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ABSTRACT

PROACTIVE EXTRACTION OF IOT DEVICE CAPABILITIES FOR SECURITY

APPLICATIONS

Internet of Things (IoT) device adoption is on the rise. Such devices are mostly self-operated

and require minimum user interventions. This is achieved by abstracting away their design com-

plexities and functionalities from users. However, this abstraction significantly limits a user’s

insights on evaluating the true capabilities (i.e., what actions a device can perform) of a device and

hence, its potential security and privacy threats. Most existing works evaluate the security of those

devices by analyzing the environment data (e.g., network traffic, sensor data, etc.). However, such

approaches entail collecting data from encrypted traffic, relying on the quality of the collected data

for their accuracy, and facing difficulties in preserving both utility and privacy of the data.

We overcome the above-mentioned challenges and propose a proactive approach to extract IoT

device capabilities from their informational specifications to verify their potential threats, even

before a device is installed. More specifically, we first introduce a model for device capabilities in

the context of IoT. Second, we devise a technique to parse the vendor-provided materials of IoT

devices and enumerate device capabilities from them. Finally, we apply the obtained capability

model and extraction technique in a proactive access control model to demonstrate the applicability

of our proposed solution. We evaluate our capability extraction approach in terms of its efficiency

and enumeration accuracy on devices from three different vendors.
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Chapter 1

Introduction

The popularity of IoT devices is gaining momentum, with projections of 75.44 billion devices

worldwide by 2025 [1]. This large ecosystem is comprised of a variety of devices that are being

used in diverse environments including healthcare, industrial control and automation, and smart

homes. Manufacturers place emphasis on certain features or characteristics of IoT devices and

often abstract away their actual design complexity and functionalities from the user. Many IoT

devices are equipped with sensors and actuators beyond those required for their primary function-

alities. For example, the Nest Protect [2], a smart smoke and carbon monoxide detector with an

array of smoke and steam sensors as well as a microphone is able to perform far more than just

smoke detection.

1.1 Motivation

These abstractions and extended (and in many cases hidden) functionalities of an IoT device

result in a blind spot for consumers and leave an IoT ecosystem vulnerable to various security and

privacy threats. Installing the previously mentioned smoke detector necessitates that the consumer

understands its potential security and privacy consequences, especially considering the different

locations that a smoke detector may be placed within a home setting. This requires the consumer

to study the device’s design specifications to find out what transducers it possess. Furthermore, she

must have the insights to realize the security and privacy consequences of having a microphone that

may be able to arbitrarily capture sound within the device’s environment, and determine if any of

those consequences violate the security policies of the household or organization. Performing all

these steps is infeasible for most IoT users due to either their time constraints or lack of knowledge.

Therefore, IoT consumers need assistance to properly interpret the underlying security and privacy

threats from these devices. Our work aims to fill this gap by providing consumers information
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on IoT device capabilities and introducing ways that this information can be leveraged for the

purposes of user-defined access control.

A comprehensive knowledge of device capabilities can be used in various security applications,

including security verification, monitoring, risk analysis, and digital forensics. One example ap-

plication is proactively verifying the security and privacy of IoT devices in a smart home or in an

organization. Specifically, once the capabilities of a device are known, assertions can be made on

whether or not those capabilities violate any of the security and privacy policies in an organization

or a household. We can also ensure that the deployment of an IoT device in some location or

under some configuration does not cause any security or privacy violations and can take adaptive

measures to mitigate that risk.

While many other consumer goods and services are subject to large amounts of scrutiny when

being considered for purchase, the same is not always true for IoT devices. Consumers are not

expected to thoroughly understand the technologies that go into smart devices beyond the features

as they are advertised. Despite the casual acceptance of smart devices and the abstractions of

their inner workings, consumers often keep devices in deeply personal locations or interact with

them in personal ways. The devices in these scenarios therefore come with security and privacy

considerations that consumers should be aware of when using them, if not when purchasing them.

For example, the Nest Protect smoke alarm system provides users with the ability to receive

notifications about potentially dangerous situations in their home. However, this device has an

onboard microphone and is therefore capable of detecting (and recording) audio, which users may

find concerning, depending on the physical location of that device in the home. However, the

microphone is not advertised directly as part of any feature of the device, and is only listed within

technical specification documentation for the device. An additional possibility is for a consumer to

purchase this particular device for its primary features without being aware of the extended features

of the device, including the potential for it to record sound.

Security goals and resulting policies often come more naturally to consumers than one might

initially believe. Context of what a device is actually doing is important to these security goals,

2



especially when put into simple terms that are intuitive for consumers to consider. He et al. conduct

a survey in [3] to explore how users perceive different actions of IoT devices under access control

circumstances related to social relationships, device location, and more. Device capabilities in

this survey are not described in terms of actual device instances or particular manufacturers, but

rather as abstract actions that could apply to many different devices. For example, “live video,”

“play music,” and “camera on/off” are all capabilities described in the survey [3]. When these

capabilities are posed to participants in conjunction with environmental attributes such as device

location or the user who invokes the capability, participants present clear indications of security

goals, such as the fact that device location is highly influential in access control decisions related

to a device that performs live video.

The results of this survey are a clear indication that, when consumers are faced with device

capabilities in plain terms, they can (and may even be more motivated to) make informed deci-

sions about which device actions should be performed, who they should be performed by, and in

what circumstances (based on social relationships, physical device location, etc.) they should be

performed. In this way, knowledge and a clear understanding of device capabilities can empower

users to make the security and privacy decisions that are best suited for their IoT ecosystem.

1.2 Problem Statement

This thesis primarily addresses the question of how to represent, extract, and leverage device

capabilities for the ultimate benefit of user security and mitigation of privacy concerns. We aim

to do so proactively, such that our proposed method could be used to garner insights about an IoT

device and verify that it conforms to user-defined security policies even before it is installed in its

environment. To this end, this thesis investigates the following questions:

• How can IoT device capabilities be defined and represented generically, across devices?

• How can such IoT device capabilities be extracted automatically from vendor-provided doc-

umentation materials for devices from different vendors?
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Figure 1.1: An overview of our methodology, including 1) development of the model, 2) pre-processing of

vendor materials, and 3) applying an ontology to extracted specifications by way of an automatic enumera-

tion function.

• How can these extracted capabilities be leveraged to verify the safety and security of an IoT

device, relative to its environment?

1.3 Overview of Approach

Figure 1.1 illustrates an overview of our approach to extract the capabilities of a smart home

device from its specifications. The three steps are described below, and we provide examples of

various Google Nest products including the Nest Protect and Nest Cam Indoor [2, 4] throughout.

• Step 1: Defining Capability Model for IoT Devices We first define IoT devices, then define

their transducers (i.e., sensors and actuators), and finally define the capability models that

map transducers to their set of capabilities. (See Chapter 3).

• Step 2: Normalizing Vendor Materials for Extraction We first extract the device specifi-

cations from various vendor materials, then prune the extracted data to eliminate irrelevant
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contents (e.g., stop words and site navigation links), and finally normalize the pruned con-

tents to refer to the transducer information. (See Section 4.1).

• Step 3: Building IoT Device Capabilities We first build an ontology of the device specifi-

cations (see Section 4.2), then derive an enumeration of transducers for a device by applying

this ontology on the processed vendor materials, and finally map these transducers to their

capabilities. (See Section 4.3).

1.4 Contributions

Several works [5–13] that profile IoT devices and their behaviors to detect security breaches

and/or monitor an IoT environment pose two limitations: (i) Collecting and interpreting data from

an IoT system is extremely challenging. Existing solutions [7, 8] either perform entropy analysis

of encrypted traffic or use only the unencrypted features of network traffic (e.g., TCP headers and

flow metadata). Due to its great reliance on data inference, false positives/negatives are a legitimate

concern. Providing better accuracy in these security solutions is a critical challenge. (ii) Such

approaches may reveal sensitive information (e.g., daily routines of smart home users [13]) about

an IoT system and its users, threatening their privacy. Preserving privacy while sharing sensitive

data for security analysis is another challenge.

