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ABSTRACT  
 
 

METABOLOMIC PROFILES OF ORYZA SATIVA AND INFLUENCE OF GENETIC 

DIVERSITY 

 

Food crops with enhanced health characteristics are being developed in 

many breeding programs. Rice (Oryza sativa L.) is an ideal candidate to study 

traits related to health due to its importance as both a global staple food and a 

model system for cereal crops. Evaluating metabolite profiles can be a high-

throughput method to identify variation in health properties of dietary 

components. Metabolomics is a useful tool to assess the influence of genetics on 

total metabolite variation in the cooked grain. Cooked rice metabolite profiles for 

10 diverse varieties were determined using ultra performance liquid 

chromatography coupled to mass spectrometry (UPLC-MS) on aqueous-

methanol extracts. A total of 3,097 molecular features were detected, and 25% of 

the features varied among the 10 varieties (ANOVA, p < 0.001). Both z-score and 

partial least squares-discriminant analysis (PLS-DA) showed variation consistent 

with subspecies-based varietal groupings, and indicated genetic control over the 

metabolite profiles. Variation in total phenolics and vitamin E was also consistent 

with varietal groupings. Genes in biochemical pathways for health-related 

metabolites were interrogated for allelic variation by single nucleotide 

polymorphisms (SNPs). SNP variation may serve as an important mechanism 
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by which genes influence metabolic variation. The influence of genetic diversity 

on the metabolite profile of the rice grain was also assessed for two interacting 

effects: genotype-environment interactions (GEI) and genotype-fermentation 

interactions (GFI). GEI was assessed by growing two diverse rice varieties in the 

field and the greenhouse. Gas-chromatography-MS (GC-MS) was used to detect 

primary metabolites from aqueous-methanol extracts of cooked rice. Genotype, 

environmental, and GEI effects were observed for many metabolites, including 

the amino acid phenylalanine, a precursor for many secondary metabolites 

related to human health. Genes associated with phenylalanine synthesis were 

screened in rice gene expression databases, and variation within and among the 

genes suggests they are a potential source of genetic variation for phenylalanine 

synthesis. Both the metabolite and gene expression patterns indicate a potential 

interaction between phenylalanine and serine synthesis. The GC-MS data 

implies the GEI effects on primary metabolism may correspond to variation in 

secondary metabolites that are predicted to affect human health. Additionally, 

human health attributes of the grain may be dependent on fermentation of rice 

metabolites by gut microorganisms. GFI effects were assessed by fermenting 

three highly similar rice varieties with Saccharomyces boulardii, a probiotic yeast. 

Metabolites were extracted and detected by GC-MS. A PLS-DA model showed 

evidence of fermentation (F) effects, but not GFI. However, when extracts were 

assessed for the ability to inhibit viability of lymphoma cells, both F and GFI 

effects were apparent. It is therefore likely that GFI effects may exist among 

diverse rice varieties, and that interactions affect the bioactivity of rice 
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metabolites. In summary, total metabolite variation is largely influenced by the 

rice genotype, including interactions with environment and fermentation. These 

data describe both heritable and non-heritable sources of variation. Thus, 

although genetic variation in rice is sufficient to establish metabolite profiles 

specific to human health characteristics, the heritability of a secondary 

metabolite-associated health trait is likely influenced by both environment and 

fermentation effects. 
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CHAPTER ONE: INTRODUCTION 
 
 

 
 
Importance of diversity in rice for humanity 

 Rice (Oryza sativa L.) is an annual cereal crop domesticated over 10,000 years 

ago in Southeast Asia from the progenitor Oryza rufipogon. The three major rice varietal 

groups, also referred to as “subspecies,” form the major unit of genetic, physiological, 

and morphological diversity in rice. The distinction between indica and japonica 

subspecies occurred several thousand years ago through divergent evolution [1,2]. The 

aus subspecies is a derivative of indica and is grown during the pre-monsoon season in 

India and Bangladesh.  

Within-subspecies diversity is attributed to breeding varieties adapted to discrete 

environments. Currently, rice is grown in both temperate and tropical climates across six 

continents. There are three major types of rice: irrigated (“paddy”), rainfed (“upland” or 

“lowland” type) and deepwater (“floating”) [3]. Rice growers choose varieties based on 

availability of natural rainfall, freshwater, the shape of the land, season of production 

(wet or dry), latitude, and presence of abiotic and biotic stresses. Today, there are 

greater than 100,000 rice accessions that highly differ in plant physiology and 

morphology (International Rice Research Institute, personal communication). Upon 

integrating molecular biology and plant breeding, thousands of genes, genetic loci, and 

genetic variants have been identified that control phenotypic diversity in rice.  

The wide diversity in rice phenotypes may include variation in health properties of 

the grain. It is an excellent staple food as a reliable source of calories. Rice has well-
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established methods for production under varying environmental conditions, and milled 

rice can be stored at room temperature for long periods of time. The most prominent 

nutrients in rice are starch, protein, lipids, free sugars, and several vitamins and 

minerals. In rice, differences in macronutrient content among varieties may relate to 

differences in health properties of the grain. For example, rice starch is either amylose or 

amylopectin, and the ratio varies based on genotype. “Waxy” rice varieties contain 

mostly amylopectin, which results in an opaque grain that is sticky and quickly digested. 

High-amylose varieties are less sticky and require more time to digest. The ratio of 

amylose:amylopectin is highly variable and controlled by a small number of genes [4,5], 

but is also affected by environmental growing conditions [6]. Rice varieties also differ in 

protein and lipid content of the grain [7,8]. In addition to basic nutrients, the grain 

contains a suite of “bioactive compounds,” which are defined as chemicals with no 

apparent nutritional value, but that affect human health [9]. The influence of plant genetic 

variation on diversity in bioactive compounds is not well understood. This study will 

evaluate the effects of genotype, environment, and fermentation on bioactive 

compounds in rice. 

  

Rice as a model system for cereals 

 Rice is unique as both an important staple food and a model system for cereal 

genetics. Model plant species require relatively simple, sequenced, and annotated 

genomes. Rice is a diploid organism with 12 chromosomes and 430 Mb of DNA. Rice 

has a sequenced and well-annotated genome. The genome for wheat (Triticum spp.), 

another staple food, is a hexaploid and can have 16,000 Mb of DNA. Rice and wheat 

contain a similar number of genes (approximately 40-50,000) and their genomes are 

syntenic [10]. Approximately 50% of rice DNA is repetitive, predominantly due to short 

repeats and transposable elements, and there is evidence of a genomic duplication and 
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reduction event in its evolution [11]. Additionally, well-established methods are used to 

transform rice for functional genetic analyses, and rice is ideal for production in both 

growth chambers and greenhouses. Rice has a relatively quick growth cycle, does not 

require vernalization, and many molecular and bioinformatics resources are available for 

gene-based investigations. Thus, rice contains the genetic and bioinformatic tools 

necessary for determining the influence of genetics on the wide diversity of traits.   

 

Enhancing the health properties of the rice grain is an important goal for breeding 

programs 

 Developing plant foods with enhanced health characteristics is a breeding target 

for many staple foods, including rice, wheat, corn (Zea mays L. ssp. mays), beans 

(Phaseolus vulgaris L.), and potatoes (Solanum tuberosum L.). The first health-focused 

breeding efforts emphasized macronutrient content, such as “high-oil” or “high-lysine” 

crops. Traditional breeding methods were successful in altering nutrient content, as seen 

in the Illinois long-term corn experiment that created varieties with higher and lower oil 

and protein content [12]. The amino acid lysine is the most limiting nutrient in rice, and a 

number of efforts sought to improve its quantity via molecular techniques [13,14]. Unlike 

macronutrient-based breeding programs, micronutrient efforts focus on preventing 

deficiencies. In rice, there are global efforts to improve iron, zinc, and vitamin A content 

in the cooked grain [15].  

 Breeding for enhanced health traits is an important goal for both breeders and 

nutritionists. Diet is important in the development of many chronic diseases, such as with 

obesity, heart disease, cancer, and diabetes [16]. Staple foods with disease-prevention 

properties are ideal because they are widely consumed. However, the extent of the 

preventative effects may differ based on the variety/cultivar of crop being consumed. For 

example, dry beans show an effect on breast cancer development in a rat model, 
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however the extent of prevention was cultivar-dependent [17]. For rice, the variation in 

amylose and amylopectin may differentially promote or protect against the development 

of diabetes, as the two types of starch vary in glycemic and insulin indices [18]. 

Furthermore, while variation in health-related properties has been documented, the 

extent of variation and heritability of the disease-prevention traits is largely unknown. 

The extent of metabolite variation has been investigated in uncooked rice [19], however 

temperature and pressure upon cooking may alter the final metabolite content in the diet. 

The present study will assess variation induced by natural genetic diversity in the grain 

of cooked rice, variation induced by environment, and variation in rice bran induced by 

fermentation with a probiotic.  

 

Genetic diversity in rice may relate to variation in health characteristics 

 Rice grain is predicted to vary in many metabolites related to health. Many 

dietary bioactive compounds produced by the plants are secondary metabolites. 

Secondary metabolites, unlike primary metabolites, are chemical compounds produced 

by plants for functions not associated with primary metabolism. For example, 

phenylpropanoids can counteract ultraviolet radiation [20], and terpenoids can protect 

against predatory herbivores [21]. Both phenylpropanoids and terpenoids are also 

important for human health [22,23,24]. While rice contains diversity in macro- and 

micronutrients, variation in secondary metabolite content has been described for only a 

few compounds. Unlike brown rice, red and purple rice are high in anothocyanin content 

and the brown/red phenotype is controlled by allelic differences in a single gene [25]. 

Like anthocyanins, many studies emphasize the importance of a single plant metabolite 

(or a single class of metabolites) to health, however they fail to address the evidence for 

synergistic, rather than independent action [26,27]. Thus, there is a need to establish 
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profiles of grain metabolites for different rice varieties to breed for more than one 

metabolite at a time.  

 

Genetic-environment interactions (GEI) may influence cooked grain metabolite 

content and reduce the heritability of health traits 

Heritable phenotypes are at the heart of all plant breeding programs. Heritability 

(narrow-sense) is defined as the proportion of phenotypic variation (0-100%) that is both 

(i) influenced by genetic factors and (ii) transmitted from parent to offspring. An example 

non-genetic factor in rice is the growing environment, whereby fertilizer application can 

increase the protein content in the grain [28], and this response is not inherited to 

succeeding plant generations. The interaction between a plant genotype and its growing 

conditions (“genotype-environment interactions,” GEI) is a common source of non-

heritable variation. GEI are defined as the change in response of genotypes across 

diverse environments, and some genotypes do better than others in specific 

environments. Genetic and environmental effects have been widely observed in cereal 

grains. A recent study implicated genotype as having significant effects on grain 

metabolite diversity in uncooked rice [29]. Another study assessed uncooked corn 

metabolite profiles from approximately 100 varieties grown in three environments and 

identified metabolite variation [30], but did not assess GEI effects. The effect of GEI on 

rice grain metabolite quantities is unclear, and GEI may affect the heritability of health-

related metabolites. Breeding efforts that seek to improve health traits, including 

bioactive compounds, may observe metabolic phenotypes with low heritability due to 

interactions between environmental and genotypic effects. 

 Evaluating the variation in primary metabolism is a critical step in determining 

the heritability of bioactive compounds. Regulatory networks for primary metabolites, 

such as negative or positive feedback loops, can influence the formation of secondary 
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metabolites [31]. Furthermore, variation among secondary metabolites is highly complex, 

and most of the potential molecular variants within a chemical class are not well 

characterized. Thus, the genetic control over secondary metabolism is difficult to assess. 

Primary metabolism may be better to predict variation in total quantities of secondary 

metabolites, as well as identifying key genetic regulatory processes. This study 

evaluated potential health properties of bioactive compounds in the cooked grain by 

assessing GEI effects on primary metabolites. 

 

Genetic-fermentation interactions (GFI) are likely to influence the health properties 

of rice 

Gut microbes were recently identified as central players in health. They are 

predominantly situated in the colon and metabolize dietary components that bypassed 

absorption in the small intestine. Colonic microbes treat these metabolites as an energy 

source, a process referred to as fermentation. Byproducts of microbial fermentation, 

short chain fatty acids (SCFAs), provide another opportunity to access nutrients from the 

diet. SCFAs may also induce cancer apoptosis and reduce colonic inflammation 

[32,33,34]. Gut fermentation is also associated with the presence of metabolites in 

plasma and urine, including varying quantities of amino acids, creatinine, citrate, plasma 

lipoproteins, and plasma glucose [35,36]. Therefore, fermentation of rice compounds 

may alter the metabolite profile absorbed into the circulatory system. 

 Rice contains components that may interact with gut microbes. Metabolites that 

stimulate colony multiplication in microorganisms are referred to as “prebiotics”. The 

endosperm also contains prebiotics, such as incompletely digested starches that are 

subsequently fermented by microbes in the large intestine and colon. Both forms of 

starch, amylose and amylopectin, act as prebiotics [37]. Unlike starch, dietary fibers 

(both soluble and insoluble) can partially evade human digestion and are fermented by 
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gut microbes [38,39]. Gut microbes break down insoluble components of rice bran, 

including cellulose, hemicelluloses, lignin, and arabinoxylan [39]. Bacteria that 

specifically ferment dietary insoluble fibers have been observed in the human colon 

[40,41]. Whole foods that are a complex mixture of fibers, such as brown rice, also show 

prebiotic effects [42,43]. Rice bran contains both insoluble and soluble fiber, and is thus 

likely to be fermented by gut microorganisms. 

Non-carbohydrate components may also act as prebiotics. Ferulic acid is often 

found in plant cell walls and is covalently bound to lignin, and therefore may directly 

affect the growth of gut microbes upon fermentation of plant cell wall components. 

Phenolic metabolites can be metabolized by gut microbes and some phenolics display 

antimicrobial effects [44]. Interestingly, pathogenic bacteria are more sensitive to the 

antimicrobial effect of phenolics than beneficial microbes [45,46,47]. Therefore, dietary 

phenolics may influence the gut microbial community to contain more beneficial bacteria. 

Because of the large amount of starch in the rice endosperm, and the large 

amount of fiber in the bran layer, it is likely that rice serves as an excellent dietary source 

of prebiotics. As with bioactive compounds, the large genetic diversity in rice is likely to 

translate to variation in the ability to act as a prebiotic. Rice may differentially stimulate 

microbial growth, and further alter the metabolite content exposed to the human body. 

This is another influence of genetic diversity on metabolites associated with human 

health. This is referred to as a genotype-fermentation interaction (GFI), whereby the 

chemical variation among rice varieties is differentially fermented by gut microbes to 

result in a metabolite profile with altered bioactivity. This report uses a probiotic and in 

vitro cancer cell culture system as a model to determine the effects of fermentation on 

rice metabolite variation, and thus can estimate the heritability of the health phenotype 

by measuring bioactivity of the extracts. 
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Research Objectives 

It is hypothesized that genotype controls a substantial proportion of variation in 

the rice grain. A second hypothesis is that variation in the health properties of the rice 

grain can be affected by interactions between the rice genotype and environmental and 

fermentation effects. The influence of genetic diversity was assessed as a single effect 

(Study 1), as well as with environmental and fermentation interactions (Study 2 and 3). 

These three studies collectively demonstrate the influence of genetics on the metabolite 

profile of the rice grain, and further show potential associations to health properties of 

the cooked grain. 

All three studies used metabolomics as a method to assess chemical diversity in 

rice. Metabolomics is a high-throughput chemical detection technique that couples 

chromatography, mass spectrometry (MS), and statistical analyses to determine 

qualitative and quantitative metabolite variation among biological tissues. The two forms 

of chromatography used in this study were liquid chromatography (LC) and gas 

chromatography (GC). LC-MS excels at characterizing secondary metabolites. LC 

columns are excellent at retaining more nonpolar compounds, including flavonoids, 

phenylpropanoids, terpenoids, anthocyanins, and lipids. GC is more sensitive at 

detecting small, polar metabolites involved in primary metabolism. This study used 

metabolomics to evaluate the effect of genetic diversity on rice metabolite profiles of the 

cooked grain (Study 1), GEI effects on cooked rice primary metabolites (Study 2) and 

GFI effects with rice bran (Study 3).  

In Study 1, LC-MS was conducted on aqueous-methanol extracts of lyophilized 

cooked rice. Ten varieties were chosen that span all three varietal groups (subspecies), 

and also contain morphological and physiological diversity in the grain, center of origin, 

growth habits, and other aspects related to metabolism. For the ten varieties, metabolite 

profiles were evaluated for two types of bioactive compounds: phenolics and vitamin E. 



 

9 
 

The metabolite data was integrated with genetic information to determine the influence 

of genotype on the metabolite profile. 

In Study 2, two varieties were grown in two environments to estimate the 

potential for GEI to alter the heritability of bioactive compounds. Two varieties were 

chosen based on large differences in metabolite profiles and based on data from Study 

1. The varieties were grown in two highly different environments, the field and the 

greenhouse, and cooked rice was assessed for GEI effects on primary metabolites. 

Amino acids were evaluated in the context of a genetic network to determine genes that 

may interact with phenylalanine, a precursor to secondary metabolite synthesis. The 

data was then supported by assessing co-expression information from rice-specific RNA 

databases for the interacting genes. 

In Study 3, three rice varieties were screened for GFI effects on the metabolite 

profiles and in an assay that evaluates bioactivity of the rice extracts on cancer cells. 

The metabolite profile was determined using a modified extraction technique to detect 

both primary and secondary metabolites by GC-MS. Only the bran layer was used to 

concentrate the bioactive compounds, which are mostly bran components, and to better 

represent the plant material exposed to gut microbes. Rice bran was fermented by 

Saccharomyces boulardii, a probiotic yeast with well-characterized health benefits. Both 

non-fermented and fermented rice bran extracts were assessed for an effect on 

lymphoma cell viability, and GFI effects were observed by evaluating lymphoma cell 

viability for each of the three varieties. 

 These studies explain the influence of genetic diversity on metabolites in the rice 

grain, with an emphasis on metabolites related to health. There are decades of evidence 

for beneficial effects of functional foods and bioactive compounds. Thus, the potential to 

prevent disease lies beyond the basic supply of macro- and micronutrients, but more 

specifically the type (and potentially the quantity) of phytochemicals or metabolites in the 
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diet. Incorporating bioactive-compound based health traits into rice breeding programs 

will require a better understanding of the genetic control and heritability underlying the 

production of these compounds in the grain. 
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SUMMARY 

Emerging evidence supports that cooked rice (Oryza sativa L.) contains 

metabolites with biomedical activities, yet little is known about the genetic diversity that 

is responsible for metabolite variation and differences in health traits. Metabolites from 

ten diverse varieties of cooked brown rice were detected using ultra performance liquid 

chromatography coupled to mass spectrometry. A total of 3,097 compounds were 

detected, of which 25% differed among the ten varieties. Multivariate analyses of the 

metabolite profiles showed that the chemical diversity among the varieties cluster 

according to their defined subspecies classifications: indica, japonica, and aus. 

Metabolite-specific genetic diversity in rice was investigated by analyzing a collection of 

single nucleotide polymorphisms (SNPs) in 91 genes from biochemical pathways of 

nutritional importance. Two types of bioactive compounds, phenolics and vitamin E, 

contained nonsynonymous SNPs and SNPs in the 5‟ and 3‟ untranslated regions for 

genes in their biosynthesis pathways. Total phenolics and tocopherol concentrations 

were determined to examine the effect of the genetic diversity among the ten varieties. 

Per gram of cooked rice, total phenolics ranged from 113.7 to 392.6 μg (gallic acid 

equivalents), and total tocopherols ranged between 7.2 and 20.9 μg. The variation in the 

cooked rice metabolome and quantities of bioactive components supports that the SNP-

based genetic diversity influenced nutritional components in rice, and that this approach 

may guide rice improvement strategies for plant and human health. 
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INTRODUCTION 

 Rice (Oryza sativa L.) is a valuable model system for cereal plant genetics due 

to its sequenced and annotated genome, capacity for transformation, and similarity to 

other major cereal crop species. Most importantly, rice is a vital source of calories as a 

food crop. Cereals are the primary source of energy for over 50% of the global 

population, of which rice is the third largest contributor [1]. The global dependence on 

rice has led to the development of thousands of varieties with large genetic and 

morphological diversity. Rice is structured into several well-defined gene pools via the 

subspecies classification of indica, japonica, and aus. This classification was recently 

confirmed with the genome resequencing of 20 representative varieties and subsequent 

documentation of single nucleotide polymorphisms (SNPs), referred to as the OryzaSNP 

set [2]. Across and within each classification, rice contains significant diversity in plant 

architecture and growing habits [3], and in grain phenotypes such as width, weight, 

cooking properties, aroma, and texture [4]. The extensive phenotypic and genotypic 

variation within the OryzaSNP set makes these varieties a powerful tool to study rice 

chemical diversity such that methods can be developed to enhance health promoting 

qualities of rice. 

