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ABSTRACT 

 

SMART INDOOR LOCALIZATION USING MACHINE LEARNING TECHNIQUES 

 

The advancement of smartphone devices has led to a generation of new applications and 

solutions. These devices give away a great deal of information about the user (location, posture, 

communication patterns, etc.), which helps in capturing the user’s context. Such information can 

be utilized to create smarter apps from which the user can benefit. A challenging new area that is 

receiving a lot of attention is Indoor Localization whereas interest in location-based services is 

also rising. While numerous smartphone based indoor localization techniques have been 

proposed, these techniques have many shortcomings related to accuracy and consistency. More 

importantly, these techniques entail high-energy consumption that can quickly drain a 

smartphone battery. In this thesis, we propose innovative techniques based on machine learning 

algorithms and smart sensor management for effective Indoor Localization using smartphones.  

We evaluated our techniques on several indoor environments with diverse characteristics and 

show improvements over several state-of-the-art techniques from prior work. The extensive use 

of sensors and Wi-Fi scans can deplete the smartphone battery and so we quantitatively 

accounted for all the modules that consume the battery power. We also performed energy and 

accuracy tradeoff analysis to provide a broader understanding of how to smartly use these 

techniques. Furthermore, we investigated, implemented and tested both sensor and machine 

learning based techniques. Our best technique achieved an average accuracy between 1-3 meters 

across most of our evaluated indoor paths.   
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Chapter 1  

Introduction 

With the proliferation of smartphone devices, mobile computing is at its peak. It has led to a new 

generation of services and applications. Context aware applications simplify the lives of people 

and involve social engagement. Service providers have set up infrastructure (4G LTE for fast 

internet and GPS satellites for navigation) to support these vivid applications and location based 

services (LBS). Smartphone manufacturers have also integrated a myriad of sensors and circuitry 

that allow for development of such applications. Mobile location platforms have enabled 

location-based services for public safety, national security and commercial services. After years 

of research on precise mapping and outdoor navigation, people are now interested in Indoor 

Maps. Regulatory bodies like the Federal Communications Commission (FCC) in their Enhanced 

911 system mandates for location of mobile emergency calls. Conceivably they are even 

considering updated mandates to introduce accuracy requirements for emergency calls placed 

indoors [1]. Indoor location technology provides a valuable benefit to the consumer whether for 

convenience, entertainment or utility. A few examples of common uses for Indoor Location are 

locating people, and places, coordinating joint activities, augmented reality gaming, monitoring 

and tracking pertinent information.  

1.1 Motivation 

Since the inception of smartphones GPS has been one of the key sensors that the smartphones 

were shipped with. This suggest the interest of companies and consumers at large in providing 

and knowing the location of the user. Governments and corporations have made huge 

investments in creating infrastructure for map based location services [2]. Global Navigation 

Satellite System (GNSS) Asia reports that over the coming decade the installed base of GNSS 
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devices will increase almost four-fold. It is expected that the number of GNSS devices will 

increase in Europe and North America from 1 to 3 per inhabitant over the coming decade [3]. 

Smartphones are going to dominate the global GNSS revenues and are also expanding into other 

market segments. As seen in Figure 1.1 almost half of the revenue from GNSS services for 2012-

2022 is projected to come from from location-based services (LBS) on smartphone devices.  

 

Figure 1.1 Cumulative Core GNSS Revenue for 2012-2022 [3] 

Furthermore, Strategy Analytics [4] reports that people spent 80-90% of their time indoors; 70% 

of the cellular calls originate from indoors and 80% of data connections are made inside. 

Research conducted by yellow pages graphically shows, the closer the users are to a business, the 

more likely they are to click on a mobile banner ad for that business [5] as shown in Figure 1.2. 

Unfortunately, the current infrastructure for navigation services like GPS and GLONASS cannot 

be used indoors as their weak signals are critically compromised by obscuration and 

environmental degradation (e.g., signals cannot pass through concrete and other solid obstacles 
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within the building structures) [6]. The majority of the current Indoor Localization techniques 

primarily depend on new and non-existent infrastructure [6]. Wi-Fi, which was originally not 

intended for the purpose of navigation, has been successfully used in some techniques as 

apositioning technology indoors. The success rate for Wi-Fi is high primarily because of 

abundance of Wi-Fi access points at major residential and commercial places [6]. It is easy for 

Wi-Fi signals to penetrate through walls and major building structures. Therefore, the Wi-Fi data 

in conjunction with smartphone sensors can be used for the benefit of Indoor Localization.  

 

Figure 1.2 Click through rate (CRT) proximity to a business destination [5] 

One major limitation of techniques, that make use of Wi-Fi data with smartphone sensors for 

indoor localization is that they are energy inefficient, i.e., they can drain the phone battery

quickly. This is because the algorithms used in these techniques are computationally intensive 

and use the smartphone resources (sensors and Wi-Fi modem), which require high power. It is 

necessary to use “smart” strategies to optimize and reduce energy consumption. Hence having an 



 
 

4 

accurate and optimized Indoor Localization technique that consumes minimal energy is the need 

of the hour.  

1.2 Contributions 

This thesis presents five different techniques for Indoor Localization with an accuracy and 

energy study.  

The first two techniques are sensor-based. The first technique is also known the classic 

technique. Classic technique utilizes only the accelerometer and magnetometer sensor. These 

sensors are used for tracing the paths of the user, which are also known as dead reckoning. The 

second technique called sensor fusion is a patented technique that uses the accelerometer, 

magnetometer and gyroscope sensors for dead reckoning. Sensor fusion uses Kalman filters that 

combine the value from the three sensors to give the final accurate values.   

The other three techniques are machine learning based techniques that use the three position 

sensors (accelerometer, magnetometer, and gyroscope) and the Wi-Fi access points. The three 

machine learning techniques are combined in a single platform called LearnLoc. In LearnLoc 

data from the position sensors are fused using the sensor fusion algorithm and a Wi-Fi 

fingerprint of the area is collected. The Wi-Fi signal strength fingerprints are used by the 

machine-learning algorithms to accurately predict the user’s location. We use three different 

machine-learning techniques – Linear Regression, Neural Networks and K Nearest Neighbors. 

We quantify and present the energy consumption for each technique. An accuracy study is also 

presented for all our techniques. An energy and accuracy trade-off study has been done to find 

out what is the optimum Wi-Fi scan rate for accurate Indoor Localization with the least energy 

consumption.  
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1.3 Outline 

The rest of the thesis is organized as follows: 

• Chapter 2 provides an overview of contemporary smartphone platforms and location 

based sensors on the smartphones.   

• Chapter 3 describes the problem statement for the thesis.   

• Chapter 4 reviews the current work related to Indoor Localization on smartphones.  

• Chapter 5 provides a detailed overview of the machine learning techniques used in the 

thesis.   

• Chapter 6 presents the Indoor Localization strategy using sensors and machine learning 

techniques.   

• Chapter 7 presents the experiments and results.  

• Chapter 8 concludes the thesis with a summary and future work.  

