evaluate their environment for both abiotic and biotic dangers when 

obtaining food, mates, oviposition sites, nesting locations, and refuge (Bell 1990). In nature there 

is often a combination of external abiotic and biotic factors that influence insect avoidance, 

attraction, or ‘non-avoidance’ behavior (Baverstock et al. 2010). Pathogenic and non-pathogenic 

B. bassiana isolates produce different volatile blends, which are likely able to be detected by 

insects to influence behavior (Mburu et al. 2013). Understanding how insects are able to respond 

to the presence of their pathogens is critical to the use of B. bassiana as a biological control 

agent. 

 Most Beauveria-Hylesinini studies have included some type of material from the host 

tree in their bioassays to serve as nutrients for the beetles (Table 1.3), a first step in addressing 
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how bark beetle behavior is affected by Beauveria. Kreutz et al. (2004b) tested the ability of B. 

bassiana to kill Ips typographus L. (Coleoptera: Curculionidae: Scolytinae) in bioassays which 

included three different substrates – (1) filter paper, (2) spruce bark, and (3) an artificial diet. 

While the beetles died fastest on filter paper, treatment of B. bassiana on filter paper only killed 

the beetles 0.8 days faster than the filter paper control on average; versus a 5 or 6 day spread 

created by the artificial diet and spruce bark material, respectively. These Hylesinini system-

specific bioassay mediums have been presented in the form of sawdust (Krams et al. 2012), 

pieces of bark (Moore 1970; Moore 1973; Burjanadze 2010; Sevim et al. 2010; Tanyeli et al. 

2010; Kocacevik et al. 2015; Kerchev et al. 2017), branches (Srei et al. 2017; Khanday and 

Buhroo 2018), and phloem material (Pabst and Sikorowski 1980; Whitney et al. 1984; Zhang et 

al. 2011; Xu et al. 2018) held in either dark plastic cages (Moore 1970; Moore 1973; Burjanadze 

2010; Sevim et al. 2010; Tanyeli et al. 2010; Zhang et al. 2011; Kocacevik et al. 2015), 

translucent containers (Krams et al. 2012), or in glass ‘sandwiches’ (Whitney et al. 1984). 

Ideally, future bioassays on Hylesinini species would include a representative medium, such as 

phloem, in an arena that the investigators could view the behavior of bark beetles as Beauveria is 

introduced into the system (e.g. Aflitto et al. 2014). 

The only Beauveria-Hylesinini study to truly take insect behavior into account was 

designed to observe the ‘walling off’ activity that reportedly occurs after beetles are infected by 

an entomopathogenic fungus so that remaining brood or other colonizing beetles do not become 

contaminated (Whitney et al. 1984). The ‘walling off’ behavior is an example of bark beetles 

being able to detect and avoid an entomopathogenic fungus, something that could have severe 

management implications in future application of the fungus. Despite the altered behavior 

observed by Whitney et al. (1984) when bark beetles were in the presence of B. bassiana, there 
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have not been any Hylesinini studies to elaborate upon this finding in the behavioral sense; 

however the potential for vertical (Kocacevik et al. 2015) and horizontal transmission (Kreutz et 

al. 2004a) is gaining increased attention in bark beetle studies. Due to the lack of Hylesinini-

specific studies regarding bark beetle behavioral response to entomopathogenic fungi, I 

summarize findings from other systems. 

 Insect attraction to entomopathogenic fungi. Collembolans (Order: Collembola) have 

been shown not only to tolerate B. bassiana and other entomopathogenic fungi, but through 

behavioral assays have shown an attraction towards entomopathogens at low levels of fungal 

concentration (Dromph and Vestergaard 2002). Similarly, above-ground insects such as females 

of the mosquito Anopheles stephensi Liston (Diptera: Culicidae) have also shown attraction 

towards entomopathogenic fungi (George et al. 2013).  The authors of both of these studies 

concluded that since B. bassiana is ubiquitous, it is probable that many insect species will be 

exposed to the fungus and that attraction towards the fungus is likely due to vector manipulation 

mechanisms that facilitate pathogen dispersal (sensu Eigenbrode et al. 2018). 

 Another hypothesis regarding insect attraction towards entomopathogenic fungi is that 

insects prefer the same environmental conditions as their pathogens. Brütsch et al. (2014) 

demonstrate this with ant queens of the species Formica selysi Bondroit (Hymenoptera: 

Formicidae). They found that queens preferred to settle in nest sites containing fungal pathogens 

and despite B. bassiana being the most virulent of the three entomopathogenic fungi species 

examined, the ant queens most frequently settled in B. bassiana-infected nest sites. As discussed 

in earlier sections, several studies have shown that entomopathogenic fungi exhibit increased 

growth, germination, and virulence when exposed to certain environmental factors such as a 

moderate temperature, low ultraviolet light, high relative humidity, and ample nutrient 
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availability--the same conditions that are generally favorable to soil-dwelling insects (Morley-

Davies et al. 1995; Doberski 1981; Fargues et al. 1996; Fargues et al. 1997; Ekesi et al. 1999; 

Bidochka et al. 2002; Bugeme et al. 2008; Devi et al. 2005; Fernandes et al. 2007; Huang and 

Feng 2009; Ortiz-Urquiza et al. 2016). 

Pontieri et al. (2014) provide another potential hypothesis to explain insect attraction 

towards pathogens; in social insects, entomopathogenic fungi may serve as a tool to “immunize” 

the colony. This hypothesis derives from an example where Monomorium pharaonis L. 

(Hymenoptera: Formicidae) colonies detected and preferred nests infected with the Metarhizium 

brunneum Petch, significantly more than noninfected nests in the same area. The authors 

speculated that this behavior may serve to expose the colony to non-lethal levels of pathogens 

and consequently enhance immunocompetence. Since practitioners usually take an augmentative 

approach to biological control when applying entomopathogenic fungi in an effort to overwhelm 

pest populations with pathogens, the ability of insects to tolerate low levels of entomopathogenic 

fungi might not be informative to pest managers. 

Insect detection and avoidance of entomopathogenic fungi. A sizeable literature 

indicates that the most prominent arthropod behavior exhibited in relation to B. bassiana is 

avoidance of the pathogen, often as detected through chemoreception. The ability of insects to 

detect and avoid pathogens affects fungal virulence and, while largely ignored by practitioners, 

could play a significant role in the application of entomopathogenic fungi as biological control 

agents in many systems (Baverstock et al. 2010). 

Soil-dwelling and subterranean arthropods appear to be especially capable of avoiding 

entomopathogenic fungi based on chemical cues, potentially due to co-evolution with B. 

bassiana as a predominantly soil-inhabiting fungus. Thompson and Brandenburg (2005) 
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examined how two species of mole cricket, Scapteriscus borellii Giglio-Tos (Orthroptera: 

Gryllotalpidae) and S. vicinus Scudder reacted to the presence of B. bassiana in soil. They found 

that the crickets produced significantly less new surface tunnels and fewer tunnels descending 

into the soil when B. bassiana was present, resulting in reduced exposure to harmful conidia. 

Mburu et al. (2009) concluded that subterranean Macrotermes michaelseni Sjöstedt (Isoptera: 

Termitidae) were able to detect and avoid virulent isolates of either M. anisopliae or B. bassiana 

from a distance, before pathogenicity was possible. Similarly, the same authors concluded in a 

later publication that M. michaelseni was able to detect harmful levels of B. bassiana and, thus, 

were repelled by the lethal concentrations via volatile signals (Mburu et al. 2013). 

Similar patterns of avoidance have been documented in terrestrial arthropods. Meyling 

and Pell (2006) found that when Anthocoris nemorum L. (Heteroptera: Anthocoridae) were 

presented with infected exoskeletons, they were able to detect and avoid B. bassiana while 

foraging on host plants. Harmless paper ball dummies created to mimic B. bassiana were, 

however, ignored, indicating the behavioral cues were non-visual. Ormond et al. (2011) also 

studied virulence of B. bassiana endophytic in leaves against Coccinella septempunctata L. 

(Coleoptera: Coccinellidae). Both male and female C. septempunctata detected and avoided 

infected leaf surfaces and soils inoculated with B. bassiana. 

 Natural enemy populations can also detect and avoid entomopathogenic fungi. For 

instance, Seiedy et al. (2013) examined whether the predatory mite Phytoseiulus persimilis 

Evans (Mesostigmata: Phytoseiidae) altered behavior to avoid B. bassiana used to treat 

Tetranychus urticae Koch (Trombidiformes: Tetranychidae). Their results indicated that P. 

persimilis can detect B. bassiana and that the predator avoids the fungus, suggesting that 

behavioral avoidance may benefit natural enemies and could enhance pest control applications. 
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In a subsequent study, Seiedy (2015) found similar results with a predatory mite, Amblyseius 

swirskii Athias-Henriot (Mesostigmata: Phytoseiidae) and the pest herbivore Trialeurodes 

vaporariorum Westwood (Hemiptera: Aleyrodidae). The predator in this scenario was, again, 

able to recognize the presence of B. bassiana and avoid infected T. vaporariorum. In a third 

study, Hippodamia variegata Goeze (Coleoptera: Coccinellidae) avoided Aphis fabae Scopoli 

(Hemiptera: Aphididae) infected with B. bassiana conidia on plants (Seiedy et al. 2015). 

 Insect behavior may also be responsive to changes in entomopathogenic fungi application 

techniques. For example, in a study that applied M. anisopliae to abaxial leaf surfaces, the pest 

insects Plutella xylostella L. (Lepidoptera: Plutellidae) and Phaedon cochleariae Fabricius 

(Coleoptera: Chrysomelidae), altered their feeding behavior and larvae began feeding on adaxial 

leaf surfaces (Amiri et al. 1999).   

 Despite the dearth of literature directly addressing Hylesinini mechanisms that may 

explain the ‘walling off’ behavior observed by Whitney et al. (1984), previous studies examining 

how bark beetles respond to microbial volatile organic compounds allow for some prediction. 

For example, hexanol (a typical ‘green leaf volatile’) is a prominent component of both 

pathogenic and non-pathogenic isolates of B. bassiana (Mburu et al. 2013) and also acts as a 

repellent in Dendroctonus ponderosae Hopkins and D. frontalis Zimmermann (Kandasamy et al. 

2016). The processes and mechanisms behind insect detection and attraction or avoidance 

behaviors in response to entomopathogenic fungi are generally unclear, but a stronger 

understanding of these effects could substantially improve application of entomopathogenic 

fungi as biological control agents of bark beetles and other pests.  

Arthropod resistance mechanisms. Grooming behavior by insects can reduce infection 

rates of B. bassiana (Villani et al. 1999). Boucias et al. (1996) studied how B. bassiana affected 
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behavior of Reticulitermes flavipes Kollar (Blattodea: Rhinotermitidae) in Florida, concluding 

that under low levels of exposure worker-caste R. flavipes could, through grooming, suppress B. 

bassiana from reproducing and consequently reduce transmission rates. However, when the 

chemical pesticide imidacloprid was added, less grooming behavior was observed, indicating 

that addition of biological agents to traditional chemical methods could be synergistic and useful 

for insect control. 