Metabolites present in the rice grain have demonstrated human disease 

protective activities following dietary intake, and also have beneficial effects on the 

immune system [5-7]. Specific rice components, such as phenolics (mono- and 

polyphenols), vitamin E (tocopherols and tocotrienols), phytosterols, and linolenic acid, 

have nutrient value to human health [8-11]. Phenolic bioactivity is largely due to the 

efficiency of donating hydrogen atoms to oxygen radicals [12], a process associated with 

anticancer activity [13]. Unlike phenolics, tocopherols are lipid-soluble antioxidants 

incorporated into lipoproteins, and are predicted to counteract the inflammatory effects of 

lipoprotein oxidation in blood [14]. While brown rice is an efficient source of both 
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phenolics and tocopherols, little is known regarding the genetic basis for the variation in 

type and quantity of these components in cooked rice across genetically diverse 

varieties. 

The functional impact of SNP-derived genetic variation in pathways that regulate 

the production of dietary bioactive compounds in rice is also unclear. Metabolomics, the 

comprehensive analysis of low-molecular-weight compounds in biological samples, 

provides a high-throughput and sensitive approach to assess the outcome of different 

genotypes on metabolites in the cooked grain. New evidence supports the utility of this 

technique to capture the complexity of the rice metabolome and to evaluate changes in 

metabolic responses [15,16]. However, there has been minimal integration of the rice 

metabolomic signature with genomic data sets and the use of this information to assess 

components of dietary importance. A systems biology approach was applied herein to 

reveal the synthesis and metabolic regulation of nutritionally important phytochemicals, 

by profiling multiple rice varieties for pathway-specific SNPs and metabolomics. 

 

 

 

MATERIALS AND METHODS 

Rice materials 

Rice seeds of ten OryzaSNP accessions were acquired from the International 

Rice Research Institute (IRRI, Los Baños, Philippines) and are listed in Table 2.1. Rice 

plants were grown at the Dale Bumpers National Rice Research Center in Stuttgart, 

Arkansas to produce seed used in this study. The grain was isolated from the husk using 

a manual stone dehusker, left unpolished, and then cooked by boiling in a 2:1 volume of 

water/rice ratio for 15 minutes or until soft. Cooked brown rice was lyophilized over a 

period of 48 hours immediately after cooking and stored at -80°C until further analysis. 
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Rice processing and extractions 

Metabolites in cooked rice were extracted by first grinding rice to a powder with a 

mortar and pestle in liquid nitrogen. One mL of ice-cold methanol/water (4:1) was added 

to 100 mg of rice powder. Samples were incubated for one hour at -80°C to precipitate 

protein, centrifuged at 1500 × g for five minutes at 4 °C, and the supernatant was 

collected and stored at -20°C until further analysis. 

 

Ultra Performance Liquid Chromatography-Mass spectrometry  

 Rice extract separation was performed using an Acquity UPLC® controlled with 

MassLynx software, version 4.1 (Waters, Milford, MA, USA). Samples were held at 8°C 

in a sample manager during the analysis to minimize evaporation. The complete sample 

set was randomized and profiled in two independent iterations. Sample injections of 2 µL 

were made to a 1.0 x 100 mm Waters Acquity UPLC® BEH C8 column with 1.7 µm 

particle size held at 40°C. Separation was performed by reverse phase chromatography 

at a flow rate of 0.14 mL/min. The eluent consisted of water and methanol (Fisher, 

Optima LC-MS grade) supplemented with formic acid (Fluka, LC-MS grade) in the 

following proportions: Solvent A = 95:5 water:methanol + 0.1% formic acid; Solvent B = 

5:95 water:methanol + 0.1% formic acid. The separation method is described as follows 

(25 minutes total): 0.1 min hold at 30% B, 1.9 min linear gradient to 70% B, ten min 

linear gradient to 100% B, 6 min hold at 100% B, 0.1 min linear gradient to 30% B, and 

6.9 min hold at 30% B for column equilibration prior to the next injection.  

Eluate was directed to a Q-TOF Micro quadrupole orthogonal acceleration time-

of-flight mass spectrometer (Waters/MicroMass, Millford, MA, USA) using positive mode 

electrospray ionization (ESI+). Mass data were collected between 50 and 1000 m/z at a 

rate of one scan per second. The voltage and temperature parameters were tuned for 

general profiling as follows: capillary = 3000 V; sample cone = 30 V; extraction cone = 
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2.0 V; desolvation temperature = 300°C; and source temperature = 130°C. Mass 

spectral scans were centered in real time producing centroid data. Leucine Enkephalin 

was infused via a separate orthogonal ESI spray and baffle system (LockMass) which 

allowed ions to be detected for a single-second scan every ten seconds in an 

independent data collection channel. The standard mass was averaged across ten 

scans providing a continuous reference for mass correction of analyte data.  

  

Allele frequencies 

 Allele frequencies were calculated for each SNP site based on the 20 varieties of 

the OryzaSNP set (www.oryzasnp.org). Base calls for each SNP were determined using 

TIGR Pseudomolecule v5 in the OryzaSNP database. Frequencies were determined by 

evaluating the proportion of adenine, guanine, cytosine, and thymine nucleotides among 

the 20 varieties for each SNP site. Unresolved nucleotides were reported as “N.” The 

number of nonsynonymous SNPs for vitamin E varied depending on the gene model, 

which are derived by determining all possible combinations of introns and exons. Genes 

in the vitamin E pathway contained either two, three, or four nonsynonymous SNPs 

based on different gene models, and all gene models were analyzed for allele frequency 

calculations. 

 

SNP Dendrogram  

An unweighted, unrooted neighbor-joining tree with 1000 bootstraps was 

constructed using DARwin (http://darwin.cirad.fr/darwin). Inputs for each variety 

consisted of a collection of base calls specific to either the phenolic or vitamin E 

pathway. For each pathway, SNP sites with greater than 50% unknown nucleotides were 

not included in the analysis, and varieties with greater than 50% missing information 

were also removed. 
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Total Phenolics Assay 

 Total phenolic concentrations in rice extracts were determined as previously 

described [40] with minor modifications. Briefly, 150 μL of Folin-Ciocalteu reagent/water 

(1:9) was added to 35 μL of rice metabolite extract and was incubated at room 

temperature for five minutes. Sodium bicarbonate (115 μL of a 7.5% solution) was then 

added and samples were incubated at 37°C for 30 minutes. Samples were allowed to 

cool to room temperature and absorbance was measured at 765 nm. Metabolite 

extractions were performed in triplicate. Total phenolics were calculated using a 

standard curve generated using a series of gallic acid concentrations and were 

expressed as micrograms of gallic acid equivalents (GAE) per gram of rice. 

 

Vitamin E quantification 

Tocopherol homologs, α-, γ-, and δ-tocopherols, were purchased from Cayman 

Chemicals (Ann Arbor, MI;  98% purity). Tocotrienol homologs, α-, γ-, and δ-

tocotrienols, were purchased from Matreya Biochemicals (Pleasant Gap, PA;  97% 

purity). Methanol and acetonitrile were HPLC grade from Fisher Scientific (Fair Lawn, 

NJ).  

 Tocopherols (α-, γ-, and δ-tocopherols) and tocotrienols (α-, γ-, and δ-

tocotrienols) were determined using HPLC (Waters, Milford, MA) based on the method 

described in [41] with modifications. The HPLC was equipped with a Waters 2695 

Alliance Separation Module, a Waters 2996 Photodiode array detector (PDA), a Waters 

474 Scanning Fluorescence detector, and EmpowerTM 2 software for data acquisition. 

The cooked and lyophilized rice powders were extracted with 100% methanol twice at 

the bran to solvent ratio of 1 to 33 (w/v). For each extraction, the mixture was flushed 

with nitrogen gas and shaken (300 rpm) for 2h at room temperature. After centrifugation 
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at 2000 × g for ten minutes at room temperature, the supernatants were pooled and 

filtered through a 0.45 μm polyvinylidene fluoride (PVDF) membrane (Waters, Milford, 

MA), injected through a Symmetryshield RP C-18 guard column (3.5 μm, 3.0 x 20 mm; 

Waters) and separated on a Symmetryshield RP C-18 analytical column (3.5 μm, 3.0 x 

150 mm; Waters). The filtrate was eluted with a gradient mobile phase consisting of  (A) 

100% acetonitrile, (B) 100% methanol, and (C) 1% acetic acid in 50 % methanol at 0.5 

mL / min at 25ºC. The gradient was used as follows: 0-1 min, 45% A, 35% B, and 20% 

C; 1-2 min, linear gradient to 45% A, 45% B, and 10% C; 2-16 min, linear gradient to 

30% A, 65% B, and 5% C; 16-20 min, linear gradient to 25% A and 75% B; 20-22 min, 

linear gradient to 100% B; 22-25.4 min, isocratic at 100% B; 25.4-25.5 min, linear return 

to 45% A, 35% B, and 20% C; 25.5-35 min, isocratic at 45% A, 35% B, and 20% C to re-

equilibrate. The tocopherol and tocotrienol homologs were detected by the fluorescence 

detector at the excitation and emission wavelengths of 298 and 328 nm, respectively. 

The peak identification of tocopherols and tocotrienols was performed by comparing 

their retention time with those of standards. The concentration of each tocopherol and 

tocotrienol homolog was calculated using the standard curve plotted as peak area 

against a series of concentrations of each tocopherol and tocotrienol homolog and 

indicated as µg/g rice. The coefficient of determinations (R2) ranged from 0.9962 to 

0.9999. The β- and γ-forms of tocopherols and tocotrienols are isomers and co-elutes on 

reversed-phase C18 columns. Rice bran contains only trace amounts of β-form, 

nevertheless, the concentrations of γ-forms of tocopherols and tocotrienols in bran 

reflect the sum of β- and γ-forms in this study. 

 

Statistical Analysis 

Chromatographic and spectral UPLC-MS peaks were detected, extracted, and 

aligned using MarkerLynx software (Waters, Millford, MA, USA). Chromatographic peaks 



 

21 
 

were detected between 0 and 14 min with a retention time error window of 0.1 min. Apex 

track peak detection parameters were used, automatically detecting peak width and 

baseline noise. No smoothing was applied. To reduce the detection and inclusion of 

noise as data, an intensity threshold value of 40 counts and a noise elimination value of 

6 were used. Mass spectral peaks were detected between 50 and 1000 m/z with a mass 

error window of 0.07 m/z, and the de-isotoping function was enabled. A matrix of 

features as defined by retention time and mass was generated, and the relative intensity 

(proportional to quantity) of each feature (metabolite), as determined by area of the 

peak, was calculated across all samples. Potential effects of instrument variability were 

minimized by normalizing the total ion current (TIC) among all samples such that the 

summation of all feature intensities in each sample yielded a constant value. 

Furthermore, the relative intensity of each feature was averaged over the two replicate 

injections preformed for each sample to provide a reliable data matrix with minimal 

technical artifacts. Mean centering was applied, and the data matrix was analyzed in 

SIMCA-P+ v. 11.5 (Umetrics, Umeå, Sweden). Pareto scaling was applied to the data, 

and a score plot was generated to describe the data using partial least squares 

discriminant analysis (PLS-DA). The PLS-DA model was validated by testing new PLS-

DA models built from 20 random permutations of the data. Significant UPLC-MS-

detected metabolites were determined using a Kruskal-Wallis test on relative intensities 

of features with identical masses and retentions times with a threshold value of P < 

0.001 and n=5 replicates per variety. Z-scores were calculated for each metabolite 

based on the mean and standard deviation of the reference variety Nipponbare. 

Statistical significance for total phenolics and vitamin E analyses was determined by 

ANOVA with a Tukey post-test and a threshold value of P < 0.05. 
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RESULTS  

Metabolite variation in rice varieties and subspecies 

A comparison of metabolite profiles was conducted to determine the extent of 

variation in cooked brown rice across ten varieties from the OryzaSNP set (Table 2.1). 

The subset of OryzaSNP varieties used in this study represent the extensive phenotypic 

and genetic diversity present in the three subspecies (aus, japonica, indica) of 

consumed rice varieties [2]. They also represent different levels of improvement through 

breeding [3]. Metabolites from cooked brown rice were extracted in 80:20 

methanol:water and detected by ultra performance liquid chromatography coupled with 

mass spectrometry (UPLC-MS). A metabolomic profile for each rice variety was resolved 

as a sum of its features, and each feature (assumed here to be a unique metabolite) 

consists of a retention time, mass, and quantity. Across the ten varieties, 3,097 

metabolites were detected, and these metabolites were distributed across a wide range 

of molecular masses Figure 2.1A). Approximately 25% (763 out of 3,097) of the 

metabolites differed in quantity among the ten varieties (Kruskal-Wallis test, P < 0.001) 

(Figure 2.1B). A z-score analysis applied to the set of 763 metabolites showed extensive 

metabolite variation relative to Nipponbare, a Japanese variety with a sequenced 

genome (Figure 2.1C). A sum of squares for the 763 z-scores showed that the 

metabolite profiles of all nine varieties were different from the profile of Nipponbare, and 

that profiles of indica subspecies varieties show larger differences from Nipponbare than 

did japonica subspecies profiles (Table 2.2).  

Based on a partial least squares discriminant analysis (PLS-DA), metabolite 

profiles cluster according to subspecies (indica, japonica, aus) (Figure 2.2A). The first 

component of the PLS-DA model explained approximately 64% of the variation, and the 

second component explained an additional 35% of the variation. Varieties were then 

clustered into the indica, japonica, and aus subspecies, and 194 metabolites were 
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determined to be significantly different among the three subspecies (Kruskal-Wallis test, 

P < 0.001) (Figure 2.2B). Hierarchical clusters were determined using Euclidian 

distances, and the metabolite profiles of the aus varieties were nearer to the japonica 

than the indica varieties. The differences in the chemical profiles among the ten varieties 

suggest the potential for variation in metabolites important for human nutrition. 

 

SNP analysis reveals allelic differences in phytochemical pathways of nutritional 

importance in rice 

Relevant metabolic pathways, including those involved in the biosynthesis of 

phenolics, vitamin E, phytosterols, and linolenic acid, were chosen for functional 

genomic analysis of SNPs across the diverse rice varieties. The RiceCyc database 

(www.pathway.gramene.org/rice) was used to align the four classes of metabolites to 

biochemical pathways, and then to identify genes from the associated chemical 

reactions (Table 2.3). Pathways for phenolics combined both phenylpropanoid and 

flavonoid synthesis due to conservation of structure and function, and also included 

isoflavone-7-O-methytransferase 9 and leucodelphinidin biosynthesis genes that 

synthesize tricin, a phenolic unique to rice [17]. Vitamin E genes encode components of 

the tocopherol and tocotrienol synthesis pathways, which includes α-, β-, γ-, δ-

tocopherol and tocotrienol-related enzymes, as well as tocopherol O-methyltransferase 

and homogentisic acid geranylgeranyl transferase genes [18]. Genes involved in 

phytosterol synthesis were derived from sterol synthesis pathways [19], and linoleic acid 

genes were derived from lipid desaturation pathways [20]. Genes were screened for 

SNPs using the rice OryzaSNP database (www.oryzasnp.org), which classified rice 

SNPs based on up to four gene models. 

SNPs, base calls, and SNP classifications were associated to their respective 

class of metabolites by cross-referencing locus identifiers to the metabolite pathway 
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database. A number of SNPs were detected in pathways associated with synthesis of 

metabolites important to human health (Table 2.4). SNPs in gene pathways responsible 

for the synthesis of phenolics were evenly distributed among synonymous, 

nonsynonymous, and intron classes. Phenolics also contained a greater amount of 

nonsynonymous SNPs per gene than phytosterols, vitamin E, or linolenic acid, and had 

a higher probability of a change in enzymatic function or regulation. One large-effect 

SNP is predicted to alter the function of the ferulate 5-hydroxylase enzyme (gene: 

LOC_Os06g24180) and was classified as potentially altering regular intron splicing 

events. A larger percentage of SNPs in the sterol, vitamin E, and linoleic acid pathways 

were within introns compared to phenolics. 

To identify the unique nonsynonymous SNPs in our rice collection, allele 

frequencies were calculated for genes involved in the phenolics and vitamin E 

biochemical pathways (Figure 2.3). Only two alleles existed for each of the 28 SNPs. 

Seven SNPs (25%) had one variety that contained its own unique allele. The remaining 

21 SNPs (75%) had alleles that were shared among multiple varieties, and the average 

allele frequency per SNP was 0.52. The subset of 21 SNPs represent rice metabolic 

pathways that are common to a cluster of varieties rather than solitary occurrences. 

 

SNP diversity predicted subspecies variation in phenolics and vitamin E content 

To further characterize the genetic control of nutritionally important metabolites, a 

dissimilarity matrix was constructed using a concatenated sequence of SNPs specific to 

phenolics or vitamin E pathways. The phytosterol and linolenic acid pathways had low 

SNP abundance, and therefore low variation (data not shown). Clustering based on 

SNPs in both phenolic and vitamin E pathways grouped the rice varieties according to 

the indica, japonica, and aus subspecies classifications (Figure 2.4A, 1.5A). The total 

phenolic concentration differed among the ten varieties (Figure 2.4B). The overall mean 
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total phenolic concentration was 256 μg of gallic acid equivalents (GAE) g-1 of cooked 

rice. The variety Dular had the highest total phenolics with a mean of 393 μg GAE g-1 

cooked rice. IR64 and Nipponbare had the least amounts with means of 114 and 136 μg 

GAE, respectively. The mean total phenolics was 179 μg GAE for the indicas, 288 μg 

GAE for the japonicas, and 302 μg GAE for the aus groups. 

The SNP diversity in vitamin E-relevant genes was larger for indicas than 

japonicas (Figure 2.5A). For vitamin E, the low mean number of nonsynonymous SNPs 

per gene predicted high conservation in total rice vitamin E concentration. The ten 

varieties were analyzed for total tocopherols in the cooked grain, as well as the 

contribution by each of the main constituents: α-, γ-, and δ- tocopherol. N22 had the 

lowest levels of total tocopherols at 7.2 μg g-1 of cooked rice, and M202 had the highest 

concentration at 20.9 μg g-1 (Figure 5B). Because α-and γ-tocopherols vary in bioactivity, 

the contribution of α- and γ- to the total tocopherol pool was determined as a ratio of α:γ 

for each variety (Figure 2.5C). The levels of δ-tocopherol were consistently low and had 

a negligible contribution to total vitamin E. The ratio of α:γ significantly differed among 

the ten varieties. The indica varieties contained the highest levels of γ-tocopherols with a 

mean α:γ ratio of 0.75, whereas the japonica varieties contained higher levels of α-

tocopherols with a mean ratio of 6.6. The variety Dular had the smallest α:γ ratio with a 

value of 0.27, and the Nipponbare variety had the largest α:γ ratio of 18.8. The 

tocopherol ratios of the two aus varieties (Dular and N22) were very different. None of 

the SNPs collected in Table 2.3 could directly explain the variation in tocopherol 

components. SNP diversity was smaller for predicting levels of vitamin E when 

compared to phenolics, however there was clear variation in the quantity of phenolics, 

and both the type and quantity of vitamin E metabolites among the ten rice varieties. 
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DISCUSSION 

 The diversity in genetic and morphological rice traits from the OryzaSNP set was 

interrogated herein by applying metabolomic analysis to the cooked grain. Previous 

studies have established metabolite profiles for crop varieties [21,22], however 

metabolites were extracted from raw plant material. The screening of metabolites in 

cooked rice enhanced the dietary relevance of our findings, as the nutritional differences 

detected resembles actual metabolite intake following heat and moisture. An open-

boiling technique was standardized for this study because of the global utilization of this 

cooking method. 

Recent reviews emphasize the need for sustainable, breeding-based approaches 

to enhance plant food nutritional quality [23,24]. An integrated genomic and metabolomic 

method has been proposed as a useful measure to improve food crops [25]. A number 

of studies successfully correlated genomics with metabolomics, such as in the 

associations of quantitative trait loci with metabolite profiles in Arabidopsis [26] and of 

restriction fragment length polymorphism markers with nuclear magnetic resonance-

generated metabolite profiles in uncooked rice [22]. An analysis of SNPs provides a new 

functional relevance for the differences detected in the rice metabolome. The integration 

of SNP-based bioinformatics with metabolomics as conducted herein may now be 

utilized to assist in selection of rice varieties with enhanced nutritional and health-

promoting value. 