• The appendix offers the source code of the strategy presented.
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Chapter 2  

An Overview of Contemporary Smartphone Platforms,  

Positioning System and Sensors 

 

Figure 2.1: Global Device Penetration Per Capita as of Oct. 2013 [7] 

Smartphones are mobile embedded devices with advanced capabilities beyond ordinary mobile 

phones. Smartphones have gone from becoming a luxury to becoming a necessity these days. As 

seen in Figure 2.1 Business Insider reports that 22% of the global population owns a smartphone 

as compared to 1% eight years ago [7]. The number of smartphone users has exceeded the 

number of desktop computer users and this numbers continues to grow everyday. Google’s 

Android has the highest share (52.2%) in the smartphone market followed by Apple’s IOS 

(41.4%), Blackberry (2.7%) and Microsoft (3.3%) [8]. The computational capabilities of mobile 

devices are comparable to desktop PC’s. The only limitations are the memory and battery power. 
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Smartphones are mobile, wireless and they provide the consumer with functionality to do almost 

everything a desktop PC does. Therefore, wired devices, which require a persistent electricity 

connection, are no longer a need for today’s consumer. Additionally, the availability of high-

speed Internet connections and cloud services have minimized the memory constraints for 

smartphones however the energy consumption still remains an issue.  

Smartphones have seen a growing trend in processing capabilities but a decreasing trend in term 

of the battery life. The battery life of the old mobile phones was as high as 2 to 3 days, but the 

smartphone batteries today hardly last a day. All smartphones have some variant of the Li-ion 

battery [9], which contains a sealed bag of anode and cathode sheets with separators between 

them. A liquid electrolyte permeates all these layers. The smartphone circuitry is connected to 

the positive and negative terminals of the battery that powers up the device [9]. A smartphone 

battery may contain single or more Li-ion cells inside it. The electrolyte inside the cells can react 

with the residual atmosphere to form corrosive compounds. This reaction increases with high 

temperatures therefore it is necessary for the smartphone batteries to cool. There have been no 

breakthroughs in battery technology in recent years and the smartphone providers have tried to 

increase the cell count inside the batteries to provide higher battery power. But there have been 

limitations on the number of cells a smartphone can have due to the limited size and space inside 

the smartphones. Recent smartphones have a battery with capacity ranging between 1500-2500 

mAh and the battery life lasts less than a day. 

The dawn of 4G LTE cellular networks is upon us. Internet speeds are at an all-time high and all 

the latest smartphones come equipped with 4G LTE capabilities. 4G LTE speeds are ten times 

higher than 3G [10]. They can handle download speeds between 5 and 12 Mbps and upload 

speeds between 2 and 5 Mbps. The 4G LTE coverage is no longer limited to big cities and has 
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been expanded to small towns and remote places. Mobile applications today require higher 

bandwidths to meet consumer needs for high definition video streaming and real time data sync.  

 
 

Figure 2.2: Coverage Map for T-Mobile’s 4G-LTE Service in NY [11] 

Apart from cellular network technologies, smartphones contain other data and location interfaces 

such as Wi-Fi and GPS. Wi-Fi is one of the most popular data interface due to high availability 

and bandwidth and therefore is also very popular among consumers. Figure 2.2 shows the 4G 

LTE coverage map for T-Mobile cellular service provider [11]. When Figure 2.2, coverage map 

for T-mobile’s 4G-LTE service in New York City is compared with Figure 2.3 [12], Hotspot 

location map for Boingo Wireless provider’s Wi-Fi hotspots in the New York City it is evident 

that the Wi-Fi coverage is as good as the 4G LTE coverage.    

Smartphone CPU architecture is in its matured stages and is continuously advancing. Like the 

desktops, smartphones are moving from 32 to 64 bit architectures [13]. ARM is the leader in 

creating high-speed smartphone CPU’s [14]. The majority of the Smartphone SOC’s like 

Qualcomm, Samsung, Texas Instrument, etc. use Arm CPU’s. The Samsung Galaxy S5 which is 
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the current state of the art Android device houses a quad core Qualcomm Snapdragon chip that 

runs at a frequency of 2.5 GHz [15]. The latest flagship device from Apple, the iPhone 5s also 

has the fast running A7 processor with a 64-bit processor [16].  

Figure 2.3: Hotspot Location Map for Boingo Wireless’s Wi-Fi Service in NY [12]

2.1 Google Nexus 4 Positioning Sensors and System 

To comprehend and understand positioning on smartphone we give an example of the Nexus 4 

smartphone. Nexus 4 comes equipped with a Qualcomm quad-core Krait processor that runs at a 

frequency of 1.5 GHz and a 2 GB memory RAM. It is provisioned with Qualcomm’s GNSS 

module that supports global positioning using GPS and GLONASS satlellites. These modules are 

used for global positioning and are useful for navigation outdoors, hence we do not talk about 

these modules in this thesis. In this section we talk in detail about the positioning sensors 

available on the smartphones for indoor navigation. We also investigate the Wi-Fi sensor as a 

potential positioning sensor indoors. It is first important to understand how positioning systems 

works, therefore positioning systems are explained in Section 2.1.1.  
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2.1.1 Positioning Systems 

A positioning system tries to determine the location of an object in space. A positioning system 

can locate an object with varying accuracies. One such positioning system is the coordinate 

system with 2 or 3 dimensions. There are different types of the coordinate system like the 

Cartesian coordinate system, Polar coordinate system and Speherical coordinate system. In the 

three dimensional Cartesian coordinate system [17] the axes are determined as X, Y and Z

coordinate axis. A point P in this system has X, Y and Z coordinates represented as P=(X, Y, Z). 

The point P can also be represented as a vector from the origin (0,0,0) to the point P. The 

coordinate system can be relative to a “frame of reference”. A frame of reference is a small 

region of space where the coordinate system is expected to function. The coordinates can be 

relative to a world, local or body frame. We explain all the types of frames we use in our 

research below.  

 

Figure 2.4: Android Coordinate System  



 
 

11 

a) World Frame and Global Coordinate System 

In a world frame all the sensors and methods refer to an absolute orientation with respect to earth 

using the global coordinate system. In Figure 2.4 the globe signifies the world frame. The 

coordinate system with reference to the world frame is known as global coordinate system. In the 

global coordinate system the axes are directed as follows:  

• YE points towards magnetic north, which is the true north.  

• XE is 90 degrees from YE and is parallel to Earth’s surface pointing east.  

• ZE points away from the center of the earth.  

b) Body frame and Device Coordinate System 

The Android positioning sensors (i.e., the accelerometer, magnetometer and gyroscope) report 

values corresponding to the device or the smartphone body. Hence the frame is known as the 

body frame and the coordinate system with reference to the body frame as the device coordinate 

system. A smartphone device can have two different orientations, the default being the portrait 

orientation and the other being the landscape orientation.  

The smartphone in Figure 2.4 signifies the device coordinate system. For a default landscape 

orientation the axes for the device coordinate system are directed as follows: 

• The X-axis horizontal with positive values in the right direction. 

• The Y-axis is vertical with positive values in the upward. 

• The Z-axis is positive values in front of the screen. 