 Similarly, Yanagawa et al. (2008) studied how colonies of Coptotermes formosanus 

Shiraki (Blattodea: Rhinotermitidae) defended themselves against three species of fungal 

pathogens including Isaria fumosorosea Wize (Hypocreales: Clavicipitaceae), Beauveria 

brongniartii (Saccardo) Petch, and Metarhizium anisopliae (Metchnikoff) Sorokin. When reared 

in groups, colonies were highly resistant to the entomopathogenic fungi. However, when 

individuals were challenged with fungal inoculum, they were not as effective at defending 

themselves against the fungi. These results suggest that, when exposed to harmful pathogens, 

self-grooming is less effective at removing conidia than mutual grooming of nest-mates in C. 

formosanus colonies. Yanagawa et al. (2011a) compared C. formosanus grooming behavior 

following exposure to entomopathogenic fungi of varying virulence. Workers groomed infected 

nestmates more frequently than uninoculated workers, but differing amounts of virulence had no 

effect on grooming behaviors. In a follow-up study, Yanagawa et al. (2011b) determined that 

fungal odors triggered the behavioral response to groom infected individuals. 

 In addition to grooming, basking and thermoregulation behaviors may serve to limit 

infection by B. bassiana; these effects are well-described on the migratory grasshopper M. 

sanguinipes in a series of studies by Inglis et al. (1996; 1997; 1999). Nymphs reduced B. 

bassiana infection rates by 98% by basking for at least 6 hours per day. Infected individuals also 
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chose to go to the areas with the highest temperatures, suggesting that thermoregulation is taking 

place within the body and that M. sanguinipes responds to B. bassiana infection with a 

‘behavioral fever.’ Collectively, these studies indicate that matching fungal traits to 

environmental conditions alone may not be sufficient as a means of pest control of Hylesinini 

species, as a suite of insect behaviors can also strongly impact the efficacy of B. bassiana and 

other mycological agents in the field and much is still unknown about how Hylesinini beetles 

respond to B. bassiana. 

 

CURRENT STATE AND FUTURE DIRECTIONS FOR BIOLOGICAL CONTROL OF 

HYLESININI BEETLES WITH BEAUVERIA BASSIANA 

 Hylesinini population control is complicated because the beetles have a cryptic lifecycle, 

live in a complex environment, and mainly attack chemically well-defended hosts across large 

natural landscapes. As a whole, literature documenting that Beauveria exists in natural systems is 

vast; with isolations coming from 11 of the 15 studied Hylesinini species (Tables 1.1 and 1.S1). 

This is an important first step, especially when marketing B. bassiana as an augmentative 

biological control for a pathogen that is already present in that pest’s natural environment. 

Isolating and identifying strains from a certain environment is also beneficial to understanding 

isolate to isolate variation and answering basic biological questions such as “how host specific is 

Beauveria and what determines host specificity?”; and “how do strains from certain geographical 

locations and hosts differ in their response to certain environments?” Future studies should focus 

on gathering information on the amount of B. bassiana present in Hylesinini systems by both 

measuring colony forming units (see Reay et al. 2008 and Yao et al. 2012) and by documenting 
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the amount of samples that contain Beauveria (as in Brownbridge et al. 2012; Takov et al. 2012; 

and Schebeck et al. 2016). 

 Screening potential B. bassiana isolates for tolerance in system-specific environmental 

conditions should be the next step when selecting a strain for potential Hylesinini field 

application. Evaluations of environmental tolerance have only been conducted on 6 of the 15 

studied Hylesinini species (Table 1.1), which could explain laboratory to field discrepancies and 

is the inspiration for this literature review. Future research should address how potential 

biological control isolates respond to fluctuating temperatures, the mechanisms behind B. 

bassiana competition with other microorganisms, and if B. bassiana is able to tolerate a variety 

of plant secondary metabolites. Additionally, studies should address the ability of isolates to 

tolerate multiple stressful environmental conditions simultaneously, as every growth, 

germination, and tolerance test was done under ‘room conditions,’ or at around 20 – 25 °C with 

presumed humidity levels between 30 and 60%. Hylesini beetles live in complex environments 

and a multivariate approach should be taken when evaluating potential strains of B. bassiana for 

biological control to enhance our understanding of which traits can be matched with habitat 

conditions. 

  Laboratory bioassays under representative environmental conditions which take insect 

behavior into account are the next step to evaluating potential B. bassiana strains for control of 

Hylesini beetles. Bioassays have been done on the majority of Hylesinini beetles that have been 

studied in association with B. bassiana (Table 1.1). Gaps in the literature likely exist due to 

difficulty capturing sufficient supply of individuals (as in Reay et al. 2010 and Glare et al. 2008), 

controlling for insect age and life history, or a lack of interest in developing management 

strategies to control that Hylesinini species. Every bioassay conducted on Hylesinini species, so 
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far, has taken place under ‘room conditions’ (Table 1.3) apart from Moore (1973) which 

examined pathogenicity at a variety of temperatures and humidity levels. The rate of mortality 

increased as temperature increased, though a mycosis test was not done post-mortality to confirm 

that B. bassiana was the mortality agent. Nonetheless, this study points out the potential impacts 

of variable environments on interpretation of isolate virulence. 

 The use of tree-based bioassay media has been extremely common throughout the 

Hylesinini-Beauveria literature (Table 1.3). A tree-based medium containing the phloem is an 

extremely important step when evaluating potential Hylesinini biological controls as a spore 

solution filled filter paper can have misleading results (Kreutz et al. 2004a). A proper medium 

also provides shelter and nutrients for beetles while exposing the beetles and B. bassiana to other 

microorganisms and tree secondary metabolites. Phloem-based bioassays also allow investigators 

to observe beetles and to take insect behaviors into account when screening potential isolates. 

Very little is presently known about potential ‘detection and avoidance’ behaviors or even 

horizontal and vertical transmission that may occur inside Hylesinini galleries when B. bassiana 

is introduced. 

 Surface sterilization to remove any incidental B. bassiana contamination on the 

Hylesinini cuticle only occurred in four of the 18 Hylesinini-Beauveria studies that conducted 

bioassays. I do not advise surface sterilization when attempting to create the most representative 

bioassay conditions because it removes all of the symbiotic microorganisms that are 

representative of the bark beetle microhabitat, can be damaging to adult beetles and larvae, and 

may allow pathogens to penetrate the exoskeleton more easily. However, it is necessary in 

certain studies, such as those that isolate a specific aspect of the Hylesinini-B. bassiana 

interaction (as in Xu et al. 2018). Future studies involving B. bassiana strain selection for 
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biological control of Hylesinini beetles should use surface sterilization sparingly in laboratory 

bioassays to reproduce conditions representative of bark beetle microhabitats. 

 The Hylesinini-B. bassiana studies also varied in their method of inoculation. It is 

important to match the method of inoculation in a laboratory setting with the method that 

practitioners plan to use in the field. Nine of the studies used a direct method of inoculation such 

as dipping the insects or applying drops of spore solution directly to the insect. Direct application 

is desirable when standardizing for spore concentration is important, such as an initial 

pathogenicity evaluation. It can also be beneficial if the planned method of field inoculation is by 

releasing infected individuals with the goal of horizontal or vertical transmission through 

populations. An indirect inoculation method, such as spraying a surface before insects were 

added to the arena, was used in ten of the studies. These techniques may be a more accurate 

representation of future field application, especially with Hylesinini beetles who can only 

become exposed to a mycoinsecticide during their summer flight period and, thus, need to come 

into contact with spores that have been added to the environment likely either by spraying or 

through an auto contamination trap. 

Formulations that kill both adults and larvae will be the most effective for bark beetle 

management applications. Once the adult enters the tree and reproduces, it has already succeeded 

and a method that targets solely adults will not effectively reduce the size of Hylesinini 

populations if adults do not suffer mortality prior to reproduction. Killing larvae is also 

dependent on effective vertical transmission of B. bassiana from adults to eggs or larvae during 

maturation feeding because larvae only feed in uncontaminated areas of the phloem 

(Wegensteiner et al. 2015). 
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The method of treatment is likely a limiting factor in Beauveria success in Hylesinini 

field settings and should be refined in ‘semi-field’ environments similar to Kreutz et al. (2004b). 

Davis et al. (2018) conducted the only field trial on the ability of Beauveria to act as a microbial 

control agent of a Hylesinini species. The researchers used a spraying method to coat the 

surfaces of trees with B. bassiana conidia during a Dendroctonus rufipennis Kirby outbreak, 

though the amount of beetles that emerged from treated trees did not differ from the amount of 

beetles that emerged from the control. Many practitioners and scientists now recommend the use 

of ‘assisted auto-dissemination’ systems for introducing entomopathogenic fungi into field 

environments (Baverstock et al. 2010) which attract an insect into an inoculation device to 

become contaminated with the entomopathogen before returning to its host environment to infect 

other pests either horizontally or vertically. These can be particularly valuable for bark beetle 

systems where spraying an entire forest is not feasible and beetle aggregations are easily incited 

with the deployment of sex pheromones (Gillette et al. 2012). Additionally, a dissemination 

chamber can protect Beauveria from UV and rainfall which may be particularly limiting for B. 

bassiana foliar and bark application. This type of technology is currently being developed in the 

emerald ash borer system (Agrilus planipennis Fairmaire Coleoptera: Buprestidae) system by 

coating multifunnel traps (Lyons et al. 2012) and has been adapted for use against Dendroctonus 

species by creating a fungal-coated pouch inoculated with B. bassiana on a pheromone-baited 

Lindgren funnel trap (Srei et al. 2017). These technologies, and matching isolate selection, are 

still in the early stages of development as a recent field trial on Beauveria versus I. typographus 

had unsuccessful results Grodzky and Kosibowicz (2015). 

Another alternative to the potentially ineffective bark and foliar sprays is the use of 

Beauveria as an endophyte. Beauveria has been isolated from pines (Ganley and Newcombe 
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2006) and used as an endophyte to control Hylastes ater Paykull (Coleoptera: Curculionidae: 

Scolytinae) and Hylurgus ligniperda Fabricius (Coleoptera: Curculionidae: Scolytinae), both of 

which are invasive species in New Zealand (Reay et al. 2010; Brownbridge et al. 2012). 

Studying the effects of B. bassiana as an endophyte is difficult due to the fact that young trees 

are not susceptible to bark beetle attacks and mature trees may be difficult to inoculate (Vega 

2018). Regardless, future techniques are surely going to be safer than methods that involve 

spreading conidial powder via the use of explosives, as has been done in the past to treat bark 

beetles with B. bassiana (Li et al. 2010). 

Finally, I recommend studying the potential adverse effects of applying B. bassiana to a 

largely unmanaged natural environment. Studies should evaluate how a strain of B. bassiana 

changes as it passes through the environment over many generations, similar to Valero-Jimenez 

et al. (2016). There are many insects that occupy trees, understory vegetation, and soil in forest 

environments that may be susceptible to B. bassiana (Makino et al. 2006; Lacey et al. 2015). 

None of the Hylesinini-B. bassiana studies have addressed the potential for off-target effects, 

and Beauveria’s effects on various arthropods and its degree of host specificity are unclear (Devi 

et al. 2008; Imoulan et al. 2017). Albeit under ‘room conditions’, one potentially promising 

prospect has arisen, though, in a case where B. bassiana was highly virulent against Ips 

sexdentatus Boerner (Coleoptera: Curculionidae: Scolytinae) but not pathogenic against its 

predator Thanasimus formicarius L. (Coleoptera: Cleridae; Steinwender et al. 2010). 

