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ABSTRACT

DIABATIC AND FRICTIONAL FORCING EFFECTS ON THE STRUCTURE AND

INTENSITY OF TROPICAL CYCLONES

Tropical cyclone intensity forecasting skill has slowed in improvement for both dynamical and

statistical-dynamical forecasting methods in comparison to gains seen in track forecasting skill.

Also, forecast skill related to rapid intensification, e.g. a 30 kt or greater increase in intensity within

a 24-hour period, still remains poor. In order to make advances and gain a greater understanding,

the processes that affect intensity change, especially rapid intensification, need further study. This

work evaluates the roles of diabatic and frictional forcing on the structure and intensity of tropical

cyclones.

To assess the diabatic forcing effects on intensity change in tropical cyclones, this study de-

velops applications of Eliassen’s balanced vortex model to obtain one-dimensional solutions to

the geopotential tendency and two-dimensional solutions to the transverse circulation. The one-

dimensional balanced solutions are found with dynamical model outputs as well as aircraft recon-

naissance combined with diabatic heating derived from microwave rainfall rate retrievals. This

work uses solutions from both datasets to make short-range intensity predictions. The results

show that for the one-dimensional solutions, the tangential tendency does not match the dynamical

model or aircraft wind tendencies. To relax the assumptions of the one-dimensional solutions to the

geopotential tendency, solutions for idealized vortices are examined by finding two-dimensional

solutions to the transverse circulation. The two-dimensional solutions allow for evaluation of the

axisymmetric structure of the vortex on the (r, z)-plane without setting the baroclinicity to zero

and the static stability to a constant value. While the sensitivity of tangential wind tendency to
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diabatic forcing and the region of high inertial stability is more realistic in the two-dimensional

results, the solutions still neglect the influence of friction from the boundary layer.

To understand further the role of frictional forcing in the boundary layer, two analytical slab

models developed in this study provide insight into recent work that demonstrates how dry dynam-

ics plays a role in determining eyewall location and size, how potential vorticity rings develop,

and how an outer concentric eyewall forms through boundary layer “shock-like” structures. The

analytical models show that when horizontal diffusion is neglected, the u(∂u/∂r) term in the ra-

dial equation of motion and the u[f + (∂v/∂r) + (v/r)] term in the tangential equation of motion

develop discontinuities in the radial and tangential wind, with associated singularities in the bound-

ary layer pumping and the boundary layer vorticity. The analytical models provide insight into the

boundary layer processes that are responsible for determining the location of the eyewall and the

associated diabatic heating that ultimately impacts the intensity of the tropical cyclone. This work

shows that future research linking the roles of frictional forcing in the boundary layer to the dia-

batic forcing aloft while using a balanced model will be important for gaining insight into forcing

effects on tropical cyclone intensity.
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CHAPTER 1

INTRODUCTION

Understanding tropical cyclone intensity change, along with rapid intensification, has received

greater attention in recent years, especially through programs like the Hurricane Forecast Improve-

ment Project (Toepfer et al. 2010). While tropical cyclone prediction has improved, especially with

storm track, maximum wind intensity forecasts have lagged. Current techniques have been ineffec-

tive at predicting rapid intensification, e.g. a 30 kt or greater increase in intensity within a 24-hour

period. Traditionally, statistical-dynamical techniques have outperformed numerical weather pre-

diction models in forecasting intensity. Kaplan et al. (2010) find slowed improvements in statistical

intensity forecasting techniques since the early 2000s. To add to our understanding of tropical cy-

clone intensity and improve current forecasting methods, a deeper understanding of the tropical

cyclone transverse circulation during the life cycle of the tropical cyclone needs researching.

Ooyama (1969a) and Ooyama (1969b) show the first successful numerical simulations of the

life cycle of a tropical cyclone. As seen in Fig. 1.1, the vertical velocity, w, out of the boundary

layer is located outside the radius of maximum wind V1. As noted by Vigh and Schubert (2009) and

Musgrave et al. (2012), the radial distance between the diabatic heating and the radius of maximum

wind determines the intensity change of the barotropic vortex. These studies indicate that in order

to improve forecasts of intensity change, the position of the diabatic heating must be correctly

simulated. Returning to evaluating the Ooyama model, one glaring issue is the formulation of the

boundary layer, the lowest of the three layers used in the model (Fig. 1.2). The model neglects

the u (∂u/∂r) term in the boundary layer radial momentum equation. Ooyama (1969b) notes that

“frictionally-induced radial inflow may become so strong in an intense cyclone that the omission

of advection terms in (1) is not justifiable,” where equation (1) refers to the gradient wind equation.
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FIG. 1.1. A reproduction of Fig. 4 from Ooyama (1969a) depicting the time evo-

lution of a numerically simulated tropical cyclone in which the boundary layer is

assumed to be in gradient balance (the u(∂u/∂r) term of the radial momentum

equation is neglected in the boundary layer). The top panel shows the maximum

tangential wind (max V1) and a continuation of the radius of gale force wind from

the middle panel; the middle panel shows the radii of maximum wind (max V1),

hurricane force wind, gale force wind, and maximum vertical velocity (w); and the

bottom panel shows the central surface pressure. In the figure, max V1 is the max-

imum tangential velocity, r represents radius, and w is the vertical velocity. The

radius of gale wind extends into the upper plot.
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of a three-layer, gradient balanced, axisymmetric hurricane model that contains

moisture in the boundary layer. In the figure, ρ is the density of each layer, h is

the depth of the layer, Q is the diabatic flux, τs is the tangential component of the

shearing stress at the sea surface, v is the tangential component of the velocity, ψ is

the radial mass flux, and w is the vertical component of the velocity.

In Fig. 1.3, Ooyama shows that the tangential velocity and vertical velocity shift radially inward

with inclusion of the advection terms in the radial momentum equation. Also seen is a shift in the

vertical velocity’s proximity to the radius of maximum tangential wind. Because of these changes

in the tropical cyclone structure, several questions result: How does the intensity change in a

baroclinic vortex similar to that modeled by Ooyama? How do boundary layer frictional effects

with the advection term in the radial momentum equation influence the placement of the vertical

momentum flux out of the boundary? This thesis seeks to enhance the understanding of how

diabatic heating affects intensity in a baroclinic vortex due to the shift in the radial location of

the diabatic heating and develop analytical models to study the importance of the radial advection

term, u ∂u/∂r, in the slab boundary layer model.

The thesis follows this structure. Chapter 2 presents applications of the balanced vortex model.

In this chapter, the transverse circulation and geopotential tendency equations show intensity

3



changes resulting from diabatic heating. Chapter 3 presents shock-like structures in the tropi-

cal cyclone boundary layer resulting from the radial advection term and frictional effects. In this

chapter, an analytical model explains shock formation. Chapter 4 offers a summary of the results

from the work in addition to a discussion that links the presented topics. At the end of the the-

sis, several appendices include additional information and results related to the work presented in

chapters 2 and 3.
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FIG. 1.3. The azimuthal profile of boundary layer tangential wind, v0, and the

lower layer tangential wind, v1, for Model I (dashed) and Model II (solid) shown

in the upper panel. The azimuthal distribution of the vertical velocity, w, at the top

of the boundary layer for Model I (dashed) and Model II (solid) shown in the lower

panel. Both figures are for t = 146 hours. This figure is adapted from Ooyama

(1969b).
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CHAPTER 2

SOLUTIONS OF THE TRANSVERSE CIRCULATION AND GEOPOTENTIAL TENDENCY

EQUATIONS

2.1. INTRODUCTION

To answer how the vortex responds to diabatic heating during the life cycle of a tropical cy-

clone, we return to Fig. 1.1, which shows that the radius of maximum Ekman pumping (depicted

as r of max w) remains outside of the radius of maximum tangential velocity (depicted as r of max

V1). This relationship is known to indicate that the strongest diabatic heating occurs outside or near

the radius of maximum tangential wind. In the context of the balanced vortex model, Musgrave

et al. (2012) show how moving the region of strongest diabatic heating closer to the region of high

inertial stability causes a stronger tangential velocity tendency response in the vortex. In fact, the

response is extremely sensitive to radial shifts in the region of diabatic heating. In addition to work

with the balanced vortex model, full physics models have been used to assess similar diabatic heat-

ing responses. These studies discuss the role of diabatic heating outside of the eyewall and in spiral

rainbands (Wang 2009; Xu and Wang 2010; Fudeyasu and Wang 2011) and the role of eyewall tilt

(Wang 2008b; Pendergrass and Willoughby 2009).

This work evaluates applying the concepts of Musgrave et al. (2012) to observed tropical cy-

clones by comparing one-dimensional solutions of the transverse circulation to two-dimensional

solutions that have relaxed some of the vertical structure approximations used in the balanced

vortex model formulated by Musgrave et al. (2012).
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2.2. BALANCED VORTEX MODEL

Eliassen (1951) first solved the balanced vortex model using quasi-static theory to explain

the response of the meridional circulation in a circular vortex to diabatic heating. The solutions

for the meridional circulation can be applied to the tropical cyclone (Ooyama 1969a; Willoughby

1979; Vigh and Schubert 2009; Musgrave et al. 2012). We begin by defining the balanced vortex

model in a similar method as presented by Vigh and Schubert (2009) and Musgrave et al. (2012).

We consider inviscid, axisymmetric, quasi-hydrostatic, gradient balanced motions of a stratified,

compressible atmosphere on an f -plane. We use log-pressure as the vertical coordinate by defining

z as H ln(p0/p), where p0 = 900 hPa is the top of the boundary layer and H = RdT0/g ≈ 8.61

km is the constant scale height, with Rd denoting the gas constant for dry air, T0 = 294.25 K the

constant reference temperature [based on the TOGA/COARE mean sounding (Lin and Johnson

1996)] and g the acceleration of gravity. The governing equations for the balanced vortex model

are

(

f +
v

r

)

v =
∂φ

∂r
, (2.1)

∂v

∂t
+ u

(

f +
∂(rv)

r∂r

)

+ w
∂v

∂z
= 0, (2.2)

∂φ

∂z
=

g

T0
T, (2.3)

∂(ru)

r∂r
+
∂(ρw)

ρ ∂z
= 0, (2.4)

∂T

∂t
+ u

∂T

∂r
+ w

(

∂T

∂z
+
RdT

cpH

)

=
Q

cp
, (2.5)

where u and v are the radial and azimuthal components of velocity, w is the vertical log-pressure

velocity, φ is the geopotential, f = 5×10−5 s−1 is the constant Coriolis parameter, ρ(z) = ρ0e
−z/H

is the pseudo-density, ρ0 = p0/(RdT0) ≈ 1.066 kg m−3 is the constant reference density, and Q is
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the diabatic heating. Regarding Q as known and/or parameterized, (2.1)–(2.5) constitute a closed

system in u, v, w, φ, T , all of which are functions of (r, z, t). For the purposes of developing

solutions to the balanced vortex model, we will provide initial vortex tangential velocity structure,

v, as well as diabatic heating,Q/cp, in order to retrieve the tangential velocity tendency, (∂v/∂t) =

vt. vt is interpreted as the intensity change in the tropical cyclone caused by diabatic heating.