In device coordinate system the coordinates are fixed to the device. The device coordinate 

system does not change when the orientation of the device changes. The origin of the device 
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coordinate system is at the center of the screen. Angular quantities around the axes are given by a 

3-vector rotation matrix or a quaternion that maps the device coordinate system to the global 

coordinate system as shown in Figure 2.4 [18].   

c) Local frame or Relative coordinate system 

For Indoor Navigation systems the world frame is very large and so we use something that is 

local to a small area. Such a coordinate system with respect to the local frame is called the 

relative coordinate system where the origin is fixed at the start and all other positions are relative 

to this origin. Usually the X and Y-axis are used to define the position on the map and the Z-axis

is used to define the altitude above the ground. This system is mainly used to define positions 

inside a building or a map. In such systems the map is first rotated to match the true North in the 

World frame and then axis of the building is aligned to it.  

 

Figure 2.5: Local Frame 
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2.1.2 Position Sensors 

Starting with Android 1.5 as a standard set of sensors and associated Sensors API [19] has been 

made available. The standard sensors now include the accelerometer, gyroscope, magnetometer, 

light sensor, proximity sensor, humidity and pressure sensor. These raw sensors are Micro-

electromechanical Sensors (MEMS), which are made on a tiny scale on silicon chips. They have 

the ability to detect, capture and analyze motion and normally contain a part that physically 

moves or vibrates. The main position sensors are the accelerometer, gyroscope and 

magnetometer. Figure 2.6 shows a MEMS Gyroscope and Accelerometer sensor on the Nexus 4 

motherboard [20]. These MEMS sensors are factory tested and trimmed so that no additional 

sensor calibration is required.  

Figure 2.6: Nexus 4 MEMS Gyroscope and Accelerometer 

a) Accelerometer 

MEMS accelerometers are tiny masses of springs that can measure the Earth’s gravity, which is 

1g downwards (g is a unit of acceleration and is equal to 9.8 m/s2), sense speeding up or slowing 
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down in a straight line. Acceleration is measured by attaching a mass to spring and observing 

how far the mass moves from the equilibrium position. Figure 2.7 A corresponds to the device 

sitting on table. Figure 2.7 B corresponds to the device moving towards the right and Figure 2.7 

C corresponds to the device being dropped and is in a free fall motion [18]. To find the actual 

acceleration of the device the force due to gravity needs to be factored out. The velocity of the 

device can be found out by integrating the accelerometer value. The position of the device can 

also be found by double integrating the acceleration value. Normally in smartphones the 

accelerometer and gyroscope are embedded in a single MEMS die. 

 
 

Figure 2.7: Accelerometer Principle 

b) Magnetometer 

Magnetometers measure the strength and the direction of a magnetic field. They operate on 

different principles based on the manufacturer and architecture. Hall effect magnetometers are 

the most common [22]. In the Hall effect a magnetic field component that is perpendicular to the 

wire causes electrons to have a higher density on one side of the wire compared to the other, 

which results in the voltage across the width of the wire that is proportional to the magnetic field. 
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For location purposes, the accelerometer and magnetometer data is combined to determine the 

angle to which the user is pointing with respect to the north, also known as the heading angle. 

The accelerometer and magnetometer values are combined to get a rotation vector that 

determines the rotations as shown in Figure 2.8. Azimut is the rotation along the Z-axis, pitch is 

the long X-axis and roll around is the Y-axis.  

 
 

Figure 2.8: Android Device Orientation 

c) Gyroscope 

The gyroscope provides the angular velocity (i.e., how fast something is spinning) about all three 

axes. Unlike the accelerometer it is not affected by gravity and is less susceptible to magnetic 

influences compared to the magnetometer and accelerometer. Therefore it’s more accurate than 

the accelerometer and magnetometer and also has a very short response time. To get the device 

orientation, the angular speed from the gyroscope is multiplied with the time interval between 

the current and last sensor output. In MEMS technology a vibrating structure gyroscope is 
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usually used which works on the principal that vibrating objects continue to vibrate in the same 

plane as its support rotates. A MEMS structure die of digital gyroscope is shown in Figure 2.9. 

 

Figure 2.9: MEMS Structure die of digital gyroscope 

d) Wi-Fi  
 
 
Wi-Fi, which is an alternate data module for smartphones, supports high-speed data transfers. As 

mentioned in Section 2, Wi-Fi systems are ubiquitous. Hence Indoor Positioning techniques 

based on patterns of observations associated with multiple Wi-Fi hotspots are now a possibility. 

There are two ways in which this can be done, fingerprinting or trilateration. Fingerprinting is 

where observations are compared to previously mapped locations and trilateration is where 

received power is used as an indicator of distance from the transmitter and a geometric 

calculation against known transmitter location is used to locate the device. Nexus 4 uses Murata 

SS2908001 802.11 Wi-Fi module as shown in Figure 2.10 [22].   
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Figure 2.10: Nexus 4 Wi-Fi module [22]  
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Chapter 3  

Problem Statement 

The previous chapters put forth some key issues in smartphone and positioning technology. The 

most important issue impacting the smartphone technology is the need to reduce the energy 

consumption. Smartphones are shipped with a variety of sensors, wireless modules and high 

speed CPU’s, but their utility has and will remain severely limited due to the battery life. 

Therefore it is critical to manage the resources in mobile systems. Different sensors have 

different behaviors and they operate differently under different situations. Some sensors may 

require frequent and detailed attention from the processor – such as the gyroscope sensor. The 

gyroscope sensor is repeatedly read to get the orientation data even though there is no movement 

detected. In such scenarios the processor is burdened with extra overhead which prevents it from 

entering the sleep mode. This results in an increase in system energy consumption. All of these 

concerns suggest the need for “smart” sensor management strategy, which minimizes the sensor 

calls without disrupting the quality of service (QoS).  

Indoor Positioning technology is not yet effectively established, due to several concerns. At the 

crest of these concerns are the inaccuracies in the past localization techniques and their 

dependence on added or unavailable infrastructure. Outdoor navigation is now thoroughly 

established due to the infrastructure that was build over the years through government agencies 

and large corporations that have resulted in various GNSS based applications [2]. Having a 

similar infrastructure for indoor buildings is highly impossible. This would need cooperation of 

large communities and individuals to establish such framework indoors. But this would also 

mean a breach of privacy for different individuals. The need to come up with a solution using the 

current available infrastructure is essential. As discussed in the previous chapter, Wi-Fi signals 
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are accessible and pervasive. Almost every household today has a Wi-Fi modem to facilitate 

Internet connectivity in their residence. Commercial places and public buildings also host  Wi-Fi 

services for the visitors and/or customers. Wi-Fi services are readily available and therefore 

patterns of data associated with multiple Wi-Fi hotspots can be used for Indoor Positioning.  

There are a variety of algorithms and techniques available that can navigate a person indoors. 

But these techniques are inaccurate and drain the smartphone battery. Accurate techniques 

involve the use of compute intensive machine learning algorithms. The compute intensive tasks 

are responsible for the large power dissipation. The use of the Wi-Fi module like the positioning 

sensors consumes a lot of energy. Hence, a smart strategy is advised for optimizing Indoor 

Navigation techniques. The strategy should involve minimizing the frequency of calling the 

sensors and using the algorithms in such a way that brings down the computational costs.  

