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ABSTRACT OF THESIS

GEOLOGY, MINERALIZATION, AND FLUID INCLUSION ANALYSIS

OF THE AJAX VEIN SYSTEM, CRIPPLE CREEK, COLORADO

The Ajax mine is located in the Cripple Creek mining district,
Teller County, Colorado. Mine workings extend through a verticallrange
of 3363 feet (1025 m), from 10,105 feet (3081 m) to 6742 feet (2055 m)
elevation. Production is from gold-telluride veins hosted in
Precambrian granite and Tertiary breccia. Mine production amounts to
more than 700,000 oz. of gold at average grades of 0.60 to 1.00 oz. gold
per ton. The mine is situated on the southern margin of a Tertiary
volcanic complex composed of highly differentiated alkaline rocks that
intrude fine-grained breccia and minor sediment. Most of the
mineralization in the Ajax is hosted by Precambrian granite which
surrounds the complex. Complex formation began about 34 m.y. ago.

Five stages of vein mineralization have been recognized. Vein
content is dependent on the relative time at which the structure was
receptive to ore-forming fluids. Vein minerals, in order of decreasing
volume, consist of quartz, fluorite, pyrite, adularia, dolomite, rutile,
sphalerite, hematite, galena, marcasite, calaverite, chalcopyrite,
pyrrhotite, and acanthite. The Au/Ag ratio varies from 20:1 to 1:1 and
is controlled by grade; higher Au/Ag ratios correspond to greater gold

values. No consistent vertical trend in Au/Ag ratio has been
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recognized. A subtle increase in base metal content with depth may
reflect initial development of a weak zonation pattern.

Vein-related alteration is fracture controlled and poorly
developed. Two lateral zones of alteration were defined. Inner zone
alteration varies from one to three times vein width and consists of the
following: complete replacement of biotite and plagioclase, quartz
recrystallization, and microcline rimmed and veined by adularia. Outer-
zone alteration varies from two to five times vein width and consists of
partial replacement of biotite and plagioclase, unaltered quartz, and
mostly unaltered microcline that may be weakly veined by adularia and
quartz.

Fluid inclusion analyses of quartz, fluorite, and sphalerite from
stages 1 through 4 define a complex fluid evolutiom. Filling
temperatures ranged from 206 to 510°C during stage 1 mineralization and
from 123 to 350°C during stage 3. Stage 4 fluid deposited calaverite
and quartz at temperatures ranging from 105 to 159°C. Salinity of the
ore fluid ranged from 30 to 47 wtZ eNaCl during stage 1 and decreased to
between 0 and 8.3 wt%Z eNaCl during stage 3. Stage 4 fluid salinity was
approximately equal to stage 3. Initial temperature and salinity
decrease was caused by mixing of stage 1 magmatic fluid with meteoric
water. Additional temperature decrease resulted from cooling of the
magmatic heat source(s). The irregular vertical thermal gradient
present in the vein system may be the result of lateral fluid flow
caused by intersection of veins with the breccia complex and/or presence
of intrusive heat sources within the breccia.

CO, has been recognized in the fluids of stages 1, 3, and 4.

2

Subtle boiling occurred in all stages over a great vertical range,
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consisting primarily of 002 effervescence. The presence of COZ greatly
increases the estimated maximum depth at which boiling can occur.

Based on stability of alteration minerals, pH is estimated to have
a minimum value of 5.5 at 300°C. Opaque mineral relationships indicate
oxygen fugacity ranged from -36 to -28.4 log foz. The physical-chemical
character of the ore fluid indicates the most amenable gold transport
mechanism. Base metals and gold were origimally transported as chloride
complexes. Decreasing salinity lowered chlorine iom activity which, in
conjunction with temperature decrease, decomposed the chloride
complexes. Gold remained in solution by forming migration complexes
Te:H

with tellurium. Sulfide deposition increased the H S ratio,

2 2
causing greater gold-tellurium complex stability. ©Gold remained in
solution until decreasing temperature in stage 4 deposited calaverite
and quartz.

Character of the ore-forming fluid and close relationship of the
veins to intrusive activity, among other evidence, indicate a magmatic

source for the ore metals.

Peter Campbell Dwelley
Department of Earth Resources
Colorado State University
Fort Collins, Colorado 80523
Spring, 1984
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CHAPTER I

INTRODUCTION
A. Purpose

The purpose of this thesis project was to examine in detail the
nature of the ore-forming system responsible for the unique and prolific
mineralization of the Ajax vein system. The vein system is exposed over
a vertical distance of 3363 feet (1025 m) providing an ideal opportunity
to study the effect of depth on ore fluid composition and temperature,
ore and gangue mineralogy, and wall-rock alteration. Additional aspects
of the study include an attempt to explain the great vertical extent of
mineralization, and the apparent lack of vertical zonation of both the
alteration and ore mineral assemblages.

The depth extent and possiblg limits of mineralization are
important factors influencing future economic potential of the Cripple

Creek district. This thesis will attempt to elucidate these factors.

B. Location and Geography
The Cripple Creek district encompasses approximately 15 sq mi (39
sq km) and is located 21 mi (34 km) southwest of Colorado Springs, in
south-central Teller County, Colorado (Fig. 1). The district is
approximately 10 mi (16 km) southwest of Pikes Peak near the southern
border of the Front Range, and is topographically characterized by
rounded hills of moderate relief. Elevations in the district range from

9000 ft (2744 m) to 10,800 ft (3293 m). In general, the district is






Figure 1. Location map of Cripple Creek showing relationship to
major tectonic features of Colorado (from Epis and
Chapin, 1964).
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sparsely vegetated with various range grasses and aspen trees. Spruce
and aspen trees are the dominant vegetation types at higher elevations
and generally are confined to north-facing slopes. Climate in the area
is semi-arid; the summer months are characterized by afternoon
thunderstorms. The winter months are unusually mild for the elevation
and a permanent snowpack is only rarely developed, although erratic
heavy snowstorms do occur. The town of Cripple Creek lies on the
western edge of the district at an elevation of 9500 ft (2896 m); and
the town of Victor is situated near the southern edge of the district at
an elevation of 9750 ft (2973 m).

The Ajax mine is located just north of Victor and has a shaft

collar elevation of 10,105 ft (3081 m).

C. Mining History

Excellent historical reviews of the Cripple Creek district with
details on district discovery and individual mine production have been
published (Cross and Penrose, 1895, Lindgren and Ransome, 1906, Loughlin
and Koschmann, 1935).

The district as a whole has produced in excess of 19 million ounces
of gold. 18,572,899 ounces were extracted during the period from 1891
to 1946. In excess of 450,000 ounces were mined during the period from
1946 to 1983 with most of the production coming from the Ajax mine.

Mining operations at the Ajax began in 1895 and, from 1895 to 1921,
247,917 ounces of gold were produced (Henderson, 1926). No production
data are available for 1922, 1923, 1933, and 1934. From 1924 to 1932,
101,765 tons were mined at an average grade of 1.04 oz Au/ton or a total
of 105,784 ounces of gold (Loughlin and Koschmann, 1935). From 1935 to

1961, 360,000 ounces of gold at an average grade of 0.60 oz Au/ton were



extracted. During this period the Ajax mine was the largest producer in
the district and, from 1952 to 1960, it was the leading gold producer in
the state (Minerals Yearbook, 1934-1961). In summary, from 1895 to
1961, the Ajax produced in excess of 700,000 ounces of gold at grades
ranging from 0.60 to 1.04 oz Au/ton with an approximate average grade of
0.80 oz Au/ton. The Ajax closed in 1961 and remained inoperative until
1972. At that time Golden Cycle Corporation, former operators of the
Ajax, spurred by the increase in the price of gold (58.60 dollars/oz),
announced plans to renovate the mine. In 1975 after gold reached 161.50
dollars/oz, Golden Cycle formed a partnership with Texasgulf Metals
Corp.. The partnership announced plans to rehabilitate the Ajax and re-
evaluate a large part of the district. Texasgulf withdrew from the
partnership in 1979, but rejoined following the dramatic increase in
gold prices later in 1979 (Minerals Yearbook, 1961-1979). The mine was
operated on a restricted basis by Texasgulf until September, 1983 at
which time Hecla Mining Corp. bought out the Texasgulf interest in the

partnership.

D. Methods

Field work for this thesis was carried out during the summer of
1982 and consisted of sampling and large-scale cross sectional mapping
of veins on 12 different levels of the Ajax mine. The levels sampled
are: 400, 700, 1000, 1400, 1600, 2000, 2300, 2600, 2800, 3000, 3100,
and 3350. Two of the largest and most consistant veins, the Bobtail and
the Newmarket, were chosen as representatives of the Ajax system. The
Bobtail was sampled from the 3350 level to the 2000 level; and the
Newmarket was sampled from the 3100 level to the 2000 level. Above the

2000 level, access to the Newmarket was restricted by caved ground; and



the dip of the Bobtail is such that it is no longer enclosed within the
Ajax workings. Veins sampled above the 2000 level were the Apex,
Christensen, Mohican, and several unnamed veins. Underground sampling
was hampered by inaccessibility of the workings, intense iron-oxide
staining of the rock walls, and the extremely resistant and unaltered
nature of the veins.

Literature research consisted of compiling a series of plan maps of
the Ajax mine and locating the few and relatively obscure references on
Cripple Creek.

Laboratory work involved an in-depth study of the underground
samples and consisted of fluid inclusion analysis, petrographic and X-
ray diffraction analysis, ore microscopy and electron microprobe
analysis, and preparation of samples for geochemical analysis.

Fluid inclusions were analyzed using a heating-freezing stage and
involved measurement of the temperatures of homogenization, freezing,
clathrate melting, and NaCl dissolution. Prior to heating-freezing
stage analysis, a visual study of the fluid inclusions was carried out
to determine their general nature.

Thin section and X-ray diffraction analyses were used to identify
and characterize the vein-related alteration assemblages and the gangue
minerals.

Ore microscopy and follow up electron microprobe analyses were
performed to identify and characterize the opaque minerals present in
the vein system.

The vein and wallrock samples were halved and analyzed for Au, Ag,
cd, Co, Cu, Mo, Ni, Pb, Te, V, and Zn by Texasgulf Metals Corp.

laboratory at the Carlton mill.



E. Previous Work

Cross and Penrose (1895) conducted the initial geologic survey of
the Cripple Creek district and were the first to publish a geologic map
of the district. They believed the complex to be a product of explosive
volcanic activity. Upon request of the mine owners, Lindgren and
Ransome (1906) resurveyed the district in 1903, further delineating the
petrology and structure of the district and remapping the area in
detail. Loughlin (1927) studied the deeper vein systems of the district
and noted an apparent lack of vertical zonmation of the ore minerals. In
1933 Koschmann and Loughlin (1935) examined the district to determine
depth potential of the mineralization and the best location for a deep
drainage tunnel. They were the first to report the presence of
stratified "sedimentary" rocks within the complex. Based on the
presence of stratified sediments exposed in the newer workings,
Koschmann (1949) proposed that the complex had beem formed as a result
of intermittent subsidence and the bulk of the volcanic breccia was
waterlain. A detailed structural analysis by Koschmann (1949) indicates
that the vein systems are related to major structural features of the
basin floor and walls. Since 1949, no regional geologic work has been
done in the district. Lovering and Goddard (1950) re-evaluated early
literature and concluded that the Cripple Creek complex was the result
of both explosive volcanic activity and subsidence. They were the first
to use the term "caldera" in reference to the complex. The regional
geochgmical trends have been defined by Gott, McCarthy Jr., Van Sickle,
and McHugh (1969). They identified northwest-trending Au-Ag-Te

anomalies and regarded them as potentially favorable zones for large



tonnage, low grade gold deposits. They also examined the major element
and trace element changes in response to hydrothermal alteration. The
regional geophysical characteristics of the Cripple Creek complex have
been indentified by Kleinkopf, Peterson, and Gott (1970). They
recognized two gravity and magnetic lows, one directly over the complex
and a similar feature immediately east of the complex. The only recent
geologic study in the Cripple Creek area is a M.Sc. thesis by Lane
(1976) on the E1 Paso mine, in which fluid inclusion homogenization
temperatures are reported from vein fluorite and barite. Lane (1976)
also performed the first detailed ore mineral study of a Cripple Creek

vein system.



CHAPTER II

REGIONAL GEOLOGY

A. Introduction

This chapter is intended to provide the reader with a general
overview of the district geology and to elucidate more recent data. For
detailed descriptions of the regional geology, the reader is referred to
earlier literature: Cross and Penrose (1895), Lindgren and Ransome
(1906), and Loughlin and Koschmann (1935). It is apparent to this
writer, in light of recent mining activity, that a re-evaluation of
areas currently identified as breccia and stratified sediment is
necessary to fully comprehend the processes responsible for formationm of
the Cripple Creek complex.

The Cripple Creek district is located on the boundary between the
Front Range highland (Fig. 1) and the Central Colorado basin. The
volcanic complex (Fig. 2) comsists of a sequence of Tertiary intrusioms,
flows, and breccias, filling an elliptical-shaped crater approximately &
mi (6.4 km) long and 2 mi (3.2 km) wide. Granitic and schistose rocks
of Precambrian age surround the crater. Numerous dikes and small stocks
of Tertiary age intrude the surrounding granite and schist and are
genetically related to Tertiary rocks of the central complex. Graton
(1905) first postulated that the Tertiary rock units were
differentiation products of a single parent magma based on their

constant silica to alumina ratio. A small phonolite stock to the west
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Figure 2. Geologic map of Cripple Creek complex. Note location of
Ajax mine on the southern margin of the complex
(modified from Koschmann, 1949).
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of the complex has been dated at 27.9-29.3 million years (Obradovich,
1973). The syenite intrusive near the center of the complex has an age

of 33.4-33.8 million years (McDowell, 1971).

B. Pre-Tertiary Rocks

Precambrian rocks present in the Cripple Creek district consist of
three distinct units into which the Tertiary sequence has been intruded.
The Idaho Springs Formation is comprised of an interlayered quartz-
biotite-feldspar gneiss and quartz-sillimanite schist, cropping out to
the north and west of the complex. Pikes Peak Granite is the
predominant Precambrian rock present in the area. It is a typical
coarse—grained granite consisting of pink microcline, orthoclase,
quartz, plagioclase, and biotite. The granite surrounds the complex on
the north, east, and south, and is part of the Pikes Peak batholith.
Locally, the granite has a gneissic texture which becomes more prevalent
along comtacts with the gneiss-schist. Pegmatitic and aplitic dike
phases are common within the granite and generally have a composition
similar to their host rock. Cripple Creek Granite is medium grained and
slightly porphyritic in nature. Similar in appearance to the Pikes Peak
variety, it is generally darker and finer grained. Variations of the
two can be indistinguishable. Cripple Creek Granite is correlated with
the Silver Plume granite (Lovering and Goddard, 1950); it crops out to
the west of the complex and as an isolated island within the complex.
No major Paleozoic or Mesozoic rock units have been recognized within

the Cripple Creek district.
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C. Tertiary Rocks
1. Cripple Creek breccia

The term "breccia' has been the subject of much misinterpretation
and is one aspect of the district geology in need of redefinition.
Breccia is volumetrically the most abundant rock within the complex. In
general, the term "breccia" implies a fragmental rock composed of
latite—phonolite, phonolite, and lesser amounts of granite and syenite,
all of which have been altered by hypogene and supergene processes. The
breccia matrix is composed of dolomitic carbonate, varying amounts of
pyrite, and rock flour. The structure of the breccia is extremely
variable, ranging from well stratified, coarse to fine grained material
on the eastern side of the complex to the fragmental, angular, and
unsorted material of the Globe Hill area. Fluidized channelways have
been recognized in association with hydrothermal breccias of the
Ironclad mine south of Globe Hill (oral communication, Thompson, T. B.,
1982). Carbonized tree fragments have been identified from several
locations in the breccia at depths greater than 800 ft (244 m) (Lindgren
and Ransome, 1906). Rickard (1900) reported the presence of a
silicified tree stump on the 500 level of the Independance mine. The
presence of mud cracks, raindrop impressions, cross bedding, and fossil
bird tracks within the breccia have been documented by Koschmann (1949).
It is apparent that the breccia is a complex unit form?d by a
combination of processes. High permeability of the breccia during early
stage mineralization is evidenced by pervasive alteration present
throughout the unit. This early stage fluid interaction served to

lithify the breccia, rendering it impermeable to later stage, precious-
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metal-bearing fluids. Subsequent mineralization was confined to

structural openings with only minor dissemination into the wallrock.