The extensive metabolite variation in different varieties of cooked rice was 

approximately 25% of the total metabolites detected. The z-score analysis using 

Nipponbare as a reference was a compelling example of the metabolite diversity among 

the varieties (Figure 1.1C). Z-scores were calculated to determine metabolites that vary 

between one variety and a reference variety. An excessively high or low z-score (roughly 

higher or lower than five) usually indicated a metabolite present in one variety and 
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absent in another, and may provide direction in identifying unique metabolites. The sum 

of squares of the z-scores suggested that the indica varieties were more different from 

Nipponbare than the japonica or aus, and was expected given that Nipponbare is a 

japonica variety. 

Another strong link between the rice genome diversity and cooked rice 

metabolome was the PLS-DA model that clustered the cooked rice metabolome for each 

variety according to subspecies (Figure 2.2A). Genomewide, aus is more homologous to 

the indica subspecies [2], however N22 (aus) grouped closely with the japonicas 

following metabolite analysis with both z-scores and the PLS-DA. The hierarchical 

clustering of the 763 metabolites that represent total metabolite variation also grouped 

the aus varieties closer to the japonicas than the indicas. This contrast between 

observed genomic homology and metabolomic profiles is likely due to introgressions of 

metabolite-related loci into the aus background. Such introgressions are frequent in rice 

[27], and have been utilized for genetic association strategies to identify loci important 

for synthesizing trait-specific metabolites in Arabidopsis [28] and tomato [29]. 

The genes in nutritionally important biochemical pathways contained SNP 

variation (Figure 2.4A, 1.5A) that associated with the UPLC-MS-derived metabolome for 

cooked rice (Figure 2.2A). SNPs with functionally-relevant classifications were found in 

genes in the phenolics, vitamin E, phytosterol, and linolenic acid pathways, with a larger 

mean number of SNPs per gene in the phenolics and vitamin E pathways. The total 

number of nonsynonymous SNPs may be larger than described in Table 2.4 because 

many genes and enzymes for key biochemical reactions remain unknown. Furthermore, 

our SNP analysis was limited to a subset of rice varieties that were diverse but represent 

a small proportion of the total rice genetic diversity. Additional types of genetic variation, 

such as insertions, deletions, and translocations, may explain the lack of evidence for 

individual SNP associations with metabolite variation. 
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The SNP homology in the phenolic and vitamin E pathways for the ten rice 

varieties coincided with the indica, japonica, and aus subspecies classifications. 

However, the phytosterol and linolenic acid pathways lacked sufficient information to 

function in a SNP homology-based model. The SNP dendrograms for phenolic and 

vitamin E related metabolites predicted that a given rice variety will be more similar to a 

variety of the same subspecies than of another subspecies. It can be postulated that 

distinct haplotypes for the synthesis and regulation of nutritionally important 

phytochemicals are present in select rice varieties. Thus, it is plausible that a SNP 

haplotype was responsible for a given variety‟s metabolite profile, and that haplotype 

breeding approaches could be used to optimize the metabolite profiles of rice for 

nutritionally important health traits. 

The total phenolic concentration varied both among and within subspecies. In 

general, the japonica varieties contained a higher level of total phenolics (288 μg GAE g -

1) than the indicas (179 μg GAE g-1). However, Nipponbare contained a lower 

abundance of phenolics (136 μg GAE g-1) than its japonica counterparts, and Zhenshan 

appears an indica-outlier due to its higher concentration of total phenolics (256 μg GAE 

g-1) than other indicas. This was consistent with the z-score analysis, in which Zhenshan 

contained the largest difference from Nipponbare (Table 2.2). N22 (aus) also grouped 

with the indicas, and both the z-score and PLS-DA models grouped N22 closer to 

Nipponbare (japonica) than Dular (aus). The solvents used herein are known to extract 

phenolic compounds from rice [30,31], and therefore a proportion of the variation 

observed in the z-score and PLS-DA models was likely due to differences in phenolics. 

The total quantity of tocopherols per gram of rice showed slight variation among 

the ten varieties, and the observed range in quantities were similar to those found in 

various plants and plant tissues [32]. The α and γ forms of tocopherol have different 

bioactive functions and metabolism [33-35]. The tendency for the α:γ ratio to link a 
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variety within its subspecies is consistent with the observed trends in both the 

metabolome (Figure 2.2A) and total phenolics (Figure 2.4B) analyses, however specific 

varieties also deviate from the larger subspecies trends (Figure 2.5C). For the α:γ ratio, 

N22 (aus) clusters closer to all japonicas except for Nipponbare (japonica). Dular (aus) 

clusters with the indicas, which all contain a lower ratio of α:γ tocopherol than the 

japonicas. SNPs were not able to explain the indica/japonica division in α:γ ratios, as 

none were identified in γ-tocopherol-O-methyltransferase (γ-TMT), the enzyme that 

converts γ- to α-tocopherol by the addition of a methyl group. Enhanced γ-TMT 

expression has been shown to increase the α:γ ratios in various plants and tissues, but 

does not alter the overall quantity of tocopherols [36-38]. Thus, the variation among the 

ten rice varieties may be due to differential γ-TMT gene expression rather than a SNP-

driven change in function. Furthermore, the α:γ tocopherol ratios were consistent with 

observed ratios of tocotrienols (data not shown), which further supports the importance 

of the γ-TMT in determining the overall composition of vitamin E. SNPs were not 

identified in the 5‟ untranslated region of the rice γ-TMT gene, and therefore it is likely 

that a diverse set of vitamin E gene regulators exists for tocopherol accumulation in rice. 

The identification of the genetic basis for important agronomic traits, such as 

yield and abiotic/biotic stresses has led to considerable advances in accumulating 

desirable traits into rice breeding programs. The incorporation of nutritional traits, 

however, has been generally overlooked due to an emphasis on total plant yield [39]. 

Here, the SNP findings provide evidence for regular, systematic evolution at loci 

important to nutritional metabolite synthesis. A deeper understanding of the genetic 

basis for the type and quantity of metabolites in the rice grain may allow for breeding 

plants that contain an optimal metabolite profile for enhanced health attributes. 
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FIGURES 

 

 

 

 

Figure 1.1. Metabolite detection across ten rice varieties. (A) Rice metabolites were 

detected by UPLC-MS and all 3,097 metabolites were sorted by size. (B) The 763 

metabolites that differ among the ten varieties were dispersed across a similar mass 

distribution as the total metabolite profile. (C) Z-score analysis on the 763 metabolites 

was conducted using Nipponbare (japonica) as a reference. Indica, japonica, and aus 

varieties are shown in red, blue, and brown, respectively. A total of 32 data points with a 

z-score of greater than 40 were outside of the area shown. 
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Figure 2.2. Subspecies analysis of the cooked rice metabolome. (A) PLS-

discriminant analysis was conducted on ten rice varieties and was colored according to 

subspecies as indica (red), japonica (blue), and aus (brown). (B) The 194 metabolites 

that differ among the three subspecies were shown in a heat map whereby each cell 

represents a single metabolite. Metabolites were arranged according to retention time 

(0.5-12 minutes), and colors indicate relative quantities. Hierarchical clustering was 

performed using Euclidean distances. (C) Validation of the partial least squares 

discriminant analysis. The PLS-DA model for subspecies was validated using 20 

permutations. Values for R2 (0.7) and Q2 (0.55) denote original and predictive data, 

respectively. A positive value of Q2 when R2 is zeros (x-axis=0) would suggest overfit in 

the model. 
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Figure 2.3. Allele frequencies within the OryzaSNP set for nonsynonymous SNPs 

in genes for vitamin E, phenolic, and phytosterol pathways. Allele frequencies are 

represented as the number of SNPs in common for each of the 20 varieties of the 

OryzaSNP set. X-axis labels correspond to the rice locus identifier for a given SNP. 
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Figure 2.4. Variation in total phenolics concentrations in cooked rice. (A) An 
unrooted, neighbor-joining tree was developed based on total SNPs identified in the 
phenolic biochemical pathways. Clouds were colored according to subspecies: indica 
(red), japonica (blue), and aus (brown). (B) Total phenolics was measured in gallic acid 

equivalents (GAE) using Folin-Ciocalteau reagent. The letters a, b, and c denote 
significance (ANOVA, Tukey post-hoc, P < 0.05), and values are expressed as the mean 

± the standard error of the mean.  
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Figure 2.5. Variation in vitamin E concentrations in cooked rice. (A) An unrooted, 

neighbor-joining tree was developed based on total SNPs identified in the vitamin E 
synthesis pathway. Clouds were colored according to subspecies: indica (red), japonica 
(blue), and aus (brown). (B) The total quantities of tocopherols (α, γ, and δ) per gram of 
rice were determined. (C) Ratios of α:γ tocopherol were calculated for each variety. 
Values are expressed as the mean ± the standard error of the mean, and statistical 
groupings denoted by the letters a, b, and c (ANOVA, Tukey post-hoc, P < 0.05). 
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TABLES 

Table 2.1 Rice materials 

Variety Country 
of Origin 

Subspecies IRGC 
Accession 
ID 

Breeding 
Classification 

Traits of interest 

Azucena Philippines japonica 117264 Landrace Fragrant, tall stature, 
unique root structure 

Dular India aus 117266 Landrace Drought resistant, 
seed-shattering 

Dom-Sufid Iran japonica 117265 Landrace Similar to Basmati 
rice (aromatic) 

IR64-21 Philippines indica 117268 Advanced Widely grown, 
semidwarf, high 
yielding, abiotic and 
biotic stress 
tolerance 

M 202 United 
States 

japonica 117270 Advanced Erect leaf type, 
modern variety 

Minghui 63 China indica 117271 Advanced Parent used in hybrid 
breeding 

Moroberekan Guinea japonica 117272 Landrace Abiotic and biotic 
stress tolerance 

N22 India aus 117273 Landrace Red seed coat, 
stress tolerance 

Nipponbare Japan japonica 117274 Advanced First sequenced 
variety, short grain 
type 

Zhenshan 
97B 

China indica 117280 Advanced Parent used in hybrid 
breeding 
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Table 2.2. Sum of squares of z-scores for 763 metabolites using Nipponbare 

(japonica) as a reference 

Variety Class Sum of Squares 

Zhenshan indica 49,099,871 
Minghui indica 6,683,571 
IR64 indica 4,709,880 
Dom Sufid japonica 568,329 
Azucena japonica 273,295 
M 202 japonica 79,634 
Moroberekan japonica 31,872 
Dular aus 71,600 
N22 aus 19,577 
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Table 2.3. Genes associated with linolenic acid, phenolics, phytosterol, and 

vitamin E synthesis 
LocusID Enzymatic activity SNPID Class Pathway 

LOC_Os07g49310 omega-3 fatty acid desaturase TBGI337504 Linoleic acid lipid desaturation 
LOC_Os07g49310 omega-3 fatty acid desaturase TBGI337502 Linoleic acid lipid desaturation 
LOC_Os08g34220 omega-6 fatty acid desaturase TBGI358296 Linoleic acid lipid desaturation 
LOC_Os08g34220 omega-6 fatty acid desaturase TBGI358297 Linoleic acid lipid desaturation 
LOC_Os08g34220 omega-6 fatty acid desaturase TBGI358298 Linoleic acid lipid desaturation 
LOC_Os08g34220 omega-6 fatty acid desaturase TBGI358299 Linoleic acid lipid desaturation 
LOC_Os08g34220 omega-6 fatty acid desaturase TBGI358300 Linoleic acid lipid desaturation 
LOC_Os08g34220 omega-6 fatty acid desaturase TBGI358301 Linoleic acid lipid desaturation 
LOC_Os02g48560 omega-6 fatty acid desaturase, 

endoplasmic reticulum isozyme 2, 
putative, expressed 

 no SNP Linoleic acid lipid desaturation 

LOC_Os03g18070 omega-3 fatty acid desaturase  no SNP Linoleic acid lipid desaturation 
LOC_Os07g23410 omega-6 fatty acid desaturase, 

endoplasmic reticulum isozyme 2, 
putative, expressed 

 no SNP Linoleic acid lipid desaturation 

LOC_Os07g23430 omega-6 fatty acid desaturase, 
endoplasmic reticulum isozyme 2, 
putative, expressed 

 no SNP Linoleic acid lipid desaturation 

LOC_Os11g01340 omega-3 fatty acid desaturase  no SNP Linoleic acid lipid desaturation 
LOC_Os12g01370 omega-3 fatty acid desaturase  no SNP Linoleic acid lipid desaturation 
LOC_Os07g49310 omega-3 fatty acid desaturase TBGI337504 Linoleic acid lipid desaturation 
LOC_Os07g49310 omega-3 fatty acid desaturase TBGI337502 Linoleic acid lipid desaturation 
LOC_Os01g60450 trans-cinnamate 4-monooxygenase TBGI059140 Phenolic phenylpropanoid  
LOC_Os02g41630 phenylalanine ammonia-lyase TBGI107353 Phenolic phenylpropanoid  

LOC_Os02g41670 phenylalanine ammonia-lyase TBGI107368 Phenolic phenylpropanoid  
LOC_Os02g41680 phenylalanine ammonia-lyase TBGI107403 Phenolic phenylpropanoid  
LOC_Os02g46970 4-coumarate-CoA ligase TBGI111976 Phenolic phenylpropanoid  

LOC_Os03g02180 ferulate 5-hydroxylase TBGI124364 Phenolic phenylpropanoid  
LOC_Os06g24180 ferulate 5-hydroxylase TBGI289865 Phenolic phenylpropanoid  
LOC_Os06g24180 ferulate 5-hydroxylase TBGI289869 Phenolic phenylpropanoid  

LOC_Os08g14760 4-coumarate-CoA ligase TBGI347005 Phenolic phenylpropanoid  
LOC_Os12g33610 phenylalanine ammonia-lyase TBGI479943 Phenolic phenylpropanoid  
LOC_Os12g33610 phenylalanine ammonia-lyase TBGI479945 Phenolic phenylpropanoid  

LOC_Os02g41630 phenylalanine ammonia-lyase TBGI107339 Phenolic phenylpropanoid  
LOC_Os02g41630 phenylalanine ammonia-lyase TBGI107343 Phenolic phenylpropanoid  
LOC_Os02g41630 phenylalanine ammonia-lyase TBGI107344 Phenolic phenylpropanoid  

LOC_Os02g41630 phenylalanine ammonia-lyase TBGI107349 Phenolic phenylpropanoid  
LOC_Os02g41630 phenylalanine ammonia-lyase TBGI107350 Phenolic phenylpropanoid  
LOC_Os02g41630 phenylalanine ammonia-lyase TBGI107351 Phenolic phenylpropanoid  

LOC_Os02g41630 phenylalanine ammonia-lyase TBGI107352 Phenolic phenylpropanoid  
LOC_Os02g41670 phenylalanine ammonia-lyase TBGI107357 Phenolic phenylpropanoid  
LOC_Os02g41680 phenylalanine ammonia-lyase TBGI107397 Phenolic phenylpropanoid  

LOC_Os02g41680 phenylalanine ammonia-lyase TBGI107399 Phenolic phenylpropanoid  
LOC_Os03g02180 ferulate 5-hydroxylase TBGI124360 Phenolic phenylpropanoid  
LOC_Os02g41680 phenylalanine ammonia-lyase TBGI107408 Phenolic phenylpropanoid  

LOC_Os01g60450  TBGI059143 Phenolic phenylpropanoid  
LOC_Os01g60450  TBGI059145 Phenolic phenylpropanoid  
LOC_Os02g46970 4-coumarate-CoA ligase TBGI111975 Phenolic phenylpropanoid  

LOC_Os06g24180 ferulate 5-hydroxylase TBGI289866 Phenolic phenylpropanoid  
LOC_Os06g24180 ferulate 5-hydroxylase TBGI289873 Phenolic phenylpropanoid  
LOC_Os06g24180 ferulate 5-hydroxylase TBGI289874 Phenolic phenylpropanoid  

LOC_Os06g24180 ferulate 5-hydroxylase TBGI289875 Phenolic phenylpropanoid  
LOC_Os08g14760 4-coumarate-CoA ligase TBGI347006 Phenolic phenylpropanoid  
LOC_Os08g14760 4-coumarate-CoA ligase TBGI347008 Phenolic phenylpropanoid  

LOC_Os08g14760 4-coumarate-CoA ligase TBGI347011 Phenolic phenylpropanoid  
LOC_Os01g60450 phenylpropanoid biosynthesis TBGI059141 Phenolic phenylpropanoid  
LOC_Os01g60450 phenylpropanoid biosynthesis TBGI059147 Phenolic phenylpropanoid  

LOC_Os01g60450 phenylpropanoid biosynthesis TBGI059151 Phenolic phenylpropanoid  
LOC_Os02g41630 phenylalanine ammonia-lyase TBGI107354 Phenolic phenylpropanoid  
LOC_Os02g41630 phenylalanine ammonia-lyase TBGI107355 Phenolic phenylpropanoid  

LOC_Os02g41670 phenylalanine ammonia-lyase TBGI107371 Phenolic phenylpropanoid  
LOC_Os02g41680 phenylalanine ammonia-lyase TBGI107406 Phenolic phenylpropanoid  
LOC_Os05g35290 phenylalanine ammonia-lyase TBGI250746 Phenolic phenylpropanoid  

LOC_Os05g35290 phenylalanine ammonia-lyase TBGI250747 Phenolic phenylpropanoid  
LOC_Os06g24180 ferulate 5-hydroxylase TBGI289867 Phenolic phenylpropanoid  
LOC_Os06g24180 ferulate 5-hydroxylase TBGI289868 Phenolic phenylpropanoid  
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LOC_Os06g24180 ferulate 5-hydroxylase TBGI289872 Phenolic phenylpropanoid  
LOC_Os08g14760 4-coumarate-CoA ligase TBGI347003 Phenolic phenylpropanoid  

LOC_Os08g14760 4-coumarate-CoA ligase TBGI347004 Phenolic phenylpropanoid  
LOC_Os08g14760 4-coumarate-CoA ligase TBGI347009 Phenolic phenylpropanoid  
LOC_Os08g14760 4-coumarate-CoA ligase TBGI347010 Phenolic phenylpropanoid  

LOC_Os12g33610 phenylalanine ammonia-lyase TBGI479929 Phenolic phenylpropanoid  
LOC_Os12g33610 phenylalanine ammonia-lyase TBGI479935 Phenolic phenylpropanoid  
LOC_Os12g33610 phenylalanine ammonia-lyase TBGI479941 Phenolic phenylpropanoid  

LOC_Os12g33610 phenylalanine ammonia-lyase TBGI479944 Phenolic phenylpropanoid  
LOC_Os12g33610 phenylalanine ammonia-lyase TBGI479949 Phenolic phenylpropanoid  
LOC_Os04g43760 phenylalanine ammonia-lyase  no SNP Phenolic phenylpropanoid  

LOC_Os06g06980 caffeoyl-CoA O-methyltransferase  no SNP Phenolic phenylpropanoid  
LOC_Os08g38900 caffeoyl-CoA O-methyltransferase  no SNP Phenolic phenylpropanoid  
LOC_Os08g38910 caffeoyl-CoA O-methyltransferase  no SNP Phenolic phenylpropanoid  

LOC_Os08g38920 caffeoyl-CoA O-methyltransferase  no SNP Phenolic phenylpropanoid  
LOC_Os09g30360 caffeoyl-CoA O-methyltransferase  no SNP Phenolic phenylpropanoid  
LOC_Os10g36848 ferulate 5-hydroxylase  no SNP Phenolic phenylpropanoid  

LOC_Os11g48110 phenylalanine ammonia-lyase  no SNP Phenolic phenylpropanoid  
LOC_Os06g24180 ferulate 5-hydroxylase TBGI289864 Phenolic phenylpropanoid  
LOC_Os01g27490  leucoanthocyanidin dioxygenase TBGI028393 Phenolic flavanoid biosynthesis 

LOC_Os01g27490  leucoanthocyanidin dioxygenase TBGI028394 Phenolic flavanoid biosynthesis 
LOC_Os01g27490  leucoanthocyanidin dioxygenase TBGI028395 Phenolic flavanoid biosynthesis 
LOC_Os01g27490  leucoanthocyanidin dioxygenase TBGI028396 Phenolic flavanoid biosynthesis 

LOC_Os06g42130  leucoanthocyanidin dioxygenase TBGI304688 Phenolic flavanoid biosynthesis 
LOC_Os06g42130  leucoanthocyanidin dioxygenase TBGI304691 Phenolic flavanoid biosynthesis 
LOC_Os01g27490  leucoanthocyanidin dioxygenase TBGI028392 Phenolic flavanoid biosynthesis 

LOC_Os03g60509 putative chalcone isomerase TBGI173576 Phenolic flavanoid biosynthesis 
LOC_Os01g27490  leucoanthocyanidin dioxygenase TBGI028398 Phenolic flavanoid biosynthesis 
LOC_Os01g27490  leucoanthocyanidin dioxygenase TBGI028400 Phenolic flavanoid biosynthesis 