The goal of this thesis is to create an accurate Indoor Navigation technique and to optimize 

mobile device energy consumption via smart sensor management strategies.  This thesis 

discusses multiple strategies. Two of the strategies are sensor only strategies that use the 

positioning sensors along with algorithms that combine the data from these sensors to navigate a 

person indoors. We also discuss our Indoor Localization platform LearnLoc involving three 

strategies that use the positioning sensors, Wi-Fi module and learning algorithms for accurate 

Indoor Navigation. We do a comparative energy study using all these techniques. This study 

shows how to manage the sensors and how to provide an accurate Indoor Navigation technique 

with minimal energy consumption.   
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Chapter 4  

Related Work 

A large amount of work has been done in the area of Indoor Localization for mobile devices in 

recent years. This work can be categorized into the following: (1) work on Indoor Navigation 

techniques, (2) work on usage of machine learning techniques on smartphones, (3) work on 

energy optimization on smartphones for location and data interfaces.  

4.1 Work on Indoor Navigation Techniques 

There has been substantial work in the area of Indoor Localization techniques [23]-[33]. Dead 

Reckoning based techniques as discussed in Chapter 2 are among the most widely used for 

indoor location sensing. The classic dead reckoning technique combines magnetometer and 

accelerometer readings while better techniques like sensor fusion combine magnetometer, 

accelerometer and gyroscope readings. Sensor fusion [25] based techniques have been shown to 

be less susceptible to magnetic drifts and give more stable readings. Both these techniques 

inevitably suffer from error accumulation over time. Some commercial providers such as 

IndoorAtlas [31] propose using magnetic fingerprints for creating indoor maps. But such systems 

do not work well in buildings that have metallic structures, which create magnetic interference. 

Some researchers have suggested using the fingerprint from received signal strength (RSS) for 

Indoor Localization [25], [26], [27]. Others have suggested techniques based on custom 

infrastructure support, such as ultra-wideband [28], ultrasound [29], and RFID [23]. But setting 

up this custom infrastructure is often impractical, expensive, and not easily scalable. To keep 

costs manageable, ambient fingerprinting using available infrastructure (Wi-Fi signal strength, 

light, sound, etc.) is a more viable option. SurroundSense [30] proposes using ambient 

fingerprinting with Wi-Fi triangulation and a Support Vector Machine (SVM) based 
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classification-learning approach for Indoor Localization. However, the approach is extremely 

time consuming and resource hungry, and is impractical for real time implementation on 

smartphones. Indeed, the authors in [30] leave real-time implementation of their localization 

methods as future work. Moreover, no energy analysis of the localization techniques is 

performed. 

4.2 Work on Machine Learning Techniques on Smartphones 

There has been extensive research conducted in the area of machine learning techniques. A lot of 

these techniques have been utilized in various smartphone applications. They have been 

unpopular among smartphones due to the long training phase and need of high processing power. 

But in spite of these issues, it has become inevitable that they will be used in smartphone 

applications. Researchers have investigated several classifying and regression based techniques 

like Decision Trees, Naïve Bayes Classifiers, Neural Networks, Linear Regression, etc. [34]. 

Cheung et al. [35] use Markov Decision process to prolong battery life by using a user defined 

reward function. In [36] the authors propose a model that predicts spatial context through 

supervised learning, and the authors in [37] take advantage of signal strength and signal quality 

history data and model user locations using an extreme machine learning algorithm. 

4.3 Work on Energy Optimization for Data and Location Interfaces 

Various papers have also talked of energy-based studies and energy models for quantifying and 

estimating energy consumption of apps through services and system calls on cell phones [38], 

[39]. Though these models maybe generalized, every application is unique and the same model 

might not be good for a particular application and so we created our own energy model and 

applied it in this paper. Some techniques used a power monitor to quantify the actual power 

consumption on the device [40]. We used a similar approach. There has been extensive research 
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in optimizing energy usage of wireless interfaces like 3G, Wi-Fi, Bluetooth, etc. Since Wi-Fi is 

primarily used for our navigation technique, we concentrate on robust energy modeling of the 

Wi-Fi interface. Other work [41]-[56] focuses on energy-efficient location-sensing schemes 

aiming to reduce high battery drain caused by location interfaces (e.g., WiFi, GPS). Lee et al. 

[47] propose a Variable Rate Logging (VRL) mechanism that disables location logging or 

reduces the GPS logging rate by detecting if the user is standing still or indoors. Most of this 

work on energy optimization is for outdoor navigation and none for indoor navigation. 
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Chapter 5  

Machine Learning Techniques 

Machine learning algorithms search for patterns and regularities in any given data and have 

found wide usage across various application domains. They automatically learn from data by 

generalizing from examples. As more data becomes available more ambitious problems can be 

tackled. These algorithms are typically implemented in two phases. In the first phase, called 

training phase, data is gathered and provided to the algorithm, so it can learn patterns and create 

a model to classify data or predict data properties. In the second phase, called testing phase, new 

data is tested against the model that was built during the training phase, and the effectiveness of 

the model is revealed. Such two-phase learning algorithms are called supervised learning 

algorithms [57]. There are also algorithms in which the testing phase is not used, and such 

algorithms are called unsupervised learning algorithms. These algorithms use unlabeled data to 

cluster the data in different classes. Machine learning algorithms can be used for classification or 

regression. In classification, the machine learning algorithm learns to classify the data in 

different classes while in regression it predicts a continuous variable by learning from the train 

data. To improve Indoor Localization prediction capabilities over prior work, we propose to 

integrate machine-learning techniques that intelligently make use of different modules in our 

Indoor Navigation techniques.  

5.1 K-Nearest Neighbor 

The K-Nearest Neighbor (KNN) algorithm is a simplistic non-parametric algorithm. Non-

parametric methods assume that similar inputs have similar outputs. KNN can be used for both 

regression and classification. It is a supervised algorithm but has a minimal training phase. Most 

of the effort in this algorithm is expended in the testing phase. As all of the work for obtaining 
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the best prediction for the location of a user is done at every instance of the testing phase, KNN 

is an instance based learning algorithm. Our KNN regression implementation works as an 

extension of the KNN classification algorithm. In KNN classification, new samples are classified 

by assigning the class that is the most common among the k closest sample in the training set. In 

our KNN regression implementation, the output value is calculated as the average of the value of 

its k nearest neighbors. To determine the closest sample, some form of a distance function is 

required. We make use of the Euclidean distance (D) measure between any two points a and b, 

each containing i attributes. This measure is defined by the following equation: 

D  (a, b)   =    (𝑏! − 𝑎!)!
!

!!!

 
(5.1) 

 

This can be illustrated by the following classification example: Figure 5.1 shows a data set, 

characterized as blue squares and red triangles. The green circle is a new sample that needs to be 

classified as either a blue square or as a red triangle. If k = 3 (represented by the smaller inner 

circle with radius 3), the new sample is classified as a red triangle because there are more red 

triangles within the considered area. Similarly, if k = 5 the new sample is classified as a blue 

square. 