Using the hydrostatic equation (2.3) in (2.5) and using the gradient wind equation (2.1) in (2.2),

we obtain

∂φt

∂z
+ Aρw −Bρu =

g

cpT0
Q, (2.6)

∂φt

∂r
− Bρw + Cρu = 0, (2.7)

where φt = ∂φ/∂t is the geopotential tendency and where the static stability, A, the baroclinicity,

B, and the inertial stability, C, are defined by

ρA =
g

T0

(

∂T

∂z
+
RdT

cpH

)

, (2.8)

ρB = − g

T0

∂T

∂r
= −

(

f +
2v

r

)

∂v

∂z
, (2.9)

ρC =

(

f +
2v

r

)(

f +
∂(rv)

r∂r

)

. (2.10)

2.3. TRANSVERSE CIRCULATION EQUATION

Eliminating φt between (2.6) and (2.7) yields the transverse circulation equation given below

as

∂

∂r

(

A
∂(rψ)

r∂r
+B

∂ψ

∂z

)

+
∂

∂z

(

B
∂(rψ)

r∂r
+ C

∂ψ

∂z

)

=
g

cpT0

∂Q

∂r
, (2.11)
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where we have used the continuity equation, (2.4), to express the radial and vertical velocity com-

ponents in terms of the streamfunction ψ as

ρu = −∂ψ
∂z

and ρw =
∂(rψ)

r∂r
. (2.12)

The transverse circulation equation was first presented by Eliassen (1951) for the case where

∂Q/∂r is localized. The Green’s function solutions demonstrate how the shape and strength of

the transverse circulation depend on the coefficients A, B, and C. Vigh and Schubert (2009)

highlight that Eliassen’s approach has the following disadvantages: (i) the effects of the top and

bottom boundary conditions and the circular geometry are not included, (ii) the important spatial

variability of the inertial stability coefficient C is not included, and (iii) the diabatic heating is

localized in z. The work presented here removes these limitations, as will be shown in section 2.5.

2.4. GEOPOTENTIAL TENDENCY EQUATION

As an alternative to defining the transverse circulation equation, we can proceed from (2.6) and

(2.7) to obtain an equation for φt by eliminating u and w. First, we eliminate w to obtain

A
∂φt

∂r
+B

∂φt

∂z
+ (AC − B2)ρu =

g

cpT0
BQ. (2.13)

Next, we eliminate u to obtain

B
∂φt

∂r
+ C

∂φt

∂z
+ (AC −B2)ρw =

g

cpT0
CQ. (2.14)
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Now, using mass continuity defined by (2.4), we can eliminate u and w between equations (2.13)

and (2.14) to obtain

∂

r∂r

(

r
A

D

∂φt

∂r
+ r

B

D

∂φt

∂z

)

+
∂

∂z

(

B

D

∂φt

∂r
+
C

D

∂φt

∂z

)

=
g

cpT0

[

∂

r∂r

(

r
B

D
Q

)

+
∂

∂z

(

C

D
Q

)]

,

(2.15)

where D = AC − B2.

The geopotential tendency equation is still a second-order partial differential equation with the

same variable coefficients A, B, and C. Vigh and Schubert (2009) depict (2.15) as preferable if

vortex evolution is the focus of understanding.

2.5. MODELS

In the following discussion in which we use the transverse circulation equation and the geopo-

tential tendency equation, we consider cases in which A > 0, C > 0, and D = AC − B2 > 0,

so that the transverse circulation problem (2.11) is elliptic. If any of the conditions above are vi-

olated, the system is no longer elliptic and the methods to develop solutions to the geopotential

tendency and transverse circulation equations are invalid. The condition AC −B2 > 0 can also be

interpreted as potential vorticity, P > 0, since

AC − B2 =
g

ρ0T0
ez/(γH)

(

f +
2v

r

)

P, (2.16)

where γ = cp/cv is the ratio of the specific heats and the potential vorticity is given by

P =
1

ρ

[

−∂v
∂z

∂θ

∂r
+

(

f +
∂(rv)

r∂r

)

∂θ

∂z

]

. (2.17)
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To study elliptic solutions, we will show results with two models. The first finds one-dimensional

solutions to the geopotential tendency. This one-dimensional model, based on an elliptic solver by

Fulton (2011), is similar to that developed by Musgrave et al. (2012). The solver provides a fast,

simple approach for evaluating the effects of diabatic heating on the vortex intensity due to its

numerous assumptions. The second model uses a successive over-relaxation iterative method to

find the two-dimensional solutions of the transverse circulation. This approach relaxes a number

of the assumptions used by Musgrave et al. (2012).

2.5.1. ONE-DIMENSIONAL BALANCED SOLUTIONS

For the one-dimensional balanced solutions, we begin by setting the baroclinicity, B, to zero

and defining the static stability and inertial stability as

N2 = ρA =
g

T0

(

∂T

∂z
+
RT

cpH

)

, (2.18)

f̂ 2 = ρC =

(

f +
2v

r

)(

f +
∂(rv)

r∂r

)

. (2.19)

From these assumptions, equations (2.6) and (2.7) become

∂φt

∂z
+N2w =

g

cpT0
Q (2.20)

and

∂φt

∂r
+ f̂ 2u = 0. (2.21)
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Following the same steps to obtain (2.15) by eliminating u and w between equation (2.20) and

(2.21), the geopotential tendency equation becomes

N2 ∂

r∂r

(

r

f̂ 2

∂φt

∂r

)

+

(

∂

∂z
− 1

H

)

∂φt

∂z
=

g

cpT0

(

∂

∂z
− 1

H

)

Q. (2.22)

To evaluate elliptic solutions of (2.22), we assume f̂N > 0 everywhere.

Musgrave et al. (2012) show that through the boundary conditions,

∂φt

∂z
= 0 at z = 0, zt, (2.23)

and vertical structure through the separation of variables,















Q(r, z)

Tt(r, z)

w(r, z)















=















Q̂(r)

T̂t(r)

ŵ(r)















exp
( z

2H

)

sin

(

πz

zT

)

,















φt(r, z)

vt(r, z)

u(r, z)















=















φ̂t(r)

v̂t(r)

û(r)















exp
( z

2H

)

[

cos

(

πz

zT

)

− zT
2πH

sin

(

πz

zT

)]

, (2.24)

the hydrostatic, gradient wind, tangential wind, and thermodynamic equations imply that

g

T0
T̂t(r) = −zT

π

(

π2

z2T
+

1

4H2

)

φ̂t(r), (2.25)

v̂t(r) =

(

f +
2v

r

)

−1
dφ̂t(r)

dr
, (2.26)
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û(r) = −f̂−2dφ̂t(r)

dr
, (2.27)

ŵ(r) =
g

T0N2

(

Q̂(r)

cp
− T̂t(r)

)

. (2.28)

Shown in Fig. 2.1, the vertical structure functions, (2.24), represent typical structures of Q, Tt,

w, φt, v, and u. Substituting (2.24) into (2.22), Musgrave et al. (2012) show that the ordinary

differential equation for the radial structure of the temperature tendency is

T̂t −
d

rdr

(

ℓ2r
dT̂t
dr

)

=
Q̂

cp
,

dT̂t
dr

= 0 at r = 0, (2.29)

dT̂t
dr

= −
(

K1(b/ℓ0)

ℓ0K0(b/ℓ0)

)

T̂t at r = b,

where the Rossby length is defined as

ℓ(r) =
N

f̂(r)

(

π2

z2T
+

1

4H2

)

−1/2

=
f

f̂(r)
ℓ0. (2.30)

ℓ0 is the constant far-field value, which we shall assume is equal to 1000 km, K0 and K1 are

modified Bessel functions, and f̂ is the effective Coriolis parameter. After solving (2.29) for T̂t,

we can use (2.24) to recover the fields Tt(r, z), vt(r, z), φt(r, z), u(r, z), and w(r, z).
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FIG. 2.1. The vertical structure functions in (2.24) are exp[z/2H ] sin(πz/zT )
(blue) and exp[z/2H ]{cos(πz/zT ) − [zT /(2πH)] sin(πz/zT )} (red). The maxi-

mum of the blue curve reaches an approximate value of 1.606 at z = 8.798 km.

To show an idealized case of a specified vortex to diabatic heating through the geopotential

tendency equation, we will use a similar vortex as described by Musgrave et al. (2012) that we will

define as

v(r) =
1

crcv

rmvm
r

[

1− exp

(

−r
2c2r
r2m

)]

, (2.31)

where vm is the maximum tangential velocity and rm is the radius of maximum vm. cr and cv are

constants respectively defined as 1.209 and 0.63817. Now, we define the diabatic heating in an

annular ring (Eliassen 1971; Eliassen and Lystad 1977; Yamasaki 1977; Emanuel 1997; Smith and

Vogl 2008; Smith and Montgomery 2008; Kepert 2010a,b). The annular ring of diabatic heating

represents the response in nature to the maximum vertical velocity at the top of the boundary layer.

(2.1)–(2.5) in section 2.2 do not contain a boundary layer. However, the effects of the boundary
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layer vertical velocity can be represented by specifying the heating as

Q̂(r) = Q̂ew











































































0 0 ≤ r ≤ r1,

S
(

r2−r
r2−r1

)

r1 ≤ r ≤ r2,

1 r2 ≤ r ≤ r3,

S
(

r
−
r3

r4−r3

)

r3 ≤ r ≤ r4,

0 r4 ≤ r <∞,

(2.32)

where S(s) = 1 − 3s2 + 2s3 is a cubic interpolating function and r1, r2, r3, and r4 are specified

constants defining width and shape of the diabatic heating profile. r1 and r2 define the inner region

of the heating where r3 and r4 define the outer portion of the heating. The eyewall diabatic heating,

Q̂ew, is defined as

Q̂ew

cp
= G

Q̂0

cp
, (2.33)

where Q̂0/cp = 3.2 K day−1 and the dimensionless geometric factor G is given by

G =
10 (250 km)2

(3r23 + 4r3r4 + 3r24)− (3r21 + 4r1r2 + 3r22)
. (2.34)

A discussion on deriving G is found in Musgrave et al. (2012). Table 2.1 contains the param-

eters used for (2.32) for three of the cases shown by Musgrave et al. (2012) with a vortex where

vm = 30 m s−1 and rm = 30 km (shown in Fig. 2.2). The response to the diabatic heating is shown

in Fig. 2.3. In all three cases, the integrated kinetic energy of the storm (not shown) increases.

However, the response of case H1 does not change the maximum tangential velocity. As the heat-

ing moves inward towards the region of high inertial stability, the maximum tangential velocity of

the tropical cyclone increases and is relocated to the region containing the heating.
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TABLE 2.1. The bounding radii, r1, r2, r3, r4, and the geometrical factor, G, used

by Musgrave et al. (2012) for their first three cases (H1 – H3). G is computed using

(2.34).

Case r1 (km) r2 (km) r3 (km) r4 (km) G

H1 40 45 55 60 41.67

H2 30 35 45 50 52.08

H3 20 25 35 40 69.44
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Radius (km)
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c p
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 6
 h

r−
1
)

FIG. 2.2. The diabatic forcing, Q̂/cp, for cases H1 – H3 based on the parameters

in Table 2.1. Case H1 is shown in blue, case H2 in red, and case H3 in green.

Slocum (2012) found one-dimensional balanced solutions of the geopotential tendency with

output from the Hurricane Weather Research and Forecasting model (HWRF) for the Atlantic

and Eastern Pacific ocean basins during 2011 (Gopalakrishnan and Coauthors 2011). For the

experiment, Slocum (2012) used data extracted at 700 hPa, a typical flight level of hurricane aircraft

reconnaissance. Since the HWRF model underwent mid-season changes, the sample used in the

experiment is limited to 15 named storms in the Atlantic (05L to 19L) and 10 Eastern Pacific

storms (06E to 13E). Fig. 2.4 depicts the response to the HWRF model diabatic heating based
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on the large scale condensation heating output. The case uses initial conditions from the 78-

hour HWRF forecast for Hurricane Irene on 1800 UTC 21 August 2011 with the 90-hour HWRF

forecast as verification. The case shows that the solver effectively simulates the change in intensity

predicted by the HWRF model.
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FIG. 2.3. The change in vortex structure due to diabatic heating. The blue curve

shows the response to the parameters for H1 shown in row 1 of Table 2.1, the red

curve shows the response to the parameters for H2 shown in row 2 of Table 2.1,

and the green curve shows the response to the parameters for H3 shown in row 3

of Table 2.1. The black curve is the initial profile used for the model with a vortex

where vm = 30 m s−1 and rm = 30 km.

