

THESIS

SMART INDOOR LOCALIZATION USING MACHINE LEARNING TECHNIQUES

Submitted by

Viney Anand Ugave

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2014

Master’s Committee:

 Advisor: Sudeep Pasricha

Charles Anderson
Sourajeet Roy

 Copyright by Viney Anand Ugave 2014

All Rights Reserved

ii

ABSTRACT

SMART INDOOR LOCALIZATION USING MACHINE LEARNING TECHNIQUES

The advancement of smartphone devices has led to a generation of new applications and

solutions. These devices give away a great deal of information about the user (location, posture,

communication patterns, etc.), which helps in capturing the user’s context. Such information can

be utilized to create smarter apps from which the user can benefit. A challenging new area that is

receiving a lot of attention is Indoor Localization whereas interest in location-based services is

also rising. While numerous smartphone based indoor localization techniques have been

proposed, these techniques have many shortcomings related to accuracy and consistency. More

importantly, these techniques entail high-energy consumption that can quickly drain a

smartphone battery. In this thesis, we propose innovative techniques based on machine learning

algorithms and smart sensor management for effective Indoor Localization using smartphones.

We evaluated our techniques on several indoor environments with diverse characteristics and

show improvements over several state-of-the-art techniques from prior work. The extensive use

of sensors and Wi-Fi scans can deplete the smartphone battery and so we quantitatively

accounted for all the modules that consume the battery power. We also performed energy and

accuracy tradeoff analysis to provide a broader understanding of how to smartly use these

techniques. Furthermore, we investigated, implemented and tested both sensor and machine

learning based techniques. Our best technique achieved an average accuracy between 1-3 meters

across most of our evaluated indoor paths.

iii

ACKNOWLEDGEMENTS

I would like to thank all the individuals whose encouragement and support has made the

completion of this thesis possible.

First, I would like to express my deep gratitude to Prof. Sudeep Pasricha, whose guidance

support and motivation made this project possible. His counsel, not only in the matters of my

research project but on various matters throughout my Master’s program has turned out to be

very fruitful. I first had the opportunity to meet him even before classes started for my Master’s

program. Ever since my first meeting, he has always inspired me to conduct research studies.

Due to his inspiration and guidance I decided to conduct a Thesis project. He was kind enough

take me in his research group and encouraged me to work on a new research topic. Without his

support I could not have overcome the numerous challenges that I faced during the course of my

Masters program. Thank you, Prof. Pasricha for providing such a memorable journey in the past

two years.

Secondly I would like to thank my committee members Prof. Charles Anderson and Prof.

Sourajeet Roy for their valuable time and input. I was fortunate to study under Prof. Anderson

for the Machine Learning course. Prof. Anderson’s teaching and advice allowed me to

understand and utilize the machine learning algorithms in this work. My sincere gratitude goes to

Prof. Sourajeet Roy for agreeing to be on my thesis committee.I would like to thank Kristi

Buffington for providing me with the Indoor Maps of various buildings in CSU. She was very

cooperative in providing me with the resources as and when needed which led to a precise

accuracy study in my project. I would also like to thank my colleagues in Multicore Embedded

iv

Systems (MECS) lab for their advice and unwavering support. Their willingness to listen to my

presentations, provide peer reviews, and offer helpful suggestions which significantly improved

my work.

Special thanks to my spiritual master Baba Hardev Singh Ji for his divine blessings and love.

Last, but not least, I would like to thank my family and friends. I would like to thank my family

in India the Ugaves, especially my parents, my niece, my brother and sister in law for the their

support and faith in me. My grandparents, the Kadams who have always stood behind me. I want

to thank all my friends and colleagues Saket Doshi, Swaroop Sahoo, Sahil Mehta, Harshad

Kulkarni, Anmol Shahani, Nikhil Patil and special thanks to Ritika Thohan for her continued

support and love.

v

DEDICATION

To my parents, Anand and Madhuri

Without their support, understanding, encouragement, and love this work would not have been
possible.

vi

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGEMENTS ... iii

LIST OF TABLES ... ix

LIST OF FIGURES .. x

Chapter 1 Introduction ... 1

1.1 Motivation ... 1

1.2 Contributions .. 4

1.3 Outline ... 5

Chapter 2 An Overview of Contemporary Smartphone Platforms, Positioning System and

Sensors .. 6

2.1 Google Nexus 4 Positioning Sensors and System .. 9

2.1.1 Positioning Systems ... 10

2.1.2 Position Sensors ... 13

Chapter 3 Problem Statement .. 18

Chapter 4 Related Work ... 20

4.1 Work on Indoor Navigation Techniques ... 20

4.2 Work on Machine Learning Techniques on Smartphones .. 21

4.3 Work on Energy Optimization for Data and Location Interfaces 21

Chapter 5 Machine Learning Techniques .. 23

vii

5.1 K-Nearest Neighbor .. 23

5.2 Linear Regression ... 25

5.3 Neural Networks ... 27

Chapter 6 LearnLoc: Mobile Learning for Smart Indoor Localization 30

6.1 LearnLoc Indoor Localization Framework ... 31

6.1.1 Step Detection .. 32

6.1.2 Inertial Navigation ... 35

6.1.3 Wi-Fi Fingerprinting .. 37

6.2 Enhancements with Machine Learning ... 39

6.2.1 KNN ... 40

6.2.2 Artificial Neural Networks .. 42

6.2.3 Linear Regression .. 42

Chapter 7 Experiment and Results ... 43

7.1 Experimental Setup ... 43

7.1.1 Device Power Modeling .. 43

7.1.2 LearnLoc Mobile App and Implementation .. 48

7.1.3 Accuracy Estimation .. 53

7.1.4 Indoor Paths for Benchmarking ... 53

7.3 Experimental Results .. 56

7.3.1 Wi-Fi Scan interval Sensitivity Analysis ... 56

7.3.2 Location Algorithm Comparison ... 59

Chapter 8 Summary and Future Work ... 69

8.1 Summary ... 69

viii

8.2 Future Work .. 70

References ... 72

Appendix A ... 76

A.1 CompassSensorWatcher.Java .. 76

A.2 StepDetection.Java ... 80

A.3 StepDetector.Java ... 84

A.4 WifiScanner.Java ... 87

A.5 ProjectActivity.Java ... 90

A.6 KNN.Java ... 114

A.7 NeuralNetwork.Java ... 120

A.8 Regression.Java .. 129

ABBREVIATIONS .. 134

ix

LIST OF TABLES

Table 6.1: Train times for ANN and KNN algorithm ..41

Table 7.1: Energy Model ...45

x

LIST OF FIGURES

Figure 1.1 Cumulative Core GNSS Revenue for 2012-2022 ..2

Figure 1.2 Click through rate (CRT) proximity to a business destination3

Figure 2.1: Global Device Penetration Per Capita as of Oct. 2013 ...6

Figure 2.2: Coverage Map for T-Mobile’s 4G-LTE Service in NY ..8

Figure 2.3: Hotspot Location Map for Boingo Wireless’s Wi-Fi Service in NY9

Figure 2.4: Android Coordinate System ...10

Figure 2.5: Local Frame ...12

Figure 2.6: Nexus 4 MEMS Gyroscope and Accelerometer ...13

Figure 2.7: Accelerometer Principle ...14

Figure 2.8: Android Device Orientation ..15

Figure 2.9: MEMS Structure die of digital gyroscope ...16

Figure 2.10: Nexus 4 Wi-Fi module ...17

Figure 5.1: K-nearest neighbor example ..25

Figure 5.2: Fitting curve using least squares approach ..26

Figure 5.3: Neural network perceptron model ..27

Figure 6.1: Graph of Raw and Filtered Accelerometer values by Footpath31

Figure 6.2: Step Detection Algorithm ...32

xi

Figure 6.3: Step Calibration Activity ...33

Figure 6.4: Step Size ..35

Figure 6.5 Sensor Fusion Algorithm using Kalman Filtering ..36

Figure 6.6: Change in position calculation for inertial navigation ..37

Figure 6.7: Map showing Fingerprint data ...38

Figure 6.8 WiFi level distributions over the map area ..39

Figure 6.9: Actual vs. Predicted values by increasing the number of Epochs41

Figure 7.1: Power Monitor Setup ...43

Figure 7.2: Wi-Fi scan Power Trace ..46

Figure 7.3: Power Trace for Step Detection using Sensor Fusion technique47

Figure 7.4: Power trace for the training module using Artifitial Neural Network Algorithm48

Figure 7.5: LearnLoc Train Project Use Case ...50

Figure 7.6: LearnLoc Test Project Use Case ...51

Figure 7.7: Convergence Problem ...52

Figure 7.8: Accuracy Estimation ..52

Figure 7.9: Indoor Paths for Benchmarking ..55

Figure 7.10: Error distances with changing Wi-Fi scan interval ..56

Figure 7.11: Energy consumption with changing Wi-Fi scan interval ...57

Figure 7.12: Paths traced for various Wi-Fi scan intervals for the LearnLoc framework using

KNN along the Clark L2 South path ..58

xii

Figure 7.13: Avg. error distance for Indoor Localization techniques ..60

Figure 7.14: Energy consumption for Indoor Localization techniques ...61

Figure 7.15: Paths traced by Indoor Localization techniques along the Clark L2 North benchmark

path ...63

Figure 7.16: Paths traced by Indoor Localization techniques along the Clark L2 South benchmark

path ...64

Figure 7.17: Paths traced by Indoor Localization techniques along the Engineering B benchmark

path ...65

Figure 7.18: Paths traced by Indoor Localization techniques along the Library Basement

benchmark path ..66

Figure 7.19: Paths traced by Indoor Localization techniques along the Library L2 benchmark

path ...67

Figure 7.20: Paths traced by Indoor Localization techniques along the Library L3 benchmark

path ...68

 1

Chapter 1

Introduction

With the proliferation of smartphone devices, mobile computing is at its peak. It has led to a new

generation of services and applications. Context aware applications simplify the lives of people

and involve social engagement. Service providers have set up infrastructure (4G LTE for fast

internet and GPS satellites for navigation) to support these vivid applications and location based

services (LBS). Smartphone manufacturers have also integrated a myriad of sensors and circuitry

that allow for development of such applications. Mobile location platforms have enabled

location-based services for public safety, national security and commercial services. After years

of research on precise mapping and outdoor navigation, people are now interested in Indoor

Maps. Regulatory bodies like the Federal Communications Commission (FCC) in their Enhanced

911 system mandates for location of mobile emergency calls. Conceivably they are even

considering updated mandates to introduce accuracy requirements for emergency calls placed

indoors [1]. Indoor location technology provides a valuable benefit to the consumer whether for

convenience, entertainment or utility. A few examples of common uses for Indoor Location are

locating people, and places, coordinating joint activities, augmented reality gaming, monitoring

and tracking pertinent information.

1.1 Motivation

Since the inception of smartphones GPS has been one of the key sensors that the smartphones

were shipped with. This suggest the interest of companies and consumers at large in providing

and knowing the location of the user. Governments and corporations have made huge

investments in creating infrastructure for map based location services [2]. Global Navigation

Satellite System (GNSS) Asia reports that over the coming decade the installed base of GNSS

2

devices will increase almost four-fold. It is expected that the number of GNSS devices will

increase in Europe and North America from 1 to 3 per inhabitant over the coming decade [3].

Smartphones are going to dominate the global GNSS revenues and are also expanding into other

market segments. As seen in Figure 1.1 almost half of the revenue from GNSS services for 2012-

2022 is projected to come from from location-based services (LBS) on smartphone devices.

Figure 1.1 Cumulative Core GNSS Revenue for 2012-2022 [3]

Furthermore, Strategy Analytics [4] reports that people spent 80-90% of their time indoors; 70%

of the cellular calls originate from indoors and 80% of data connections are made inside.

Research conducted by yellow pages graphically shows, the closer the users are to a business, the

more likely they are to click on a mobile banner ad for that business [5] as shown in Figure 1.2.

Unfortunately, the current infrastructure for navigation services like GPS and GLONASS cannot

be used indoors as their weak signals are critically compromised by obscuration and

environmental degradation (e.g., signals cannot pass through concrete and other solid obstacles

3

within the building structures) [6]. The majority of the current Indoor Localization techniques

primarily depend on new and non-existent infrastructure [6]. Wi-Fi, which was originally not

intended for the purpose of navigation, has been successfully used in some techniques as

apositioning technology indoors. The success rate for Wi-Fi is high primarily because of

abundance of Wi-Fi access points at major residential and commercial places [6]. It is easy for

Wi-Fi signals to penetrate through walls and major building structures. Therefore, the Wi-Fi data

in conjunction with smartphone sensors can be used for the benefit of Indoor Localization.

Figure 1.2 Click through rate (CRT) proximity to a business destination [5]

One major limitation of techniques, that make use of Wi-Fi data with smartphone sensors for

indoor localization is that they are energy inefficient, i.e., they can drain the phone battery

quickly. This is because the algorithms used in these techniques are computationally intensive

and use the smartphone resources (sensors and Wi-Fi modem), which require high power. It is

necessary to use “smart” strategies to optimize and reduce energy consumption. Hence having an

4

accurate and optimized Indoor Localization technique that consumes minimal energy is the need

of the hour.

1.2 Contributions

This thesis presents five different techniques for Indoor Localization with an accuracy and

energy study.

The first two techniques are sensor-based. The first technique is also known the classic

technique. Classic technique utilizes only the accelerometer and magnetometer sensor. These

sensors are used for tracing the paths of the user, which are also known as dead reckoning. The

second technique called sensor fusion is a patented technique that uses the accelerometer,

magnetometer and gyroscope sensors for dead reckoning. Sensor fusion uses Kalman filters that

combine the value from the three sensors to give the final accurate values.

The other three techniques are machine learning based techniques that use the three position

sensors (accelerometer, magnetometer, and gyroscope) and the Wi-Fi access points. The three

machine learning techniques are combined in a single platform called LearnLoc. In LearnLoc

data from the position sensors are fused using the sensor fusion algorithm and a Wi-Fi

fingerprint of the area is collected. The Wi-Fi signal strength fingerprints are used by the

machine-learning algorithms to accurately predict the user’s location. We use three different

machine-learning techniques – Linear Regression, Neural Networks and K Nearest Neighbors.

We quantify and present the energy consumption for each technique. An accuracy study is also

presented for all our techniques. An energy and accuracy trade-off study has been done to find

out what is the optimum Wi-Fi scan rate for accurate Indoor Localization with the least energy

consumption.

5

1.3 Outline

The rest of the thesis is organized as follows:

• Chapter 2 provides an overview of contemporary smartphone platforms and location

based sensors on the smartphones.

• Chapter 3 describes the problem statement for the thesis.

• Chapter 4 reviews the current work related to Indoor Localization on smartphones.

• Chapter 5 provides a detailed overview of the machine learning techniques used in the

thesis.

• Chapter 6 presents the Indoor Localization strategy using sensors and machine learning

techniques.

• Chapter 7 presents the experiments and results.

• Chapter 8 concludes the thesis with a summary and future work.

• The appendix offers the source code of the strategy presented.

 6

Chapter 2

An Overview of Contemporary Smartphone Platforms,

Positioning System and Sensors

Figure 2.1: Global Device Penetration Per Capita as of Oct. 2013 [7]

Smartphones are mobile embedded devices with advanced capabilities beyond ordinary mobile

phones. Smartphones have gone from becoming a luxury to becoming a necessity these days. As

seen in Figure 2.1 Business Insider reports that 22% of the global population owns a smartphone

as compared to 1% eight years ago [7]. The number of smartphone users has exceeded the

number of desktop computer users and this numbers continues to grow everyday. Google’s

Android has the highest share (52.2%) in the smartphone market followed by Apple’s IOS

(41.4%), Blackberry (2.7%) and Microsoft (3.3%) [8]. The computational capabilities of mobile

devices are comparable to desktop PC’s. The only limitations are the memory and battery power.

7

Smartphones are mobile, wireless and they provide the consumer with functionality to do almost

everything a desktop PC does. Therefore, wired devices, which require a persistent electricity

connection, are no longer a need for today’s consumer. Additionally, the availability of high-

speed Internet connections and cloud services have minimized the memory constraints for

smartphones however the energy consumption still remains an issue.

Smartphones have seen a growing trend in processing capabilities but a decreasing trend in term

of the battery life. The battery life of the old mobile phones was as high as 2 to 3 days, but the

smartphone batteries today hardly last a day. All smartphones have some variant of the Li-ion

battery [9], which contains a sealed bag of anode and cathode sheets with separators between

them. A liquid electrolyte permeates all these layers. The smartphone circuitry is connected to

the positive and negative terminals of the battery that powers up the device [9]. A smartphone

battery may contain single or more Li-ion cells inside it. The electrolyte inside the cells can react

with the residual atmosphere to form corrosive compounds. This reaction increases with high

temperatures therefore it is necessary for the smartphone batteries to cool. There have been no

breakthroughs in battery technology in recent years and the smartphone providers have tried to

increase the cell count inside the batteries to provide higher battery power. But there have been

limitations on the number of cells a smartphone can have due to the limited size and space inside

the smartphones. Recent smartphones have a battery with capacity ranging between 1500-2500

mAh and the battery life lasts less than a day.

The dawn of 4G LTE cellular networks is upon us. Internet speeds are at an all-time high and all

the latest smartphones come equipped with 4G LTE capabilities. 4G LTE speeds are ten times

higher than 3G [10]. They can handle download speeds between 5 and 12 Mbps and upload

speeds between 2 and 5 Mbps. The 4G LTE coverage is no longer limited to big cities and has

8

been expanded to small towns and remote places. Mobile applications today require higher

bandwidths to meet consumer needs for high definition video streaming and real time data sync.

Figure 2.2: Coverage Map for T-Mobile’s 4G-LTE Service in NY [11]

Apart from cellular network technologies, smartphones contain other data and location interfaces

such as Wi-Fi and GPS. Wi-Fi is one of the most popular data interface due to high availability

and bandwidth and therefore is also very popular among consumers. Figure 2.2 shows the 4G

LTE coverage map for T-Mobile cellular service provider [11]. When Figure 2.2, coverage map

for T-mobile’s 4G-LTE service in New York City is compared with Figure 2.3 [12], Hotspot

location map for Boingo Wireless provider’s Wi-Fi hotspots in the New York City it is evident

that the Wi-Fi coverage is as good as the 4G LTE coverage.

Smartphone CPU architecture is in its matured stages and is continuously advancing. Like the

desktops, smartphones are moving from 32 to 64 bit architectures [13]. ARM is the leader in

creating high-speed smartphone CPU’s [14]. The majority of the Smartphone SOC’s like

Qualcomm, Samsung, Texas Instrument, etc. use Arm CPU’s. The Samsung Galaxy S5 which is

9

the current state of the art Android device houses a quad core Qualcomm Snapdragon chip that

runs at a frequency of 2.5 GHz [15]. The latest flagship device from Apple, the iPhone 5s also

has the fast running A7 processor with a 64-bit processor [16].

Figure 2.3: Hotspot Location Map for Boingo Wireless’s Wi-Fi Service in NY [12]

2.1 Google Nexus 4 Positioning Sensors and System

To comprehend and understand positioning on smartphone we give an example of the Nexus 4

smartphone. Nexus 4 comes equipped with a Qualcomm quad-core Krait processor that runs at a

frequency of 1.5 GHz and a 2 GB memory RAM. It is provisioned with Qualcomm’s GNSS

module that supports global positioning using GPS and GLONASS satlellites. These modules are

used for global positioning and are useful for navigation outdoors, hence we do not talk about

these modules in this thesis. In this section we talk in detail about the positioning sensors

available on the smartphones for indoor navigation. We also investigate the Wi-Fi sensor as a

potential positioning sensor indoors. It is first important to understand how positioning systems

works, therefore positioning systems are explained in Section 2.1.1.

10

2.1.1 Positioning Systems

A positioning system tries to determine the location of an object in space. A positioning system

can locate an object with varying accuracies. One such positioning system is the coordinate

system with 2 or 3 dimensions. There are different types of the coordinate system like the

Cartesian coordinate system, Polar coordinate system and Speherical coordinate system. In the

three dimensional Cartesian coordinate system [17] the axes are determined as X, Y and Z

coordinate axis. A point P in this system has X, Y and Z coordinates represented as P=(X, Y, Z).

The point P can also be represented as a vector from the origin (0,0,0) to the point P. The

coordinate system can be relative to a “frame of reference”. A frame of reference is a small

region of space where the coordinate system is expected to function. The coordinates can be

relative to a world, local or body frame. We explain all the types of frames we use in our

research below.

Figure 2.4: Android Coordinate System

11

a) World Frame and Global Coordinate System

In a world frame all the sensors and methods refer to an absolute orientation with respect to earth

using the global coordinate system. In Figure 2.4 the globe signifies the world frame. The

coordinate system with reference to the world frame is known as global coordinate system. In the

global coordinate system the axes are directed as follows:

• YE points towards magnetic north, which is the true north.

• XE is 90 degrees from YE and is parallel to Earth’s surface pointing east.

• ZE points away from the center of the earth.

b) Body frame and Device Coordinate System

The Android positioning sensors (i.e., the accelerometer, magnetometer and gyroscope) report

values corresponding to the device or the smartphone body. Hence the frame is known as the

body frame and the coordinate system with reference to the body frame as the device coordinate

system. A smartphone device can have two different orientations, the default being the portrait

orientation and the other being the landscape orientation.