In the training phase of our KNN algorithm, only the training data is collected and rearranged 

according to the training data for the testing phase. This greatly reduces the time needed for the 

training phase but the time during the testing phase increases as a majority of the mathematical 

calculations in the algorithm are performed during the testing phase. These calculations typically 

require high memory and processing overhead. However, mobile devices such as smartphones 

have stringent energy and memory capacity constraints. Thus it was essential for us to optimize 

the KNN implementation for it to work on smartphones. We implemented approximation 
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techniques that constrain the search space to a small subset of nearest neighbors, when 

estimating user location. We explain this in Section 6.2.1. 

Figure 5.1: K-nearest neighbor example 

5.2 Linear Regression 

Linear regression models capture relationships between output dependent variables and input 

variables. These linear models are built during the training phase and are used to make 

predictions during the testing phase. The key assumption of this approach is that the output 

variable is a linear combination of certain weights and input variables. For non-linear 

relationships, these models would provide inaccurate predictions. However, efficient non-linear 

models are also harder to derive. We found that for our purposes of Indoor Localization 

estimation, linear models provided fairly good accuracy. 

The creation of linear regression models requires fitting the input data, using one of several 

functions. We make use of the least squares approach, which involves a mathematical procedure 
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for finding the best fitting curve to a given set of points (training data) by minimizing the sum of 

the squares of the offsets or the residuals of the points from the curve [58], as expressed below: 

!!!!!! ! !!! !! !!!!!

!

!!!

 (5.2) 

!!"#$ ! !"#$%&
!

!!! ! ! !!!! !!!!
!

!!! (5.3) 

 

Figure 5.2: Fitting curve using least squares approach 

Equation 5.2 shows the output values (y) as a function of the inputs (x) using the optimal weights 

(w) in our linear regression model. We determine the weight vectors by minimizing the error 

between the target values (t) and the output of the function y as shown in equation 5.3. Figure 5.2 

shows fitting data using the linear least squares approach. The training phase for linear 

regression is time consuming and extremely compute intensive. Therefore, in LearnLoc this 
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training phase is performed on a server and not on the smartphone. However, we did utilize the 

smartphone in the testing phase to make predictions. 

5.3 Neural Networks 

Neural network models, also known as Artificial Neural Networks (ANN), are inspired by the 

way the central nervous systems in animals is believed to function. The brain which is the 

principle part of the central nervous system is capable of learning as well as recognizing patterns. 

The brain is capable of processing information from the sensory inputs, learning and storing in 

memory. Even though the brain is different from the digital computers today, it is believed that 

the basic concepts still apply. There is a computational unit, known as a neuron, and connections 

to memory stored in synapses. The biggest difference is that the brain is significantly bigger than 

any computer, with complex network of billions of neurons.  

Figure 5.3: Neural network perceptron model 
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In machine learning ANN’s try to model this relationship between neurons in the brain. Figure 

5.3 shows  an ANN perceptron model. The relation between the output y and inputs x is shown in 

equation :  

𝑦 =    𝑤!𝑥! + 𝑤!

!

!!!

 (5.4) 

The weight parameter w is determined in the training phase of ANN. ANN algorithm with back 

propagation can be divided in to the following four steps: 

a) Feed Forward computation:  

This is a two-step process. In the first part the values of the hidden layer nodes are 

obtained. These values are then used in the second part to compute the values of the 

output layer.  

b) Back propagation from output layer: 

In this part the errors are calculated at the output layer and then propagated back to the 

hidden layer.  

c) Back propagation from hidden layer: 

In this part errors are propagated from the hidden layer to the input layer. 

d) Weight updates: 

After a single iteration of forward pass and back propagation is done then the weights are 

updated.  

The algorithm is stopped when the value of the error function has become sufficiently small. The 

last step of weight updates happens throughout the algorithm. In order to introduce non-linearity 

in the hidden layers of the Neural Network, activation functions are needed. The sigmoid 

function is one such activation function as shown in equation:  



 
 

29 

𝑦!! = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑦! =   
1

1+ exp  (−𝒘𝑻𝒙) (5.5) 

One of the biggest criticisms about the use of neural networks is the time required for training. 

Neural networks can be used for classification and are also known as non -linear logistic 

regression. We account for the training time in our approach. A neural network can have 

multiple hidden units, inputs and outputs.  
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Chapter 6  

LearnLoc: Mobile Learning for Smart Indoor Localization 

This chapter presents the LearnLoc framework that combines machine-learning techniques with 

smart fingerprinting using Wi-Fi and supplemental sensors to improve the accuracy and energy-

efficiency of Indoor Localization. Our work makes the following key contributions: 

• We propose the integration of inertial and Wi-Fi fingerprinting with three regression-based 

machine learning techniques that we have adapted and enhanced for Indoor Localization 

sensing;  

• We implement these techniques on an actual smartphone and quantify their performance in 

real-time for Indoor Localization; 

• We perform extensive benchmarking and testing of these techniques across multiple paths in 

diverse indoor building environments with different structural compositions;  

• We compare the accuracy of these methods with state-of-the-art techniques from prior work 

for Indoor Navigation; 

• Unlike any prior work, we also compare and contrast the energy consumption of our 

proposed Indoor Localization techniques with techniques from prior work, and explore trade-

offs between energy and accuracy for Indoor Localization. 

Our proposed LearnLoc framework shuns resource-hungry classification learning in favor of low 

overhead regression-based learning. This allows LearnLoc to be implemented and used in real-

time on smartphones. Our framework also emphasizes energy-efficiency, unlike any of the prior 

works in the area. We show experimental results for energy costs of Indoor Localization 
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techniques as well as an analysis of trade-offs between energy-efficiency and accuracy of the 

techniques. 

Section 6.1 describes the LearnLoc framework whereas Section 6.2 presents the enhancements

using Machine Learning Algorithms and its implementations. 

 

Figure 6.1: Graph of Raw and Filtered Accelerometer values by Footpath Step Detector Algorithm [32]. The 
Filtered values are for the Z-axis accelerometer. The blue dots represent the points where a step was detected. 

6.1 LearnLoc Indoor Localization Framework 

In this section we first discuss the three fundamental components of LearnLoc required for 

Indoor Localization. Subsequently, we present details of machine learning techniques that 

improve the performance of Indoor Localization in LearnLoc. LearnLoc is a platform that hosts 

multiple Indoor Navigation techniques with smart sensor management to reduce energy 

consumption. The principal components of LearnLoc involve Step Detection and Inertial 

Navigation for Pedometric dead reckoning. And lastly Wi-Fi fingerprinting that is done in the 

initial phase for the machine learning based techniques.  
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6.1.1 Step Detection 

Step detection is a vital component of our Indoor Localization system. We use the same 

technique as Bitsch et al. [32] for step detection, where only the accelerometer Z-axis value is 

needed to detect a step. The accelerometer values display a regular pattern and a step is detected 

when there is a sharp drop in acceleration due to the jiggling of a phone in the hand or pocket. 

Figure 6.1 above shows the raw accelerometer data and then shows the filtered data of the Z-axis

accelerometer and the detected steps.  