 

CONCLUSION 

This chapter explores the potential abiotic and biotic limitations on B. bassiana as a 

biological control agent of Hylesinini pests. Bark beetles in the Hylesinini tribe inhabit complex 
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systems with variable temperatures, low levels of ultraviolet light, increasingly drier conditions 

as trees die, a series of symbiotic microorganisms, and significant quantities of tree 

phytochemicals. There is also the potential that beetles can avoid or are attracted to 

entomopathogenic fungi which would play a role in the efficacy of B. bassiana in Hylesinini 

habitats. Overall, the previous literature on pest management of Hylesinini using mycologically-

based pesticides, such as B. bassiana, has neglected evaluations of how B. bassiana responds to 

environmental conditions representative of Hylesinini habitats. Future studies should match 

fungal traits to the environment; paying particular attention to how strains of B. bassiana may 

respond to the presence of bark beetle symbiotic fungi and monoterpenes found in the phloem of 

trees that Hylesinini beetles attack. These environmental factors have not been thoroughly 

covered in other systems but play particularly important roles in Hylesinini habitats. Finally, 

future isolate screening processes and bioassay methods should be standardized to minimize 

discrepancies between laboratory evaluations and field application.   
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TABLES 

Table 1.1. Beauveria bassiana studies in Hylesinini systems. 

Hylesinini species 
Presence of B. bassiana in the 

system 

B. bassiana growth, 

germination, or sporulation 
Lab bioassay Field trial 

Dendroctonus brevicomis - Growth1 - - 

Dendroctonus frontalis Larvae2,4, Pupae4, Adults3,4 Tolerance3 Larvae6, Adults3,5 - 

Dendroctonus micans Adults9 - 
Larvae7,8,9, 

Adults7,8,9 
- 

Dendroctonus ponderosae Oral secretions10 Germination11,12 - - 

Dendroctonus rufipennis Oral secretions10 Growth13,14 Adults13 X13 

Dendroctonus simplex - - Adults15 - 

Dendroctonus valens Soil17, Trees17, Adults17, Frass17 
Growth18, germination18, 

and tolerance18 
Larvae16,18 - 

Dryocoetes confusus Larvae19, Pupae19, Adults19 - Adults19 - 

Hylastes ater 
Soil22, Trees20,22,23, Adults21,22, 

Frass22 
- Adults22 - 

Hylurgops palliatus Adults24 - - - 

Hylurgus ligniperda 
Soil22, Trees20,22,23, Adults21,22,25, 

Frass22 
- Adults21,22,23 - 

Polygraphus major - - Adults26 - 

Polygraphus proximus - - Adults27 - 

Tomicus minor Adults28,29 
Conidial length and 

width29, growth29 
- - 

Tomicus piniperda Adults24,32 - Adults30,31 - 

Citations: Davis et al. 20111, Harrar and Martland 19402, Moore 19703, Moore 19714, Moore 19735, Pabst and Sikorowski 19806, 

Kocacevik et al. 20157, Sevim et al. 20108, Tanyeli et al. 20109, Cardoza et al. 200910, Hunt et al. 198411, Hunt 198612, Davis et al. 

201813, Davis et al. 201914, Srei et al. 201715, Xu et al. 201816, Yao et al. 201217, Zhang et al. 201118, Whitney et al. 198419, 

Brownbridge et al. 201220, Glare et al. 200821, Reay et al. 200822, Reay et al. 201023, Takov et al. 201224, Davydenko et al. 201425, 

Khanday and Buhroo 201826, Kerchev et al. 201727, Jankevica 200428, Schebeck et al. 201629, Burjanadze 201030, Krams et al. 

201231, Silva et al. 201532 
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Table 1.2. Measurements of Beauveria bassiana growth, germination, and sporulation in Hylesinini systems. 

 

  

Hylesinini species Growth Germination Tolerance 

Dendroctonus brevicomis With yeast1 - - 

Dendroctonus frontalis - - UV and heat3 

Dendroctonus ponderosae - On cuticle11,12 - 

Dendroctonus rufipennis 

Range of temperatures13, 

monoterpenes13, UV13, with 

other fungi13,14 

- - 

Dendroctonus valens On media18 On media18 UV18 

Tomicus minor 
Conidial length and width29, 

growth on media29 
- - 

Citations: Davis et al. 20111, Moore 19703, Hunt et al. 198411, Hunt 198612, Davis et al. 201813, Davis et al. 201914, Zhang et al. 

201118, Schebeck et al. 201629 
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Table 1.3. Bioassay methods for Beauveria bassiana studies in Hylesinini systems. 

 

  

Hylesinini species Lab bioassay Bioassay conditions Bioassay medium 
Bioassay inoculation 

method 

Dendroctonus frontalis Larvae6, Adults3,5 

Room conditions3,5,6, 

representative of 

system5 

Tree-based5,6 Direct6,, Indirect3 

Dendroctonus micans Larvae7,8,9, Adults7,8,9 Room conditions7,8,9 Tree-based7,8,9 Direct7,8,9 

Dendroctonus 

rufipennis 
Adults13 Room conditions13 Tree-based13 Direct13, Indirect13 

Dendroctonus simplex Adults15 Room conditions15 Tree-based15 Direct15, Indirect15 

Dendroctonus valens Larvae16,18 Room conditions16,18 Tree-based16,18 Direct18, Indirect16 

Dryocoetes confusus Adults19 Room conditions19 Tree-based19, Filter paper19 Direct19 

Hylastes ater Adults22 Room conditions22 Filter paper22 Indirect22 

Hylurgus ligniperda Adults21,22,23 Room conditions21,22,23 Filter paper,21,22,23 Indirect21,22,23 

Polygraphus major Adults26 Room conditions26 Tree-based26 Indirect26 

Polygraphus proximus Adults27 Room conditions27 Tree-based27 Direct27 

Tomicus piniperda Adults30,31 Room conditions30,31 Tree-based30,31 Direct31, Indirect30 

Citations: Moore 19703, Moore 19735, Pabst and Sikorowski 19806, Kocacevik et al. 20157, Sevim et al. 20108, Tanyeli et al. 20109,  

Davis et al. 201813, Srei et al. 201715, Xu et al. 201816, Zhang et al. 201118, Whitney et al. 198419, Reay et al. 200822, Reay et al. 

201023, Khanday and Buhroo 201826, Kerchev et al. 201727, Burjanadze 201030, Krams et al. 201231 
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CHAPTER 2: PHENOTYPIC VARIATION IN GROWTH, PATHOGENICITY, AND 

VIRULENCE OF BEAUVERIA BASSIANA (ASCOMYCOTA: HYPOCREALES) ISOLATES 

FROM THE ROCKY MOUNTAIN REGION 

 

 

 

INTRODUCTION 

The ubiquitous insect-killing fungus Beauveria bassiana (Balsamo-Crivelli) Vuillemin 

(Hypocreales: Cordycipitaceae) is isolated from an incredible diversity of sources including soil, 

phylloplane habitats, and a wide variety of insect species (St. Leger et al. 1992; Bidochka 2002; 

Rehner and Buckley 2005). Accordingly, a great deal of phenotypic variation exists among 

isolates of this species. Commercial development of nontoxic biological controls has coincided 

with public recognition of the safety issues associated with traditional chemical control methods; 

B. bassiana has been widely tested as a biological control agent for arthropod pests in recent 

years as an alternative to these methods (de Faria and Wraight 2007). Additionally, B. bassiana 

is a desirable biological control agent because it can penetrate the insect exoskeleton and does 

not need to be ingested by its host (Rustiguel et al. 2018). However, promising laboratory 

assessments often result in unsuccessful field applications of B. bassiana for insect population 

control (Edgington et al. 2000; de Faria and Wraight 2001; Hajek and Goettel 2000; Lacey et al. 

2015; Vega et al. 2012; Davis et al. 2018b). This discrepancy could exist as a result of poor 

isolate selection due to a mismatch between laboratory and field conditions during evaluation; 

for instance, highly virulent strains may not tolerate a wide range of environmental conditions 

representative of a target pest’s habitat. 

The spruce beetle, Dendroctonus rufipennis Kirby (Coleoptera: Curculionidae: 

Scolytinae), colonizes Engelmann spruce (Picea engelmannii Parry ex Engelm.; Pinales: 
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Pinaceae) and is one of the most significant forest pests in western North America (Jenkins et al. 

2014; O’Connor et al. 2014; Colorado State Forest Service 2017); beetle population activity is 

associated with mortality of at least 17 million P. engelmannii over the past two decades. Due to 

these impacts, recent work has focused on assessing the potential for B. bassiana to control D. 

rufipennis population growth, but field tests have had limited success due in part to the 

challenging environmental conditions that occur in high elevation forests characteristic of D. 

rufipennis habitat (Davis et al. 2018b). This is despite the apparent ubiquity of B. bassiana in 

forest soil (Niemczyk et al. 2019; Reay et al. 2008; Yao et al. 2012), bark (Yao et al. 2012), bark 

beetle oral secretions (Cardoza et al. 2009), bodies (Yao et al. 2012), frass (Reay et al. 2008; 

Takov et al. 2012; Yao et al. 2012), and as an endophyte of coniferous trees (Reay et al. 2010; 

Brownbridge et al. 2012). Accordingly, a better understanding of how spruce forest conditions 

impact growth and virulence of B. bassiana can improve its use as a biological control agent of 

spruce beetle. 

Spruce forests within the southern Rocky Mountain region are typically characterized by 

average summer maximum temperatures ranging between 10 – 20 °C (Dell 2018) and dense 

overstory vegetation with little sun penetration to the forest floor (Johnson et al. 2004). The 

spruce beetle life cycle is cryptic and primarily spent in subcortical phloem environments that are 

rich with tree secondary compounds, especially monoterpene hydrocarbons (Davis et al. 2018a). 

During the process of tree death following bark beetle attack, coniferous tree water potentials 

decline over time and generally range between -0.5 and -2.0 MPa (Klepzig et al. 2004), which 

may limit fungal growth. In addition, D. rufipennis is associated with a symbiotic fungus, 

Leptographium abietinum (Peck) Wingfield (Ophiostomatales: Ophiostomataceae; Six and Bentz 

2003), which inhibits growth of antagonistic microorganisms (Davis et al. 2019). Consequently, 
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B. bassiana parasitizing D. rufipennis must contend with a range of conditions including cool 

temperatures, competing microbial species, exposure to tree secondary compounds, significant 

water deficits and low-intensity ultraviolet light. Despite this habitat complexity, most studies 

evaluate entomopathogen virulence to target Dendroctonus beetles under simplified laboratory 

conditions that may not represent factors limiting growth in natural environments (Chapter 1). 

The goal of this study was to characterize the phenotypic variation in growth response, 

pathogenicity, and virulence to D. rufipennis among isolates of B. bassiana collected across the 

Rocky Mountain region of the western United States. Specific objectives included (1) an 

evaluation of the impacts of environmental conditions characteristic of the D. rufipennis habitat 

on B. bassiana growth and (2) to describe the pathogenicity and virulence of regional B. 

bassiana isolates to D. rufipennis across a range of experimental conditions. These studies 

contribute new insights into the factors driving B. bassiana success in spruce forest habitats and 

can help to inform subsequent strain selection processes. My results indicate that experimental 

conditions greatly impact virulence in entomopathogenic fungi, with consequences for 

development and application of mycologically-based biocontrol agents in coniferous forests.  

 

MATERIALS AND METHODS 

Isolation and molecular identification of fungus strains 

Isolation of the B. bassiana strains used in this study occurred from a range of forest habitats 

across the Rocky Mountain region (see Table 2.1). Strains were initially isolated on selective 

media and experiments were performed using spore powders produced through industrial-scale 

solid substrate culture methods as described in Davis et al. (2018b), and a total of fourteen 

isolates were chosen for use in the present study. In addition, six isolates of L. abietinum were 
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collected from spruce forests in Colorado for evaluation of B. bassiana competition with L. 

abietinum as described in Davis et al. (2019).  