We overcome these limitations and propose an approach to proactively extract IoT device ca-

pabilities from their vendor materials. Our work aims to provide a method for extracting IoT

capability information in unambiguous terms. Additionally, we propose how these capabilities can

be leveraged in an access control scheme that can provide users with fine-grained control over

policies that match these intuitive and innate IoT security goals. We first define the notion of de-

vice capability in the context of IoT. Second, we extract the transducer (i.e., sensor and actuator)

information for each device using vendor-provided specification and marketing materials. Third,

we identify the capabilities of a device using an ontology that we derive that encodes capabilities

of each sensor and actuator type. We discuss our approach in the context of smart homes, an im-

portant IoT domain with projections of 505 million active smart home devices worldwide by this
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year [14] and evaluate its efficiency and accuracy. Finally, we discuss the use of the capability

information we extract for the application of fine-grained access control.

The main contributions of this thesis are as follows.

• We propose a new approach to proactively extract the device capabilities from design speci-

fications. The key advantages of this approach over existing works are:

(i) This approach does not rely on environment data and is therefore not directly affected by

the difficulties of collecting and interpreting IoT data, and further is free from the privacy

concerns of data sharing; and

(ii) This approach enables proactive security verification of an IoT device even before it is

installed or deployed.

• We are the first to define this concept of device capability in IoT, which can potentially

be applied in the future security solutions for various IoT applications (e.g., smart grid,

autonomous vehicle, smart health, etc.) to offer proactive security guarantee.

• As a proof of concept, we apply our extraction approach in the context of smart homes. We

demonstrate the applicability of our approach by applying it to devices from various vendors

(e.g., Google, Ring, and Alro), and we evaluate it in terms of its efficiency and accuracy.

• We introduce a scheme for fine-grained, user-defined access control in an IoT ecosystem that

leverages the capability information that our extraction approach can provide.

1.5 Outline

The remainder of this thesis is organized as follows. Chapter 2 provides a background on the

vendor materials that are analyzed in this work as well as our assumptions and threat model. Chap-

ter 3 introduces our novel model of IoT device capabilities. Chapter 4 describes our methodology

for extracting capabilities from vendor materials. Chapter 5 provides details on the implementation

of our capability extraction methodology. Chapter 6 presents an evaluation of the implementation’s

6



performance in terms of efficiency and accuracy. Chapter 7 presents discussions on different as-

pects our implemented methodology. Chapter 8 discusses how capabilities extracted through our

methodology can be leveraged in a fine-grained, user-defined access control scheme. Chapter 9

discusses related work and its limitations. Finally, Chapter 10 concludes this thesis and discusses

future avenues for this work.
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Chapter 2

Background

This chapter first provides a background on the vendor materials for IoT devices and then

identifies the challenges to extract the capabilities from those materials; these challenges will later

be addressed by our solution to extract capabilities from those vendor materials.

2.1 Vendor Materials

This section describes various vendor materials that provide the specification information of

IoT devices.

2.1.1 Vendor Material Description

We consider vendor materials including product webpages, technical specifications, and de-

veloper documentations which are publicly available online and contain specification details of a

device such as sensors, actuators, or related features.

Product Webpages. Product webpages are official marketing pages from which a consumer can

purchase an IoT product, and contain the summary information about the device. For instance,

Google has a page for each of its major Nest products (e.g., [15]). These pages can serve as an

initial and often cursory source of information about a smart home device and its specifications.

Technical Specifications. Technical specification pages provide details about a device in terms

of its hardware specifications. For instance, a technical specification page is available for each

major Google Nest product (e.g., [4]). This work considers technical specification pages as the

most significant sources of information about a device’s hardware components, as they most often

provide explicit enumerations of device components.

Developer Documentations. Developer documentations provide information to developers who

create applications for or in conjunction with smart home devices. These materials usually include
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standardized software interfaces accessible as RESTful services, or software packages that can

be integrated into other applications. Some vendors also offer entire platforms that can act as an

abstraction on which different products can interoperate. Even though these materials are intended

for application developers, they can be used as a source for the extraction of information about the

hardware and capabilities of a device.

2.1.2 Investigation on Real-World Vendor Materials

We analyze the contents of several vendor materials for seven different devices by leveraging

simple natural language processing techniques. These analyses result in insights on the challenges

that come with the extraction of capability information from vendor materials, which is illustrated

through the following examples.

Figure 2.1 shows the term frequency distribution for the Google Nest Cam Indoor’s vendor

materials as a word cloud, where the larger terms appear more frequently across the corpus of

materials. This particular corpus is constructed from the Nest Cam Indoor main product page,

technical specifications page, technical specifications support page, and the Nest Cam Developer

API documentation [4, 15–17]. The full corpus contains 4,175 words after pre-processing. The

word cloud suggests that terms that would intuitively be assumed to appear frequently, such as

“camera” and “nest” appear often, as these terms are directly related to the primary functionality

of the device. However, terms that are indicative of other transducers and their capabilities appear

less often, and even appear less often than terms that are unrelated or potentially indicative of

transducers that the device does not have. Figure 2.2 illustrates the frequency distribution of only

a subset of notable terms.

From this distribution, it can be seen that the term “microphone” appears less often than “tem-

perature,” despite the fact that the Nest Cam Indoor has no transducer related to temperature. This

particular disparity has to do with the “operation” and “storage” sections of the technical specifi-

cations page for the device, which can be seen in Figure 2.3. Other terms that are not related to any
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Figure 2.1: The term frequencies for the corpus of vendor materials on the Nest Cam Indoor, visualized as

a word cloud.
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Figure 2.3: Different sections of the Nest Cam Indoor technical specifications page [16], where the terms

“temperature” and “humidity” can be seen multiple times, but only in reference to the theoretical temperature

range in which the device can regularly operate and be stored.

transducer such as “power” appear far more often (41 times) than terms of greater relevance such

as “microphone,” “speaker,” or “audio” (each 7 times).

Additionally, term frequency-inverse document frequency (TF-IDF) calculations are also per-

formed, treating each device’s corpus as an individual document, with the goal of determining

which unique words rank highly within each device’s collection of vendor materials and therefore

could be designated as most “relevant” to each device. An example of the results from this analy-

sis are visualized for two devices in Figure 2.4, which displays the TF-IDF scores for a number of

terms as well as the corresponding TF-IDF rank of each term within the vendor material collection

for the Nest Cam Indoor and the Arlo Ultra [18] smart cameras. Note that the TF-IDF scores that

are visualized in Figure 2.4 were computed using vendor materials for all seven devices that are

evaluated in this work, not only the vendor material collections of the devices depicted.

Transducers that are directly related to the primary functionality of a device are associated with

terms that tend to rank highly within the collection of that device’s vendor materials in terms of

TF-IDF. “Camera,” for example, is among the top-ranking terms for both the Nest Cam Indoor

and the Alro Ultra. Similarly, “smoke” and “alarm” both fall within the top 5 terms for the Nest
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Protect’s vendor materials corpus. However, terms that are associated with other transducers that

are not directly related to a device’s primary functionality do not rank as highly. For both the

Nest Cam Indoor and the Arlo Ultra, the term “microphone” ranks 197th and 376th within each

respective device corpus, likely due to its low frequency of appearance within each corpus. The

same can be said for the corpus of the Nest Protect, where “microphone” ranks 270th among all

unique words.

Overall, TF-IDF fails to highlight many terms that are most indicative of a device’s transducers

and capabilities due to their infrequent appearances, and therefore is not a sufficient method to dis-

cover which transducers and capabilities are present on a device. While TF-IDF is well suited for

keyword extraction given an extensive corpus of written articles, there are a number of challenging

aspects of IoT device vendor materials that limit its use for our purposes.