 

Figure 6.2: Step Detection Algorithm [32] 

In our implementation of the step detection algorithm, the sensor data is sampled at the fastest 

possible rate (1 ms). The step detection algorithm is shown in Figure 6.2. A low pass filter is 

applied to this data to include major movements and improve detection. A step is detected when 

the difference between consecutive z-axis acceleration values (!p) changes by 2 m/s2. The 

difference is checked for a window of five consecutive readings (~166 ms) and after each 

detected step a timeout of 333 ms is used to avoid false detection. These values are adapted from 
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Footpath [32]. As mentioned above, steps are detected by the characteristic change of 

acceleration when the user moves forward due to up and down motion of the device in the hand. 

Experiments have suggested that the amounts of movements depend on the user and how they 

concentrate on holding the device still. So we make provisions for sensor calibration in which 

the user can set the step detection algorithm parameters that best suit them. The sensor 

calibration activity is shown in Figure 6.3.  

 

Figure 6.3: Step Calibration Activity 

The calibration process starts with the user walking around and tapping the graph area each time 

a step is done. The database logs the timestamps of the steps and all sensor values received for 

those time stamps. The calibration activity then varies the parameter values. First, it tries to vary 

the difference threshold p between the consecutive Z-axis accelerometer values {p ε R | 

0.2<p<3; pn+1=pn+0.1}. Second, it varies the smoothening factor l for the low pass filter {l ε R | 

0.05<l<0.8; ln+1=ln+0.05}. The step calibrator then tries to find steps by varying the parameters 
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and obtains their timestamps td. These timestamps are then matched against time stamps tt, which 

the user provided earlier by tapping on the graph area. The user taps the screen when they think 

they have taken a step, which is a short time. But our algorithm searches for negative peaks in 

acceleration, which involves up and down motion that takes some time. Both time stamps tt and 

td cannot be the same, therefore in our calibration activity we can set a tolerance window wd 

between which the times stamps will be compared. We match the timestamps for a tolerance 

window wd as in equation 6.1. The tolerance window can be changed by the user using the 

calibration activity.  

𝑡! − 𝑡! <
𝑤!
2  (6.1) 

So for every parameter p and l, a score is calculated to compare the performance of the values. 

We use a reward and punishment method to measure performance: 

• One reward is added, if the timestamps tt and td match, which also means a step is 

detected right by the step detection algorithm. 

• If a user reported step is not detected by the step detection algorithm, then we punish by 

subtracting a reward.  

• If the step detection algorithm detects a step but the user does not report one then we 

punish twice by subtracting two rewards.  

For every parameter combination we calculate a percentage score P(step) which describes the 

success of these parameters as shown in equation 6.2.  c is the number of steps detected right, n 

is the number of steps not detected by the step detection algorithm and f is the number of false 

steps detected by the step detection algorithm. The denominator s is the total step count.  
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!!!"#$! !!!
! ! ! ! !!

!  (6.2)

The user can also set ones step size by calculating the distance between the two feet as shown in 

figure. We use a step size of 0.6 m 

Figure 6.4: Step Size 

6.1.2 Inertial Navigation 

Inertial Navigation or dead reckoning is a popular technique for Indoor Localization which can 

be accomplished by combining readings from two or more inertial sensors. These systems are 

based on Newton’s Laws of Physics and determine the position of an object with the knowledge 

of the original position and forces applied to the object [33]. If the initial position is not known 

only the relative position to the origin can be determined. Due to this limitation inertial 

navigation systems solely cannot be used for localization and tracking systems. They can track 

device movement over time, but the initial position needs to be manually set or provided by 

another system. As long as the laws of physics apply, inertial navigation systems can almost be 

used anywhere and there is no need of an external source of information. Hence, they can be 

used both indoors and outdoors.  
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Figure 6.5 Sensor Fusion Algorithm using Kalman Filtering 

Inertial Navigation is fundamental to LearnLoc, where we use it to determine the heading angle 

of a person and for step detection. The heading angle is the angle in which the user is facing with 

respect to the true North. We obtain the angle by combining the accelerometer, gyroscope, and 

magnetometer readings. These values are combined with the help of a technique called sensor 

fusion, as discussed in [25]. The accelerometer provides the gravity vector and the magnetometer 

works as a compass. The data from these sensors is combined to obtain a mobile device’s 

orientation. But both of the sensor values often include inaccuracies due to noise. The gyroscope, 

which provides angular rotation speed, is used to determine the device orientation as it is far 

more accurate with a short response time. The angular rotation speed is first integrated over a 

time interval to determine the orientation of the mobile device. Then the sensor data from all 

three sensors is combined using Kalman filtering to give the precise orientation that avoids both 

gyro drift and noisy orientation as shown in Figure 6.5. The gyroscope output is applied 

orientation changes in short time intervals, while the magnetometer and accelerometer data is 

used as support information over long intervals of time. We use this resulting data to determine 
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the change in position from the current position.  

Figure 6.6:  Change in position calculation for inertial navigation 

Figure 6.6 shows how the new position is calculated. The angle (!) is the heading angle that is 

multiplied by a factor d, which is the step distance of the user that is set at the beginning for a 

user (with a default value of 0.5 meters). The step distance is determined by averaging the 

distance between the two feet for five consecutive steps. The equations to calculate the new 

position of Lt+1 (xt+1,yt+1) are: 

!!!! ! !!! !! !!"#$!!! (6.3) 

!!!! !!!! !! !!"#$!!! (6.4) 

6.1.3 Wi-Fi Fingerprinting 

We use IEEE 802.11 wireless signal strength as an ambient location fingerprint for indoor 

environments. The MAC (Media Access Control) addresses of visible access points (AP’s), the 

RSSI (Received Signal Strength Indication) value, and the location coordinates are stored in a 

tuple. This is a form of a passive, listen only wardriving technique where we do not 

communicate over the network (i.e., without any crowdsourcing). Fingerprints are collected 
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along the indoor path on the mobile device, by the user. This manual step is a prerequisite for all 

techniques that use Wi-Fi for indoor tracking.  

  

Figure 6.7: Map showing Fingerprint data. Greend dots represent an instance of Wi-Fi scan along the path. 
Figure (a) on the left shows a Wi-Fi scan done every 3-4 meters. Figure (b) on the right shows oversampled 
data where a Wi-Fi scan is done every 0.5-1 meter 

The fingerprint details are logged into an SQLite database that is accessed by our machine 

learning algorithms (discussed in the next section). We found that a fingerprint gathered after 

every 3-4 meters on the path works well for the algorithms. Every point on a path typically has a 

large number of visible MAC addresses, which requires filtering out the addresses that are 

significant for tracking purposes. We filter out and select only those MAC addresses that are at 

least present at j unique locations on the fingerprint map.  
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Figure 6.8 WiFi level distributions over the map area shown in figure 6.7(a). The blue dots represent Wi-Fi 
signal strength level for all the MAC id’s present on the path 

We experimented by trying to increase the density of fingerprints i.e. gathering fingerprints 

every 0.5 to 1 meter. This resulted in oversampling the data. The Figure 6.7 shows the map for 

oversampled data. The Wi-Fi signals vary less in neighboring areas in small locations compared 

to large areas. Hence it does not make sense to collect fingerprints at close locations. Figure 6.8 

shows the Wi-Fi strength distribution over the area. This was done by collecting a fingerprint 

every 3-4 meters, resulting in a well spread out distribution of Wi-Fi signal strength for all the 

MAC id’s over the area.  