The smartphone in Figure 2.4 signifies the device coordinate system. For a default landscape

orientation the axes for the device coordinate system are directed as follows:

• The X-axis horizontal with positive values in the right direction.

• The Y-axis is vertical with positive values in the upward.

• The Z-axis is positive values in front of the screen.

In device coordinate system the coordinates are fixed to the device. The device coordinate

system does not change when the orientation of the device changes. The origin of the device

12

coordinate system is at the center of the screen. Angular quantities around the axes are given by a

3-vector rotation matrix or a quaternion that maps the device coordinate system to the global

coordinate system as shown in Figure 2.4 [18].

c) Local frame or Relative coordinate system

For Indoor Navigation systems the world frame is very large and so we use something that is

local to a small area. Such a coordinate system with respect to the local frame is called the

relative coordinate system where the origin is fixed at the start and all other positions are relative

to this origin. Usually the X and Y-axis are used to define the position on the map and the Z-axis

is used to define the altitude above the ground. This system is mainly used to define positions

inside a building or a map. In such systems the map is first rotated to match the true North in the

World frame and then axis of the building is aligned to it.

Figure 2.5: Local Frame

13

2.1.2 Position Sensors

Starting with Android 1.5 as a standard set of sensors and associated Sensors API [19] has been

made available. The standard sensors now include the accelerometer, gyroscope, magnetometer,

light sensor, proximity sensor, humidity and pressure sensor. These raw sensors are Micro-

electromechanical Sensors (MEMS), which are made on a tiny scale on silicon chips. They have

the ability to detect, capture and analyze motion and normally contain a part that physically

moves or vibrates. The main position sensors are the accelerometer, gyroscope and

magnetometer. Figure 2.6 shows a MEMS Gyroscope and Accelerometer sensor on the Nexus 4

motherboard [20]. These MEMS sensors are factory tested and trimmed so that no additional

sensor calibration is required.

Figure 2.6: Nexus 4 MEMS Gyroscope and Accelerometer

a) Accelerometer

MEMS accelerometers are tiny masses of springs that can measure the Earth’s gravity, which is

1g downwards (g is a unit of acceleration and is equal to 9.8 m/s2), sense speeding up or slowing

14

down in a straight line. Acceleration is measured by attaching a mass to spring and observing

how far the mass moves from the equilibrium position. Figure 2.7 A corresponds to the device

sitting on table. Figure 2.7 B corresponds to the device moving towards the right and Figure 2.7

C corresponds to the device being dropped and is in a free fall motion [18]. To find the actual

acceleration of the device the force due to gravity needs to be factored out. The velocity of the

device can be found out by integrating the accelerometer value. The position of the device can

also be found by double integrating the acceleration value. Normally in smartphones the

accelerometer and gyroscope are embedded in a single MEMS die.

Figure 2.7: Accelerometer Principle

b) Magnetometer

Magnetometers measure the strength and the direction of a magnetic field. They operate on

different principles based on the manufacturer and architecture. Hall effect magnetometers are

the most common [22]. In the Hall effect a magnetic field component that is perpendicular to the

wire causes electrons to have a higher density on one side of the wire compared to the other,

which results in the voltage across the width of the wire that is proportional to the magnetic field.

15

For location purposes, the accelerometer and magnetometer data is combined to determine the

angle to which the user is pointing with respect to the north, also known as the heading angle.

The accelerometer and magnetometer values are combined to get a rotation vector that

determines the rotations as shown in Figure 2.8. Azimut is the rotation along the Z-axis, pitch is

the long X-axis and roll around is the Y-axis.

Figure 2.8: Android Device Orientation

c) Gyroscope

The gyroscope provides the angular velocity (i.e., how fast something is spinning) about all three

axes. Unlike the accelerometer it is not affected by gravity and is less susceptible to magnetic

influences compared to the magnetometer and accelerometer. Therefore it’s more accurate than

the accelerometer and magnetometer and also has a very short response time. To get the device

orientation, the angular speed from the gyroscope is multiplied with the time interval between

the current and last sensor output. In MEMS technology a vibrating structure gyroscope is

16

usually used which works on the principal that vibrating objects continue to vibrate in the same

plane as its support rotates. A MEMS structure die of digital gyroscope is shown in Figure 2.9.

Figure 2.9: MEMS Structure die of digital gyroscope

d) Wi-Fi

Wi-Fi, which is an alternate data module for smartphones, supports high-speed data transfers. As

mentioned in Section 2, Wi-Fi systems are ubiquitous. Hence Indoor Positioning techniques

based on patterns of observations associated with multiple Wi-Fi hotspots are now a possibility.

There are two ways in which this can be done, fingerprinting or trilateration. Fingerprinting is

where observations are compared to previously mapped locations and trilateration is where

received power is used as an indicator of distance from the transmitter and a geometric

calculation against known transmitter location is used to locate the device. Nexus 4 uses Murata

SS2908001 802.11 Wi-Fi module as shown in Figure 2.10 [22].

17

Figure 2.10: Nexus 4 Wi-Fi module [22]

 18

Chapter 3

Problem Statement

The previous chapters put forth some key issues in smartphone and positioning technology. The

most important issue impacting the smartphone technology is the need to reduce the energy

consumption. Smartphones are shipped with a variety of sensors, wireless modules and high

speed CPU’s, but their utility has and will remain severely limited due to the battery life.

Therefore it is critical to manage the resources in mobile systems. Different sensors have

different behaviors and they operate differently under different situations. Some sensors may

require frequent and detailed attention from the processor – such as the gyroscope sensor. The

gyroscope sensor is repeatedly read to get the orientation data even though there is no movement

detected. In such scenarios the processor is burdened with extra overhead which prevents it from

entering the sleep mode. This results in an increase in system energy consumption. All of these

concerns suggest the need for “smart” sensor management strategy, which minimizes the sensor

calls without disrupting the quality of service (QoS).

Indoor Positioning technology is not yet effectively established, due to several concerns. At the

crest of these concerns are the inaccuracies in the past localization techniques and their

dependence on added or unavailable infrastructure. Outdoor navigation is now thoroughly

established due to the infrastructure that was build over the years through government agencies

and large corporations that have resulted in various GNSS based applications [2]. Having a

similar infrastructure for indoor buildings is highly impossible. This would need cooperation of

large communities and individuals to establish such framework indoors. But this would also

mean a breach of privacy for different individuals. The need to come up with a solution using the

current available infrastructure is essential. As discussed in the previous chapter, Wi-Fi signals

19

are accessible and pervasive. Almost every household today has a Wi-Fi modem to facilitate

Internet connectivity in their residence. Commercial places and public buildings also host Wi-Fi

services for the visitors and/or customers. Wi-Fi services are readily available and therefore

patterns of data associated with multiple Wi-Fi hotspots can be used for Indoor Positioning.

There are a variety of algorithms and techniques available that can navigate a person indoors.

But these techniques are inaccurate and drain the smartphone battery. Accurate techniques

involve the use of compute intensive machine learning algorithms. The compute intensive tasks

are responsible for the large power dissipation. The use of the Wi-Fi module like the positioning

sensors consumes a lot of energy. Hence, a smart strategy is advised for optimizing Indoor

Navigation techniques. The strategy should involve minimizing the frequency of calling the

sensors and using the algorithms in such a way that brings down the computational costs.

The goal of this thesis is to create an accurate Indoor Navigation technique and to optimize

mobile device energy consumption via smart sensor management strategies. This thesis

discusses multiple strategies. Two of the strategies are sensor only strategies that use the

positioning sensors along with algorithms that combine the data from these sensors to navigate a

person indoors. We also discuss our Indoor Localization platform LearnLoc involving three

strategies that use the positioning sensors, Wi-Fi module and learning algorithms for accurate

Indoor Navigation. We do a comparative energy study using all these techniques. This study

shows how to manage the sensors and how to provide an accurate Indoor Navigation technique

with minimal energy consumption.

 20

Chapter 4

Related Work

A large amount of work has been done in the area of Indoor Localization for mobile devices in

recent years. This work can be categorized into the following: (1) work on Indoor Navigation

techniques, (2) work on usage of machine learning techniques on smartphones, (3) work on

energy optimization on smartphones for location and data interfaces.

4.1 Work on Indoor Navigation Techniques

There has been substantial work in the area of Indoor Localization techniques [23]-[33]. Dead

Reckoning based techniques as discussed in Chapter 2 are among the most widely used for

indoor location sensing. The classic dead reckoning technique combines magnetometer and

accelerometer readings while better techniques like sensor fusion combine magnetometer,

accelerometer and gyroscope readings. Sensor fusion [25] based techniques have been shown to

be less susceptible to magnetic drifts and give more stable readings. Both these techniques

inevitably suffer from error accumulation over time. Some commercial providers such as

IndoorAtlas [31] propose using magnetic fingerprints for creating indoor maps. But such systems

do not work well in buildings that have metallic structures, which create magnetic interference.

Some researchers have suggested using the fingerprint from received signal strength (RSS) for

Indoor Localization [25], [26], [27]. Others have suggested techniques based on custom

infrastructure support, such as ultra-wideband [28], ultrasound [29], and RFID [23]. But setting

up this custom infrastructure is often impractical, expensive, and not easily scalable. To keep

costs manageable, ambient fingerprinting using available infrastructure (Wi-Fi signal strength,

light, sound, etc.) is a more viable option. SurroundSense [30] proposes using ambient

fingerprinting with Wi-Fi triangulation and a Support Vector Machine (SVM) based

21

classification-learning approach for Indoor Localization. However, the approach is extremely

time consuming and resource hungry, and is impractical for real time implementation on

smartphones. Indeed, the authors in [30] leave real-time implementation of their localization

methods as future work. Moreover, no energy analysis of the localization techniques is

performed.

4.2 Work on Machine Learning Techniques on Smartphones

There has been extensive research conducted in the area of machine learning techniques. A lot of

these techniques have been utilized in various smartphone applications. They have been

unpopular among smartphones due to the long training phase and need of high processing power.

But in spite of these issues, it has become inevitable that they will be used in smartphone

applications. Researchers have investigated several classifying and regression based techniques

like Decision Trees, Naïve Bayes Classifiers, Neural Networks, Linear Regression, etc. [34].

Cheung et al. [35] use Markov Decision process to prolong battery life by using a user defined

reward function. In [36] the authors propose a model that predicts spatial context through

supervised learning, and the authors in [37] take advantage of signal strength and signal quality

history data and model user locations using an extreme machine learning algorithm.

4.3 Work on Energy Optimization for Data and Location Interfaces

Various papers have also talked of energy-based studies and energy models for quantifying and

estimating energy consumption of apps through services and system calls on cell phones [38],

[39]. Though these models maybe generalized, every application is unique and the same model

might not be good for a particular application and so we created our own energy model and

applied it in this paper. Some techniques used a power monitor to quantify the actual power

consumption on the device [40]. We used a similar approach. There has been extensive research

22

in optimizing energy usage of wireless interfaces like 3G, Wi-Fi, Bluetooth, etc. Since Wi-Fi is

primarily used for our navigation technique, we concentrate on robust energy modeling of the

Wi-Fi interface. Other work [41]-[56] focuses on energy-efficient location-sensing schemes

aiming to reduce high battery drain caused by location interfaces (e.g., WiFi, GPS). Lee et al.

[47] propose a Variable Rate Logging (VRL) mechanism that disables location logging or

reduces the GPS logging rate by detecting if the user is standing still or indoors. Most of this

work on energy optimization is for outdoor navigation and none for indoor navigation.

 23

Chapter 5

Machine Learning Techniques

Machine learning algorithms search for patterns and regularities in any given data and have

found wide usage across various application domains. They automatically learn from data by

generalizing from examples. As more data becomes available more ambitious problems can be

tackled. These algorithms are typically implemented in two phases. In the first phase, called

training phase, data is gathered and provided to the algorithm, so it can learn patterns and create

a model to classify data or predict data properties. In the second phase, called testing phase, new

data is tested against the model that was built during the training phase, and the effectiveness of

the model is revealed. Such two-phase learning algorithms are called supervised learning

algorithms [57]. There are also algorithms in which the testing phase is not used, and such

algorithms are called unsupervised learning algorithms. These algorithms use unlabeled data to

cluster the data in different classes. Machine learning algorithms can be used for classification or

regression. In classification, the machine learning algorithm learns to classify the data in

different classes while in regression it predicts a continuous variable by learning from the train

data. To improve Indoor Localization prediction capabilities over prior work, we propose to

integrate machine-learning techniques that intelligently make use of different modules in our

Indoor Navigation techniques.

5.1 K-Nearest Neighbor

The K-Nearest Neighbor (KNN) algorithm is a simplistic non-parametric algorithm. Non-

parametric methods assume that similar inputs have similar outputs. KNN can be used for both

regression and classification. It is a supervised algorithm but has a minimal training phase. Most

of the effort in this algorithm is expended in the testing phase. As all of the work for obtaining

24

the best prediction for the location of a user is done at every instance of the testing phase, KNN

is an instance based learning algorithm. Our KNN regression implementation works as an

extension of the KNN classification algorithm. In KNN classification, new samples are classified

by assigning the class that is the most common among the k closest sample in the training set. In

our KNN regression implementation, the output value is calculated as the average of the value of

its k nearest neighbors. To determine the closest sample, some form of a distance function is

required. We make use of the Euclidean distance (D) measure between any two points a and b,

each containing i attributes. This measure is defined by the following equation:

D (a, b) = (𝑏! − 𝑎!)!
!

!!!

(5.1)

This can be illustrated by the following classification example: Figure 5.1 shows a data set,

characterized as blue squares and red triangles. The green circle is a new sample that needs to be

classified as either a blue square or as a red triangle. If k = 3 (represented by the smaller inner

circle with radius 3), the new sample is classified as a red triangle because there are more red

triangles within the considered area. Similarly, if k = 5 the new sample is classified as a blue

square.

In the training phase of our KNN algorithm, only the training data is collected and rearranged

according to the training data for the testing phase. This greatly reduces the time needed for the

training phase but the time during the testing phase increases as a majority of the mathematical

calculations in the algorithm are performed during the testing phase. These calculations typically

require high memory and processing overhead. However, mobile devices such as smartphones

have stringent energy and memory capacity constraints. Thus it was essential for us to optimize

the KNN implementation for it to work on smartphones. We implemented approximation

25

techniques that constrain the search space to a small subset of nearest neighbors, when

estimating user location. We explain this in Section 6.2.1.

Figure 5.1: K-nearest neighbor example

5.2 Linear Regression

Linear regression models capture relationships between output dependent variables and input

variables. These linear models are built during the training phase and are used to make

predictions during the testing phase. The key assumption of this approach is that the output

variable is a linear combination of certain weights and input variables. For non-linear

relationships, these models would provide inaccurate predictions. However, efficient non-linear

models are also harder to derive. We found that for our purposes of Indoor Localization

estimation, linear models provided fairly good accuracy.

The creation of linear regression models requires fitting the input data, using one of several

functions. We make use of the least squares approach, which involves a mathematical procedure

26

for finding the best fitting curve to a given set of points (training data) by minimizing the sum of

the squares of the offsets or the residuals of the points from the curve [58], as expressed below:

!!!!!! ! !!! !! !!!!!

!

!!!

 (5.2)

!!"#$! !"#$%&
!

!!! ! ! !!!! !!!!
!

!!! (5.3)

Figure 5.2: Fitting curve using least squares approach

Equation 5.2 shows the output values (y) as a function of the inputs (x) using the optimal weights

(w) in our linear regression model. We determine the weight vectors by minimizing the error

between the target values (t) and the output of the function y as shown in equation 5.3. Figure 5.2

shows fitting data using the linear least squares approach. The training phase for linear

regression is time consuming and extremely compute intensive. Therefore, in LearnLoc this

27

training phase is performed on a server and not on the smartphone. However, we did utilize the

smartphone in the testing phase to make predictions.

5.3 Neural Networks

Neural network models, also known as Artificial Neural Networks (ANN), are inspired by the

way the central nervous systems in animals is believed to function. The brain which is the

principle part of the central nervous system is capable of learning as well as recognizing patterns.

The brain is capable of processing information from the sensory inputs, learning and storing in

memory. Even though the brain is different from the digital computers today, it is believed that

the basic concepts still apply. There is a computational unit, known as a neuron, and connections

to memory stored in synapses. The biggest difference is that the brain is significantly bigger than

any computer, with complex network of billions of neurons.

Figure 5.3: Neural network perceptron model

28

In machine learning ANN’s try to model this relationship between neurons in the brain. Figure

5.3 shows an ANN perceptron model. The relation between the output y and inputs x is shown in

equation :

𝑦 = 𝑤!𝑥! + 𝑤!

!

!!!

 (5.4)

The weight parameter w is determined in the training phase of ANN. ANN algorithm with back

propagation can be divided in to the following four steps:

a) Feed Forward computation:

This is a two-step process. In the first part the values of the hidden layer nodes are

obtained. These values are then used in the second part to compute the values of the

output layer.

b) Back propagation from output layer:

In this part the errors are calculated at the output layer and then propagated back to the

hidden layer.

c) Back propagation from hidden layer:

In this part errors are propagated from the hidden layer to the input layer.

d) Weight updates:

After a single iteration of forward pass and back propagation is done then the weights are

updated.

The algorithm is stopped when the value of the error function has become sufficiently small. The

last step of weight updates happens throughout the algorithm. In order to introduce non-linearity

in the hidden layers of the Neural Network, activation functions are needed. The sigmoid

function is one such activation function as shown in equation:

29

𝑦!! = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑦! =
1

1+ exp (−𝒘𝑻𝒙) (5.5)

One of the biggest criticisms about the use of neural networks is the time required for training.

Neural networks can be used for classification and are also known as non -linear logistic

regression. We account for the training time in our approach. A neural network can have

multiple hidden units, inputs and outputs.

 30

Chapter 6

LearnLoc: Mobile Learning for Smart Indoor Localization

This chapter presents the LearnLoc framework that combines machine-learning techniques with

smart fingerprinting using Wi-Fi and supplemental sensors to improve the accuracy and energy-

efficiency of Indoor Localization. Our work makes the following key contributions:

• We propose the integration of inertial and Wi-Fi fingerprinting with three regression-based

machine learning techniques that we have adapted and enhanced for Indoor Localization

sensing;

• We implement these techniques on an actual smartphone and quantify their performance in

real-time for Indoor Localization;

• We perform extensive benchmarking and testing of these techniques across multiple paths in

diverse indoor building environments with different structural compositions;

• We compare the accuracy of these methods with state-of-the-art techniques from prior work

for Indoor Navigation;

• Unlike any prior work, we also compare and contrast the energy consumption of our

proposed Indoor Localization techniques with techniques from prior work, and explore trade-

offs between energy and accuracy for Indoor Localization.

Our proposed LearnLoc framework shuns resource-hungry classification learning in favor of low

overhead regression-based learning. This allows LearnLoc to be implemented and used in real-

time on smartphones. Our framework also emphasizes energy-efficiency, unlike any of the prior

works in the area. We show experimental results for energy costs of Indoor Localization

31

techniques as well as an analysis of trade-offs between energy-efficiency and accuracy of the

techniques.

Section 6.1 describes the LearnLoc framework whereas Section 6.2 presents the enhancements

using Machine Learning Algorithms and its implementations.

Figure 6.1: Graph of Raw and Filtered Accelerometer values by Footpath Step Detector Algorithm [32]. The
Filtered values are for the Z-axis accelerometer. The blue dots represent the points where a step was detected.

6.1 LearnLoc Indoor Localization Framework

In this section we first discuss the three fundamental components of LearnLoc required for

Indoor Localization. Subsequently, we present details of machine learning techniques that

improve the performance of Indoor Localization in LearnLoc. LearnLoc is a platform that hosts

multiple Indoor Navigation techniques with smart sensor management to reduce energy

consumption. The principal components of LearnLoc involve Step Detection and Inertial

Navigation for Pedometric dead reckoning. And lastly Wi-Fi fingerprinting that is done in the

initial phase for the machine learning based techniques.

32

6.1.1 Step Detection

Step detection is a vital component of our Indoor Localization system. We use the same

technique as Bitsch et al. [32] for step detection, where only the accelerometer Z-axis value is

needed to detect a step. The accelerometer values display a regular pattern and a step is detected

when there is a sharp drop in acceleration due to the jiggling of a phone in the hand or pocket.

Figure 6.1 above shows the raw accelerometer data and then shows the filtered data of the Z-axis

accelerometer and the detected steps.

Figure 6.2: Step Detection Algorithm [32]

In our implementation of the step detection algorithm, the sensor data is sampled at the fastest

possible rate (1 ms). The step detection algorithm is shown in Figure 6.2. A low pass filter is

applied to this data to include major movements and improve detection. A step is detected when

the difference between consecutive z-axis acceleration values (!p) changes by 2 m/s2. The

difference is checked for a window of five consecutive readings (~166 ms) and after each

detected step a timeout of 333 ms is used to avoid false detection. These values are adapted from

33

Footpath [32]. As mentioned above, steps are detected by the characteristic change of

acceleration when the user moves forward due to up and down motion of the device in the hand.

Experiments have suggested that the amounts of movements depend on the user and how they

concentrate on holding the device still. So we make provisions for sensor calibration in which

the user can set the step detection algorithm parameters that best suit them. The sensor

calibration activity is shown in Figure 6.3.