2. Volcanic and plutonic rocks

Latite-phonolite is present within the district as the predominant
constituent of the breccia and as small stocks, numerous dikes, and
minor flows, all of which intrude the breccia. Latite-phonolite
commonly is light grey to yellowish grey with a porphyritic texture.
Syenite is volumetrically the least abundant rock type within the
complex. It is a dark grey, medium-to fine-grained rock that is
extremely resistant to erosion. It occurs as small stocks and dikes
intruding the breccia. Phonolite is the most abundant Tertiary rock in
the district. It forms small stocks and dikes both within the complex
and in the surrounding area. It is light to dark grey, fine grained,
and intrudes both the breccia and the Precambrian rocks. Four types of
alkaline basalts have been recognized by previous workers in the Cripple
Creek district (Lindgren and Ransome, 1906). All four types are dark
grey to black, fine grained, and occur as thin dikes intruding both the

breccia, and to a lesser extent, the Precambriam rocks.

3. Basaltic breccia
A circular shaped basaltic breccia pipe is exposed near the center
of the district at what is now known as the Cresson mine. The pipe is
composed of angular fragments of basalt, minor latite-phonolite,
phonolite, Cripple Creek breccia, and granite, cemented by a matrix of
basalt and basaltic rock flour impregnated with dolomitic carbonate and
pyrite. In the northern part of the district a similar pipe of basaltic

breccia occurs outside of the complex.
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D. Structural Geology
1. Regional tectonics
The Cripple Creek district is situated near the eastern boundary of

the Rio Grande rift system (Fig. 3). The highly alkaline rocks of the
Cripple Creek district correlate well with the theory that off-rift
sequences tend to be alkaline in nature. It is probable that the
structural and igneous events of the Cripple Creek region during the
Tertiary were related to Rio Grande rift movement. Chapin and Epis
(1964) postulate that Cripple Creek is a member of a northeast-trending,
middle to late Tertiary volcanic belt which includes Silverton, Lake
City, Bonanza, and Guffey. The belt is thought to be a structurally
positive hinge area marked by Laramide thrusting in opposite directions
and is characterized by explosive, post-Laramide volcanism. A gravity
and magnetic low associated with the Cripple Creek complex has been
delineated by Kleinkopf et al. (1970). The negative gravity anomaly is
a result of density differences between the Tertiary breccia-volcanic
sequence and the Precambrian crystalline rocks. An additional inference
is that a large intrusive body is present at depth. The magnetic low is
caused by hydrothermal alteration, resulting in the remobilization of

the iron contained in magnetite to form pyrite (Kleinkopf et al., 1970).

2. District structural geology
Detailed descriptions of the structural history of the Cripple
Creek district are provided by Loughlin and Koschmann (1935), and
Lovering and Goddard (1950). This section is intended to briefly review
their interpretations and present evidence in favor of a more diverse

structural history.
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Figure 3. Map showing relationship of Cripple Creek to major Rio
Grande rift-related structures (from Tweto, 1979).
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During the Laramide revolution, Precambrian shear zones were
reactivated and the Cripple Creek-Pikes Peak region was domed in
response to a regional compression from the south. Fracture systems
trending northwest, northeast, north-northeast, and east-southeast,
formed in response to compression and shearing. Intermittent subsidence
along the fracture systems coupled with often explosive volcanic
activity characterized early stage development of the complex. Between
eruptions the volcanic material was reworked and stratified, forming
sedimentary deposits interlayered with the volcanic rocks. In later
complex development, explosive activity ceased and small stocks and
dikes intruded the.consolidated breccia and surrounding Precambrian
rock. Late stage explosive brecciation occurred in the area of what is
now the Cresson mine. Subsequent weak compression and shearing with
minor settling reopened fracture zonmes and provided favorable sites for
ore deposition. The theory that, during and subsequent to ore
deposition, movement had essentially ceased is well illustrated by the
general lack of structural dislocation or brecciation of the veins.
Small-scale spreading of the fissures during mineralization is evident
in the Ajax vein system; post-mineral faulting, although rare, has
occurred with a maximum vertical displacement of 120 ft (37 m). These
movements were minor and further exemplify the relatively stable
conditions present during and after mineralization.

Recent mining activity has exposed mineralized hydrothermal
breccias in the Globe Hill area. These appear to reflect late stage
explosive events; mineralization occurs as low grade, microscopic, free
gold. Features that characterize the pipes are: fluidized channelways,

angular fragments, increase in fragment size outward from the pipe
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center, silicification, and open voids in the matrix. Whether
mineralization is the result of primary native gold deposition or the
alteration of earlier formed gold-tellurides by hypogene or supergene
processes is currently unknown. Clearly these breccias, in addition to
the basaltic breccia pipes, represent a later stage of explosive
brecciation subsequent to the initial breccia development of the Cripple
Creek complex. The presence of carbonized wood (Lindgren and Ransome,
1906) and the multiple stages of brecciation and volcanism occurring at
Cripple Creek are similar to features recognized in the gold-telluride-
bearing precious metal systems of the Baguio district, Philippines
(Callow and Worley, 1965; Bryner, 1969). Mineralization at the Acupan
mine in the Philippines consists of both gold- and silver-telluride-
bearing veins and native gold mineralized breccia pipes (Callow and
Worley, 1965). Significant similarities exist between the Cripple Creek
complex and breccias of the Acupan mine in which convective movement of
rock fragments has been documented (Sawkins, O'Neil, and Thompson,
1979). Flared nature of the granite-breccia contact at Cripple Creek
supports the idea that the complex was formed primarily by forces acting
in an upward direction as opposed to downward subsidence (Lindgren,
1906). The work of Cloos (Mayo, 1976, after Cloos, 1941) on formation
processes of breccia pipes is applicable to Cripple Creek. The tectonic
setting and mechanism of emplacement involving a combination of
intrusive, extrusive, and gravitational processes as documented by
Cloos, appears to closely parallel the situation present during the
formation of the Cripple Creek complex. Although conclusive evidence
has not yet been presented, this writer believes that the Cripple Creek

complex is the result of an unusually long lived and complex interplay
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of "Cloos-model" breccia pipe development, intrusive volcanism, and

hydrothermal brecciation, culminated by precious metal mineralizationm.

E. District Mineralization

Gold-telluride mineralization in the Cripple Creek district occurs
as open-space filling in narrow fissures hosted by Tertiary breccia and
Precambrian granite. The most common telluride is calaverite, but
sylvanite and krennerite are also present. Minor amounts of other
tellurides are present but are insignificant in terms of gold
production. The average Au:Ag ratio in the ores is 10:1. Vertical
dimension of the ore-hosting structures is generally extensive with some
veins having dip lengths of over 3500 ft (1067 m). Gold values within
the fissures are irregular, controlled by the time at which each
structure was receptive to ore fluids.

Narrow bodies of replacement ore occur where fissures coalesce.
This type of occurrence is most common in breccia-hosted mineralization
on upper mine levels.

Recent mining in the district has been from native gold-bearing
silificied and argillized, angular fragment breccias. Formation

processes of these breccias are currently unknown.



CHAPTER III

AJAX MINE GEOLOGY
A. General

The Ajax shaft collar is located within the breccia near the
granite contact on the south-central boundary of the complex (Fig. 2Y.
The mine has a surface elevation of 10,105 ft (3081 m) and is developed
on 25 levels with a minimum elevation of 6742 ft (2055 m). Vertical
extent of the Ajax from the surface to the 3350 level is 3363 ft (1025
m). Mineralization consists of narrow, open-space filling veins and
small, pod-like replacement bodies. The predominant ore host is Pikes
Peak Granite, although some veins do extend into the breccia and locally

the veins cross phonolite dikes.

B. Rock Types
1. Ajax Granite
Primary focus of the sampling program was on veins hosted by Pikes

Peak Gramite. Within the Ajax mine area, the rock is referred to as
Ajéx Granite. This term is primarily for convenience, as no distinct
variation from the "normal" Pikes Peak granite exists within the mine
area. The Ajax Granite is a pink, medium—-to coarse-grained,
hypidiomorphic granular rock composed of 35-45% microcline (1-10 mm),
15-25% quartz (2-5 mm), 10-20% oligoclase (0.5-2 mm), 10-20% biotite
(0.5-1.5 mm), and 1-5% accessory minerals consisting of apatite,

magnetite, zircon, and sphene. Commonly the granite occurs as coarse,

21
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even grained masses; locally gneissic, aplitic, and pegmatitic features
are present. The quartz in the granite contains abundant small (15 um)
fluid inclusions that are three phase, liquid dominated, and contain

NaCl daughter minerals.

2. Phonolite dikes

All phonolite dikes examined on the levels sampled were altered to
some extent as they are commonly associated with a mineralized vein.
The phonolite is a grey to greenish-grey, fragmental porphyritic rock
with a glassy, trachytic groundmass. It is composed of 10-20% gramite
wallrock xenocrysts (0.25-9 mm) consisting of 80-90% microcline and 10-
20% quartz. The groundmass (80-90%) is vuggy and consists of alkali
feldspar laths and devitrified glass. Feldspathoid minerals probably
originally occupied the vugs, which comprise up to 25% of the
groundmass. They are the most readily altered mineral in the phonolite
and only a few nepheline phenocrysts were observed in the petrographic
analysis. The dikes vary in width from 1 to 35 ft (0.3-4.6 m) and
although many of the dikes do not appear to follow any consistent trend,
generally they are more prevalent along the major shear zone trends in

the granite.

3. Basalt dikes
Basalt dikes are intensely altered by supergeme and, to a lesser
degree, hypogene processes. Fresh basalt was observed in a dike
paralleling the Newmarket vein on the 3100 level. It is a porphyritic
dark grey to black rock with a sub-trachytic, glassy groundmass. The
dike consists of 25-35% phenocrysts and 65-75% groundmass. The

phenocrysts are composed of 55-65% analcite (0.1-0.5 mm), 15-25% biotite
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(0.5-9 mm), 10-20% olivine (0.5-4 mm), and minor quartz and microcline
fragments. The groundmass is very fine grained and consists of
plagioclase laths, devitrified glass, and minor alkali feldspar laths.
The basalt dikes vary from 1.5 to 15 ft (0.5-4.6 m) in width, are

younger than the phonolites and predate mineralization.

4, Cripple Creek breccia

Breccia was observed at two locations on the 1600 level. It
consists of fragmented clasts of granite, latite-phonolite, and
phonolite ranging in size from less tham an inch to several feet in
diameter. As a result of good permeability allowing interaction with
the hydrothermal fluids, rocks that compose the breccia were intensely
altered and subsequently lithified by secondary quartz. Good
permeability of the breccia was present only during early stage
mineralization. Processes of alteration and lithification served to
render the unit impermeable, and confined precious-metal mineralization

to open structures.

C. Structural Geology
1. General
Most of the mineralization in the Ajax mine is hosted by Ajax

Granite (Pikes Peak). The granite-breccia contact slopes steeply away
from the Ajax shaft in a northerly direction; the shaft passes through
the contact and into granite near the 200 level. A series of modified
plan maps of levels sampled (Figs. 4-14) adapted from a computer
generated compilation of previous work (Texasgulf Metals Corp.) serve to
illustrate the nature of the granite-breccia contact and general trends

of the veins and dikes. The mineralized structures of the Ajax vein



24



Figure 4. Plan map of Ajax 400 level. Note granite-breccia contact
just north of the shaft. Location of sample 4-B-l is

shown. Long section and cross section lines (N and B)
are also shown.



25

AJAX MINE 400 LEVEL
PLAN MAP EL. 9688 Ft,

”]
GRANITE

200 F1.

EXPLANATION

ZII Pnonolite dike

IIX Basait dike

== — Ajax Granite - Breccia contact
- Vein

\__'__5 Stoped orea
Eﬂ L atite - phonolite
L—J inaccessible workings

I Note: Dikes and veins not fo scale




26



Figure 5. Plan map of Ajax 700 level. Locations of samples 7-M-B
and 7-M-2f are showm.
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Figure 6. Plan map of Ajax 1000 level. Note first appearance of
Newmarket vein. Granite-breccia contact moving away
from shaft to the north. Locations of samples 10-A-1,
10-M-1, 10-NM-2 are shown.
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Figure 7. Plan map of Ajax 1400 level. Sample locations 14~C-1f
and 14-M-1 are shown.
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Figure 8. Plan map of Ajax 1600 level. Note position of granite-
breccia contact nearer shaft. Note location of breccia-
hosted samples 16-Z, and 16-X. Sample locations 16-M

and 16-C are also shown.
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Figure 9. Plan map of Ajax 2000 level. Note position of granite-
breccia contact. Bobtail vein is part of Ajax workings.
Sample locations 20-BTS-1, 20-U-1, 20-NM-1, and 20-NM-2
are shown. Locations of long section and cross section
lines are also shown.
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Figure 10. Plan map of Ajax 2300 level. Note granite-breccia
contact is no longer near shaft. Sample locations
23-BTS—-1f and 23-M-1f are shown.
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Figure 11. Plan map of Ajax 2600 level. Workings are entirely
granite-hosted. Bobtail vein lies on the south side of
the shaft. Sample locations 26-BTS-1, 26-NMS-1, and
26-NM-1 are shown.
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Figure 12. Plan map of Ajax 3000 level. Sample locatioms 30-BTSf
and 30-Jf are shown.
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Figure 13. Plan map of Ajax 3100 level. Note position of Carlton
drainage tunnel. Long section and cross section lines
are shown. Sample locatioms 31-BTS-(1,2), 31-NS-1,
31-NM-3 and 31-XT=1 are also shown.
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Figure 14. Plan map of Ajax 3350 level. Level is currently being
developed. Sample locations 33-BTS-1, 33-BTS-PH are
shown.
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system follow three distinct trends: north-south, north-northwest, and
west-northwest. The three trends are members of a master shear zone
developed due to compression from the south (Loughlin and Koschmann,
1935); they are locally controlled by the erratic contact between
granite and breccia.

The relationship of the phonolite and basalt dikes with the
mineralized veins has been a source of confusion in the past. Lindgren
and Ransome (1906) believed that the dikes were intruded prior to
mineralization and commonly acted as permeability barriers to the ore-
bearing solutions. In a report dealing specifically with the Ajax,
Colburn (1913a) stated the phonolite and basalt dikes formed subsequent
to ore deposition as evidenced by their lack of control on
mineralization. In a later report, Colburn (1913b) refutes his earlier
suggestion by maintaining that the phonolite dikes act as dams to the
ore~forming solutions and the basalt dikes, being more reactive to the
hydrothermal solutions, have acted as ore fluid channelways. From
personal observation, it is apparent that the dikes generally had only a
minor influence on ore location although they were intruded prior to the
ore-forming event. In summary, the relationship between dikes and veins
of the Ajax is similar to that noted by Denholm (1967) at Vatukoula,
Fiji. At Vatukoula, stresses creating major shear zones along which
dikes were intruded were reutilized to form subsequently mineralized
fissure systems. A similar situation exists at the Ajax mine where the
vein-dike association is predominately coincidental in nature. Dikes
shown on the plan maps (Figs. 4-14) are generally greater tham 5 ft (1.5
m) wide; smaller dikes, although common, were not mapped; they trend

both parallel to the vein structure and at random orientationmns.
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Fracture systems of the Ajax consist of subsequent temsion
fractures along which structural displacement rarely occurred. Movement
which has occurred generally consists of a subtle widening or
contracting of the fissures with no lateral or vertical displacement.
Although in cross section the veins appear to be one continuous fissure
(Figs. 15, 16), in actuality they consist of a series of mineralized, en
echelon fissures comprising an individual vein. In general, the veins
are extremely variable in mineralogy and morphology. The variability is
more vertical than lateral in nature. An extreme contrast in
composition commonly is exhibited by the same vein within 300 to 500 ft
(91-152 m) of vertical distance. A vein dominated by a particular stage
of mineralization on one level may be dominated by an entirely different
stage on other levels. This compositional variability is the result of
minor structural activity which selectively sealed off and reopened
structures at different times during mineralization. The Newmarket
fault is the only fault along which significant post-mineral movement
has been recognized (Fig. 16). The fault has 120 ft (37 m) of vertical
displacement and negligible horizontal displacement (Loughlin and

Koschmann, 1935).