LOC_Os01g44260  dihydroflavonol-4-reductase  no SNP Phenolic flavanoid biosynthesis 
LOC_Os04g56700  naringenin,2-oxoglutarate 3-

dioxygenase 
 no SNP Phenolic flavanoid biosynthesis 

LOC_Os07g11440 putative chalcone synthase  no SNP Phenolic flavanoid biosynthesis 
LOC_Os10g17260  flavonoid 3-monooxygenase  no SNP Phenolic flavanoid biosynthesis 
LOC_Os11g32650 putative chalcone synthase  no SNP Phenolic flavanoid biosynthesis 

LOC_Os09g19734 isochorismate synthase 1, 
chloroplast precursor, putative, 
expressed 

 no SNP Phenolic via chorismate, 
pyruvate pathway 

LOC_Os08g35310 isoflavone-7-O-methytransferase 9 TBGI359460 Phenolic flavanoid biosynthesis 
LOC_Os08g35310 isoflavone-7-O-methytransferase 9 TBGI359464 Phenolic flavanoid biosynthesis 
LOC_Os08g35310 isoflavone-7-O-methytransferase 9 TBGI359466 Phenolic flavanoid biosynthesis 

LOC_Os08g35310 isoflavone-7-O-methytransferase 9 TBGI359467 Phenolic flavanoid biosynthesis 
LOC_Os10g16974 flavonoid 3-hydroxylase TBGI400908 Phenolic leucodelphinidin 

biosynthesis 

(dihydrotricetin 
(demthylated tricin)) 

LOC_Os10g16974 flavonoid 3-hydroxylase TBGI400906 Phenolic leucodelphinidin 

biosynthesis 
(dihydrotricetin 
(demthylated tricin)) 

LOC_Os08g35310 isoflavone-7-O-methytransferase 9 TBGI359462 Phenolic flavanoid biosynthesis 
LOC_Os08g35310 isoflavone-7-O-methytransferase 9 TBGI359463 Phenolic flavanoid biosynthesis 
LOC_Os10g16974 flavonoid 3-hydroxylase TBGI400913 Phenolic leucodelphinidin 

biosynthesis 

(dihydrotricetin 
(demthylated tricin)) 

LOC_Os10g16974 flavonoid 3-hydroxylase TBGI400915 Phenolic leucodelphinidin 

biosynthesis 
(dihydrotricetin 
(demthylated tricin)) 

LOC_Os10g16974 flavonoid 3-hydroxylase TBGI400916 Phenolic leucodelphinidin 
biosynthesis 
(dihydrotricetin 

(demthylated tricin)) 
LOC_Os10g16974 flavonoid 3-hydroxylase TBGI400920 Phenolic leucodelphinidin 

biosynthesis 

(dihydrotricetin 
(demthylated tricin)) 

LOC_Os08g35310 isoflavone-7-O-methytransferase 9 TBGI359465 Phenolic flavanoid biosynthesis 

LOC_Os09g09230 dihydroflavonol-4-reductase, putative  no SNP Phenolic leucodelphinidin 
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biosynthesis 
(dihydrotricetin 

(demthylated tricin)) 
LOC_Os10g17260 flavonoid 3-hydroxylase  no SNP Phenolic leucodelphinidin 

biosynthesis 

(dihydrotricetin 
(demthylated tricin)) 

LOC_Os05g34380 cytochrome P450 51, putative TBGI249857 Phytosterol sterol synthesis 

LOC_Os07g37980 cytochrome P450 51, putative TBGI329832 Phytosterol sterol synthesis 
LOC_Os03g59040 farnesyl-diphosphate 

farnesyltransferase 
TBGI172275 Phytosterol sterol synthesis 

LOC_Os03g59040 farnesyl-diphosphate 
farnesyltransferase 

TBGI172276 Phytosterol sterol synthesis 

LOC_Os03g59040 farnesyl-diphosphate 

farnesyltransferase 

TBGI172274 Phytosterol sterol synthesis 

LOC_Os07g10130 farnesyl-diphosphate 
farnesyltransferase 

TBGI317153 Phytosterol sterol synthesis 

LOC_Os07g10600 sterol 24-C-methyltransferase TBGI317459 Phytosterol sterol synthesis 
LOC_Os07g10600 sterol 24-C-methyltransferase TBGI317461 Phytosterol sterol synthesis 
LOC_Os07g37970 cytochrome P450 51, putative TBGI329813 Phytosterol sterol synthesis 

LOC_Os07g37980 cytochrome P450 51, putative TBGI329833 Phytosterol sterol synthesis 
LOC_Os07g37980 cytochrome P450 51, putative TBGI329834 Phytosterol sterol synthesis 
LOC_Os07g37980 cytochrome P450 51, putative TBGI329836 Phytosterol sterol synthesis 

LOC_Os07g37980 cytochrome P450 51, putative TBGI329837 Phytosterol sterol synthesis 
LOC_Os07g37980 cytochrome P450 51, putative TBGI329840 Phytosterol sterol synthesis 
LOC_Os07g37980 cytochrome P450 51, putative TBGI329843 Phytosterol sterol synthesis 

LOC_Os09g39220 C-14 sterol reductase TBGI391322 Phytosterol sterol synthesis 
LOC_Os09g39220 C-14 sterol reductase TBGI391323 Phytosterol sterol synthesis 
LOC_Os09g39220 C-14 sterol reductase TBGI391329 Phytosterol sterol synthesis 

LOC_Os05g34380 cytochrome P450 51, putative TBGI249853 Phytosterol sterol synthesis 
LOC_Os05g34380 cytochrome P450 51, putative TBGI249858 Phytosterol sterol synthesis 
LOC_Os05g34380 cytochrome P450 51, putative TBGI249862 Phytosterol sterol synthesis 

LOC_Os07g37970 cytochrome P450 51, putative TBGI329817 Phytosterol sterol synthesis 
LOC_Os01g01369 3-beta-hydroxysteroid-delta-

isomerase, putative, expressed 
 no SNP Phytosterol sterol synthesis 

LOC_Os01g25189 C-14 sterol reductase  no SNP Phytosterol sterol synthesis 
LOC_Os02g04760 cycloartenol synthase, putative  no SNP Phytosterol sterol synthesis 
LOC_Os02g26650 sterol delta7 reductase  no SNP Phytosterol sterol synthesis 

LOC_Os03g04340 S-adenosylmethionine-dependent 
methyltransferase 

 no SNP Phytosterol sterol synthesis 

LOC_Os05g14800 cycloartenol synthase, putative  no SNP Phytosterol sterol synthesis 

LOC_Os07g28110 cytochrome P450 51, putative  no SNP Phytosterol sterol synthesis 
LOC_Os07g28160 cytochrome P450 51, putative  no SNP Phytosterol sterol synthesis 
LOC_Os11g18310 cycloartenol synthase, putative  no SNP Phytosterol sterol synthesis 

LOC_Os11g18340 cycloartenol synthase, putative  no SNP Phytosterol sterol synthesis 
LOC_Os11g19700 cycloeucalenol cycloisomerase  no SNP Phytosterol sterol synthesis 
LOC_Os02g17920 4-hydroxyphenylpyruvate 

dioxygenase 

TBGI090438 Vitamin E vitamin E biosynthesis 

LOC_Os02g17920 4-hydroxyphenylpyruvate 
dioxygenase 

TBGI090439 Vitamin E vitamin E biosynthesis 

LOC_Os02g17920 4-hydroxyphenylpyruvate 
dioxygenase 

TBGI090428 Vitamin E vitamin E biosynthesis 

LOC_Os02g17920 4-hydroxyphenylpyruvate 
dioxygenase 

TBGI090429 Vitamin E vitamin E biosynthesis 

LOC_Os02g17920 4-hydroxyphenylpyruvate 
dioxygenase 

TBGI090441 Vitamin E vitamin E biosynthesis 

LOC_Os08g09250 4-hydroxyphenylpyruvate 

dioxygenase 

TBGI343503 Vitamin E vitamin E biosynthesis 

LOC_Os08g09250 4-hydroxyphenylpyruvate 
dioxygenase 

TBGI343504 Vitamin E vitamin E biosynthesis 

LOC_Os02g07160  4-hydroxyphenylpyruvate 
dioxygenase 

TBGI081638  Vitamin E vitamin E biosynthesis 

LOC_Os02g17650  tocopherol cyclase TBGI090186  Vitamin E vitamin E biosynthesis 

LOC_Os02g17650  tocopherol cyclase TBGI090187  Vitamin E vitamin E biosynthesis 
LOC_Os02g17650  tocopherol cyclase TBGI090190  Vitamin E vitamin E biosynthesis 
LOC_Os02g17650  tocopherol cyclase TBGI090191  Vitamin E vitamin E biosynthesis 

LOC_Os02g17650  tocopherol cyclase TBGI090193  Vitamin E vitamin E biosynthesis 
LOC_Os02g17650  tocopherol cyclase TBGI090195  Vitamin E vitamin E biosynthesis 
LOC_Os02g17920 4-hydroxyphenylpyruvate 

dioxygenase 

TBGI090432 Vitamin E vitamin E biosynthesis 
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LOC_Os02g17920 4-hydroxyphenylpyruvate 
dioxygenase 

TBGI090436 Vitamin E vitamin E biosynthesis 

LOC_Os02g17920 4-hydroxyphenylpyruvate 
dioxygenase 

TBGI090437 Vitamin E vitamin E biosynthesis 

LOC_Os05g14194 4-hydroxyphenylpyruvate 

dioxygenase 

TBGI236102 Vitamin E vitamin E biosynthesis 

LOC_Os05g14194 4-hydroxyphenylpyruvate 
dioxygenase 

TBGI236103 Vitamin E vitamin E biosynthesis 

LOC_Os05g14194 4-hydroxyphenylpyruvate 
dioxygenase 

TBGI236108 Vitamin E vitamin E biosynthesis 

LOC_Os05g14194 4-hydroxyphenylpyruvate 

dioxygenase 

TBGI236109 Vitamin E vitamin E biosynthesis 

LOC_Os02g17650  tocopherol cyclase TBGI090196  Vitamin E vitamin E biosynthesis 
LOC_Os12g42090  tocopherol cyclase TBGI489786  Vitamin E vitamin E biosynthesis 

LOC_Os02g47310  tocopherol O-methyltransferase  no SNP Vitamin E vitamin E 
Biosynthesis  

LOC_Os06g43880  homogentisic acid geranylgeranyl 

transferase 

 no SNP Vitamin E vitamin E 

Biosynthesis  
LOC_Os06g44840 homogentisate phytyltransferase  no SNP Vitamin E vitamin E biosynthesis 
LOC_Os07g49310 omega-3 fatty acid desaturase TBGI337504 Linoleic acid glycolipid desaturation 

LOC_Os07g49310 omega-3 fatty acid desaturase TBGI337502 Linoleic acid glycolipid desaturation 
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Table 2.4. SNPs in genes that regulate phenolics, phytosterols, vitamin E, and 

linolenic acid. 

Class Gene SNPs SYN NS 5‟ 3‟ INT SNPs/gene NS SNPs/gene 

Phenolics 30 78 24 22 2 12 17 2.60 0.73 
Phytosterols 15 22 4 2 0 2 14 1.27 0.09 
Vitamin E 9 23 2 2-4 3 2-3 14 2.55 0.09-0.17 
Linolenate 7 8 0 0 0 1 7 1.14 0.00 

   

SYN: synonymous 
NS: nonsynonymous 
5‟, 3‟: untranslated regions 
INT: intron 
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CHAPTER THREE: GENETIC DIVERSITY AND GROWING ENVIRONMENT JOINTLY 

INFLUENCE METABOLITE VARIATION IN COOKED GRAIN FROM TWO DIVERGENT 

RICE VARIETIES  
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SUMMARY 

 Genetic diversity is a major source of variation in the cooked rice metabolome, 

and evidence for genotype-environment interaction (GEI) effects on plant secondary 

metabolism is limited. A metabolomics dataset identified two divergent rice varieties 

(Oryza sativa L.) that differ in secondary metabolite profiles in the cooked grain: IR64 

and Moroberekan. Variation in primary metabolites, which are precursors to secondary 

metabolites, can estimate effects associated with secondary metabolite variation. GEI 

effects were estimated by growing IR64 and Moroberekan in the field and greenhouse, 

and metabolite profiling was conducted on aqueous-methanol extracts of cooked rice 

using gas-chromatography coupled to mass spectrometry (GC-MS). Of the 39 

metabolites detected, 17 exhibited GEI as a source of metabolite variation, including the 

primary metabolite phenylalanine, a precursor to secondary metabolite synthesis. 

Informatic analyses characterized genetic variation that may contribute to phenylalanine 

variation by evaluating arogenate/prephenate dehydratase (ADT/PDT), the rate-limiting 

enzyme in phenylalanine synthesis. Gene expression varied both within and among 11 

ADT/PDT genes for five rice varieties in the Rice MPSS seed database. The ADT/PDT 

gene LOC_07g49390 had the most expression in the developing seed. The RiceNet 

gene interaction database implicated six additional amino acid synthesis genes as 

potentially epistatic to LOC_07g49390, including two genes involved in serine synthesis. 

Expression patterns for phenylalanine and serine genes were similar in the developing 

seed, and the two metabolites covaried in the cooked rice analysis. An amino acid gene 

network was constructed to display the relationship between phenylalanine and serine, 

and implicated glutamate as an important intermediary between phenylalanine and 

serine. These data support the role of genetic and metabolic networks in regulating 

metabolism. Gene-metabolite network analysis is a new and important method to identify 

genetic and GEI components that contribute to variation in secondary metabolism.  
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INTRODUCTION 

Both genetic and environmental effects have been implicated as sources of 

metabolic variation in food crops. In rice (Oryza sativa L.), genomic variation contributes 

to metabolomic differences in the grain [1,2,3]. Environmental effects also contribute to 

metabolite variation in rice and maize [4,5]. While genotypic and environmental variation 

has been independently associated with metabolite profiles of the grain, limited 

information exists for the importance of gene-environment interaction (GEI) effects and 

the genes centrally involved in the interactions. 

Primary and secondary metabolites influence agronomic and post-harvest traits 

in food crops, including tolerance to environmental stress and the nutritional content in 

the grain. Primary metabolites function to maintain normal plant respiration and energy 

balance, and serve as precursors to synthesize secondary metabolites. Secondary 

metabolites are a diverse class of compounds that, although not acting towards energy 

homeostasis, act as important plant hormones, pigments, and volatiles [6,7]. Terpenes 

and flavonoids are two major classes of secondary metabolites that mediate plant-

environment interactions, such as responding to abiotic or biotic stresses [8,9]. Dietary 

intake of terpenes and flavonoids is now being recognized as important to human health 

[10,11,12].  

In plants, many secondary metabolites are dependent on phenylalanine as a 

primary metabolite precursor [13]. In plants, the rate-limiting enzyme for phenylalanine 

synthesis is either arogenate or prephenate dehydratase (ADT/PDT) [14,15,16,17]. 

Regulation of ADT/PDT genes is important for secondary metabolism. For example, 

Arabidopsis pd1 (PDT) mutants showed increased sensitivity to ultraviolet (UV) radiation 

due to the absence of UV-absorbing phenylpropanoids [18]. In rice, an ADT/PDT mutant 

with insensitivity to phenylalanine feedback regulation showed elevated quantities of 

both phenylalanine and several phenylpropanoids [19]. In both cases, the modification of 
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a single phenylalanine biosynthesis enzyme also affected synthesis of downstream 

secondary metabolites. There is limited information about the effects of genes external 

to the phenylalanine pathway on secondary metabolism. Analyzing metabolomic data in 

the context of genetic networks is a new approach to identify additional genes that may 

regulate secondary metabolism.  

Estimating GEI effects on the grain metabolome is limited for rice. There are 

greater than 100,000 rice accessions among three subspecies-like groupings (indica, 

japonica, and aus) [20], and rice is grown across environments with highly variable 

temperatures, latitudes, and irrigation schemes. Single nucleotide polymorphism (SNP) 

profiles were established for a core collection of 20 rice varieties, referred to as the 

OryzaSNP set [21],[22]. Two OryzaSNP varieties, IR64 and Moroberekan, vary in 

morphology, physiology, and grain metabolite traits [1,23]. IR64 is a high-yielding indica 

variety from the Philippines and is the most widely grown variety across Asia. 

Moroberekan is a large and low-yielding japonica variety from Guinea and was selected 

from a pure-line as a landrace. Genome-wide SNP variation confirmed the evolutionary 

relationship between IR64 and Moroberekan as divergent [22]. 

 In the present study, IR64 and Moroberekan were assessed for secondary 

metabolite variation in cooked brown rice. GEI effects on primary metabolism and 

phenylalanine were determined using gas-chromatography coupled to mass 

spectrometry (GC-MS). GC-MS was conducted for cooked brown rice extracts from IR64 

and Moroberekan grown field and greenhouse environments. Phenylalanine regulates a 

major link between primary and secondary metabolism, and so variation in 

phenylalanine synthesis genes was investigated by expression analysis. A genetic 

network was constructed with primary and intermediate metabolites to highlight the 

relationships among non-phenylalanine synthesis genes that also may contribute to 

phenylalanine-associated GEI effects. 
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MATERIALS AND METHODS 

Plant growing conditions 

Rice plants were grown in greenhouse and field conditions. Greenhouse-plants 

were grown at Colorado State University in 2009 and germination, potting, and growing 

conditions were as previously described [23]. Briefly, seeds were germinated in the 

presence of fungicide for 3 days, potted in peat:soil:sand (4:4:1), and watered daily. 

Plants were grown at 25.5 ºC and 55% humidity with supplemental lighting for 16/8 

(light/dark) photoperiod, and were fertilized twice a week. Upon maturation, rice seed 

was harvested, stored for 1 month at room temperature, and then stored at 4 ºC until 

further use. IR64 and Moroberekan were additionally grown at the International Rice 

Research Institute (Los Baños, Philippines) in 2009 in paddy conditions, and plants were 

watered and fertilized as required. Seed was harvested, dried, and stored at 4 ºC until 

further use 

 

Secondary metabolite analysis  

Secondary metabolites were extracted and detected in a previous study using 

ultra performance chromatography coupled to mass spectrometry (UPLC-MS) [1]. The 

collision energy at 7 eV induced incomplete fragmentation, and neutral losses were 

observed to be consistent with secondary metabolites. Parent ions and fragments were 

screened in metabolite databases for likely matches using an error window of 10 ppm. 

 

 Metabolite extraction and detection 

For GC-MS, rice seeds were dehulled using a TR200 electronic dehusker (Kett, 

Japan), left unpolished, and cooked for 55 min in a 2:1 water:rice (v/v) ratio using an 

open boiling technique. Rice was cooked until the time at which the grain starch 

granules were completely gelatinized. Cooked rice was immediately frozen at -80 ºC, 
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lyophilized over the course of 48 hr, and stored at -80 ºC until further use. Metabolites 

were extracted in triplicate as previously described [1], whereby rice was ground to a fine 

powder with a mortar and pestle in liquid nitrogen, and 1 mL of cold aqueous: methanol 

(1:4) solvent was added to 100 mg of powder, incubated for 1 hr at -80 ºC, centrifuged at 

1500xg for 5 min at 4 ºC, and 500 μL of the supernatant was transferred to a new 1.5 mL 

microcentrifuge tube.  

For GC-MS derivatization and detection, the cooked rice extract was dried using 

a vacuum centrifuge, resuspended in 50 μL of pyridine containing 20 mg/mL of 

methoxyamine hydrochloride, and incubated at 37 ºC for 2 hr. A second derivatization 

step was conducted by adding 50 μL of N-methyl-N-trimethylsilyltrifluoroacetamide with 

1% trimethylchlorosilane (MSTFA + 1% TMCS) (Thermo Scientific). Samples were 

incubated at 37 ºC for 1 hr, centrifuged at 3000xg for 5 min, cooled to room temperature, 

and 80 μL of the supernatant was transferred to a 200 μL glass insert. Metabolites were 

detected a Trace GC Ultra coupled to a Thermo DSQ II (Thermo Scientific), which 

scanned 50-650 m/z at 5 scans/sec in electron impact mode, and a 30 m TG-5MS 

column (Thermo Scientific, 0.25 mm i.d., 0.25 μm film thickness). Both the inlet and 

transfer line were set at 280 ºC. The samples were injected in a 10:1 split ratio twice in 

discrete randomized blocks with a 1.2 mL/min flow rate, and the program consisted of 80 

ºC for 30 sec, a ramp of 15 ºC per min to 330 ºC, and then held for 8 min. GC-MS mass 

spectra were deconvoluted in AMDIS (http://chemdata.nist.gov/mass-spc/amdis) and 

screened in the National Institute for Technology Standards metabolite database 

(www.nist.gov) for most probable matches.  