Figure 6.3: Step Calibration Activity

The calibration process starts with the user walking around and tapping the graph area each time

a step is done. The database logs the timestamps of the steps and all sensor values received for

those time stamps. The calibration activity then varies the parameter values. First, it tries to vary

the difference threshold p between the consecutive Z-axis accelerometer values {p ε R |

0.2<p<3; pn+1=pn+0.1}. Second, it varies the smoothening factor l for the low pass filter {l ε R |

0.05<l<0.8; ln+1=ln+0.05}. The step calibrator then tries to find steps by varying the parameters

34

and obtains their timestamps td. These timestamps are then matched against time stamps tt, which

the user provided earlier by tapping on the graph area. The user taps the screen when they think

they have taken a step, which is a short time. But our algorithm searches for negative peaks in

acceleration, which involves up and down motion that takes some time. Both time stamps tt and

td cannot be the same, therefore in our calibration activity we can set a tolerance window wd

between which the times stamps will be compared. We match the timestamps for a tolerance

window wd as in equation 6.1. The tolerance window can be changed by the user using the

calibration activity.

𝑡! − 𝑡! <
𝑤!
2 (6.1)

So for every parameter p and l, a score is calculated to compare the performance of the values.

We use a reward and punishment method to measure performance:

• One reward is added, if the timestamps tt and td match, which also means a step is

detected right by the step detection algorithm.

• If a user reported step is not detected by the step detection algorithm, then we punish by

subtracting a reward.

• If the step detection algorithm detects a step but the user does not report one then we

punish twice by subtracting two rewards.

For every parameter combination we calculate a percentage score P(step) which describes the

success of these parameters as shown in equation 6.2. c is the number of steps detected right, n

is the number of steps not detected by the step detection algorithm and f is the number of false

steps detected by the step detection algorithm. The denominator s is the total step count.

35

!!!"#$! !!!
! ! ! ! !!

! (6.2)

The user can also set ones step size by calculating the distance between the two feet as shown in

figure. We use a step size of 0.6 m

Figure 6.4: Step Size

6.1.2 Inertial Navigation

Inertial Navigation or dead reckoning is a popular technique for Indoor Localization which can

be accomplished by combining readings from two or more inertial sensors. These systems are

based on Newton’s Laws of Physics and determine the position of an object with the knowledge

of the original position and forces applied to the object [33]. If the initial position is not known

only the relative position to the origin can be determined. Due to this limitation inertial

navigation systems solely cannot be used for localization and tracking systems. They can track

device movement over time, but the initial position needs to be manually set or provided by

another system. As long as the laws of physics apply, inertial navigation systems can almost be

used anywhere and there is no need of an external source of information. Hence, they can be

used both indoors and outdoors.

36

Figure 6.5 Sensor Fusion Algorithm using Kalman Filtering

Inertial Navigation is fundamental to LearnLoc, where we use it to determine the heading angle

of a person and for step detection. The heading angle is the angle in which the user is facing with

respect to the true North. We obtain the angle by combining the accelerometer, gyroscope, and

magnetometer readings. These values are combined with the help of a technique called sensor

fusion, as discussed in [25]. The accelerometer provides the gravity vector and the magnetometer

works as a compass. The data from these sensors is combined to obtain a mobile device’s

orientation. But both of the sensor values often include inaccuracies due to noise. The gyroscope,

which provides angular rotation speed, is used to determine the device orientation as it is far

more accurate with a short response time. The angular rotation speed is first integrated over a

time interval to determine the orientation of the mobile device. Then the sensor data from all

three sensors is combined using Kalman filtering to give the precise orientation that avoids both

gyro drift and noisy orientation as shown in Figure 6.5. The gyroscope output is applied

orientation changes in short time intervals, while the magnetometer and accelerometer data is

used as support information over long intervals of time. We use this resulting data to determine

37

the change in position from the current position.

Figure 6.6: Change in position calculation for inertial navigation

Figure 6.6 shows how the new position is calculated. The angle (!) is the heading angle that is

multiplied by a factor d, which is the step distance of the user that is set at the beginning for a

user (with a default value of 0.5 meters). The step distance is determined by averaging the

distance between the two feet for five consecutive steps. The equations to calculate the new

position of Lt+1 (xt+1,yt+1) are:

!!!! ! !!! !! !!"#$!!! (6.3)

!!!! !!!! !! !!"#$!!! (6.4)

6.1.3 Wi-Fi Fingerprinting

We use IEEE 802.11 wireless signal strength as an ambient location fingerprint for indoor

environments. The MAC (Media Access Control) addresses of visible access points (AP’s), the

RSSI (Received Signal Strength Indication) value, and the location coordinates are stored in a

tuple. This is a form of a passive, listen only wardriving technique where we do not

communicate over the network (i.e., without any crowdsourcing). Fingerprints are collected

38

along the indoor path on the mobile device, by the user. This manual step is a prerequisite for all

techniques that use Wi-Fi for indoor tracking.

Figure 6.7: Map showing Fingerprint data. Greend dots represent an instance of Wi-Fi scan along the path.
Figure (a) on the left shows a Wi-Fi scan done every 3-4 meters. Figure (b) on the right shows oversampled
data where a Wi-Fi scan is done every 0.5-1 meter

The fingerprint details are logged into an SQLite database that is accessed by our machine

learning algorithms (discussed in the next section). We found that a fingerprint gathered after

every 3-4 meters on the path works well for the algorithms. Every point on a path typically has a

large number of visible MAC addresses, which requires filtering out the addresses that are

significant for tracking purposes. We filter out and select only those MAC addresses that are at

least present at j unique locations on the fingerprint map.

39

Figure 6.8 WiFi level distributions over the map area shown in figure 6.7(a). The blue dots represent Wi-Fi
signal strength level for all the MAC id’s present on the path

We experimented by trying to increase the density of fingerprints i.e. gathering fingerprints

every 0.5 to 1 meter. This resulted in oversampling the data. The Figure 6.7 shows the map for

oversampled data. The Wi-Fi signals vary less in neighboring areas in small locations compared

to large areas. Hence it does not make sense to collect fingerprints at close locations. Figure 6.8

shows the Wi-Fi strength distribution over the area. This was done by collecting a fingerprint

every 3-4 meters, resulting in a well spread out distribution of Wi-Fi signal strength for all the

MAC id’s over the area.

6.2 Enhancements with Machine Learning

To improve indoor location prediction capabilities over prior work, we propose to integrate

machine-learning techniques that intelligently make use of our step detection, inertial navigation,

and Wi-Fi fingerprinting phases.

40

In our LearnLoc framework, we adapt three supervised learning algorithms to assist with Indoor

Localization. We use the K-Nearest Neighbor, Artificial Neural Networks and Linear Regression

algorithms. All the algorithms are used for regression and not for classification. This is because a

classification technique requires dividing the complete map area into a fine-grained grid for

accurate localization, which creates a prohibitively large input space that limits prediction

effectiveness and is impractical for resource-constrained smartphones [30]. Regression on the

other hand can allow us to quickly predict a continuous dependent value, with significantly lower

resource demands, which is what is needed for Indoor Localization with mobile devices. This is

also the reason why we do not explore unsupervised learning algorithms, as there is no

straightforward unsupervised machine learning algorithm that can be used for regression.

All the algorithms allow us to predict the location of a user over a majority of the map area with

the few fingerprints that are collected in the training phase. We implement the Linear Regression

training phase on a server and then offload the predictions (testing phase) on the mobile device,

while both the training and testing phases for the KNN and ANN algorithm are implemented on

the mobile device.

6.2.1 KNN

We do a complete implementation of the KNN algorithm in Java. In the training phase we

aggregate all the Wi-Fi fingerprint data and sort out only the significant Wi-Fi fingerprints. The

data is sorted and stored in a 2-dimensional array. During the test phase the new acquired data is

filtered and sorted. Using the Euclidean distance the nearest neighbors are determined. Finally

the data is averaged to get the regressional prediction from the KNN algorithm. Since most of the

calculations are done in the test phase only the time for KNN training is very small as seen in

Table 6.1.

41

Table 6.1: Train times for ANN and KNN algorithm

Technique Train time (ms)

KNN Train 24000

ANN Train 253200

The KNN regression algorithm can predict only one value at a time. So in order to get the

prediction for another value the KNN algorithm needs to be re-run for the second value. But this

adds to the computational costs. In LeanLoc we need to predict the X, Y locations of the user. In

order to avoid the computational costs we just run the KNN algorithm once and find the nearest

neighbor based on the Wi-Fi Fingerprint data. We then obtain the X and Y locations for the

nearest neighbors and average them separately to give the predicted X and Y values. This saves

the device of additional computational cost of finding the nearest neighbor twice.

Figure 6.9: Actual vs. Predicted values by increasing the number of Epochs

42

6.2.2 Artificial Neural Networks

The ANN algorithm involves a long training phase, as mentioned in Section 5.3 earlier. To set

the weights in the ANN algorithm, errors are back propagated and minimized to update the

weights. This process usually takes long. Increasing the number of hidden units too adds more

complexity to the ANN algorithm and the errors take longer to converge. There are a number of

parameters that can be set for the ANN algorithm.

The user can set a number of parameters like the number of hidden units, the epochs or number

of repetitions performed to converge to the minimum error and the learning rates. We experiment

with a few of these parameters. We found that keeping the number of hidden units as 14 leads to

precise training, while decreasing the learning rate leads to more accurate training. We also see

in the figure that increasing the number of epochs after 1500 doesn’t result in any better training,

hence we use the number of epochs as 1500. The whole implementation for Neural Nets is done

in Java.

6.2.3 Linear Regression

Linear Regression as mentioned earlier is done offline on the computer. Hence we create the

implementation using python code. We see that the Wi-Fi signal strengths have a non-linear

relationship with the locations. We did a java implementation first but the training times we so

large that we had to go with the offline version of the linear regression algorithm.

 43

Chapter 7

Experiment and Results

In this section we discuss various experiments performed using LearnLoc. The experimental

setup and methodology are discussed first followed by experimental results and discussion.

7.1 Experimental Setup

7.1.1 Device Power Modeling

We use two mobile devices, HTC Sensation [59] and Nexus 4 [60] both running on the Android

4.2 Operating System. We discuss the energy modeling on these devices in this section.

Figure 7.1: Power Monitor Setup

44

a) Overview

We thought of a number of different ways in which we could model the energy effectiveness of

the Indoor Localization technique. We eventually narrowed down to create an energy model

specific to Indoor Navigation techniques. To estimate energy for the Indoor Localization

techniques, we used a Monsoon Solutions power meter [61] that connects to a smartphone and

provides a profile of power dissipated over time when the smartphone is in use. We used this

meter to determine energy consumption for the various steps involved as part of the Indoor

Localization techniques. The energy meter can offload the power trace data to the desktop

computer.

Using the power meter, general energy models were created for both the mobile devices. All

energy values were averaged over five readings. “Init” is the energy overhead of invoking the

user interface (UI) and context for a single instance of localization prediction. The energy values

for a single instance of the step detection task using the two inertial sensing techniques

(“Classical” and “Sensor Fusion”) are shown next. The energy spent to perform a single instance

of Wi-Fi fingerprinting (“Wi-Fi scan”) in LearnLoc can be seen to be quite large. This step takes

about 500 ms. Given the high overhead of a Wi-Fi scan we explored various Wi-Fi scan intervals

to balance location prediction accuracy with energy costs and implementation efficiency (see

Section 7.3.1). Table (Table 7.1) for our energy model is shown below. The details for each

module are explained in the subsequent sections.

45

Table 7.1: Energy Model

Action/Module Energy (mJ)

Init 831.21

Classical (Acc + Mag) 1335.93

Sensor Fusion (Acc + Mag + Gyro) 1715.88

Wi-Fi Scan 2380.25

KNN Train 949.60

KNN Test 4621.70

Linear Regression Train Not Applicable

Linear Regression Test 290.31

NN Train 31592.27

NN Test 580.63

b) Wi- Fi Power Model

We created a sample app that can do a simple Wi-Fi scan by the click of a button. The mobile

device was then connected to the power meter and the power was recorded. A single Wi-Fi

instance took about 500 ms to complete. The power consumed in this process is modeled using

the energy meter as shown in Figure 7.2 where the power trace is shown in orange while the

current trace is shown in blue. This graph also shows the power trace for three instances of Wi-Fi

scan. The average energy consumed for a single Wi-Fi scan is 2380.25 mJ.

46

Figure 7.2: Wi-Fi scan Power Trace

c) Step Detection

The step detection algorithm uses the three positioning sensors primarily to tell us if a step is

detected and to give us the heading angle to which the user is pointing. It involves compute

intensive techniques like Kalman Filtering that demands high processing power. The Figure 7.3

below shows the graph for 5 consecutive steps detected using Kalman Filtering in the Sensor

fusion algorithm. The average energy consumption for step detection using the Sensor Fusion

Algorithm is 1715.88 mJ. We record the power dissipated with the use of Classic inertial

navigation technique for comparison purposes later.

47

Figure 7.3: Power Trace for Step Detection using Sensor Fusion technique

d) Energy modeling of the machine-learning algorithms

To model the train and test times for the machine-learning algorithms we use the same power

monitor. We run the training module in LearnLoc for all the learning algorithms and record the

power trace. The Figure 7.4 shows the energy consumed for a single instance of the ANN train.

This energy is modeled for a train set having 250-300 samples, which is the case in most of our

experimental paths. The test module for the learning algorithm is run every time after the Wi-Fi

scan. We run the test modules for all the learning algorithms we use in LearnLoc and record their

power traces.

48

Figure 7.4: Power trace for the training module using Artifitial Neural Network Algorithm

7.1.2 LearnLoc Mobile App and Implementation

We designed a LearnLoc mobile app for the Android ecosystem. The app significantly extends

the scope of an open source project called Wi-Fi Compass [33] by integrating our machine

learning algorithms and optimizations for low overhead implementations on resource-

constrained smartphones. The app allows fingerprinting paths in a given map as part of a training

phase. In this phase, the user must initially select a map, set the scale for the map, and specify the

starting position on the map. The app then performs Wi-Fi scans at regular intervals while the

user moves along the indoor environment. This phase continues till the user explicitly indicates

an end to the training phase in the app. The captured data is used to train our machine learning

algorithms. The testing phase uses the trained learning algorithms to make predictions. In this

49

phase, the app provides indoor location estimates that are highlighted on the map. Our mobile

app implemented all variants of the LearnLoc framework: using KNN, Linear Regression and

Neural Networks. The app provides the flexibility to set parameters for the step detection

algorithm, such as step distance and window size for step detection. It is also possible to set the

Wi-Fi scan frequency and the maximum distance thresholds up to which the predictions from the

learning algorithm are valid.

A sample use case of LearnLoc would involve the following steps:

I. Sensor Calibration

II. Create a new Training Project

a) Select Map Background

b) Set Map Scale

III. Gather Wi-Fi Fingerprints

IV. Save Project

V. Create a new Testing Project

a) Select the training project for the training data

b) Set the maximum threshold for the LearnLoc algorithm

c) Set the Wi-Fi scan frequency

VI. Press start button and start walking

VII. Press stop when done

Screenshots for the train and test project use cases in LearnLoc are shown in Figure 7.5. All the

steps above need not be followed in the same order. The user can always go back and change the

parameters and other custom settings by opening the project and selecting the settings menu.

50

Figure 7.5: LearnLoc Train Project Use Case

On using our LearnLoc app, we found that for several indoor environments there are a large

number of visible Wi-Fi MAC id’s. To keep run-time overheads low, which is critical for

resource constrained mobile devices, and prevent overfitting of learning data, we filtered and

considered only the most significant MAC id’s, defined as those MAC id’s that are at least

present at 12 different points in the training data. For a location where a MAC id was not present

(after the filtering step), we set the signal strength to zero.

51

Figure 7.6: LearnLoc Test Project Use Case

We also encountered a convergence problem when running LearnLoc and this problem is

illustrated in Figure 7.7. It was observed that when a user is in a particular region (e.g., the circle

in the figure), the learning algorithms predicted the same location repeatedly until the user had

moved completely out of the region. To address this issue, we store the previous prediction from

the learning algorithm. We then calculate the distance between the new and the previous

predictions. If we observe that the distance is below a particular threshold, we discard the

prediction and use the inertial trace to obtain the location prediction. We set the threshold in this

case to be less than the distance for one step (~120 cm).

52

Figure 7.7: Convergence Problem

Figure 7.8: Accuracy Estimation: to measure the error the two red arrows must be stretched between the
actual point on the path and the corresponding point on the traced path

53

7.1.3 Accuracy Estimation

We estimate the accuracy of the Indoor Localization techniques by checking for the deviation of

prediction error along the path after every 10 meters. We implemented LearnLoc and techniques

from prior work as apps. A widget in the app as shown in Figure 7.8 calculates the distance

between the traced path and the actual path (specified by the user). The widget then uses the

scale factor for the map (as discussed in Section 7.1.2) to obtain the actual distances and then

averages the piecewise errors to give an overall average error for each technique.

7.1.4 Indoor Paths for Benchmarking

To show the effectiveness of our LearnLoc framework as well as the prior works that we

compare against, we selected four indoor paths in three buildings that are part of the Colorado

State University, Fort Collins campus. These paths were used as benchmarks for our accuracy

and energy comparisons between the Indoor Localization techniques (discussed in Section 7.3.2).

Figure 7.9 shows the paths highlighted in red against the backdrop of the indoor floorplan. The

starting and end points are marked as “S” and “E” respectively. The path lengths range from 80

meters to 140 meters.

Each building was chosen because of its unique characteristics that differed from other buildings.

The Clark building is one of the oldest buildings on campus, and primarily made of wood and

concrete. We choose two paths (Clark L2 South and North) in this building. The Library is a

relatively new building that has a mix of metal and wooden structures with open spaces. We

chose three paths (Library L3, Library L2, and Library Basement) in this building. Library

Basement is the shortest of our paths. The Engineering building is neither new nor old and has a

significant amount of metal in its structure as well as in the equipment in the labs. The presence

54

of a large quantity of metal creates magnetic disturbances, which can complicate Indoor

Localization. We chose one path (Engineering B) in this building.

For a precise accuracy analysis we obtained the building floor plans with the actual map

dimensions. We used these dimensions to set the scale on the map during our project setup in

LearnLoc. With the help of Image tools we trim the map area containing our paths and create the

background map images for the LearnLoc app.

55

Figure 7.9: Indoor Paths for Benchmarking

56

7.3 Experimental Results

In this section, we first present results that explore the impact of changing the Wi-Fi scan

interval within LearnLoc. Subsequently, we present results comparing LearnLoc with prior work

in the area.

Figure 7.10: Error distances with changing Wi-Fi scan interval

7.3.1 Wi-Fi Scan interval Sensitivity Analysis

Given the high energy and time overhead of a Wi-Fi scan as discussed in the previous section,

we were interested in determining the most suitable value of a Wi-Fi scan interval for our

LearnLoc framework. We therefore conducted a sensitivity analysis and recorded the indoor

location estimation accuracy and energy costs for the KNN and Linear Regression variants of

LearnLoc. Figure 7.10 shows the average location estimation error and Figure 7.11 shows the

energy consumed for the Indoor Localization on the HTC Sensation smartphone with Wi-Fi scan

intervals varying from 1-16 seconds, for the KNN and Linear Regression variants. The results

show an average across all four paths. Figure 7.12 shows a detailed look of the predicted paths

57

for different Wi-Fi scan intervals when using the KNN variant of LearnLoc on the Clark L2

South path.

Figure 7.11: Energy consumption with changing Wi-Fi scan interval

From the Figure 7.10, it can be observed that the lowest Wi-Fi scan interval (1 second) results in

the highest accuracy, but also incurs a high energy consumption overhead because scanning is

performed very frequently (as can be seen by the high density of green dots that represent Wi-Fi

scan instances in Figure 6 for the 1 second interval case). As the Wi-Fi scan interval increases,

the paths traced start deviating notably from the actual path, and the estimation errors increase.

In general, KNN provides better accuracy than Linear Regression. For a 1 second interval, the

average error distance for KNN is only 1.138 meters. However, KNN also consumes more

energy to make predictions compared to Linear Regression, especially for low scan intervals.

The energy cost of KNN drops dramatically when going from a scan interval of 1 to an interval

of 2 seconds.

58

The reduction in the calls to the KNN testing phase algorithm accounts for this notable drop,

with diminishing returns for higher interval values.

Figure 7.12: Paths traced for various Wi-Fi scan intervals for the LearnLoc framework using KNN along the
Clark L2 South path; green dots represent an instance of a Wi-Fi scan along the path

59

Based on the results from this study, we concluded that a 1 second scan interval is too expensive

to be viable. A very high interval value (e.g., 8-16 seconds) is also not viable due to the

associated high inaccuracy of location estimation. We ultimately decided to consider a scan

interval of 2 seconds, which provides sufficiently high prediction accuracy while consuming a

reasonable amount of energy. We use this scan interval value for LearnLoc in our experiments in

the next section where we compare LearnLoc to prior work.

7.3.2 Location Algorithm Comparison

To show the effectiveness of our proposed LearnLoc framework for localization, we compared it

to two prior works that use classical inertial navigation [33] and sensor fusion based inertial

navigation [25] for Indoor Localization. Figure 7.13 shows the localization accuracy results for

the two variants of LearnLoc and the approaches from [33] and [25], while Figure 7.14 shows

the energy consumed to obtain the Indoor Localization predictions across the techniques. Results

are shown for the four indoor path benchmarks discussed earlier. Figures 7.15-7.20 provide a

detailed look at the predicted indoor paths when using the five techniques for all the

benchmarked indoor paths.