2. North-south veins
The Newmarket vein was sampled on the 1000, 2000, 2600, 3000, and
3100 levels. It is the only member of the north-south set that was
sampled. The Newmarket trends due north to N.5°W (Fig. 6-14) and dips
80° to 88° west (Fig. 16). It is characterized by narrow, branching
veinlets (less than 1.5 in (3.8 cm)) with thin alteration selvages
ranging from one to three times the vein width (Fig. 17). The vein is

not associated with a dike on the upper levels, but on the lower levels
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Figure 15. Cross section through Bobtail vein. Note vein-dike
association. Also note discontinuity in granite-
breccia contact occurring just below the 2000 level.
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Figure 16. Cross section through Newmarket vein. Note Newmarket
fault.
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Figure 17. Schematic cross sectional diagram of Newmarket (2600
level) and breccia-hosted (1600 level) veins. Note
characteristic branching and narrow alteration selvage
of the Newmarket. Note the pervasive alteration and
extensive sheeting of the breccia-hosted vein.
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a basalt dike parallels the vein on the hanging wall side. Koschmann
and Loughlin (1935) believe that the Newmarket fissure was not opened
until after first stage mineralization ended and was the result of
tension during a north-northeastward shearing movement. Recent work by
the author has determined the presence of a minor but identifiable first
stage component in the Newmarket system. As inferred by the lack of
associated phonolite dikes and weak development of stage one
mineralization, it is probable the Newmarket fissure was formed at a
later time than the north-northwest and west-northwest fissures. The
weak vein-related alteration is the result of low fracture demsity,
narrow width, and near vertical dip of the structure. Although the
Newmarket is rather unimpressive in appearance when compared to the
typical vein of the Ajax system, it is one of the highest géade, most
extensively stoped veins in the mine (Fig. 18). The ore shoot has a
vertical rake. Although a lower grade interval exists between the 2400
and 2800 levels, the vertical continuity of the vein is extemsive as
evidenced by high grade drill hole intercepts on the 3350 level (Figs.

14, 18).

3. North-northwest veins

The Mohican, Newmarket Shear, and X-10-U-8 veins are members of the
north-northwest set. The veins strike N.15°W to N.25°W and dip 75° to
85° west (Figs. 4-14). The Mohican was sampled on the 700, 1600, and
2300 levels. The Newmarket Shear vein was sampled on the 2600, 2800,
and 3100 levels. The X-10-U-8 vein was sampled on the 3000 and 3100
levels. In general, the veins are variable in morphology and mineralogy
from level to level and have a greater degree of alteration than is

present in the Newmarket system. Vein width varies from less than 1 in
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Figure 18. Long section of the Newmarket vein. Shaded area
indicates stoped ground.
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to 2.5 ft (2.5 ecm=-0.75 m) and the alteration selvage is from one to
three times vein width dependent on the degree of fracturing. Dikes are
not gemerally associated with veins of the north-nerthwest set. A 6
inch (15 cm) hanging wall phonolite dike parallels the Mohican vein on
the 1600 level; other dikes too small to be mapped occur in association

with some of the veins.

4. West-northwest veins

The Apex, Bobtail, and Christensen veins are members of the west-
northwest set sampled. The Bobtail vein was sampled on the 2000, 2300,
2600, 3000, 3100, and 3350 levels. It is the most important member of
the west-northwest set with a strike of N.40°W to N.60°W and a dip of
60° to 75° southwest. The Bobtail vein is the most vertically
continuous vein in the Ajax system (Fig. 15). Above the 1600 level, it
is either within the breccia or parallels the granite-breccia contact
and is contained within the Portland mine workings. Below the 1600
level, it is associated with a phonolite dike crossing from the hanging
wall side of the vein to the footwall side between the 2300 and 2600
levels. The Bobtail is characteristically a wide (2 ft (0.6 m)-4 ft
(1.2 m)) sheeted structure having several stages of mineralization
present and the most intense alteration halo of all the granite-hosted
veins (Fig. 19). The vein commonly exhibits multiple stages of
fracturing which occurred during the first and third stages of
mineralization. In many places, granite clasts rimmed by first stage
mineralization and clasts composed of first stage minerals are overgrown
by minerals of the third and fourth stages. The phonolite dike had no

apparent control on the mineralization. In zones where the vein cuts
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Figure 19. Schematic cross sectional diagram of Bobtail vein (2000
level and 3350 level). Note position of phomolite dike
on both levels. Note fracture control of alteration

and vuggy structure.
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the dike, the sheeted zone is wider and more intensely fractured due to
the more brittle character of the phonolite as opposed to the granmite
(Fig. 30a). Greater development of mineralization and alteration in the
Bobtail is attributed to the flatter dip and sheeted nature of the
structure. The ore shoots of the Bobtail vein (Fig. 20) are irregularly
shaped and do not follow any comsistent trend. A possible breccia-
hosted, northerly extension of the Bobtail was sampled on the 1600 level
(sample 16-Z)(Fig. 32b). The mineralized zone on the 1600 level
consists of numerous irregular stringer veinlets of first and third
stage mineralization in a poorly defined vuggy sheeted zome 4 ft (1.2 m)
to 6 ft (1.8 m) wide (Fig. 17, 32b). The breccia, consisting of altered
fragments of granite and latite-phonolite, was well lithified prior to
mineralization. Several fracture events have occurred during
mineralization, and the alteration assemblage is well developed
throughout the mineralized zone.

The Christensen vein was sampled on the 1400 and 1600 levels (Figs.
7, 8). It is similar to the Bobtail in attitude although the vertical
extent of the vein, as currently defined, is considerably less.

The Apex vein or a parallel split from the Apex was sampled on the
400 level near the granite-breccia contact (Fig. 4). It consists of a &
ft (1.2 m) wide sheeted fracture zone containing a 1 ft (0.3 m) wide

band of first and third stage mineralization.
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Figure 20. Long section of Bobtail vein. Shaded area indicates
stoped ground. Note irregular attitude of ore shoots.
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CHAPTER IV

VEIN MINERALOGY AND PARAGENESTS

A. General

In the first work on paragenesis and vein mineralogy of Cripple
Creek ores, Lindgren and Ransome (1906) identified three stages of
mineralization. Subsequent workers (Koschmann and Loughlin, 1953;
Loughlin, Koschmann, Tunell, and Kasnda, 1940) briefly address the
paragenetic sequence but have not added significantly to the early work
of Lindgren and Ransome (1906).

In this study, both ore microscope and petrographic analyses were
utilized to determine the vein mineralogy and paragenesis of the Ajax
vein system. Polished sections were analyzed using reflected light and
a Vickers hardness testing microscope. Unknown opaque minerals were
identified by electron microprobe at the U.S. Geological Survey
laboratory in Lakewood, Colorado. Gangue mineralogy was determined from
thin section and X-ray diffraction analyses of the veins. Polished
sections and thin sections were prepared from vein samples collected at
the locations shown on Figures 4-14,

The paragenetic sequence determined for the Ajax vein system is a
generalized compilation of information obtained from laboratory work and
underground observations (Fig. 21). Five stages of mineralization have
been identified in the veins of the Ajax system. No individual vein

sample exhibits the complete five stage sequence of mineralization.
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Figure 21. Paragenetic diagram of Ajax vein system mineralization.
Thickness of bars indicates relative volume abundance
of the minerals in each stage. Note variation in
volume percent of each stage present between the
Bobtail and Newmarket veins.
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Generally, the veins are composed of minerals belonging to either two or
three of the five stages. The complete sequence was determined by
sampling and observing the vein at different vertical and horizontal
locations.

Open—space filling dominated the vein-forming process with very
minor replacement along the vein-wallrock contact. Replacement is more
common on upper levels of the mine where the veins are breccia-hosted
and fracturing is more intense. Overall, replacement type

mineralization is minor in terms of tons produced.

B. Paragenesis and Mineralogy
1. Stage 1

Minerals formed during the first stage of mineralization include
quartz, fluorite, adularia, dolomite, and pyrite intergrown with
variable amounts of marcasite. Megascopically the first stage
assemblage is a dark, blueish-grey, jasper—like material that contains
fragments of wall-rock derived microcline (Fig. 22a). In thin section
the assemblage consists of a variable amount of microcline fragments
(0.05-2.0 mm) which are rimmed and veined by adularia and surrounded by
a matrix of granular quartz, euhedral fluorite, anhedral dolomitic
carbonate, and subhedral to euhedral pyrite (0.01-1.5 mm) (Fig. 22b).
The relatively high flow velocity of first stage ore fluid is
illustrated by the presence of apparent unsupported microcline fragments

occurring within the assemblage (Fig. 22b).

2. Stage 2
Stage 2 mineralization is restricted in its occurrence and is most

prevalent in the Bobtail vein and in a mineralized fault zone on the
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Figure 22,

A.

Photograph of Bobtail vein (3100 level), hand
specimen. Showing dark grey stage 1
mineralization, white-euhedral stage 4 quartz(q)
with late calaverite(c). Note vuggy texture of
vein and weak development of alteratiomn. Fresh
primary biotite is present within 5 cm of vein.

Photomicrograph of thin-section from Bobtail vein,
same sample as above (horizontal field of view =

3 mm). Showing contact between stage 1 and stage 4
mineralization. Note brecciated nature of stage
1(1), composed of microcline and quartz fragments
in a matrix of smaller fragments, silica, fluorite,
and pyrite. Note feathery texture of stage 4
euhedral quartz(q).
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1000 level. The mineralization consists of minor pyrite containing
rounded inclusions (15 to 60 um) of chalcopyrite exsolving from
pyrrhotite; sphalerite and galena are present containing rare
chalcopyrite inclusions (Fig. 23). Pyrite is intergrown locally with
arsenic-rich marcasite and commonly is replaced by both sphalerite and
galena (Figs. 24a). Pyrite-marcasite locally have replaced alteration-
related magnetite grains (Fig. 23b). Sphalerite is commonly replaced by
galena (Fig. 24b). All minerals of the second stage are cut by veinlets
of later stage quartz. Second stage mineralization is a volumetrically
minor component in the veins and is distinguishable only in polished
section or in thin section where it occurs as thin veins of opaque
minerals paragenetically separable from minerals of the other stages

(Fig. 25a).

3. Stage 3

Stage 3 mineralization is characteristically either the dominant
component in the veins or totally absent from the vein assemblage.
Where present it consists of a variable ratio of intergrown quartz and
euhedral purple fluorite with minor pyrite occurring as minute (0.05-0.5
mm) subhedral grains and overgrowths (Figs. 25a, 25b, 28b, 30a, 30b,
32a). The light purple color of stage 3 fluorite distinguishes it from
fluorite of the other paragenetic stages. Fluorite of stage 3 hosts
abundant fluid inclusions (4~45 um) suitable for heating and freezing
stage analysis. When viewed in thin-section at high magnification
(800X), third stage fluorite occurs as well developed, growth-zoned
euhedral crystals (200-500 um). Specular hematite and rutile are
tenuously placed in the third stage. Specular hematite occurs as bladed

(50 um) inclusions in the pyrite of stage 3 (Fig. 26a). Rutile occurs
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Figure 23,

A.

Photomicrograph of polished-section from Bobtail
vein, 2600 level (horizontal field of view = 0.265
mm). Showing pyrrhotite(p) and chalcopyrite(c)
inclusion in pyrite(py).

Photomicrograph of polished-section from Newmarket
vein, 3100 level (horizontal field of view = 0.265
mm). Showing magnetite(m) partially replaced by
quartz(q) with later replacement of both by pyrite-
marcasite(p).
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Figure 24,

A.

Photomicrograph of polished-section from Bobtail

vein, 3350 level (horizomntal field of view = 0.63
mm). Showing pyrite(p) replaced by sphalerite(s)
and galena(g).

Photomicrograph of polished-section from unnamed
vein, 1000 level (horizontal field of view = 0.63
mm). Showing galena(g) replacing sphalerite(s).
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Figure 25.

A.

Photomicrograph of thin-section from Bobtail vein,
2600 level (horizontal field of view = 3 mm).
Showing altered granite wallrock(g) (note fresh
microcline(m)) in contact with stage 2 opaque
sulfides(s). Stage 2 is overgrown by stage 3
quartz and fluorite(3).

Photograph of Bobtail vein (2600 level), hand
specimen. Showing stage 3 quartz-fluorite
intergrowth(3) and fracture control of alteration.
Note more intense alteration on footwall side of
vein associated with two parallel fractures.
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Figure 26.

A.

Photomicrograph of polished-section from Bobtail
vein, 2600 level (horizontal field of view = 0.265
mm). Showing specular hematite inclusions(h) in

pyrite.

Photomicrograph of polished-section from
Christensen vein, 1400 level (horizontal field of
view = 0.63 mm). Showing rutile overgrowth(r) on

pyrite.



77




78

as anhedral overgrowths on the pyrite of stages 1, 2 3, and 4 (Fig.
26b). Rutile also occurs as isolated globular aggregates. The presence
of titanium and iron oxides in association with sulfide minerals has
significant bearing on the physical chemistry of the ore system. The
exact time of oxide introduction is difficult to ascertain, and it is
possible that more than onme period of oxide mineralization has occurred.
In a brief reference to Cripple Creek, Ramdohr (1980) states that as the
result of increasing sulfur ion concentration due to falling temperature
and pressure, pyrite replaces specular hematite in the Cripple Creek
ores. No textures indicating replacement of hematite by pyrite were

observed in polished sections of the Ajax veins.

4, Stage 4

The fourth stage of vein mineralization is the most economically
important stage. Where best developed it comsists of milky white
euhedral quartz that partially fills open vugs, fine subhedral (15-25
um) pyrite, and bladed calaverite crystals (Figs. 22a, 27a, 29b, 3la,
31b). Rutile is present both as discrete anhedral grains and as
overgrowths on pyrite. The vuggy nature of this stage is significant,
since the highest gold values invariably occur where the vuggy texture
is present. The absence of fourth stage quartz does not preclude gold-
telluride mineralization. Calaverite was observed replacing the pyrite
of earlier stages in several sections (Fig. 27b). Generally, the
calaverite replaces the latest pyrite of the earlier stage and does not
replace fourth stage pyrite. Electron microprobe analysis of the
calaverite indicates that it is composed of 30% gold, 3.5% silver, and
approximately 66% tellurium. Calaverite was the omly telluride

positively identified. Acanthite intergrown with calaverite was
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Figure 27. A. Photomicrograph of polished-section from Bobtail
vein, 3100 level (horizontal field of view = 0.63
mm). Showing stage 4 calaverite in quartz.

B. Photomicrograph of polished-section from Newmarket
vein, 3100 level (horizontal field of view = 0.265
mm). Showing stage 4 calaverite(c) replacing
pyrite of an earlier stage.
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Figure 28.

A.

Photomicrograph of polished-section from Bobtail
vein, (same section as 27-A) (horizontal field of
view = 0.265 mm). Showing free gold-tellurite rim
(g) on calaverite.

Photomicrograph of polished-section from Bobtail
vein, 3350 level (horizontal field of view = 0.63
mm). Showing brecciated early pyrite with later
pyrite overgrowth and matrix filling. Note late
quartz veinlet cutting pyrite.
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observed in one section and a brownish-gold rim composed of 75% gold,

10% silver, and 15% tellurium (normalized) occurs on the same grain (Figs.
27a, 28a). The composition and optical properties of the rimming

mineral do not correspond to any of the known tellurides (Uytenbogaardt
and Burke, 1971). It may represent a mixture of tellurite and native
gold formed by the oxidation of calaverite. Lane (1976) reports a

similar occurrence in ores of the El Paso mine.

5. Stage 5

Stage five represents a relatively minor constituent of the vein
assemblage. Fifth stage mineralization occurs only where open vugs were
still present following fourth stage deposition. Stage five-consists of
fine euhedral fluorite, minute quartz euhedra, and euhedral dolomite,
all of which occur as vug-filling minerals (Fig. 29a, 29b). A late
stage drusy opaline quartz was observed in samples from the Newmarket
and Newmarket Shear veins. The significance of fifth stage
mineralization is that it commonly obscures minerals of the fourth
stage. A valid assumption that can be made is that the presence of

stage five generally implies the presence of stage four.