6.2 Enhancements with Machine Learning 

To improve indoor location prediction capabilities over prior work, we propose to integrate 

machine-learning techniques that intelligently make use of our step detection, inertial navigation, 

and Wi-Fi fingerprinting phases.  
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In our LearnLoc framework, we adapt three supervised learning algorithms to assist with Indoor 

Localization. We use the K-Nearest Neighbor, Artificial Neural Networks and Linear Regression 

algorithms. All the algorithms are used for regression and not for classification. This is because a 

classification technique requires dividing the complete map area into a fine-grained grid for 

accurate localization, which creates a prohibitively large input space that limits prediction 

effectiveness and is impractical for resource-constrained smartphones [30]. Regression on the 

other hand can allow us to quickly predict a continuous dependent value, with significantly lower 

resource demands, which is what is needed for Indoor Localization with mobile devices. This is 

also the reason why we do not explore unsupervised learning algorithms, as there is no 

straightforward unsupervised machine learning algorithm that can be used for regression.  

All the algorithms allow us to predict the location of a user over a majority of the map area with 

the few fingerprints that are collected in the training phase. We implement the Linear Regression 

training phase on a server and then offload the predictions (testing phase) on the mobile device, 

while both the training and testing phases for the KNN and ANN algorithm are implemented on 

the mobile device.  

6.2.1 KNN 

We do a complete implementation of the KNN algorithm in Java. In the training phase we 

aggregate all the Wi-Fi fingerprint data and sort out only the significant Wi-Fi fingerprints. The 

data is sorted and stored in a 2-dimensional array. During the test phase the new acquired data is 

filtered and sorted. Using the Euclidean distance the nearest neighbors are determined. Finally 

the data is averaged to get the regressional prediction from the KNN algorithm. Since most of the 

calculations are done in the test phase only the time for KNN training is very small as seen in 

Table 6.1.  
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Table 6.1: Train times for ANN and KNN algorithm 

Technique Train time (ms) 

KNN Train 24000 

ANN Train 253200 

 

The KNN regression algorithm can predict only one value at a time. So in order to get the 

prediction for another value the KNN algorithm needs to be re-run for the second value. But this 

adds to the computational costs. In LeanLoc we need to predict the X, Y locations of the user. In 

order to avoid the computational costs we just run the KNN algorithm once and find the nearest 

neighbor based on the Wi-Fi Fingerprint data. We then obtain the X and Y locations for the 

nearest neighbors and average them separately to give the predicted X and Y values. This saves 

the device of additional computational cost of finding the nearest neighbor twice.  

 

Figure 6.9: Actual vs. Predicted values by increasing the number of Epochs 
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6.2.2 Artificial Neural Networks 

The ANN algorithm involves a long training phase, as mentioned in Section 5.3 earlier. To set 

the weights in the ANN algorithm, errors are back propagated and minimized to update the 

weights. This process usually takes long. Increasing the number of hidden units too adds more 

complexity to the ANN algorithm and the errors take longer to converge. There are a number of 

parameters that can be set for the ANN algorithm. 

The user can set a number of parameters like the number of hidden units, the epochs or number 

of repetitions performed to converge to the minimum error and the learning rates. We experiment 

with a few of these parameters. We found that keeping the number of hidden units as 14 leads to 

precise training, while decreasing the learning rate leads to more accurate training. We also see 

in the figure that increasing the number of epochs after 1500 doesn’t result in any better training, 

hence we use the number of epochs as 1500. The whole implementation for Neural Nets is done 

in Java.  

6.2.3 Linear Regression 

Linear Regression as mentioned earlier is done offline on the computer. Hence we create the 

implementation using python code. We see that the Wi-Fi signal strengths have a non-linear 

relationship with the locations. We did a java implementation first but the training times we so 

large that we had to go with the offline version of the linear regression algorithm.  
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Chapter 7  

Experiment and Results 

In this section we discuss various experiments performed using LearnLoc. The experimental 

setup and methodology are discussed first followed by experimental results and discussion. 

7.1 Experimental Setup  

7.1.1 Device Power Modeling 

We use two mobile devices, HTC Sensation [59] and Nexus 4 [60] both running on the Android 

4.2 Operating System. We discuss the energy modeling on these devices in this section.  

Figure 7.1: Power Monitor Setup 
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a) Overview 

We thought of a number of different ways in which we could model the energy effectiveness of 

the Indoor Localization technique. We eventually narrowed down to create an energy model 

specific to Indoor Navigation techniques. To estimate energy for the Indoor Localization 

techniques, we used a Monsoon Solutions power meter [61] that connects to a smartphone and 

provides a profile of power dissipated over time when the smartphone is in use. We used this 

meter to determine energy consumption for the various steps involved as part of the Indoor 

Localization techniques. The energy meter can offload the power trace data to the desktop 

computer. 

Using the power meter, general energy models were created for both the mobile devices. All 

energy values were averaged over five readings. “Init” is the energy overhead of invoking the 

user interface (UI) and context for a single instance of localization prediction. The energy values 

for a single instance of the step detection task using the two inertial sensing techniques 

(“Classical” and “Sensor Fusion”) are shown next. The energy spent to perform a single instance 

of Wi-Fi fingerprinting (“Wi-Fi scan”) in LearnLoc can be seen to be quite large. This step takes 

about 500 ms. Given the high overhead of a Wi-Fi scan we explored various Wi-Fi scan intervals 

to balance location prediction accuracy with energy costs and implementation efficiency (see 

Section 7.3.1). Table (Table 7.1) for our energy model is shown below. The details for each 

module are explained in the subsequent sections. 
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Table 7.1: Energy Model 

Action/Module Energy (mJ) 

Init 831.21 

Classical (Acc + Mag) 1335.93 

Sensor Fusion (Acc + Mag + Gyro) 1715.88 

Wi-Fi Scan 2380.25 

KNN Train 949.60 

KNN Test 4621.70 

Linear Regression Train Not Applicable 

Linear Regression Test 290.31 

NN Train 31592.27 

NN Test 580.63 

 

b) Wi- Fi Power Model 

We created a sample app that can do a simple Wi-Fi scan by the click of a button. The mobile 

device was then connected to the power meter and the power was recorded. A single Wi-Fi 

instance took about 500 ms to complete. The power consumed in this process is modeled using 

the energy meter as shown in Figure 7.2 where the power trace is shown in orange while the 

current trace is shown in blue. This graph also shows the power trace for three instances of Wi-Fi 

scan. The average energy consumed for a single Wi-Fi scan is 2380.25 mJ. 
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Figure 7.2: Wi-Fi scan Power Trace 

c) Step Detection 

The step detection algorithm uses the three positioning sensors primarily to tell us if a step is 

detected and to give us the heading angle to which the user is pointing. It involves compute 

intensive techniques like Kalman Filtering that demands high processing power. The Figure 7.3 

below shows the graph for 5 consecutive steps detected using Kalman Filtering in the Sensor 

fusion algorithm. The average energy consumption for step detection using the Sensor Fusion 

Algorithm is 1715.88 mJ. We record the power dissipated with the use of Classic inertial 

navigation technique for comparison purposes later.    
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Figure 7.3: Power Trace for Step Detection using Sensor Fusion technique 

d) Energy modeling of the machine-learning algorithms  

To model the train and test times for the machine-learning algorithms we use the same power 

monitor. We run the training module in LearnLoc for all the learning algorithms and record the 

power trace. The Figure 7.4 shows the energy consumed for a single instance of the ANN train. 