It can be observed from Figure 7.13 that the KNN variant of our proposed LearnLoc framework

achieves the best accuracy across all paths, out of all the techniques considered. The accuracy for

Neural Network technique is between the accuracy for KNN and Linear Regresson variants. The

accuracy of the Linear Regression variant and sensor fusion techniques is quite similar, while the

classical inertial navigation technique performs the worst. It is interesting to observe that KNN

performs the best in the Engineering building while the Classical technique has one of its worst

performances in that building. This can be attributed to the high amount of magnetic interference

due to the abundance of lab equipment and metal walls and surfaces present in that building. It is

60

also interesting to note that all the techniques work well in the Clark building. This is because

Clark is a relatively old building with wooden and brick walls. There are very few metallic

structures present in the building and hence there is a very little magnetic interference that can

impact magnetometer or Wi-Fi readings. The lackluster performance of the Linear Regression

variant was found to be the result of non-linearities in the relationship between the Wi-Fi

fingerprints and location data that a linear model is unable to capture. Neural Networks does a

better job at handling non-linearities and so the higher accuracy.

Figure 7.13: Avg. error distance for Indoor Localization techniques

From the illustration of the paths traced by the Indoor Localization techniques for the Clark L2

South benchmark path in Figure 7.15, several observations can be made. The path traced by the

classical technique greatly deviates from the actual path. This is due to the error accumulation

61

over time. The sensor fusion technique performs better but still suffers from error accumulation.

It is clear that both of these techniques require some form of recalibration periodically, if their

errors are to be bounded.

Figure 7.14: Energy consumption for Indoor Localization techniques

The use of Wi-Fi together with our learning techniques allows us the ability to generate more

robust predictions over time with LearnLoc. The green points in the Linear Regression, Neural

Networks and KNN variants of LearnLoc show the instances where a Wi-Fi scan was performed.

For the Linear Regression variant, the generated linear model is not very tolerant to noisy

readings and as a result its predictions are not consistently accurate along the path. The KNN

variant of LearnLoc performs the best out of all the localization techniques, with an average error

of 2.228 meters.

The energy consumed by all Indoor Localization techniques is shown in Figure 7.14. The energy

consumed on the Library Basement path was the lowest out of all other paths as it was the

62

shortest path in the study. It can be observed from the figure that KNN is one of the most

expensive techniques when it comes to energy consumption. This is attributed to the high

computation overhead to generate predictions during the Test phase of the KNN algorithm.

However, this energy value is still low enough to enable viable implementation on a smartphone.

If lower energy is desired, it is possible to increase the Wi-Fi scan interval to trade-off energy

with estimation accuracy (as shown in Section 7.3.1). The Neural Network technique consumes

less energy than the KNN variant with accuracy slighty less than KNN. But Neural Network

variants require the lengthy training phase. Empowering smartphones with higher processing

power can bring down these training times enabling the Neural Network variant to be usable.

The sensor fusion technique can be seen to consume less energy than the Linear Regression

variant even though the energy for an individual prediction for sensor fusion from Table 6.1 is

higher than that for Linear Regression. The high energy for Linear Regression is primarily due to

the need for energy consuming Wi-Fi scans which the sensor fusion technique avoids.

63

Figure 7.15: Paths traced by Indoor Localization techniques along the Clark L2 South benchmark path

64

Figure 7.16: Paths traced by Indoor Localization techniques along the Clark L2 North benchmark path

65

Figure 7.17: Paths traced by Indoor Localization techniques along the Engineering B benchmark path

66

Figure 7.18: Paths traced by Indoor Localization techniques along the Library Basement benchmark path

67

Figure 7.19: Paths traced by Indoor Localization techniques along the Library L2 benchmark path

68

Figure 7.20: Paths traced by Indoor Localization techniques along the Library L3 benchmark path

69

Chapter 8

Summary and Future Work

Context aware and location-based services will inevitably continue to grow in the global market.

These services have entered the market space already as commercial positioning and navigation

systems manifested as GPS devices that were accessible to only a handful of people. But with the

surge of the mobile device market these services are available to almost everyone who owns a

smartphone today. The advancement in research and technology has led to precise navigation

outdoors but absence of satellite signals in the indoor space poses challenges for Indoor

Navigation. In spite of the increasing customer expectation, the adoption of Indoor Navigation

services is relatively slow due to lack of research resources. The availability of varied sensors on

smartphone platforms has led to sensor based Indoor Positioning solutions but the in accuracies

of these techniques and their power demand are deceptive in their claim as an outright solution

for Indoor Positioning. Wi-Fi signal strength based solutions work in the favor of the notion to

control infrastructural costs. Hence, the increasing demand of accurate, energy efficient Indoor

Positioning system within the available infrastructure is shaping the future of Indoor Localization

solutions and platforms.

8.1 Summary

In this thesis we presented the LearnLoc Indoor Localization framework. We presented three

variants of our framework: one that uses K Nearest Neighbor (KNN) regression based learning

and the other that use Linear Regression and Artifitial Neural Networks (ANN). Our

experimental studies show that the KNN machine learning based LearnLoc approach is robust to

noise and magnetic interference and significantly outperforms other approaches from prior work.

Our KNN-based approach provides highly accurate Indoor Localization with approximately 1 to

70

3 meters accuracy. This accuracy however comes at a cost: high-energy consumption. If energy

is a critical concern for a given mobile device, one possibility is to trade-off prediction accuracy

with energy costs by adapting the KNN algorithm. We showed that it is possible to perform such

a trade-off by varying the Wi-Fi scan interval. Our ANN approach achieves accuracy comparable

to the KNN-based approach. It even has the advantage of consuming less energy than the KNN

approach but it involves a lengthy training phase that cannot be improved for real time usage of

the ANN algorithm. The promising results from this study are very encouraging.

8.2 Future Work

All the variants of our LearnLoc show promising results for accurate Indoor Positioning by

controlling the energy cost. However much work can be done to improve the strategies. Our

ongoing work is attempting to explore other learning algorithms and perform more aggressive

trade-offs between accuracy and energy.

Ongoing work is focusing on collecting more ambient fingerprints other than Wi-Fi and use

classification based learning algorithms to achieve higher accuracy. We are exploring ways of

determining a fine-grained energy model that accounts for such compute and memory intensive

algorithms. We are also working on the use of more complicated learning algorithms like

Support Vector Machine (SVM) on the device.

In the linear regression based approach we offload and upload the data from the phone manually.

One solution to improving this would be to make this more dynamic by enabling LearnLoc to

automatically offload the data with the help of a wireless data connection like Wi-Fi.

There are other plans for future work in the area of simulatenous location and mapping (SLAM).

This would enable LearnLoc to create maps automatically by crowdsourcing paths traced by

71

users in the same building. Another plan is to crowdsource the fingerprinting data that can

account for the variations of the Wi-Fi signals over time and also for any changes to the Wi-Fi

router positions that has resulted in change of Wi-Fi signal strength over an area.

In LearnLoc we did not analyze the memory usage by the different variants in the platform. Most

of the learning algorithms have matrix operations and computations that require sizable memory.

We plan to account for the memory usage of these operations and do a comparative study of the

memory requirements for all the variants in LearnLoc.

Although there are always ways for software optimization and unexplored techniques for energy

efficient Indoor Positioning, the work presented in this thesis brings us one-step closer to the

rising consumer demands in Indoor Positioning based location services using smartphones.

72

References

[1] Andre M., "LBS Platforms and Technologies", Berg Insight AB, 2013,
http://www.berginsight.com/ReportPDF/ProductSheet/bi-lpt4-ps.pdf

[2] Monty G., "GPS use in U.S. Critical Infrastructure and Emergency Communications",
http://www.gps.gov/multimedia/presentations/2012/10/USTTI/graham.pdf

[3] Carlo D, "GNSS Market Report", Issue 3, October 2013,
http://www.gnss.asia/sites/gnss.asia/files/GNSS_Market%20Report_2013.pdf

[4] Fabio B., "Bringing Navigation Indoors", Nokia Research Centre, 2013,
http://geta.aalto.fi/en/courses/bringing_navigation_indoors.pdf

[5] Yellow Pages, "Local Insights Digital Report", 2012, http://corporate.yp.com/news/press-
and-media/2012/year-in-review-yp-local-insights-digital-report-reveals-consumer-and-
advertiser-local-search-trends/

[6] Christian L., Harald S., "Overview of Indoor Navigation Techniques and Implementation
Studies", Morocco, FIG Working week, 18-22 May 2011

[7] John H., "Smartphone and Tablet Penetration", Business Insider, October
2013,http://www.businessinsider.com/smartphone-and-tablet-penetration-2013-10

[8] ComScore, "Smartphone Subscriber Market Share" , March 2014,
https://www.comscore.com/Insights/Market_Rankings/comScore_Reports_March_2014_U
S_Smartphone_Subscriber_Market_Share

[9] Noam K., "Six things to know about Smartphone Batteries",http://www.cnet.com/news/six-
things-to-know-about-smartphone-batteries/

[10] Verizon Wireless , “4G LTE Speeds vs. Your Home Network”,
http://www.verizonwireless.com/insiders-guide/network-and-plans/4g-lte-speeds-
compared-to-home-network/

[11] T-Mobile Coverage Map, http://www.t-mobile.com/coverage.html

[12] Boingo Wireless Wi-Fi Internet Hot Spots, http://wifi.boingo.com/wireless-internet-
hotspots/

[13] Agam S., "64 Bit smartphones are coming, but Apple's iPhone 5s still stands alone", Feb
2014, http://www.pcworld.com/article/2102620/64bit-smartphones-are-coming-but-apples-
iphone-5s-still-stands-alone.html

[14] Kristen B., "ARM Snags 95 percent of Smartphone Market, Eyes New Areas of Growth",
July 2012, http://www.crn.com/news/components-peripherals/240003811/arm-snags-95-
percent-of-smartphone-market-eyes-new-areas-for-growth.htm

[15] Samsung Galaxy S5 Specs, http://www.samsung.com/global/microsite/galaxys5/specs.html

73

[16] Apple iPhone 5S Specs, https://www.apple.com/iphone-5s/specs/

[17] Cartesian Coordinates, http://mathworld.wolfram.com/CartesianCoordinates.html

[18] Greg M., Adam S., "Professional Android Sensor Programming", June 2012, John Wiley
and Sons, Indianapolis, Indiana.

[19] Android Sensors API,
http://developer.android.com/reference/android/hardware/Sensor.html

[20] AnandTech Nexus 4 Teardown, http://www.anandtech.com/Gallery/Album/2435#6

[21] Yongyao C., YangZ., Xianfeng D.,James F.,"Magnetometer basics for mobile phone
Applications", Feb 2012,
http://www.memsic.com/userfiles/files/publications/Articles/Electronic_Products_Feb_%2
02012_Magnetometer.pdf

[22] Murata Wi-Fi Modules, http://www.murata-ws.com/products/wi-fi_modules.php

[23] Addlesee M., Curwen R., Hodges S., Newman J., Steggles P., Ward A., Hopper A,
"Implementing a sentient computing system", IEEE Computer Society Press, Aug 2001.

[24] Bahl, P.; Padmanabhan, V.N., "RADAR: an in-building RF-based user location and
tracking system," INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE , vol.2, no., pp.775,784
vol.2, 2000

[25] David P., Michael S., Sharon D., Mark S, 2012, Sensor Fusion Algorithm, Patent
US8548608. USA

[26] Yang Liu; Dashti, M.; Jie Zhang, "Indoor localization on mobile phone platforms using
embedded inertial sensors," Positioning Navigation and Communication (WPNC), 2013
10th Workshop on , vol., no., pp.1,5, 20-21 March 2013

[27] Incheol K., Eunmi C., Huikyung O., "Observation and Motion Models for Indoor
Pedestrian Tracking. International", IEEE DICTAP, May 2012.

[28] Ubisense Research Network (2008), http://www.ubisense.net/

[29] Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan. 2000. The Cricket
location-support system. In Proceedings of the 6th annual international conference on
Mobile computing and networking (MobiCom '00). ACM, New York, NY, USA, 32-43.

[30] Martin Azizyan, Ionut Constandache, and Romit Roy Choudhury. 2009. SurroundSense:
mobile phone localization via ambience fingerprinting. In Proceedings of the 15th annual
international conference on Mobile computing and networking (MobiCom '09).

[31] Thompson S., IndoorAtlas, https://www.indooratlas.com/

74

[32] Link, J.A.B.; Smith, P.; Viol, N.; Wehrle, K., "FootPath: Accurate map-based indoor
navigation using smartphones," Indoor Positioning and Indoor Navigation (IPIN), 2011
International Conference on , vol., no., pp.1,8, 21-23 Sept. 2011

[33] Konrad T., Wolfel P, "WiFi Compass WiFi Access Point Localization with Android
Devices", 2012, https://code.google.com/p/wificompass/

[34] Asaf S., Yuval F., Yuval E, "Automated Static Code Analysis for Classifying Android
Applications Using Machine Learning", 2010

[35] L. Batyuk, et al., “Context-aware device self-configuration using self-organizing maps” in
OC ’11, pp. 13-22, June 2011.

[36] T. Anagnostopoulos, C. Anagnostopoulos, S. Hadjiefthymiades, M. Kyriakakos, A.
Kalousis, “Predicting the location of mobile users: a machine learning approach,” in ICPS
’09, pp. 65-72, July 2009

[37] T. Mantoro, et al., “Mobile user location determination using extreme learning machine,”
in ICT4M, pp. D25-D30, 2011.

[38] Abhinav, P., Y. Charlie and Ming Z. Where is the energy spent inside my app? Fine
Grained Energy Accounting on Smartphones with Eprof. Eurosys.

[39] Abhinav, P., Y. Charlie and Ming Z . 2011. Fine-Grained Power Modeling for
Smartphones Using System Call Tracing. Eurosys.

[40] Donohoo, B.K.; Ohlsen, C.; Pasricha, S., "AURA: An application and user interaction
aware middleware framework for energy optimization in mobile devices," Computer
Design (ICCD), 2011 IEEE 29th International Conference on , vol., no., pp.168,174, 9-12
Oct. 2011

[41] Constandache, S. Gaonkar, M. Sayler, R. R. Choudhury, L. Cox, “EnLoc: Energy-Efficient
Localization for Mobile Phones,” in INFOCOM ’09, pp. 19-25, Jun. 2009.

[42] K. Lin, A. Kansal, D. Lymberopoulos, F. Zhao, “Energy-accuracy trade-off for continuous
mobile device location,” in MOBISYS, pp. 285-298. Jun 2010.

[43] F. B. Abdesslem, A. Phillips, T. Henderson, “Less is more: energy-efficient mobile sensing
with SenseLess,” in MOBIHELD ’09, pp. 61-62, Aug. 2009.

[44] J. Paek, J. Kim, R. Govindan, “Energy-efficient rate-adaptive GPS-based positioning for
smartphones,” in MOBISYS ’10, pp. 299-314, Jun. 2010.

[45] I. Shafer, M. L. Chang, “Movement detection for power-efficient smartphone WLAN
localization,” in MSWIM ’10, pp. 81-90, Oct. 2010.

[46] M. Youssef, M. A. Yosef, M. El-Derini, “GAC: energy-efficient hybrid GPS-
accelerometer-compass GSM localization,” in GLOBECOM ’10, pp. 1-5, Dec. 2010.

[47] C. Lee, M. Lee, D. Han, “Energy efficient location logging for mobile device,” in SAINT
’11, pp. 84, Oct. 2010.

75

[48] K. Nishihara, K. Ishizaka, J. Sakai, “Power saving in mobile devices using context-aware
resource control,” in ICNC ’10, pp. 220-226, 2010.

[49] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, B. Krishnamachari, N. Sadeh,
“A Framework of Energy Efficient Mobile Sensing for Automatic User State Recognition,”
in MOBISYS ’09, pp. 179-192, Jun. 2009.

[50] Z. Zhuang, K. Kim, J. P. Singh, “Improving Energy Efficiency of Location Sensing on
Smartphones,” in MOBISYS, pp. 315-330,. 2010.

[51] T. L. Cheung, K. Okomoto, F. Maker, X. Liu, V. Akella, “Markov Decision Process
(MDP) Framework for Optimizing Software on Mobile Phones,” in EMSOFT ’09, pp. 11-
20, Oct. 2009.

[52] W. Liang, P. Lai, “Design and Implementation of a Critical Speed-based DFS Mechanism
for the Android Operating System,” in EMS ’10, pp. 1-6, Sept. 2010.

[53] R. Jurdak, P. Corke, D. Dharman, G. Salagnac, “Adaptive GPS Duty Cycling and Radio
Ranging for Energy-Efficient Localization,” in SENSYS ’10, pp. 57-70, Nov. 2010.

[54] H. Lu, J. Yang, Z Liu, N. D. Lane, T. Choudhury, A. T. Campbell, “The Jigsaw Continuous
Sensing Engine for Mobile Phone Applications,” in SENSYS ’10, pp. 71-84, Nov. 2010.

[55] M. B. Kjaergaard, S. Bhattacharya, H. Blunck, P. Nurmi, “Energy-efficient trajectory
tracking for mobile devices,” in MOBISYS ’11, pp. 307-320, Jun. 2011.

[56] Y. Liu, S. Lu, Y. Liu, “COAL: Context Aware Localization for High Energy Efficiency in
Wireless Networks,” in WCNC ’11, pp. 2030-2035, May 2011.

[57] Mehryar, M., Afshin, R., Ameet, T. Foundations of Machine Learning. The MIT Press,
2012.

[58] Least Squares Fitting. [Online]. Available:
http://mathworld.wolfram.com/LeastSquaresFitting.html

[59] HTC Sensation, https://www.htc.com/us/smartphones/htc-sensation/

[60] Nexus 4, http://www.google.com/intl/all/nexus/4/

[61] Monsoon Power Monitor. [Online]. Available:
http://www.msoon.com/LabEquipment/PowerMonitor/

76

Appendix A

Source Code

This section presents the majority of the source code for the implementation of the three

strategies in LearnLoc. Sections A.1 provides the source code for inertial navigation techniques

i.e the Classic and Sensor Fusion techniques. Section A.2 and A.3 provides the source code for

the step detection algorithm. Section A.4 provides the source code for the Wi-Fi scan activity to

collect fingerprints.

Section A.5 shows the source code for the main Activity in the LearnLoc Android application,

and Section A.6 to A.9 provide the source code for the three strategies that use the KNN, ANN

and Linear Regression algorithms.