C. Vein Morphology
1. Bobtail vein
The Bobtail characteristically exhibits the most complete
development of the paragenetic sequence. Although all five stages are
not present in any one vein section, generally at least two, and more
commonly, three or four stages are represented (Fig. 22a, 25b, 29a, 29b,
30a). The Bobtail also exhibits the most complex structural activity of

the veins sampled. As many as four fracture events can be documented in
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Figure 29.

A.

Photograph of Bobtail vein, (3350 level), hand
specimen. Showing vuggy, stage 5 euhedral dolomite
coating fragments of altered granite.

Photograph of Bobtail vein (cut slab of same sample
as above). Showing roscoelite(r) altered granite
fragments overgrown by dark grey stage 1(1),
euhedral stage 4 quartz(q) and calaverite, and
stage 5 dolomite(d).
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Figure 30.

A.

Photograph of Bobtail vein (3350 level), hand
specimen. Showing stage 3 quartz-fluorite(3) in
highly fractured phonolite.

Photograph of Bobtail vein (2300 level), hand
specimen. Showing multiple fracture events (1-4)
and mineral repetition in stage 3. Note weak
wallrock alteration.
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Bobtail vein samples (Fig. 30b). The movement was limited to a subtle
opening and occasional minor breccia formation with no recognizable
lateral or vertical offset. The amount of opening that occurred is
generally less than 1 cm but can be as much as 5 cm. This structural
activity in the form of minor opening and breccia development is the
principal reason for the diverse composition of the Bobtail. The
fissures that host the veins were selectively opened and closed, causing
fluctuations in both the ore locus and the physio-chemical conditiomns
influencing vein mineral deposition. This caused the observed partial

omissions of the paragemetic sequence.

2. Newmarket vein

The Newmarket vein composition sharply contrasts that of the
Bobtail. The Newmarket is dominated by the milky white, euhedral quartz
of stage four (Fig. 3la, 31b). Stages one and three may be present, but
their development is minor. Stages two and five are rarely present with
the exception of a minor stage two component observable in thin section
and one sample containing stage 5 quartz and fluorite. The Newmarket
generally does not exhibit evidence of multiple stages of fracturing,
and the sheeted structure characterizing the Bobtail is absent (Fig.
17). Similar to the Bobtail, the Newmarket exhibits variable
composition and partial omission of the paragemetic sequence indicating
minor movement did occur during vein deposition. The lack of stage
repetition and breccia development indicate the movement occurring along
the Newmarket structure was less significant than the movement along the

Bobtail.
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Figure 31.

A.

Photograph of Newmarket vein (2000 level), hand
specimen. Showing exclusion of all stages except
stage 4 quartz. Note extremely weak wallrock
alteration.

Photograph of Newmarket vein (3100 level), hand
specimen. Showing "bughole granite" type
mineralization. Formed by dissolution of biotite
and plagioclase with subsequent infilling of vugs
by late stage mineralization.
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3. Other veins

The other veins sampled generally exhibit a composition
corresponding to the particular fracture trend to which they belong.
These veins were not sampled in enough detail to be specifically
defined. The Christensen and Apex veins are similar to the Bobtail vein
in morphology and composition. The X-10-U-8, Mohican, and Newmarket
Shear veins are all members of the north-northwest set. Although
sampling of these veins was sporadic, a few gemeral characteristics of
each can be noted.

The X-10-U-8 vein consists primarily of second and third stage
mineralization with the second stage component occurring in minute vugs.
The vein is unsheeted with no evidence of multiple shearing events and
varies in width from 1-4 cm.

The Mohican is a narrow, unsheeted vein. Extremely variable in
composition, it ranges from dominantly second and third stage minerals
to dominantly first and fourth stage minerals. The vein exhibits no
evidence of multiple fracturing and is 1-2 cm wide (Fig. 32a).

The Newmarket Shear has the most diverse morphology of the north-
northwest set. Characteristically, it consists of multiple subparallel
mineralized fractures. The fractured zome is 0.5 ft (15 cm) to 2 ft
(0.6 m) wide. Fracturing occurred prior to mineralization, as evidenced

by the lack of symmineral or postmineral fracturing.

D. Vertical Metal Zomation
The purpose of sampling the Ajax vein system was to examine the ore
fluid metal chemistry as reflected in the composition of the veins and
altered wallrock. As reported in Table I, vein samples are 4 to 6 in

(10-15 cm) wide and are composed of vein mineralization only. Samples



Table I. Geochemical Analyses of vein and wallrock samples: Ajax Vein System, Cripple Creek, Colorado

Sample

no. and Sample Concentration, ppm

Location Type Au:iAg  Au:Te Au Ag cd Co Cu Mo Ni Pb Te V Zn
4-B v 0.81 1.08 0.063 0.078 15. 9. T 35. 6. 160. 2.0 LI15. 2200.
4-B v 0.005 0.106 0.4

4-B:FW FG L0.005 L0.005 0.4

7-H-1 v 0.012 0.406 1.5 5 25. 120. 4, 15.. 6.2 15, 180.
7-M-2 v 7.0 0.88 1.07 0.153 2.7 Bl 10. 40 . 5. 140, 41.5 65, 250.
7-M=1:HW AG 0.012 0.108 1.4

7-M=1:HW FG L0.005 L0.005 0.4

10-A-1 v 0.01 0.53 45. 21, 12. 320. 15. 240. 1.2 L15. 6500.
10-NM-2 v 1.96 0.53 0.100 0.051 0.9 9. 10. 13, T 16. 6.4 60, 25.
10-NM-2:HW AG L0.005 L0.005 0.2

14-C-1 v 0.67 0.73 0.178 0.267 4.0 14, 18. 170. 12, 80. 8.4 230. 110.
14-C-1 AG 1.61 1.2 0.063 0.039 1.8

14-C-1 FG L0.005 L.005 0.4

14-M~1 v 0.20 0.44 0.118 0.58 1.6 17. 8. 45. 9. 17. 9.2 120. 23.
14-M-2 AG L0.005 L0.005 0.4

16-X v 0.032 0.050 3.0 10. 6. 90. 8. 250. 0.8 LI15. 130.
16-X:PH AP L0.005 L0.005 0.6

16-C v 0.93 0.62 0.190 0.204 1.3 6. 16. 360. 5. 160. 10.4 80. 80.
16-2 v 1,0 1.05 0.123 0.126 2,0 7s 11, 430, 6. 190, 4.0 130, 140,
16-M v 4.0 1.15 0.478 0.118 0.9 3. 16. 170. 3. 8. 14.2 500. 80.
16-M:PH AP L0 .005 L0.005 1.0

20-BT v 15.0 0.74 1.71 0.114 4.2 15, 12. 25. 18. 55. 79.0 240, 100.
20-BT:FW AG L0.005 L0.005 0.4

20-BT:PH AP L0.005 L0.005 0.8

20-BT AG L0.005 L0.005 0.6

20-NK-1 v 1.1 0.99 0.130 0.12 0.2 4. 12, 5. 4. 9. 4.5 25. 20.
20-NM-1:HW AG L0 .005 L0.005 0.2

20-NM-2 v 4.7 0.93 0.299 0.064 0.6 12. 11. 11. 5. 15. 11.0 130. 50.
20-U A 0.019 0.034 3.4 13. 18. 40, 12, 40, 1.2 85. 140,
23-BT v 1.4 0.197 0.137 3.4 10. 30. 95. - 170. 8.8 130. 250.

[49)



Table I. (continued) Geochemical Analyses: Ajax Vein System, Cripple Creek, Colorado

Sample
no. and
Location

Sample
Type Au:Ag

Ag

Cu

Mo

Concentration, ppm
Pb

In

23-BT:HW
23-BT
23-M
23-M:HW

26-BT
26-BT
26-BT:FW
26-BT:PH
26-BT:HW
26-NH-1
26-NMS

30-BT

30-BT :HW
30-BT:FW
30-BT:PH

31-BT
31-BT~2
31-BT:HW
31-BT:HW
31-NM-3
31-NM:BH
31-N-1
31-NS-1
3l-xT-1

33-BT-4
33-BT-2

AG

FG

v 7.3

FG

v 0.83
v 0.93
AG 4.1

AP

FG

v 4.9

v 2.2

v 0.48
AG

AG

AP

v 23.0

v 8.3

AG 4.0

AG

v 4.6

v 3.6

v 4.5

v 11.2

v 27

v 1.7

v 1.7

0.032
L0.005
0.177
L0.005

0.095
0.091
0.028
0.005
L0.005
0.089
0.070

1.38

0.005
0.006
0.012

0.904
0.629
0.72

0.010
0.170
0.117
0.423
0.340
0.056

0.305
0.140

30.

30.

17.

30.
25
12.

90.
35

230,

200.

230.

260.

470.

160.

18,

11.
160.

200.
240,

35.
80.

30.

480.
250.

. s s
—-~-ooo OO0 O

-
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600.

4100.

75.

45.
330.

460.

570.

30.

35.
30.
280.

2300.
2200.
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Table I. (continued) Geochemical Analyses: Ajax Vein System, Cripple Creek, Colorado

Sample

no. and Sample Concentration, ppm

Location Type Au:Ag Au:Te Au Ag Cd Co Cu Mo Ni Pb Te V Zn
33-BT:PH v 0.27 0.51 0.183 0.685 23. 15. 30. 200. 15. 690. 12.2 760. 3100.
33-BT:HW AG 0.024 L0.005 2.2

33-BT:FW AG L0.005 L0.005 1,2

4 = 400 level, 7 = 700 level, 10 = 1000 level, 14 = 1400 level, 16 = 1600 level, 20 = 2000 level, 23 = 2300 level,
26 = 2600 level, 30 = 3000 level, 31 = 3100 level, 33 = 3350 level

B=DBvn, M = Mohican vn, A = unnamed vn, NM and N = Newmarket vn, C = Christensen vn, X and Z = breccia-hosted vns,
BT = Bobtail vn, U = unnamed vn, NM5 and N5 = Newmarket Shear vn, V = vein

FG = fresh granite, AG = altered granite, AP = altered phonolite, FW = footwall, HW = hanging wall, PH = phonolite dike,
BH = bughole granite

Au and Ag reported in oz/ton, lower detection limit = 0.005 oz/ton
Base metals reported in PPM, L150 indicates less than 150 ppm

Note: see sample locations on plan maps (Figs. 4=14)

h6
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Figure 32. A. Photograph of Mohican vein (2300 level), hand
specimen. Showing stage 3 quartz-fluorite vein.
Note weak wallrock alteration.

B. Photograph of breccia-hosted vein (1600 level),
hand specimen. Showing pervasive alteration of
breccia and irregular fracturing. Note stage 3
fluorite(f) in vugs.
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of granite and phonolite are hand specimens approximately 3 to 6 in
(7.5-15 cm) wide.

No consistant vertical variation in Au/Ag ratio has been recognized
(Table I). Au/Ag ratios vary from 23:1 to 0.20:1. Magnitude of the
ratio is controlled by gold content; higher ratios correlate with
increased gold tenor.

Au/Te ratios were calculated in an attempt to determine whether
gold content in the tellurides (calaverite) varies with depth. As shown
in Table I, the Au/Te ratio varies from 0.38 to 1.82 in mineralized
samples (Au 0.06 0z/T), and exhibits no consistant vertical variation.

Lack of precious metal zoning in the Ajax system contrasts with the
gold-telluride bearing vein systems of Vatukoula, Fiji (Denholm, 1967).
At Vatukoula, gold-tellurides are replaced by more argentiferous
tellurides and sulfides with increasing depth. Zoning at Vatukoula can
be recognized within a vertical distance of 900 feet (274 m).

A subtle increase in base metal values occurs in samples from the
lower mine levels of the Ajax (Table I). This may reflect initial
development of a subtle zoning pattern similar to that observed at
Vatukoula. Sample data from the Ajax vein system are far from
conclusive.

As shown in Table I, the Newmarket vein has significantly lower
base metal eﬁrichment than the Bobtail. This is further evidence in
support ot the suggestion that the Newmarket fissure opened at a later
time than the Bobtail.

An additional inference present in the geochemical data regards
silver content of the veins. Although not independent of gold content,

silver content can be relatively high without correspondingly high gold
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values. This indicates that significant silver is present in
association with stage 2 sulfides. No silver minerals were identified
in stage 2. Lack of correlation between silver and other base metals
indicates that silver is present as a discrete mineral phase,
erratically distributed in stage 2 mineralization.

The lack of or weak development of metal zonation in the Ajax veins
may indicate that the mineralization was formed by a hydrothermal system

of relatively great dimension.



CHAPTER V

VEIN-RELATED ALTERATION

A. Introduction

Wall-rock alteration associated with the Ajax vein system was
studied using thin section and X-ray diffraction analyses. Sequential
thin sections of cross sections through the differemt veins were
prepared to determine mineral composition, intensity, and extent of the
alteration assemblage. In addition to petrographic analysis, X-ray
diffraction was used to identify the more obscure minerals. By these
methods, two distinct zones of vein-related alteration have been
identified (Fig. 33).

The only previous work on vein-related alteration in the district
was performed by Lindgren and Ransome (1906), althowgh pertinent
observations specifically dealing with alteration of the granite were
made by Rickard (1902).

An attempt to determine the age of alteration by K/Ar methods was
unsuccessful. Roscoelite, a vanadium-bearing sericite, was the mineral
on which the age determination was attempted. Roscoelite intergrown
with sericite replaces primary Precambrian biotite and plagioclase in
the Ajax system. The result of the age determination, 153+5 MYBP, is
significantly older than determinations made on alkaline intrusive-
volcanic rocks in the district (Chap. II, A). From observed field

relations, it is known that vein mineralization post-dates the most
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Figure 33. Diagram showing vein-related alteration in the Ajax
vein system.
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Figure 34.

A.

B.

Photomicrograph of thin-section from Bobtail vein,
2600 level (horizontal field of view = 1 mm). ’
Showing pseudomorphic replacement of biotite by
dolomite(d), secondary orthoclase(o), roscoelite-
sericite(r), and pyrite(p).

Photomicrograph of thin-section from Bobtail vein,
3350 level (horizontal field of view = 3 mm).
Showing inner zone alteration; adularia(a) rimming
microcline(m), roscoelite(r), recrystallized
quartz(q), and fluorite(f).
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recent intrusive activity. Therefore it is implausible that the
roscoelite-determined date is accurate. A likely explanation is that
the alteration did not completely replace the primary Precambrian
biotite and/or the sericite may be deuteric. Although adularia is
present in the Ajax veins, and is amenable to K/Ar dating, it is not

coarse enough to allow collection of a separate of sufficient volume.

B. Lateral Zonation
1. Inner zone

The inner zone of vein-related alteration is easiest to recognize
megascopically. Varying in width from less than one to three times the
width of the vein, it is characterized by total replacement of biotite
by variable amounts of pyrite, magnetite, dolomite, secondary
orthoclase, roscoelite-sericite, and minor fluorite (Fig. 34a). Rickard
(1902) was the first to study the alteration of gramite hosting the
veins and recognize the inner zone of biotite destruction. Honeycombing
(dissolution vugs) of the granite and the presence of valencianite
(adularia) also were documented by Rickard (1902). Microcline of the
inner zone is rimmed and veined by adularia (20%-80%) and weakly dusted
by sericite (Fig. 34b). Minor secondary quartz occurs locally with the
adularia replacement of microcline. The plagioclase (oligoclase) of the
inner zone is totally replaced by variable amounts of veinlet-controlled
montmorillonite, sericite, roscoelite, and minor carbonate (Fig. 35a).
Inner zone quartz has undergone a slight recrystallization and, in the
more intensely altered areas, a complete dissolutiom and reprecipitation
has occurred. Secondary quartz is easily distinguished by its
characteristic feathery habit seen in thin section. Apatite and zircon

are unaltered even in the areas of most intense alteration. They
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Figure 35.

A.

B.

Photomicrograph of thin-section from Bobtail vein,
3350 level (horizontal field of view = 1 mm).
Showing inner zone alteration; euhedral
adularia(a), roscoelite(r), recrystallized
quartz(q), and scattered fluorite(f).