While the response for this case in Hurricane Irene (2011) seems to indicate the one-dimensional

balanced solutions can explain the tangential velocity response, Fig. 2.5 shows that the balanced

solutions are unable to physically dissipate storms which results in overpredicting intensity. There

are a few cases where weak negative diabatic heating in the HWRF output results in a negative

tangential velocity tendency in otherwise dry regions. The cases in Fig. 2.5 that did dissipate the

tropical cyclone either responded to a small region of negative diabatic heating output by HWRF
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or other frictional effects neglected in the formulation of the one-dimensional balanced solutions.

This dissipation was less than 1 m s−1.

FIG. 2.4. Azimuthally averaged profiles of 700 hPa tangential velocity from the

78-hour HWRF forecast for Hurricane Irene on 1800 UTC 21 August 2011(blue),

relative vorticity (red), and diabatic heating (gray) taken from the 78-hour HWRF

forecast output. The profile of the 12-hour one-dimensional balanced solution re-

sponse is shown in solid green and the HWRF 90-hour forecast tangential velocity

is in dashed green.

FIG. 2.5. Normalized histograms of the change in intensity for the Atlantic (a) and

Eastern Pacific (b) 2011 Hurricane Season. The change in intensity is binned by 2

m s−1 from -10 to 10 m s−1. HWRF is in red and the geopotential tendency equation

response is in blue.
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Since it is possible that HWRF does not respond to the diabatic forcing in the same manner as

observed storms, the one-dimensional balanced solutions for the geopotential tendency are used

with the NOAA Advanced Microwave Sounding Unit (AMSU) rain rate product from the NESDIS

Operational Microwave Surface and Precipitation Products (Ferraro 1997; Ferraro et al. 2000)

along with aircraft reconnaissance winds processed using a similar method to Knaff et al. (2011).

Fig. 2.6 shows the maximum tangential velocity and radius of maximum winds for Hurricane Isaac

(2012) using the aircraft reconnaissance winds.
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FIG. 2.6. The maximum symmetrically averaged winds (red) and radius of maxi-

mum wind (blue) for the life of Hurricane Isaac (2012) taken from aircraft recon-

naissance data processed with the method of Knaff et al. (2011).

Fig. 2.7 shows that the 6-, 12-, 18-, and 24-hour predictions from the balanced solutions have a

low mean error and absolute error. However, as indicated by the error bars, the standard deviation

of all the cases is large so the figure does not show the full picture. Not shown is the change in tan-

gential velocity to the observed intensity change. This relationship shows a very poor correlation

and that persistence outperforms the one-dimemsional balanced solutions.
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FIG. 2.7. The absolute error (red) and mean error [bias] (blue) for the 6-, 12-,

18-, and 24-hour predictions finding the one-dimensional balanced solutions with

the NESDIS Operational Microwave Surface and Precipitation Products along with

aircraft reconnaissance winds for the life of Hurricane Isaac (2012).

While the method can capture the actual tangential velocity tendency for a few observed storms,

it shows similar issues are experienced with HWRF data. To compensate, several assumptions

made in formulating the method for finding one-dimensional solutions to geopotential tendency

must be relaxed.

2.5.2. TWO-DIMENSIONAL BALANCED SOLUTIONS

While the one-dimensional elliptic solver for the geopotential tendency equation provides us

with an analytical solution, it does have several limitations that manifest themselves during the ap-

plication of the solver to observed data. To remove some of the limitations, we switch to a succes-

sive over-relaxation technique. The successive over-relaxation technique is an iterative method for

solving the finite difference form of a partial differential equation. The successive over-relaxation

technique’s application to (2.11) is outlined in appendix A.3. A detailed discussion of how the

technique works is provided in Haltiner and Williams (1980) and Stoer and Bulirsch (1980).
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For the model, we use the domain 0 ≤ r ≤ 1200 km and 0 ≤ z ≤ 30 km with a grid spacing

∆r = 500 m and ∆z = 100 m. At the top boundary (z = zT ), we assume w = 0. While at the top

of the boundary layer (z = 0), we assume that the boundary layer pumping is by ψ(r, 0) = ψ0(r),

where ψ0(r) is a specified function.

ψ(r, 0) = ψ0(r), ψ(r, zT ) = 0, (2.35)

ψ(0, z) = 0, and (2.36)

∂ψ

∂r
= −ψ

ℓ
at r = rB. (2.37)

The specification of the lateral boundary condition (2.37) is less straightforward and is discussed

in detail in appendix A.2.

In this section, the static, A, and inertial, C, stabilities are no longer constant. In addition, the

baroclinicity, B, is non-zero. The stabilities are determined using equations (2.8) and (2.10) and

the baroclinicity using (2.9).

For this study, we will specify a modified Rankine vortex. The modified Rankine vortex takes

the form

v(r, z) =
1

2
ζ0(z)



















r 0 ≤ r ≤ rm(z)

rα+1
m (z)/rα rm(z) ≤ r <∞,

(2.38)

where

rm(z) =

(

f

f + ζ0(z)

)1/2

R0. (2.39)

α and R0 are specified constants, and ζ0(z) is a specified function. From the definition 1
2
fR2 =

rv + 1
2
fr2, it can be shown that R(rm(z), z) = R0, so the specification of R0 is equivalent to

the specification of the potential radius along the maximum wind in the (r, z)-plane. Fig. 2.8
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shows a plot of v(r, z) based on equations (2.38) and (2.39) using f = 5 × 10−5 s−1, R0 ≈ 192

km, and ζ0(z) as a cubic spline interpolation with ζ0(0) = 40f and ζ0(zT ) = −0.5f . v(r, z)

is also smoothed by applying the nine point local smoother described in appendix A.1 for 100

iterations. The vortex is smoothed to remove roughness in the tangential velocity profile near rm

and eliminate the discontinuity in relative vorticity. This gives a profile where rm(0) ≈ 30 km and

v(rm(0), 0) ≈ 30 m s−1.
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FIG. 2.8. A plot of the tangential velocity in the (r, z)-plane using f = 5 × 10−5

s−1 (contour), R0 ≈ 192 km (thick black line), and ζ0(z) as a cubic b-spline with

ζ0(0) = 40f and ζ0(zT ) = −0.5f . This gives v(rm(0), 0) = 30 m s−1.

While other specified tangential velocity profiles could be used without applying the filter, the

modified Rankine vortex provides us with the most flexibility in determining rm and the maximum

tangential velocity. The relative vorticity associated with (2.38) is

ζ(r, z) = ζ0(z)



















1 0 ≤ r ≤ rm(z)

1
2
(1− α)[rm(a)/r]

1+α rm(z) ≤ r <∞.

(2.40)
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As noted previously, there is a discontinuity of the relative vorticity at rm(z). The above equation

is not used to actually calculate the relative vorticity since we want to remove the discontinuity

through the nine point local smoother. Instead, after the tangential velocity profile is smoothed,

the relative vorticity is calculated through

ζ =
∂(rv)

r∂r
. (2.41)

To calculate the temperature field, T (r, z), we use an inward integration of the thermal wind

equation

g

T0

∂T

∂r
=

(

f +
2v

r

)

∂v

∂z
. (2.42)

The outer boundary is set to a modified version of the temperature profile from the TOGA/COARE

mean sounding (Lin and Johnson 1996). A modified version of the TOGA/COARE mean sound-

ing (Lin and Johnson 1996) is used to provide the vertical structure of temperature for calculating

the static stability. The TOGA/COARE mean sounding is modified so the static stability increases

uniformly with height until reaching the tropopause. While substantially changing the lapse rate,

the change allows for better performance when using a successive over-relaxation technique to find

the two-dimensional solutions. Fig. 2.9 shows a Skew-T Log-P thermodynamic diagram with the

TOGA/COARE mean sounding and the modified profile used here. Once the temperature profile

is computed, the necessary information is gained to calculate the coefficients A(r, z), B(r, z), and

C(r, z) [shown in Fig. 2.10].
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FIG. 2.9. The Skew-T Log-P thermodynamic diagram shows the TOGA/COARE

mean temperature sounding (Lin and Johnson 1996) (red dots) along with the mod-

ified sounding used with the successive over-relaxation iterative method (solid red

line). The modified sounding is plotted from 0 ≤ z ≤ 30 km, where z refers to

log-pressure height as defined in the text of section 2.2.
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FIG. 2.10. The static stability, baroclinicity, and inertial stability shown on the

(r, z)-plane for the domain 0 ≤ z ≤ 30 km and 0 ≤ r ≤ 100 km. A, B, and C are

calculated using equations (2.8)–(2.10). The thick black line represents R0 ≈ 192
km, the potential radius associated with the maximum tangential velocity.
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To specify the Q(r, z) term in (2.11), we assume that the diabatic heating is confined to the

troposphere and has the form of an outward sloping annular ring with smooth edges. The mathe-

matical form is Q(r, z) = 0 for z ≥ 2zmax, while for 0 ≤ z ≤ 2zmax the form is

Q(r, z) = Qmax sin
2

(

πz

2zmax

)















































































0 0 ≤ r ≤ r1(z),

S

(

r2(z)− r

r2(z)− r1(z)

)

r1(z) ≤ r ≤ r2(z),

1 r2(z) ≤ r ≤ r3(z),

S

(

r − r3(z)

r4(z)− r3(z)

)

r3(z) ≤ r ≤ r4(z),

0 r4(z) ≤ r <∞,

(2.43)

where S(s) = 1 − 3s2 + 2s3 is the cubic interpolating function, Qmax and zmax are specified con-

stants, and r1(z), r2(z), r3(z), r4(z) are specified functions. We chose the central eyewall region

to be 10 km wide and the two transition regions to be 5 km wide, so that

r2(z) = r1(z) + 5 km,

r3(z) = r1(z) + 15 km,

r4(z) = r1(z) + 20 km.

(2.44)

25



For the calculations shown here we have used the following five choices for the function r1(z):

r1(z) = rm(z) + 20 km (Case H1),

r1(z) = rm(z) + 15 km (Case H2),

r1(z) = rm(z) + 10 km (Case H3),

r1(z) = rm(z) + 5 km (Case H4),

r1(z) = rm(z) (Case H5).

(2.45)

The maximum eyewall diabatic heating, denoted by Qmax, is determined by imposing the con-

straint that the total diabatic heating at z = zmax = 7.5 km is fixed according to

2π

∫ r4(zmax)

r1(zmax)

Q(r, zmax)

cp
r dr = (6.0Kday−1) · π(250 km)2. (2.46)

For further discussion of this normalization technique, see Musgrave et al. (2012). Substituting

(2.43) into (2.46), and performing the integration, we obtain

Qmax

cp
= G ·

(

6.0Kday−1
)

, (2.47)

where the dimensionless geometrical factor G is given by

G =
10 (250 km)2

(3r23 + 4r3r4 + 3r24)zmax
− (3r21 + 4r1r2 + 3r22)zmax

, (2.48)

with the subscript zmax indicating the functions in parentheses are to be evaluated at z = zmax. Note

that G = 1 in the special case r1 = r2 = 0 and r3 = r4 = 250 km, in which case the peak value of

the diabatic heating is Qmax/cp = 6.0Kday−1, a value typical of western Pacific convective cloud
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cluster regions (Yanai et al. 1973). Plots of Q(r, z)/cp, computed using the parameters calculated

through (2.45), are shown in Fig. 2.11 at Qmax.
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FIG. 2.11. The figure shows the region of strong diabatic heating, Qmax/cp, for the

five cases described in equations (2.44) and (2.45). The magenta curve is case H1,

the cyan curve is case H2, the red curve is case H3, the green curve is case H4, and

the blue curve is case H5.