A.1 CompassSensorWatcher.Java

/**
 * Class to get Orientation (Azimuth) using Sensor Fusion and Classic Approach
 * @author Viney Ugave (vinzzz@rams.colostate.edu)
 * Improved and Customized from https://code.google.com/p/wificompass/
 */
package com.colostate.mecs.vinzzz.IL.location;

import com.colostate.mecs.vinzzz.IL.helper.ToolBox;

import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorListener;
import android.hardware.SensorManager;
import android.util.Log;

public class CompassSensorWatcher implements SensorEventListener {

 private static final String TAG = "CompassSensorWatcher";

77

 protected SensorManager sensorManager;

 protected Sensor compass;

 protected Sensor accelerometer;

 protected Sensor rotationVector;

 protected Context context;

 float[] inR = new float[16];

 float[] I = new float[16];

 float[] gravity = new float[3];

 float[] geomag = new float[3];

 float[] rotVec = new float[3];

 float[] orientVals = new float[3];

 float azimuth = 0;

 float angle = 0;

// String azimuthText = "";

 int minX = 0, minY = 0, maxX = 0, maxY = 0, centerX = 0, centerY = 0, width =
0, height = 0;

 float l = 0.3f;

 protected CompassListener listener;

 protected float lastAzimuth = 0f;

 public CompassSensorWatcher(Context context,CompassListener cl,float
lowpassFilter) {
 Log.d(TAG, "Instantiated CompassSensorWatcher");
 this.context = context;
 this.listener=cl;
 this.l=lowpassFilter;

 sensorManager = (SensorManager)
context.getSystemService(Context.SENSOR_SERVICE);
 compass = sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);
 accelerometer =
sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
 rotationVector =
sensorManager.getDefaultSensor(Sensor.TYPE_ROTATION_VECTOR);
//
 Log.d(TAG,sensorManager.getSensorList(Sensor.TYPE_ACCELEROMETER).toString());
 try {
 sensorManager.registerListener(this, compass,
SensorManager.SENSOR_DELAY_UI);
 sensorManager.registerListener(this, accelerometer,
SensorManager.SENSOR_DELAY_UI);

78

 sensorManager.registerListener(this, rotationVector,
SensorManager.SENSOR_DELAY_UI);

 Log.d(TAG, "Registered Sensor Listeners");
 } catch (Exception e) {
 Log.e("could not register listener", e.toString());
 }
 }

 /*
 * (non-Javadoc)
 *
 * @see
android.hardware.SensorEventListener#onAccuracyChanged(android.hardware.Sensor, int)
 */
 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy) {
// Log.d(TAG, "Magnetometer Accuracy: "+accuracy);
 }

 /*
 * (non-Javadoc)
 *
 * @see
android.hardware.SensorEventListener#onSensorChanged(android.hardware.SensorEvent)
 */
 @SuppressWarnings("deprecation")
 @Override
 public void onSensorChanged(SensorEvent event) {

 // Logger.d("sensor changed "+event);
 // we use TYPE_MAGNETIC_FIELD to get changes in the direction, but use
SensorManager to get directions
 if (event.accuracy == SensorManager.SENSOR_STATUS_UNRELIABLE)
 return;

 // Gets the value of the sensor that has been changed
 switch (event.sensor.getType()) {
 case Sensor.TYPE_ACCELEROMETER:
 gravity = event.values.clone();
// Log.d(TAG, "Accelerometer onSensorChanged() ");
// Log.d(TAG,String.valueOf(gravity[0]));
 break;
 case Sensor.TYPE_MAGNETIC_FIELD:
 geomag = event.values.clone();
// Log.d(TAG, "Magnetic Field onSensorChanged() ");
// Log.d(TAG,"Magnetic : "+String.valueOf(geomag[0]));
 break;
 case Sensor.TYPE_ROTATION_VECTOR:
 rotVec=event.values.clone();
 break;
 }
//
 //Classic = Acc+Mag
 // If gravity and geomag have values then find rotation matrix
 if (gravity != null && geomag != null) {

 // checks that the rotation matrix is found
 boolean success = SensorManager.getRotationMatrix(inR, I, gravity,
geomag);
 if (success) {
 SensorManager.getOrientation(inR, orientVals);

79

 angle = (float) ToolBox.normalizeAngle(orientVals[0]);
 azimuth = (float) Math.toDegrees(angle);
// Log.d(TAG,String.valueOf(azimuth));
 lowPassFilter();

 angle=(float) Math.toRadians(azimuth);

// azimuthText = getAzimuthLetter(azimuth) + " " +
Integer.toString((int) azimuth) + "¬∞";

 if(listener!=null){

 listener.onCompassChanged(azimuth,angle,getAzimuthLetter(azimuth));
 }
 }
 }//Acc+Mag

 //Sensor Fusion
 if (rotVec != null) {
 SensorManager.getRotationMatrixFromVector(inR,rotVec);
 SensorManager.getOrientation(inR, orientVals);

 angle = (float) ToolBox.normalizeAngle(orientVals[0]);
 azimuth = (float) Math.toDegrees(angle);
 angle=(float) Math.toRadians(azimuth);

 if(listener!=null){

 listener.onCompassChanged(azimuth,angle,getAzimuthLetter(azimuth));
 }

 }//Sensor Fusion

 }

 public void stop(){
 try {
 sensorManager.unregisterListener(this);
 } catch (Exception e) {
 Log.w("could not unregister listener", e);
 }
 }

 public String getAzimuthLetter(float azimuth) {
 String letter = "";
 int a = (int) azimuth;

 if (a < 23 || a >= 315) {
 letter = "N";
 } else if (a < 45 + 23) {
 letter = "NO";
 } else if (a < 90 + 23) {
 letter = "O";
 } else if (a < 135 + 23) {
 letter = "SO";
 } else if (a < (180 + 23)) {
 letter = "S";
 } else if (a < (225 + 23)) {

80

 letter = "SW";
 } else if (a < (270 + 23)) {
 letter = "W";
 } else {
 letter = "NW";
 }

 return letter;
 }

 protected void lowPassFilter() {
 // lowpass filter
 float dazimuth = azimuth -lastAzimuth;

// // if the angle changes more than 180¬∞, we want to change direction and
follow the shorter angle
 if (dazimuth > 180) {
 // change to range -180 to 0
 dazimuth = (float) (dazimuth - 360f);
 } else if (dazimuth < -180) {
 // change to range 0 to 180
 dazimuth = (float) (360f + dazimuth);
 }
 // lowpass filter
 azimuth = lastAzimuth+ dazimuth*l; //maybe use one in the book

 azimuth%=360;

 if(azimuth<0){
 azimuth+=360;
 }

 lastAzimuth=azimuth;

// lastAzimuth=azimuth=ToolBox.lowpassFilter(lastAzimuth, azimuth, l);

// oldValue + filter * (newValue - oldValue);

 }

}

A.2 StepDetection.Java

package com.colostate.mecs.vinzzz.IL.location;

import java.util.Timer;
import java.util.TimerTask;

import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;

/**
 *

81

 * This class is fed with data from the Accelerometer and Compass sensors. If a step
is detected on the acc data it calls the trigger function on its interface
StepTrigger, with the given direction.
 * Usage: Create an object: stepDetection = new StepDetection(this, this, a, peak,
step_timeout_ms);
 * Adopted from WiFi Compass (https://code.google.com/p/wificompass/)
 */
public class StepDetection implements CompassListener {
 public static final long INTERVAL_MS = 1000 / 30;

 // Hold an interface to notify the outside world of detected steps
 /**
 * @uml.property name="st"
 * @uml.associationEnd
 */
 protected StepTrigger st;

 // Context needed to get access to sensor service
 protected Context context;

 protected static SensorManager sm; // Holds references to the SensorManager

 // List<Sensor> lSensor; // List of all sensors

 protected float lastComp;

 protected Timer timer;

 protected StepDetector detector;

 protected Sensor accelerometer;

 /**
 * Handles sensor events. Updates the sensor
 */
 public SensorEventListener mySensorEventListener = new SensorEventListener() {
 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 // Auto-generated method stub
 }

 @Override
 public void onSensorChanged(SensorEvent event) {
 switch (event.sensor.getType()) {
 case Sensor.TYPE_ACCELEROMETER:
 st.onAccelerometerDataReceived(System.currentTimeMillis(),
event.values[0], event.values[1], event.values[2]);
 // just update the oldest z value
 detector.addSensorValues(System.currentTimeMillis(),
event.values);
 break;

 default:
 }// switch (event.sensor.getType())
 }
 };

 public StepDetection(Context context, StepTrigger st, double a, double peak,
int step_timeout_ms) {
 this.context = context;
 this.st = st;

 this.detector = new StepDetector(a, peak, step_timeout_ms);

82

 }

 public void load() {
 load(SensorManager.SENSOR_DELAY_FASTEST);
 CompassMonitor.registerListener(context, this);
 }

 /**
 * Enable step detection
 */
 public void load(int sensorDelay) {

 if (timer == null) {
 // Sensors
 sm = (SensorManager)
context.getSystemService(Context.SENSOR_SERVICE);

 accelerometer = sm.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

 sm.registerListener(mySensorEventListener, accelerometer,
sensorDelay);

 // Register timer
 timer = new Timer("UpdateData", false);
 TimerTask task = new TimerTask() {

 @Override
 public void run() {
 updateData();
 }
 };
 timer.schedule(task, 0, INTERVAL_MS);
 }
 }

 /**
 * Disable step detection
 */
 public void unload() {
 if (timer != null) {
 timer.cancel();
 timer.purge();
 timer = null;
 sm.unregisterListener(mySensorEventListener);
 }
 }

 /**
 * This is called every INTERVAL_MS ms from the TimerTask.
 */
 protected synchronized void updateData() {
 // Get current time for time stamps
 long now_ms = System.currentTimeMillis();

 st.onTimerElapsed(now_ms, detector.getLastAcc(), new double[]
{lastComp});

 // Check if a step is detected upon data
 if (detector.checkForStep()) {
 // Call algorithm for navigation/updating position
 st.onStepDetected(now_ms, lastComp);

 }

83

 }

 /**
 * @return
 * @uml.property name="a"
 */
 public double getA() {
 return detector.getA();
 }

 /**
 * @return
 * @uml.property name="peak"
 */
 public double getPeak() {
 return detector.getPeak();
 }

 /**
 * @return
 * @uml.property name="step_timeout_ms"
 */
 public int getStep_timeout_ms() {
 return detector.getStepTimeoutMS();
 }

 /**
 * @param a
 * @uml.property name="a"
 */
 public void setA(double a) {
 detector.setA(a);
 }

 /**
 * @param peak
 * @uml.property name="peak"
 */
 public void setPeak(double peak) {
 detector.setPeak(peak);
 }

 /**
 * @param stepTimeoutMs
 * @uml.property name="step_timeout_ms"
 */
 public void setStep_timeout_ms(int stepTimeoutMs) {
 detector.setStepTimeoutMS(stepTimeoutMs);
 }

 /* (non-Javadoc)
 * @see at.fhstp.wificompass.CompassListener#onCompassChanged(float,
java.lang.String)
 */
 @Override
 public void onCompassChanged(float azimuth, float angle, String direction) {
 st.onCompassDataReceived(System.currentTimeMillis(), azimuth, 0, 0);
 this.lastComp=azimuth;
 }
}

84

A.3 StepDetector.Java

package com.colostate.mecs.vinzzz.IL.location;

import android.util.Log;

/**
 * Class used by StedDetection for detecting Steps
 * @author Viney Ugave(vinzzz@rams.colostate.edu)
 *
 */
public class StepDetector {
 protected static final int vhSize = 6;

 protected double[] values_history = new double[vhSize];

 protected int vhPointer = 0;

 public static final int WINDOW = 5;

 private static final String TAG = "StepDetector";

 protected double a;

 protected double peak;

 protected int stepTimeoutMS;

 protected long lastStepTs = 0;

 // last acc is low pass filtered
 protected double[] lastAcc = new double[] {0.0, 0.0, 0.0};

 protected int round = 0;

 protected boolean logSteps=true;

 protected long lastUpdateTimestamp=0;

 protected long lastSecond=0;
 protected int valuesPerSecond=0;

 public StepDetector(double a, double peak, int step_timeout_ms) {
 this.a = a;
 this.peak = peak;
 this.stepTimeoutMS = step_timeout_ms;
 }

 public synchronized void addSensorValues(long timestamp,float values[]) {
 // simple lowpass filter
 lastAcc[0]+=a*(values[0]-lastAcc[0]);
 lastAcc[1]+=a*(values[1]-lastAcc[1]);
 lastAcc[2]+=a*(values[2]-lastAcc[2]);
 lastUpdateTimestamp=timestamp;
 if(timestamp<lastSecond+1000){
 valuesPerSecond++;
 }else {

85

 if(true/*logSteps&&Logger.isTraceEnabled()*/)
// Log.v(TAG,valuesPerSecond+" sensor values received in the
last second");
 lastSecond=timestamp;
 valuesPerSecond=0;
 }
 }

 protected double lowpassFilter(double oldValue, double newValue) {
 return oldValue + a * (newValue - oldValue);
 }

 /**
 * This is called every INTERVAL_MS ms from the TimerTask.
 */
 public synchronized boolean checkForStep() {
 boolean ret = false;

 // Get current time for time stamps

 addData(lastAcc[2]);//adding z values

 // Check if a step is detected upon data
 if ((lastUpdateTimestamp - lastStepTs) > stepTimeoutMS) {

 for (int t = 1; t <= WINDOW; t++) {
 if ((values_history[(vhPointer - 1 - t + vhSize + vhSize) %
vhSize] - values_history[(vhPointer - 1 + vhSize) % vhSize] > peak)) {

 if(logSteps)
// Log.v(TAG,"Detected step with t = " + t + ",
diff = " + peak + " < "
// + (values_history[(vhPointer - 1 - t +
vhSize + vhSize) % vhSize] - values_history[(vhPointer - 1 + vhSize) % vhSize]));
 // Set latest detected step to "now"
 lastStepTs = lastUpdateTimestamp;
 // Call algorithm for navigation/updating position
 // st.trigger(now_ms, lCompass);
// Logger.i("Detected step in round = " + round + " @
" + now_ms);
 ret = true;
 break;
 }
 }

 }
 round++;
 return ret;
 }

 protected void addData(double value) {
 values_history[vhPointer % vhSize] = value;
 vhPointer++;
 vhPointer = vhPointer % vhSize;
 }

 /**
 * @return the a
 */
 public double getA() {
 return a;
 }

86

 /**
 * @param a the a to set
 */
 public void setA(double a) {
 this.a = a;
 }

 /**
 * @return the peak
 */
 public double getPeak() {
 return peak;
 }

 /**
 * @param peak the peak to set
 */
 public void setPeak(double peak) {
 this.peak = peak;
 }

 /**
 * @return the stepTimeoutMS
 */
 public int getStepTimeoutMS() {
 return stepTimeoutMS;
 }

 /**
 * @param stepTimeoutMS the stepTimeoutMS to set
 */
 public void setStepTimeoutMS(int stepTimeoutMS) {
 this.stepTimeoutMS = stepTimeoutMS;
 }

 /**
 * @return the lastStepTs
 */
 public long getLastStepTs() {
 return lastStepTs;
 }

 /**
 * @return the lastAcc
 */
 public double[] getLastAcc() {
 return lastAcc;
 }

 /**
 * @return the round
 */
 public int getRound() {
 return round;
 }

 /**
 * @return the logSteps
 */
 public boolean isLogSteps() {
 return logSteps;
 }

87

 /**
 * @param logSteps the logSteps to set
 */
 public void setLogSteps(boolean logSteps) {
 this.logSteps = logSteps;
 }

 /**
 * @return the valuesPerSecond
 */
 public int getValuesPerSecond() {
 return valuesPerSecond;
 }

}

A.4 WifiScanner.Java

package com.colostate.mecs.vinzzz.IL.wifi;

import java.util.Date;
import java.util.Iterator;
import java.util.List;
import java.util.Vector;

import com.colostate.mecs.vinzzz.IL.exceptions.WifiException;
import com.colostate.mecs.vinzzz.IL.location.LocationServiceFactory;
import com.colostate.mecs.vinzzz.IL.model.BssidResult;
import com.colostate.mecs.vinzzz.IL.model.Location;
import com.colostate.mecs.vinzzz.IL.model.WifiScanResult;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.net.wifi.ScanResult;
import android.net.wifi.WifiManager;
import android.util.Log;
/**
 * Class for WiFi Scan
 * @author viney
 *
 */
public class WifiScanner {

 private static final String TAG = "WifiScanner";
 protected static Vector<BroadcastReceiver> receivers = null;

 public static BroadcastReceiver startScan(Context ctx,
 WifiResultCallback callback) throws WifiException {
 if (receivers == null) {
 receivers = new Vector<BroadcastReceiver>();
 }

 BroadcastReceiver wifiScanReceiver = null;
 final Context context = ctx;
 final WifiResultCallback resultCallback = callback;

 WifiManager wm = (WifiManager) context

88

 .getSystemService(Context.WIFI_SERVICE);

 // Logger.d("trying to start a wifi scan");

 if (!wm.isWifiEnabled()) {

 Log.d(TAG, "WiFi is disabled, trying to enable it");
 wm.setWifiEnabled(true);
 try {
 Thread.sleep(2500);
 } catch (InterruptedException e) {

 }

 if (wm.isWifiEnabled()) {

 Log.d(TAG, "WiFi could not be enabled");
 } else {
// Log.d(TAG, "WiFI enabled successfully");

 }
 }

 if (!wm.isWifiEnabled()) {

 throw new WifiException(
 "WiFi could not be enabled, please enable it!");
 }

// Log.d(TAG, "WiFi is enabled");

 IntentFilter i = new IntentFilter();
 i.addAction(WifiManager.SCAN_RESULTS_AVAILABLE_ACTION);

 wifiScanReceiver = new BroadcastReceiver() {
 public void onReceive(Context c, Intent i) {

// Log.d(TAG, "received ScanResult");
 // Code to execute when SCAN_RESULTS_AVAILABLE_ACTION event
 // occurs
 WifiManager w = (WifiManager) c
 .getSystemService(Context.WIFI_SERVICE);
 List<ScanResult> l = w.getScanResults(); // Returns a
<list> of

 // scanResults
 context.unregisterReceiver(this);

 if (receivers.contains(this))
 receivers.remove(this);

 Location curLocation = LocationServiceFactory
 .getLocationService().getLocation();

// for (Iterator<ScanResult> it = l.iterator(); it.hasNext();)
{
// ScanResult sr = it.next();
// System.out.println(sr.BSSID + " " + sr.SSID + " "
// + sr.level + "dBm " + sr.frequency +
"MHz "
// + sr.capabilities + "\n");
// }

89

 WifiScanResult wifiScanResult = new WifiScanResult(
 new Date().getTime(), curLocation, null);

 for (ScanResult sr : l) {

 BssidResult bssid = new BssidResult(sr,
wifiScanResult,curLocation);
 wifiScanResult.addTempBssid(bssid);

 }

 if (resultCallback != null)
 resultCallback.onScanFinished(wifiScanResult);

 }
 };

 context.registerReceiver(wifiScanReceiver, i);

 receivers.add(wifiScanReceiver);

// Log.d(TAG, "starting Wifi Scan");
 // Now you can call this and it should execute the broadcastReceiver's
 // onReceive()
 wm.startScan();

 return wifiScanReceiver;

 }

 public static void stopScanning(Context ctx) {
 // we don't stop scanning, we just unregister all Broadcast Intent
 // Receivers

 if (receivers != null)
 for (BroadcastReceiver rcvr : receivers) {
 try {
 ctx.unregisterReceiver(rcvr);
 } catch (Exception e) {
 }
 }
 receivers = new Vector<BroadcastReceiver>();

 }

 public static void stopScanner(Context ctx, BroadcastReceiver receiver) {
 try {

 ctx.unregisterReceiver(receiver);
 } catch (Exception ex) {
 // Logger.e("could not unregister receiver",ex);
 }
 if (receivers.contains(receiver)) {
 receivers.remove(receiver);
 }

 }

}

90

A.5 ProjectActivity.Java

package com.colostate.mecs.vinzzz.IL.IndoorNavTest;

import java.text.ParseException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Set;
import java.util.Vector;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.ScheduledFuture;
import java.util.concurrent.TimeUnit;

import android.app.Activity;
import android.app.AlertDialog;
import android.app.Dialog;
import android.app.ProgressDialog;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.DialogInterface;
import android.content.Intent;
import android.database.Cursor;
import android.database.SQLException;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.PointF;
import android.graphics.drawable.AnimationDrawable;
import android.hardware.SensorManager;
import android.net.Uri;
import android.os.Bundle;
import android.os.Handler;
import android.os.Message;
import android.text.InputType;
import android.util.Log;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.LinearLayout;
import android.widget.ProgressBar;
import android.widget.Toast;

import com.colostate.ML.KNN.KNN;
import com.colostate.ML.LinearRegression.Regression;
import com.colostate.ML.LinearRegression.Regression2;
import com.colostate.ML.NeuralNetwork.NeuralNetwork;
import com.colostate.ML.SVM.SupportVectorMachine;
import com.colostate.mecs.vinzzz.IL.IndoorNavTest.R.menu;
import com.colostate.mecs.vinzzz.IL.database.BssidResultDataSource;
import com.colostate.mecs.vinzzz.IL.database.BssidResultHelper;
import com.colostate.mecs.vinzzz.IL.database.LocationCopyDataSource;
import com.colostate.mecs.vinzzz.IL.database.ProjectListDataSource;
import com.colostate.mecs.vinzzz.IL.exceptions.WifiException;
import com.colostate.mecs.vinzzz.IL.location.LocationChangeListener;
import com.colostate.mecs.vinzzz.IL.location.LocationServiceFactory;

91

import com.colostate.mecs.vinzzz.IL.location.SensorFusion;
import com.colostate.mecs.vinzzz.IL.location.StepDetectionProvider;
import com.colostate.mecs.vinzzz.IL.model.BssidResult;
import com.colostate.mecs.vinzzz.IL.model.Location;
import com.colostate.mecs.vinzzz.IL.model.LocationCopy;
import com.colostate.mecs.vinzzz.IL.model.ProjectList;
import com.colostate.mecs.vinzzz.IL.model.TrainingData;
import com.colostate.mecs.vinzzz.IL.model.WifiScanResult;
import com.colostate.mecs.vinzzz.IL.view.MeasuringPointDrawable;
import com.colostate.mecs.vinzzz.IL.view.MultiTouchDrawable;
import com.colostate.mecs.vinzzz.IL.view.MultiTouchView;
import com.colostate.mecs.vinzzz.IL.view.OkCallback;
import com.colostate.mecs.vinzzz.IL.view.RefreshableView;
import com.colostate.mecs.vinzzz.IL.view.ScaleLineDrawable;
import com.colostate.mecs.vinzzz.IL.view.SiteMapDrawable;
import com.colostate.mecs.vinzzz.IL.view.UserDrawable;
import com.colostate.mecs.vinzzz.IL.wifi.WifiResultCallback;
import com.colostate.mecs.vinzzz.IL.wifi.WifiScanner;
/**
 * Main Test Project Activity
 * @author viney
 *
 */
public class ProjectActivity extends Activity implements RefreshableView,
 LocationChangeListener, WifiResultCallback, OnClickListener {

 private static final String TAG = "ProjectActivity";

 protected static String pID = null;
 protected static String mapScaleX = null;
 protected static String mapScaleY = null;
 protected static String backgroundImagePath = null;
 protected static String mlTechnique = null;
 protected static String tProjId = null;

 SensorManager sensorManager;
 SensorFusion sensorFusion;

 protected final Context context = this;
 protected MultiTouchView multiTouchView;
 protected ProjectList site;
 protected SiteMapDrawable map;
 protected UserDrawable user;
 protected Vector<Location> stepsLoc;

 private LocationCopy locationCopy;
 private LocationCopyDataSource datasourceLocation;

 // ML

 // Training
 private LocationCopyDataSource datasourceTrainingLocation;
 private List<String> uniqueBssids;
 private int xyTrainingPoints;

 // Neural Network
 private NeuralNetwork nn;
 // SVM
 private SupportVectorMachine svm;
 // KNN
 private KNN knn;
 // Linear regression
 private Regression reg;

92

 private Regression2 reg2;