Photomicrograph of thin-section from X-10-U-8 vein,
3100 level (horizontal field of view = 3 mm).
Showing outer zone alteration; sericite-—dolomite-
adularia after biotite(b), montmorillonite-sericite
on plagioclase(p), adularia rimming microcline(m),
and slightly recrystallized quartz.
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commonly have been deposited as xenocrysts within the veins.

This inner alteration zone associated with the Ajax veins is similar in

nature to alteration associated with the pyritic-gold-telluride veins of
Jamestown, Colorado. As described by Bonorimo (1959), alteration around
the veins is characterized by the stability of quartz and microcline and
the introduction of sericite, secondary orthoclase, and minor secondary

quartz.

Lindgren and Ransome (1906) first identified roscoelite as an
alteration product associated with the telluride veins of Cripple Creek.
In this study, identification of roscoelite was performed both by
petrographic and X-ray analysis. Significant discrepancies exist in the
X-ray data reported for roscoelite. Heinrich and Levinson (1955) report
results from a study dealing specifically with the X-ray characteristics
of roscoelite. X-ray results for Ajax "roscoelite' correlate well with
the data of Heinrich and Levinson (1955). A poorer correlation exists
between data reported for roscoelite in the J.C.P.D.S. powder
diffraction file (Berry, 1974) and the data obtained in this study,
although the pattern for roscoelite is still the best fit. The optical
properties of Ajax "roscoelite" as seen in thin section are similar to
muscovite. However, a yellow-green tint of variable intensity 1is
present when viewed in unpolarized light, apparently caused by the
presence of vanadium. This distinguishing characteristic agrees with
previously reported information regarding roscoelite (Lindgren and
Ransome, 1906). Whether the material identified as roscoelite in this
study is a true roscoelite or a vanadiferous muscovite is still open to
question. Most likely, a solid-solution exists between the two mica

species and the composition and structure of the Ajax material lies
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somewhere between the two end members. As documented by Kelly and
Goddard (1969), roscoelite occurs in the gold-telluride veins of Boulder
County, Colorado. Although the roscoelite recognized at Boulder County
occurs as a vein constituent, it probably is present as an alteration

product as well.

2. Quter zone

The inner boundary of the outer zone of vein-related alteration is
defined by the presence of relict biotite cores (Fig. 35b). Extent of
the outer zone of alteration varies from two to five times the width of
the vein. Biotite is up to 95% replaced by sericite, secondary
orthoclase, magnetite, pyrite, and carbonate. Plagioclase of the outer
zone is characterized by a slightly less intense alteration in which
twin planes can be distinguished. Plagioclase is replaced by up to 95%
montmorillonite-sericite and minor carbonate. Quartz and microcline are
generally fresh in the outer zone, although the microcline is

occasionally veined by adularia and quartz.

3. Deuteric zone
Deuteric alteration is characterized by predominately fresh biotite
which may be weakly altered to chlorite and magnetite. Plagioclase is
covered by up to 50% veinlet-controlled sericite. All other

constituents of the granite are fresh in the deuteric zone.

C. Alteration of Phonolite and Basalt Dikes
The intensity of dike alterationm is dependent on proximity to a
mineralized structure. Alteration of the phonolite consists of
bleaching, devitrification and silicification of the groundmass with

introduction of pyrite, sericite-montmorillonite, minor roscoelite, and
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Figure 36.

A.

Photomicrograph of thin-section from phonolite-
hosted Bobtail vein, 3350 level (horizontal field
of view = 3 mm). Showing alteration of vein-
associated phonolite; stage 3 quartz-fluorite
veins(3) in roscoelite dusted groundmass of alkali

feldspar.

Photomicrograph of thin-section from Newmarket
vein, 3100 level (horizontal field of view = 3mm).
Showing veinlet of stage 1 mineralization(l) and
weak wallrock alteration. Note sericite-
montmorillonite on plagioclase, partial replacement
of biotite by sericite, and fresh microcline.
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fluorite (Fig. 36a). The feldspathoid phenocrysts and microcline
xenocrysts are core-replaced by quartz and fluorite.

Alteration of the basalt dikes is similar to that observed in the
phonolites. Basalt dikes are commonly altered by supergene processes
that mask hypogene alteration. The dikes are extensively bleached and
the groundmass is replaced by sericite, roscoelite, and pyrite.
Silicification and devitrification of the groundmass is common but to a
lesser degree than is present in the phonolites. The feldspathoids are
partially replaced by quartz.

In both types of dikes, a vuggy texture commonly is developed from
the dissolution and only partial replacement of the feldspathoid

minerals.

D. Chemical Changes

Chemical changes caused by hydrothermal alteration in the district
have been addressed briefly by Gott et al. (1969). Potassium enrichment
at the expense of sodium occurs throughout the district, and areas of
greatest enrichment correlate well with the highest gold and silver
concentrations (Gott, et al. 1969). A chemical comparison between
unaltered and altered granite of the Ajax mine reported by Lindgren and
Ransome (1906) serves to corroborate the mineralogical changes

previously mentioned (Table II).

E. Alteration Controls
The principal controls on alteration in the Ajax vein system are:
vein width, fracture intensity, host-rock lithology, dip of the
mineralized structures, and the relative time at which the ore-hosting

structure became receptive to mineralizing fluids. Since a combination
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Table II. Comparative analysis of fresh (A) and altered (B) granmite
wallrock (from Lindgren and Ransome, 1906).

A. B. A. B.
Si.O2 66.20 59.58 303 None. None.
&1203 14.33 16.00 Ccl Trace. Cr)
Fe,0, 2.09  0.30 F (2) 20.69
FeO 1.93  0.65 Fes, 0.12 b,.78
Mg0 0.89 0.03 MnO 0.13 Trace.
Ca0 1.39 2.03 BaO 0.18 0.11
NaZO 2.58 0.98 Sr0 Trace. 0.01
K20 7:31 11.93 L120 Trace.  Trace.
HZO- 0.48 0.32 V203 0.39
HZO+ 0.83 0.81 Mb03 0.01
'Ii.O2 0.65 0.75 99.74 99.95
Zr0 0.02 (?7)

Less O 0.29
002 0.36 0.26
P206 0.25 0.32 99.66
a b
1-42 caF. 2.55 s'

A. Ajax mine, level 6.

B. Ajax mine, level 6, 1 foot from 345.
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of alteration parameters generally are present, the relative individual
importance of the controls is difficult to ascertain. Vein width and
fracture intensity are the dominant alteration controls. This is
markedly similar to controls on alteration noted in the Sunnyside vein
system by Casadevall and Ohmoto (1977). No vertical zonation of the
alteration assemblage was recognized in the Ajax system. Host rock
lithology is of minor importance as the bulk of mineralizationm in the
Ajax system is granite hosted. Vein associated basalt and phonolite
dikes undergo a more pervasive alteration than does the granite due to a
more brittle fracture response and subsequent greater permeability.
Alteration in the granite is characterized by irregular boundaries often
with no recognizable control. At least some local control appears to be
related to biotite. Aiterstiou of plagioclase in particular is
generally much more intense near altered biotite phemocrysts. Other
controls on alteration are best exemplified by studying the associated
alteration selvages of characteristic veins. Alteration associated with
all veins sampled in the Ajax system may be defined by the controls

operative on the Bobtail and Newmarket veins.

1. Bobtail vein

The Bobtail vein is commonly a sheeted, relatively flat-lying
structure locally exhibiting good developmeﬁt of all stages of
mineralization. The Bobtail exhibits the most intemse alteration of all
the veins in the Ajax system. As evidenced by the presence of well
developed first stage mineralization, the structure was generally
receptive to early stage, highly reactive fluids. The highly fractured
and sheeted nature of the structure is the primary control on alteration

intensity, similar to what has been reported at other precious metal
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vein deposits (Buchanan, 1980). This control is exemplified by fracture
localization of the alteration (Fig. 25b). The combination of sheeted
fracturing, as opposed to single fissure development, with flat dip
tends to impede fluid flow and allow more intense alteration to develop
(Fig. 34b, 35a). The flat dip of the structure is of lesser importance
due to the impermeable nature of the hosting granite. No general
increase in alteration intensity on the hanging wall of the mineralized
structures was observed. This is contrary to what would be expected if
the dip of the structure had significantly influenced alteration

development (Buchanan, 1980, 1981).

2. Newmarket vein

The Newmarket vein is markedly dissimilar to the Bobtail in terms
of fracture development and associated alteration. It is a steeply
dipping (70°-80°), poorly fractured structure that generally has only
minor development of the first three stages of mineralizatiom. The
Newmarket exhibits the weakest alteration of any vein within the Ajax
system (Fig. 3la, 31b, 36b). Variation in vein-related alteration along
different mineralized structures has been reported in other districts
(Sawkins, O0'Neil, and Thompson, 1979). Alteration intensity is
controlled by the relative time at which the structure became receptive
to altering fluid. The Newmarket fissure is believed to have opened at
a later time than the Bobtail (Loughlin and Koschmann, 1935). The
Newmarket does not appear to have been accessible to ore-forming fluids
until atter the‘first stage of mineralization. As previously mentioned,
recent work by the author has revealed the presence of a minor first
stage component in the Newmarket vein. The principal control on

alteration associated with the Newmarket is the fracture intensity. Of
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lesser importance is the steep dip of the structure, which allowed
relatively unrestricted fluid flow and subsequent weak alteration
development. Fracture dilation is minor; alteration-mineralization
along some of the tighter fractures consists of fracture localized
dissolution vugs partially filled with fourth and fifth stage minerals
(Fig. 31b). This type of mineralization is equivalent to the "bughole"

mineralization noted by Loughlin and Koschmann (1935).

3. Breccia

Breccia-hosted veins were sampled in two locations. Conclusions
drawn regarding alteration in the breccia must be regarded as tenuous.
Alteration of the breccia is much more pervasive than that in the
granite due to greater permeability in combination with the irregular
sheeted nature of the breccia-hosted veins. In the areas sampled, inner
zone alteration was pervasive and no outer zone was present (Fig. 32b).
The pervasive nature of the alteration is the result of an increase in

overall width of the sheeted fracture zone that was developed.



CHAPTER VI

FLUID INCLUSION ANALYSIS

A. Introduction and Methods

The only previous fluid inclusion study in the Cripple Creek
district that has been published is by Lane (1976). 1In a thesis on the
El Paso mine, Lane reports homogenization temperatures for 17 barite-
hosted inclusions and 12 fluorite-hosted inclusions. Homogenization
temperatures ranged from 162 to 266°C in barite and from 168 to 190°C in
fluorite. Although no detailed paragenetic study was performed on the
vein mineralization, fluorite was deposited later than the barite (Lane,
1976). These results from the El Paso correlate well with the stage
three homogenization temperature results from the Ajax system (VI.B.3).

Primary fluid inclusions from 12 different elevations (Figs. 39,
41) in the Ajax mine were analyzed in an attempt to gain some insight
into the character of the mineralizing fluid. Thirty-four doubly
polished plates were prepared from the vein samples. Minerals
containing the most suitable inclusions for analyses were quartz and
fluorite. One vein sample contained coarse sphalerite that was suitable
for heating stage analysis. An unsuccessful attempt was made to
determine filling temperatures of dolomite-hosted fluid inclusions from
the Bobtail vein. The incompetent nature of the dolomite caused

decrepitation prior to homogenizationm.
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The analyses were performed on a Roman-Science heating-freezing
stage mounted on a Lietz Ortholux II Pol-Bk microscope. Only inclusions
with distinctively primary characteristics (Roedder, 1979) were used in
this study. Initially, fluid inclusions were measured, sketched, and
classified based on their physical appearance.

Suitable inclusions were then analyzed for homogenization
temperature, freezing temperature, temperature of NaCl dissolution, and
clathrate melting temperature. Homogenization temperatures were
determined for 120 inclusions. Maximum uncertainty of homogenization
temperatures as indicated by three replicate measurements is +3.0°C.
Freezing temperatures were measured on 60 inclusions and maximum
uncertainty is + 1.4°C, based on two replicate measurements. NaCl
dissolution temperatures were determined for 30 fluid inclusions. Due
to the inconsistancy of halite recrystallization, replicate measurements
for NaCl dissolution were performed on only five inclusions. Maximum
uncertainty is +3.7°C for NaCl dissolution. Clathrate (COz—hydrate)
melting points were determined for five inclusions. Maximum uncertainty
for clathrate melting temperatures is + 0.2°C, based on two replicate

measurements per inclusion.

B. General Characteristics
Fluid inclusions were analyzed from stages 1, 2, 3, and 4, with the
greatest emphasis on stages 1 and 3. A double meniscus of varying width
was observed in some of the inclusions from stages 1, 3, and 4

indicating presence of CO, in the ore fluids (Roedder, 1972). Results

2
of the fluid inclusion analyses are shown in Tables III and IV.
Quartz contains the only useable inclusions in the first stage of

mineralization. The inclusions are a combination of types III and IV



TABLE III. Fluid Inclusion Data: Ajax Vein System, Cripple Creek, Colorado

Filling Temperatures (OC ) Salinity (eq. wt. % NaCl)
) No. Temp. Mean No. Salinity Mean
Sample number Mineral Location Stage inclusions range temp. inclusions range Salinity
2-2-: g¥% zggt»i ] 1 3023-5103 4003 8 32-47 37
f- . 3 5 183°-216° 194 4 0-5.9 3.0
7-M-1 QTZ 700L-M 1 10 259°-371% 303° 6 36-47 42
7-M-1 QTZ 700L-M 3 3 200°-205° 203° 3 6.6-6.7 6.6
10-A-1 SL 1000L-U 2 4 2?1°—2gg° 282° ] 0.3 0.3
10-NM-) QT2 1000L -NM 3 1 178 178° ] 3.1 3.1
14-C QT2 1400L-C ] 8 288°-362° 325° 8 40-47 43
14-C FLR 1400L-C 3 7 181°-279° 231° 1 0 0
16-C QTZ 1600L-C ] 3 258°-389°  334° s e, S
16-2 FLR 1600L -BX 3 5  2252-261° 244° 3 4.0-7.3 4.6
16-X QTZ 1600L-BX ] 5  278)-3610 3179 2 37-39 38
16-X FLR 1600L -BX 3 6 148°%-286° 218° 5 0-1.8 0
20-BTS FLR 2000L-BT 3 4 209°-243% 222° 3 1.0-6.0 1.3
20-NM-2 Q12 2000L-NM 3 4 270°-285° 280° 2 1.0-6.8 1.9
20-NM-2 FLR 2000L -NM 3 6  189°-279° 240° 1 1.7 1.7
23-BTS FLR 2300L-BT 3 3 1752-1872 lasg 1 2.3 2.3
23-M QT2 2300L-M 1 2 289°-297° 293 ] 36 36
23-M FLR 2300L-M 3 3 248°-261° 254° i Gas G
26-BTS QT2 2600L-BT 1 6  2062-275° 236° ] 37 37
26-BTS FLR 2600L-BT 3 8 123%-252° 183° 2 0 0
26-NM-1 Q12 2600L-NM ] 3 269°-320° 284° ! 30 30
28-NMS QTZ 2800L-NMS ] 3 238°-278° 254° - — —
30-J QTZ 3000L-J 1 3 305°-309° 307° s - .
30-BTS FLR 3000L-BT 3 3 236°-276° 251° 3 0-2.3 0.2
31-NM-3 FLR 3100L-NM 3 7 185°-350° 271° ] 0
31-NM-3 QT2 3100L-NM 4 5 144°-159% 151° e - S
31-BTS-2 QTZ 3100L-BT 4 8 105°-143°  129° 7 1.4-3.5 2.9
33-BTS-1 Q12 3350L-BT ] 4 3283-3323 3302 3 32-33 33
33-BTS-PH FLR 3350L-BT 3 3 269°-286° 278 2 2.8-8.3 4.8

QTZ=quartz, SL=sphalerite, FLR=fluorite; L=level; A=Apex vein, H=Mohican vn, U=Unnamed vn, NM=Newmarket vn,
C=Christensen vn, BX=breccia-hosted vn, BT=Bobtail vn, HMS=Newmarket Shear vn, J=Jennifer vn.
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Table IV. Fluid Inclusion Data: Ajax Vein System, Cripple Creek, Colorado

Homogenization Salinity Trapping Internal CO
Temperatures (°C) (eq. wtX NaCl) Density Pressure Pressure CO, content Maximum depth
Stage Range Mean Range Mean glcec (bars) (bars) (mole 2) to boiling (meters)
1 206-510 308 30-47 37
3350L 1.163 Haas(1971): 120-990
700L 1.254
328°C 215 27 2.8 1771 1909
206°C 155 27 2.0 1277 700L |37 33301
3 123-350 228 0-8.3 2.1
FLR 123-350 231
QT2 178-285 212
3350L 0.97
jloonL 0.94 Haas(1971): 3-600
700L 1.00
400L 0.96
269°C 260 44 4.0 2686 2857
123°c 370 44 2.6 3615 79O gy S100L
4 105-159 140 1.4-3.5 23
jlooL 0.97 Haas(1971): 3-45
144°C 360 44 2.8 3834
105°¢ 400 44 2.2 AZ60. Y100L

611
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(Nash, 1976) and range in size from 10 um to 45 um in diameter. They
commonly contain halite daughter minerals and hematite and sylvite
daughters are present in some samples (Fig. 37). Neither hematite nor
sylvite were observed as the sole solid phase; both occurred only in
inclusions containing a halite daughter. 002 is a constituent of the
ore fluids as indicated by the presence of a narrow double meniscus
(Figs. 38a, 40a) and the formation upon freezing of a Coz—hydrate
crystal that does not melt until temperatures reach +8-9°C (Roedder,
1963). The double meniscus is more common and better developed in stage
1 inclusions than in inclusions of later stages due to higher salinity
causing greater immiscibility of co, (Bodnar and Kuehn, unpub.). Vapor
to liquid ratios of stage 1 primary inclusions are relatively constant,
with vapor content ranging from 5 to 10Z. A small percentage of primary
inclusions in stage 1 are vapor rich, ranging from 20 to 50 volume %
vapor (Fig. 40).