 

Bioinformatics  

The percent of maximum gene expression was determined individually for each 

gene among all libraries in the MPSS database, including libraries not shown in this 
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report. Only transcripts uniquely associated with a gene were used, except for 

LOC_Os09g39260 and LOC_Os01g34450, which only contained shared transcripts. 

SNPs and SNP classifications were established base on the rice OryzaSNP database 

(www.oryzasnp.org). The amino acid network was constructed in VANTED software [24] 

by linking common metabolites and enzymes among MetaCrop [25] amino acid 

synthesis pathways. 

 

Statistics  

Quantities of each molecular feature were determined using XCMS software 

(http://metlin.scripps.edu/xcms), which normalized each injection based on total 

molecular feature intensity values and integrated peak areas based on individual 

molecular feature intensities. For both UPLC-MS and GC-MS, principal component 

analysis was conducted in R statistical software, and unit variance scaling was applied 

to the dataset. Variation among molecular features was determined using Student‟s t-

test with varying p-value thresholds on peak areas of each feature. Z-scores for primary 

metabolites were calculated based on peak areas of the most abundant feature for a 

given spectrum. Z scores were calculated independently for IR64 and Moroberekan and 

were based on the mean and standard deviation of field-grown metabolite quantities. For 

molecular features, genetic, environment, and GEI effects were determined by ANOVA 

(p < 0.05). For metabolite analysis, a false discovery rate correction was applied by 

confirming a minimum of three significant effects at a single retention time. 
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RESULTS 

Secondary metabolites in cooked grain vary between IR64 and Moroberekan 

A UPLC-MS metabolomics technique was used to detect secondary metabolite 

variation between IR64 and Moroberekan. This technique assumes that each metabolite 

is detected as a “molecular feature,” and variation in molecular features infers 

metabolomic properties of the rice extract. UPLC-MS detected 1,256 molecular features, 

and 55 (4.4%) varied between IR64 and Moroberekan (Student‟s t-test, p < 0.001). The 

molecular features were sorted by size (mass/charge, assuming single charge) for each 

variety (Figure 3.1A). The two mass distribution profiles were highly similar. This 

indicates that metabolite variation between IR64 and Moroberekan was mostly due to 

variable quantities of the same metabolite, rather than metabolites unique to only one 

variety. Principal component analysis (PCA) was conducted on the molecular features to 

confirm variation in secondary metabolite profiles, which was largely explained by PC1 

(37.5%) (Figure 3.1B). 

To determine metabolites that contribute to variation between IR64 and 

Moroberekan, molecular features were sorted by volcano analysis (2-fold differences, 

Student‟s t-test p < 0.01) (Figure 3.1C). Moroberekan contained 41 molecular features 

with a 2-fold difference or greater than IR64, and IR64 contained 18 molecular features 

with a 2-fold difference or greater than Moroberekan (Student‟s t-test, p < 0.01). The 41 

molecular features greater in Moroberekan corresponded to 11 metabolites. None of the 

18 molecular features higher in IR64 associated with a parent metabolite, indicating 

these molecular features were minor fragments rather than representatives of the parent 

compound. The 11 metabolites that were identified in higher amounts in Moroberekan 

were classified based on mass spectral analysis, and relative quantities were 

determined using the two most prominent molecular features for each metabolite (Figure 

3.1D). Metabolite classes included terpenoids (phytosterols, plant hormones, and 
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carotenoids), flavonoids, saponins, and glycerophospholipids. One compound contained 

a fragmentation pattern associated with a flavonoid-glycoside, and may explain the 

darker, yellow pigmentation of the aqueous-methanolic extracts from Moroberekan 

compared to IR64 (personal observation). These data imply that IR64 and Moroberekan 

vary for secondary metabolite profiles in the cooked grain. 

 

GEI associated with metabolite profiles and phenylalanine 

A GC-MS-based metabolomics approach was performed to determine primary 

metabolite variation affected by growing plants in field (FD) or greenhouse (GH) 

environments. Among the two varieties, 4,972 molecular features were observed. A PCA 

was conducted on the molecular features to determine genetic (G), environment (E), and 

GEI effects on the metabolome (Figure 3.2A). The PCA showed four distinct clusters: 

IR64-GH, IR64-FD, Moro-GH, and Moro-FD, and suggests the source of metabolite 

variation was a combination of genotypic and environmental effects. However, neither 

PC1 nor PC2 explained the variation as discretely due to variety or environment, and 

suggests a series of complex interactions between the two effects.  

To determine GEI on primary metabolite variation, an ANOVA was conducted on 

each molecular features with G, E, and GEI as factor as potential effects. Of the 4,972 

molecular features, 1,279 showed genotypic effects (25.7%), 1,255 (25.2%) showed 

environmental effects, and 633 (12.7%) showed evidence of GEI (p < 0.05). A volcano 

analysis was conducted on molecular features to determine if the two varieties and 

environments equally contribute to metabolite variation (Figure 3.2B). Molecular features 

that varied by genotype were largely skewed towards Moroberekan, which had 188 

features compared to 23 in IR64 (2-fold difference in quantity, p < 0.01). Cooked rice 

from plants grown in the field contained more molecular features at greater quantities 

(148) than in the greenhouse (50) (Figure 3.2C).  
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For each retention time, mass spectra were screened in the National Institute for 

Standards and Technology database for to determine the metabolite associated with 

each molecular features. At a single retention time, the peak area of the most abundant 

molecular feature was used to assess G, E, and GEI effects for each metabolite 

(ANOVA, p < 0.05) (Table 3.1). The effect of growing IR64 and Moroberekan in different 

environments was additionally visualized for each metabolite by z-score analysis (Figure 

3.3). Z represents the number of standard deviations attributed to growing a given 

variety in the field, compared to growing a variety in the greenhouse. Metabolites with z-

scores greater or less than 1.96 suggest evidence of significant environmental effects in 

many of the sugars, amino acids, fatty acids, and organic and inorganic acids, and other 

metabolites detected. Z-scores that differ between IR64 and Moroberekan show GEI 

effects on metabolite variation. The z-score also suggests substantial variation within 

each metabolite class, including the amino acids, for which metabolites did not all covary 

with phenylalanine. 

 

SNP variation in ADT/PDT genes 

 Phenylalanine varied between IR64 and Moroberekan in the field and 

greenhouse, and SNP diversity in ADT/PDT genes may explain the genetic variation 

associated with GEI effects. ADT/PDT genes were identified in rice based on previous 

reports [19], and also by screening for enzymes with PDT activity the rice biochemical 

database Ricecyc (www.gramene.org/pathway), which included 11 genes with Enzyme 

Commission (EC) codes 4.2.1.91 (ADT) or 4.2.1.51 (PDT activity) (Table 3.2). Variation 

in the ADT/PDT genes was evaluated by screening for SNPs among 20 varieties of rice 

using the OryzaSNP database (www.oryzasnp.org). The open reading frame of three 

ADT/PDT genes contained SNPs, however, all were synonymous polymorphisms. Two 

SNPs were detected in the 3‟ UTR, suggesting potential variation in gene regulation, 
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specifically at LOC_07g49390 and LOC_Os10g37980. IR64 and Moroberekan showed 

highly similar ADT/PDT haplotypes, however a potential SNP in the 3‟ UTR on 

chromosome 7 should be further investigated. Two other varieties, Cypress and 

Nipponbare, were displayed to show that SNPs were observed among other OryzaSNP 

varieties. 

 

Varietal differences in ADT/PDT gene expression 

Genetic diversity associated with phenylalanine biosynthesis was further 

interrogated by gene expression analysis among the 11 ADT/PDT genes. Gene 

expression profiles were acquired from the rice Massively Parallel Signature Sequencing 

(MPSS) database (http://mpss.udel.edu/rice), which consists of genome-wide gene 

expression profiles for 70 rice libraries [26]. Profiles for LOC_Os09g39260 and 

LOC_01g34450 were indistinguishable and therefore merged. A heat map was 

constructed to display 37 libraries that encompass profiles for the developing seed, as 

well as abiotic and biotic stresses (Figure 3.4). While the libraries do not include IR64 

and Moroberekan, the MPSS data shows evidence of ADT/PDT expression variation in 

rice. For all libraries, LOC_Os04g55780, LOC_Os06g45930, LOC_07g32774, and 

LOC_Os08g33260 were not expressed and are unlikely to contribute to phenylalanine 

biosynthesis. LOC_Os03g17730 was the most commonly expressed gene and appears 

constitutive relative to the other ADT/PDT genes. For the developing seed, variation in 

ADT/PDT expression was observed in five of the ten genes, and each variety contained 

a unique gene expression profile. The highest levels of ADT/PDT expression occurred in 

variety Nipponbare, and this was the result of the expression of LOC_Os03g17730, 

LOC_Os07g49390, and LOC_Os09g39260/01g34450. The varieties Ilpumbyeo and 

LaGrue exhibited lower total ADT/PDT expression than Nipponbare and were derived 

from two genes: LOC_Os03g17730 and LOC_Os07g49390. Alternatively, Cypress 
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ADT/PDT expression was due to two different genes: LOC_Os09g3920 and 

LOC_Os03g17730. Furthermore, ADT/PDT expression was upregulated in plants 

resistant to the plant pathogens Xanthomonas oryzae pv. oryzae (Xoo) and 

Magnaporthe grisea (Mg) compared to mock inoculation controls and susceptible plants. 

This implicates ADT/PDT genes as likely important to secondary metabolism-associated 

plant defense responses. The ADT/PDT expression analysis shows variation within and 

among ADT/PDT genes for the five varieties, and indicates that such variation may be 

an important genetic component of phenylalanine-related GEI effects. 

 

Amino acid synthesis genes that interact with ADT/PDT gene LOC_Os07g49390 

 Because LOC_Os07g49390 was the most abundant ADT/PDT gene in the five 

MPSS developing seed libraries, predicted gene interactions were determined using 

RiceNet, a database that establishes gene networks by characterizing gene interactions 

from 24 libraries (www.functionalnet.org/ricenet). The RiceNet algorithm identified 38 

genes predicted to interact with LOC_Os07g49390, including six genes associated with 

amino acid and other metabolite syntheses (Table 3.3) The LOC_Os07g49390 

ADT/PDT gene was predicted to interact with genes involved in tyrosine biosynthesis 

and the shikimate pathway, both of which are closely linked to phenylalanine synthesis. 

There was an additional predicted interaction with two genes involved in serine 

biosynthesis and an amino acid synthesis regulatory gene. The wide variation in MPSS-

ADT/PDT gene expression profiles and predicted interactions with other amino acid 

biosynthesis enzymes suggest the ADT/PDT genes are centrally involved in amino acid 

metabolite variation. 

The RiceNet gene interaction model was evaluated by establishing expression 

patterns of each gene as described in the rice MPSS database, and determining 

patterns similar to LOC_Os07g49390 gene expression within each library (Figure 3.5). 
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None of the predicted interaction genes had identical expression patterns to 

LOC_Os07g49390. However, LOC_Os03g06200, a serine metabolism gene, contained 

similar expression patterns as LOC_Os07g49390 in the developing seed, specifically 

between the varieties Cypress and Nipponbare. LOC_Os04g55720, a second serine 

metabolism gene, contained a profile more consistent with the ADT/PDT gene 

LOC_Os09g39230, whereby expression was significantly higher in Cypress compared to 

the other four rice varieties. The different genes by which the five MPSS varieties 

regulate phenylalanine metabolism may explain genotype and GEI effects involved in 

both primary and secondary metabolism in the cooked grain. 

  

Genetic network for genes associated with phenylalanine synthesis 

A primary metabolite network for amino acids was constructed to explain the 

predicted gene interactions associated with phenylalanine synthesis. Amino acid 

synthesis pathways from MetaCrop [25], a metabolic database for crops, were 

networked using VANTED software [24] (Figure 3.6).  Nodes were constructed by linking 

common metabolites and enzymes among each of the amino acid biosynthesis 

pathways. The amino acid network confirms the link between phenylalanine and serine 

synthesis genes as potentially mediated through glutamate-associated transaminase 

activity. Phenylalanine and serine covaried and were both significant for GEI effects.  

 

 

DISCUSSION 

 This is the first report of genetic, environmental, and GEI effects on the grain 

metabolite profile in rice. Varietal and environmental influences on metabolic variation 

are well documented in many crops. However, the GEI observed herein demonstrates 

an additional level of complexity in metabolome-genome analyses, as interactions may 
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confound non-interactive main effects if they are a major source of the total phenotypic 

variation. The GC-MS study design was limited to only two genotypes and two 

environments, and nevertheless GEI effects were central to many primary metabolites. 

Because GEI effects are expected to increase with the addition of more varieties and 

environments, a more narrow approach that effectively estimates GEI may be critical to 

apply metabolomics to plant studies. A metabolite network was constructed to visualize 

GEI at a systems-level. The network also allowed for concurrent analysis of multiple 

gene-metabolite relationships, and the characterization of previously undefined links 

among primary metabolites. 

 The UPLC-MS metabolomics approach assessed variation in secondary 

metabolites. IR64 and Moroberekan varied in secondary metabolite profiles, however the 

total variation was lower than previously observed in rice. Only 4.4% of the molecular 

features (p < 0.001) differed, compared to 25% when 10 rice varieties were assessed 

together [1]. The UPLC-MS analysis detected 11 metabolites that exhibited a greater 

than 2-fold difference between IR64 and Moroberekan (Figure 3.1D), and all 11 were in 

higher amounts in Moroberekan. The two varieties differed in only one flavonoid, a 

metabolite class with implications for both human health and plant immunity. Flavonoids 

are generally known for facilitating plant immunity in dicots, but are also important for 

monocots. Rice flavonoids are important for resistance to UV-irradiation and to fungal 

and bacterial pathogens [27,28,29]. In other cereals, flavonoids provide protection 

against pathogenic nematodes [30]. In rice, terpenoids and flavonoids act synergistically 

in plant defense responses [31]. Furthermore, the structure of flavonoids results in high 

antioxidant activity [32], and thus they are predicted to act as bioactive compounds in the 

human diet. The UPLC-MS detected flavonoid was characterized as a glycoside with two 

sugar molecules (ribose and glucose) based on the accurate masses of previously 

reported fragmentation patterns [33,34]. Flavonoid glycosides have altered antioxidant 
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activity and bioavailability [32,35]. Because IR64 and Moroberekan vary in secondary 

metabolites, identifying primary metabolic networks that influence these compounds is 

important when breeding for specific secondary metabolite profiles. 

The GC-MS analysis identified variation in primary metabolites due to genetic, 

environmental, and GEI effects. As with the UPLC-MS volcano analysis (Figure 3.1C), 

the GC-MS volcano plot (Figure 3.2B, 3.2C) was skewed, and showed more features for 

„Moroberekan‟ and „field‟ effects. The z-score analysis (Figure 3.3) established the 

greenhouse as a fixed effect, and suggests that a greenhouse environment induced 

variation in many of the primary metabolites. The influence of growing environment was 

expected, as temperature is known to alter metabolite profiles of plants, including 

changes in lipids and phenolics due to cold stress [36,37,38]. Abscisic acid, a key plant 

abiotic stress hormone, alters terpenoid content in plants [39], and in barley, the content 

of flavonoid glycosides differed according to type of nutrient application [40]. Additionally, 

the genetic regulation of such environmental influences has been described in rice 

[41,42]. This suggests that genetic diversity in such regulators may account for GEI 

effects and in the distribution of the effect across the metabolome.  

Gene expression models were recently reviewed as a valuable component of 

systems-level analyses [43]. Gene expression analysis was used to determine variation 

in ADT/PDT genes, as they are the genes most likely to interact with environmental 

factors in phenylalanine synthesis. The gene expression profiles for phenylalanine 

biosynthesis (Figures 3.4 and 3.5) showed many interesting trends. The upregulation of 

the 11 ADT/PDT genes varied among many of the libraries. This indicates that total 

cellular ADT/PDT function may be due to many genes, and is specific for a given 

situation, such as seed development, pathogen resistance, or abiotic stress. For 

example, resistance to M. grisea appears to be primarily dependent on 

LOC_Os04g33380 and LOC_Os03g17730, for which gene expression was much 
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greater in resistant plants compared to susceptible. For the developing seed, 

LOC_Os07g49390 was the most abundant among the five rice accessions in the MPSS 

database. Furthermore, LOC_Os07g49390 contains SNPs in the 3‟ UTR for the varieties 

Cypress and Nipponbare, the same gene for which a rice mutant exhibited enhanced 

phenylalanine synthesis [19]. Cypress had much greater expression of 

LOC_Os09g39230 compared to the other accessions. Thus, not only does total 

ADT/PDT expression vary, but varieties rely on different genes to achieve similar 

ADT/PDT function. This may explain the GEI observed in phenylalanine, as 

environmental influences may be dependent on the genetic background, and 

epistatically affect gene regions containing different ADT/PDT genes. In addition, the 

gene interaction model predicted interactions between LOC_Os07g49390 and six other 

genes. Four of the genes are involved in tyrosine and serine biosynthetic processes, and 

both metabolites contained similar GEI patterns to phenylalanine (Figure 3.6). Like the 

ADT/PDT gene LOC_Os07g4939, the serine biosynthesis gene LOC_Os03g06200 had 

lower expression in Cypress compared to Nipponbare. As with the ADT/PDT heat map 

(Figure 3.4), Cypress exhibited greater expression in an alternate biosynthesis gene, 

LOC_Os04g55720 (Figure 3.5). Together, these data support the importance of genetic 

background in primary and secondary metabolism. 

The GEI observed in the GC-MS profiling suggests that the extent to which 

environment affects more complex metabolites (flavonoids) is largely influenced by 

genotype. A network approach was thus employed to determine relationships among 

metabolites, and a network of amino acids was constructed for metabolites detected by 

GC-MS. (Figure 3.6). Glutamate was the most central node in the network, which is 

expected given its role in transaminase reactions. In rice, glutamate is critical in amino 

acid metabolism, but is also associated regulating other primary and secondary 

metabolite classes [44]. While no genetic or GEI effects were observed for glutamate, 
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the significant environmental effect may alter regulation of other amino acids. For serine 

and glycine, which are substrates for each other‟s synthesis, Moroberekan showed 

opposing changes in quantity due to growing environment, and mildly so with IR64. 

Phenylalanine showed similar changes as serine (Figure 3.6), and the genes involved in 

serine metabolism were predicted to interact with the phenylalanine ADT/PDT synthesis 

gene (Table 3.3). The importance of phenylalanine in secondary metabolite synthesis 

suggests that serine may also be a critical component in breeding efforts to alter 

quantities of metabolites in the grain. 

Developing crops with highly specific secondary metabolite profiles in the cooked 

grain is a breeding strategy of growing interest [45]. Metabolite and networks have been 

described as an innovative addition to explain variation in breeding [46]. A number of 

studies document the importance of genetic diversity in metabolite networks [47,48,49]. 

Integrating genetic and metabolomic analyses into networks can provide substantial 

predictive power of genotypic influences [50]. For plant breeding, it is important to 

characterize the genetic components that contribute to GEI to evaluate the heritability of 

a metabolite profile. The gene/metabolite network approach may be useful to explain 

genotypic, environmental, and GEI effects on primary and secondary metabolism. 
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Figure 3.1. Differences between IR64 and Moroberekan for metabolites detected 
by UPLC-MS. (A) Mass distribution of molecular features from IR64 and Moroberekan. 