 // ML thresholds
 private float mlMaxThreshold;
 private float mlMinThreshold;
 // for step pred algo
 int counterFirstStep = 0;
 double lastPredX;
 double lastPredY;

 private BssidResult BssidResult;
 private BssidResultDataSource datasourceBssidResult;
 private BssidResultDataSource datasourceTrainBssidResult;
 public Cursor bssidsCursor;
 private List<BssidResult> trainingData;
 private List<TrainingData> tData;

 protected StepDetectionProvider stepDetectionProvider = null;
 protected boolean walkingAndScanning = false;

 // Wifi
 public static final String SCAN_INTERVAL = "scan_interval";
 protected int schedulerTime = 2;
 protected final ScheduledExecutorService scheduler = Executors
 .newScheduledThreadPool(1);
 protected BroadcastReceiver wifiBroadcastReceiver;
 protected boolean ignoreWifiResults = false;
 protected Runnable wifiRunnable;
 protected ScheduledFuture<?> scheduledTask = null;
 protected ArrayList<WifiScanResult> unsavedScanResults;

 protected Handler messageHandler;
 protected static final int MESSAGE_REFRESH = 1, MESSAGE_START_WIFISCAN = 2;
 private static final int DIALOG_SET_THRESHOLDS = 0;
 private static final int DIALOG_SET_WIFI_SCAN_RATE = 1;

 private BssidResultHelper database;

 // Scaler to measure accuracy
 protected ScaleLineDrawable scaler = null;
 protected float scalerDistance;

 ProgressDialog progressBar;

 @Override
 protected void onCreate(Bundle savedInstanceState) {

 multiTouchView = new MultiTouchView(this);

 this.setContentView(R.layout.activity_project);
 super.onCreate(savedInstanceState);
 Bundle extras = getIntent().getExtras();

 // Show progress dialog

 // getting all pre set values from Project database
 site = new ProjectList();
 site.setId(Long.parseLong(extras.getString("siteID")));
 site.setGridSpacingX(Float.parseFloat(extras.getString("mapScaleX")));
 site.setGridSpacingY(Float.parseFloat(extras.getString("mapScaleY")));
 site.setNorth(Float.parseFloat(extras.getString("mapNorth")));
 backgroundImagePath = extras.getString("backgroundImagePath");
 mlTechnique = extras.getString("mlTechnique");

93

 tProjId = extras.getString("tProjId");

 stepsLoc = new Vector<Location>();

 MultiTouchDrawable.setGridSpacing(site.getGridSpacingX(),
 site.getGridSpacingY());
 map = new SiteMapDrawable(this, this);
 map.setAngleAdjustment(site.getNorth());

 user = new UserDrawable(this, map);
 user.setNorth(site.getNorth());

 if (!(backgroundImagePath.equals(null) | backgroundImagePath
 .equals("null"))) {
 setBackgroundImage(backgroundImagePath);

 } else {
 Log.d(TAG, "No Background");
 // For bigger blank screen
 // Log.d(TAG, "Width : "+map.getWidth()+" Height
:"+map.getHeight()
 //);
 site.setSize(map.getWidth() * 6, map.getHeight() * 4);
 map.setSize(map.getWidth() * 6, map.getHeight() * 4);
 user.setRelativePosition(map.getWidth() / 2, map.getHeight() / 2);

 }

 // for (WifiScanResult wsr : site.getScanResults()) {
 // new MeasuringPointDrawable(this, map, wsr);
 // }

 LocationServiceFactory.getLocationService().setRelativeNorth(
 site.getNorth());
 LocationServiceFactory.getLocationService().setGridSpacing(
 site.getGridSpacingX(), site.getGridSpacingY());
 stepDetectionProvider = new StepDetectionProvider(this);
 stepDetectionProvider.setLocationChangeListener(this);

 // Message Handler implementation
 messageHandler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case MESSAGE_REFRESH:
 /* Refresh UI */
 if (multiTouchView != null)
 multiTouchView.invalidate();
 break;

 case MESSAGE_START_WIFISCAN:
 // start a wifiscan
 startWifiBackgroundScan();
 break;

 }
 }
 };

 wifiRunnable = new Runnable() {

 @Override
 public void run() {

94

 // try {
 // Thread.sleep(10000);
 // } catch (InterruptedException e) {
 // Log.d(TAG, "Error in Wifi Thread");
 // e.printStackTrace();
 // }
 messageHandler.sendEmptyMessage(MESSAGE_START_WIFISCAN);
 }

 };

 unsavedScanResults = new ArrayList<WifiScanResult>();

 // schedulerTime = this.getPreferences(Activity.MODE_PRIVATE).getInt(
 // SCAN_INTERVAL, schedulerTime);

 Log.d(TAG, "On Creat'd");

 init();
 Toast.makeText(context, "Please be patient training the ML Algo....",
 Toast.LENGTH_LONG).show();

 Thread T = new Thread(new Runnable() {
 public void run() {
 prepareforML();
 }
 });
 T.start();
 try {
 T.join();
 Toast.makeText(context,
 "Training Complete.. You may now use the app !! :) ",
 Toast.LENGTH_LONG).show();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 }

 /**
 * Func that will prepare training data and call select ML Technique
 */
 private void prepareforML() {
 getTrainingData();
 prepareTrainingData();

 }

 /**
 * Func that will prepare the training data(Identify Unique Bssids and list
 * them)
 */
 @SuppressWarnings("unchecked")
 private void prepareTrainingData() {
 if (trainingData != null) {
 // Get all BSSIDs
 List<String> unsortedBssids = new ArrayList<String>();
 for (int i = 0; i < trainingData.size(); i++) {
 unsortedBssids.add(trainingData.get(i).getBssid());
 }

 // Get Unique BSSIDS
 Set sortedBssids = new HashSet<String>();

95

 sortedBssids.addAll(unsortedBssids);

 uniqueBssids = new ArrayList<String>();
 Iterator iterator = sortedBssids.iterator();
 while (iterator.hasNext()) {
 String tempBssid = iterator.next().toString();
 int j = 0;
 for (int i = 0; i < trainingData.size(); i++) {
 if (tempBssid.equals(trainingData.get(i).getBssid()
 .toString())) {
 j++;
 }
 }
 /* Set bssid threshold as necessary */if (j > 0) {
 uniqueBssids.add(tempBssid);
 }
 }
 Log.d(TAG,
 "Got all unique BSSIDS. Size = "
 + String.valueOf(uniqueBssids.size()));
 sortedBssids = null;
 unsortedBssids = null;

 // Get quadruple(x,y,level,bssid) of all Unique BSSIDs

 tData = null;
 tData = new ArrayList<TrainingData>();
 Iterator iterator1 = uniqueBssids.iterator();
 while (iterator1.hasNext()) {
 String tempBssid1 = iterator1.next().toString();
 for (int i = 0; i < trainingData.size(); i++) {
 if (tempBssid1.equals(trainingData.get(i).getBssid()
 .toString())) {
 tData.add(new
TrainingData(trainingData.get(i).getX(),
 trainingData.get(i).getY(),
trainingData.get(i)
 .getLevel(),
trainingData.get(i)
 .getBssid()));
 }
 }
 }

 Log.d(TAG, "No. of Training Samples = " + tData.size());
 trainingData = null;

 // Get unique X,Y

 Set xy = new HashSet<TrainingData>();
 for (int i = 0; i < tData.size(); i++) {
 xy.add(new TrainingData(tData.get(i).getX(), tData.get(i)
 .getY(), tData.get(i).getLevel(), tData.get(i)
 .getBssid()));
 }

 Log.d(TAG, "No. of training wifi scans(xy) = " + xy.size());
 setXYTrainingPoints(xy.size());

 // Create a training 2D array for sorted final training array
 double[][] X = new double[getXYTrainingPoints()][];
 int n = 0;

96

 // Group BSSID based on XY
 Iterator it = xy.iterator();
 while (it.hasNext()) {

 TrainingData temp = (TrainingData) it.next();
 List<TrainingData> setXY = new ArrayList<TrainingData>();//
Set

 // of

 // single

 // XY

 for (int i = 0; i < tData.size(); i++) {
 if (temp.getX() == tData.get(i).getX()
 && temp.getY() == tData.get(i).getY())
{
 setXY.add(tData.get(i));
 }
 }

 // See what dont match and give def value
 Iterator it1 = uniqueBssids.iterator();
 while (it1.hasNext()) {
 String tempUBssid = it1.next().toString();
 int T = 0;
 int F = 0;
 for (int j = 0; j < setXY.size(); j++) {
 if
(setXY.get(j).getBssid().equals(tempUBssid)) {
 T++;
 } else {
 F++;
 }
 }
 if (T == 1) {
 // This means BSSID present

 } else {
 if (T == 0 && F > 0) {
 setXY.add(new
TrainingData(setXY.get(0).getX(),
 setXY.get(0).getY(), 0,
tempUBssid));
 // Log.d(TAG, "Adding for " +
tempUBssid);
 }

 }

 }
 // Log.d(TAG, "X,Y= (" + setXY.get(0).getX() + ","
 // + setXY.get(0).getY() + ") Size= " + setXY.size());

 // then sort according to uniqueBSSIDS and put in an
Training 2D
 // Array
 X[n] = sortTrainingBSSIDs(setXY);

 n++;
 }

97

 n = 0;

 Log.d(TAG, "Got all training data in X[][]");
 trainML(X);

 } else {
 Log.d(TAG, "Please load training data!");
 }

 }

 /**
 * Func to train the ML Algo from prepared data
 *
 * @param x
 */
 private void trainML(double[][] x) {
 // init data
 setMlMaxThreshold(120);
 setMlMinThreshold(40);

 if (mlTechnique.equals("NN")) {
 Log.d(TAG, "Training ML technique using Neural Networks");

 int inNodes = uniqueBssids.size();// Unique BSSIDS contains all
the
 //
bssids
 int hidNodes = 14;
 int outNodes = 2;

 nn = new NeuralNetwork(inNodes, hidNodes, outNodes);

 int maxEpochs = 4000;

 // nn.train(x, maxEpochs);
 // Log.d(TAG, "NN Training complete !!");
 //
 // Log.d(TAG, "Testing for Train set ");
 // // Test train set
 // double[][] xy = nn.test(x);
 // printMatrix(xy, "XYPredicted");
 // double error = nn.Accuracy(nn.getT(), xy);
 // System.out.println("Accuracy = " + error);

 } else if (mlTechnique.equals("SVM")) {
 Log.d(TAG, "Training ML technique using SVM Regression");

 int inNodes = uniqueBssids.size();// Unique BSSIDS contains all
the
 // bssids
 int outNodes = 2;

 svm = new SupportVectorMachine(3, 3, inNodes, outNodes, 3,
 0.0000001f, false);

 svm.train(x);
 Log.d(TAG, "SVM Training complete !!");
 Log.d(TAG, "Testing for Train set ");
 float[] predict = svm.test(x, 1);
 for (int i = 0; i < x.length; i++) {
 Log.d(TAG, "x = " + x[i][inNodes + 1]);
 }

98

 for (int i = 0; i < predict.length; i++) {
 Log.d(TAG, "predict X= " + predict[i]);
 }
 } else if (mlTechnique.equals("KNN")) {
 Log.d(TAG, "Training ML technique using KNN Regression");

 int inNodes = uniqueBssids.size();// Unique BSSIDS contains all
the
 // bssids
 int outNodes = 2;
 int kNN = 2;

 knn = new KNN(inNodes, outNodes, kNN);

 knn.train(x);
 Log.d(TAG, "KNN Training complete !!");

 // Log.d(TAG, "Testing for Train set ");
 // double[][] xy =knn.test(x);
 // // Test train set
 // printMatrix(xy, "XYPredicted");

 } else if (mlTechnique.equals("Regression")) {
 int inNodes = uniqueBssids.size();// Unique BSSIDS contains all
the
 // bssids
 int outNodes = 1;

 reg = new Regression(inNodes, outNodes);
 // reg2= new Regression2(inNodes, outNodes);

 // reg.train(x);
 // reg2.train(x);
 Log.d(TAG, "Linear Regression Training complete !!");

 // Log.d(TAG, "Testing for Train set ");
 // double[][] xy = reg.test(x);
 // printMatrix(xy, "XPredicted");

 }
 }

 /**
 * Func to test the ML Algo from test data
 *
 * @param t
 */

 private double[][] testML(double[][] t) {

 if (mlTechnique.equals("NN")) {
 Log.d(TAG, "Testing ML technique for Neural Networks");
 return nn.test(t);

 } else if (mlTechnique.equals("SVM")) {
 Log.d(TAG, "Testing ML technique for SVM");
 // return svm.test(t);
 return null;
 } else if (mlTechnique.equals("KNN")) {
 Log.d(TAG, "Testing ML technique for KNN");
 return knn.test(t);
 } else {
 return null;

99

 }
 }

 private void setXYTrainingPoints(int size) {
 this.xyTrainingPoints = size;
 }

 private int getXYTrainingPoints() {
 return this.xyTrainingPoints;
 }

 /**
 * Sort the BSSIDS according to Unique BSSIDS
 */
 private double[] sortTrainingBSSIDs(List<TrainingData> data) {
 //
 // Iterator I = data.iterator();
 // while (I.hasNext()) {
 // TrainingData TD = (TrainingData) I.next();
 // Log.d(TAG,
 // "X= " + TD.getX() + " Y= " + TD.getY() + " BSSID= "
 // + TD.getBssid() + " Level= " + TD.getLevel());
 // }

 Iterator uniqueIt = uniqueBssids.iterator();
 /**
 * tempRow contains sorted BSSID in the order: [db,db,dbx,y]
 */
 double[] tempRow = new double[uniqueBssids.size() + 2];
 int m = 0;
 while (uniqueIt.hasNext()) {

 String bssidTemp = uniqueIt.next().toString();
 for (int i = 0; i < data.size(); i++) {
 if (data.get(i).getBssid().equals(bssidTemp)) {
 tempRow[m] = data.get(i).getLevel();
 }
 }
 m++;
 }
 tempRow[m] = data.get(0).getX();
 tempRow[m + 1] = data.get(0).getY();

 return tempRow;
 }

 /**
 * Get training data(bssids) from Content Provider
 */
 @SuppressWarnings("deprecation")
 private void getTrainingData() {
 try {
 trainingData = null;
 String[] projection = { database.COLUMN_ID, database.COLUMN_X,
 database.COLUMN_Y, database.COLUMN_BSSID,
 database.COLUMN_SSID, database.COLUMN_CAPABILITIES,
 database.COLUMN_FREQUENCY, database.COLUMN_LEVEL };
 String uri = null;
 uri =
"content://com.colostate.mecs.vinzzz.IL.contentproviderbssid/bssids/"
 + tProjId;
 bssidsCursor = this.managedQuery(Uri.parse(uri), projection, null,
 null, null);

100

 datasourceTrainBssidResult = new BssidResultDataSource(this);
 trainingData = datasourceTrainBssidResult
 .getAllBssidResult(bssidsCursor);
 bssidsCursor.close();

 Log.d(TAG, "Got Training Data");

 } catch (ParseException e) {
 Log.e(TAG, "Error Getting Training Data");
 e.printStackTrace();
 }
 }

 /**
 * InitUI Method
 *
 * @return void
 */
 private void init() {
 // UI Stuff
 ((Button) findViewById(R.id.start_wifiscan_button))
 .setOnClickListener(this);

 // Open DB - Steps/Location
 datasourceLocation = new LocationCopyDataSource(this, "location_"
 + site.getId());
 try {
 datasourceLocation.open();
 Vector<PointF> oldSteps = new Vector<PointF>();
 List<LocationCopy> mLocations;
 mLocations = datasourceLocation.getAllLocations();
 boolean stepFlag = false;

 for (LocationCopy value : mLocations) {
 if (value != null) {
 oldSteps.add(new PointF(value.getX(), value.getY()));
 stepFlag = true;
 } else {
 stepFlag = false;
 }
 }
 if (stepFlag) {
 Log.d(TAG, "No. of Steps =" + oldSteps.size());
 map.setSteps(oldSteps);
 LocationCopy temp = mLocations.get(mLocations.size() - 1);
 user.setRelativePosition(temp.getX(), temp.getY());// Last
known

 // location
 Log.d(TAG, "Old Steps loaded successfully ");
 stepFlag = false;
 }

 } catch (SQLException e) {
 Log.d(TAG, "Could not find location database table");
 e.printStackTrace();
 } catch (ParseException e) {
 Log.d(TAG, "Error retrieving old locations");
 e.printStackTrace();
 }

 // Open DB - Wifi
 datasourceBssidResult = new BssidResultDataSource(this, "wifi_"

101

 + site.getId());
 try {
 datasourceBssidResult.open();
 List<BssidResult> mBssidResult;
 mBssidResult = datasourceBssidResult.getAllBssidResult();

 // Get unique X,Y
 Set xy = new HashSet<TrainingData>();
 for (int i = 0; i < mBssidResult.size(); i++) {
 xy.add(new TrainingData(mBssidResult.get(i).getX(),
 mBssidResult.get(i).getY(),
mBssidResult.get(i)
 .getLevel(),
mBssidResult.get(i).getBssid()));
 }

 Log.d(TAG, "No. of TESTING wifi scans(xy) = " + xy.size());
 // Get unique X,Y

 boolean stepFlag = false;

 float compX = 0;
 float compY = 0;

 // Dont show wifi results
 for (BssidResult value : mBssidResult) {
 // Add wifi drawables
 float tempX = value.getX();
 float tempY = value.getY();

 if (tempX != compX || tempY != compY) {
 WifiScanResult wsr = new WifiScanResult(new
Location(tempX,
 tempY));
 new MeasuringPointDrawable(this, map, wsr);
 }

 compX = tempX;
 compY = tempY;

 // Log.d(TAG, "Old Wifi results loaded successfully ");

 }// Dont show wifi results

 } catch (SQLException e) {
 Log.d(TAG, "Could not find Wifi database table");
 e.printStackTrace();
 } catch (ParseException e) {
 Log.d(TAG, "Error retrieving old Wifi Results ");
 e.printStackTrace();
 }

 // UI Stuff
 multiTouchView = ((MultiTouchView)
findViewById(R.id.project_site_resultview));
 multiTouchView.setRearrangable(false);

 multiTouchView.addDrawable(map);

 Log.d(TAG, "Init Complete");

 }

102

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu.projec_activity, menu);
 return true;
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 }

 @Override
 protected void onPause() {
 Log.d(TAG, "On Pause'd");
 super.onPause();
 multiTouchView.unloadImages();
 map.unload();

 setWalkingAndScanning(false, false);
 saveProject();
 bssidsCursor.close();
 datasourceLocation.close();
 datasourceBssidResult.close();

 }

 private void saveProject() {
 Log.d(TAG, "On saveProject");
 if (stepsLoc == null) {
 } else {
 for (Location locS : stepsLoc) {
 if (locS != null) {
 // Set arguments
 locationCopy = new LocationCopy();
 // locationCopy.setId(locS.getId());
 locationCopy.setX(locS.getX());
 locationCopy.setY(locS.getY());
 locationCopy.setAccurancy(locS.getAccurancy());
 locationCopy.setTimestamp(locS.getTimestamp());

 // Add to database
 try {
 locationCopy = datasourceLocation
 .createLocation(locationCopy);
 } catch (ParseException e) {
 e.printStackTrace();
 Log.e(TAG,
 "Error adding data to
step/location database");
 }
 }
 }
 }
 Log.d(TAG, "Location database updated");
 }

 @Override
 protected void onResume() {
 super.onResume();
 Log.d(TAG, "setting context");
 multiTouchView.loadImages(this);
 map.load();

103

 try {
 datasourceLocation.open();
 datasourceBssidResult.open();
 } catch (SQLException e) {
 Log.d(TAG, "onResume error while opening DB");
 e.printStackTrace();
 }

 }

 protected void setBackgroundImage(String path) {

 try {
 Bitmap bmp = BitmapFactory.decodeFile(path);
 site.setBackgroundBitmap(bmp);
 map.setBackgroundImage(bmp);
 site.setSize(bmp.getWidth(), bmp.getHeight());
 map.setSize(bmp.getWidth(), bmp.getHeight());
 user.setRelativePosition(bmp.getWidth() / 2, bmp.getHeight() / 2);
 multiTouchView.invalidate();

 } catch (Exception e) {
 Log.e(TAG, "could not set background", e);
 Toast.makeText(
 context,

 getString(R.string.project_site_set_background_failed,
 e.getMessage()),
Toast.LENGTH_LONG).show();
 }
 }

 @Override
 public void invalidate() {
 if (multiTouchView != null) {
 multiTouchView.invalidate();
 }
 }

 protected void startWifiBackgroundScan() {

 try {
 // we first stop the old receiver, so we wont receive duplicate
 // results
 // stopWifiScan();

 if (wifiBroadcastReceiver != null) {
 // wifiBroadcastReceiver.
 }

 startWifiScan();
 // Toast.makeText(this, R.string.project_site_wifiscan_started,
 // Toast.LENGTH_SHORT).show();
 } catch (WifiException e) {
 Log.e(TAG, "could not start wifi scan", e);
 Toast.makeText(
 this,

 getString(R.string.project_site_wifiscan_start_failed,
 e.getMessage()),
Toast.LENGTH_LONG).show();
 }

104

 }

 /**
 * start the wifi scan
 */
 protected void startWifiScan() throws WifiException {
 Log.d(TAG, "starting WiFi Scan");

 wifiBroadcastReceiver = WifiScanner.startScan(this, this);
 ignoreWifiResults = false;
 }

 /**
 * stop the wifi scan, if in progress
 */
 protected void stopWifiScan() {
 hideWifiScanDialog();

 if (wifiBroadcastReceiver != null) {

 WifiScanner.stopScanner(this, wifiBroadcastReceiver);
 wifiBroadcastReceiver = null;