Only one sample of sphalerite from stage 2 contained suitable
inclusions for analysis. The generally poor development and fine
grained nature of stage 2 minerals hindered fluid inclusion analysis of
this stage. Stage 2 inclusions are two phase, liquid-dominated
inclusions containing 5-10% vapor and have a constant liquid to vapor
ratio.

Stage 3 quartz and fluorite both contain abundant primary
inclusions suitable for analysis. Inclusions in both minerals can be
either two or three phase and are liquid-dominated with the exception of
a few primary vapor-rich inclusions present in each section. Inclusions
in quartz commonly contain 5-10% vapor and range in size from less than

10 um to 30 um in diameter. Fluorite inclusions have a slightly more
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Figure 37. A. Photomicrograph of doubly polished plate from
Bobtail vein, 3350 level (horizontal field of view
= 0.3 mm). Showing stage 1 quartz-hosted fluid
inclusions with halite daughter minerals(h).

B. Photomicrograph of doubly polished plate from
Mohican vein, 700 level (horizontal field of view =
0.3 mm). Showing stage 1 quartz-hosted fluid
inclusions with halite(h), hematite(he), and
sylvite(s)(?) daughter minerals. Note thickened
vapor-liquid contact indicating presence of CO,.
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Figure 38.

A-

Photomicrograph of doubly polished plate from
Bobtail vein, 2600 level (horizontal field of

view = 0.3 mm). Showing stage 3 fluorite-hosted
fluid inclusion with double meniscus(c) indicating
presence of COZ'

Photomicrograph of doubly polished plate from
Bobtail vein, 3100 level (horizontal field of
view = 0.3 mm). Showing stage 4 quartz-hosted two
phase fluid inclusion.
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variable average vapor content of 5-15% and range in size from less than

10 um to 40 um in diameter (Fig. 38a). The presence of CO, was

2
indicated by a thin double meniscus in approximately 20%Z of stage 3
inclusions. CO2 does not show any preference for either fluorite or
quartz, occurring in the inclusions of both minerals with equal
frequency.

Difficulties in obtaining stage 4 material are inherently obvious.
Since stage 4 quartz hosts high-grade gold-telluride mineralizatiom, it
was only rarely overlooked. The milky white quartz of stage &4 is
somewhat irregular in fluid inclusion content. Of the several sections
of stage 4 quartz that were prepared, only two contained useable fluid
inclusions. Where present, stage 4 inclusions range from 10 to 60 um in
diameter. Stage 4 inclusions are two or three phase, liquid-dominated,
with a generally constant liquid to vapor ratio (Fig. 38b). Vapor
content of most stage 4 inclusions ranges from 5 to 15%Z. A small

percentage of stage 4 inclusions are vapor-rich, ranging from 20 to 40

volume Z vapor.

C. Fluid Temperature
1. Stage 1

A total of 58 stage 1 fluid inclusions were replicate measured and
had an average homogenization temperature of 308°C. Temperatures of
stage 1 inclusions exhibit a wide variation, ranging from a minimum of
206°C ((2600 level) (7537 £ft)) to a maximum of 510°C ((400 level)(9688
ft)) (Table IV). Temperature variation in a single stage 1 sample
increases from 4°C on the 3350 level (6742 ft) to 208°C on the 400 level
(9688 ft). A noticeable increase in homogenization temperature

variation occurs on the 1600 level (8485 ft) and persists to the 400
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level (9688 ft) (Fig. 39). Examination of the data (Table III)
indicates that the increase may be the result of an increased number of
measurements; however, such is not the case. Fewer inclusions were
measured on the deeper levels but for every measured inclusion several
other inclusions in the same field of view homogenized within a few
degrees of the inclusion being measured. In samples from the upper
levels (1600 level - 400 level), inclusions separated by less than 100
um often exhibited repeatable filling temperature differences of more

than 100°C.
2. Stage 2

Homogenization temperatures of four inclusions from stage 2
sphalerite were measured in a sample from the 1000 level (9114 ft).

Temperatures ranged from 271 to 289°C with an average of 282°C.

3. Stage 3

A total of 63 homogenization temperatures were determined on
inclusions in stage 3 quartz and fluorite. Temperatures ranged from 123
to 350°C with an average of 228°C. Temperature variation in 13 quartz-
hosted inclusions ranged from 178 to 285°C with an average of 212°C.
Variation in the 55 fluorite-hosted inclusions analyzed was much greater
than in quartz, ranging from 123 to 350°C with an average of 231°C.
Greater homogenization temperature variation in fluorite-hosted
inclusions is due to the high abundance of inclusioms present throughout
the growth zoned fluorite crystals. Fluorite is an excellent inclusion
host in the Ajax system and temperatures were obtained from the inner

and outer zones of many crystals. The homogenization temperature range
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Figure 39. Diagram showing homogenization temperature ranges for
the different stages and elevations.
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Figure 40.

A.

Photomicrograph of doubly polished plate from
Mohican vein, 700 level (horizontal field of view =
0.3 mm). Showing stage 1 quartz-hosted fluid
inclusions. Note double meniscus(c) indicating
presence of COg and variable liquid

to vapor ratios indicating boiling.

Photomicrograph of doubly polished plate from
Christensen vein, 1400 level (horizontal field of
view = 0.3 mm). Showing stage 1 quartz-hosted
fluid inclusions with variable liquid to vapor
ratios. Note vapor dominated inclusion(v) adjacent
to liquid dominated(l) inclusionm.
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of fluorite closely represents the entire variation in fluid temperature

occurring during deposition of stage 3 minerals.

4, Stage 4

Homogenization temperatures of stage 4 quartz were measured in
samples from the Newmarket and Bobtail veins on the 3100 level (6985
ft). Temperatures ranged from 105 to 159°C with an average of 140°C.
Five inclusions from the Newmarket were analyzed and temperatures
obtained ranged from 144 to 159°C with an average of 151°C. Eight
inclusions from the Bobtail vein were analyzed and temperature variation
was from 105 to 143°C with an average of 129°C. Stage 4 fluid
temperatures agree well with the estimated temperature of telluride
mineralization in the veins of Boulder County, Colorado (Kelly and
Goddard, 1969). From a summary of geothermometers, Kelly and Goddard
(1969) predict that the bulk of telluride mineralization in Boulder

County occurred within a temperature range of 100 to 160°C.

D. Fluid Salinity
Fluid salinity estimates of stages 1, 2, 3 and 4 are presented in
Tables III and IV. Only one inclusion was analyzed from stage 2 and the
value obtained appears to be erroneously low. As the stage 2 value was
determined on dark colored sphalerite, transmission of light was poor
and the determination should be disregarded. Estimates on stages 1, 3
and 4 are regarded as accurate and will be utilized to propose a model

for fluid evolution.

1. CO2 effect
The presence of a 002 liquid phase in fluid inclusions has been

recognized by earlier workers (Roedder, 1963, 1972, and Nash, 1976).
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Roedder (1963) was the first to note formation of a 002 hydrate
(clathrate) in fluid inclusions during freezing studies (Roedder, 1963).
Only recently has the effect of clathrate formation on freezing point
depression salinity estimates been quantitatively examined (Collins,
1979). During the freezing of COz-bearing HZO-N301 inclusions, CO2
forms a hydrate (clathrate) effectively removing HZO molecules from
solution and causing a salinity increase in the residual solution. The
freezing temperature measured is lowered and subsequently the salinity
estimate is too high. Collins (1979) proposed a method using the
clathrate melting temperature to estimate salinity. An inherent problem
with this method is the difficulty in recognizing clathrate formation in
an inclusion. The clathrate is isotropic and has refractive indices
similar to the aqueous solution, making it extremely difficult to
identify (Roedder, 1963). In this study, clathrate formation was
recognized in fluid inclusions from stages 1, 3 and 4. As documented by
Collins (1979), the 002 effect on salinity becomes more pronounced as
002 and NaCl content of the original fluid increases. Presence of
halite daughter minerals in stage 1 inclusions rendered the clathrate
melting point method unamenable as published data are available only for
NaCl unsaturated solutions (Collins, 1979). The method did prove useful
for salimity determination of stage 3 and 4 fluids. However, freezing
temperatures of stage 3 and 4 fluids proved to be relatively unaffected

by CO, due to their low relative salinities. Additional effects of 002

2

with regard to boiling will be examined in a later section.

2. Stage 1
Initially the freezing point depression method was employed to

determine salinity of stage 1 inclusions. After obtaining salinity
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estimates that were unreasonably high, it was recognized that COZ was
adversely affecting the method. Due to lack of published data on
clathrate formation in NaCl super-saturated solutions, efforts to obtain
the salinmity of stage 1 inclusions by freezing were discontinued.
Presence of halite-bearing stage 1l inclusions in sections from most
of the levels sampled allowed application of a method proposed by
Erwood, Keslar, and Cloke (1979). Their method involves measuring
temperatures of halite dissolution to obtain an accurate estimate of
fluid inclusion salinity. In samples from lower mine levels (3350-2300
level), with the exception of ome inclusion, halite dissolution
temperature was less than vapor homogenization temperature. However, on
upper levels (1600-400 level) approximately 50% of the inclusions
homogenized by halite dissolution, i.e., the vapor phase homogenized
prior to halite dissolution. Roedder and Bodnar (1980) believe that
homogenization by halite dissolution in the HZO—NaCI system indicates
the inclusions were trapped at higher pressures than inclusions
homogenizing by vapor disappearance. The effect of 602 in association
with high salinity fluids significantly influences the trapping
pressure. Lack of published information on the system H,0-NaCl-CO, and
the complex nature of stage 1 fluids necessitates a simplification of
the analysis. The view expressed by Erwood et al. (1979) that higher
halite homogenization temperatures relate primarily to higher NaCl
concentrations rather tham to higher pressures is adopted in this study.
Based on the above, salinity of stage 1 fluid inclusions varied
from less than 26 wtZ eNaCl in a few rare inclusions containing no NaCl
daughter minerals (Rose and Burt, 1979), to as much as 47 wt% eNaCl.

Results of 30 determinations using the halite dissolution temperature
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method range from 30 to 47 wt%Z eNaCl, with an average of 37 wt% eNaCl.
Salinity estimates increase slightly with higher elevation as shown in

Table III.

3. Stages 3 and 4

Due to the presence of 002 in stage 3 and 4 fluids, clathrate
melting points were measured in order to minimize the error present in
salinity estimates. Published data of Collins (1979) were ideally
suited to the NaCl-undersaturated fluids of stage 3 and 4. However,
difficulty in clathrate recognition rendered this method unfeasible for
widespread application to stage 3 inclusions. Several large inclusions
were selected from stage 3 minerals in order to obtain clathrate melting
temperatures. The freezing temperature of the liquid was also measured
on the same inclusions (Roedder, 1962). This was an attempt to generate
a correction factor that could be applied to stage 3 freezing point
depression data.

Two clathrate melting temperatures were measured in stage 3
inclusions and a range of 1.6 to 4.0 wt%Z eNaCl (average 2.8) was
determined. Freezing point determinations on the same inclusions
yielded salinity estimates that were within 1 wtZ eNaCl of the clathrate
estimated value. As determined from the above, a combination of low

salinity and CO, content in stage 3 inclusions allows salinity estimates

2
to be made without correction. This is in agreement with Collins (1979)
data showing the 002 effect at low NaCl and 002 contents to be minor.
Freezing temperatures were measured on 32 stage 3 inclusions and yielded
an estimated salinity range of 0-8.3 wtZ eNaCl with an average of 2.1.
The average obtained by this method was lower than that obtained by the

clathrate method.
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Only one sample of stage 4 quartz was suitable for analysis with
the freezing stage. Three clathrate melting points were measured and
yielded an estimated salinity range of 1.4-3.5 wt% eNaCl with an average
of 2.0. Freezing temperatures were measured on seven stage 4 inclusions
and a salinity range of 2.4 to 3.5 wtZ eNaCl was estimated with an
average of 2.3%2. Similar to stage 3, the effect of CO2 on stage 4

salinity estimation is insignificant.

E. Additional Fluid Parameters
1. Fluid density

Density estimates of stage 1, 3 and 4 fluids were made utilizing
relative volumes of each phase present. The inclusions were measured
using a calibrated microscope ocular and the relative percentage of each
phase present was estimated (Roedder, 1979, unpub.). Density values of
the contained phases were taken from the CRC handbook (1981-1982). The
gas phase was assumed to be pure 002 vapor with a density of 0.1956
g/cc, corresponding to the demsity of CO2 gas in comtact with 002 liquid
at room temperature. Density of the unsaturated aqueous solution varied
from a minimum of 1.0 g/cc (0 wtZ eNaCl) to a maximum of 1.1972 g/cc
(26.0 wtZ eNaCl). Results are shown in Table IV.

Stage 1 fluids have the highest densities, ranging from 1.163 to
1.254 g/cc. Fluids of stages 3 and 4 have lower demsity values, ranging
from 0.94 to 1.00 g/cc. Density is dependent on relative salinity and
vapor content of the fluids. The effect of temperature on fluid density
is significant. With increasing temperaturé, fluid density is lowered,
and density differences provide a mechanism for comvective fluid

movement. Increasing salinity results in higher fluid density and tends
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to counter the temperature effect on density (Fisher, 1976). In the
Ajax system, high-temperature fluids have correspondingly high
salinities, and low-temperature fluids have lower salinities (Table
III). Based on the above, net temperature effect on density of the Ajax

ore fluid was minor and is not considered in this study.

2. Trapping pressure
Trapping pressure is the pressure at which a fluid inclusion is
trapped. Trapping pressure is influenced by lithostatic load,

hydrostatic head, CO, content, and NaCl content. As the Ajax system is

2
believed to have been boiling (section VI.E.4.a.), no lithostatic
pressure is in effect (Roedder and Bodnar, 1980).

By determining internal CO2 pressure of the inclusions and knowing
the homogenization temperature, trapping pressure can be estimated
(Bodnar and Kuehn, unpub.). Stage 1 fluids are NaCl-saturated under
freezing conditions; therefore, internal 002 pressure within the
inclusions is estimated at 27 bars (Collins, 1979). Average salinity of
stage 3 and 4 fluids is less than 5 wt% eNaCl, based on clathrate
melting point and freezing point depression methods. Internal 002
pressure in fluid inclusions of stage 3 and 4 is estimated at 44 bars
(Collins, 1979). Lower internal Co, pressure in stage 1 inclusions is

caused by increased CO, immiscibility in the presence of higher salinity

2
solutions (Bodnar and Kuehn, unpub.).