(B) Principal component analysis of approximately 1200 molecular features from cooked 
rice extracts show metabolome differences between IR64 and Moroberekan (n=5). (C) 
Volcano plot showing each molecular feature plotted by fold-difference in quantity 
between IR64 and Moroberekan (x-axis) and p-value calculated by student‟s t-test (y-
axis). Vertical red bars indicate cutoff for 2-fold differences in molecular feature 
quantities, and the horizontal blue bar indicates a cutoff for p < 0.01. (D) Molecular 
features with greater than 2-fold differences between IR64 and Moroberekan (students t-
test, *p < 0.05), whereby masses listed are of the predicted metabolite mass with no 
charge. Values are expressed as mean peak area ± SEM, and metabolite classes were 
deduced by matching masses and mass spectra to metabolite databases. 
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Figure 3.2. Differences between IR64 and Moroberekan for metabolites detected 
by GC-MS from plants grown in the field and greenhouse. (A) Principal component 

analysis of 4972 molecular features suggests grain metabolite variation due to both 
genotypic and environmental effects. Molecular features were assessed for differences 
among (C) genotype and (D) environment based on fold-changes in feature quantities 
and p-values (student‟s t-test). 
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Figure 3.3. Z-score analysis to assess metabolite variation associated with a 
greenhouse environment. Z-scores were calculated for metabolites that were classified 

based on mass spectral database matching as an (A) amino acid (B) sugar (C) fatty acid 
or (D) triterpenoid, organic and inorganic acids, and other compounds. Z-scores 
represent the number of standard deviations each metabolite differed by growing IR64 or 
Moroberekan in the greenhouse (CSU), compared to field-grown rice (IRRI) as a control. 
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Figure 3.4. Heat map of ADT/PDT gene expression. The 10 ADT/PDT genes showed 
variation in expression among rice MPSS libraries for the developing seed, and abiotic 
and biotic stresses. Shade represents the percent of gene expression relative to the 
library with the maximum gene expression, assessed by transcript copy number. Rice 
pathogen libraries were for Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe 
grisea (Mg). 
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Figure 3.5. Heat map of genes predicted to interact with Loc_Os07g49390. Gene 
expression proflies for the six genes predicted to interact with Loc_Os07g49390, 
described in Table 3. Shade represents the percent of gene expression relative to the 
library with the maximum gene expression, assessed by transcript copy number. Rice 
pathogen libraries were for Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe 
grisea (Mg).  
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Figure 3.6. Amino acid network for GC-MS detected metabolites from IR64 and 
Moroberekan grown in two environments. Amino acid synthesis pathways from the 

MetaCrop database [25] were linked using shared amino acids, metabolic intermediates 
of amino acid biosynthesis, and related enzymes. Enzymes are represented as Enzyme 
Commission number [51], and red lettering indicates chemical reactions that use 
glutamate as a substrate in a transaminase reaction. GC-MS detected metabolites for 
IR64 (blue) and Moroberekan (red) are displayed for greenhouse-grown (GH) and field-
grown rice (FD). Variation due to G, E, and GEI are described in Table 1. 
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Table 3.1. Quantities (peak area units) for metabolites detected by GC-MS and effect of 
genotype (G), growing environment (E), and genotype-environment interactions (GEI). 

 
IR64 Moroberekan 

 
Amino Acids Greenhouse Field Greenhouse Field Effect p<0.05 

alanine 110.76 ± 2.43 77.92 ± 8.42 273.98 ± 4.31 190.44 ± 6.41 G, E, GEI 

valine 51.48 ± 0.98 44.97 ± 2.6 70.49 ± 0.6 85.88 ± 4.92 G, GEI 

isoleucine 16.66 ± 0.66 20.35 ± 0.94 26.82 ± 0.54 51.36 ± 1.83 G, E, GEI 

glycine 135.02 ± 3.47 43.83 ± 0.82 165.89 ± 1.81 64.52 ± 3.77 G, E 

serine 28.76 ± 0.8 43.16 ± 3.62 80.54 ± 0.9 138.33 ± 11.04 G, E, GEI 

threonine 18.06 ± 0.59 13.31 ± 1.14 26.26 ± 0.22 37.61 ± 1.88 G, E, GEI 

aspartic acid 76.55 ± 0.9 
113.57 ± 
10.87 

107.22 ± 3.22 177.26 ± 12.77 G, E 

proline 65.56 ± 1.8 123.23 ± 15.5 71.89 ± 2.5 132.77 ± 5.67 E 

glutamate 35.32 ± 1.99 84.44 ± 14.73 53.49 ± 0.87 102.97 ± 7.18 E 

asparagine 46.16 ± 1.51 18.24 ± 3.26 38.93 ± 0.74 29.21 ± 2.31 E, GEI 

phenylalanine 17.89 ± 2.21 24.66 ± 2.35 21.53 ± 1.65 44.26 ± 3.57 G, E, GEI 

tyrosine 16.95 ± 0.58 17.07 ± 1.04 25.37 ± 0.38 31.17 ± 1.22 G, E, GEI 

Sugars 
     

glycerol 1958 ± 693 2299 ± 605 1949 ± 677 1406 ± 374 ns 

xylitol 55.53 ± 1.63 23.68 ± 1.08 53.23 ± 0.3 30 ± 1.52 E, GEI 

fructose 31.26 ± 1.43 67.08 ± 5.68 120.67 ± 0.9 139.38 ± 3.15 G, E, GEI 

galactose 75.39 ± 3.46 143.11 ± 7.44 187.11 ± 1.8 231.51 ± 8.05 G, E 

glucose 37.82 ± 2.07 45.1 ± 2.33 40.98 ± 0.46 42.81 ± 2.31 E 

myoinositol 26.35 ± 0.74 49.95 ± 2.42 67.84 ± 1.36 92.11 ± 3.98 G, E 

sucrose 3075 ± 87 3367.3 ± 124 4197 ± 104.7 3777 ± 149 G, GEI 

Fatty Acids 
     

propanoic acid 165.73 ± 41.85 153.21 ± 20.2 127.09 ± 28.65 129.69 ± 15.42 ns 

acetic acid 27.5 ± 0.54 18.34 ± 4.38 22.66 ± 1.89 27.96 ± 3.61 GEI 

butanoic acid 99.98 ± 4.55 284.18 ± 14.7 315.33 ± 6 417.63 ± 24.83 G, E, GEI 

myristic acid 18.61 ± 2.13 20.56 ± 2.21 14.57 ± 1.41 14.53 ± 0.52 G 

palmitic acid 167.8 ± 18.68 
202.07 ± 
20.75 

170.34 ± 17.41 190.08 ± 5.22 ns 

linoleic acid 105.85 ± 5.96 123.15 ± 7.62 86.27 ± 2.58 118.68 ± 2.89 G, E 

oleic acid 18.89 ± 0.61 29.63 ± 2.49 21.88 ± 0.33 38.1 ± 0.24 G, E 

stearic acid 185.88 ± 41.92 227.92 ± 42.3 174.84 ± 26.66 157.12 ± 8.95 ns 

Others 
     

isoxanthopterin 21.82 ± 1.16 22.17 ± 4.86 6.34 ± 0.12 7.74 ± 1.47 G 

beta-sitosterol 30.06 ± 3.82 26.51 ± 1.49 27.16 ± 3.46 31.21 ± 2.38 ns 

beta-ergostenol 14.54 ± 1.58 13.71 ± 0.72 11.7 ± 0.98 14.42 ± 1.01 ns 

phosphoric acid 64.14 ± 4.44 95.42 ± 4.01 74.9 ± 0.21 80.36 ± 2.19 E, GEI 

oxalic acid 21.75 ± 1.04 28.24 ± 1.95 13.49 ± 1.53 19.96 ± 1.41 G, E 

nicotinic acid 29.8 ± 1.21 38.39 ± 2.26 23.36 ± 0.85 40.08 ± 1.91 E, GEI 

malic acid 43.01 ± 0.6 95.03 ± 5.26 30.14 ± 0.67 131.24 ± 9.46 E, GEI 

citric acid 123.15 ± 2.43 232 ± 11.24 105.31 ± 0.87 144.61 ± 3.37 G, E, GEI 

pyridine 98.05 ± 2.28 96 ± 3.34 105.66 ± 4.5 97.44 ± 4.3 ns 
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Table 3.2. Genes associated with or ADT/PDT activity in rice. 

Rice PDT/ADT  SNP ID Ch. Coordinate Class Cyp. Nipp. IR64 Moro. 

LOC_Os01g34450 no snp 1 - - - - - - 
LOC_Os03g17730 no snp 3 - - - - - - 
LOC_Os04g33390 no snp 4 - - - - - - 

LOC_Os04g55780 no snp 4 - - - - - - 

LOC_Os06g45930 no snp 6 - - - - - - 

LOC_Os07g49390 TBGI337566 7 29578537 3' UTR C T N N 
LOC_Os07g49390 TBGI337567 7 29578969 3' UTR T A N N 
LOC_Os07g32774 TBGI326181 7 19597711 intron G A G G 

LOC_Os07g32774 TBGI326183 7 19598604 syn SNP A G G G 
LOC_Os07g32774 TBGI326187 7 19599150 intron G G G N 
LOC_Os08g33260 no snp 8 - - - - - - 

LOC_Os09g39230 no snp 9 - - - - - - 
LOC_Os09g39260 no snp 9 - - - - - - 
LOC_Os10g37980 TBGI413593 10 20015366 3' UTR A A G A 

LOC_Os10g37980 TBGI413595 10 20016479 syn SNP G G N G 
LOC_Os10g37980 TBGI413596 10 20016700 syn SNP G G A G 
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Table 3.3. Predicted metabolite synthesis genes that interact with 
Loc_Os07g49390. 
 

Interacting Gene Pathway Function Location Score Evidence 

LOC_Os06g49520 tyrosine biosynthetic 

process 

prephenate 

dehydrogenase 

--------- 1.33 OS-GN 

LOC_Os06g35050 tyrosine biosynthetic 

process 

prephenate 

dehydrogenase 

--------- 1.97 OS-GN 

LOC_Os03g06200 L-serine biosynthetic 

process 

phosphoserine 

transaminase 

--------- 2.61 OS-GN 

LOC_Os04g55720 L-serine biosynthetic 

process 

phosphoglycerate 

dehydrogenase 

Mito, 

chloro 

2.42 AT-DC 

LOC_Os06g04280 aromatic amino acid 

biosynthetic-

shikimate pathway 

------------- chloro 1.96 OS-GN 

LOC_Os08g02500 regulation of amino 

acid metabolic 

process, response to 

cytokinin stimulus, 

response to abscisic 

acid stimulus 

amino acid binding cytosol 2.63 AT-DC 

OS-GN: Gene neighborhoods of bacterial and archaeal orthologs of rice genes  
AT-DC: Co-occurrence of domains among Arabidopsis protein 
Mito: mitochrondria 
Chloro: chloroplast 
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CHAPTER FOUR: RICE BRAN FERMENTED WITH SACCHAROMYCES BOULARDII 

GENERATES NOVEL METABOLITE PROFILES WITH BIOACTIVITY  

 
 
 
 

A modified version of this chapter is published as Ryan EP, Heuberger AL, Weir TL, 

Barnett B, Broeckling CD, Prenni JE. Rice Bran Fermented with Saccharomyces 

boulardii Generates Novel Metabolite Profiles with Bioactivity. Journal of Agricultural and 

Food Chemistry. 2011. 59 (5): 1862-1870. 
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SUMMARY 

Emerging evidence supporting chronic disease fighting properties of rice bran 

has advanced the development of rice bran for human use as a functional food and 

dietary supplement. A global and targeted metabolomic investigation of stabilized rice 

bran fermented with Saccharomyces boulardii was performed in three rice varieties. 

Metabolites from S. boulardii-fermented rice bran were detected by gas 

chromatography-mass spectrometry (GC-MS) and assessed for bioactivity compared to 

non-fermented rice bran. Global metabolite profiling revealed significant differences in 

the metabolome that led to discovery of candidate compounds modulated by S. boulardii 

fermentation. Fermented rice bran extracts from three rice varieties reduced growth of 

human B lymphomas compared to each variety‟s non-fermented control and revealed 

that fermentation differentially altered bioactive compounds. These data support that 

integration of global and targeted metabolite analysis can be utilized for assessing health 

properties of rice bran phytochemicals that are both enhanced by yeast fermentation and 

that differ across rice varieties.  
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INTRODUCTION 

Rice bran is a unique whole food that naturally contains protein, vitamins, 

minerals, complex carbohydrates, phytonutrients, phospholipids, essential fatty acids, 

and more than 120 antioxidants (1). Dietary rice bran intake and rice bran components 

have demonstrated chronic disease fighting activity, particularly for protection against 

cardiovascular disease and certain cancers (2-8). We and others have shown that rice 

varieties are not equal in content and composition of bioactive rice bran components (9, 

10). How these phytochemicals are altered by microbial fermentation and metabolism is 

an emerging area of research that merits scientific investigation when assessing 

bioactivity and health benefits. A few studies have evaluated rice bran as a dietary 

supplement or functional food ingredient (5, 11-13); however, little is known about how 

chemical content changes with and without fermentation.   

 The yeast, Saccharomyces cerevisiae var. boulardii (S. boulardii) has probiotic 

activity and is widely used as a dietary supplement for intestinal disease prevention and 

treatment (14-16). The spectrum of biomedical activities and food processing 

applications reported with S. boulardii has significantly grown over the last decade and 

includes, but is not limited to, protection against enteric pathogens, modification of 

lymphocyte proliferation, as well as differential release of plant secondary metabolites 

from foods such as wine, sourdough and cheese (17-19).  Sacchromyces boulardii has 

been shown to be beneficial for modification of food components such as breakdown of 

dietary phytate and biofortification of folate to improve the nutritional value and health 

properties of food (20, 21). The health benefit of S. boulardii as both a probiotic and for 

fermented foods was recently reviewed and a meta-analysis of placebo-controlled 

treatment trials supports its safety and efficacy for protection against several types of 

diarrhea (16, 22, 23). Protection against specific enteric bacterial pathogens by S. 

boulardii may, in part, be due to anti-inflammatory actions and effects on immunity (15, 
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19, 23). In vitro studies using mammalian cell cultures have shown that S. boulardii 

modifies host cell signaling pathways associated with pro-inflammatory responses, and 

that the mechanism may be based on blocking activation of nuclear factor-kappa B 

(NFκB) and mitogen activated protein kinase (MAPK) (24, 25). Inhibition of these cell-

signaling pathways is also an important mechanism for reducing cancer cell growth. Rice 

bran components have been reported to inhibit activation and promote apoptosis of 

malignant lymphocytes and to inhibit growth of intestinal cancers (3, 11, 26, 27). In this 

report, we examined the effects of S. boulardii fermented rice bran across rice varieties 

on viability of human B lymphoma in vitro. Rice bran chemical contents and the 

compounds altered by fermentation have not been previously assessed for effects on 

human B lymphomas, and were assessed using global and targeted metabolite profiling 

techniques.  

 A significant lack of knowledge exists regarding the ability of probiotics to alter 

the phytochemistry of rice bran for health benefit, and global metabolite profiling 

represents a novel approach to detect changes in rice bran phytochemical content due 

to fermentation without a bias towards certain chemical classes. A metabolite profiling 

approach based on gas chromatography−mass spectrometry (GC-MS) was recently 

used to investigate time-dependent metabolic changes during the germination of rice 

(28) and more targeted studies have sought to identify bioactive and volatile compounds 

from rice bran oil or in bran polished from red and black rice varieties (9, 29).  Bran from 

three rice varieties was predicted to vary in bioactive chemical content after fermentation 

with S. boulardii and to differentially inhibit human B lymphoma viability.  
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MATERIALS AND METHODS 

Reagents and Cell Culture  

Caffeic acid, p-coumaric acid, ferulic acid, salicylic acid, β-sitosterol, and α-

tocopherol standards were purchased from Sigma-Aldrich (St. Louis, MO). 

Saccharomyces boulardii was isolated from the commercial probiotic, Proboulardi® 

(Metagenics Inc., San Clemente, CA), and confirmed by morphological tests. Cultures 

were maintained on yeast nitrogen base (YNB) amended with 0.5% (w/v) ammonium 

sulfate and 2% (w/v) dextrose. Raji B lymphomas were purchased from American Type 

Culture Collection. Whole blood from healthy volunteers was collected into 8ml Cell 

Preparation Tubes (CPT) with sodium citrate as an anticoagulent (Becton Dickinson 

Vacutainer Systems, Franklin Lakes, NJ). CPT tubes were centrifuged at 1500 × g for 30 

minutes for separation of normal human peripheral blood lymphocytes. Raji B 

lymphomas and freshly isolated normal blood lymphocytes were cultured in RPMI 

medium supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 10 mg/mL 

penicillin, 10,000 IU/mL streptomycin, 25mg/mL amphotericin, 1 mM sodium pyruvate, 

and 1x MEM nonessential amino acids.  

 

Rice Bran Collection and Storage 

Three rice varieties selected for investigation were Neptune, Wells, and Red 

Wells (Table 4.1). Red Wells is derived from Wells, and the line resulted from a 

spontaneous mutation that confers a red-colored seed coat. Red Wells is assumed to be 

near-isogenic to Wells (30). Rice bran was provided as a generous gift from Dr. Anna 

McClung at the United States Department of Agriculture, Rice Research Center 

(Stuttgart, Arkansas). Bran was isolated by standard milling process, heat stabilized at 

110°C for 3 min, and stored at -20°C.  
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S. boulardii Fermentation and Metabolite Extraction 

Rice bran, water and probiotic yeast fermentations were carried out using a 

modification of the methods described in (31, 32).  Briefly, 1.6 g of rice bran was added 

to 11.4 mL of sterilized water in the presence and absence of S. boulardii concentration 

of 6x105 cells mL-1, and samples were incubated at 37°C for 24 hrs with gentle shaking 

(n=3). Metabolites were extracted using two separate solvents: either (A) 

isopropanol:acetonitrile:water (3:2:2) for metabolite profiling or (B) methanol:water 

(80:20) for measuring bioactivity of in vitro lymphoma cultures. Solvent A was used for 

metabolite profiling and was previously shown to extract both lipids and organic acids 

(33, 34). Solvent B was used to standardize cell culture treatments and conditions, as a 

similar single-phase aqueous-alcohol solvent was previously used to assess effects of 

rice bran compounds (26, 27). After 24 hours of fermentation in water, either 

isopropanol:acetonitrile or methanol was added to the  culture for final 3:2:2 or 80:20 

ratios, respectively. Samples were vortexed, incubated at room temperature for five 

minutes, and bran material and yeast cells were pelleted using centrifugation (1500 × g) 

for ten minutes followed by filtration. The supernatant was collected and stored at -80°C 

until further chemical and biological analyses. 

 

Gas chromatography-mass spectrometry 

Rice bran metabolites were detected by transferring 500 µL of extract to a new 

tube and dried using a vacuum centrifuge. The extract was derivatized by first adding 50 

µL of a solution containing 20 mg/mL of methoxyamine hydrochloride in pyridine and 

incubating at 37°C for two hours. Next, 50 µL of N-methyl-N-

trimethylsilyltrifluoroacetamide with 1% trimethylchlorosilane (MSTFA + 1% TMCS) 
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(Thermo Scientific) was added and the reaction was incubated at 37°C for 60 min. 

Samples were centrifuged at 3000 × g for 5 min, and 80 µL of the supernatant was used 

for GC-MS analysis. Caffeic acid, coumaric acid, ferulic acid, salicylic acid, β-sitosterol, 

and α-tocopherol standards (Sigma-Aldrich, St. Louis, MO) were dissolved in an 

isopropanol/acetonitrile/water solution (3:2:2), evaporated, and derivatized under 

identical conditions. 

The derivatized samples were equilibrated to room temperature, transferred to a 

200 µL glass insert, and analyzed using a Trace GC Ultra coupled to a Thermo DSQ II 

scanning from m/z 50–650 at a rate of 5 scans/second in electron impact mode.  

Samples were injected at a 10:1 split ratio, and the inlet and transfer line were held at 

280°C. Separation was achieved on a 30m TG-5MS column (Thermo Scientific, 0.25 

mm ID, 0.25 µm film thickness) using a temperature program of 80°C for 0.5 min, then 

ramped at 15°C per minute to 330°C and held for 8 minutes, at a constant flow of 1.2 mL 

per minute. A single feature or known metabolite was defined by a given metabolite‟s 

retention time and mass, and the peak area was used to determine the relative quantity 

of each feature or known metabolite. 

 

Cell Viability  

Raji B lymphomas and normal peripheral blood lymphocytes were plated to a 

density of 2.5x105 cells per mL. Rice bran extracts were dried in a vacuum centrifuge, 

resuspended in cell culture medium, and cells were incubated in the presence of rice 

bran extract for 24 hours. Cells were centrifuged at 1500 × g for 5 minutes, resuspended 

in a solution consisting of cell culture media and 1% resazurin sodium salt, and 

incubated at 37°C for one hour. Fluorescence was measured at 765nm and viability was 

expressed as percent fluorescence relative to the vehicle control (35, 36).  
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S. boulardii growth on rice bran 

Saccharomyces boulardii cultures were maintained in YNB (MP Biomedicals, 

Solon, OH) with 0.5% ammonium sulfate and 2% dextrose at 37°C. A liquid growth 

medium containing 5% rice bran and water was made with each rice variety. S. boulardii 

was added to the rice bran/water mixture at a final OD600 of 0.02 (approximately 6x105 

cells mL-1). Cultures were incubated at 37°C and sampled at 24, 48, and 72 hours. Yeast 

cells were enumerated by drop plating serial dilutions on YNB plates to determine total 

colony forming units (CFUs). 