2.1.3 Challenges in Extracting Capabilities from Vendor Materials

Based on the outcome of the analysis above, we enumerate the major challenges in extracting

capabilities from vendor materials as follows.
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No Standardized Template. Each vendor follows different templates for their materials and fur-

thermore, different materials of the same vendor follow different formats. There is no standard

template or specification for how to describe different generic features or hardware components of

IoT devices. This implies significant effort to extensively learn those different templates to extract

information from them comprehensively.

Brevity of the Materials. As vendor materials are usually meant for a consumer audience, they are

expressed in a brief manner and do not include all explicit specifications of a device. Therefore, ex-

tracting device information from them requires more interpretation of their contents. Additionally,

terms that are indicative of particular hardware components may only appear a limited number of

times within the materials, especially if they are not related to the primary function of the device.

Vendor-Specific Jargon. Each vendor tends to use their own set of terminologies when describing

their devices. As the primary purpose of vendor materials is to inform potential purchasers about

a device, vendors tend to craft language around what information they believe is the most useful

or well-received in the eyes of the consumer, and include terminology that may be unique to only

their line of products. For example, one feature of the Nest Protect is advertised on the overview

page as “Steam Check.” Accordingly, learning the vocabularies used for various vendors and then

normalizing them to infer their capabilities presents additional challenges.

Interpreting Visual Contents. Several contexts of vendor materials are represented visually and

are therefore difficult to detect automatically. An interesting aspect of the marketing and technical

specification pages for IoT devices is the way that page layout and structure provide contextual

information in the form of visual cues and hierarchical organization. In these cases, text processing

alone becomes insufficient for comprehensive extraction of transducer information. For example,

Figure 2.5 displays an example layout of technical specifications for multiple Google Nest cameras

[16]. Though this figure only shows a small portion of the page, it is clear that there is a great

amount of information carried in its layout.

Distribution of Information. Information about any one device is distributed over various mate-

rials. For the most thorough extraction of transducer and capability information, it is essential that
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Figure 2.5: Use of page layout to convey information about different Nest camera devices [16]. Note that

the two columns of the table are labeled primarily by the images of each device.

as many different materials as can be found are utilized. However, different materials may or may

not be available, and some may be less accessible than others.

2.2 Threat Model

We focus on smart homes, a prominent domain of IoT, in this work. We assume that the

sensors and actuators in a smart home device may be used to conduct various security and privacy

attacks. Our approach, therefore, builds the device capabilities (i.e., the actions that a device

can perform) which can later be used to detect/prevent the adversaries that exploit these sensors

or actuators. Our approach does not consider the threats related to a malicious or vulnerable

transducer, which includes misbehavior and malfunction. Also, any network attack that does not

involve the transducers is beyond the scope of this thesis. In this work, we derive the device

capabilities from the vendor-provided materials that are publicly available. Therefore, any missing

information about a device in those materials may affect the effectiveness of our approach.
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Chapter 3

A Capability Model for IoT Devices

The primary goal of this work is the automatic extraction and enumeration of device capa-

bilities from vendor-provided documentation materials. We present in this chapter a model that

captures device capabilities, as well as the transducers to which they are associated, as generics.

This representation allows us to consider transducers and their associated capabilities without any

dependencies on their actual implementations in hardware or software.

3.1 Definitions

This work defines a transducer as a sensor or actuator (inspired in part by the definitions in

NIST 8228 [19]). A sensor holds the core functionality of sensing or measuring various aspects

of a physical environment and converting such measurements to a digital signal. For example,

image sensors, motion sensors, and microphones sense light, motion, and sound from a physical

environment, respectively. An actuator converts a digital signal to some physical action(s), such

as emitting light, producing sound, or actuating a lock to toggle its state. Denoted formally, the set

of all transducers T is partitioned into the set of all sensors S and the set of all actuators A, where

T = S ∪ A and S ∩ A = ∅ (no sensor is also an actuator).

A device capability is a function that a device is able to perform. This work makes the assump-

tion that each transducer has associated with it a static set of capabilities that are intrinsically bound

to that transducer. In the case of the Nest Protect, a microphone is innately capable of capturing

audio, while a smoke sensor is innately capable of detecting smoke. A capability of a sensor is

denoted as csi and a capability of an actuator is denoted as caj . Note that, ∀i, j, csi 6= caj . However,

for any two sensors sm and sn, or any two actuators am and an, where m 6= n sm, sn ∈ S, and

am, an ∈ A, the set of capabilities may overlap.
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A transducer ti is either a sensor si or an actuator ai. Each sensor si and each actuator ai

are represented by a non-zero finite set of capabilities, denoted as si = {cs1, cs2, . . . , csp} and

ai = {ca1, ca2, . . . , caq}. Additionally note that si 6= {} and ai 6= {}.

An IoT device is defined as an embedded system that consists of a set of transducers. A

device Di consists of a set of sensors Si and actuators Ai where Si ⊆ S and Ai ⊆ A and

Si = {s1, s2, . . . , sn} and Ai = {a1, a2, . . . am}. The total number of transducers in Di is therefore

n+m.

As an example, the Nest Protect and a subset of its transducers could be represented in our

model as a device D1 with the following transducers: a smoke sensor s1, a microphone s2, a motion

sensor s3, and a speaker a1. The device D would therefore be represented as D1 = S1 ∪A1, where

S1 = {s1, s2, s3} and A1 = {a1}. Assume the capabilities of the smoke sensor s1 to be smoke

detection c1. Assume the capabilities of the microphone s2, motion sensor s3, and speaker a1

to be audio capture c2, motion detection c3, and produce audio c4, respectively. The full set of

capabilities this representation of the Nest Protect D1 would then be {c1, c2, c3, c4}.

3.2 Model Relationships

Transducers are represented in this work independent of their implementation details and fo-

cuses on their generic types, instead of transducer instances. As a result, devices and transducers

have a many-to-many relationship, where a particular transducer type can be associated with many

different devices, and devices can have a variety of transducers on board.

Consequently, multiple devices may have common sensors or actuators. For example, both the

Nest Protect and the Nest Cam Indoor have microphones. Two devices Dr and Ds shown below

have common sensor s3 and common actuator a2.

Dr = S1 ∪ A1 = {s1, s2, s3, a1, a2}; Ds = S2 ∪ A2 = {s3, s4, a2, a3}
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The set of capabilities for a device Di is computed as the union of the set of capabilities of

the transducers comprising the device. Multiple devices can share common capabilities by ei-

ther having a common generic transducer or by having multiple transducers that share a common

capability.

For example, the Nest Cam Indoor has an image sensor and therefore holds the capabilities

of image capture and light detection. On the other hand, the Nest Protect has an ambient light

sensor, which also holds the capability of light detection. This capability is shared between the

two devices, despite the fact that the transducers that the capability corresponds to are different. In

the formalization below, the two devices Dp and Dq have common capabilities cs3 and ca2:

Dp = {cs1, cs2, cs3, ca2, ca3}; Dq = {cs3, cs4, cs5, ca1, ca2}
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Chapter 4

Extracting Capabilities from Vendor Materials

4.1 Normalizing Vendor Materials for Extraction

To prepare the vendor materials for building device capabilities, we first extract the device

specifications from the vendor materials, then remove irrelevant information (e.g., external navi-

gation links or copyright information) from those extracted specifications, and finally refine them

into a more homogeneous, and machine-friendly format.

4.1.1 Selective Extractions of Device Specifications

The initial extraction of the device specification is a process that operates on the input vendor

materials. The vendor materials must be parsed for their contents, which can be defined in terms

of semantics as well as more abstract information such as document structures and page layouts.

In our work, we assume the vendor materials are presented as HTML or text documents.