 For species identification and comparison of genetic diversity among B. bassiana 

isolates, DNA was extracted from 100 mg of fresh mycelia using ZR Fungal/Bacterial DNA 

MiniPrep Kit (Zymo Research Corporation, Irvine, CA, USA). Concentration of extracted DNA 

was measured using a nanodrop (ThermoScientific, Waltham, MA) to ensure a 260 nm/280 nm 

ratio of ~1.8 before sequencing of Internal Transcribed Spacer (ITS) and Elongation Factor 1-α 

(EF1-α) regions following the methods of Rehner and Buckley (2005). ITS region was amplified 

and sequenced using primers ITS 5 (5’-GGAAGTAAAAGTCGTAACAAGG-3’) and ITS 4 (5’-

TCCTCCGCTTATTGATATGC-3’). EF1-α region was amplified and sequenced using primers 

EF1T (5′-ATGGGTAAGGARGACAAGAC-3′) and 1567R (5′-

ACHGTRCCRATACCACCSATC-3′). Polymerase chain reaction mixtures (total 25 μl) 

contained 10 ng of template DNA (or no DNA template for negative control) and used the 

following conditions for 36 amplification cycles: 30 second denaturation at 94 °C, 30 second 

annealing at 56 °C, 1 minute extension at 72 °C, and 10 minute incubation at 72 °C. 

 Sequence data for each isolate was aligned in Geneious Software (Biomatters, Auckland, 

New Zealand) and compared to the NCBI BLAST database (Altschul et al. 1990) for putative 

species identification. Sequencing of the ITS region, the universal DNA barcode for fungi 

(Schoch et al. 2012), yielded a sequence length of 596 base pairs and EF1-α sequences yielded 

1175 base pairs. All sequences were matched to sequences of Beauveria bassiana (Genbank 

accession numbers: ITS ≥99% match with EU272501.1 and KX901310.1; EF1-α 79-98% match 

with FJ177453.1) with 99% coverage and an e-value of 0.0. The ITS and EF1-α regions were 
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concatenated and a maximum likelihood phylogeny was created in MEGA7 using 200 bootstraps 

(Kumar et al. 2016). Isolates were all one haplotype based on ≥70% node support.  

 

Beauveria bassiana growth in response to different environmental conditions representative 

of Dendroctonus rufipennis habitat 

I tested the hypothesis that there is phenotypic variation among isolates to tolerate and grow in 

environmental conditions representative of spruce beetle habitats. Mycelial radial growth rate 

strongly positively correlates with biomass production in fungal species (Ogidi et al. 2016) and is 

an indicator of environmental tolerance in entomopathogenic fungi (Jaronski 2010). 

Accordingly, this trait is analyzed as the primary response variable in studies evaluating fungal 

growth in response to environmental conditions. Beauveria bassiana growth was tested in 

response to six environmental factors. These environmental factors included (1) a range of 

temperatures, (2) competition with the spruce beetle symbiont L. abietinum, (3) a range of 

concentrations of P. engelmannii phloem monoterpenes, (4) a range of concentrations of chitin 

(as a sole nutrient source), (5) a range of osmotic water potentials, and (6) effects of sunlight 

exposure. 

Except where noted below, the following is true for all tests: each test was 

simultaneously replicated 3-6 times for each isolate in 60 × 15 mm Petri dishes (VWR 

International, Radnor, Pennsylvania) containing 2% malt extract agar (MEA, pH 5.3, Sigma-

Aldrich, St. Louis, MO, Davis et al. 2019). Petri dishes were inoculated with ~0.1 mg B. 

bassiana conidial powder (22499 ± 4748 colony forming units, CFU) by aseptic transfer using a 

sterile probe dipped into a surfactant solution (0.01% Silwet L77, Helena Agri-Enterprises, 

Collierville, TN). Dishes were inverted after 48 hours and tests occurred in dark growth 
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chambers (Thermo Fisher Scientific, Waltham, MA) at a constant 23 °C. Mycelial growth was 

traced and measured every 24-48 hours for 10–13 days. Growth rate (mm/d) was determined by 

diving the total distance of radial growth (measured in two places on each dish and averaged 

together) by the total period of the assay. Mean radial growth rate at 23 °C on 2% MEA served 

as the control in tests evaluating B. bassiana growth responses to environmental conditions 

because growth rates were generally maximized at this temperature and there was no evidence of 

isolate-to-isolate variation in growth at this temperature. 

Beauveria bassiana response to temperature. Dendroctonus beetles live in complex 

systems driven by overcoming extremely cold and fluctuating temperatures (Six and Bracewell 

2015). Three simultaneous replicates of all isolates took place in growth chambers maintained at 

5, 10, 15, 20, 25, 30, and 35 °C (N=292 total experimental units). Growth and comparison to the 

control was measured as described above. 

Beauveria bassiana competition with Leptographium abietinum. All B. bassiana 

isolates were placed into competition against one replication of six unique L. abietinum isolates 

(CF4, CF6, CF9, CF11, CF17, and CF22 described in Davis et al. 2019) for a total of 84 

combinations to test the hypothesis that a bark beetle symbiont, L. abietinum, inhibits growth of 

B. bassiana. Each fungus was inoculated 8 mm from the edge of 95 x 15 mm Petri dishes 

(Fisherbrand, Waltham, MA). After 20 d of growth, plates were scanned (Epson V600, Suwa, 

Japan) and these images were analyzed using ImageJ software (National Institutes of Health, 

Washington, D.C). Total area (% of dish) occupied by B. bassiana for each replicate was treated 

as the response variable. 

Beauveria bassiana growth response to spruce tree defense chemicals. The phloem 

environment colonized by bark beetles is rich in monoterpenes, which can impact fungal growth. 
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Petri dishes were amended with one of five monoterpenes found in the phloem of all Engelmann 

spruce trees in Colorado (Davis et al. 2018a) including (+)-α-pinene (98% purity, Sigma-

Aldrich), (-)-β-pinene (99% purity, Sigma-Aldrich), (+)-3-carene (>90% purity, Sigma-Aldrich), 

terpinolene (>90% purity, Sigma-Aldrich), and myrcene (>95% purity, Sigma-Aldrich) at three 

concentrations including 0.1, 1.0, and 5.0% (v/v), consistent with constitutive (0.1 and 1%) and 

induced (5%) monoterpene concentrations (N=907 total experimental units). Growth and 

comparison to the control was measured as described above. 

Beauveria bassiana response to media containing chitin as a nutrient. To evaluate the 

ability of isolates to grow in minimal media containing only arthropod exoskeleton contents, a 

potential virulence factor, Petri dishes containing water agar (Sigma-Aldrich) were amended 

with either 0.1, 1.0, or 5.0% (v/v) shrimp chitin (Sigma-Aldrich) (N=127 total experimental 

units) to represent potential growth on the bark beetle exoskeleton. Growth and comparison to 

the control was measured as described above. 

Beauveria bassiana growth on media with limited water availability. The subcortical 

gallery environment gradually desiccates following colonization by spruce beetle, which may 

limit fungal growth. To assess effects of water limitation on entomopathogen growth, B. 

bassiana isolates were transferred to Petri dishes containing 1% MEA amended with KCl (EMD 

Chemicals Gibbstown, NJ) and sucrose (Sigma-Aldrich) to generate osmotic potentials of -0.5 

MPa, -1.0 MPa, -2.0 MPa (N=160 total experimental units) using ratios described in Whiting 

and Rizzo (1999); these levels are representative of phloem water potential in drought-stressed 

conifers or trees in decline following bark beetle attack (methods described in Klepzig et al. 

2004). Growth and comparison to the control was measured as described above. 
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Beauveria bassiana response to ultraviolet light. Deployment of B. bassiana for spruce 

beetle control in forested environments requires that isolates tolerate some degree of exposure to 

low-intensity light during summer months. Exposure to UV light is reported to be highly 

damaging to B. bassiana tissues. To assess the response of B. bassiana to low-intensity light 

conditions, Petri dishes containing replicated B. bassiana isolates were placed in a windowsill 

and exposed to 13 d of indirect sunlight at an intensity of 4.8 ± 0.2 µmol/m2/sec for 12 h 58 min 

± 9 min per day. Growth and comparison to the control was measured as described above. 

 

Beauveria bassiana pathogenicity and virulence to Dendroctonus rufipennis  

General procedure. Four experiments were performed to test the hypothesis that Rocky 

Mountain isolates of B. bassiana vary in their pathogenicity and virulence to D. rufipennis across 

a range of conditions. Experiments used sterile 95 × 15 mm Petri dishes as the arena, and 

replicates consisted of six adult beetles; each isolate was replicated ten times in each experiment 

(N=140 experimental units and 840 beetles per experiment). Pathogenicity (the ability of B. 

bassiana to cause spruce beetle mortality) of isolates in each experiment was determined by 

comparison against a sham treatment. The sham treatments (N=10 experimental units and 60 

beetles per experiment) were treated with distilled water containing 0.01% Silwet L77 and no B. 

bassiana. The concentration of CFU was standardized using serial dilution to 106 CFU/mL 

suspension for each test isolate, and spore suspensions were administered to surfaces contacted 

by beetles rather than directly to beetle integuments.  

Experiments spanned a range of conditions, varying test temperatures, substrates, and 

beetle source (Table 2.2). Experiments were designed to allow for beetle attraction, avoidance, 

and grooming behaviors by allowing test individuals space to move around within test arenas. 
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Insect behavior is an important factor to consider in bioassays as detection and avoidance of B. 

bassiana by target insect species is previously reported (Meyling and Pell 2006, Mburu et al. 

2013) and may be associated with host resistance. Additionally, beetles were not surface 

sterilized in an effort to include potential interactions with the microbial symbionts associated 

with D. rufipennis in bioassays. 

To evaluate infectivity following beetle mortality in bioassays, a mycosis test was 

performed on all dead beetles according to methods of Bugeme et al. (2008). A 1 mL aliquot of 

distilled water was added to the arena substrate and maintained at a constant 30° C for 48 hours 

in the dark; beetles colonized by B. bassiana readily sporulate under these conditions and appear 

to ‘mummify,’ confirming which adults were infected by B. bassiana in each replicate.  

Experimental conditions. Experiment 1 took place at 23 °C with D. rufipennis reared 

from logs collected from five infested P. engelmannii trees at Cameron Pass, Colorado 

(coordinates: 40.52058 N, 105.89283 W, elevation: 3100 meters). To incite colonization of 

selected trees, trees were baited with an attractant pheromone lure containing Frontalin and 

MCOL (Synergy Semiochemicals Corporation, Burnaby, BC) during May 2017. During 

September and October 2017 following D. rufipennis colonization, baited trees were felled, cut 

into billets of ~0.6-meter length, and placed into rearing containers ventilated with a 1 x 1mm 

mesh in a laboratory at 23 °C with a relative humidity of ~30%. Billets in rearing chambers 

accumulated approximately 800-degree days in the laboratory, after which point new adult 

beetles were harvested from logs for testing. Dendroctonus rufipennis has individuals within the 

same population that exhibit either a 1- or 2-year life cycle (Holsten et al. 1999), so this 

experiment was intended to control for beetle age by ensuring that all beetles were new adults 

and not a mix of 1- and 2- year beetles. An aliquot of 1 mL of standardized spore suspension (106 
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CFU/mL) was applied to filter papers contacted by beetles (Whatman Grade 2, 4.25 cm 

diameter, Maidstone, United Kingdom), as described in Davis et al. (2018b). 