In all five cases, the maximum diabatic heating lies outside the radius of maximum wind. In

case H5, a small amount of the diabatic heating falls inside the radius of maximum wind. Musgrave

et al. (2012) show that the tangential velocity tendency response is unrealistic when the diabatic

heating is in the region of high inertial stability so this case is not assessed in this work. Figs.

2.12–2.16 show Q/cp, ψ, u, w, ∂v/∂t, and ∂T/∂t on the (r, z)-plane for cases H1–H5. Fig. 2.17

shows the final tangential velocity for cases H1–H5 at z = 2 km.
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a)

c)

b)

d)

e) f)

FIG. 2.12. Changes in vortex structure from the initial tangential velocity shown in

Fig. 2.8 for the (r, z)-plane for case H1. The solutions assume the diabatic heating

is applied for 6 hours. The upper left panel, a), is the diabatic heating; upper right

panel, b), is ψ; middle left panel, c), is u; middle right panel, d), is w; lower left

panel, e), is ∂v/∂t; and lower right panel, f), is ∂T/∂t. Each panel has a thick

black line representing R0 ≈ 192 km, the potential radius surface associated with

the maximum tangential velocity. Only the lower half of the model domain is shown

for 0 ≤ r ≤ 100 km here and in the following four figures.
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a)

c)

b)

d)

e) f)

FIG. 2.13. Same as 2.12, except changes in vortex structure are for case H2.
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a)

c)

b)

d)

e) f)

FIG. 2.14. Same as 2.12, except changes in vortex structure are for case H3.
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a)

c)

b)

d)

e) f)

FIG. 2.15. Same as 2.12, except changes in vortex structure are for case H4.
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a)

c)

b)

d)

e) f)

FIG. 2.16. Same as 2.12, except changes in vortex structure are for case H5.
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FIG. 2.17. The final tangential velocity at z = 2 km after applying the diabatic

forcing for 6 hr. The black curve is the initial tangential velocity profile. The

magenta curve is case H1, the cyan curve is case H2, the red curve is case H3, the

green curve is case H4, and the blue curve is case H5.

2.6. DISCUSSION

The results from section 2.5 show the applications of the geopotential tendency and trans-

verse circulation equations provide general concepts that can be applied to forecasting observed

storms. The one-dimensional solver based on Musgrave et al. (2012) is applied to observed trop-

ical cyclones. However, the limitations of the one-dimensional solutions are apparent. The one-

dimensional solutions lack the ability to dissipate storms because of the exclusion of friction and

boundary layer processes. In addition, the one-dimensional solutions have a constant static stabil-

ity and zero baroclinicity. The two-dimensional solutions attempt to relax a few of the assumptions

to improve the performance. The results show differences in the response to the diabatic forcing.

The tendencies do not become as unrealistic as those seen in the one-dimensional solutions as

the heating nears the region of high inertial stability. While this is more realistic than the one-

dimensional solutions, at zmax the maximum tangential velocity shifts to the region of maximum
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diabatic heating for the two-dimensional solutions. For cases H1–H3, it is more likely that the

heating would not shift the radius of maximum wind. The two-dimensional solutions also capture

some other interesting structural features of the tropical cyclone. Figs. 2.12–2.16 show adiabatic

cooling above and below the region of strong diabatic heating (lower right panels) due to air still

moving upward outside the region of heating. Another prominent feature is the acceleration of the

tangential flow, positive (∂v/∂t), near the stratosphere (lower left panels). Cyclonic motion is typ-

ically observed near the center of a hurricane as the vortex extends into the stratosphere. However,

in the results shown here, this region does not extend far past the upper troposphere.

The two-dimensional solutions should improve the ability to predict the response to diabatic

heating. However, observationally based runs are not included here because several issues related

to using the rainfall rates need addressing. Taking the microwave satellite rainfall rates and com-

puting the diabatic heating along angular momentum surfaces are difficult without understanding

the vertical structure of the tropical cyclone. Not only does determining the diabatic heating from

the microwave satellite rainfall rates pose an issue for B 6= 0, but also the rainfall rates contain

stratiform rain. When the stratiform rain is in the region of high inertial stability, the tangential

velocity tendency response is too large to be realistic. However, the best method for separating the

stratiform rainfall from the convective rainfall is not clear. Despite this limitation, the models still

provide powerful insight into how tropical cyclones intensify and aid in quantifying how and when

rapid intensification will occur.

34



CHAPTER 3

SHOCK-LIKE STRUCTURES IN THE TROPICAL CYCLONE BOUNDARY LAYER

3.1. INTRODUCTION

Emanuel (2004), Bryan and Rotunno (2009a,b), and Bryan (2012) have stated that the drag

coefficient and horizontal diffusion in the boundary layer of the tropical cyclone play crucial roles

in the potential intensity of tropical cyclones, especially strong storms (category 4–5). However,

these models are unable to produce sharp gradients in tangential and radial momentum fields.

Williams et al. (2013) examine discontinuities in the wind field associated with Hurricane Hugo

(1989) to further explain the results seen by previous work.

On 15 September 1989, the NOAA aircraft with designation N42RF made a radial penetration

at 434 m ASL into Hurricane Hugo at the location indicated by the cyan arrow seen in Fig. 3.1. The

red curves in Fig. 3.2 show the aircraft data from the 434 m ASL radial penetration. A complete

account of this flight is given in Marks et al. (2008) and Zhang et al. (2011). As noted by Williams

et al. (2013), during the aircraft’s inbound flight, the tangential velocity dropped by 60 m s−1 from

r = 10 km to r = 7 km, the radial velocity changed from 25 m s−1 inward to 10 m s−1 outward, and

the strongest updraft exceeded 20 m s−1. On the outbound flight, the extreme jumps in tangential,

radial, and vertical velocities were not observed at 2682 m.

Instead of attributing the extreme boundary layer velocity structure to moist convective dynam-

ics, Williams et al. (2013) present the possibility that the structures can be replicated by non-linear

effects that can be represented by a simple dry hurricane slab boundary layer model. They inter-

pret the curves as axisymmetric with the blue curves representing the gradient balanced flow above

the boundary layer and the red curves as the flow contained in the boundary layer. In comparing

the results produced by the primitive equation slab boundary layer model to the aircraft data from
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Hurricane Hugo (1989), the authors state that a boundary layer “shock-like” structure develops as

a result of the dry dynamics. A shock is a mathematical discontinuity that develops as a result of

non-linear effects deforming a smooth initial condition. A more detailed explanation of shocks

and shock formation is provided in appendix B.
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Sep 11

Sep 22

Sep 13

N42RF

FIG. 3.1. National Hurricane Center track and intensity information for Hurricane

Hugo (1989). The line depicts the track of the hurricane. The red line segments

indicate where the storm is a major hurricane, category 3 and above; the yellow line

segments indicate where the storm is a hurricane, category 1 and 2; the green line

segments indicate tropical storm strength; the blue line segments indicate tropical

depression. The dots indicate the time. Black dots represent the position at 00

UTC and are accompanied by a date label. White dots represent the position of the

storm at 12 UTC. The cyan arrow represents the time and location for the radial

penetration by the NOAA WP-3D (N42RF) aircraft.
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FIG. 3.2. NOAA WP-3D (N42RF) aircraft radial flight leg data for Hurricane

Hugo on 15 September 1989. The red curves show the 434 m ASL inbound, south-

west quadrant and the blue curves show the 2682 m ASL outbound, northeast quad-

rant. The solid curves in the upper panel show the tangential component of the wind

and the dotted curves show the radial component of the wind. In the lower panel,

the solid curves show the vertical component. The profiles are based on 1 second

flight data and are in m s−1.

3.2. PRIMITIVE EQUATION SLAB BOUNDARY LAYER MODEL

Williams et al. (2013) present a primitive equation slab boundary layer model that assumes ax-

isymmetric motions of an incompressible fluid on an f -plane. The governing system of differential

equations for the boundary layer variables of u(r, t), v(r, t), and w(r, t) take the form

∂u

∂t
= −u∂u

∂r
− w−

u

h
+

(

f +
v + vgr
r

)

(v − vgr)− cDU
u

h
+K

∂

∂r

(

∂(ru)

r∂r

)

, (3.1)
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∂v

∂t
= w−

(

vgr − v

h

)

−
(

f +
∂(rv)

r∂r

)

u− cDU
v

h
+K

∂

∂r

(

∂(rv)

r∂r

)

, (3.2)

w = −h∂(ru)
r∂r

and w− =
1

2
(|w| − w) , (3.3)

where

U = 0.78 (u2 + v2)
1

2 (3.4)

is the wind speed at 10 m height, f is the constant Coriolis parameter, and K is the constant

horizontal diffusivity. Equation (3.4) comes from the analysis of dropwindsonde data by Powell

et al. (2003). The drag coefficient, cD, is assumed to depend on the wind speed U through the

formula

cD = 10−3



















2.70/U + 0.142 + 0.0764U if U ≤ 25m s−1

2.16 + 0.5406
{

1− exp
[

− (U−25)
7.5

]}

if U ≥ 25m s−1.

(3.5)

Equation (3.5) is used by Williams et al. (2013) (see their Fig. 2 and corresponding text). The

boundary conditions for (3.1) and (3.2) are

u = 0

v = 0















at r = 0, (3.6)

∂(ru)

∂r
= 0

∂(rv)

∂r
= 0















at r = b, (3.7)

where b is the radius of the outer boundary. The initial conditions are

u(r, 0) = u0(r) and v(r, 0) = v0(r), (3.8)

where u0(r) and v0(r) are specified functions.
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3.3. ANALYTICAL SOLUTIONS TO THE SLAB BOUNDARY LAYER

To understand further the numerical solutions presented by Williams et al. (2013) and exten-

sions of this work to concentric eyewalls, it is useful to understand the formation of shocks through

examining the characteristic form of the hyperbolic system. The following models present the so-

lutions of (3.1)–(3.8) in a simple characteristic form. These analytical models aid in understanding

the formation of the discontinuities in the radial and tangential flows within the boundary layer and

the resulting singularities in vertical velocity and vorticity.

The two analytical models which are expressed by (3.9)–(3.10) and (3.38)–(3.39) differ from

(3.1) and (3.2) that are used in the numerical results presented by Williams et al. (2013) because

the numerical results begin with u0(r) = 0. In the numerical results, u develops due to the forcing

induced by the sub- and super-gradient flow (v − vgr), seen in the fourth term of (3.1). In the

analytical solutions presented in this section, the shock develops as a result of the radial velocity

having a nonzero initial condition and not the forcing.