For HTML documents, we first remove the non-HTML contents from each web page, such

as style and script blocks. We then extract the raw text from the resulting HTML elements. The

information that is most pertinent to this work often only makes up a subset of a web page’s con-

tents. Other elements of the page including navigation links (to other products, for example) can

introduce terms that are unnecessary or that could even be misleading from the perspective of an

automated extraction system concerned with the device that is represented by the page. To over-

come this challenge, we parameterize this step so that specific sections of a page can be extracted.

For example, the technical specifications page for the Nest Protect contains page elements unre-

lated to the device’s hardware or functionalities, including navigation links to other products and

shipping information. With our parameterized method, we are able to extract only the specification

information for the device. We also tailor the parameters to specific vendor pages; these parameters

are often reusable, as web design within a single vendor is often homogeneous.
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4.1.2 Normalizing Material Content

To ensure that the contents extracted from the vendor materials are best suited for our trans-

ducer enumeration technique, our approach normalizes those contents by removing elements that

are not critical to the extraction process, including punctuation, non-alphanumeric, and non-white-

space characters, as well as “stop words” (i.e., common articles and prepositions in English). The

case and plurality of the resulting terms are also normalized through lemmatization, a process of

linguistics that simply involves homogenizing different inflections of the same term to its dictio-

nary form. The content output by the normalization step contains a more homogeneous sequence

of terms in the original order that they appeared in the vendor materials.

For example, the Nest Protect’s overview page contains the following text: “In addition to its

voice, Nest Protect uses colors to communicate. And we gave the new Nest Protect a brighter

light ring so it’s easier to see in an emergency and better at helping you see things in the dark”.

After the normalization step, the processed string will read “addition voice nest protect use color

communicate new nest protect bright light ring easy emergency good help thing dark”.

4.2 Building an Ontology

The inferences that must be taken into account to successfully interpret what transducers and

capabilities a device has often come with prerequisite technical knowledge that end consumers are

not expected to have. The same goes for a system that performs this interpretation automatically,

where an understanding of the language and structure of vendor materials must be encoded into the

process itself for the most accurate results. In other words, an ontology must be created and lever-

aged as the primary source of knowledge behind the enumeration of transducers and the mapping

to capabilities.

In this work, we develop an ontology that aims to provide an understanding of the terminologies

used to refer to specific components of a device, whether they are explicit, ambiguous, or uniquely

created and defined by the vendor. Additionally, we attempt to capture the general relationships

between abstract device types and their common transducers; for example, the abstract device type
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“smoke alarm” commonly has smoke sensor, carbon monoxide sensor, motion sensor, microphone,

temperature sensor, humidity sensor, light sensor, and speaker transducers.

It is worth noting that other characteristics of vendor materials could be encoded and utilized

for capability extraction. For example, because images of devices appear on product web pages,

an ontology could be created with an encoding of image-based knowledge that could equip the

system with an awareness of visual aspects of a device that provide hints of the presence of certain

transducers. An ideal system would be able to understand vendor materials to a capacity that is as

good or better than that of humans, including the ability to recognize transducers visually. Realis-

tically, an ontology of this nature can never be fully complete. An ontology can be continuously

augmented with new information to improve transducer enumeration; this new knowledge can be

found in a number of ways, including manual review of vendor materials or more automated solu-

tions that are outside the scope of this work. We create the initial ontology by manually reviewing

vendor materials in detail to capture the aspects described above.

4.2.1 Review of Vendor materials

The goal of the manual review step is to enumerate the different hardware components and

capabilities of a device for a baseline of ground truth, and also to enumerate and analyze the

inferences and assumptions that are required for the reader to draw these conclusions. These

results are captured and become the basis for the ontology that will be used as a parameter for the

automated enumeration process.

The process of manually reviewing vendor materials is the same for all devices. This process

involves reading through different documents that are associated with each device and interpreting

from them the set of transducers (and capabilities) of the device. During this process, any insights,

inferences, or context clues that are used in this interpretation are also captured. The most impor-

tant of these features are key terms that act as indicators of the presence of a particular transducer

or capability. A key term is defined in this work as one or more words that refer to a particular

concept.
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Table 4.1: Obtained ontology from the Nest Cam Indoor materials

Category Transducer Capabilities Example Terms

Sensors
Image Sensor Capture Image, Capture Video, Detect Light image sensor, camera, video

Microphone Capture Sound microphone, voice, audio

Actuators

Speaker Produce Sound Speaker, Audio, Two way audio

LED Light Produce Light LED light

Infrared Light Produce Infrared Light Infrared, IR, Night vision

For example, when reviewing the Nest Cam Indoor’s technical specifications on the Google

Nest support forums [16], simple terms such as “camera” are indicative of the presence of an

image sensor. On the other hand, the term “video” is more ambiguous, and could refer to the

video captured by the image sensor, or video displayed on some kind of screen. In this case, it

can be “inferred” that this term refers to an image sensor because of context clues provided by

additional related terms such as “1080p,” which refers to the resolution of the video captured by

the sensor, and “lens,” which refers to the lens of the camera. On their own, these additional terms

do not necessarily suggest the presence of an image sensor, but they can provide context when

considered in conjunction with other camera-related terms to suggest with higher confidence the

presence of the sensor. The understanding of these terms as context clues carries an assumed level

of prerequisite knowledge of camera-related terminology.

The visual cues provided by page structure can also help a reader understand the context around

the terms. For the Nest family of products, it is common for the term “temperature” to appear on

technical specification pages for devices that have no sensors or actuators related to the measure-

ment or alteration of any temperature. Instead, these instances of the term are used to describe the

“operating” constraints of the device (the theoretical range of temperature in which it can operate).

The only real indicator of this difference is in the table layout of the Nest Cam Indoor’s technical

specifications page, where a reader can see by way of the row’s label “operation” that the temper-

ature in this case refers to the device’s operating temperature and not any sensor. This part of the

page is illustrated in Figure 2.3.

Perhaps the most abstract feature that is considered during manual review, which is largely

dependent on the individual reviewer, is the use of technical background knowledge to infer, from

a described concept, how a certain feature of a device may be implemented. The term “motion
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detection,” for example, could indicate the presence of a motion sensor or of software that enables

an image sensor to perform motion detection. Regardless, the ability for the reader to conceive of

these possibilities is dependent on their technical knowledge.

A sample enumeration of transducers and their capabilities for the Google Nest Cam Indoor

is summarized in Table 4.1. This table represents a portion of an ontology that is derived from

the manual review process. The ontology contains this enumeration of transducers and their cor-

responding capabilities, as well as some key terms that refer to the transducers. The ontology also

contains an understanding of which transducers are commonly part of different abstract device

types. In the case of a general smart camera, the transducers enumerated in Table 4.1 are common.

Note that our example of a motion-activated smart camera does not fit perfectly into the abstract

device type of a smart camera, due to the presence of a motion sensor. An additional abstract

device type could account for this extra sensor.

4.3 Extracting Device Capabilities

To enumerate device transducers using the above-mentioned ontology, we devise three algo-

rithms, namely, device cognizant key term set matching (dcKTSM), indicative key term set match-

ing (iKTSM), and all key term set matching (aKTSM), where a key term is a set of one or more

words related to a transducer. We further consider two types of key terms: indicative terms and

related terms. Indicative terms are considered to be unambiguously indicative of the presence of

a transducer. Related terms are related to a transducer, but may be more ambiguous, and hence

are not sufficient for drawing conclusions about its presence. For example, in the case of the Nest

Protect, the term “microphone” is considered indicative of a microphone, while the terms “audio”

or “voice” are considered related to a microphone.

The primary purpose of the proposed algorithms is to use different key terms found within

a corpus of normalized vendor materials text to determine which transducers are present. The

algorithms operate on a corpus of vendor materials that are assumed to be related to a single

device. They additionally use the ontology described in Section 4.2 as input to apply encoded
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knowledge for the extraction process. For our purposes, the ontology contains information about

terminologies used to describe devices, as well as details on the understanding of abstract device

types.