 Subsequent experiments (experiments 2-4) used beetles actively responding to 

pheromones collected during their dispersal period, as actively flying beetle populations are 

likely the most vulnerable to B. bassiana applications. To capture dispersing beetles, a total of 10 

Lindgren funnel traps (Synergy Semiochemicals, Burnaby, Canada) baited with the spruce beetle 

enhanced pheromone lure (Synergy Semiochemicals) were deployed to collect beetles during 

peak flight season (Dell 2018) at Monarch Pass, Colorado (coordinates: 38.49666 N, 106.32558 

W, elevation: 3448 m). Moist single ply paper towels were placed in collection cups to provide a 

surface for beetles to adhere to, and beetles were collected and returned to the lab within 48 

hours. Collections were made twice weekly from mid-June through July 2018 until all 

experiments were complete. Prior to use in experiments, beetles were subjected to a simple 

fitness test using the approach described in Chiu et al. (2017). 

Experiments 2 and 3 were identical to experiment 1 in all parameters, with the condition 

that the source of beetles differed (experiment 1 tested effects of B. bassiana on lab-reared 

beetles) and experiment 3 was performed at a constant 10 °C. This temperature was chosen to 

reflect mean temperatures in the field during dispersal (Dell 2018). Experiment 4 was an ex vivo 

test that supplied beetles with phloem substrate, which could affect survival of D. rufipennis. 

Phloem also contains monoterpenes that may reduce efficacy of B. bassiana. Methods for 

creating ‘phloem sandwiches’ followed Aflitto et al. (2014) with slight modifications: 150 8×8 

cm pieces of phloem were excised from standing P. engelmannii with outer bark still intact and 

later cut into circles to fit firmly on the bottom of 6 cm diameter Petri dishes. As above, a 1 mL 
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aliquot of B. bassiana spore suspension was applied to filter papers at a cell density of 106 

CFU/mL; however, in experiment 4 spore suspension was applied to the bark surface. 

Replicates were checked regularly and all beetles in each dish were scored as ‘alive’ or 

‘dead’ at each recording. Experiments 1-3 were scored daily in this way until all beetles had 

died. In experiment 4, replicates were scored for survival and mycosis every three days for 90 d, 

which is the approximate length of the spruce beetle flight season at Monarch Pass, Colorado 

(Dell 2018).   

 

Data analysis 

All analyses were performed using the R statistical programming language (R Core Team 2017). 

To test the hypothesis that isolates vary in their radial growth in response to environmental 

conditions, I converted test growth rate to a percentage (%) of control growth rate for each 

isolate; each test was analyzed using ANOVA procedures appropriate to the experimental 

design. A one-way ANOVA was used to analyze the fixed effects of L. abietinum presence (L. 

abietinum present or L. abietinum absent) on the response variable of percent of the Petri dish 

(%) occupied by B. bassiana isolates. Similarly, one-way ANOVA was used to analyze the fixed 

effect of sunlight exposure (exposed to sunlight or not exposed to sunlight) on the response of B. 

bassiana growth rate. Isolate growth rates across a range of temperatures (5, 10, 15, 20, 25, 30, 

and 35 °C), concentrations of chitin in media (0.1, 1.0, and 5.0%), and osmotic water potentials 

(-0.5, -1.0, and -2.0 MPa) were analyzed using two-way ANOVA to test the fixed effects of 

treatment, isolate, and the treatment × isolate interactions on response of mean B. bassiana 

growth rate. Mean B. bassiana growth rate in response to different monoterpene concentrations 

(0.1, 1.0, and 5.0%) and identities (alpha-pinene, beta-pinene, 3-carene, terpinolene, and 
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myrcene) were analyzed using a three-way ANOVA to test the fixed effects of isolate, 

monoterpene concentration, and monoterpene identity and all two- and three-way interactions on 

the response of mean B. bassiana growth rate. Pairwise comparisons among all treatment means 

were made post-hoc in each test using the Tukey-Kramer HSD test. 

In experiments testing pathogenicity and virulence of B. bassiana isolate to spruce beetle, 

the median survival time (MST) of test beetles was the primary response variable analyzed. MST 

was analyzed using Kaplan-Meier survival analysis and a log-rank test implemented using R 

packages ‘ggplot2’ (Wickham 2009), ‘survminer’ (Kassambara and Kosinski 2018), and 

‘survival’ (Therneau and Grambsch 2000) for calculations and ‘ggpubr’ (Kassambara 2018), 

‘gridExtra’ (Auguie 2017), and ‘cowplot’ (Wilke 2019) for visualization. Every isolate was 

compared to the sham treatment through log-rank tests to evaluate differences in pathogenicity 

and virulence across isolates and experiments. In all analyses, a Type I error rate of α=0.05 was 

used for assigning statistical significance.  

 

RESULTS 

Beauveria bassiana growth in response to different environmental conditions representative 

of the Dendroctonus rufipennis habitat 

There was considerable isolate-to-isolate variability in growth as a response to the six 

environmental conditions. Isolates exhibited statistically significant phenotypic variation in every 

environmental condition tested except competition against L. abietinum (Figure 2.1, Table 2.S1).   

Beauveria bassiana response to temperature. There was significant variation in the 

mean growth rate of isolates due to the effects of temperature (F6, 194=76.560, P<0.001), isolate 

(F13, 194=29.741, P<0.001), and an isolate × temperature interaction (F78, 194=4.529, P<0.001). 
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No growth of any B. bassiana isolate occurred at 5 °C and 35 °C; maximum growth occurred 

between 20 and 30 °C. Growth was reduced by 88% at 15 °C and by 97% at 10 °C relative to 

growth radial growth rate at 23 °C.  

Beauveria bassiana competition with Leptographium abietinum. Both B. bassiana and 

L. abietinum grew until touching, showing no signs of an inhibition zone, and maintained the 

captured space in competition assays for at least 20 d. On average, B. bassiana captured only 

44% of the available space and proved to be a slightly weaker competitor than L. abietinum 

(56%) on average (t167, 166 = 3.010, P=0.003). Beauveria bassiana isolates did not differ in their 

ability to compete with L. abietinum (F83, 70=0.664, P=0.790). 

Beauveria bassiana growth response to spruce tree defense chemicals. Mean radial 

growth of B. bassiana isolates varied due to the effects of isolate (F13, 697=65.546, P<0.001), 

monoterpene identity (F4, 697=20.947, P<0.001, monoterpene concentration (F2, 697=322.025, 

P<0.001), isolate × monoterpene identity interaction (F52, 697=2.547, P<0.001), isolate × 

monoterpene concentration interaction (F26, 697=11.933, P<0.001), monoterpene identity × 

concentration interaction (F8, 697=14.261, P<0.001), and the three-way isolate × monoterpene 

identity × concentration interaction (F104, 697=1.493, P=0.002). Monoterpenes were the most 

inhibitory environmental factor for B. bassiana growth across all tests. Mean isolate growth rate 

was reduced by 86% in constitutive levels (0.1 – 1.0%) and by 98% on average when exposed to 

induced (5.0%) concentrations. Terpinolene was the most inhibitory monoterpene overall. Every 

isolate grew in 5% myrcene but the rate of growth was reduced by 96% on average compared to 

control growth rates in the absence of monoterpenes.   

Beauveria bassiana response to media containing chitin as a nutrient. There was 

significant variation in the growth of B. bassiana isolates due to the effect of isolate (F13, 
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85=257.543, P<0.001), chitin concentration (F2, 85=11.415, P<0.001, and isolate × chitin 

concentration in growth media (F26, 85=4.633, P<0.001). The 14 isolates experienced an 85 – 

87% reduction in growth rate in experiments where B. bassiana was exposed to low 

concentrations of chitin as the only nutrient source, but growth rates were near to or exceeded 

control growth rates under conditions of high chitin concentration. 

Beauveria bassiana growth on media with limited water availability. There was 

significant variation in the mean growth rates of B. bassiana isolates due to the effects of 

substrate water potential (F2, 118=166.890, P<0.001), isolate (F13, 118=15.530, P<0.001), and the 

isolate × water potential interaction (F26, 118=3.246, P<0.001). Growth rate was enhanced in tests 

containing media amended with -0.5 MPa (103.63 ± 3.21%) and -1.0 MPa (122.06 ± 2.42%) 

levels of osmotic water potential. The B. bassiana isolates had a moderate (19%) reduction in 

mean growth rates in the -2.0 MPa condition.  

Beauveria bassiana response to ultraviolet light. The effects of exposure to ultraviolet 

light significantly affected mean growth rate of B. bassiana isolates (F41, 28=73.764, P<0.001). 

Mean colony growth rate was reduced by 78.7% on average when B. bassiana was exposed to 

ultraviolet light during exponential growth, though some isolates (e.g., 429DA) were relatively 

tolerant of exposure.   

 

Beauveria bassiana pathogenicity and virulence to Dendroctonus rufipennis  

The range of MST differed considerably among experiments and ranged from 6-10 days in 

experiment 1 (Figure 2.2), 5 days for every isolate in experiment 2 (Figure 2.3), 8-11 days in 

experiment 3 (Figure 2.4), and 19-62 days in experiment 4 (Figure 2.5). Phenotypic variation in 

virulence among isolates was significant according to log-rank tests based on Kaplan-Meier 
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assumptions in experiments 1 (P<0.001), 2 (P<0.001), and 4 (P<0.001), though not in 

experiment 3 (P=0.660). A group of isolates (429BTF, GHA, D900, L429, L447, and 

90(1)MPB) all had the lowest MST times in experiment 1, but Isolate 50C caused the lowest 

MST (consistent with most rapid spruce beetle mortality) in Experiments 3 and 4.  

 The relative pathogenicity of isolates differed from experiment to experiment based on 

MST relative to sham treatments (χ2 = 58.300, df = 3, P<0.001). Log-rank tests indicate that 

every isolate was pathogenic in experiments 1 (Figure 2.2) and 2 (Figure 2.3), but only isolate 

50C was pathogenic in experiment 3 (Figure 2.4), and only isolates 50C and 14B were 

pathogenic in Experiment 4 (Figure 2.5).  

 

DISCUSSION 

Beauveria bassiana strains isolated from various sources throughout the Rocky Mountain region 

expressed considerable phenotypic variation in terms of the environmental factors that affected 

growth rates and their relative ability to reduce survival of D. rufipennis under a range of 

experimental conditions. Forest systems introduce new factors to overcome in the application of 

B. bassiana as a biological control agent (Hesketh et al. 2010), and aspects of habitat complexity 

are often not accounted for in agricultural study systems or laboratory evaluations of fungal 

virulence (e.g. Jaronski 2010). However, the ability of isolates to grow under a range of 

environmental conditions, as well as their relative ability to impact insect populations across 

those conditions, are key for the development of successful mycologically-based biocontrol 

technologies. Here, my results demonstrate several important issues related to this point: (1) B. 

bassiana isolates vary widely in their growth response to environmental conditions, even when 

isolated from similar habitats and sources; (2) tree phytochemicals were highly inhibitory to B. 
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bassiana growth, especially at high concentrations, though low temperatures also strongly 

reduced growth; (3) the interpretation of isolate pathogenicity and virulence differs substantially 

depending on experimental conditions—with many isolates exhibiting pathogenicity under 

laboratory conditions, but few isolates exhibiting pathogenicity when tests are performed on 

actual beetle substrate. These collective findings have implications for the application of B. 

bassiana as a biological control agent of bark beetles.  