 }
 // stop scan
 // oh, wait, we can't stop the scan, it's asynchronous!
 // we just have to ignore the result!
 ignoreWifiResults = true;

 }

 /**
 * hide the wifi scan dialog if shown
 */
 protected void hideWifiScanDialog() {
 // if (scanningImageView != null) {
 // ((AnimationDrawable) scanningImageView.getDrawable()).stop();
 // // scanningImageView = null;
 // }
 //
 // if (scanAlertDialog != null) {
 // scanAlertDialog.cancel();
 // // scanAlertDialog = null;
 // }
 }

 @Override
 public void onLocationChange(Location loc) {
 // info from StepDetectionProvider, that the location changed.
 user.setRelativePosition(loc.getX(), loc.getY());
 map.addStep(new PointF(loc.getX(), loc.getY()));
 stepsLoc.add(loc);
 messageHandler.sendEmptyMessage(MESSAGE_REFRESH);
 }

 @SuppressWarnings("deprecation")
 public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()) {

 case R.id.menuItemStart:
 Log.d(TAG, "Menu Start/Stop selected");
 if (item.getTitle().equals("Start")) {

105

 item.setTitle("Stop");
 } else {
 item.setTitle("Start");
 }
 setWalkingAndScanning(!walkingAndScanning, true);
 walkingAndScanning = !walkingAndScanning;
 return false;

 case R.id.menuItemStop:
 Log.d(TAG, "Menu Stop selected");
 return false;

 case R.id.menuItemCheckAccuracy:
 Log.d(TAG, "Menu Accuracy selected");
 scaleOfMap();
 return false;

 case R.id.menuItemDelLastStep:
 Log.d(TAG, "Menu Del Last Step selected");
 delLastStep();
 return false;

 case R.id.menuItemSetThreshold:
 Log.d(TAG, "Menu Threshold selected");
 showDialog(DIALOG_SET_THRESHOLDS);
 return false;

 case R.id.menuItemSetWifiRate:
 Log.d(TAG, "Menu Wifi Rate selected");
 showDialog(DIALOG_SET_WIFI_SCAN_RATE);
 return false;

 case R.id.menuItemDeleteData:
 stepsLoc = null;
 datasourceLocation.deleteAll();// Delete locations
 datasourceBssidResult.deleteAll();// Delete all Wifi data
 Log.d(TAG, "All data deleted");
 Toast.makeText(this, "All data deleted",
Toast.LENGTH_SHORT).show();
 super.onBackPressed();
 return false;

 }
 return false;
 }

 /**
 * Function to delete last step
 */
 private void delLastStep() {
 stepsLoc.remove(stepsLoc.size() - 1);

 Vector<PointF> oldDSteps = new Vector<PointF>();
 boolean stepFlag = false;
 for (Location dloc : stepsLoc) {
 if (dloc != null) {
 oldDSteps.add(new PointF(dloc.getX(), dloc.getY()));
 stepFlag = true;
 } else {
 stepFlag = false;
 }
 }
 if (stepFlag) {

106

 map.setSteps(oldDSteps);
 LocationCopy temp = new LocationCopy(oldDSteps.lastElement().x,
 oldDSteps.lastElement().y);
 user.setRelativePosition(temp.getX(), temp.getY());// Last known

 // location
 messageHandler.sendEmptyMessage(MESSAGE_REFRESH);
 // Log.d(TAG, "Old Steps loaded successfully ");
 stepFlag = false;
 }

 }

 protected void setWalkingAndScanning(boolean shouldRun, boolean ui) {
 if (!shouldRun) {
 // stop!

 if (stepDetectionProvider.isRunning())
 stepDetectionProvider.stop();
 if (scheduledTask != null) {
 scheduledTask.cancel(false);
 scheduledTask = null;
 }
 stopWifiScan();

 // if(ui)
 // ((Button)
 //
findViewById(R.id.project_site_step_detect)).setText(R.string.project_site_start_step_
detect);
 //
 // persistScanResults(ui);

 } else {
 // start
 unsavedScanResults = new ArrayList<WifiScanResult>();

 if (!stepDetectionProvider.isRunning()) {
 stepDetectionProvider.start();
 }

 if (scheduledTask == null) {
 scheduledTask =
scheduler.scheduleWithFixedDelay(wifiRunnable,
 5, (this.schedulerTime <= 0 ? 1 :
this.schedulerTime),
 TimeUnit.SECONDS);
 }
 // if(ui)
 // ((Button)
 //
findViewById(R.id.project_site_step_detect)).setText(R.string.project_site_stop_step_d
etect);
 }
 }

 @Override
 public void onScanFinished(WifiScanResult wr) {
 hideWifiScanDialog();
 if (!ignoreWifiResults) {
 try {

 Log.d(TAG, "received a wifi scan result!");

107

 ignoreWifiResults = true;

 wr.setProjectLocation(site);

 if (walkingAndScanning) {
 unsavedScanResults.add(wr);
 } else {

 }

 new MeasuringPointDrawable(this, map, wr);

 // StringBuffer sb = new StringBuffer();
 HashMap<String, Integer> ssids = new HashMap<String,
Integer>();
 // if(wr.getBssids()!=null)

 List<TrainingData> tempTest = new
ArrayList<TrainingData>();

 for (BssidResult result : wr.getBssids()) {
 ssids.put(
 result.getSsid(),
 (ssids.get(result.getSsid()) == null ?
1 : ssids
 .get(result.getSsid()) +
1));
 // BssidResult result = it.next();
 // Logger.d("ScanResult: " + result.toString());
 // sb.append(result.toString());
 // sb.append("\n");

 // Add to WiFi Database
 try {
 result = datasourceBssidResult
 .createBssidResult(result);
 } catch (ParseException e) {
 e.printStackTrace();
 Log.e(TAG, "Error adding data to Wifi
database");
 }

 // Add to temp test list
 tempTest.add(new TrainingData(result.getX(),
result.getY(),
 result.getLevel(), result.getBssid()));

 // System.out.println(result.getBssid() + " "
 // + result.getSsid() + " " + result.getLevel()
 // + "dBm " + result.getFrequency() + "MHz "
 // + result.getCapabilities() + " x=" + result.getX()
 // + " y=" + result.getY() + "\n");

 }

 // Test using tempTest for ML Algo and add step to stepsLoc

 // Add def values
 Iterator it2 = uniqueBssids.iterator();
 while (it2.hasNext()) {
 String tempUBssid = it2.next().toString();
 int T = 0;
 int F = 0;

108

 for (int j = 0; j < tempTest.size(); j++) {
 if
(tempTest.get(j).getBssid().equals(tempUBssid)) {
 T++;
 } else {
 F++;
 }
 }
 if (T == 1) {
 // This means BSSID present

 } else {
 if (T == 0 && F > 0) {
 tempTest.add(new
TrainingData(tempTest.get(0)
 .getX(),
tempTest.get(0).getY(), 0,
 tempUBssid));
 }

 }

 }

 // Sort List
 double[][] T = new double[1][];
 T[0] = sortTrainingBSSIDs(tempTest);

 // for (int i = 0; i < T[0].length; i++) {
 // System.out.println(T[0][i]);
 // }
 // Test for ML
 double predictedXY[][] = testML(T);
 if (predictedXY != null) {
 System.out.println("Predicted X = " +
predictedXY[0][0]
 + " Y = " + predictedXY[0][1]);

 Location lastLoc = stepsLoc.lastElement();

 // new logic for comparing last predicted value
 // to avoid convergence
 if (counterFirstStep == 0) {

 } else {
 double distanceLastPred = Math.sqrt(Math.pow(
 (predictedXY[0][0] - lastPredX),
2)
 + Math.pow((predictedXY[0][1] -
lastPredY), 2));
 if (distanceLastPred > 20) {
 double distance = Math
 .sqrt(Math.pow(

 (predictedXY[0][0] - lastLoc.getX()),
 2)
 + Math.pow(

 (predictedXY[0][1] - lastLoc

 .getY()), 2));

109

 Log.d(TAG, "Distance of predicted = " +
distance);
 Toast.makeText(this,
 "Distance of predicted = "
+ distance,

 Toast.LENGTH_SHORT).show();
 if (distance > getMlMinThreshold()
 && distance <
getMlMaxThreshold()) {
 // Log.d(TAG,
 // "Min/Max Threshold =
"+getMlMinThreshold()+"/"+getMlMaxThreshold());
 // Add predicted step
 Log.d(TAG, "Adding predicted
step");
 onLocationChange(new Location(
 (float)
predictedXY[0][0],
 (float)
predictedXY[0][1]));
 } else {

 }

 }
 }
 counterFirstStep = counterFirstStep + 1;
 lastPredX = predictedXY[0][0];
 lastPredY = predictedXY[0][1];
 }

 // UI stuff
 user.bringToFront();
 multiTouchView.invalidate();

 // Toast.makeText(
 // this,
 // this.getString(R.string.project_site_wifiscan_finished,
 // ssids.size(), wr.getBssids().size()),
 // Toast.LENGTH_SHORT).show();

 } catch (SQLException e) {
 Log.e(TAG, "could not update wifiscanresult!", e);
 Toast.makeText(
 this,

 this.getString(R.string.project_site_wifiscan_failed,
 e.getMessage()),
Toast.LENGTH_LONG).show();
 }

 }
 }

 @Override
 public void onScanFailed(Exception ex) {
 hideWifiScanDialog();
 if (!ignoreWifiResults) {

 Log.e(TAG, "Wifi scan failed!", ex);
 Toast.makeText(
 this,

110

 this.getString(R.string.project_site_wifiscan_failed,
 ex.getMessage()),
Toast.LENGTH_LONG).show();

 }

 }

 @Override
 public void onClick(View v) {
 switch (v.getId()) {

 case R.id.start_wifiscan_button:
 Log.d(TAG, "start a wifiscan");
 try {
 startWifiScan();
 Toast.makeText(getApplicationContext(), "Doing Wifi Scan
...",
 Toast.LENGTH_LONG).show();

 } catch (WifiException e) {
 Log.e(TAG, "could not start wifi scan!", e);
 Toast.makeText(this,
 R.string.project_site_wifiscan_start_failed,
 Toast.LENGTH_LONG).show();
 }

 break;
 }
 }

 @SuppressWarnings("deprecation")
 @Override
 protected Dialog onCreateDialog(int id) {
 switch (id) {
 case DIALOG_SET_THRESHOLDS:
 AlertDialog.Builder thresholdDialog = new
AlertDialog.Builder(this);

 thresholdDialog.setTitle("Set Thresholds");
 thresholdDialog.setMessage("Set the Min(1) and Max(2)
thresholds");

 // Set an EditText view to get user input
 final EditText minInput = new EditText(this);
 final EditText maxInput = new EditText(this);
 final LinearLayout lila1 = new LinearLayout(this);

 lila1.setOrientation(LinearLayout.VERTICAL);
 minInput.setSingleLine(true);
 minInput.setRawInputType(InputType.TYPE_CLASS_NUMBER
 | InputType.TYPE_NUMBER_FLAG_DECIMAL);

 maxInput.setSingleLine(true);
 maxInput.setRawInputType(InputType.TYPE_CLASS_NUMBER
 | InputType.TYPE_NUMBER_FLAG_DECIMAL);

 lila1.addView(minInput);
 lila1.addView(maxInput);

 thresholdDialog.setView(lila1);

 thresholdDialog.setPositiveButton("OK",

111

 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int whichButton) {

 try {
 float valueMin =
Float.parseFloat(minInput

 .getText().toString());
 float valueMax =
Float.parseFloat(maxInput

 .getText().toString());

 setMlMinThreshold(valueMin);
 setMlMaxThreshold(valueMax);

 // Destroy activity

 // Log.d(TAG, "Thresholds set to
="
 // + getMlMinThreshold() + ","
 // + getMlMaxThreshold());
 Toast.makeText(
 context,
 "Thresholds set to
="
 +
getMlMinThreshold() + ","
 +
getMlMaxThreshold(),

 Toast.LENGTH_SHORT).show();
 dialog.cancel();

 } catch (NumberFormatException nfe) {
 Log.w(TAG, "Wrong number format
format!");
 Toast.makeText(context, "Not a
number !",

 Toast.LENGTH_SHORT).show();
 }
 }
 });

 thresholdDialog.setNegativeButton("Cancel",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int whichButton) {
 // Canceled.
 }
 });

 return thresholdDialog.create();

 case DIALOG_SET_WIFI_SCAN_RATE:
 AlertDialog.Builder wifiRateDialog = new
AlertDialog.Builder(this);

 wifiRateDialog.setTitle("Set Wifi Rate");
 wifiRateDialog.setMessage("Set the Wifi Scan rate");

112

 // Set an EditText view to get user input
 final EditText scanRate = new EditText(this);
 scanRate.setRawInputType(InputType.TYPE_CLASS_NUMBER
 | InputType.TYPE_NUMBER_FLAG_DECIMAL);

 wifiRateDialog.setView(scanRate);

 wifiRateDialog.setPositiveButton("OK",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int whichButton) {

 try {
 int valueScanRate =
Integer.parseInt(scanRate

 .getText().toString());

 setSchedulerTime(valueScanRate);

 // Destroy activity

 // Log.d(TAG, "Wifi Scan Rate set
to ="
 // + getSchedulerTime()+"sec");
 Toast.makeText(
 context,
 "Wifi Scan Rate set
to ="
 +
getSchedulerTime() + "sec",

 Toast.LENGTH_SHORT).show();

 dialog.cancel();

 } catch (NumberFormatException nfe) {
 Log.w(TAG, "Wrong number format
format!");
 Toast.makeText(context, "Not a
number !",

 Toast.LENGTH_SHORT).show();
 }
 }
 });

 wifiRateDialog.setNegativeButton("Cancel",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int whichButton) {
 // Canceled.
 }
 });
 return wifiRateDialog.create();

 default:
 return super.onCreateDialog(id);
 }
 }

 /**
 * @return the mlMaxThreshold

113

 */
 public float getMlMaxThreshold() {
 return mlMaxThreshold;
 }

 /**
 * @param mlMaxThreshold
 * the mlMaxThreshold to set
 */
 public void setMlMaxThreshold(float mlMaxThreshold) {
 this.mlMaxThreshold = mlMaxThreshold;
 }

 /**
 * @return the mlMinThreshold
 */
 public float getMlMinThreshold() {
 return mlMinThreshold;
 }

 /**
 * @param mlMinThreshold
 * the mlMinThreshold to set
 */
 public void setMlMinThreshold(float mlMinThreshold) {
 this.mlMinThreshold = mlMinThreshold;
 }

 /**
 * @return the schedulerTime
 */
 public int getSchedulerTime() {
 return schedulerTime;
 }

 /**
 * @param schedulerTime
 * the schedulerTime to set
 */
 public void setSchedulerTime(int schedulerTime) {
 this.schedulerTime = schedulerTime;
 }

 protected void scaleOfMap() {
 if (scaler == null) {
 scaler = new ScaleLineDrawable(context, map, new OkCallback() {

 @Override
 public void onOk() {
 onMapScaleSelected();
 }

 });
 scaler.getSlider(1).setRelativePosition(map.getWidth() / 2 - 60,
 map.getHeight() / 2);
 scaler.getSlider(2).setRelativePosition((map.getWidth() / 2 + 60),
 (map.getHeight() / 2));
 multiTouchView.invalidate();

 } else {
 onMapScaleSelected();
 }
 }

114

 // close scaler
 @SuppressWarnings("deprecation")
 protected void onMapScaleSelected() {
 scalerDistance = scaler.getSliderDistance();

 scaler.removeScaleSliders();
 map.removeSubDrawable(scaler);
 scaler = null;
 invalidate();
 }

 /**
 * Function to print out a 2D array
 *
 * @param matrix
 */
 public void printMatrix(double[][] matrix, String variableName) {
 System.out.println();
 System.out.println("***Matrix " + variableName + "[" + matrix.length
 + "]" + "[" + matrix[0].length + "]" + " =\n");
 for (int r = 0; r < matrix.length; r++) {
 for (int c = 0; c < matrix[r].length; c++)
 System.out.print(matrix[r][c] + " ");
 System.out.println();
 }
 System.out.println();
 }
}

A.6 KNN.Java

package com.colostate.ML.KNN;

import java.util.Arrays;
import java.util.PriorityQueue;

import com.colostate.mecs.vinzzz.model.matrix.MatrixMathematics;

/**
 * Controller class for KNN regression ML Algo
 *
 * @author Viney Ugave(vinzzz@rams.colostate.edu)
 *
 */
public class KNN {

 /**
 * Number of Inputs
 */
 private int numInput;
 /**
 * Number of outputs
 */
 private int numOutput;
 /**
 * Number of Samples
 */
 private int numSamples;

 /**

115

 * The value of K (no. of nearest neighbours)
 */
 private int K;

 // Train specific arrays
 /**
 * Input values
 */
 private double[][] X;
 /**
 * Target values
 */
 private double[][] T;

 // Test specific arrays
 /**
 * Input values
 */
 private double[][] Xtest;
 /**
 * Target values
 */
 private double[][] Ttest;

 /**
 * @param numInput
 * @param numOutput
 */
 public KNN(int numInput, int numOutput) {
 this.numInput = numInput;
 this.numOutput = numOutput;
 this.K = 1;
 }

 /**
 * Constructor
 *
 * @param numInput
 * @param numOutput
 * @parar K
 */
 public KNN(int numInput, int numOutput, int K) {
 this.numInput = numInput;
 this.numOutput = numOutput;
 this.K = K;
 }

 /**
 * Function to set training data and context
 *
 * @param Xtrain
 */
 public void train(double[][] Xtrain) {

 setNumSamples(Xtrain.length);
 separateAndSetXT(Xtrain, true);

 }

 @SuppressWarnings("null")
 public double[][] test(double[][] testData) {
 separateAndSetXT(testData, false);
 double[][] ytest = new double[Xtest.length][];

116

 double[] distance = new double[X.length];
 double[] kDistance = new double[K];

 // for every output sample
 for (int i = 0; i < Xtest.length; i++) {
 for (int j = 0; j < X.length; j++) {
 distance[j] = getDistance(Xtest[i], X[j]);
 System.out.println(distance[j]);
 }

 // find nearest K
 kDistance = findNearestK(distance);

 // Get Indexes of nearest K
 int[] kIndex = findIndexes(kDistance, distance);

 // Get average for regression
 ytest[i] = findAverage(kIndex);

 }
 return ytest;
 }

 /**
 * Function to find avg
 *
 * @param kInd
 * @return
 */
 @SuppressWarnings("null")
 private double[] findAverage(int[] kInd) {
 // Hard coded for 2 outputs need to change
 double[] result = new double[2];
 double sumX = 0;
 double sumY = 0;
 for (int i = 0; i < kInd.length; i++) {
 int index = kInd[i];
 sumX = sumX + this.T[index][0];
 sumY = sumY + this.T[index][1];

 }

 result[0] = new Double(sumX / kInd.length);
 result[1] = new Double(sumY / kInd.length);
 return result;
 }

 /**
 * Function to get index of the K nearest Neighbours
 *
 * @param kDistance
 * @param distance
 * @return
 */
 private int[] findIndexes(double[] kDis, double[] dis) {
 int[] index = new int[kDis.length];
 for (int i = 0; i < kDis.length; i++) {
 for (int j = 0; j < dis.length; j++) {
 if (kDis[i] == dis[j]) {
 index[i] = j;

 }
 }

117

 }

 return index;
 }

 /**
 * Function to get nearest K distance
 *
 * @param distance
 * @return
 */
 private double[] findNearestK(double[] dist) {
 double[] sortedDistance = Arrays.copyOf(dist, dist.length);
 Arrays.sort(sortedDistance);
 double[] low = Arrays.copyOfRange(sortedDistance, 0, this.K);
 return low;
 }

 /**
 * Function to find Euclidean distance between arguments
 *
 * @param ds
 * @param ds2
 * @return
 */
 private double getDistance(double[] ds, double[] ds2) {
 if (ds.length == ds2.length) {
 double sum = 0;
 for (int i = 0; i < ds2.length; i++) {
 sum = sum + Math.pow(ds[i] - ds2[i], 2);
 // System.out.println("ds= "+ds[i]+" ds2= "+ds2[i]);

 }
 sum = Math.sqrt(sum);
 return sum;
 } else {
 System.out.println("Dimensions of Train and Test dont match");
 return 0;
 }
 }

 /**
 * Function to separate inputs and outputs from a 2d array
 *
 * @param XT
 * 2d array containing i/p & o/p like {[x1,x2,x3,.....y1,y2],
 * [x11,x22,x33,....y21,y23]}
 * @param isTrain
 * true if training, false if test
 */
 private void separateAndSetXT(double[][] XT, boolean isTrain) {
 int nSamples = getNumSamples();
 if (isTrain) {
 double[][] tempX = new double[nSamples][this.numInput];
 double[][] tempT = new double[nSamples][this.numOutput];

 for (int i = 0; i < nSamples; i++) {
 System.arraycopy(XT[i], 0, tempX[i], 0, this.numInput);
 System.arraycopy(XT[i], this.numInput, tempT[i], 0,
 this.numOutput);
 }

 setX(tempX);

118

 setT(tempT);

 } else {
 nSamples = XT.length;// For Indoor Nav
 double[][] tempX = new double[nSamples][this.numInput];
 double[][] tempT = new double[nSamples][this.numOutput];

 for (int i = 0; i < nSamples; i++) {
 System.arraycopy(XT[i], 0, tempX[i], 0, this.numInput);
 System.arraycopy(XT[i], this.numInput, tempT[i], 0,
 this.numOutput);
 }

 setXtest(tempX);
 setTtest(tempT);