Using these inputs, the algorithms produce enumerations of transducers that can then be mapped

to their static set of capabilities (which are represented in the ontology). The transducers that are

enumerated from the extraction step must be represented in a standardized way, (e.g., using the

same identifier for the transducer type), where each extracted transducer is completely decoupled

from the device instance it was extracted from. This is to ensure that the transducers remain generic

and therefore fit into the model that is described in Chapter 3.

The main difference between the three algorithms is the broadness of their matching scope.

Device cognizant KTSM can be considered the most constrained, as it only matches with indicative

terms for a particular abstract device type. Indicative KTSM uses all indicative terms for matching,

without considering abstract device type, but does not use any related terms. Finally, all-KTSM

uses both indicative and related terms in the ontology, and therefore is most broad in matching

scope. While a broader matching scope may result in more device transducers being identified, it

may also introduce more incorrect matches of transducers from the ontology that are not actually

on the device. A less broad matching scope results in the inverse, where less transducers are

correctly identified and less incorrect matches of transducers that are not actually on the device.

For the example of the Nest Protect, consider the only indicative term of the microphone sensor

to be “microphone.” Assume the related terms for the microphone sensor include “voice,” “sound,”

and “listen.” It may be the case that the indicative term for this transducer never appears in the

corpus of vendor materials. In that case, the algorithms that are less broad in matching scope could

fail to enumerate that transducer. On the other hand, the other algorithms could enumerate the

transducer, but may also introduce incorrect matches if the related terms are also associated with

other transducers that are not actually on the device. We describe each algorithm below.
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4.3.1 Device Cognizant Key Term Set Matching (dcKTSM)

The Device Cognizant Key Term Set Matching algorithm utilizes the ontology’s knowledge of

abstract device types to perform transducer enumerations. The ontology contains an understanding

of abstract device types and the transducers that are common to them. This knowledge can then

be leveraged in order to first estimate which abstract device type is represented by the corpus of

the vendor materials. From there, the indicative terms for that abstract device type are used to

determine which of its transducers are present.

Algorithm 1 shows the dcKTSM algorithm, which first filters the key term sets for different

generic device types, and then performs key term matching based on the most relevant set of

indicative terms. Specifically, Lines 1-11 outline the first matching step, which uses both indicative

and related terms to determine which abstract device type is most likely being represented by the

corpus of vendor materials. The indicative terms of the device type that is ranked as the best

match candidate are considered to be the terms that refer to the transducers of the device. A

reverse-mapping step is then performed on Line 12, where only these indicative terms are used to

determine which transducers are present. Note that the output of the first matching step is a subset

of indicative terms for the selected abstract device type. The reverse mapping step determines

which transducer each indicative term refers to, where some transducers may be referred to by

more than one indicative term. The final results contain an enumeration of transducer identifiers,

which are returned at Line 12.

The dcKTSM algorithm is able to better exploit context clues found in the related terms while

avoiding erroneous matches that can be introduced by their ambiguity. Additionally, the approach

accounts for the fact that terms that are most directly indicative of the presence of a transducer may

have a frequency that is much lower than that of other terms. For example, even if the indicative

term “microphone” appears only twice within an entire corpus, the presence of related terms such

as “audio” or “voice” can help bolster confidence when concluding that a microphone transducer

is present.
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Algorithm 1: Device Cognizant Key Term Set Matching (dcKTSM)

1 best_score← 0

2 best_matches← null

3 for d in Ontology[Devices] do

4 indicative_terms← d[transducers][indicative_terms]

5 related_terms← d[transducers][related_terms]

6 ind_matches← get_matches(indicative_terms, corpus)

7 rel_matches← get_matches(related_terms, corpus)

8 match_score← |rel_matches|+ |ind_matches|
9 if match_score > best_score then

10 best_score← match_score

11 best_indicative← ind_matches

12 transducer_identifiers← reverse_map(best_indicative)

4.3.2 Indicative and All Key Term Set Matching (iKTSM and aKTSM)

Algorithm 2 uses only the indicative terms without ranking term sets by potential abstract de-

vice type. Specifically, it evaluates the corpus for any matching indicative terms of any transducer,

and identifies the transducers through the same reverse-mapping process (as in Algorithm 1).

Algorithm 2: Indicative Key Term Set Matching (iKTSM)

1 all_indicative_terms←
⋃

d

Ontology[Devices][d][transducers][indicative_terms]

2 ind_matches← get_matches(all_indicative_terms, corpus)

3 transducer_identifiers← reverse_map(ind_matches)

Additionally, we consider a completely unguided KTSM alrogithm called all-KTSM (aKTSM),

shown in Algorithm 3, that performs the same matching as indicative KTSM, but also matches on

the related terms. In other words, this algorithm matches on all terms that are defined in the ontol-

ogy, regardless of whether they are related or indicative. Accordingly, we consider this algorithm

to be the most broad in matching scope and therefore least exact.
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Algorithm 3: All Key Term Set Matching

1 all_indicative_terms←
⋃

d

Ontology[Devices][d][transducers][indicative_terms]

2 all_related_terms←
⋃

d

Ontology[Devices][d][transducers][related_terms]

3 all_terms← all_indicative_terms + all_related_terms

4 all_matches← get_matches(all_terms, corpus)

5 transducer_identifiers← reverse_map(all_matches)

Table 4.2: An excerpt of outputs from our approach.

Device Category Transducer Capabilities

Arlo Ultra [18]

Sensors

Image Sensor Capture image, Capture video, Detect light

Microphone Capture sound

Motion Sensor Detect motion

Actuators

Speaker Produce sound

LED Light Produce light

Infrared Light Produce IR light (enabling night vision)

Siren Produce high-volume siren

Nest Cam Indoor [4]

Sensors
Image Sensor Capture image (take photo), Capture video,

Detect light

Microphone Capture sound

Actuators

Speaker Produce sound

LED Light Produce light

Infrared Light Produce IR light (enabling night vision)

Nest Protect 2nd Gen [2]

Sensors

Smoke Sensor Detect smoke

Carbon Monoxide Sensor Detect carbon monoxide

Temperature Sensor Measure temperature

Humidity Sensor Measure humidity, detect steam

Microphone Capture sound

Motion Sensor Detect motion

Light Sensor Detect light

Actuators
Speaker Produce sound

LED Light Produce light

Nest X Yale Lock [20]

Sensors
Light sensor Detect light

Touch Sensor Detect (capacitive) contact

Actuators

Lock Lock and unlock door

Speaker Produce sound

LED Light Produce light

4.3.3 Mapping to Device Capabilities

Capabilities of a device are enumerated from its constituent transducers. This work assumes

that transducers are associated with a static, finite set of capabilities that are established during

the creation of the ontology. Each transducer can be directly mapped to its set of capabilities as

per Chapter 3. The capabilities contained in the final output set represent a device’s functionality

unambiguously as it is described by the vendor materials. Table 4.2 provides examples of the

outputs of our extraction methodology, including this mapping step.
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Chapter 5

Implementation

We build an ontology using the manual review process described in Section 4.2.1 from a variety

of vendor materials for seven smart home products: Arlo Ultra Camera [18], Nest Cam Indoor [15],

Nest Hello Doorbell [21], Nest Protect [2], Nest Learning Thermostat [22], Nest X Yale Lock [20],

and Ring Indoor Camera [23].

5.1 Pre-processing and Normalization

The pre-processing routine, implemented in Python, can fetch the product web pages directly

over the network via the requests library [24] by way of their URI, or read pages fetched previously

and saved locally. Pages are typically saved locally to ensure consistency between experiments,

and as a precaution against the contingency that web pages become unavailable.