My results confirm that B. bassiana is highly affected by temperature and, consistent 

with the literature, nearly every isolate maximizes radial growth rates at or near 25 °C (Yeo et al. 

2003; Bugeme et al. 2008). The thermal growth threshold of 5 °C may be a potential problem for 

B. bassiana application in the D. rufipennis habitat; though the low temperatures did not cause 

the fungus to die, but rather freeze as growth resumed when Petri dishes were brought into room 

temperature. The fungal competition results corroborate recent studies indicating that both B. 

bassiana and L. abietinum are able to capture and maintain space (Davis et al. 2018b, 2019), and 

that the fungi apparently compete with one another for growth resources, but neither fungus is 

able to overtake its competitor. The concentration of chitin in growth media also had a 

significant overall effect on the growth of B. bassiana, though radial growth of isolates was 

lowest in media with the highest concentration of chitin—potentially indicating a reduced need 

for radial growth under high nutrient conditions. This also indicates that contact with host insects 

may be more likely in low-chitin conditions, as B. bassiana will rapidly expand surface area. 

Isolates exhibited enhanced growth in media containing osmotic water potentials of -0.5 

and -1.0 MPa along with only moderate reductions in overall growth in the highest level of 

osmotic potential. Beauveria bassiana varies greatly in its ability to tolerate dry environments. In 

an earlier study, an osmotic potential of -1.76 MPa caused complete growth inhibition for some 
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isolates while just a 4% decrease in others (Devi et al. 2005). Dendroctonus beetles must also 

contend with arid conditions as trees die but spend most of their lives in the phloem of conifer 

trees – a humid environment. My results suggest that practitioners should prioritize 

environmental factors other than osmotic potential during B. bassiana strain selection for control 

of bark beetles, especially when choosing among this group of isolates. For instance, exposure to 

sunlight can completely inhibit fungal growth, likely due to a lack of melanin in mycelial tissues 

(Fernandes et al. 2015). I found significant phenotypic variation between isolates in their ability 

to grow in an environment with low-intensity sunlight exposure, though no isolates were 

completely inhibited by exposure to sunlight. Like osmotic potential, sunlight may not be 

particularly important in bark beetle habitats because bark beetles spend most of their lives 

below the surface of the tree. Multifunnel traps that contain B. bassiana in dissemination 

chambers have been tested for the control of emerald ash borer (Agrilus planipennis Fairmaire 

Coleoptera: Cuprestidae; Lyons et al. 2012), D. simplex LeConte (Srei et al. 2017), and Ips 

typographus Linnaeus (Coleoptera: Curculionidae: Scolytinae; Grodsky and Kosibowicz 2015) 

and may further alleviate the need for a chosen B. bassiana isolate to tolerate sunlight in 

application against bark woodboring beetles, as B. bassiana isolates can be inoculated into a 

relatively protected habitat.  

Conifer secondary metabolites, including monoterpenes, are a central aspect of tree 

defense in response to bark beetles and other herbivores (Raffa et al. 2014). While monoterpenes 

are always produced by conifer trees at low (constitutive) levels, the composition and 

concentration of these monoterpenes is often upregulated (i.e., induced) when trees are 

challenged by pest organisms (Litvak and Monson 1998). Inoculation with B. bassiana can also 

induce a plant defense response (Shrivastava et al. 2015) which suggests that induced trees may 
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inhibit B. bassiana growth even though the presence of entomopathogens might benefit tree 

survival of a bark beetle challenge (Hay et al. 2004). Monoterpenes were extremely inhibitory in 

this study and aside from low temperature, are likely the singly most limiting factor to successful 

biological control of Dendroctonus species in forest environments. Chemical identity played a 

critical role in limiting B. bassiana growth; especially terpinolene and 3-carene, which both 

reduced growth by over 92% compared to the control. These compounds are present in virtually 

all Engelmann spruce trees in the southern Rocky Mountains (Davis et al. 2018a). As 

concentrations of monoterpenes increased, so did growth inhibition. Growth was reduced by over 

90% in media amended with 1% monoterpenes and over 98% in media containing 5% 

monoterpenes. The induced level (5% v/v concentration) in this study is actually a quite 

conservative treatment, as monoterpene concentrations can increase by over 30 times when 

conifers are challenged by bark beetles and their symbiotic fungi (Raffa and Smalley 1995). 

Inhibition of fungal growth caused by monoterpenes may functionally eliminate the possibility of 

B. bassiana entomopathogenicity towards bark beetles colonizing host tree tissues and should be 

one of the primary environmental factors that practitioners consider in future field applications. 

My results also show that the interpretation of isolate pathogenicity can differ 

substantially depending on the experimental design, which is problematic as most studies rely on 

short tests under unrealistic laboratory conditions to assign isolate virulence. While every isolate 

was pathogenic against D. rufipennis in filter paper bioassays under room temperature (a 

favorable condition for B. bassiana), only two isolates were pathogenic against D. rufipennis in 

bioassays that took place on actual plant substrate and at a temperature representative of a 

Colorado spruce forest (a favorable condition for D. rufipennis). If tests of B. bassiana 

pathogenicity and virulence are not done in planta or ex vivo, they are likely to be misleading 
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and misrepresent the efficacy of isolates at reducing insect population densities under field 

conditions. Interestingly, neither of the pathogenic isolates in the realistic phloem experiment 

were among the most virulent at 23 °C. Hence, a key reason why so many promising laboratory 

studies lead to ineffective field application may be the lack of consideration for system-specific 

environmental conditions during strain evaluation. The results in this study support findings by 

Kreutz et al. (2004) where filter paper was deemed an unsuitable bioassay substrate for I. 

typographus because it did not provide nutrients to the beetles. Furthermore, neither of the 

pathogenic isolates in the phloem bioassay were top growers in 10 °C or when exposed to 

monoterpenes. Thus, eliminating isolates from the screening process based solely on growth rate 

could also lead to misleading results as positive correlations between pathogenicity, virulence, 

and growth rate do not always occur with B. bassiana.  

The studies reported here have several implications for the future development and 

application of B. bassiana as a mycologically-based method of pest control. First, future studies 

on the biology and potential application of B. bassiana should take a multivariate approach and 

include complex environmental factors unique to the desired application habitat. Second, in 

planta bioassays under representative conditions are vital; bioassays performed under simplified 

conditions are misleading because B. bassiana isolates are highly phenotypically variable and 

growth responses do not necessarily translate to the expression of pathogenecity in the presence 

of host plant material. Finally, understanding off-target effects is necessary when applying any 

method of pest management. Host specificity in B. bassiana is complex (Devi et al. 2008), but 

apparently does occur with bark beetles and their predators (Clerid beetles; Steinwender et al. 

2010), suggesting that targetted applications are possible. Building a stronger understanding of 

these collective effects will enhance our ability to understand the basic mechansims of 
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entomopathogenecity, and can help to inform more realistic studies that accurately evaluate 

virulence factors for biocontrol applications.   
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TABLES 

Table 2.1. Geographic and host origin of Beauveria bassiana isolates used in this study. 
Isolate Name Geographic Origin Source of Isolate 

14B Montana Pinus ponderosa 

34C Montana Pinus ponderosa 

429BTF Wyoming Picea engelmannii 

429DA Wyoming Dendroctonus rufipennis adult 
50C Montana Pinus ponderosa 

90(1)MPB Montana Dendroctonus ponderosae adult 
AZ5 Arizona Pinus ponderosa forest soil 
AZ6 Arizona Pinus ponderosa forest soil 
D900 Montana Pinus ponderosa forest soil 

ES12(1) Montana/Idaho Picea engelmannii forest soil 
GHA  Registered strain of B. bassiana 
L429 Wyoming Picea engelmannii 

L447 Utah Dendroctonus rufipennis larva 
SPRUCE1 Utah Picea engelmannii 
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Table 2.2. Conditions for bioassays testing Beauveria bassiana isolate pathogenicity and 
virulence to Dendroctonus rufipennis, arranged from least representative to most representative 
of the Dendroctonus rufipennis habitat. 

Experiment 
number 

Beetle source Temperature 
Location of Beetle 

Collection 
Test 

Substrate 
1 Reared from logs 23 °C 40.52058 N, 105.89283 W Filter paper 
2 Flight capture 23 °C 38.49666 N, 106.32558 W Filter paper 

3 Flight capture 10 °C 38.49666 N, 106.32558 W Filter paper 
4 Flight capture 10 °C 38.49666 N, 106.32558 W Phloem 
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FIGURES  

 
Figure 2.1. Growth rate of 14 Beauveria bassiana isolates in six different environmental 
conditions representative of the Dendroctonus rufipennis habitat. Growth was measured as a 
percent of the control and is represented by the size of the circle. The control was average growth 
rate on 2% MEA at 23 °C for each isolate. In this figure, larger circles represent faster growth 
rates. Values greater than 100% grew faster than the control.  
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Figure 2.2. Kaplan-Meier survivorship curves for experiment 1. Solid black lines indicate 
survival time of Dendroctonus rufipennis after exposure to the indicated isolate of Beauveria 

bassiana. Solid grey lines show sham treatments (no B. bassiana), solid color fills denote plus or 
minus standard error, and dashed black lines show MST (50% mortality) for each treatment. P-
value is based on a log-rank test comparing the median beetle survival time when exposed to 
sham treatment to median beetle survival time when exposed to each isolate.  
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Figure 2.3. Kaplan-Meier survivorship curves for experiment 2. Solid black lines indicate 
survival time of Dendroctonus rufipennis after exposure to the indicated isolate of Beauveria 

bassiana. Solid grey lines show sham treatments (no B. bassiana), solid color fills denote plus or 
minus standard error, and dashed black lines show MST for each treatment and control. P-value 
is based on a log-rank test comparing the median beetle survival time when exposed to sham 
treatment to median beetle survival time when exposed to each isolate. 
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Figure 2.4. Kaplan-Meier survivorship curves for experiment 3. Solid black lines indicate 
survival probability of Dendroctonus rufipennis after exposure to the indicated isolate of 
Beauveria bassiana. Solid grey lines show sham treatments (no B. bassiana), solid color fills 
denote plus or minus standard error, and dashed black lines show MST for each isolate and sham 
treatment. P-value is based on a log-rank test comparing the median beetle survival time when 
exposed to sham treatment to median beetle survival time when exposed to each isolate. 



 76 

 



 77 

 
Figure 2.5. Kaplan-Meier survivorship curves for experiment 4. Solid black lines indicate 
survival time of Dendroctonus rufipennis after exposure to the indicated isolate of Beauveria 

bassiana. Solid grey lines show control treatments (no B. bassiana), solid color fills denote plus 
or minus standard error, and dashed black lines show MST for each treatment and control. P-
value is based on a log-rank test comparing the control to each treatment. 
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APPENDIX 

Table 1.S1. Hylesinini subtribes and locations of studies involving Beauveria bassiana and Hylesinini. 