 }

 }

 /**
 * @return the numInput
 */
 public int getNumInput() {
 return numInput;
 }

 /**
 * @param numInput
 * the numInput to set
 */
 public void setNumInput(int numInput) {
 this.numInput = numInput;
 }

 /**
 * @return the numOutput
 */
 public int getNumOutput() {
 return numOutput;
 }

 /**
 * @param numOutput
 * the numOutput to set
 */
 public void setNumOutput(int numOutput) {
 this.numOutput = numOutput;
 }

 /**
 * @return the numSamples
 */
 public int getNumSamples() {
 return numSamples;
 }

 /**
 * @param numSamples
 * the numSamples to set
 */
 public void setNumSamples(int numSamples) {
 this.numSamples = numSamples;

119

 }

 /**
 * @return the x
 */
 public double[][] getX() {
 return X;
 }

 /**
 * @param x
 * the x to set
 */
 public void setX(double[][] x) {
 X = x;
 }

 /**
 * @return the t
 */
 public double[][] getT() {
 return T;
 }

 /**
 * @param t
 * the t to set
 */
 public void setT(double[][] t) {
 T = t;
 }

 /**
 * @return the xtest
 */
 public double[][] getXtest() {
 return Xtest;
 }

 /**
 * @param xtest
 * the xtest to set
 */
 public void setXtest(double[][] xtest) {
 Xtest = xtest;
 }

 /**
 * @return the ttest
 */
 public double[][] getTtest() {
 return Ttest;
 }

 /**
 * @param ttest
 * the ttest to set
 */
 public void setTtest(double[][] ttest) {
 Ttest = ttest;
 }

}

120

A.7 NeuralNetwork.Java

package com.colostate.ML.NeuralNetwork;

import java.util.Random;

import com.colostate.mecs.vinzzz.model.matrix.IllegalDimensionException;
import com.colostate.mecs.vinzzz.model.matrix.Matrix;
import com.colostate.mecs.vinzzz.model.matrix.MatrixMathematics;

/**
 * Neural Network class that implements a simple forward pass back propagation
 * neural net as explained by Dr Chuck Anderson in :
 * http://www.cs.colostate.edu/
 * ~anderson/cs545/index.html/doku.php?id=notes:notesneuralnet1
 *
 * @author Viney Ugave(vinzzz@rams.colostate.edu)
 */
public class NeuralNetwork {
 /**
 * Number of Inputs
 */
 private int numInput;
 /**
 * Number of hidden layers
 */
 private int numHidden;
 /**
 * Number of outputs
 */
 private int numOutput;
 /**
 * Number of Samples
 */
 private int numSamples;
 /**
 * Learning rate rhoh
 */
 private double rhoh;
 /**
 * Learning rate rhoo
 */
 private double rhoo;

 // Train specific arrays
 /**
 * Input values
 */
 private double[][] X;
 /**
 * Target values
 */
 private double[][] T;

 // Test specific arrays
 /**
 * Input values
 */
 private double[][] Xtest;
 /**

121

 * Target values
 */
 private double[][] Ttest;

 // Weight Matrices
 /**
 * Weight matrix for hidden layer
 */
 Matrix V;
 /**
 * Weight matrix for output layer
 */
 Matrix W;

 // Matrices needed for calculation
 /**
 * Output Matrix from Hidden layer
 */
 Matrix Z;
 /**
 * Output Matrix from Output layer
 */
 Matrix Y;
 /**
 * Error in Output
 */
 Matrix E;

 private static Random rnd;
 private MatrixMathematics mMath;

 /**
 * Constructor for NeuralNetwork
 *
 * @param numInput
 * Number of i/p
 * @param numHidden
 * Number of hidden layers
 * @param numOutput
 * Number of o/p
 */
 public NeuralNetwork(int numInput, int numHidden, int numOutput) {
 this.numInput = numInput;
 this.numHidden = numHidden;
 this.numOutput = numOutput;
 this.rhoh = 0.00000001;
 this.rhoo = 0.1;
 this.rnd = new Random(0);
 }

 /**
 * Constructor for NeuralNetwork
 *
 * @param numInput
 * Number of i/p
 * @param numHidden
 * Number of hidden layers
 * @param numOutput
 * Number of o/p
 * @param rhoh
 * Learning rate
 * @param rhoo
 * Learning rate

122

 */
 public NeuralNetwork(int numInput, int numHidden, int numOutput,
 double rhoh, double rhoo) {
 this.numInput = numInput;
 this.numHidden = numHidden;
 this.numOutput = numOutput;
 this.rhoh = rhoh;
 this.rhoo = rhoo;
 this.rnd = new Random(0);
 }

 /**
 * Function that inits the weights i.e V and W
 */
 private void initWeights() {

 // Init Matrix Math operator
 mMath = new MatrixMathematics();

 // Calculate learning rate
 setRhoh(this.rhoh / (getNumSamples() * getNumOutput()));
 setRhoo(this.rhoo / getNumSamples());

 // Init Weights
 double[][] tempV = new double[this.numInput + 1][this.numHidden];
 double[][] tempW = new double[this.numHidden + 1][this.numOutput];

 // Initialize weights to uniformly distributed values between small
 // normally-distributed between -0.1 and 0.1
 double lo = -0.1;
 double hi = 0.1;
 // for V
 for (int i = 0; i < tempV.length; i++) {
 for (int j = 0; j < tempV[0].length; j++) {
 tempV[i][j] = (hi - lo) * rnd.nextDouble() + lo;
 }
 }
 // for W
 for (int i = 0; i < tempW.length; i++) {
 for (int j = 0; j < tempW[0].length; j++) {
 tempW[i][j] = (hi - lo) * rnd.nextDouble() + lo;
 }
 }

 // set the weight matrices
 this.V = new Matrix(tempV);
 this.W = new Matrix(tempW);

 }

 /**
 * Function to train Neural Net
 *
 * @param Xtrain
 * 2d double array containing the training set
 * @param epochs
 * number of iterations to run as to minimize the error
 */
 public void train(double[][] Xtrain, int epochs) {

 setNumSamples(Xtrain.length);
 separateAndSetXT(Xtrain, true);
 initWeights();

123

 // Training Input

 Matrix X = new Matrix(getX());
 Matrix X1 = new Matrix(getX()).insertColumnWithValue1();

 // Training Target
 Matrix T = new Matrix(getT());

 for (int i = 0; i < epochs; i++) {
 // Output Matrices
 Z = new Matrix(X1.getNrows(), V.getNcols());// 1 already added in
X
 Y = new Matrix(Z.getNrows(), W.getNcols());

 // Error Matrice
 E = new Matrix(Y.getNrows(), Y.getNcols());

 try {
 // Forward pass on training data
 Z = mMath.multiply(X1, V);
 Z = Z.tanH();

 Matrix Z1 = new
Matrix(Z.getValues()).insertColumnWithValue1();
 Y = mMath.multiply(Z1, W);

 // Error in output
 E = mMath.subtract(Y, T);

 // Backward pass - the backpropagation and weight update
steps

 // 1.Calculating V
 Matrix temp = Z.squareTheMatrix();// (1-Z**2)
 temp = temp.subtractFromConstant(1);
 Matrix temp1 = mMath.transpose(mMath.createSubMatrix(W,
0));// W[1:,:].T
 Matrix temp2 = mMath.multiply(E, temp1);// np.dot(error,

 // W[1:,:].T)
 Matrix temp3 = mMath.multiplyElements(temp2, temp);//
np.dot(

 // error,

 // W[1:,:].T)

 // *

 // (1-Z**2)
 Matrix temp4 = mMath.multiply(mMath.transpose(X1),
temp3);// np.dot(

 // X1.T,

 // np.dot(

 // error,

 // W[1:,:].T)

 // *

124

 // (1-Z**2))
 Matrix temp5 = temp4.multiplyByConstant(getRhoh());
 V = mMath.subtract(V, temp5);// V = V - rh * np.dot(X1.T,
 //
np.dot(error, W[1:,:].T) *
 // (1-
Z**2))

 // 2.Calculating W
 Matrix temp6 = mMath.multiply(mMath.transpose(Z1), E);//
np.dot(

 // Z1.T,

 // error)
 Matrix temp7 = temp6.multiplyByConstant(getRhoo());// ro *

 // np.dot(

 // Z1.T,

 // error)
 W = mMath.subtract(W, temp7);// W = W - ro * np.dot(Z1.T,
 //
error)

 // System.out.println("Iteration"+i);
 // printMatrix(E.getValues(),"E");
 } catch (IllegalDimensionException e) {
 e.printStackTrace();
 }
 }
 System.out.println("Training Complete! ");

 }

 public double[][] test(double[][] testData) {
 separateAndSetXT(testData, false);
 Matrix Ytest = new Matrix(Y.getNrows(), Y.getNcols());
 Matrix Xtest1 = new Matrix(getXtest()).insertColumnWithValue1();

 // Forward pass
 Matrix temp8 = mMath.multiply(Xtest1, getV());// np.dot(Xtest1,V)
 temp8 = temp8.tanH();// np.tanh(np.dot(Xtest1,V))
 Matrix temp9 = new Matrix(temp8.insertColumnWithValue1().getValues());//
addOnes(np.tanh(np.dot(Xtest1,V)))
 Ytest = mMath.multiply(temp9, getW());//
np.dot(addOnes(np.tanh(np.dot(Xtest1,V))),
 // W)

 System.out.println("Testing Complete!");
 return Ytest.getValues();

 }

 /**
 * Function to separate inputs and outputs from a 2d array
 *
 * @param XT
 * 2d array containing i/p & o/p like {[x1,x2,x3,.....y1,y2],
 * [x11,x22,x33,....y21,y23]}
 * @param isTrain

125

 * true if training, false if test
 */
 private void separateAndSetXT(double[][] XT, boolean isTrain) {
 int nSamples = getNumSamples();
 if (isTrain) {
 double[][] tempX = new double[nSamples][this.numInput];
 double[][] tempT = new double[nSamples][this.numOutput];

 for (int i = 0; i < nSamples; i++) {
 System.arraycopy(XT[i], 0, tempX[i], 0, this.numInput);
 System.arraycopy(XT[i], this.numInput, tempT[i], 0,
 this.numOutput);
 }

 setX(tempX);
 setT(tempT);

 } else {
 nSamples = XT.length;// For Indoor Nav
 double[][] tempX = new double[nSamples][this.numInput];
 double[][] tempT = new double[nSamples][this.numOutput];

 for (int i = 0; i < nSamples; i++) {
 System.arraycopy(XT[i], 0, tempX[i], 0, this.numInput);
 System.arraycopy(XT[i], this.numInput, tempT[i], 0,
 this.numOutput);
 }

 setXtest(tempX);
 setTtest(tempT);

 }

 }

 public double Accuracy(double[][] tar, double[][] pred) {
 Matrix Target = new Matrix(tar);
 Matrix Ypredicted = new Matrix(pred);

 if (Target.getNrows() == Ypredicted.getNrows()
 && Target.getNcols() == Ypredicted.getNcols()) {
 try {
 Matrix error = mMath.subtract(Target, Ypredicted);
 error = error.squareTheMatrix();
 double err = mMath.Mean(error);
 err = Math.sqrt(err);

 return err;

 } catch (IllegalDimensionException e) {
 e.printStackTrace();
 }
 }
 return -1;
 }

 public double Accuracy(Matrix Target, Matrix Ypredicted) {

 if (Target.getNrows() == Ypredicted.getNrows()
 && Target.getNcols() == Ypredicted.getNcols()) {
 try {
 Matrix error = mMath.subtract(Target, Ypredicted);
 error = error.squareTheMatrix();

126

 double err = mMath.Mean(error);
 err = Math.sqrt(err);

 return err;

 } catch (IllegalDimensionException e) {
 e.printStackTrace();
 }
 }
 return -1;
 }

 /**
 * @return the numInput
 */
 public int getNumInput() {
 return numInput;
 }

 /**
 * @param numInput
 * the numInput to set
 */
 public void setNumInput(int numInput) {
 this.numInput = numInput;
 }

 /**
 * @return the numHidden
 */
 public int getNumHidden() {
 return numHidden;
 }

 /**
 * @param numHidden
 * the numHidden to set
 */
 public void setNumHidden(int numHidden) {
 this.numHidden = numHidden;
 }

 /**
 * @return the numOutput
 */
 public int getNumOutput() {
 return numOutput;
 }

 /**
 * @param numOutput
 * the numOutput to set
 */
 public void setNumOutput(int numOutput) {
 this.numOutput = numOutput;
 }

 /**
 * @return the numSamples
 */
 public int getNumSamples() {
 return numSamples;
 }

127

 /**
 * @param numSamples
 * the numSamples to set
 */
 public void setNumSamples(int numSamples) {
 this.numSamples = numSamples;
 }

 /**
 * @return the rhoh
 */
 public double getRhoh() {
 return rhoh;
 }

 /**
 * @param rhoh
 * the rhoh to set
 */
 public void setRhoh(double rhoh) {
 this.rhoh = rhoh;
 }

 /**
 * @return the rhoo
 */
 public double getRhoo() {
 return rhoo;
 }

 /**
 * @param rhoo
 * the rhoo to set
 */
 public void setRhoo(double rhoo) {
 this.rhoo = rhoo;
 }

 /**
 * @return the x
 */
 public double[][] getX() {
 return X;
 }

 /**
 * @param x
 * the x to set
 */
 public void setX(double[][] x) {
 X = x;
 }

 /**
 * @return the t
 */
 public double[][] getT() {
 return T;
 }

 /**
 * @param t

128

 * the t to set
 */
 public void setT(double[][] t) {
 T = t;
 }

 /**
 * @return the xtest
 */
 public double[][] getXtest() {
 return Xtest;
 }

 /**
 * @param xtest
 * the xtest to set
 */
 public void setXtest(double[][] xtest) {
 Xtest = xtest;
 }

 /**
 * @return the ttest
 */
 public double[][] getTtest() {
 return Ttest;
 }

 /**
 * @param ttest
 * the ttest to set
 */
 public void setTtest(double[][] ttest) {
 Ttest = ttest;
 }

 /**
 * @return the v
 */
 public Matrix getV() {
 return V;
 }

 /**
 * @param v
 * the v to set
 */
 public void setV(Matrix v) {
 V = v;
 }

 /**
 * @return the w
 */
 public Matrix getW() {
 return W;
 }

 /**
 * @param w
 * the w to set
 */
 public void setW(Matrix w) {

129

 W = w;
 }

 /**
 * Function to print out a 2D array
 *
 * @param matrix
 */
 public void printMatrix(double[][] matrix, String variableName) {
 System.out.println();
 System.out.println("***Matrix " + variableName + "[" + matrix.length
 + "]" + "[" + matrix[0].length + "]" + " =\n");
 for (int r = 0; r < matrix.length; r++) {
 for (int c = 0; c < matrix[r].length; c++)
 System.out.print(matrix[r][c] + " ");
 System.out.println();
 }
 System.out.println();
 }

}

A.8 Regression.Java

package com.colostate.ML.LinearRegression;

import com.colostate.mecs.vinzzz.model.matrix.Matrix;
import com.colostate.mecs.vinzzz.model.matrix.MatrixMathematics;
import com.colostate.mecs.vinzzz.model.matrix.NoSquareException;
/**
 * Controller class for Linear Regression
 * @author viney
 *
 */
public class Regression {

 /**
 * Number of Inputs
 */
 private int numInput;
 /**
 * Number of outputs
 */
 private int numOutput;
 /**
 * Number of Samples
 */
 private int numSamples;

 // Train specific arrays
 /**
 * Input values
 */
 private double[][] X;
 /**
 * Target values
 */
 private double[][] T;

 // Test specific arrays
 /**

130

 * Input values
 */
 private double[][] Xtest;
 /**
 * Target values
 */
 private double[][] Ttest;

 // Weight Matrices
 /**
 * Weight matrix
 */
 Matrix W;

 private MatrixMathematics mMath;

 /**Constructor
 * @param numInput
 * @param numOutput
 */
 public Regression(int numInput, int numOutput) {
 this.numInput = numInput;
 this.numOutput = numOutput;
 }

 /**
 * Function to train the regression model
 *
 * @param Xtrain
 * 2d double array containing the training set
 */
 public void train(double[][] Xtrain) {
 setNumSamples(Xtrain.length);
 separateAndSetXT(Xtrain, true);

 // Training Input
 Matrix X = new Matrix(getX());
 Matrix X1 = new Matrix(getX()).insertColumnWithValue1();

 // Training Target
 Matrix T = new Matrix(getT());

 try {
 Matrix temp = mMath.transpose(X);//X.T
 Matrix temp1 = mMath.multiply(temp, X);//np.dot(X.T, X)
 Matrix temp3 = mMath.multiply(temp, T);//np.dot(X.T,T)
 Matrix temp4 = mMath.inverse(temp1);//np.dot(X.T,X)- inverse
 W =mMath.multiply(temp4, temp3);

 } catch (NoSquareException e) {
 e.printStackTrace();
 }

 }

 public double[][] test(double[][] testData) {
 separateAndSetXT(testData, false);

 Matrix Xtest =new Matrix(getXtest());

 Matrix Ytest=mMath.multiply(Xtest, W);

131

 return Ytest.getValues();

 }
 /**
 * Function to separate inputs and outputs from a 2d array
 *
 * @param XT
 * 2d array containing i/p & o/p like {[x1,x2,x3,.....y1,y2],
 * [x11,x22,x33,....y21,y23]}
 * @param isTrain
 * true if training, false if test
 */
 private void separateAndSetXT(double[][] XT, boolean isTrain) {
 int nSamples = getNumSamples();
 if (isTrain) {
 double[][] tempX = new double[nSamples][this.numInput];
 double[][] tempT = new double[nSamples][this.numOutput];

 for (int i = 0; i < nSamples; i++) {
 System.arraycopy(XT[i], 0, tempX[i], 0, this.numInput);
 System.arraycopy(XT[i], this.numInput, tempT[i], 0,
 this.numOutput);
 }

 setX(tempX);
 setT(tempT);

 } else {
 nSamples = XT.length;// For Indoor Nav
 double[][] tempX = new double[nSamples][this.numInput];
 double[][] tempT = new double[nSamples][this.numOutput];

 for (int i = 0; i < nSamples; i++) {
 System.arraycopy(XT[i], 0, tempX[i], 0, this.numInput);
 System.arraycopy(XT[i], this.numInput, tempT[i], 0,
 this.numOutput);
 }

 setXtest(tempX);
 setTtest(tempT);

 }

 }

 /**
 * @return the numInput
 */
 public int getNumInput() {
 return numInput;
 }

 /**
 * @param numInput the numInput to set
 */
 public void setNumInput(int numInput) {
 this.numInput = numInput;
 }

132

 /**
 * @return the numOutput
 */
 public int getNumOutput() {
 return numOutput;
 }

 /**
 * @param numOutput the numOutput to set
 */
 public void setNumOutput(int numOutput) {
 this.numOutput = numOutput;
 }

 /**
 * @return the numSamples
 */
 public int getNumSamples() {
 return numSamples;
 }

 /**
 * @param numSamples the numSamples to set
 */
 public void setNumSamples(int numSamples) {
 this.numSamples = numSamples;
 }

 /**
 * @return the x
 */
 public double[][] getX() {
 return X;
 }

 /**
 * @param x the x to set
 */
 public void setX(double[][] x) {
 X = x;
 }

 /**
 * @return the t
 */
 public double[][] getT() {
 return T;
 }

 /**
 * @param t the t to set
 */
 public void setT(double[][] t) {
 T = t;

133

 }

 /**
 * @return the xtest
 */
 public double[][] getXtest() {
 return Xtest;
 }

 /**
 * @param xtest the xtest to set
 */
 public void setXtest(double[][] xtest) {
 Xtest = xtest;
 }

 /**
 * @return the ttest
 */
 public double[][] getTtest() {
 return Ttest;
 }

 /**
 * @param ttest the ttest to set
 */
 public void setTtest(double[][] ttest) {
 Ttest = ttest;
 }

 /**
 * @return the w
 */
 public Matrix getW() {
 return W;
 }

 /**
 * @param w the w to set
 */
 public void setW(Matrix w) {
 W = w;
 }

}

134

ABBREVIATIONS

3D 3-Dimensional

3G/4G 3rd and 4th Generation (of cellular mobile networks)

AP Access Point

API Application Programming Interface

ARM Advanced RISC Machine

FCC Federal Communications Commision

LBS Location Based Services

CPU Central Processing Unit

GNSS Global Navigation Satellite System

GPS Global Positioning System

GLONASS Globalnaya navigatsionnaya sputnikovaya sistema

HTC High Tech Computer corporation

KNN K-Nearest Neighbor

LBA Location-Based Application

135

MEMS MicroElectroMechanical System

MHz/GHz MegaHertz/GigaHertz

mW milliWatts

ANN Artifitial Neural Network

OS Operating System

PC Personal Computer

Li Lithium

LTE Long-Term Evolution

QoS Quality of Service

RAM Random Access Memory

mAh milliAmpere Hour

RFID Radio Frequency Identification

RSSI Received Signal Strength Indicator

MAC Media Access Control

SMS Short Message Service

SVM Support Vector Machine

UI User Interface

136

VRL Variable Rate Logging

WiFi Wireless Fidelity