To extract the textual content from those pages, we utilize the BeautifulSoup package [25],

which allows us to extract only specific sections of vendor material pages by providing parameters

with specific HTML tags and attributes used to identify page portions. Our current implementation

supports the static (HTML) elements in web pages, which is the current format for most vendor

materials. However, if some vendor materials only display their content dynamically, a simple

workaround would be to use a web engine to first internally render any dynamic content before

processing the resulting HTML. To normalize the text, a separate Python function replaces stop

words and non-alphanumeric characters via regular expressions. For the normalization of term

plurality, lemmatization is performed using the Spacy natural language processing package [26].

5.2 Extraction Algorithms

The KTSM algorithms described in Section 4.3 are also implemented as Python functions that

operate on a corpus from which to enumerate transducers. To encode the ontology created during

the manual review process (as described in Section 4.2.1), we use a JSON-based data model to
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represent abstract device types, transducers, their capabilities, and key term sets. Each transducer

is represented in the data model as having a static set of capabilities, a set of indicative terms,

and a set of related terms. Additionally, each transducer has a unique identifier. Abstract device

types are represented in the data model as collections of these transducer identifiers, allowing our

implementation to map from abstract device type to specific transducers and their term sets. These

data models act as additional parameters to our KTSM functions.

Given the corpus of a device’s vendor materials and the data model, the implemented KTSM

functions utilize the tree-based flashtext algorithm [27] to perform efficient key term matching.

This key term matching functionality does not support partial matches (as regular expressions do),

so distinct key terms must be used. It is also possible for key terms to overlap; for example, “image

sensor” and “image” are considered different key terms that have the same first token. For these

cases, flashtext counts the longest match, and does not count such terms more than once. In the

previous example, “image sensor” would be counted instead of “image.”

In the case of device cognizant KTSM, matches are extracted for indicative and related terms.

The total number of matches is first used to determine the best abstract device type, and the match-

ing indicative terms of the best candidate device type’s transducers are returned. In indicative

and all-KTSM, the matching step takes place with all indicative terms, and with all indicative and

related terms, respectively, and all resulting matches are returned. Matches are mapped to their

associated transducer’s unique identifier automatically, by way of a feature of the Python imple-

mentation of flashtext.
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Chapter 6

Evaluation

This section discusses the performance of our implemented solution, which is used to extract

enumerations of transducers for the seven devices.

6.1 Experimental Setting

All extractions are performed on a system with an Intel Core i7-8550U processor @ 1.80 GHz

and 8 GB of memory. We evaluate the performance of our implementation in terms of extraction

efficiency, accuracy of transducer enumeration, rate of incorrect transducer matches (false discov-

ery rate), and the overall precision and recall of each algorithm.

6.2 Efficiency

The goal of the first set of experiments is to measure the efficiency of our approach. The

efficiency of our implementation refers to the total time required to perform the pre-processing

step on the input vendor materials for a particular device. Displayed in Figure 6.1, the extraction

step is the most significant source of processing time in our methodology, ranging from less than a

second to nearly 20 seconds.

The time required for the extraction step depends on the size of the vendor materials that are

used as input. HTML files for devices may exhibit a large range of sizes; for example, pages on

Google Nest devices have the largest range of sizes on disk, from 38 KB to 2.6 MB. The HTML

extraction portion of the pre-processing step takes the largest amount of time, between 15 and

18 seconds, for the largest collections of web pages (over 4 MB total). Comparatively, smaller

collections of pages (totalling 200 KB or less) take less than a second for extraction. Figure 6.1

illustrates that extraction time scales with collection size linearly.

For most evaluated devices, the times required to perform the text normalization step, displayed

in Figure 6.2, are negligible when compared to those of the extraction step. Consistently, across
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Figure 6.1: Average text extraction time of the vendor materials for different devices by their size on disk,

computed over 5 trials.
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Figure 6.2: Average text normalization time by the total number of lemmas in a corpus, computed over 5

trials.
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Figure 6.3: For each device, grouped by KTSM algorithm, the proportion of ground truth transducers that

are correctly enumerated.

all devices, the text normalization step is performed in less than a second, increasing slightly with

the total number of lemmas extracted.

The automatic enumeration of device transducers from normalized text has little impact on the

efficiency of our solution, due to the efficiency of the tree-based flashtext algorithm for keyword

extraction which we employ. We therefore don’t report the amount of time that the keyword

extraction takes. Additionally, the time required for mapping from enumerated transducers to their

capabilities is not included in our efficiency measurements, due to the fact that this mapping is

statically defined in the ontology. That is, once the transducers have been enumerated, establishing

their corresponding capabilities requires a trivial lookup in the ontology (implemented as a Python

dictionary, in our case).

6.3 Enumeration Accuracy

For the purposes of evaluation, a sample set of transducers for the evaluated devices are enu-

merated manually as ground truth. Enumeration accuracy is then computed as the true positive

rate, the proportion of these ground truth transducers that were correctly identified by an extraction
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Figure 6.4: A comparison of the proportions of indicative and related terms per document for the Nest Cam

Indoor [4].

approach. Figure 6.3 displays the results of our enumerations on the seven different devices from

three different vendors, grouped by enumeration algorithm.

Figure 6.3 shows that both the device cognizant and indicative KTSM algorithms provide sim-

ilar proportions of correctly identified transducers, averaging about 60% and 62%, respectively, of

ground truth transducers identified among all devices with a standard deviation of 24% and 27%,

respectively. In contrast, the all-KTSM approach averages an enumeration accuracy of 91%, with

a standard deviation of 16%.

For each extraction approach, there is a large disparity between the transducer enumeration

accuracy for the Nest Cam Indoor and the Nest X Yale Lock. We present a comparison of the

composition of the vendor material corpora for these two devices in Figure 6.4 and Figure 6.5,

showing the proportion of indicative and related terms for each document per device. Seen in these

figures, while not all documents in the Nest Cam Indoor corpus consist of a large proportion of

indicative terms, the entire corpus contains a higher proportion of indicative terms overall when

compared to the Nest X Yale Lock Corpus.

32



Info
Pag

e

Tec
h Spe

cs

Buy
ing

Gui
de

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

P
ro
p
or
ti
on

of
al
l
L
em

m
as

Nest Yale Lock Term Proportions

Indicative Terms

Related Terms

Figure 6.5: A comparison of the proportions of indicative and related terms per document for the Nest X

Yale Lock [20].
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curacy of device cognizant KTSM.
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Figure 6.7: The proportion of corpus terms that are related correlated with transducer enumeration accuracy

of device cognizant KTSM.

An interesting property that follows from this comparison is the correlation between a corpus’

term class proportion and the enumeration accuracy for each device. Seen in Figure 6.6, as the

proportion of indicative terms grows larger, the overall enumeration accuracy of the dcKTSM

algorithm generally does as well. This is fairly intuitive, in that a set of vendor materials with a

larger number of terms that more explicitly reference a particular transducer will better inform of

the association of that transducer with the device. This means that a more refined ontology will

contribute to an increased number of indicative terms and improve the enumeration accuracy.

Similarly, Figure 6.7 displays the negative relationship between proportion of lemmas that are

related terms and the transducer enumeration accuracy. This relationship follows from that of

indicative term proportion and transducer enumeration accuracy, as a higher proportion of related

terms in a corpus is likely accompanied by a lower proportion of indicative terms in the corpus.

6.4 Proportion of Incorrect Transducer Matches

To evaluate the tendencies of our algorithms to incorrectly identify transducers, we also mea-

sure the proportion of transducers enumerated by an extraction algorithm that are not actually
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Figure 6.8: For each device, grouped by KTSM algorithm, the proportion of matching transducers that are

incorrectly identified.

within the ground truth set. In other words, we measure the false discovery rates at which our

algorithms enumerate transducers that are contained in the ontology, but not actually associated

with the device.