 

Statistical Analysis 

Chromatographic peaks between 2 and 25 min were detected by GC-MS and 

aligned using MarkerLynx software (Waters, Millford, MA, USA) with a retention time 

error window of 0.05 min. Masses used for analyses ranged between 50 and 650 m/z 

with a mass error tolerance of 0.4 m/z.  Multivariate statistical analysis was performed 

using SIMCA P+ (v 12.0, Umetrics, Umeå, Sweden). Mean centering and pareto scaling 

was applied for all principal component, partial least squares, and orthoganol projection 

to latent structures (OPLS) analyses. Each feature was analyzed independently in a 

linear mixed-effects model to determine the significance and percent variance attributed 

to fermentation (fixed effect), or variety and variety-fermentation interactions (random 

effects). Significance was determined with a P-value threshold of 0.05, and percent 

variation was determined using the sum of squares partitions of each random effect 

relative to the total sum of squares of the model.  Fold changes due to fermentation were 

calculated for each feature using the peak areas of fermented divided by the non-

fermented.. Bioactive compounds were compared among varieties by one-way ANOVA 
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(P < 0.05), and z-scores were calculated for metabolites from fermented varieties based 

on the mean and standard deviation of the non-fermented control. Effects on lymphoma 

viability and increased growth of S. boulardii on rice bran varieties were determined 

using a one-way ANOVA and Tukey‟s HSD. Significant differences between treatments 

(rice bran varieties) and controls (YNB) were confirmed by a Dunnet‟s 2-tailed 

comparison. These tests were performed using R software (v2.11.1), GraphPad Prism (v 

5.0, GraphPad Software, Inc., La Jolla, CA) and XLStat-Pro (Addinsoft USA, New York, 

NY). 

 

RESULTS 

Rice bran metabolome differences among rice varieties before and after 

fermentation with S. boulardii 

Bran from three rice varieties (Table 4.1) was extracted for metabolite profiling 

and analyzed by gas chromatography coupled to mass spectrometry (GC-MS). The rice 

varieties Neptune and Wells are U.S. semi-dwarf varieties, and Red Wells is isogenic to 

Wells apart from a single deleted base pair in the proanthocyanidin gene Rc. This 

mutation results in the production of red pigment in the bran layer of the seed (30). 

Principal component analysis was used to elucidate varietal differences in the 

metabolome of non-fermented rice bran (Figure 4.1A). Varietal differences were largely 

explained by the first component (56%), and the second component differentiated 

between biological replicates (14%). Rice bran was then incubated in the presence and 

absence of S. boulardii and metabolites were extracted and detected by GC-MS. The 

GC-MS chromatograms of non-fermented rice bran, S. boulardii fermented rice bran, 

and S. boulardii extracts showed unique differences among the treatments (Figure 

4.1B). Partial least squares-discriminate analysis (PLS-DA) was used to detect 

differences in the metabolome among all three varieties and with or without fermentation 
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with S. boulardii (Figure 4.1C). The first two components of the PLS-DA model explained 

66% and 19% of the variation, respectively. This model demonstrates the ability to apply 

metabolite-profiling techniques to differentiate chemical contents of fermented rice bran 

from non-fermented rice bran, irrespective of the rice variety tested. 

 

Rice bran metabolites modulated by S. boulardii fermentation 

S. boulardii fermentation induced changes in metabolite content for all three 

varieties, determined by quantitative analysis of peak areas of 10,260 GC-MS derived 

features. For Neptune, Wells, and Red Wells, 448, 127, and 311 features varied due to 

fermentation, respectively (Student‟s t-test, P < 0.05). A linear mixed model analysis was 

performed for each feature using fermentation (fixed), and variety and a fermentation-

variety interaction (random) as effects. The mean percent variance explained by the 

model for all features was 14.8%. Genotype and genotype*fermentation effects 

explained a mean of 10% and 4.8% of the total variation, respectively.  

 A series of PLS-DA and OPLS models were applied to each rice variety to 

determine metabolites with the most significant changes due to fermentation (Figure 

4.2). The effect of fermentation on each variety‟s metabolome was explained by the first 

component in each PLS-DA model. OPLS analyses were conducted to determine 

metabolites quantitatively altered by yeast probiotic fermentation. Metabolites of interest 

contained p(1) and p(corr) values greater than 0.02 and 0.8, respectively, and were 

analzyed for quantitative differences between samples by fold-change due to 

fermentation and by Student‟s t-test (P < 0.05) (Table 4.2). Mass spectra of significant 

peaks were screened in the National Institute of Technology Standards metabolite 

database for probable matches. Rice varieties differed in candidate metabolites altered 

by S. boulardii fermentation and by chemical classes. For the three varieties, there was 

wide variation in both the relative quantities of metabolites increased and the types of 
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predicted metabolites. S. boulardii fermentation of rice bran differs with regard to variety 

and was next evaluated for impact on anti-cancer properties of rice bran. 

 

S. boulardii fermented rice bran extracts differentially inhibit lymphoma viability 

 Polar rice bran extracts were previously shown to inhibit tumor promotion of 

lymphoblastoid B cells, and rice bran agglutinin inhibited growth of monoblastic leukemia 

U937 cells (26). Methanol-soluble metabolites from Neptune rice bran were screened for 

dose dependent effects on viability of normal human peripheral blood lymphocytes (PBL) 

and malignant human B-cell lymphoma (Figure 4.3A). Viability was measured by 

resazurin stain after 24 hours of incubation with fermented and nonfermented rice bran 

extracts. The rice bran extracts did not affect the viability of normal PBL (Figure 4.3A). A 

significant reduction in lymphoma viability was demonstrated at the 500 μg ml-1 dose of 

Neptune rice bran extract, while the 125 and 250 μg mL-1 were not significantly reduced 

from vehicle control (Figure 4.3A). The 500 μg mL-1 dose of rice bran extract was next 

used to examine effects of both non-fermented and fermented rice bran extracts across 

varieties on normal PBL and lymphoma. None of the rice bran extracts altered the 

viability of normal PBL (Figure 4.3B). The S. boulardii-fermented rice bran significantly 

inhibited lymphoma viability compared to vehicle controls for all varieties tested (Figure 

4.3C). The non-fermented Neptune rice bran extracts showed a 23% reduction in 

viability, and S. boulardii-fermented Neptune rice bran extracts reduced viability by 85% 

compared to control. At 500 μg mL-1, unfermented extracts of Wells and Red Wells had 

no effect on lymphoma viability relative to the control, however fermented extracts 

inhibited viability by 75% and 51%, respectively (Figure 4.3C). The percent reduction in 

viability differed among varieties of the three fermented extracts (ANOVA, Tukey post-

hoc, P < 0.05). The differential reduction in viability by fermented rice bran among rice 

varieties supports that variation in metabolite contents as detected in Figure 4.1 may be 
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important for bioactivity. The isopropanol:acetonitrile:water (3:2:2) solvent used for 

metabolite profiling of fermented bran extracts (Figure 4.2) was also examined for effects 

on lymphoma viability, however this solvent demonstrated suboptimal background 

activity as a vehicle control and was therefore not utilized to compare effects across rice 

varieties  (data not shown). 

 

S. boulardii modulation of bioactive rice bran compounds 

Given the varietal differences in anticancer activity of S. boulardii fermented rice 

bran extracts, a number of bioactive rice bran compounds were selected for relative 

quantification. Rice bran contains a number of metabolites with reported anticancer 

effects, notably phenolics and phytosterols (37-39). Salicylic, p-coumaric, ferulic, and 

caffeic acid, and also α-tocopherol and β-sitosterol were detected in non-fermented and 

fermented rice bran from each of the three varieties by comparing the initial GC-MS 

chromatograms to purchased standards (Figure 4.4). Non-fermented extracts from Wells 

contained a greater quantity of salicylic acid than both Red Wells and Neptune (Figure 

4.4A). Red Wells contained higher amounts of ferulic acid than Neptune, and Neptune 

contained significantly less β-sitosterol than both Wells and Red Wells (ANOVA, Tukey 

post-hoc, P < 0.05). A z-score analysis was conducted to determine significant changes 

in metabolite quantity due to fermentation with S. boulardii, using non-fermented rice 

bran as a control. The data shown in Figure 4.4C supports that S. boulardii fermentation 

reduced the quantity of p-coumaric acid in Red Wells, and increased ferulic acid in 

Neptune (Figure 4.4C).  

 

Rice bran as sole carbon source for S. boulardii 

The ability of S. boulardii to utilize and quantitatively alter chemical components 

of rice bran was confirmed by measuring its growth on rice bran as a sole carbon 
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source. Overnight cultures of S. boulardii inoculated into medium containing 5% rice 

bran from each of the varieties grew significantly better than cultures inoculated into 

YNB broth with dextrose as the primary carbon source (Figure 4.5). In addition, S. 

boulardii cultures maintained viability and cell numbers for 3 days on rice bran media, 

while the number of cells in the YNB cultures steadily declined. No significant differences 

in the growth of S. boulardii were detected among the three rice varieties (ANOVA, 

Tukey post-hoc, P < 0.05).   

 

DISCUSSION   

This study demonstrates the utility of integrating global and targeted metabolite 

profiling for analysis of rice bran phytochemicals in the presence and absence of S. 

boulardii fermentation, and has advanced our knowledge about how probiotic 

fermentation of rice bran can enhance anticancer properties. Metabolomics is one 

strategy used to measure the wide array of phytochemicals that are typically evaluated 

in the "free" forms from food extracts; as these small molecules dissolve quickly and are 

immediately absorbed into the bloodstream. This high throughput, yet sensitive 

approach is also useful to assess the "bound" forms of rice molecules, which are 

attached to the plant cell walls and must be released by microbes during digestion 

before they can be absorbed. These findings set the stage for developing metabolomics 

as a tool for investigating rice bran phytochemical diversity and digestion by probiotics. 

Metabolite profiles in this study showed variation among the three U.S. rice 

varieties Neptune, Wells, and Red Wells (Figure 4.1A, Table 4.1). The Neptune 

metabolite profile separated from both Wells and Red Wells. This cluster was expected 

given the near-isogenic state of the “Wells” varieties and provided strong rationale for 

investigating differential bioactive properties. Rice bran fermentation with the S. boulardii 

probiotic enhanced metabolite diversity (Figure 4.1C), and showed rice varietal 
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differences in bran extract-mediated reduction of lymphoma growth (Figure 3B). 

Candidate metabolites that were significantly increased post-fermentation also differed 

among the three varieties (Table 4.2). The ability of S. boulardii to utilize rice bran as a 

sole carbon source substrate for cellular metabolism and growth (Figure 4.5) suggests 

that rice bran contains prebiotic characteristics. Although no differences were detected 

among the Neptune, Wells and Red Wells rice varieties, these findings warrant further 

investigation of rice bran pre-biotic components and the synergistic effects of 

prebiotic/probiotic combinations on human health.  To our knowledge, only two studies 

have examined distinct rice bran varieties for differential anti-carcinogenic activity 

[27;28]. Data from these studies demonstrate that rice varieties with pigmented seed 

coat also exhibit differential activity when compared to non-pigmented. The findings 

presented in this report suggest that some of the inconsistent results of past rice bran 

investigations on cancer cell growth may be due to the rice variety tested and not just 

those chemicals responsible for pigment.  

Another plausible explanation for inconclusive data on rice bran is not only 

differences in metabolite content among varieties, but also the influence of probiotics 

altering the bioavailability of cancer-protective compounds in select tissues. The ability of 

phenolics, particularly ferulic, salicylic, caffeic, and p-coumaric acids and α-tocopherol (a 

lipid-soluble antioxidant) found in rice bran, to scavenge free radicals, alter enzymes, 

affect biochemical pathways, and interfere with gene expression has attracted the 

attention of researchers in search of cancer-fighting agents [21,29,30]. The efficacy of 

ferulic acid, which remains in the bloodstream longer than other known antioxidants and 

therefore may provide more protection, is dependent on its bioavailability and dosage 

[31]. However, plant phenols are often found in a biologically unavailable form due to an 

ester-bond to cell wall polysaccharides. Therefore, the optimal dose of rice bran required 

to achieve cancer-fighting levels of ferulic acid is unknown. Humans and rats have been 
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shown to release diferulic acid from bran fiber using gastrointestinal esterases found in 

the large and small intestines, thus enhancing the bioavailability of this compound [32]. 

The data shown in Figure 4.4C supports that the Neptune rice variety may exhibit higher 

probiotic-induced ferulic acid release and bioavailability than the other two varieties, and 

that consuming the whole food post-fermentation with S. boulardii may be a viable 

alternative for achieving enhanced levels of this compound without losing the benefits of 

the others. Yeast cells typically only maintain viability for several hours after they have 

reached stationary phase and depleted their carbon source. Our results show that rice 

bran medium allows S. boulardii cells to maintain viability over several days, suggesting 

that secondary fermentation by the yeast may be occurring and may further alter the 

phytochemical content of the rice bran (Figure 4.5). Thus, it will be necessary to optimize 

fermentation times to advance our understanding of the kinetics of rice bran 

phytochemical metabolism and release by S. boulardii.   

Emerging evidence supports additive and/or synergistic effects of rice bran 

components for protection against certain cancers (5, 11, 40, 41), however few studies 

have examined differences in phytochemical contents in commercially available rice 

varieties. Our data support that many rice bran components were fermented by the yeast 

probiotic (Figure 4.2) and these components work together to enhance probiotic growth 

(Figure 4.5). One study examined a yeast fermentation of rice bran for changes in the 

stability, palatability, and nutritional status (carbohydrate, methionine, calcium, and ash 

content) of the bran, but did not address the alteration of potentially bioactive 

phytochemicals (42). Given the evidence for cancer fighting activities of rice bran 

phytochemicals, the data presented herein support that S. boulardii-fermented rice bran 

should be next tested for bioavailability of bioactive components and for reducing 

lymphoma viability in vivo. Chemopreventive single agent compounds found in rice bran 

include, but are not limited to tocopherols, polyphenols, inositol hexaphosphate (IP6), 
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non-starchy polysaccharides, γ-oryzanol and phytosterols (2, 4, 43-45). Our metabolite 

profile analysis of fermented rice bran revealed extensive rice bran chemical diversity, 

and can be used to further the identities of novel combinations of bioactive compounds 

that display phytochemical teamwork (46, 47). Whole rice bran consumption is 

undoubtedly recognized as important for providing more comprehensive protection 

against cancer cells when compared to supplementation with isolated ingredients, and 

the metabolite profiling techniques and chemical analyses presented herein support 

further interrogation of rice bran effects on intestinal microbe interactions as well as 

probiotic growth and metabolism. The metabolomics strategy applied herein has 

advanced our understanding of the health importance of rice bran phytochemical 

diversity in the presence and absence of fermentation and for disease fighting activity. 

Single agent nutritional “magic bullets” too often fail to achieve the health benefits 

indicated by cell-based assays, and available methodologies have limited investigations 

to these reductive approaches. By utilizing global metabolomic profiling, we can now 

more holistically approach these complex mixtures of small molecules and improve 

studies linking bioactive food components and human health.  

 

 

 

 

 

 

 

 

 

 



 

90 
 

FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Metabolite Profiling of Rice Bran from three varieties with and without 
fermentation by S. boulardii (A) Principal Components Analysis (PCA) of bran extracts 

from three rice varieties (Neptune, Wells and Red Wells) show diversity in metabolite 
profiles. The first principal component separated the three varieties, and the second 
component was mostly composed of variation among replicates within a single variety. 
(B) A representative portion of a GC-MS chromatograph showed change in metabolites 
in fermented rice bran. Neptune rice variety alone (top), S. boulardii extract alone 
(middle) and bran from Neptune variety fermented with S. boulardii (bottom). Some 
peaks are present in only one sample, and others are present in both but vary in 
quantity, as indicated by arrows above differential peaks. (C) PLS-DA model of three 
varieties of non-fermented (black shading) or fermented with S. boulardii (white). The 
first component separated each variety from its fermented counterpart, and the second 
component separated Neptune from Wells and Red Wells. 
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Figure 4.2. PLS-DA and OPLS models to determine metabolite variation induced 
by fermentation with S. boulardii. Each variety was independently analyzed for 
metabolite differences induced by S. boulardii fermentation. (A) Neptune PLS-DA 
showed the metabolome differs between unfermented (black) and fermented (white) 
samples. (B) The Neptune OPLS analysis showed metabolites that highly differ based 
on fermentation, indicated by the dashed box for Quadrant 2 (non-fermented) and 
Quandrant 3 (fermented). P(corr) values correspond to deviation across replicates, and 
p(1) values are proportional to the quantity of metabolite. Wells (C and D) and Red Wells 
(E and F) also showed altered metabolite content induced by S. boulardii. 
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Figure 4.3. S. boulardii fermented rice bran inhibits lymphoma viability. (A) 

Different doses of non-fermented methanolic rice bran extracts (Neptune) were added to 

normal human peripheral blood lymphocytes (PBL) and Raji B lymphoma cultures for 24 

hours. Values are expressed as the mean percent viable cells relative to the vehicle 

control ± S.E.M. Extracts of non-fermented Neptune reduced lymphoma viability at 500 

μg mL-1 (student‟s t-test, P < 0.05). (B) Fermented and non-fermented extracts of all 

three varieties at 500 μg mL-1 had no effect on viability of normal PBL. (C) Fermented 

and non-fermented extracts of all three varieties at 500 μg mL-1 differentially affected 

lymphoma viability, as measured by cell fluorescence after the addition of resaruzin 

(ANOVA, Tukey post-hoc, P < 0.05). Significance from vehicle control is represented by 

an asterisk, and statistical groupings are denoted by the letter a, b, and c. 
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Figure 4.4. Bioactive food components in rice bran with and without S. boulardii 
fermentation. Relative quantification of metabolites without fermentation (A) and with 

fermentation (B) was based on the area of the GC-MS chromatograph. Metabolites 
showing a significant difference by relative quantity and between two varieties were 
indicated by an asterisk (ANOVA, Tukey post-hoc, P < 0.05). Values are expressed as 
mean peak area ± S.E.M. (C) Z-score for metabolites from fermented extracts using the 
non-fermented as a control. Significant changes in metabolite quantity are indicated by 
z-score values outside of the shaded region. Increased ferulic acid was detected in S. 
boulardii fermented Neptune rice bran, and decreased p-coumaric acid was detected 

from fermented Red Wells compared to non-fermented.  
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Figure 4.5. Rice bran enhances growth of S. boulardii. Rice bran from all three rice 
varieties significantly increased the growth of S. boulardii compared to YNB media alone 

after 24, 48 and 72 hours. An asterisk indicates difference in the quantity of yeast 
colonies compared to the YNB control (one way ANOVA, Tukey post-hoc, P < 0.05). 
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TABLES 

Table 4.1. Rice Varieties Assessed for Bioactivity of the Bran 

Trait Neptune Wells Red Wells 

Plant ID PI 655959 PI 612439  
yield high high high 
grain type long medium medium 
leaf type erect erect erect 
pericarp brown brown red 
sheath blight moderately susceptible moderately susceptible moderately susceptible 
rice blast moderately resistant moderately susceptible moderately susceptible 
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Table 4.2. Varietal Differences in Candidate Compounds Altered by S. boulardii 

Fermentation 

variety compound class 

fold change 

after 

fermentation 

p-value 

Neptune galactose sugar -10.32 0.03 

 palmitic acid fatty acid -1.2 0.04 

 alpha-linoleic acid fatty acid -1.23 0.04 
 uknown disaccharade sugar 26.44 0.001 

 xylitol sugar-alcohol 14.79 < 0.001 

 glucitol sugar-alcohol ** < 0.001 

 alanine amino acid 4.63 0.02 

 phosphoric acid mineral 2 < 0.001 

 1,2,3-propanetricarboxylic acid organic acid 4.34 0.02 

Wells D-fructose sugar -6.38 0.005 

 ribitol sugar-alcohol * < 0.001 

 linoleic acid methyl ester fatty acid 1.4 0.04 

Red Wells palmitic acid fatty acid ** 0.03 

 uknown disaccharade sugar ** < 0.001 

*metabolite only present in nonfermented extracts 

**metabolite only present in fermented extracts 
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CHAPTER FIVE: CONCLUSIONS AND FUTURE DIRECTIONS  

 
REVIEW OF WORK 

 

Influence of Genetic Diversity on Metabolite Variation in Rice  

 Incorporating metabolomics into the study of staple crops is an innovative 

method to assess metabolite-related phenotypes [1,2]. The influence of genetic diversity 

on metabolite profiles of staple foods has not been well described. My experiments 

confirm that genetic diversity influences metabolite variation in both cooked rice and 

stabilized bran. Previous studies show metabolite diversity in cereals; however none 

describe the potential mechanisms by which genetic diversity influences metabolic 

variation. My work suggests that the content of plant-derived metabolites in the diet may 

be influenced by single nucleotide polymorphisms (SNPs), the environment, and gut 

fermentation. Both liquid and gas chromatography/mass spectrometry (LC-MS, GC-MS) 

techniques may be useful to assess the effects of SNP, environment, and fermentation 

factors on the metabolite profiles of staple crops.  