Trapping pressures have been determined for the lowest minimum and
highest minimum homogenization temperature values for stages 1, 3 and 4
(Table 1IV). Use of the minimum temperature range in each stage is an

attempt to minimize the effect of boiling. In a boiling system the

lowest homogenization temperature is closest to the true fluid
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temperature and contains the least amount of primary gas (Roedder,
1967). As shown in Table IV, trapping pressures for stage 1 are lower
than values calculated for stages 3 and 4. Lower trapping pressure is

the result of lower internal CO, pressure. Low salinity of inclusions

2

in stages 3 and 4 and subsequent high internal CO, pressure yields an

2
increase in the calculated trapping pressure. Stage 4 inclusions have

the highest trapping pressures resulting from high internal CO, pressure

2
and low trapping temperature. However, this is somewhat contradictory
in that a decrease in temperature causes an increase in CO2
immiscibility; subsequently less CO2 should be trapped in inclusions
with lower homogenization temperatures. Stage 4 inclusions should have
a slightly lower trapping pressure than higher temperature stage 3
inclusions, based on the behavior of 002 (Bodnar and Kuehn, unpub.).
High trapping pressures of stage 4 inclusions are the result of
fluctuations in the plotted data of Bodnar and Kuelm (unpub.) and may be

caused by variations in co, immiscibility at low temperatures. Lack of

information on the subject precluded further investigation.

3. 002 content

Using the calculated trapping pressures in combination with
trapping temperature (homogenization temperature), CO, content of the
inclusions can be estimated (Bodnar and Kuehn, unpub.). The lowest
minimum and highest minimum homogenization temperatures are again used
to negate the effect of boiling.

CO, content of fluid inclusions in the Ajax system ranges from 2.0

2

mole %Z CO, to 4.0 mole % 002 (Table IV). Based on 002 content, trapping

2

pressure, and trapping temperature, fluids in the Ajax system were

composed of one phase when formation of the fluid inclusions occurred
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(Bodnar and Kuehn, unpub.). Their position in the one phase field

however, is essentially on the two phase boundary or "boiling point".

4, Boiling level
In a boiling system, the vapor pressure equals or exceeds
hydrostatic pressure. If the vapor pressure is known, i.e. trapping
pressure, then the maximum depth at which boiling can occur is
calculated from the relationship: Pressure=density of fluid X depth, or,
Depth=trapping pressure/fluid density. If the system is known to have
been boiling during ore deposition then depth of formation can be

estimated.

a. Evidence for boiling

Evidence indicative-of violent boiling (Roedder, 1967) in the Ajax
system is lacking. Vapor to liquid ratios of the inclusions generally
show only minor variation. A small percentage (5-20%) of primary
inclusions of stages 1, 3 and 4 exhibit higher vapor contents, ranging
from 15 to 50 volume % vapor. The great vertical distribution of gold-
telluride ores, with only minor variation in grade, and the absence of
hydrothermal brecciation in the veins, are evidence against violent
boiling.

As discussed in the previous section, Ajax fluids were trapped as
one phase liquid inclusions close to the two phase boundary (boiling
point). It is proposed that vein mineralization of the Ajax system
occurred in weakly effervescing fluid conduits (fissures). The
"boiling" was characterized by an escape of Co, gas caused by

immiscibility. Evidence for 002 effervescence in the Ajax system is:



139

1. presence of a small percentage of primary, vapor-rich
inclusions,

2, fluid inclusions of stages 1, 3 and 4 trapped near the two
phase boundary (boiling point),

3. subtle increase in salinity with higher elevation in stage 1
and 3 inclusions, indicating more intense boiling,

4, slight increase in homogenization temperature range with
elevation, most noticeable in stage 1 (Kamilli and Ohmoto,
1979), and

5. present mine water is effervescing 002.

The open, vuggy nature, and vertical continuity of the veins is

further evidence that pressure of deposition in the Ajax vein system was

dominated by hydrostatic conditioms.

b. Boiling depth

Importance of the CO, effect on determining chemical and physical

2
parameters of the ore-forming fluid has been previously demonstrated.
However, nowhere does the influence of 002 play a more important role
than in the estimation of boiling depth.

The work of Haas (1971) on estimating maximum depth at which
boiling can occur has been used extensively to predict depths of
mineralization. Haas (1971) cautions that his method is accurate for

the H,0-NaCl system only and the presence of dissolved gases will cause

2
the depth estimate to be too low. Recent work has shown that most ore
fluids are not simple HZO—NaCI solutions, but commonly contain one or

more dissolved gas species, of which 002 is the most common (Roedder and

Bodnar, 1980; Bodnar and Kuehn, unpub.).
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Using the method proposed by Haas (1971) for the system H,0-NaCl,
maximum depths at which boiling can occur were predicted for fluids of
stages 1, 3, and 4 (Table IV). Lowest minimum and highest minimum
homogenization temperatures from each stage were used in order to
minimize the boiling effecF. Results of the estimations range from a
minimum of 3 meters (stage 4) to a maximum of 990 meters (stage 1).

Due to the presence of 002, maximum depth estimates by the Haas
(1971) method are known to be too low. Depths were then calculated by
the trapping pressure method outlined earlier. Again, trapping
pressures corresponding to the lowest minimum and highest minimum
trapping temperatures were used. Results are shown in Table IV. A
comparison of stage 1 estimates shows only a minor difference between
the two methods. High salinity of stage 1 fluids causes increased CO

2

immiscibility. Subsequently, stage 1 fluid contains less dissolved 002
and has a lower trapping pressure, resulting in a shallower depth at
which boiling can occur. Stages 3 and 4 show a marked increase of great
magnitude over the estimate based on the method of Haas (1971). The
increase in maximum depth at which.boiling can occur in stages 3 and 4
illustrates the importance of CO2 recognition in fluid inclusions. The
large discrepancy occurring in stage 4 between results of the trapping
pressure method and the Haas (1971) method exemplifies the inverse
temperature dependance of 002 effervescence versus conventional boiling.

Depth estimates are critically important when determining depth of ore

formation or attempting to derive a model of ore deposition.

F. Ajax Fluid Evolution
From results of the fluid inclusion analyses a hypothesis for fluid

evolution in the Ajax mine can be derived.
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Stage 1 fluids are magmatic in origin, indicated by their high
salinity (Erwood, et al., 1979) and temperature. Halite-bearing fluid
inclusions are rare in ore-forming fluids of epithermal gold deposits
(Roedder, unpub.) yet are common in fluids derived from intrusive
sources (Nash, 1976). The close proximity of alkaline intrusive-
volcanic rocks (Fig. 2) to the Ajax system is further evidence in
support of a magmatic origin for Stage 1 fluid.

Stage 1 fluid underwent a mixing with meteoric water prior to or
during deposition of stage 2 sulfides. This mixing caused the
pronounced salinity decrease exhibited by stage 3. Salinity data are
lacking for stage 2 but evidence conclusively indicates mixing occurred
prior to deposition of stage 3 minerals. In addition to the salinity
decrease, a lowering of temperature also occurred as the result of
magmatic-meteoric water mixing. Mixing was most likely caused by a
decrease in magmatic fluid output allowing an influx of meteoric water
to dominate the system. Following the mixing, a prolonged cooling
occurred continuing through stages 4 and 5. During and subsequent to
stage 4 deposition, the system has been quiescent, evidenced by the
undisturbed nature of the veins.

CO, content of the fluid remained relatively constant during

2

mineralization. Amount of CO, vapor in the ore fluid was controlled by

2
salinity, depth, and temperature. A subtle 002 effervescence occurred
in all stages of deposition at depths below the current deepest mine
level. This subtle "boiling" may be a partial explanation for the lack
of metal zoning in the system.

A plot of mean and minimum homogenization temperatures for stages 1

and 3 exhibits a distinct trend(s) in the vertical thermal gradient
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(Fig. 41). A rough parallelism is observed between the plots of both
stages and between plots of mean and minimum values for each individual
stage. This implies that the measured values are a good representation
of the true fluid temperature gradient. From the 3350 level (6742 ft)
to the 2600 level (7537 ft), a gradual cooling occurs possibly caused by
increased distance from a heat source. Above the 2600 level, trends
reverse and fluid temperature increases until the 2000 level (8157 ft).
With increasing elevation from the 2000 level, stage 3 temperatures
again decrease and stage 1 temperatures remain relatively constant.
Increase in temperature of both stages between the 2600 level and 2000
level possibly indicates the presence of an additiomal intrusive heat
source(s) within the breccia. A discontinuity in the granite-breccia
contact (Fig. 15) occurs just below the 2000 level and possibly
influences the thermal gradient. Above the 2000 level, the vein system
gradually becomes closer to the granite-breccia comtact. On the 700
level (9414 ft), the contact lies just north of the Ajax shaft. Most of
the sampled vein structures extend into the breccia. Fluid flow most
likely had more of a horizontal component where the vein system is in
close proximity to the breccia.

An alternative explanation for the observed vertical temperature
reversals is that increased permeability in the Cripple Creek Breccia,
relative to the granite, results in a higher fluid flow rate. Higher
flow rate in the breccia could generate a "mushroom" isotherm
configuration and may explain the temperature reversals. Of principal
importance to this hypothesis is the relative permeability of the
breccia. Mineralization in the breccia is more irregular and less

confined to a single fissure than in the granite. However, this is more
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Figure 41. Plot of mean and minimum homogenization temperatures
for stages 1 and 3 at different elevations. Note
variability of trends and parallelism between both
trends of both stages.
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a result of breccia fracture response then increased permeability. The
lack of disseminated mineralization, except where secondary brecciation
has occurred (Globe Hill), supports the idea that the Cripple Creek
Breccia was well lithified prior to precious-metal mineralization.
Based on observed and reported field evidence, the fluid flow pattermns
of the Ajax system were most likely controlled by well developed,
subsequently-mineralized fractures rather than permeability differences.
Effect of thermal gradient variation on ore grade has not been
investigated. Lack of zoning in both base metals and precious metals
implies that if the gradient did influence ore grade, it did so in a
very subtle way. The ﬁomplexity of possibilities and lack of
substantiating data inhibit further speculation. It is apparent that
the hydrothermal fluid system responsible for Ajax vein mineralization

was not a simple upward flow of heated fluid.



CHAPTER VII

CONTROLS ON ORE DEPOSITION

A. Introduction

As illustrated in previous chapters, the Ajax vein system exhibits
many characteristics commonly present in "typical" epithermal systems.
However, it is the presence of many atypical characteristics that set
the Ajax apart from other vein systems., An attempt will be made to

elucidate the atypical features and their effect on ore deposition.

B. Structural Control

Excellent discussions of the structural control of mineralization
in the Cripple Creek district have been published, often with specific
regard to mineralization in the Ajax mine (Lindgren and Ransome, 1906;
Loughlin and Koschmann, 1935; Lovering and Goddard, 1950). This
discussion will be limited to specific features observed during recent
underground sampling and mapping.

Structure is the primary control of ore mineralization in the Ajax
system. All known precious metal mineralization is hosted in or near
fissures. The fissures acted both as fluid conduits and as ore
receptors. On lower levels of the mine, mineralization is restricted to
fissures corresponding to shear zones active during formationm of the
complex. With increasing elevation, main fissures tend to branch into

many sub-parallel structures. Tonnage produced from upper mine levels
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was greater, as a result of the increased number of mineralized
structures.

As noted above (III.C.l), influence of phonolite and basalt dikes
on mineralization is minor. Importance of dike-vein intersections
depends on the angle at which intersection occurs. The brittle-~fracture
response of the dikes creates a broad sheeted zone with very minor
dilation. If the angle of intersection is large, fluid ponding can
occur and create a large volume of mineralized rock. Although
enrichment may occur on both sides of a dike, the downflow side is more
intensely mineralized. An example of this phenomenon is present on the
500 level of the Ajax (as reported by Lovering and Goddard, 1950). On
the 3350 level, recent mining has exposed a low angle dike=-vein
intersection of the Bobtail vein with a phonolite dike. Although the
sheeted zone is wider in the dike, ore grade and volume are not
significantly increased.

No large-scale comprehensive cross section of the Ajax system has
yet been attempted. It is likely that changes in dip of the imbricated
fracture system, as well as irregularities in dip and strike of a single
fissure, influence localization of the ore (Lovering and Goddard, 1950).
Data sufficient to comstruct a detailed, large=-scale cross section are
not readily available. However, analysis of this type with the goal of
recognizing a vertical and lateral structural pattern in the ore shoots
may be a useful guide for future exploration and mining.

Aside from presence of an open fissure, the time at which the
structure was receptive to ore—-forming fluids is of principal
importance. As described above (IV.B.l), weak expansion and contraction

of the fissures selectively opened and closed different areas along the
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veins. This weak movement occurred throughout the depositional history
of the veins. As many as four fracturing events are documented in stage
3 mineralization on the 2300 level of the Bobtail wein. With the
exception of one post-mineral fault displacing the Newmarket vein, no
evidence was observed that indicated structural movement after
initiation of stage 4 mineralization. If a fissure was not open prior
to stage 4, then it will not host high-grade gold-telluride
mineralization. Gold-telluride mineralization present in fissures
without the common association of stage 4 quartz, occurs as calaverite
replacing earlier stage pyrite (IV.A.4). The low viscosity of stage &
fluid allows it to flow along previously mineralized and weakly
developed structures. Contrast between the Bobtail and Newmarket veins
exemplifies the importance of the relative time of fracture dilation.
The Newmarket is the most unimpressive and narrow vein in the Ajax
system and yet is one of the highest grade, most extensively stoped

structures in the mine.

C. Gold Tramsport

The subject of gold transport is a continuing source of debate.
Transport of gold by sulfide complexes and thiocomplexes provides a
reasonable answer to the question of gold migration in some low-
temperature, neutral-pH environments (Weissburg, 1970; Seward, 1973).
At higher temperatures, increased oxygen fugacity may oxidize available
sulfur into sulfate form, less suitable for gold complexing (Henley,
1973). Chloride complexing appears to be the most important mechanism
of gold transport at high temperatures (300-500°C) (Krauskopf, 1951;
Helgeson and Garrels, 1968; Henley, 1973). At temperatures lower than

300°C, gold tramsport by chloride complexing becomes strongly dependent



149

on pH of the solution (Helgeson and Garrels, 1968). Low pH requirements
of gold-chloride complexing at low temperatures are difficult to
justify, as most hydrothermal fluids tend to be neutral in pH (Boyle,
1969). The presence of tellurium in the ore solution and its possible
effect on gold solubility have not been specifically addressed. Seward
(1973) acknowledges that telluro complexes may significantly influence
the transport of gold in deposits where gold-telluride mineralization is
present. Clearly, the veins of the Ajax system require a unique
evaluation in regard to the mobility of gold. The transporting scheme
that will be proposed is based on field and laboratory evidence in
conjunction with scarce published information on telluride-bearing
systems. In order to better evaluate the relative amenability of
various gold transporting agents, the chemical and physical parameters

of the Ajax ore fluid are discussed below.

1. pH

Ajax ore fluid pH can be estimated from the stability fields of
vein-related alteration minerals. The pH remained relatively unchanged
throughout vein deposition. Oxygen fugacity-pH diagrams of Romberger
(unpub.), showing stability fields of adularia, sericite, kaolinite, and
alunite, illustrate that stability is controlled primarily by pH and
temperature. Effect of the K+/H+ ratio is also illustrated and can be
significant.

Presence of adularia in the inner zone of Ajax vein-related
alteration implies a pH of greater tham 6.25 at 300°C (0.1 m NaCl, 0.01
m S, 100 ppm K, 10 ppm Fe). The occurrence of fresh primary microcline
and adularia in the inner zone imply a high K+/H+ ratio (Hemley and

Jones, 1964). As illustrated by Romberger (unpub.), an increased g
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content (1000 ppm K) causes the lower boundary of the adularia stability
field to shift toward lower pH. Under the same conditions stated above,
with the exception of increased K’ content (1000 ppm), the inner pH
boundary of adularia stability is approximately 5.25. A lowering of
temperature to 200°C causes the inner boundary of adularia stability to
increase by 0.5 pH units. This corresponds to the temperature
dependence of pH. At higher temperatures, the neutral pH value is
lowered.