Figure 6.8 shows the proportion of incorrect matches per device for each algorithm. The all-

KTSM approach suffers from the highest proportions of incorrect matches across all devices, with

an average of 36% of all transducer matches for each device. Indicative KTSM, on the other hand,

averages only 3% incorrect transducers, and device cognizant KTSM does not incorrectly attribute

any transducers to any of the evaluated devices.

The advantage that comes from applying device cognizant KTSM on texts extracted from ven-

dor materials is the fact that only the indicative terms that are associated with certain devices as

defined in the ontology are applied for matching. This ensures that only the most relevant terms

with the least ambiguity will be used to draw conclusions about the device’s transducers. If device

cognizant KTSM behaves in a way that is too restrictive and fails to enumerate transducers that

indicative or all-KTSM can enumerate, it may be the case that the term sets used for matching are
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not thorough enough, or a sign that the ontology’s representation of the device in question should

be improved.

6.5 Precision, Recall, and F1 Score

To better illustrate the trade-off between the enumeration accuracy and rate of incorrectly

matched transducers for each algorithm, we present the precision, recall, and F1 scores for our

approach, modeling the extraction as a binary classification problem in which an algorithm cor-

rectly predicts the presence of a transducer that is part of the ground truth set of each device. For

each algorithm, these composite scores are computed across all seven devices, meaning that the

discrete number of true positives, true negatives, false positives, and false negatives are computed

per-device before being summed across all devices.

Figure 6.9 displays a confusion matrix for each algorithm, which captures the enumerations

of all transducers for each of the 7 evaluated devices. Note that the ontology that is used for the

evaluation contains 16 total transducers, and that the number of true negatives is first computed

separately for each evaluated device before being summed. These confusion matrices therefore

represent the total numbers of correctly enumerated transducers, incorrectly enumerated transduc-

ers, transducers missed, and transducers that were correctly not enumerated for each algorithm.

We compute the precision, recall, and F1 score of each algorithm using the confusion matrices

in Figure 6.9. The F1 scores for the different algorithms are 0.761 for device cognizant KTSM,

0.757 for indicative KTSM, and 0.752 for all-KTSM. The more constrained algorithms, device

cognizant and indicative KTSM, exhibit high precision with 1.00 and 0.933, respectively. However,

the less-constrained alternative of all-KTSM suffers from a much lower precision of 0.631. At the

same time, aKTSM has a much higher recall of 0.932 compared to the recall values of dcKTSM

and iKTSM, which are 0.614 and 0.636, respectively. This indicates that the more constrained

algorithms more consistently enumerate transducers correctly, but more often fail to enumerate all

transducers.
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Figure 6.9: Discrete confusion matrices for each algorithm, computed for all ontology transducers across

the 7 evaluated devices.
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Chapter 7

Discussion

7.1 Reliance on Vendor-Provided Materials

This work currently relies on the vendor-provided materials that are publicly available to derive

the device capabilities. Missing information in those materials may result in an incomplete list of

capabilities. To overcome this limitation, we intend to extend our approach to extract capabilities

from the software specifications (e.g., device configurations, firmware) in addition to hardware

specifications in the future.

7.2 Effects of Enumeration Accuracy

The obtained results on the enumeration accuracy of our solution in Section 6.3 indicate the

accuracy of our matching algorithms in automatically enumerating device transducers from vendor

materials. Some results clearly indicate that refinements to the ontology, and specifically the term

sets of different transducers, should be made. Our solution allows for such refinements to take

place iteratively, where an ontology can be augmented continuously with new vocabularies and

knowledge of transducer-device relationships.

In one respect, the similar F1 scores computed in Section 6.5 obfuscate the misclassification

tendencies of the different algorithms and therefore the true nature of the trade-off relationship that

exists between the algorithms. When considering the precision and recall of each algorithm, this

relationship is more clear, and suggests that the choice of which algorithm to use is dependent on

the goals of the user, organization, or application, as is the broadness of the transducer term sets. If

the goal is to ensure that only transducers that are truly present be enumerated, then a more focused

set of indicative terms should be used with device cognizant or indicative key term set matching.

On the other hand, if the goal is to ensure that as many transducers as possible are enumerated,
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then all key term set matching with a more extensive dictionary of indicative and related terms

should be used.

A point of interest going forward is to improve the transducer enumeration accuracy in an

automated fashion, using a learning-based feedback loop. This could involve the discovery of new

terms or alterations to the data model’s representation of abstract device types or transducers.

7.3 Adapting to Other IoT Domains

Even though this thesis elaborates on the context of a smart home, our solution can potentially

be adapted to other IoT domains (e.g., smart grid, smart health, autonomous vehicle). The main

adaptation efforts would be to learn the ontology of the vendor materials of the application-specific

devices and develop the extraction technique for those materials. The subsequent steps of our

approach would remain the same.
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Chapter 8

Applying Extracted Capabilities to Access Control

As our method produces a set of capabilities that are present on a device, a security or privacy

application could utilize these facts about devices as attributes of a policy-driven access control

system. In such a scheme, a user could define security policies that involve several attributes,

including device location, time of day, and device capability, provided by our solution. We briefly

explore in this section a model for such a system that is able to capture fine-grained security goals

as specified by users within a smart home or administrators within an industrial or business setting.

The proposed model is based off of NIST Next Generation Access Control (NGAC) [28] and

focuses on providing users with the ability to define policies that center around device capabilities

being allowed to be in certain areas of an environment. In NGAC, policy components fall into

hierarchical categories and are related to each other through relations, including associations for

granting privileges and prohibitions for denying privileges. In our model, we consider policy

components in terms of attributes of device capabilities which device instances can be associated

with, and location-based environmental attributes (i.e., where a device may be located with the

environment).

We consider a unary association for granting a single privilege, denoted Ci−{A}−Ei, which

indicates that capabilities that fall under the capability attribute group Ci are allowed within envi-

ronment locations that fall under the environmental group Ei. Similarly, we can explicitly specify

that capabilities within a capability group Ci are not to be allowed within an environmental group

Ei using a prohibition, which is denoted Ci −X − Ei.

Different environments or security goals require different default associations between capa-

bilities and environmental attributes. We propose two general possibilities:

• Exclusive “black-list” policies: Policies which, by default, allow all capabilities within all

environmental attributes. Users must explicitly specify exclusions to this default policy with

prohibitions.
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Figure 8.1: An example of an exclusive “black-list” access control policy, in which all device capability

groups are considered to be allowed in all environmental groups, except when they are explicitly prohibited.

• Inclusive “white-list” policies: Policies which, by default, prohibit all capabilities within all

environmental attributes. Users therefore must explicitly specify which capabilities should

be allowed in which environmental attribute groups via allow associations.

Consider the example of a policy that specifies that no device that is capable of image or video

capture should be allowed within private areas of a smart home, such as the bathroom and bedroom,

and that no device that is capable of audio capture should be allowed within a specific room that

is used for confidential meetings. Such a policy is modeled with our scheme and illustrated in

Figure 8.1.

This policy could potentially be violated by a smart mirror that provides an image sensor being

placed in the bathroom, or a smart smoke alarm such as the Nest Protect that includes a microphone

being placed in the meeting room. This particular policy example can be considered as a “black-

list” policy, where the default is to allow all capability groups within all environmental groups,

and prohibitions are used to deny specific capability groups from specific environmental groups

(including the entire smart home). The resulting policy is quite open, but not very complex and

therefore may be well suited for typical smart home users who need only define a few critical

exclusionary policies to ensure that their security goals are satisfied.
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Figure 8.2: An example of an inclusive “white-list” access control policy, in which no device capability

groups are considered to be allowed in all environmental groups, except when they are explicitly allowed

with associations.