3.3.1. ANALYTICAL MODEL I

Shocks form in the u and v fields in the hurricane boundary layer due to the u(∂u/∂r) and u[f+

(∂v/∂r)+(v/r)] terms in equations (3.1) and (3.2). The (v−vgr) serves as the forcing mechanism

for (∂u/∂t). The frictional terms serve to damp u and v and the diffusion terms control the structure

near the shock. To understand shock formation, we make the following approximations to (3.1)

and (3.2). We neglect the horizontal diffusion terms, w− terms, the surface drag terms, and the

(v − vgr) forcing term. The equations simplify to

∂u

∂t
+ u

∂u

∂r
= 0, (3.9)
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∂v

∂t
+ u

(

f +
∂v

∂r
+
v

r

)

= 0. (3.10)

We can write equations (3.9) and (3.10) in the following form

du

dt
= 0, (3.11)

d
(

rv + 1
2
fr2
)

dt
= 0, (3.12)

where (d/dt) = (∂/∂t) + u(∂/∂r). Integration of equations (3.11) and (3.12) using the initial

conditions given in (3.8) results in the following solutions

u(r, t) = u0(r̂), (3.13)

rv(r, t) = r̂v0(r̂) +
1

2
f(r̂2 − r2), (3.14)

where the characteristics r̂(r, t) are given implicitly by

r = r̂ + tu0(r̂). (3.15)

Equation (3.15) can be obtained through integrating u(r, t) where dr/dt = u. For a given r̂ in

equation (3.15), a characteristic is defined in (r, t). Along this characteristic, this value of u(r, t)

is fixed, as shown by (3.13).

Unlike the system of equations for the slab boundary layer model presented at the beginning of

section 3.2, Analytical Model I allows us to develop an equation for the time of shock formation

and the radius of shock formation. To derive these equations, we must first understand where the
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derivatives (∂u/∂r) and (∂v/∂r) become infinite. Taking (∂/∂t) and (∂/∂r) of (3.15) results in

−∂r̂
∂t

=
u0(r̂)

1 + tu′0(r̂)
,

∂r̂

∂r
=

1

1 + tu′0(r̂)
, (3.16)

which means that (∂/∂t) and u(∂/∂r) of (3.13) are

∂u

∂t
= u′0(r̂)

∂r̂

∂t
= −u0(r̂)u

′

0(r̂)

1 + tu′0(r̂)
,

u
∂u

∂r
= u0(r̂)u

′

0(r̂)
∂r̂

∂r
=
u0(r̂)u

′

0(r̂)

1 + tu′0(r̂)
, (3.17)

where u′0 is the derivative of the initial radial velocity profile, u0. Equation (3.17) shows that

(3.13) and (3.15) constitute a solution of (3.9). The same procedure can be used to show that

(3.14) and (3.15) constitute a solution of (3.10). The solutions of (3.9) and (3.10) become mul-

tivalued. Because of this, a shock-capturing or -tracking procedure is required after the time of

shock formation, ts. To compute ts for Analytical Model I, we use the denominators found on the

right-hand side of (3.17) to show that the derivatives (∂u/∂t) and (∂u/∂r) become infinite when

tu′0(r̂) = −1. (3.18)

Equation (3.18) shows the relationship between time and a specific characteristic curve defined by

r̂. If we denote r̂s as the characteristic that corresponds to the minimum value of u′0(r̂), we can

rewrite (3.18) to define the time of shock formation by setting r̂ = r̂s, which yields

ts = − 1

u′(r̂s)
, (3.19)
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and the radius of shock formation as

rs = r̂s −
u0(r̂s)

u′0(r̂s)
. (3.20)

From the solutions (3.13) and (3.14), we can compute the relative vorticity and divergence. For

relative vorticity, we differentiate (3.14), which yields

ζ(r, t) =
[f + ζ0(r̂)] (r̂/r)

1 + tu′0(r̂)
− f. (3.21)

Likewise, differentiating (3.13) yields the following for the divergence

δ(r, t) =
u′0(r̂)

1 + tu′0(r̂)
+
u′0
r
. (3.22)

Using the divergence, we can define the boundary layer pumping as w(r, t) = −hδ(r, t), which

yields

w(r, t) = −h
(

u′0(r̂)

1 + tu′0(r̂)
+
u′0
r

)

. (3.23)

From (3.21)–(3.23), we can see that the denominators contain the factor [1 + tu′0(r̂)]. This implies

that the relative vorticity, divergence, and boundary layer pumping become infinite at the same

time and location.

To analyze the above equation, we consider the following initial conditions

u0(r) = um

(

(n + 1)(r/a)n

1 + n(r/a)n+1

)

, (3.24)

v0(r) = vm

(

(n+ 1)(r/a)n

1 + n(r/a)n+1

)

, (3.25)
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where the constants a, n, um, and vm specify the radial extent, shape parameter, and strength of the

initial radial and tangential flow. For the results shown here, n = 3 in (3.24) and n = 1 in (3.25).

The initial conditions for (3.24) and (3.25) are shown in Fig. 3.3 in a dimensionless form.
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a ζ0(r)/(4 vmax)

FIG. 3.3. The two panels depict the initial conditions for Analytical Model I in a

dimensionless form. The top panel shows the dimensionless radial velocity com-

puted from (3.24) in the solid line and the first derivative of the radial velocity

computed from (3.26) in the dashed line. n = 3 for (3.24) and (3.26). The bottom

panel shows the dimensionless tangential velocity profile computed from (3.25) in

the solid line and the relative vorticity computed from (3.27) in the dashed line.

n = 1 for (3.25) and (3.27).

From (3.24), we can define the derivative of the initial radial flow as

u′0(r) =
um
a

(

n(n+ 1)(r/a)n−1 [1− (r/a)n+1]

[1 + n(r/a)n+1]2

)

, (3.26)

and through (3.25), we obtain the initial relative vorticity

ζ0(r) =
vm
a

(

(n+ 1)2(r/a)n−1

[1 + n(r/a)n+1]2

)

. (3.27)
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Recall that the radius and time of shock formation are based on the minimum value of u′0(r̂).

In the general case, the time of shock formation for Analytical Model I is

ts = − 1

[u′0(r̂)]min
. (3.28)

In the case where n in the initial radial velocity profile, (3.24), is 3, we find that (3.20) is

r̂s =

(

2−
√
33

3

)1/4

a ≈ 0.5402a (3.29)

so that, from (3.26),

u′0(r̂s) ≈ 2.032
um
a
. (3.30)

From (3.19), the time of shock formation can now be defined as

ts ≈ − a

2.032um
(3.31)

and the radius of shock formation as

rs ≈ 0.5426 r̂s ≈ 0.2931 a. (3.32)

The last two columns of Table 3.1 list the values of ts and rs for seven different vortex strengths

given in the first column and the values of a, um, and vm. Note that the values of ts and rs are

only valid for the example where n is 3 for the radial flow, (3.24). For hurricane strength vortices

(tropical cyclones with maximum velocities greater than or equal to 32 m s−1), the time of shock

formation is generally less than 1 hour. With these rapid shock formation times for strong vortices,

it is possible that if the hurricane eyewall is disrupted, the hurricane eyewall can rapidly recover.
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TABLE 3.1. The surface wind speed U , the radius of maximum inflow a, the

maximum inflow velocity um, the maximum tangential velocity vm, the shock

formation time ts, and the radius of shock formation rs for seven selected vortices.

The values of ts and rs have been computed from (3.31) and (3.32).

U (m s−1) a (km) um (m s−1) vm (m s−1) ts (hours) rs (km)

2.5 300 0.5 3.2 82.0 87.9

5 200 1.0 6.3 27.3 58.6

10 150 2.0 12.7 10.2 44.0

20 100 4.0 25.3 3.42 29.3

30 60 6.0 38.0 1.37 17.6

40 40 8.0 50.7 0.68 11.7

50 30 10.0 63.3 0.41 8.79

Staying with the initial conditions, (3.24) and (3.25) where n equals 3 and 1 respectively, the

solutions (3.13) and (3.14) take the form

u(r, t) = um

(

4(r̂/a)3

1 + 3(r̂/a)4

)

, (3.33)

rv(r, t) = r̂vm

(

2(r̂/a)

1 + (r̂/a)2

)

+
1

2
f(r̂2 − r2), (3.34)

where the characteristic curves are defined by

r = r̂ + umt

(

4(r̂/a)3

1 + 3(r̂/a)4

)

. (3.35)

From (3.21), the relative vorticity becomes

ζ(r, t) =

(

f +
4vm

a [1 + (r̂/a)2]2

)(

(r̂/r)

1 + tu′0(r̂)

)

− f, (3.36)

while, through (3.23), the boundary layer pumping takes the form

w(r, t) =

(

4hum(r̂/a)
2

a[1 + 3(r̂/a)4]

)(

3[1− (r̂/a)4]

[1 + tu′0(r̂)][1 + 3(r̂/a)4]
+
r̂

r

)

. (3.37)
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The solutions (3.33)–(3.35) are plotted in the two panels of Fig. 3.4 for the particular initial

conditions given in the fifth line of Table 3.1. The plots cover the radial interval 0 ≤ r ≤ 100 km

and the time interval 0 ≤ t ≤ ts, where ts = 1.37 hr is the shock formation time for this particular

initial condition. Fig. 3.5 provides another view of the analytical solution for this model. In the

figure, four panels display the radial profiles of u, v, w, and ζ where t = 0 hr is shown in blue

and t = 1.37 hr is shown in red. Also shown in Fig. 3.5 are fluid particle displacements, black

curves, for particles that are equally spaced at the initial time. At t = ts, the u and v fields become

discontinuous at r = 17.6 km, while the w and ζ fields become singular.
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FIG. 3.4. The two panels show the analytical solutions for u(r, t) and v(r, t), as

well as the characteristic curves, in the single eyewall case. These solutions are

for the initial conditions (3.24) and (3.25) with the parameters from U = 30 m s−1

found in Table 3.1. The plots cover the time interval 0 ≤ t ≤ ts, where ts = 1.37
hr is the shock formation time for this specific case.
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FIG. 3.5. The four panels display the radial profiles of u, v, w, ζ respectively at

t = 0 (blue) and t = ts = 1.37 hr (red). In the u and v panels, black curves show

fluid particle displacements for particles that are equally spaced at the initial time.

At t = ts, the u and v fields become discontinuous at r = 17.6 km, while the w and

ζ fields become singular at r = 17.6 km.

3.3.2. ANALYTICAL MODEL II

We now consider a second analytical model that adds surface drag effects. Linearizing the

surface drag terms in (3.1) and (3.2), the radial and tangential momentum equations, (3.9) and

(3.10), become

∂u

∂t
+ u

∂u

∂r
= −u

τ
, (3.38)

∂v

∂t
+ u

(

f +
∂v

∂r
+
v

r

)

= −v
τ
, (3.39)

where τ = h/(cDU) is the constant damping time scale. Some typical values of τ are given in

Table 3.2 in the third column. These values are computed using a constant depth, h = 1000 m.
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TABLE 3.2. The surface wind speed U , the drag coefficient times U , the character-

istic damping time τ = h/(cDU), the radius of maximum inflow a, the maximum

inflow velocity um, the maximum tangential velocity vm, and the shock formation

time ts for seven selected vortices. The values of ts are computed from (3.54). rs
is not included in this table. As discussed in the text for (3.55), the values of rs for

Analytical Model I and Analytical Model II are equivalent.

U (m s−1) cDU (cm s−1) τ (hours) a (km) um (m s−1) vm (m s−1) ts (hours)

2.5 0.353 78.6 300 0.5 3.2 No Shock

5 0.532 52.2 200 1.0 6.3 38.7

10 1.18 23.6 150 2.0 12.7 13.4

20 3.61 7.69 100 4.0 25.3 4.52

30 7.27 3.82 60 6.0 38.0 1.69

40 10.51 2.64 40 8.0 50.7 0.791

50 13.41 2.07 30 10.0 63.3 0.457

The solutions to (3.38) and (3.39) can be obtained through writing them in the following form

d

dt

(

uet/τ
)

= 0, (3.40)

d

dt

(

rvet/τ
)

= −fruet/τ . (3.41)

Through integration and use of the initial conditions, the solutions are

u(r, t) = u0(r̂)e
−t/τ , (3.42)

rv(r, t) =
{

r̂v0(r̂)− f
[

r̂t+ u0(r̂)τ(t− t̂)
]

u0(r̂)
}

e−t/τ , (3.43)

where the characteristics r̂(r, t) are given implicitly by

r = r̂ + t̂u0(r̂), (3.44)

where t̂ is defined by

t̂ = τ
(

1− e−t/τ
)

. (3.45)
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For a given r̂, (3.44) defines a curved characteristic in (r, t), along which u(r, t) exponentially

damps according to (3.42). v(r, t) also varies along the characteristic but not in the same manner

as u(r, t). v(r, t) varies according to the factor (r̂/r)e−t/τ . Since (r̂/r) can increase faster than

e−t/τ , v will increase along some characteristics.