  

Hylesinini species Subtribe Location 

Dendroctonus brevicomis Tomicina Western United States1 

Dendroctonus frontalis Tomicina Southeastern United States,2,3,4,5,6 

Dendroctonus micans Tomicina Turkey7,8,9 

Dendroctonus ponderosae Tomicina Western North America10,11,12 

Dendroctonus rufipennis Tomicina Western North America10,13,14 

Dendroctonus simplex Tomicina Quebec, Canada15 

Dendroctonus valens Tomicina China16,17,18 

Dryocoetes confusus Tomicina British Columbia, Canada19 

Hylastes ater Hylesinina New Zealand20,21,22,23 

Hylurgops palliatus Hylastina Bulgaria24 

Hylurgus ligniperda Tomicina New Zealand,20,21,22,23,25 

Polygraphus major Polygraphina India26 

Polygraphus proximus Polygraphina Siberia27 

Tomicus minor Tomicina Europe28,29 

Tomicus piniperda Tomicina Eastern Europe24,30,31,32 

Citations: Davis et al. 20111, Harrar and Martland 19402, Moore 19703, Moore 19714, Moore 19735, Pabst and Sikorowski 19806, 

Kocacevik et al. 20157, Sevim et al. 20108, Tanyeli et al. 20109, Cardoza et al. 200910, Hunt et al. 198411, Hunt 198612, Davis et al. 

201813, Davis et al. 201914, Srei et al. 201715, Xu et al. 201816, Yao et al. 201217, Zhang et al. 201118, Whitney et al. 198419, 

Brownbridge et al. 201220, Glare et al. 200821, Reay et al. 200822, Reay et al. 201023, Takov et al. 201224, Davydenko et al. 201425, 

Khanday and Buhroo 201826, Kerchev et al. 201727, Jankevica 200428, Schebeck et al. 201629, Burjanadze 201030, Krams et al. 

201231, Silva et al. 201532 
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Table 2.S1. Beauveria bassiana growth rate response to environmental conditions representative of the Dendroctonus rufipennis study 

system. Mean responses are shown as percent of control ± SE. Values over 100% indicate increased growth under these conditions 

compared to the control. Significant values (P<0.05) are indicated in bold. Capital letters are Tukey HSD values relative to each 

experiment and ‘n.g.’ indicates no growth. 

Isolate Name 5 °C 10 °C 15 °C 

14B n.g. J 2.36 ± 0.00 IJ 15.04 ± 1.58 DEFGHIJ 

34C n.g. J 2.38 ± 0.71 IJ 3.75 ± 0.67 HIJ 

429BTF n.g. J 1.59 ± 0.12 IJ 7.92 ± 0.90 FGHIJ 

429DA n.g. J 9.86 ± 1.38 EFGHIJ 36.00 ± 4.97 CD 

50C n.g. J 1.45 ± 0.10 IJ 9.80 ± 0.97 EFGHIJ 

90(1)MPB n.g. J 1.84 ± 0.45 IJ 7.93 ± 0.54 FGHIJ 

AZ5 n.g. J 1.78 ± 0.37 IJ 6.91 ± 0.39 FGHIJ 

AZ6 n.g. J 3.33 ± 0.23 HIJ 15.06 ± 2.18 DEFGHIJ 

D900 n.g. J 1.44 ± 0.15 IJ 8.05 ± 1.14 FGHIJ 

ES12(1) n.g. J 1.31 ± 0.38 IJ 6.35 ± 1.85 EFGHIJ 

GHA n.g. J 3.49 ± 1.22 HIJ 16.97 ± 1.90 DEFGHIJ 

L429 n.g. J 4.22 ± 1.74 HIJ 5.59 ± 0.21 GHIJ 

L447 n.g. J 2.11 ± 0.37 IJ 11.63 ± 0.96 DEFGHIJ 

SPRUCE1 n.g. J 2.24 ± 0.26 IJ 13.84 ± 0.74 DEFGHIJ 
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Table 2.S1. Continued. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Isolate Name 20 °C 25 °C 30 °C 

14B 26.32 ± 3.40 CDEFGHI 32.44 ± 10.17 CDEF 28.40 ± 2.65 CDEFGH 

34C 9.11 ± 1.60 FGHIJ 5.04 ± 2.34 HIJ 8.68 ± 0.49 FGHIJ 

429BTF 9.86 ± 4.57 EFGHIJ 12.23 ± 5.25 DEFGHIJ 14.86 ± 5.17 DEFGHIJ 

429DA 93.86 ± 16.15 A 51.00 ± 25.61 BC 75.86 ± 4.78 AB 

50C 11.94 ± 0.89 DEFGHIJ 8.69 ± 2.98 FGHIJ 17.30 ± 1.19 DEFGHIJ 

90(1)MPB 14.91 ± 1.78 DEFGHIJ 11.29 ± 4.89 DEFGHIJ 14.06 ± 2.43 DEFGHIJ 

AZ5 11.93 ± 1.66 DEFGHIJ 8.57 ± 4.32 FGHIJ 6.98 ± 2.60 FGHIJ 

AZ6 20.19 ± 5.52 DEFGHIJ 16.36 ± 7.90 DEFGHIJ 26.00 ± 1.93 CDEFGHI 

D900 12.61 ± 0.38 DEFGHIJ 11.94 ± 4.61 DEFGHIJ 17.01 ± 0.82 DEFGHIJ 

ES12(1) 11.02 ± 1.89 DEFGHIJ 18.01 ± 7.44 DEFGHIJ 14.17 ± 1.60 DEFGHIJ 

GHA 30.95 ± 3.64 CDEFG 23.82 ± 13.55 DEFGHIJ 35.03 ± 1.65 CDE 

L429 12.62 ± 3.11 DEFGHIJ 9.22 ± 3.78 FGHIJ 12.22 ± 2.72 DEFGHIJ 

L447 15.29 ± 10.59 DEFGHIJ 15.33 ± 4.32 DEFGHIJ 17.04 ± 1.42 DEFGHIJ 

SPRUCE1 17.51 ± 2.17 DEFGHIJ 18.06 ± 0.47 DEFGHIJ 19.75 ± 0.44 DEFGHIJ 
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Table 2.S1. Continued. 

 

 

 

  

Isolate Name 35 °C 
Temperature 

Statistics 
Competition 

Competition 

Statistics 

14B n.g. J  49.00 ± 12.77  

34C n.g. J  45.50 ± 12.58  

429BTF n.g. J  46.83 ± 9.95  

429DA n.g. J  54.67 ± 10.65  

50C n.g. J  34.00 ± 9.22  

90(1)MPB n.g. J F: 29.742 55.50 ± 13.41 F: 0.664 

AZ5 n.g. J P<0.001 42.83 ± 10.02 P: 0.790 

AZ6 n.g. J DF: 78 30.50 ± 5.33 DF: 83 

D900 n.g. J N: 292 27.67 ± 6.29 N: 84 

ES12(1) n.g. J  36.00 ± 12.81  

GHA n.g. J  45.83 ± 11.58  

L429 n.g. J  44.83 ± 10.29  

L447 n.g. J  55.83 ± 12.93  

SPRUCE1 n.g. J  47.33 ± 11.50  
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Table 2.S1. Continued. 

Isolate Name 0.1% Alpha-pinene 1.0% Alpha-pinene 5.0% Alpha-pinene 

14B 30.67 ± 0.50 DEFGHIK 27.10 ± 1.54 EFGHIJKLM n.g. Q 

34C 8.23 ± 0.97 LMNOPQ 0.37 ± 0.37 Q 2.86 ± 2.86 KLMNOPQ 

429BTF 13.10 ± 1.14 EFGHIJKLMNOPQ 4.77 ± 1.95 NOPQ n.g. Q 

429DA 71.49 ± 15.01 AB 32.83 ± 10.42 DEFG n.g. Q 

50C 14.33 ± 4.10 EFGHIJKLMNOPQ 3.97 ± 3.97 NOPQ n.g. Q 

90(1)MPB 11.38 ± 1.78 GHIJKLMNOPQ 6.70 ± 3.20 MNOPQ n.g. Q 

AZ5 10.16 ± 3.17 HIJKLMNOPQ 1.88 ± 1.88 OPQ n.g. Q 

AZ6 18.38 ± 5.02 EFGHIJKLMNOPQ 8.22 ± 5.87 LMNOPQ n.g. Q 

D900 13.66 ± 4.59 EFGHIJKLMNOPQ 3.24 ± 3.24 OPQ n.g. Q 

ES12(1) 6.53 ± 1.11 MNOPQ 0.22 ± 0.22 Q 1.20 ± 0.60 Q 

GHA 33.65 ± 6.12 DEF 6.95 ± 6.95 MNOPQ 3.19 ± 3.19 OPQ 

L429 11.85 ± 2.64 GHIJKLMNOPQ 3.32 ± 1.18 OPQ 0.79 ± 0.79 Q 

L447 17.60 ± 4.14 EFGHIJKLMNOPQ 6.23 ± 3.66 MNOPQ 0.57 ± 0.57 Q 

SPRUCE1 13.49 ± 2.02 EFGHIJKLMNOPQ 7.24 ± 4.09 MNOPQ 0.23 ± 0.23 Q 
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Table 2.S1. Continued. 

Isolate Name 0.1% Beta-pinene 1.0% Beta-pinene 5% Beta-pinene 

14B 12.29 ± 4.39 EFGHIJKLMNOPQ 15.94 ± 8.95 EFGHIJKLMNOPQ 1.74 ± 1.74 NOPQ 

34C 5.30 ± 0.29 LMNOPQ 6.75 ± 3.40 HIJKLMNOPQ 1.80 ± 1.80 NOPQ 

429BTF 12.95 ± 1.66 EFGHIJKLMNOPQ 15.44 ± 2.25 EFGHIJKLMNOPQ 2.04 ± 1.34 MNOPQ 

429DA 54.57 ± 4.68 ABCD 75.71 ± 10.11 A 37.50 ± 37.50 BCDEFGHIJ 

50C 13.66 ± 0.69 EFGHIJKLMNOPQ 19.44 ± 2.90 EFGHIJKLMNOPQ 0.96 ± 0.96 NOPQ 

90(1)MPB 10.18 ± 1.32 EFGHIJKLMNOPQ 14.99 ± 1.00 EFGHIJKLMNOPQ n.g. Q 

AZ5 9.67 ± 0.13 FGHIJKLMNOPQ 12.31 ± 1.56 EFGHIJKLMNOPQ 0.94 ± 0.94 NOPQ 

AZ6 20.14 ± 1.02 EFGHIJKLMNOPQ 22.22 ± 5.41 EFGHIJKLMNOPQ 1.92 ± 1.92 NOPQ 

D900 10.15 ± 1.80 EFGHIJKLMNOPQ 12.40 ± 4.17 EFGHIJKLMNOPQ n.g. Q 

ES12(1) 7.57 ± 1.18 HIJKLMNOPQ 4.13 ± 4.13 LMNOPQ 4.29 ± 2.92 LMNOPQ 

GHA 18.06 ± 2.36 EFGHIJKLMNOPQ 14.57 ± 7.30 EFGHIJKLMNOPQ 9.32 ± 5.13 FGHIJKLMNOPQ 

L429 11.44 ± 0.85 EFGHIJKLMNOPQ 16.85 ± 2.51 EFGHIJKLMNOPQ 2.86 ± 1.58 MNOPQ 

L447 15.67 ± 1.14 EFGHIJKLMNOPQ 12.19 ± 3.95 EFGHIJKLMNOPQ 0.60 ± 0.60 NOPQ 

SPRUCE1 18.27 ± 2.35 EFGHIJKLMNOPQ 13.29 ± 4.58 EFGHIJKLMNOPQ 1.60 ± 1.60 NOPQ 
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Table 2.S1. Continued. 