 Study 1 determined that genetic diversity is associated with variation in cooked 

grain metabolite profiles and health-related metabolites. Ten rice varieties were profiled 

using LC-MS. Approximately 25% of the molecular features varied (p < 0.001), including 

metabolite variation among subspecies (indica, japonica, aus). The multivariate partial 

least squares (PLS) analysis confirmed that metabolite variation was associated with the 

indica, japonica, and aus subspecies. Principal component analysis (PCA) models were 

heavily skewed by the variety Dular, and varieties did not cluster via subspecies when 
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Dular was included in the PCA (data not shown). Both PCA and PLS analysis are 

valuable methods to characterize metabolite profiles, and both techniques can be 

integrated with genetic selection algorithms to aid in selecting varieties with specific 

metabolite profiles [3]. PLS was more efficient for distinguishing genetic variation by 

subspecies. The model showed that a variety could be classified as indica or japonica 

based on its LC-MS-detected metabolite profile. No within-subspecies metabolite 

variation was characterized due to the limited number of varieties included in the study. 

The study confirmed the sensitivity of the LC-MS technique, and within-subspecies 

variation can be determined by including more varieties in the experimental design. 

 The genetic analysis conducted in Study 1 suggests SNPs are associated with 

metabolite diversity in cooked rice. The SNP homology in the phenolics and vitamin E 

biochemical pathways was similar to genome-wide SNP variation described in [4]. Both 

the phenolics and vitamin E dendrograms were limited by the number of SNPs present 

in both biochemical pathways. Expanding the biochemical and genetic models for both 

classes of metabolites would potentially increase the number of SNPs available for 

dissimilarity matrix analyses, and therefore increase statistical power. However, even 

with a low-power dataset, the trends in SNP variation within each pathway suggest that 

there is genetic variation in enzymes related to metabolite biosynthesis. Furthermore, 

SNP patterns were consistent with evolutionary relationships among the varieties. This 

supports that SNPs profiling may be a potential target to predict metabolite profiles, and 

SNP variation may explain altered regulation and efficiency of metabolite biosynthesis 

enzymes. 

 Study 2 showed that the environment in which rice is grown can influence the 

metabolite profile. In this study, two rice varieties were grown in two environments: the 

field and the greenhouse. Metabolite profiling was conducted using GC-MS to determine 

variation in primary metabolites. Genotypic effects accounted for 25% of total variation 
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among detected molecular features, and environmental and genotype-environment 

interactions (GEI) accounted for 25% and 12.7% of the variation, respectively (p < 0.01). 

Bioinformatics analyses were conducted to identify allelic variation in phenylalanine 

synthesis genes, and also gene expression variation and gene-gene interactions were 

established. 

The experimental design of the study was limited to two genotypes and 

environments. The limited genotypes and environments allowed for more detailed 

characterization of relationships among metabolites, as excessive GEI would make 

metabolite covariation difficult to detect. The GEI effects observed for 12% of molecular 

features suggest that their expression among genotypes would differ among genotypes 

across environments. For analysis of GEI on secondary metabolites, a phenylalanine 

network was constructed to determine metabolites that covary with phenylalanine, and 

genes that may be associated with the metabolite profiles. The GEI effects indicated that 

metabolite profiles vary across varieties and environments. 

 The third study confirmed genotype-fermentation interactions as a source of 

variation in the health properties of the grain. In this study, extracts form three rice 

varieties were fermented with Saccharomyces boulardii, a probiotic yeast. Metabolite 

profiles were established for the fermented and nonfermented extracts. Both 

nonfermented and fermented extracts were added to a lymphoma cell culture, and cell 

viability was assessed. There was mild inhibition of viability for the nonfermented 

extracts, but fermented extracts from all three varieties significantly reduced cell viability. 

From the metabolite profiles, it was determined that ferulic acid was significantly 

increased for fermented-Neptune, but not for the varieties Wells and Red Wells.  

While Studies 1 and 2 assessed genetically diverse varieties, Study 3 described 

differences between two near isogenic varieties: Wells (brown rice) and Red Wells (red 

rice). The two varieties are thought to differ in a single anthocyanin synthesis gene [5] 
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due to a spontaneous mutation in Wells that restores the Rc gene, which is a loss of 

function allele due to an insertion in the allele that conditions brown rice vs. red rice seed 

coat [6]. Nonfermented rice bran extracts from Wells and Red Wells had no effect on 

lymphoma cell viability, however viability was reduced when treated with fermented rice 

bran extracts from both varieties. Genotype-fermentation interactions (GFI) were 

observed in that extracts from fermented-Red Wells resulted in a greater reduction of 

viability (50% reduction) than fermented-Wells (25%). A third variety, Neptune (of similar 

germplasm to both Wells and Red Wells), showed 90% reduction in lymphoma cell 

viability. 

GFI effects may have important consequences in breeding for enhanced health 

traits. Gut microbiota have been recently recognized as important for human health. 

Metabolites unique to both the nonfermented and fermented extracts were observed, 

and thus fermentation may alter bioavailability and effect of some plant metabolites. The 

GFI effects in Study 3 suggest that a gut microorganism-associated health phenotype 

may be dependent on the plant variety consumed. Metabolomics may be a valuable 

technique to characterize rice metabolites that are known to be altered by fermentation 

in the gut. 

There was a clear relationship between genotype and metabolite quantities in all 

three studies. Interaction elements (e.g. environment, fermentation) can significantly 

alter the heritability of some metabolites. Interaction effects were not present in all 

metabolites, and therefore significant nutritional gains can still be made in food crops, 

whereby breeders can incorporate metabolomic selection methods to develop varieties 

with similar profiles. 
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Review of Metabolite Detection Techniques 

There are many methods to assess metabolite diversity in plants. Metabolite 

extraction solvents are inherently biased in polarity and pH, and detection techniques 

are limited by size of the compounds, column chemistry, and the physics and chemistry 

of compound separation. It is impossible to establish a complete metabolite profile using 

one technique. Therefore, the chosen extraction and detection methods should attempt 

to quantify a wide range of metabolites. 

 For all three studies, a single-phase solvent was used to extract metabolites. The 

single-phase extraction minimized the potential for degradation after metabolites were 

extracted from the biological matrix. For cooked rice, an aqueous:methanol (80:20) 

solvent was used to assess both polar and nonpolar compounds. For rice bran, a 

isopropanol:acetonitrile:water (3:2:2) technique was used to screen for more nonpolar 

compounds. Both solvents extracted a diverse set of metabolites to efficiently screen for 

genotypic effects. Single-phase extractions are relatively rapid procedures, and therefore 

reduce the potential for sample degradation. Both ultra-performance liquid 

chromatography-mass spectrometry (UPLC-MS) and gas chromatography-MS (GC-MS) 

were used to assess the effects of genetic diversity. UPLC-MS is efficient in detecting 

secondary metabolites, and GC-MS excels at primary metabolite detection, and limiting 

metabolite detection to only one method further biases the dataset. It is therefore 

recommended to extract metabolites in a single-phase and to detect with both LC-MS 

and GC-MS.  
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FUTURE RESEARCH DIRECTIONS 

 

Metabolomic Selection 

Developing grain metabolite profiles for enhanced human health attributes 

requires identification and selection on a metabolome-wide scale. The current metabolite 

detection tools are high-throughput, and can be combined with multivariate statistics to 

initiate “metabolomic selection,” which incorporates metabolite profile as part of a 

selection index. Genomic selection has been proposed as one measure to expedite crop 

improvement in breeding programs [7]. Metabolomic selection requires first establishing 

metabolite profiles that have an ideal phenotype, such as health properties of the grain. 

Selection decisions can be made based on similarities to the ideal profile. Like genomic 

selection, it would involve both a training set and a validation set, and data from multiple 

years and environments. Establishing a clear set of methods for metabolomic selection 

for health-related metabolites would be a valuable addition for plant breeding. To 

conduct metabolomic selection, an ideal metabolite profile needs to be establish, such 

as with yield, disease resistance, or other agronomic traits. Varieties in a breeding 

population would be selected by establishing individual metabolite profiles, and then 

determining the similarity to the ideal profile. Varieties would then be crossed to obtain 

offspring with metabolite profiles most similar to the ideal phenotype. 

A number of statistical methods should be explored to characterize the 

metabolite profile during metabolomic selection. The ANOVA model is effective in 

identifying metabolites that have high variability; however this approach may be skewed 

by false positives. A Bonferroni correction can be employed, which changes the 

probability of a false positive based on the number of tests performed. However, this 

approach may be too conservative and risk false negatives, and it is not recommended 

for metabolomics analyses. The PLS loadings plot successfully classified metabolites as 
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contributing to indica, japonica, or aus, and then scored samples based on how similar 

the profile was to the model classification. However, the PLS limitation is that it can be 

skewed towards highly abundant compounds, which may be abundant due to the 

chosen method of extraction, or properties of the mass spectrometer. A combination of 

univariate and multivariate techniques are recommended for metabolomics analysis. 

Study 2 suggests that metabolite covariance may be important to consider in 

metabolomic selection. The network was extremely useful to interrogate the data within 

the study, but this approach may not be feasible on larger datasets. The 

correlation/covariance among metabolites can be used as method to assess variation. 

This can be done by using an Individual Differences Scaling method, which assesses 

metabolite profiles based on metabolite covariance matrices  [8]. Establishing 

covariance for metabolomics datasets is ideal for assessing treatment effects, such as 

environment or fermentation. Another metabolite variation analysis approach is the 

Random Forest (RF) method, which is a biased classification algorithm that has shown 

promise for metabolomics [9]. The RF method uses a decision tree for each variable, for 

which each tree “votes” for a classification. RF analysis corrects for limitations of 

interrogating metabolomics data with PCA and PLS, notably an indifference to scaling, 

accurate modeling with nonparametric data, exclusion of variables with little contribution 

to phenotypic variation, correcting for datasets with low treatment groups and many 

variables, and establishing relationships among variables. Thus, RF models should be 

investigated for utility in metabolomic selection. 

 

Functional Genomics Associated with Metabolomics 

Metabolomic and genomic selection can be performed simultaneously with an 

understanding as to which genes affect specific metabolite quantities. These studies 

would highlight the field of „genetical metabolomics,‟ or the integration of gene 
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expression and metabolite profiles [10]. A better understanding of gene-metabolite 

relationships can aid in selecting varieties with ideal metabolite profiles.  

Mapping the genetic loci that contribute to a metabolite phenotype is an 

important first step. Metabolites have been mapped to loci in Arabidopsis, rice, Populus, 

and humans [11,12,13,14]. One genetic mapping approach is to identify quantitative trait 

loci in a recombinant inbred line population (RIL). Extracts from each RIL can be 

characterized for metabolite quantities, and each metabolite can be individually mapped. 

Gene regions can then be fine mapped and sequenced to identify genetic variants that 

correlate with metabolite variation. A genome-wide association analysis can yield similar 

results, and allows for more than two alleles/haplotypes at a given locus. Although both 

approaches can identify genetic markers that represent metabolite variation, they may 

not be able to describe metabolite variation due to environment or fermentation effects.  

It is also important to establish the functional characterization by which genetic 

variation alters metabolite profiles. In Study 2, a set of genes was identified that regulate 

phenylalanine, phenylpropanoid, and flavonoid synthesis. Future investigations should 

validate the genetic control behind metabolite covariation using molecular techniques. 

Both IR64 and Moroberekan should be fully sequenced for the set of genes of interest 

from the dataset. Additional non-SNP based genetic variation should be investigated, 

such as inversions, insertions, deletions, or transpositions, and epigenetic patterns, such 

as methylation or chromosomal orientation. For example, a 26-bp deletion in an oxalate 

oxidase gene was important in disease resistance phenotypes in Moroberekan [15]. A 

series of silencing, complementation mutants, and domain swaps can further 

characterize functional differences among rice varieties. Rice phenylalanine lyase 

mutants should also be screened for variation in secondary metabolite variation. 

Furthermore, gene expression may be difficult to characterize in the developing seed. If 

leaf gene expression variation correlates to grain metabolite profiles, then leaf metabolite 
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and gene expression profiles may be able to predict metabolite variation in the seed. 

This would allow for metabolomic selection to occur prior to seed development, and can 

expedite breeding for enhanced health characteristics. 

 

Fermentation and Health 

Rice varieties may differ in the ability to stimulate growth of beneficial microbes, 

and therefore rice can be improved for prebiotics metabolite profiles. In vitro fecal 

fermentation models can be used as a high-throughput method to assess the prebiotic 

capacity of a food. Microbial growth can be assessed using fluorescence in situ 

hybridization coupled to flow cytometry (FISH-FCM) or with next-generation sequence 

platforms. Additionally, the production of total short chain fatty acids (SCFAs), 

byproducts of microbial fermentation with beneficial health effects, should be determined 

as related to rice as a substrate for microbial growth.  

The capacity for a metabolite to encourage the growth of beneficial microbes is 

measured by the use of a “prebiotic index” (PI) [16,17]. The PI is a quantitative 

assessment of the ability for a metabolite to result in multiplication of beneficial 

microbes. Variations on PI have been used to compare different types of metabolites for 

in vitro analysis of fecal microbial population growth [18,19]. The types of microbes 

present can be measured by use of selective agars. However microbial 16S rRNA 

sequences are available for use of fluorescence in situ hybridization (FISH), which can 

be coupled with quantitative reverse transcription-polymerase chain reaction (qRTPCR) 

[20] or with flow cytometry (FCM) [21], and such techniques can rapidly assess a 

microbial population for the presence of probiotics. Both FISH-qRTPCR and FISH-FCM 

are commonly used to characterize microbial communities in both in vitro and in vivo 

systems. 
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In addition to influencing the gut microbial population, byproducts of fermentation 

are also of health importance. The fermentability of a prebiotic is a measure of the ability 

for a gut microbial community to breakdown the component to extract energy for 

microbial metabolism. SCFAs are common byproducts of fermentations and important to 

human health that can be detected using GC-MS. Therefore, in addition to affecting 

microbial growth, SCFAs are excellent targets to measure the effects of a candidate 

prebiotic. 

 

Long-term Goal 

Widely-consumed staple crops are the most effective means to promote health 

and disease prevention. The long-term goal of this research is to improve the 

phytochemical and nutrient profile of the cooked grain and bran for commonly consumed 

rice varieties. Although some of the varieties examined in this report are not widely 

consumed, they can be screened for health-related alleles and incorporated into 

traditional rice breeding programs. Identifying and characterizing the genetic factors that 

regulate plant secondary metabolites can have profound impacts on global health. 
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APPENDIX I: INTEGRATION OF METABOLOMIC AND MICROBIAL ANALYSES 

 

INTRODUCTION 

 In some studies, it may be important to integrate metabolomics with non-

metabolomics data to characterize the functional consequences of treatment effects. 

Correlation tests may be an effective integration method, and subsequent hierarchical 

clustering can identify groups of metabolites that covary. Here, a correlation/clustering 

approach was used to combine a metabolomics dataset with microbial population fluxes 

from fecal samples. One human subject was on a dry bean (Phaseolus vulgaris L.) 

dietary intervention for four weeks, and fecal samples were collected at timepoints 0, 2, 

and 4 weeks. Fecal samples were evaluated for changes in metabolite and microbial 

profile at timepoints 2 and 4 compared to baseline. Here, these data were integrated to 

generate hypotheses for mechanisms by which the dietary intervention influenced the 

metabolite profile via shifts in microbial populations. 

 

METHODS 

 Fecal samples were ground to a fine powder in the presence of liquid nitrogen, 

and metabolites were extracted by adding 1 mL of methanol/water (80:20) to 100 mg of 

fecal sample, vortexing, and incubating at -80°C for one hour. Samples were centrifuged 

at 1500 x g for five minutes, and 400 μL of supernatant was transferred to a new tube. 

Extracts were centrifuged under reduced pressure to remove solvent, and derivatized by 

resuspending in 50 μL methoxyamine hydrochloride in pyridine (15 mg/mL, 2 hour 

incubation at 37°C), and then 50 μL of MSTFA + 1% TMCS (1 hour at 37°C). Samples 
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were centrifuged at 1500 x g for five minutes, and 80 μL of the supernatant was 

transferred to a glass vial. One μL was used for analysis, and GC-MS parameters and 

peak detection methods were as previously described [1]. 

 Statistics were performed in R statistical software (v2.11.1), and relied on the 

packages pcaMethods, qpgraph, and gplots. Data for principal component analysis was 

mean-centered and Pareto-scaled data. Z-scores were calculated using timepoint 0 as 

control. Pearson‟s correlation dendrograms were constructed using hierarchical 

clustering. 

 

RESULTS 

 Fecal metabolites profiles for three timepoints were assessed by principal 

component analysis (PCA), and first two components explained 49% and 32% of the 

variation, respectively (Figure 1A). The three timepoints clustered, indicating fecal 

metabolite profiles changed due to the dietary intervention. PC1 explained variation due 

to the 2-week timepoint, whereas PC2 should a steady change from 0 to 2 to 4 weeks. 

Z-scores were used to assess differences in metabolites using time 0 as a control. From 

timepoint 0, 2, and to 4 weeks, there was a steady decrease in seven metabolites, which 

were mostly amino acids and carbohydrates (Figure 1B). There was a steady increase 

across timepoints in six metabolites, which were mostly stanols and fatty acids (Figure 

1C). Transient increases are not shown. The largest increase was in an unknown 

compound at 19.05 minutes with mass/charge ratios of 291 (100% intensity) and 306 

(75% intensity). This compound was also increased in a canine study of a similar diet 

(data not shown), and should be further investigated. 

 Fecal microbial profiles were kindly provided by Dr. Tiffany Weir at Colorado 

State University, and each microbe was valued as percent of the total microbial 

population at each timepoint. PCA was applied to the dataset, and there were 
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differences in the microbial population at time 0, 2, and 4 weeks (Figure 2A). The first 

component (65% of the variation) showed a steady change from baseline to 2 to 4 

weeks. The second component (35%) was mostly attributed to variation at 2 weeks. The 

PCA loadings show Methanobrevibacter and Ruminococcus as microbial genus with the 

largest changes over the course of 4 weeks (Figure 3A). 

 The metabolite and microbial profiles both show changes that may due to the 

dietary intervention. The data were integrated by establishing a Pearson‟s correlation 

matrix using mean metabolite (peak area values) and microbial values (percent of 

population) across the three timepoints, and hierarchical clustering was performed 

(Figure 3). The data identified three major clusters for metabolites: those that steadily 

decrease over 4 weeks, those that steadily increased over 4 weeks, and those that 

increased at 2 weeks, and then decreased at 4 weeks. The heat map was too large to 

display the correlation matrix for both metabolite and microbial profiles simultaneously, 

therefore a second Pearson‟s correlation matrix was generated using metabolite classes 

instead to individual compounds (Figure 4). The same three clusters of microbes were 

observed. 

 

DISCUSSION 

 The metabolite and microbial data both showed steady increases, steady 

declines, and transient increases over the three timepoints. Thus, these data are a good 

candidate to evaluate the efficacy of a correlation/clustering-based integration. The 

major limitation to this study was the low sample size for determining correlations (n=3 

timepoints). Although a metabolite and microbe may have a high correlation (say 0.9 or 

greater), statistical significance could not be established at p < 0.05 for most of the data. 

Thus, while the data is highly informative for establishing connections between 

metabolites and microbes, it is dependent on non-significant correlations. Furthermore, 
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this analysis assumes normal distributions, and Pearson‟s correlation analysis is highly 

dependent on normal data. This metabolomics procedure has been performed before, 

and the data was determined to be mostly normal. However, the distribution 

characteristics of microbial profiles are unclear. In this case, a Spearman‟s correlation 

matrix may be more informative. 

 In summary, a correlation/clustering analysis may be informative for combining 

large datasets. For future studies, including more individuals and timepoints can 

increase the power of the analysis. It can be a powerful tool to generate hypotheses and 

to characterize the functional outcome of a treatment on the metabolome. However, 

validation will be necessary to confirm the established correlations. 
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Figure 1. Metabolite profiling of fecal samples from a person on a 4-week diet. (A) 

Principal Component Analysis for metabolites from fecal samples at three timepoints: 

baseline (0), 2, and 4 weeks. (B) Z-scores for metabolites that steadily decrease at 2 

and 4 weeks. (C) Metabolites that steadily increase at 2 and 4 weeks. 
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Figure 2. Metabolite profiling of fecal samples from a person on a 4-week diet. (A) 

Principal Component Analysis for metabolites from fecal samples at three timepoints: 

baseline (0), 2, and 4 weeks. (B) Z-scores for metabolites that steadily decrease at 2 

and 4 weeks. (C) Metabolites that steadily increase at 2 and 4 weeks. 
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Figure 3. Integration of metabolite and microbial profiles. Fecal metabolites and 

microbial population parameters were correlated and expressed as a heat map. Color 

represents r values from -1 (red) to 1 (green). Dendrogram denotes hierarchical 

clustering.  
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Figure 4. Integration of metabolite classes and microbial profiles. Fecal metabolite 

classes and microbial population parameters were correlated and expressed as a heat 

map. Color represents r values from -1 (red) to 1 (green). Dendrogram denotes 

hierarchical clustering. 