As in section 3.3.1, we will check the validity of (3.42) and (3.43) prior to defining the time

and radius of shock formation by using (3.44) in combination with equations (3.40) and (3.41).

We can also represent the solution (3.43) by eliminating (3.44) to show that

rv(r, t) =

{

r̂v0(r̂) + f

[

r̂
t

t̂
+ (r − r̂)

τ(t− t̂)

t̂2

]

(r̂ − r)

}

e−t/τ . (3.46)

Equation (3.46) is analogous to the frictionless angular momentum form (3.14) presented with

Analytical Model I. When (t/τ) << 1, we see that (t/t̂) ≈ 1 and τ(t− t̂)/t̂2 ≈ 1/2 which means

that (3.46) reduces to (3.14). We see that the derivatives (∂/∂t) and (∂/∂r) of (3.44) yield

−∂r̂
∂t

=
u0(r̂)e

−t/τ

1 + t̂u′0(r̂)
,

∂r̂

∂r
=

1

1 + t̂u′0(r̂)
. (3.47)

Again, similar to the steps taken to go from (3.16) to (3.17), we take the (∂/∂t+ 1/τ) and (∂/∂r)

of (3.42) to yield

∂u

∂t
+
u

τ
= e−t/τu′0(r̂)

∂r̂

∂t
= −e

−2t/τu0(r̂)u
′

0(r̂)

1 + t̂u′0(r̂)
,

u
∂u

∂r
= e−2t/τu0(r̂)u

′

0(r̂)
∂r̂

∂r
=
e−2t/τu0(r̂u

′

0(r̂)

1 + t̂u′0(r̂)
. (3.48)
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To compute the time of shock formation, we can take the denominators on the right-hand side of

(3.48) to show that the derivatives of (∂u/∂t) and (∂u/∂r) become infinite when

t̂u′0(r̂) = −1 (3.49)

along one or more of the characteristics. Note that (3.49) is nearly identical to (3.18) with the

exception that t is replaced by t̂. Unlike (3.18), t̂ is restricted to the range 0 ≤ t̂ < τ . This means

that it is possible that t̂ does not become large enough for a shock to form. More specifically, a

shock can form if and only if τ [u′0(r̂)]min < −1. From this condition, if the initial radial velocity

profile has a large enough slope, the solution will become multivalued. If we define r̂s as the

characteristic curve that the shock originates along as the location of [u′0(r̂)]min, then we can define

the time of shock formation, from equations (3.45) and (3.49), as

ts = −τ ln
(

1 +
1

τu′0(r̂s)

)

, (3.50)

and the radius of shock formation, determined from (3.44) and (3.49), as

rs = r̂s −
u0(r̂s)

u′0(r̂s)
. (3.51)

In assessing equations (3.50) and (3.51), we see that ts is dependent upon the damping time scale

τ . However, rs is independent of τ . In comparing Analytical Models I and II, the values of rs will

be the same for the two models, but the ts will differ. For shocks in hurricanes, u0(r̂s) < 0 and

u′0(r̂s) < 0; therefore, the shock forms inside r̂s.
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From the solutions of u and v, we can compute the relative vorticity through differentiation to

yield

ζ(r, t) =

(

r̂

r

∂r̂

∂r

)

e−t/τ

{

ζ0(r̂)− f

[

tδ0(r̂) +
2τ 2u0(r̂)u

′

0(r̂)

r̂

(

e−t/τ − 1 +
t

τ

)]}

, (3.52)

where ζ0(r̂) is the initial relative vorticity and δ0(r̂) is the initial divergence. The boundary layer

pumping is

w(r, t) = −he−t/τ

(

∂r̂

∂r
u′0(r̂) +

u0(r̂)

r

)

. (3.53)

As in Analytical Model I, we can see that the boundary layer pumping and the relative vorticity

become infinite at the same time and location.

Using the initial conditions given in equations (3.24) and (3.25) with n = 3 and n = 1 re-

spectively (this specific set of initial conditions is depicted in Fig. 3.3), we can show that (3.50)

becomes

ts ≈ −τ ln
(

1 +
a

2.032τum

)

(3.54)

and (3.51) becomes

rs ≈ 0.5426r̂s ≈ 0.2931a. (3.55)

Table 3.2 contains values of ts and rs for seven different vortex strengths given in the first column.

Note that the last column in Table 3.2 is the same as Table 3.1 with the exception of U = 2.5 m s−1.

The weakest vortex in Table 3.2 does not form a shock because the surface drag effects prevent the

discontinuities in u and v from developing. A storm with the initial conditions given in equations

(3.24) and (3.25) must have a U that exceeds 2.66 m s−1 assuming a = 300 km.

Fig. 3.6 shows contours of shock formation time. The ordinate is the boundary layer wind

speed that can be used to determine the strength of the tropical cyclone, U . The abscissa is the
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radial advection time which is defined by the radius of maximum wind, a, divided by the maximum

radial velocity, um. More intense storms are located near the upper left corner of the plot, while

weak tropical storms are in the lower right corner of the plot. The plot suggests that shocks will

develop over long periods of time in tropical storms but as storms intensify, the shocks develop

rapidly. However, the threshold for shock development is small based on the radial advection time

associated with strong tropical cyclones. Unlike Analytical Model I, Analytical Model II seems to

suggest that, while shocks develop rapidly in strong cyclones, it is possible the shock may never

reform if disrupted because of the small threshold. This results in the decay of the eyewall when

the radial advection time increases. Landfall is one possible example of a disruption, which would

cause the shock to not develop.

No Shock

Formation

FIG. 3.6. The figure shows the analytical solutions for ts computed from (3.50),

with the initial conditions given in equations (3.24) and (3.25), as a function of

the wind speed at 10 m, U , and radial advection time, a/um. ts is contoured in a

non-uniform interval to highlight features at short shock formation times.
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3.3.2.1. SINGLE EYEWALL CASE

We now assess Analytical Model II for a single eyewall case. For the given initial conditions

in (3.24) and (3.25), (3.42) and (3.46) take the form

u(r, t) = um

(

4(r̂/a)3e−t/τ

1 + 3(r̂/a)4

)

, (3.56)

v(r, t) = vm

(

2(r̂/a)(r̂/r)e−tτ

1 + (r̂/a)2

)

, (3.57)

where characteristic curves are defined by

r = r̂ + umt̂

(

4(r̂/a)3

1 + 3(r̂/a)4

)

. (3.58)

Using (3.52), the relative vorticity takes the form

ζ(r, t) =

(

4vm
a[1 + (r̂/a)2]2

)(

(r̂/r)e−tτ

1 + t̂u′0(r̂)

)

, (3.59)

while, using (3.53), the boundary layer pumping takes the form

w(r, t) =

(

4hume
−t/τ (r̂/a)2

a[1 + 3(r̂/a)4]

)(

3[1− (r̂/a)4]

[1 + t̂u′0(r̂)][1 + 3(r̂/a)4]
+
r̂

r

)

. (3.60)

The solutions for u(r, t), v(r, t), r̂(r, t), as given by (3.56), (3.57), and (3.58), are plotted in the

two panels of Fig. 3.7 for the particular initial condition given in the fifth row in Table 3.2. The

plot covers the radial interval 0 ≤ r ≤ 100 km and the time interval 0 ≤ t ≤ ts, where ts = 1.69

hr is the shock formation time for this particular initial condition.
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FIG. 3.7. The two panels show the analytical solutions for u(r, t) and v(r, t), as

well as the characteristic curves, in the single eyewall case. These solutions are

for the initial conditions (3.24) and (3.25) with the parameters from U = 30 m s−1

found in Table 3.2. The plots cover the time interval 0 ≤ t ≤ ts, where ts = 1.69
hr is the shock formation time for this specific case.

Another view of this analytical solution is given in Fig. 3.8, with the four panels displaying the

radial profiles (at t = 0 in blue and at t = ts in red) of u, v, w, ζ . Also shown by the black curves

in the top two panels are fluid particle displacements for particles that are equally spaced at the

initial time. At t = ts, the u and v fields become discontinuous at r = 17.6 km, while the w and ζ

fields become singular at r = 17.6 km.
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FIG. 3.8. The four panels display the radial profiles of u, v, w, ζ respectively at

t = 0 (blue) and t = ts = 1.69 hr (red). In the u and v panels, black curves show

fluid particle displacements for particles that are equally spaced at the initial time.

At t = ts, the u and v fields become discontinuous at r = 17.6 km, while the w and

ζ fields become singular at r = 17.6 km.

3.3.2.2. DOUBLE EYEWALL CASE

In recent years, there has been remarkable success in the numerical simulation of secondary

eyewall formation and concentric eyewall cycles using three-dimensional models (Houze et al.

2007; Terwey and Montgomery 2008; Wang 2008a, 2009; Zhou and Wang 2009; Judt and Chen

2010; Abarca and Corbosiero 2011; Martinez et al. 2011; Rozoff et al. 2012; Wu et al. 2012;

Huang et al. 2012; Menelaou et al. 2012; Lee and Chen 2012; Chen and Zhang 2013; Abarca

and Montgomery 2013; Wang et al. 2013). These simulations, although run at larger horizontal

grid spacing than the present axisymmetric slab model, can be interpreted as demonstrating the

importance of the boundary layer shock phenomenon. One illuminating simulation by Rozoff et al.
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(2012) shows that the destruction of the inner eyewall is closely associated with the development

of a secondary eyewall shock at a larger radius (see their Fig. 2d). Simulations such as theirs

are supportive of the notion that the fundamental interaction between concentric eyewalls occurs

through the boundary layer and takes the form of a control and an ultimate destruction of the inner

eyewall by the outer eyewall boundary layer shock.

In order to understand better the formation of concentric eyewalls, we now consider an example

in which the initial condition leads to double shocks. In this second example, the initial radial and

tangential winds are given by

u0(r) = − 4u1(r/a1)
3

1 + 3(r/a1)4
− 40u2(r/a2)

39

1 + 39(r/a2)40
, (3.61)

v0(r) =
2v1(r/a1)

1 + (r/a1)2
+

40v2(r/a2)
39

1 + 39(r/a2)40
, (3.62)

where the constants u1, v1, a1, u2, v2, a2 determine the strength and location of the initial inner

and outer eyewall flows (shown in Fig. 3.9).
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FIG. 3.9. The schematic shows two diagrams that depict the initial conditions for a

double eyewall case in a dimensionless form. The top panel shows the dimension-

less radial velocity computed from (3.61) as the solid line and the first derivative

of the radial velocity computed from (3.63) in the dashed line. The bottom panel

shows the dimensionless tangential velocity profile computed from (3.62) as the

solid line and the relative vorticity computed from (3.64) in the dashed line.