Isolate Name 0.1% 3-Carene 1.0% 3-Carene 5.0% 3-Carene 

14B 27.10 ± 4.37 EFGHIJKLM 25.39 ± 6.29 EFGHIJKLMN 6.67 ± 6.67 MNOPQ 

34C 5.97 ± 1.78 MNOPQ 0.81 ± 0.50 Q n.g. Q 

429BTF 10.16 ± 1.44 HIJKLMNOPQ 1.68 ± 1.04 OPQ n.g. Q 

429DA 51.69 ± 15.49 ABCD 21.09 ± 8.74 EFGHIJKLMNOPQ n.g. Q 

50C 8.82 ± 2.13 JLMNOPQ 8.61 ± 5.20 HIJKLMNOPQ 1.72 ± 1.72 OPQ 

90(1)MPB 8.31 ± 1.96 LMNOPQ 1.40 ± 1.40 Q n.g. Q 

AZ5 10.68 ± 2.69 FGHIJKLMNOPQ 1.40 ± 0.87 Q n.g. Q 

AZ6 12.15 ± 3.43 FGHIJKLMNOPQ 9.54 ± 3.41 HIJKLMNOPQ n.g. Q 

D900 8.00 ± 3.06 LMNOPQ 2.44 ± 0.69 OPQ 0.48 ± 0.48 Q 

ES12(1) 8.11 ± 1.78 LMNOPQ 2.63 ± 1.29 OPQ n.g. Q 

GHA 15.82 ± 4.02 EFGHIJKLMNOPQ 14.60 ± 3.77 EFGHIJKLMNOPQ n.g. Q 

L429 7.06 ± 1.53 MNOPQ 2.92 ± 0.86 OPQ 2.83 ± 1.77 OPQ 

L447 11.62 ± 2.53 GHIJKLMNOPQ 1.40 ± 0.95 Q 1.56 ± 1.56 Q 

SPRUCE1 14.56 ± 1.12 EFGHIJKLMNOPQ 6.84 ± 1.66 MNOPQ 2.23 ± 1.39 OPQ 
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Table 2.S1. Continued. 

Isolate Name 0.1% Myrcene 1.0% Myrcene 5.0% Myrcene 

14B 25.35 ± 0.48 EFGHIJKLMN 14.14 ± 3.76 EFGHIJKLMNOPQ 6.43 ± 3.75 MNOPQ 

34C 8.26 ± 0.31 LMNOPQ 4.73 ± 1.35 MNOPQ 2.23 ± 1.05 OPQ 

429BTF 13.63 ± 0.69 EFGHIJKLMNOPQ 10.86 ± 1.66 HIJKLMNOPQ 2.88 ± 1.65 OPQ 

429DA 58.63 ± 3.67 ABC 30.32 ± 6.98 DEFGHIJKL 12.60 ± 7.49 FGHIJKLMNOPQ 

50C 11.02 ± 3.63 HIJKLMNOPQ 9.35 ± 3.32 IJKLMNOPQ 3.74 ± 2.35 NOPQ 

90(1)MPB 12.09 ± 1.53 FGHIJKLMNOPQ 9.33 ± 3.07 IJKLMNOPQ 4.83 ± 1.94 NOPQ 

AZ5 12.19 ± 0.48 EFGHIJKLMNOPQ 7.58 ± 3.43 LMNOPQ 3.81 ± 1.98 NOPQ 

AZ6 22.22 ± 2.51 EFGHIJKLMNOPQ 18.98 ± 3.53 EFGHIJKLMNOPQ 3.35 ± 1.38 OPQ 

D900 14.00 ± 0.82 EFGHIJKLMNOPQ 9.20 ± 3.85 IJKLMNOPQ 1.76 ± 0.97 OPQ 

ES12(1) 13.22 ± 1.35 EFGHIJKLMNOPQ 8.27 ± 3.07 LMNOPQ 1.28 ± 1.07 Q 

GHA 36.00 ± 1.38 CDE 17.39 ± 8.24 EFGHIJKLMNOPQ 7.25 ± 4.88 MNOPQ 

L429 15.10 ± 2.26 EFGHIJKLMNOPQ 14.44 ± 2.60 EFGHIJKLMNOPQ 5.45 ± 4.25 MNOPQ 

L447 18.96 ± 1.17 EFGHIJKLMNOPQ 11.85 ± 2.90 GHIJKLMNOPQ 2.83 ± 1.77 OPQ 

SPRUCE1 18.25 ± 1.03 EFGHIJKLMNOPQ 15.75 ± 1.85 EFGHIJKLMNOPQ 4.05 ± 2.03 NOPQ 
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Table 2.S1. Continued. 

Isolate Name 0.1% terpinolene 1.0%  terpinolene 5.0% terpinolene 
Monoterpene 

Statistics 

14B 26.71 ± 0.73 DEFGHIJKLMNOP 3.50 ± 1.70 OPQ n.g. Q  

34C 7.60 ± 0.48 HIJKLMNOPQ n.g. Q n.g. Q  

429BTF 15.90 ± 0.71 EFGHIJKLMNOPQ 2.53 ± 0.91 NOPQ 0.08 ± 0.08 Q  

429DA 68.86 ± 3.87 AB 1.11 ± 1.11 Q n.g. Q  

50C 14.24 ± 2.52 EFGHIJKLMNOPQ n.g. Q n.g. Q  

90(1)MPB 11.96 ± 0.92 EFGHIJKLMNOPQ 2.52 ± 2.52 OPQ n.g. Q F: 1.437 

AZ5 11.01 ± 0.49 EFGHIJKLMNOPQ 1.11 ± 0.69 OPQ n.g. Q P: 0.005 

AZ6 26.79 ± 0.95 DEFGHIJKLMNO 1.62 ± 1.62 PQ n.g. Q DF: 104 

D900 10.19 ± 1.15 EFGHIJKLMNOPQ 0.95 ± 0.59 OPQ n.g. Q N: 913 

ES12(1) 11.36 ± 1.74 EFGHIJKLMNOPQ n.g. Q n.g. Q  

GHA 34.60 ± 0.63 CDEFGH 4.81 ± 2.89 MNOPQ n.g. Q  

L429 11.35 ± 2.04 EFGHIJKLMNOPQ 0.87 ± 0.55 Q n.g. Q  

L447 19.86 ± 0.82 EFGHIJKLMNOPQ 0.25 ± 0.25 Q n.g. Q  

SPRUCE1 18.06 ± 1.67 EFGHIJKLMNOPQ 3.09 ± 2.81 OPQ n.g. Q  
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Table 2.S1. Continued. 

Isolate Name 0.1% Chitin 1.0% Chitin 5.0% Chitin 
Chitin 

Statistics 

14B 15.57 ± 0.28 CDEFGHI 16.89 ± 1.38 CDEF 14.37 ± 1.05 CDEFGHIJK  

34C 4.41 ± 0.18 N 4.97 ± 0.47 MN 4.32 ± 0.16 N  

429BTF 6.88 ± 0.03 LMN 9.18 ± 0.68 GHIJKLMN 8.96 ± 0.10 IJKLMN  

429DA 57.71 ± 2.54 A 55.14 ± 1.36 A 40.43 ± 3.47 B  

50C 9.76 ± 0.48 GHIJKLMN 9.95 ± 0.49 FGHIJKLMN 9.03 ± 0.08 HIJKLMN  

90(1)MPB 7.47 ± 0.13 KLMN 8.87 ± 0.80 JKLMN 7.38 ± 1.06 KLMN F: 4.633 

AZ5 6.76 ± 0.18 LMN 10.08 ± 1.65 FGHIJKLMN 6.56 ± 0.16 LMN P<0.001 

AZ6 15.51 ± 1.98 CDEFGHIJ 13.65 ± 0.44 DEFGHIJKL 15.57 ± 0.68 CDEFGHIJ DF: 26 

D900 10.15 ± 0.55 FGHIJKLMN 9.59 ± 0.72 GHIJKLMN 9.77 ± 0.53 GHIJKLMN N: 127 

ES12(1) 8.10 ± 0.41 KLMN 8.18 ± 0.27 KLMN 7.05 ± 0.18 LMN  

GHA 21.05 ± 2.04 C 16.24 ± 4.36 CDEFG 17.33 ± 0.51 CDE  

L429 16.12 ± 0.20 CDEFGH 18.62 ± 0.76 CD 16.26 ± 1.50 CDEFG  

L447 9.06 ± 0.57 HIJKLMN 12.08 ± 1.08 DEFGHIJKL 8.69 ± 0.68 JKLMN  

SPRUCE1 11.56 ± 0.75 DEFGHIJKLM 11.31 ± 0.60 EFGHIJKLMN 10.00 ± 0.70 FGHIJKLMN  
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Table 2.S1. Continued. 

Isolate Name -0.5 MPa -1.0 MPa -2.0 MPa 

Osmotic 

Potential 

Statistics 

14B 93.26 ± 9.37 EFGHIJKLM 112.31 ± 1.81 CDEFGH 71.31 ± 1.12 LM  

34C 103.20 ± 3.43 EFGHIJKL 124.31 ± 1.98 BCDE 74.77 ± 2.22 JKLM  

429BTF 112.82 ± 2.29 CDEFGH 118.49 ± 1.72 BCDEFG 77.94 ± 0.93 IJKL  

429DA 122.15 ± 2.92 BCDE 127.85 ± 0.91 ABCDE 92.47 ± 2.25 EFGHIJKLM  

50C 85.96 ± 10.94 FGHIJKLM 109.82 ± 0.87 DEFGHIJ 67.82 ± 5.93 M  

90(1)MPB 99.07 ± 9.16 EFGHIJKLM 108.75 ± 3.85 DEFGHIJK 73.53 ± 2.55 LM F: 3.246 

AZ5 92.31 ± 4.08 EFG 100.27 ± 2.03 EFGHIJKLM 66.73 ± 0.34 M P<0.001 

AZ6 86.55 ± 13.46 GHIJKLM 114.56 ± 2.78 CDEFGH 72.85 ± 5.07 LM DF: 26 

D900 77.38 ± 4.94 JKLM 143.85 ± 3.65 ABC 95.98 ± 3.40 EFGHIJKLM N: 160 

ES12(1) 140.01 ± 10.86 ABCD 150.45 ± 2.49 AB 98.34 ± 1.27 EFGHIJKLM  

GHA 124.34 ± 19.39 BCDE 122.87 ± 6.14 BCDEF 81.57 ± 0.76 HIJKLM  

L429 106.72 ± 0.69 DEFGHIJKL 158.87 ± 2.52 A 116.91 ± 2.42 BCDEFG  

L447 104.18 ± 10.01 EFGHIJKL 110.84 ± 2.32 DEFGHI 75.98 ± 0.85 KLM  

SPRUCE1 96.74 ± 10.69 EFGHIJKLM 108.88 ± 1.78 DEFGHIJK 68.73 ± 0.81 M  
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Table 2.S1. Continued. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Isolate Name Sunlight 
Sunlight 

Statistics 

14B 26.04 ± 2.33 BC  

34C 7.49 ± 0.45 F  

429BTF 13.98 ± 0.65 EF  

429DA 72.14 ± 5.02 A  

50C 16.26 ± 0.10 DEF  

90(1)MPB 14.58 ± 0.81 DEF F: 73.764 

AZ5 12.79 ± 0.40 EF P<0.001 

AZ6 24.14 ± 2.00 BCD DF: 41 

D900 13.20 ± 1.16 EF N: 42 

ES12(1) 12.28 ± 0.58 EF  

GHA 31.39 ± 1.39 B  

L429 15.17 ± 0.81 DEF  

L447 19.63 ± 0.86 CDE  

SPRUCE1 19.11 ± 2.64 CDE  