On the other hand, users or administrators with more stringent security goals may prefer the

adoption of an inclusive “white-list” policy, which assumes that no capability group should be

allowed in any environmental group, unless explicitly included by way of an appropriate associ-

ation. Such a policy is illustrated in Figure 8.2, which specifies that devices with visual capture

capabilities should be allowed on the front porch and the meeting room, and that devices with

audio capture capabilities should be allowed in the meeting room as well. In this scheme, if a Nest

Cam Indoor IoT camera is placed in a private area such as the bedroom or bathroom, the policy

would be violated.

8.1 General Model

Generally, our policy scheme can be modeled as is illustrated in Figure 8.3. In this scheme,

any capability group can be white or black-listed through a relation to any environmental attribute

group. Depending on the policy, a device instance may be given its own relation to a specific envi-

ronmental attribute group in order to ensure that the specific device is allowed or denied privileges

within locations that fall under that environmental attribute group.

Capabilities enumerated with our extraction solution could be verified against user-defined se-

curity policies in this proposed model and therefore proactively affirm that users’ IoT security goals

42



({A} or X)All Capabilities Smart Home
(All Locations)

Location Attribute
Group

Location Attribute
Group...

... ...

(Lower Level)
Location Attribute

Group

Capability Attribute
Group ({A} or X)

({A} or X)
Capability Attribute

Group...

... ...

({A} or X)

(Lower Level)
Capability Attribute

Group...

...

({A} or X)Device Instance

...

...

Location

Figure 8.3: A general representation of the proposed access control model.

are satisfied. As discussed previously, many device vendors abstract away the actual functionali-

ties of their devices with the language and format of their related vendor materials. Our capability

model and extraction implementation can be applied to this proposed access control scheme to en-

sure that the security goals of users can be represented by policies that can be proactively verified

without any prerequisite knowledge from users.

8.2 Policy Conflict Resolution

Note that, as is the case with NGAC policies, policy conflicts can come about. For example, the

policy illustrated in Figure 8.1 specifies (from bottom to top), first that all capabilities are allowed

in all smart home locations. However, one step lower in the hierarchy (higher in the figure) specifies

that visual capture capabilities should not be permitted in private areas, which conflicts with the

more general relation.

For a smart home domain, a method of conflict resolution that is most appropriate is prioritizing

the more specific policy (in the previous example, the prohibition on visual capture capabilities).

This way, users can specify more broad security goals that can be refined with finer-grained re-

lations at the lower levels. There are alternative conflict resolution methods that could be better

suited to different security goals, such as prioritizing relations that specify a particular environmen-
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tal group. For example, ensuring that any relations that involve the “private areas” environmental

group are prioritized over any others that conflict.

8.3 Extension to other Attributes

Our proposed access control model focuses on location-based attributes of the environment.

However, this policy architecture could be well-suited for many other attributes of capabilities and

ecosystems, such as time of operation, roles of users invoking the particular capability, or history

of access or device behaviors. To achieve some of these more complex additions to the access

control model, higher level concepts of NGAC, such as obligations, could be applied.
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Chapter 9

Related Work

Research on IoT security has gained significant interest. These studies [5–12, 29–34] can be

considered in a few different categories, including device fingerprinting, application monitoring,

intrusion detection, and access control.

The existing device fingerprinting techniques [5–11] monitor and analyze the network traffic

of IoT devices. More specifically, [5, 6] automatically discover and profile device behaviors by

building machine learning models trained on network traffic according to their service (e.g., DNS,

HTTP) and the semantic behaviors of devices (e.g., detected motion), respectively. Similar analysis

is performed in Zhang et al. [7], where the fingerprints of a particular smart home devices are built

using their network traffic. Other works [8–11] use similar techniques to automatically determine

device identity or typical aggregate behaviors (as opposed to specific behaviors). Bezawada et

al. [8] utilize machine learning to build behavior profiles based on network traffic for devices

using the device category and device type. IoTSentinel [9], AuDI [10] and DeviceMien [11] use

unsupervised learning to build models for individual device types based on network traffic captured

during a device connection.

There exist several other security solutions (e.g., [31,33,35,36]) for smart homes. The existing

application monitoring techniques [35, 36] run on source code of IoT applications and analyze

these applications. More specifically, ContextIoT [35] and SmartAuth [36] offer permission-based

systems to monitor an individual app. ProvThings [12] builds provenance graphs using security-

critical APIs for IoT forensics. Soteria [37] and IoTGuard [33] verify security and safety policies

by performing static and dynamic code analysis, respectively. Zhang et al. [31] monitor isolation-

related properties among IoT devices through a virtual channel. Yang et al. [30] protect IoT devices

from remote attacks by obfuscating them behind onion gateways.

The existing works suffer from several limitations as follows.
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• Most of the solutions above rely on a great amount of inference, especially when considering

encrypted network traffic. Many solutions either perform entropy analysis of encrypted traf-

fic [8] or use only the features of network traffic that are not encrypted, such as TCP headers

and other packet and flow metadata [5–7, 9–11]. Because of this inference, false positives

and false negatives are a legitimate concern of these solutions.

• As most of the existing works rely on the application of inferential models (machine learn-

ing or otherwise), they are vulnerable to deceptive attacks, where an adversary may craft an

attack that conforms to the model’s expectation of legitimate traffic or behavior, thereby cir-

cumventing the model. On the other hand, an adversary could produce an attack that simply

performs a denial-of-service attack by, for example, inundating the system with purposefully

malicious traffic that does not conform to the model in order to overwhelm the model and

prevent the processing of any legitimate traffic.

• These solutions cannot detect/prevent the critical safety or privacy implications that are not

observable from the network traffic or application analyses, as they require access to either

network traffic when devices are in operation, or application sources. These observations

are also independent of other environmental attributes such as device location and therefore

may not fully encapsulate security goals of consumers.

• Additionally, these related works do not present a proactive solution. Works that build pro-

files of devices can only do so when devices are present in an IoT environment and their

traffic can be observed. Security solutions that analyze IoT applications for smart homes can

provide insights on security flaws that applications have before they are in use, but they also

require access to applications that may not be available.

This thesis, on the other hand, targets a different threat model where we extract an unambiguous

representation of IoT device capabilities from their vendor material that will facilitate evaluating

potential security threats even before a device is installed. These capabilities are generic and

are therefore independent of device implementation and vendor. Further, our capability model
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represents capabilities in a way that is more in line with the innate security goals and policies

of consumers. Our extraction methodology also does not require visibility of network traffic or

estimate device behavior heuristically.
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Chapter 10

Conclusion

10.1 Summary

With the growing popularity of IoT, the necessity of ensuring its security continues becoming

more important than ever. To that end, existing works rely on observable data (e.g., network

traffic, sensor data, etc.) and therefore suffer from several security and potential privacy concerns.

We proposed an approach to enumerate IoT device capabilities from their related vendor-provided

materials in order to ensure that consumers or security applications acting on their behalf can be

proactively informed, in a clear and unambiguous way, of what a device is able to do.

More specifically, we introduced an IoT device capability model that can represent device

capabilities in an unambiguous way and used a manual review process to build an ontology that

encoded learned information about vendor-provided documentation materials. We implemented

and evaluated a novel set of algorithms that can be used to extract transducer information from

vendor materials and map that information to device capabilities. Additionally, we presented a

scheme for fine-grained and expressive user-defined attribute-based access control that leverages

the capability information that our extraction approach provides.

10.2 Limitations and Future Research Directions

Our current work relies only on vendor provided materials that are publicly available and may

be missing some information. In the future, we plan to augment our approach with information

from software specifications, device configurations, and additional materials extracted from device

firmware. Additionally, improvements to automate the building of the vendor material ontology

are an area of particular interest for future work, where new terms or other contextual items pro-

vided by materials could be discovered automatically. Our future work also includes adapting our

methodology to other IoT ecosystems including the smart grid, smart health, autonomous vehicles,
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and industrial IoT. We also leave the verification of our proposed access control scheme, as well as

additional extensions to it described in Section 8.3 as future work.
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