The derivative of (3.40) is

u′0(r) = −12u1
a1

(

(r/a1)
2[1− (r/a1)

4]

[1 + 3(r/a1)4]2

)

− 1560u2
a2

(

(r/a2)
38[1− (r/a2)

40]

[1 + 39(r/a2)40]2

)

, (3.63)

while, from differentiation of (3.41), the initial vorticity is

ζ0(r) =
4v1

a1[1 + (r/a1)2]2
+

1600v2(r/a2)
38

a2[1 + 39(r/a2)40]2
. (3.64)

This initial condition is similar to the single eyewall case except that there are secondary peaks

in the tangential and radial flows. We have chosen u1 = 6 m s−1, v1 = 38 m s−1, a1 = 60 km,

u1 = 1.2 m s−1, v1 = 8 m s−1, a2 = 90 km.
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The analytical solutions for this double eyewall example are simply obtained through substi-

tuting (3.61)–(3.64) into (3.42)–(3.44) and (3.52)–(3.53). These solutions are shown in Figs. 3.10

and 3.11. As in the single eyewall case, an inner shock develops at r = 17.6 km and t = 1.69 hr.

In addition, an outer shock has nearly developed by t = 1.69 hr. Because u0(r̂s)/u
′

0(r̂s) is larger

for the developing outer shock, the inward radial shift (r̂s− rs) predicted by (3.44) is larger for the

developing outer shock, ≈ 31 km, than for the inner shock, ≈ 18 km.
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FIG. 3.10. The two panels show the analytical solutions for u(r, t) and v(r, t), as

well as the characteristic curves, in the double eyewall case. These solutions are for

the initial conditions (3.61) and (3.62) with the parameters from the text. The plots

cover the time interval 0 ≤ t ≤ ts, where ts = 1.69 hr is the shock formation time

for this specific case.
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FIG. 3.11. The four panels display the radial profiles of u, v, w, ζ respectively at

t = 0 (blue) and t = ts = 1.69 hr (red). In the u and v panels, black curves show

fluid particle displacements for particles that are equally spaced at the initial time.

At t = ts, the u and v fields become discontinuous at r = 17.6 km, while the w and

ζ fields become singular r = 17.6 km.

3.4. DISCUSSION

The analytical results have a number of limitations. The primary limitation is that the results

presented for both Analytical Model I and Analytical Model II are only plotted for the time interval

0 ≤ t ≤ ts. The solutions for both models become multivalued when the characteristics defined

by (3.15) and (3.44) intersect. Williams et al. (2013) avoid this issue by using the equations for

the slab boundary layer model presented at the beginning of section 3.2 and including horizontal

diffusion. This could be applied to the analytical models developed here as well. However, a broad

application of horizontal diffusion would result in solutions that are “shock-like” rather than a true

mathematical shock. However, there are other methods to extend the solutions beyond t = ts, into
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the region of the (r, t)-plane where characteristics intersect and the solutions for u(r, t), v(r, t),

and r̂(r, t) yield multivalued solutions. To exclude a broad application of horizontal diffusion and

still maintain an analytical solution for the hurricane slab boundary layer, we can use the following

procedure. Let R(t) denote the shock at time t, where t ≥ ts. Let r̂1(t) denote the label of the

characteristic that just touches the inside edge of the shock at time t, and let r̂2(t) denote the label

of the characteristic that just touches the outside edge of the shock at time t. Then from (3.44), we

obtain

R(t) = r̂1(t) + τ
(

1− e−t/τ
)

u0(r̂1(t)), (3.65)

R(t) = r̂2(t) + τ
(

1− e−t/τ
)

u0(r̂2(t)), (3.66)

which respectively determine r̂1(t) and r̂2(t) from a given R(t). The last equation needed to track

the shock is an appropriate jump condition across the shock, which yields a first order differential

equation relating dR(t)/dt to r̂1(t) and r̂2(t). This constitutes a shock-tracking procedure. Shock-

capturing is a fundamental part of certain finite volume and finite difference methods based on the

adaptive discretization concepts used in the essentially non-oscillatory (ENO) and the weighted

essentially non-oscillatory (WENO) schemes (see the text by Durran (2010) and the review by Shu

(1998)). ENO and WENO schemes add diffusion locally to the region around the shock. This

differs from how diffusion is applied to the numerical model presented by Williams et al. (2013).

Shock-capturing is also part of the finite volume methods used in the software package CLAW-

PACK, described by LeVeque (2002). These capturing procedures are advantageous because they

can reduce the smearing and nonphysical oscillations near the discontinuity.

The second limitation of the analytical models is that the radial equation of motion is unrealis-

tic. The radial equation does not contain a source term proportional to v − vgr. The result of this

is that the radial inflow remains constant in Analytical Model I and damps in Analytical Model II.
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This is a major difference between the results found in the numerical model presented by Williams

et al. (2013) and the work here. This limitation cannot be corrected when using cylindrical coor-

dinates. However, it is possible to create an analytical model using a system of equations for the

boundary layer that is in Cartesian coordinates that would allow for a source term proportional to

v − vgr to be included.

The third limitation, only present in Analytical Model II, is the singularities that form in w and

ζ . Such features are unrealistic in actual hurricanes. However, in a full-physics hurricane model,

spikes in the boundary layer pumping are likely to be confined to an individual cumulonimbus

cloud where the vertical velocity would be limited by the moist processes.

Despite the limitations of the analytical models, the analytical boundary layer models provide

insight into what determines the size of the hurricane eye, how potential vorticity rings develop,

how an outer concentric eyewall forms in addition to how it influences the inner eyewall, and

why tropical cyclones are unable to fully recover after making landfall. The size of the hurricane

eye is determined by the nonlinear processes that set the radius at which the eyewall shock forms

and the location of the boundary layer pumping. As discussed with the models, the location of

the pumping is also the location of the singularity in relative vorticity that shows where and how

potential vorticity rings are produced. Through the pumping and latent heat release, the boundary

layer potential vorticity ring is extended upward. In addition, the model provides insight into

the works of Emanuel (2004), Bryan and Rotunno (2009a,b), and Bryan (2012). These studies

discuss the importance of correctly parameterizing or modeling the drag coefficient and horizontal

diffusion. However, this work shows that a more accurate approach to modeling strong tropical

cyclones would be to resolve “shock-like” structures in the tropical cyclone boundary layer.
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CHAPTER 4

CONCLUSIONS

In chapter 2, a one-dimensional elliptic solver, similar to the geopotential tendency equation

solver developed by Musgrave et al. (2012), is applied to observed tropical cyclones. It is shown

that while the one-dimensional solutions can predict the tangential velocity tendency response

to diabatic forcing for some vortices, the one-dimensional solutions inadequately depict others.

To address these inadequacies, two-dimensional solutions are developed to include baroclinicity.

However, frictional influences are not incorporated into the solutions except through assuming the

location of the vertical momentum flux out of the boundary layer and the implied location of the

diabatic heating. The two-dimensional solutions produce a more realistic vertical structure and re-

sponse to diabatic forcing when compared to the one-dimensional solutions. The two-dimensional

solutions should provide more insightful information to use in improving statistical hurricane in-

tensity predictions. Even with the improvements, the two-dimensional solutions still have limita-

tions. Like the one-dimensional solutions, the two-dimensional solutions currently cannot dissipate

the vortex unless some lower boundary layer conditions are set to allow for boundary layer fric-

tional effects. Future work can assess improvements in using the two-dimensional solutions with

observed vortices.

Chapter 3 explores “shock-like” structures in the tropical cyclone boundary layer. This chapter

develops an analytical model to explain features observed in Hurricane Hugo (1989). Two models

are presented in this section. The first lacks a damping force along the characteristics while the

second includes damping. The models show that shocks develop in the tropical cyclone on rather

short time scales. Analytical Model I indicates that if disrupted, the tropical cyclone will redevelop

a shock quickly. Analytical Model II hints that it is possible for a tropical cyclone to be disrupted
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and lack the ability to redevelop the shock. The shock determines the location of the boundary layer

pumping which sets the location of the inner eyewall. In both models, the shock moves towards

the center. This behavior is indicative of an eyewall contracting. With Analytical Model II, it is

shown how a secondary shock would begin to develop. However, the influence of the secondary

shock cannot be determined using the model in its current framework without implementing a

shock-capturing or -fitting procedure, but the results do show why some storms develop while

other dissipate due to wind speed and radial advection time. Future work can implement a shock-

capturing or -fitting procedure to gain insight into shocks after the time of shock formation in an

analytical framework to provide more insight into what types of dynamical conditions are required

for tropical cyclone development. Also, future work could look at the squall line case to assess

shock formation with the (v − vgr) forcing.

Chapters 2 and 3 are not completely unrelated. An extension for the work presented here

offers one possible connection. If we look at Ooyama (1969a) and Ooyama (1969b), we can see

how combining the two-dimensional solutions with a slab boundary layer model could provide

crucial insight into the influence of shock-like structures on the life cycle of the tropical cyclone.

Also, Fig. 1.3 shows how the location of the boundary layer pumping moves inward and the change

to the tangential wind profile in both the boundary layer and the flow aloft. The two-dimensional

successive over-relaxation technique could take the Ekman pumping from Williams et al. (2013)

as the lower boundary condition and show how the gradient flow adjusts to the pumping.
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APPENDIX A

SOLUTIONS OF THE TRANSVERSE CIRCULATION EQUATION

A.1. NINE POINT LOCAL SMOOTHER

In section 2.5.2, a modified Rankine vortex, defined by equation (2.38), is used for the tangen-

tial velocity field. However, the tangential velocity profile is not smooth and the vorticity has a

discontinuity at the radius of maximum wind. To avoid issues these aspects may cause, the veloc-

ity field is smoothed prior to calculating the static stability, baroclincity, and inertial stability and

solving using an iterative method. The smoother applied to the tangential velocity field is a nine

point local smoother.

v(j, k)smooth =















































































































































































1

4
vj,k +

1

8
(vj−1,k + vj,k−1 + vj+1,k + vj,k+1)

+
1

16
(vj−1,k+1 + vj−1,k−1 + vj+1,k−1 + vj+1,k+1)

if 0 < j < J and 0 < k < K

1

3
vj,k +

1

6
(vj−1,k + vj,k−1 + vj,k+1)

+
1

12
(vj−1,k+1 + vj−1,k−1)

if j = J and 0 < k < K

1

3
vj,k +

1

6
(vj−1,k + vj+1,k + vj,k+1)

+
1

12
(vj−1,k+1 + vj+1,k+1)

if 0 < j < J and k = 0

1

3
vj,k +

1

6
(vj−1,k + vj,k−1 + vj+1,k)

+
1

12
(vj−1,k−1 + vj+1,k−1)

if 0 < j < J and k = K

4
9
vj,k +

2
9
(vj−1,k + vj,k−1) +

1
9
vj−1,k−1 if j = J and k = K

4
9
vj,k +

2
9
(vj−1,k + vj,k+1) +

1
9
vj−1,k+1 if j = J and k = 0

vj,k if j = 0

(A.1)
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The result of applying the above filter to v multiple times is similar to a Gaussian convolution.

In this work, we apply the nine point local smoother 100 times to v. This technique varies from

a traditional nine point local smoother in that the outer boundaries are smoothed as well with

one exception. The inner boundary remains constant as seen in the last line of (A.1). The inner

boundary for v must remain zero.