Presence of fresh microcline adjacent to veins hosting only stage 4
mineralization implies that the K+IH+ ratio did not change significantly
with time. Weak development of vein-related alteration in the Ajax
indicates that the ore fluid was in chemical equilibrium with the
wallrock., Therefore, minimum pH of Ajax ore fluid is estimated to be
5.5 (300°C). Neutral pH at 300°C is 5.56 (Casadevall and Ohmoto, 1977).
Judging from the alkaline nature of alteration and gangue mineralogy, pH
might be expected to be higher. As stated above, 5.5 is a minimum
value, and actual pH may be higher, depending on the magnitude of the
K+IH+ ratio. Ore-fluid pH increased slightly with time due to
temperature decrease and subtle boiling. Boiling causes a pH increase
in the residual fluid and can be responsible for adularia deposition
(Romberger, unpub.). Influx of meteoric water (VI.F) following
deposition of stage 1 does not appear to have influenced pH of the
fluid. Meteoric water had a slightly lower pH initially but had time to
equilibrate by wallrock interaction prior to becoming incorporated into

the ore fluid.
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2. Temperature and pressure

Temperature decrease during mineralization is explained in Chapter
VI (VI.C). The ore fluid underwent cooling throughout mineralization.
It is not known whether variation in the vertical thermal gradient
present during deposition of stages 1 and 3 persisted in stage 4 (VI.F).
The bulk of base-metal sulfide deposition occurred within a temperature
range of 350 to 250°C. Absence of gold in association with sulfides
indicates that gold may have migrated in a different manner than did the
base metals. Gold-telluride mineralizatiom occurred in a temperature
range of 160 to 105°C.

Pressure conditions during mineralization were essentially
hydrostatic. Pressure was sufficiently low to allow CO2 effervescence
to occur throughout the system. Pressure variation was not a

significant influence in either base-metal or precious-metal deposition.

3. Salinity

High salinity of stage 1 fluids undoubtably played an important
role during initial scavenging of metals from the melt. The pronounced
salinity decrease caused by mixing with meteoric water occurred prior to
stage 3 and may have been the principal mechanism of base-metal
deposition. Activity of chlorine ion decreases with salinity decrease,
causing solubility of metals carried by chloride caomplex to decrease.
Gold-telluride deposition was not influenced by variation in salinity.
Following initial decrease prior to deposition of stage 3, salinity of
the ore fluids remained constant, averaging slightly over 2.0 wt % eNaCl

(Vi.Dn.3).
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4, Oxygen fugacity

The oxidation state of sulfur is dependent on oxygen fugacity.
Whether sulfur is present as sulfide or sulfate determines its
effectiveness as a gold-complexing agent.

Using the oxygen fugacity-pH diagrams (300°C) of Romberger (unpub.)
and sulfur fugacity-oxygen fugacity diagrams (300°C) of Casadevall and
Ohmoto (1977), estimates of oxygen fugacity can be made using mineral
relationships present in the Ajax system. 'ggg;iptegce of pyrite and
EZE?P°Fite in early stage mineralization places a lower limit om ﬁxygen.
fugacity of 1$§'f62 = -34.0 to -36.0. In stage 3, coexistence of pyrite
an;F;;;;ﬁife places the upper limit of oxygen fugacity at -28.4 to
-30.0. Although data are not available for rutile (TiOz), replacement
of pyrite by rutile in stages 3 and 4 indicates increasing oxygen
fugacity.

As indicated by the mineral relationships present, the ore fluid
became more oxidized in the later stages of mineralization. This is
probably due to mixing of magmatic water with oxidized meteoric water in
conjunction with the subtle boiling effect. Although sulfides were
deposited during stage 4 deposition, sulfate was the dominant form of
sulfur and the ore fluid had an oxygen fugacity too high for gold
transport as a bisulfide complex (Casadevall and Ohmoto, 1977).

5.-Hechanism of gold transport

Lack of experimental data renders any gold-tramsport mechanism
subject to question. Published work regarding gold solubility generally
examines gold as a single metal phase. In hydrothermal solutiom, gold
is associated with alkali and base metals, all of which must compete for

available transporting complexes. The effect of tellurium, particularly
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on solubility of gold-thiocomplexes, may be very important in deposits
known to have high tellurium contents, such as the Ajax veins. Previous
workers made passing references to the possibility of telluro-gold
complexes, but no substantiating experimental work has been reported
(Seward, 1973). The work of Marakushev (1977) specifically addressed
the importance of tellurium in gold-bearing hydrothermal solutionms.
According to his study (1977) the presence of tellurium is one of the
principal reasons that gold is deposited late in paragenetic sequences.

Metals present in early-stage fluids of the Ajax system were
transported initially as chloride complexes. High salinity of stage 1
fluids and the relatively low sulfide content of the Ajax system make
chloride complexing the most feasible method of gold and base-metal
transport. The temperature, pH, salinity, and oxygen fugacity values of
stage 1 fluid are well suited for metal transport as chloride complexes
(Henley, 1973; Casadevall and Ohmoto, 1977).

An abrupt decrease in salinity occurred prior to deposition of
stage 3 minerals (VI.F). Deposition of base-metal sulfides was caused
by decreasing chlorine-ion activity in conjunction with dropping
temperature. An increase in pH also may have aided in base-metal
precipitation. Transport of base metals and gold by sulfide complexes
can not be completely disregarded. However, the changes in salinity and
other parameters mentioned above, occurring prior to base-metal
deposition, are further evidence in support of base metal tramsport by
chloride complex. The lack of gold in association with base metals
implies that gold solubility was not significantly decreased prior to
stage 3. It is here that the importance of tellurium in the

hydrothermal solution becomes apparent.
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The following interpretation is based on the work of Marakushev
(1977). Gold has the highest relative affinity for tellurium of any
metal. If present in sufficient quantity, tellurium separates gold and
silver from the base metals by forming complex migration compounds.
Deposition of base metal sulfides causes the HzTe: HZS ratio, and
consequently, stability of gold-telluride complexes, to increase. This
explains the restriction of gold-telluride mineralization to late stages
of epithermal parageneses.

In the Ajax, gold-telluride mineralization is restricted to the
fourth stage of vein paragenesis. The high solubility of gold-telluride
migration complexes allowed gold to remain in solution until decreasing
temperature caused deposition of gold-telluride minerals. Association
of gold-tellurides with quartz is further evidence that temperature is
the principal control on deposition. Quartz solubility is dependent on
temperature, and the principal cause of quartz precipitation is
decreasing temperature (Romberger, unpub.).

As discussed by Marakushev (1977), the effect of tellurium in ore-
forming solutions explains separation of gold-tellurides from base-metal
sulfides. The lack of gold in association with stage 2 sulfides
illustrates the effectiveness of tellurium complexing in a high-

tellurium system such as the Ajax.



CHAPTER VIII

SUMMARY AND CONCLUSIONS

The purpose of this project was to examine in detail the physical
and chemical nature of the Ajax vein system. Results and conclusions of
this study should serve to elucidate the enigmatic nature of Cripple

Creek vein mineralizationm.

A. General Summary

Mineralization in the Ajax vein system consists of open-space
filling in narrow fractures, hosted by Precambrian granite and Tertiary
breccia. Although breccia-hosted mineralization is important on the
upper mine levels, inaccessibility limited sampling of breccia-hosted
veins. No significant structural displacement, either pre- or post-
mineral has occurred along the vein-hosting structures. The mineralized
zones are quite variable in morphology. Some of the mineralization
occurs in relatively wide, sheeted fracture zomes, whereas other equally
mineralized structures consist of a few narrow, bramching fractures.
Although five stages of vein mineralization have been recognized, no
vein sampled contained all five stages. Content of the veins is
dependent on the relative time at which the structure was receptive to
ore-forming solutions. Stage 4 mineralization is economically the most
important. The presence of well developed euhedral stage 4 quartz,

commonly in association with calaverite, implies high grade gold
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mineralization. Stage 4 calaverite commonly is present without euhedral
quartz and occurs as a replacement of earlier pyrite.

The association of veins with phonolite and less frequently, basalt
dikes, is coincidental in nature. However, where high-angle vein-dike
intersections occur, downflow ponding of the ore-forming solution may
create a volumetrically large mineralized area.

Vertical zoning of precious and base metal assemblages is not
apparent. The Au/Ag ratio varies from greater tham 20:1 to less than
1:1. Variability in the ratio is dependent on grade with higher Au/Ag
ratios corresponding to higher gold values (Table I). No comsistent
vertical trend in Au/Ag has been recognized. A general increase in base
metal values occurs with increasing depth, however, the trend is erratic
and difficult to evaluate. A fluid temperature increase initiating at
the 2600 level, persists at the 3350 level (Fig. 41) and quite probably
continues at depth. Vertical metal zonation as the result of increasing
temperature with depth should become apparent if mine development
continues. An increase in base metal content and a decrease in Au/Ag
ratio are expected with increasing depth. Lack of metal zonation on the
upper mine levels may be due to a variation in vertical temperature
change that does not allow a consistent metal zonation to develop.

Vein-related alteration in the Ajax system is unusually weak when
compared to a "typical" epithermal vein deposit. Principal controls on
alteration are, degree of fracturing and relative time at which the
hosting structure was opened. The bulk of alteration occurred prior to,
and during, first stage mineralization. No correlation exists between
degree of alteration and gold tenor. Some of the highest grade veins in

the mine exhibit only minor wallrock alteration. The generally weak
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development of alteration, even where structures were open prior to
Stage 1, implies chemical equilibrium between the altering fluid and
wallrock. Vertical alteration zonation is not present in the Ajax
system. Lack of zonation is caused by the hypogene nature and constant
chemical composition of the early stage altering fluid.

Fluid inclusion analysis of the vein system reveals a complex fluid
evolution. High salinity (30-47 wt %Z eNaCl) stage 1 fluids may have
been magmatic in origin. Mixing with meteoric water occurred prior to
stage 3 causing a dramatic salinity decrease (0-8.3 wt % eNaCl).
Salinity then remained constant through stage 4 deposition. Fluid
temperature gradually decreased with time. Cooling of stage 1 fluid was
the result of mixing with meteoric water in conjunction with decreasing
temperature of the magmatic heat source(s). Fluid temperature decrease
from stage 3 (123-350°C) to stage 4 (105-159°C) was again caused by
magmatic cooling. In addition to temperature decrease with time, a
vertical thermal gradient is present in the vein system (Fig. 41).
Temperature variation in stage 3 roughly parallels variation in stage 1.
This is an indication that factors influencing the vertical thermal
gradient remained unchanged during deposition of stages 1 through 3.
From the 3350 level to the 2600 level, homogenization temperatures of
stages 1 and 3 decrease, indicating increasing distance from a heat
source. Above the 2600 level, temperatures increase and decrease.
erratically due to increasing proximity of the vein system to the
breccia. Intrusive heat sources within the breccia in conjunction with
lateral fluid flow, may be causes of the erratic vertical thermal

gradient.
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CO, was present in the fluids of stages 1, 3 and 4. A subtle

2
boiling occurred in fluids of all stages due to the concentration levels
of CO,. Boiling (002 effervescence) was weak and consistent throughout

the vein system and did not significantly influence ore deposition. The

effect of CO, greatly increases the maximum depth at which boiling can

2
occur. Maximum depth at which boiling can occur in stage 4 fluids is
4000 meters (average). The current maximum depth of mining is 1025
meters. Sufficient evidence for geologic reconstruction of the Cripple
Creek area has not been recognized. Therefore, the amount of erosion
that has occurred since mineralization is unknown. Assuming 500 meters
of erosion, current depth of mining is 2500 meters above the base of the
estimated boiling level. This is not meant to imply that the Ajax vein
system is continuous for 2500 meters below the deepest current level of
development. However, the great depth at which boiling may occur
implies an unusually large vertical dimension for the Ajax vein system.
Major controls on vein mineral precipitation in the Ajax system
were decreases in salinity and temperature. Based on alteration mineral
assemblages, pH was estimated to be a minimum of 5.5 in stage 1 fluid,
increasing slightly in later stages. The high K+/H+ ratio present in
the Ajax ore fluid influences the stability fields of alteration
minerals and makes estimation of pH tenuous. Oxygen fugacity was
estimated using mineral relationships of pyrite, pyrrhotite, and
hematite. Estimated values for oxygen fugacity ranged from a minimum of
log foz = =36.0 in stage 1 to a maximum of log fgz = =28.4 in stage 3.
Using the estimated pH and oxygen fugacity in conjunction with salinity,
temperature, and pressure data obtained from fluid inclusion analyses, a

gold transporting mechanism can be proposed.
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In stage 1 fluids, metals were transported as chloride complexes.
Upon mixing with meteoric water, chlorine ion activity decreased along
with temperature, causing deposition of base metal sulfides. As base
metal and gold chloride complexes decomposed, gold remained in solution
by forming complexes with tellurium. Sulfide deposition raised the

H,Te : st ratio and subsequently, stability of the gold-tellurium

2
complex increased. Gold remained in solution until decreasing

temperature in stage 4 deposited both calaverite and quartz.

B. Metal Source

The hypothesis for a source of metals in the Ajax system is based
on geological evidence. No isotopic data regarding source of metals
currently exists for the Cripple Creek district.

Lack of sedimentary rocks in the area and the unaltered nature of
granite surrounding the complex serve to severely restrict the
possibility that rock leaching has supplied metals.

Enrichment of 002 in the ore fluids corresponds to the hypothesis

of Gittins (1979) who suggests a high CO, content is essential to

2
development of a strongly alkaline magma. The high salinity of stage 1
fluid is indicative of a magmatic origin.

The abundance of highly differentiated alkaline intrusive-volcanic
rocks in the district indicates prolonged differentiation of a deeper
magmatic source. Volatile content of the fluids and the explosive
forces associated with early development of the complex are further
indications of an alkaline magma association. Although alkaline rocks
tend to have low relative gold abundances (Boyle, 1979), some workers

report enrichment in gold as potassium content in rocks increases by

differentiation (Volarovich and Shilin, 1971). The high chlorine ion
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content of early stage Ajax ore fluid provides an excellent mechanism
for metal scavenging from the melt.
While not conclusive without isotopic data, evidence suggests a

magmatic source for the ore-forming components of the Ajax vein system.

C. Recommendations for Exploration

Lack of zoning, vertically continuous boiling, and occurrence of
high grade gold-telluride mineralization on the deepest level developed,
indicate the Ajax vein system is continuous below levels currently being
mined. Vertical continuity of the system may be limited by increasing
temperature of vein deposition. The trend observed in fluid inclusion
results (Fig. 41) from the 2600 level to the 3350 level indicates
increasing proximity to a heat source. If this trend continues, an
increase in base metals and a decrease in precious metal values can be
expected. Other mines in the district not so deeply developed as the
Ajax possibly contain vertically continuous veins. Exploration for vein
targets should be concentrated near major shear zones and in mines that
closed due to flooding prior to comstruction of the Carlton tunnel.

The possibility for lower grade, higher tonnage, disseminated
mineralization exists in the "sediments" and fine grained breccias of
the district and merits investigation. Exploration for disseminated
mineralization should be concentrated in areas adjacent to vein systems
that may have served as feeders.

Negative magnetic and gravity anomalies have been identified two
miles northwest of the Golden Cycle mine (Kleinkopf, et al., 1970).

Geophysical response of this unexplored area is similar to the response



161

over the central complex. This area may be a blind "breccia pipe"

of fshoot from the main complex.

D. Recommended Reading

Telluride-dominated vein systems associated with Tertiary volcanism
are scarce. However, interesting similarities exist between Cripple
Creek and some deposits of the Philippines and Fiji. Common features to
both include: explosion-intrusion breccias —- commonly with evidence of
convection, predominately vein-hosted mineralization, close spatial
relationship to intrusive rocks, evidence of magmatic differentiation,
and occurrence of gold tellurides. Deposits of interest in the
Philippines are the Acupan and Antamok mines (Callow and Worley, 1965;
Sawkins, O'Neil, and Thompson, 1979). In Fiji, mines of the Vatukoula

township are of interest (Denholm, 1967).
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