A.2. LATERAL BOUNDARY CONDITION

Because the two-dimensional elliptic problem is being solved numerically on a finite domain,

we would like to formulate a lateral boundary condition that results in a solution that is essentially

the same as would be obtained on an infinite domain. The basic idea is that the forcing, through

Q(r, z) and/or ψ0(r), is confined to an inner region. Far outside this region the forcing vanishes,

the static stability A becomes a function of z only, the baroclinicity B vanishes, and the inertial

stability C becomes f 2/ρ, so that the partial differential equation (2.11) simplifies to

∂

∂r

(

∂(rψ)

r∂r

)

+
f 2

N2
e−z/H ∂

∂z

(

ez/H
∂ψ

∂z

)

= 0 (A.2)

in the outer region, where we have defined the buoyancy frequency N(z) by N2(z) = ρA. As-

suming the solution of (A.2) has the separable form ψ(r, z) = Ψ(r)Z(z), the partial differential

equation separates into the two ordinary differential equations

d

dr

(

d(rΨ)

r dr

)

=
f 2

c2
Ψ, (A.3)

e−z/H d

dz

(

ez/H
dZ
dz

)

= −N
2

c2
Z, (A.4)

where 1/c2 is the separation constant. As discussed by Fulton and Schubert (1985), the vertical

structure equation (A.4), with appropriate top and bottom boundary conditions, has a spectrum of
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eigenvalues c = c0, c1, c2, · · · cn. Using the mean tropical atmosphere profile for N(z) and using

a lid at zT = 15 km, typical values of c are c0 ≈ 250 m s−1 for the external mode, c1 ≈ 50 m s−1

for the first internal mode, c2 ≈ 25 m s−1 for the second internal mode, etc. This means that the

horizontal structure equation (A.3) is to be solved for each vertical mode. Equation (A.3) can then

be written in the form

r2
d2Ψm

dr2
+ r

dΨm

dr
−
(

µ2
mr

2 + 1
)

Ψm = 0, (A.5)

where µm = f/cm is the inverse of the Rossby length for the mth vertical mode. We can write

the general solution of (A.5) as a linear combination of the first-order modified Bessel functions

I1(µmr) and K1(µmr). Since I1(µmr) rapidly grows with r, we set its coefficient to zero, so that

the solution of (A.5) becomes Ψm(r) = αmK1(µmr). The constants αm are unknown and depend

on the details of the forcing in the central region. However, these constants can be eliminated by

using the Bessel function derivative relation

d[rK1(µmr)]

r dr
= −µmK0(µmr)

to obtain

dΨm

dr
= −Ψm

ℓm
at r = rB, (A.6)

where

1

ℓm
=

1

rB
+
µmK0(µmrB)

K1(µmrB)
. (A.7)

If only the first internal mode is involved, this translates to

∂ψ

∂r
= −ψ

ℓ
at r = rB. (A.8)

Table A.1 contains values for ℓ based on rB .
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TABLE A.1. The table gives approximate values for ℓ used in the lateral boundary

condition in (A.8). The values of ℓ were computed using (A.7) where um ≈ f/c1.
c1 is the first internal mode with a value of 50 m s−1.

rB (km) ℓ (km)

600 441.8

900 558.5

1200 638.5

1500 695.7

For more detailed discussions of the lateral boundary condition, see Schubert and DeMaria

(1985), DeMaria and Schubert (1985), and DeMaria and Pickle (1988).

A.3. NUMERICAL METHODS

The most efficient way to solve the two-dimensional elliptic problem (2.11) is via multigrid

methods (e.g. see the review by Fulton et al. (1986) and the particular application by Ciesielski

et al. (1986)). If efficiency is not an issue, a very simple successive over-relaxation procedure is

adequate. Thus, we now solve a finite difference version of the transverse circulation problem using

successive over-relaxation. To discretize (2.11), we use centered finite difference approximations

on the grid points (rj, zk) = (j∆r, k∆z) with j = 0, 1, . . . , J and k = 0, 1, . . . , K, where

∆r = rB/J and ∆z = zT/K. We solve the discrete equations using the following successive

over-relaxation procedure. Denoting the current (i.e. iteration ν) solution estimate by ψ
(ν)
j,k , and

sweeping through the grid in lexicographic order, we first compute the current residual of (2.11)

from

Rj,k = D(rr)
j,k +D(rz)

j,k +D(zr)
j,k +D(zz)

j,k − Fj,k, (A.9)
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where

D(rr)
j,k =

1

(∆r)2
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, (A.10)
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Fj,k =
g

cpT0

(

Qj+1,k −Qj−1,k

2∆r

)

, (A.14)

aj = 1 +
∆r

2rj− 1

2

and bj = 1− ∆r

2rj+ 1

2

. (A.15)

The solution estimate ψ
(ν)
j,k is then updated by

ψ
(ν+1)
j,k = ψ

(ν)
j,k +

ωRj,k

Gj,k
, (A.16)

where ω is the over-relaxation factor and

Gj,k =
ajAj− 1

2
,k + bjAj+ 1

2
,k

(∆r)2
+
Cj,k− 1

2

+ Cj,k+ 1

2

(∆z)2
. (A.17)

Equations (A.9)–(A.17) are computed at the grid points 1 ≤ j ≤ J − 1, 1 ≤ k ≤ K − 1. Finally,

the outer boundary points are updated from the outer boundary condition (A.8) written in the form

ψJ,k =

(

1− ∆r

ℓ

)

ψJ−1,k for 1 ≤ k ≤ K − 1. (A.18)

73



Equations (A.9)–(A.18) are iterated, starting with the initial estimate ψ
(1)
j,k = 0. This initial estimate

does not change on the top, bottom, and inner boundaries. For the numerical solutions presented

here, we have used the domain 0 ≤ r ≤ 1200 km and 0 ≤ z ≤ 30 km, and a grid with J = 2400

and K = 300, resulting in the grid spacing ∆r = 500 m

Note from (A.10) and (A.13) that the discrete operator tends to be locally isotropic if (∆r/∆z) ≈

(N/f̂), where N = (ρA)1/2 is the buoyancy frequency and f̂ = (ρC)1/2 is the effective Coriolis

parameter. Because f̂ varies so much across the domain, it is not possible to maintain discrete local

isotropy with fixed (∆r/∆z) = 5. Local isotropy does occur in regions where f̂ ≈ N/5 ≈ 40f .

In the outer regions, f̂ is much smaller than 40f , so a larger ∆r in the outer regions would be more

isotropic in the local sense. In spite of the large spatial variation in f̂ , the successive over-relaxation

procedure works well if care is taken to optimize the over-relaxation parameter ω.

Since the rate of convergence of the successive over-relaxation procedure is sensitive to the

choice of the relaxation parameter ω, it is important to find the optimal value. In order to gauge

the convergence rate, we have monitored the rate of decrease of the residual norm as iteration

proceeds, where the residual norm is defined by

Residual Norm =

(

J−1
∑

j=1

K−1
∑

k=1

R2
j,k

)1/2

. (A.19)

Although the transverse circulation problem (2.11) involves coefficients that can vary considerably

in radius and height (especially the inertial stability C), we can use the simpler Poisson problem

(i.e. B = 0, with A and C positive constants) as a guide for the optimal value of ω. In successive

over-relaxation, the optimal value of ω lies between 1 and 2. In the case where ω = 1, the

iterative method reduces to Gauss-Seidel. Finding the optimal ω decreases the number of iterations

required for the solution to converge. As discussed by Haltiner and Williams (1980), for the
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Poisson problem with a grid of J points in the horizontal and K points in the vertical, the optimal

value of ω for the Poisson problem is

ωPoisson
optimal ≈ 2− π

√
2

(

1

J2
+

1

K2

)1/2

≈ 2− π
√
2

K
= 1.97, (A.20)

where the second approximate equality follows from the assumption that J >> K, as in our case

with J = 2400 and K = 300.

Although this value of 1.97 is a useful rough guide, we have experimentally refined it and

found that an over-relaxation factor of 1.99668 optimal for the cases investigated here (shown in

Fig. A.1). Experience shows that, with this value of the over-relaxation factor ω, the residual norm

(A.19) can be reduced by six or seven orders of magnitude in 5000 iterations, Fig. A.2, which is

well beyond the accuracy required for present purposes.
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FIG. A.1. The plot shows the norm of the residual for 1.9 ≤ ω ≤ 2.0. Through

experimentation, the optimal ω is 1.99668. The dashed line shows the norm of the

residual for Gauss-Seidel, ω = 1. The insert plot zooms in on the optimal value for

ω.
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FIG. A.2. The plot shows the value of the norm of the residual for values of ω
per iteration out to 5000 iterations. The optimal ω value, 1.99668, is in the solid

curve. The dotted curve is for the Gauss-Seidel iterative method where ω = 1 and

the dashed curve used the optimal ω, 1.97, predicted by (A.20).

After convergence, we can compute the velocity components of the transverse circulation from

uj,k =
ψj,k−1 − ψj,k+1

2ρk∆z
, (A.21)

wj,k =
ψj+1,k − ψj−1,k

2ρk∆r
+
ψj,k

ρkrj
, (A.22)

and the temperature and tangential wind tendencies from

(

∂T

∂t

)

j,k

= −uj,k
(

∂T

∂r

)

j,k

− wj,k

(

∂T

∂z
+
RT

cpH

)

j,k

+
Qj,k

cp
, (A.23)

(

∂v

∂t

)

j,k

= −uj,k
(

f +
∂(rv)

r∂r

)

j,k

− wj,k

(

∂v

∂z

)

j,k

. (A.24)
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APPENDIX B

SHOCKS

We begin with the advection equation

∂q

∂t
+ c

∂q

∂x
= 0, (B.1)

where q is a quantity being advected by a wind c. When c(∂q/∂x) is non-linear, the solution

does not translate uniformly across the domain. For the non-linear case, the initial condition de-

forms with time and a shock, a discontinuous solution will develop. As discussed by LeVeque

(2002), a fundamental feature of non-linear conservation laws is the spontaneous development of

discontinuities originating from smooth initial conditions.

If we take (B.1) and replace q and c with the wind, u, we have the inviscid Burgers’ equation,

∂u

∂t
+ u

∂u

∂x
= 0. (B.2)

To illustrate that u does not translate uniformly across the domain, we will start with an example

initial condition of u(x, 0) = 1− cos(x). In Fig. B.1, the solution becomes multivalued with time.

The top panel shows snapshots of the wave at various times with the wave steepening with time.

The bottom panel shows the characteristics for the system. In this panel, you can see that by t = 1,

the characteristics have intersected and the solution has become multivalued. This solution is not

physical for a hyperbolic system.
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Solution

FIG. B.1. The reproduction of Figs. 3.4 and 3.5 from von Dommelen (2011) show

the steepening of a wave resulting in a multivalued solution at times greater than

t = 1. The top panel shows snapshots of u as it evolves with time. The bottom panel

shows the characteristics for the system. In the lower panel, a red arrow indicates

where the solution has become multivalued.

To avoid a multivalued solution, viscosity, ε, can be added to the right-hand side of (B.3)

forming

∂u

∂t
+ u

∂u

∂x
= ε

∂2u

∂x2
. (B.3)

Beginning with the same initial condition as the inviscid case, we can see from the top panel of Fig.

B.2 that the solution no longer overturns and becomes multivalued. Instead, a jump discontinuity

has developed from our smooth initial condition. In the bottom panel, the characteristic curves no

longer intersect after t = 1. In this case, the characteristics merge and are not unique in this region.

This pattern in the characteristic curves denotes a shock in u.

As noted by Whitham (1974) and LeVeque (2002), over a prolonged period, the structure and

information from the initial condition are lost in the shock. This means that shocks in non-linear

systems represent an irreversible phenomena due to the characteristics disappearing at the shock.
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FIG. B.2. The reproduction of Figs. 3.6 and 3.7 from von Dommelen (2011) show

shock formation by t = 1 from a smooth initial condition. The top panel shows

snapshots of u as it evolves with time. The bottom panel shows the characteristics

for the system. In the lower panel, a red arrow indicates where the shock has devel-

oped.
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