This energy is modeled for a train set having 250-300 samples, which is the case in most of our 

experimental paths. The test module for the learning algorithm is run every time after the Wi-Fi 

scan. We run the test modules for all the learning algorithms we use in LearnLoc and record their 

power traces. 
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Figure 7.4: Power trace for the training module using Artifitial Neural Network Algorithm 

7.1.2 LearnLoc Mobile App and Implementation  

We designed a LearnLoc mobile app for the Android ecosystem. The app significantly extends 

the scope of an open source project called Wi-Fi Compass [33] by integrating our machine 

learning algorithms and optimizations for low overhead implementations on resource-

constrained smartphones. The app allows fingerprinting paths in a given map as part of a training 

phase. In this phase, the user must initially select a map, set the scale for the map, and specify the 

starting position on the map. The app then performs Wi-Fi scans at regular intervals while the 

user moves along the indoor environment. This phase continues till the user explicitly indicates 

an end to the training phase in the app. The captured data is used to train our machine learning 

algorithms. The testing phase uses the trained learning algorithms to make predictions. In this 
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phase, the app provides indoor location estimates that are highlighted on the map. Our mobile 

app implemented all variants of the LearnLoc framework: using KNN, Linear Regression and 

Neural Networks. The app provides the flexibility to set parameters for the step detection 

algorithm, such as step distance and window size for step detection. It is also possible to set the 

Wi-Fi scan frequency and the maximum distance thresholds up to which the predictions from the 

learning algorithm are valid.  

A sample use case of LearnLoc would involve the following steps: 

I. Sensor Calibration 

II. Create a new Training Project  

a) Select Map Background 

b) Set Map Scale  

III. Gather Wi-Fi Fingerprints 

IV. Save Project 

V. Create a new Testing Project  

a) Select the training project for the training data  

b) Set the maximum threshold for the LearnLoc algorithm  

c) Set the Wi-Fi scan frequency 

VI. Press start button and start walking  

VII. Press stop when done  

Screenshots for the train and test project use cases in LearnLoc are shown in Figure 7.5. All the 

steps above need not be followed in the same order. The user can always go back and change the 

parameters and other custom settings by opening the project and selecting the settings menu. 
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Figure 7.5: LearnLoc Train Project Use Case 

On using our LearnLoc app, we found that for several indoor environments there are a large 

number of visible Wi-Fi MAC id’s. To keep run-time overheads low, which is critical for 

resource constrained mobile devices, and prevent overfitting of learning data, we filtered and 

considered only the most significant MAC id’s, defined as those MAC id’s that are at least 

present at 12 different points in the training data. For a location where a MAC id was not present 

(after the filtering step), we set the signal strength to zero.  
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Figure 7.6: LearnLoc Test Project Use Case 

We also encountered a convergence problem when running LearnLoc and this problem is 

illustrated in Figure 7.7. It was observed that when a user is in a particular region (e.g., the circle 

in the figure), the learning algorithms predicted the same location repeatedly until the user had 

moved completely out of the region. To address this issue, we store the previous prediction from 

the learning algorithm. We then calculate the distance between the new and the previous 

predictions. If we observe that the distance is below a particular threshold, we discard the 

prediction and use the inertial trace to obtain the location prediction. We set the threshold in this 

case to be less than the distance for one step (~120 cm).  
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Figure 7.7: Convergence Problem 

 

Figure 7.8: Accuracy Estimation: to measure the error the two red arrows must be stretched between the 
actual point on the path and the corresponding point on the traced path 
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7.1.3 Accuracy Estimation 

We estimate the accuracy of the Indoor Localization techniques by checking for the deviation of 

prediction error along the path after every 10 meters. We implemented LearnLoc and techniques 

from prior work as apps. A widget in the app as shown in Figure 7.8 calculates the distance 

between the traced path and the actual path (specified by the user). The widget then uses the 

scale factor for the map (as discussed in Section 7.1.2) to obtain the actual distances and then 

averages the piecewise errors to give an overall average error for each technique. 

7.1.4 Indoor Paths for Benchmarking 

To show the effectiveness of our LearnLoc framework as well as the prior works that we 

compare against, we selected four indoor paths in three buildings that are part of the Colorado 

State University, Fort Collins campus. These paths were used as benchmarks for our accuracy 

and energy comparisons between the Indoor Localization techniques (discussed in Section 7.3.2). 

Figure 7.9 shows the paths highlighted in red against the backdrop of the indoor floorplan. The 

starting and end points are marked as “S” and “E” respectively. The path lengths range from 80 

meters to 140 meters.  

Each building was chosen because of its unique characteristics that differed from other buildings. 

The Clark building is one of the oldest buildings on campus, and primarily made of wood and 

concrete. We choose two paths (Clark L2 South and North) in this building. The Library is a 

relatively new building that has a mix of metal and wooden structures with open spaces. We 

chose three paths (Library L3, Library L2, and Library Basement) in this building. Library 

Basement is the shortest of our paths. The Engineering building is neither new nor old and has a 

significant amount of metal in its structure as well as in the equipment in the labs. The presence 
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of a large quantity of metal creates magnetic disturbances, which can complicate Indoor 

Localization. We chose one path (Engineering B) in this building. 

For a precise accuracy analysis we obtained the building floor plans with the actual map 

dimensions. We used these dimensions to set the scale on the map during our project setup in 

LearnLoc. With the help of Image tools we trim the map area containing our paths and create the 

background map images for the LearnLoc app.  
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Figure 7.9: Indoor Paths for Benchmarking 
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7.3 Experimental Results 

In this section, we first present results that explore the impact of changing the Wi-Fi scan 

interval within LearnLoc. Subsequently, we present results comparing LearnLoc with prior work 

in the area.  

Figure 7.10: Error distances with changing Wi-Fi scan interval 

7.3.1 Wi-Fi Scan interval Sensitivity Analysis 

Given the high energy and time overhead of a Wi-Fi scan as discussed in the previous section, 

we were interested in determining the most suitable value of a Wi-Fi scan interval for our 

LearnLoc framework. We therefore conducted a sensitivity analysis and recorded the indoor 

location estimation accuracy and energy costs for the KNN and Linear Regression variants of 

LearnLoc. Figure 7.10 shows the average location estimation error and Figure 7.11 shows the 

energy consumed for the Indoor Localization on the HTC Sensation smartphone with Wi-Fi scan 

intervals varying from 1-16 seconds, for the KNN and Linear Regression variants. The results 

show an average across all four paths. Figure 7.12 shows a detailed look of the predicted paths 
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for different Wi-Fi scan intervals when using the KNN variant of LearnLoc on the Clark L2 

South path.  

Figure 7.11: Energy consumption with changing Wi-Fi scan interval

From the Figure 7.10, it can be observed that the lowest Wi-Fi scan interval (1 second) results in 

the highest accuracy, but also incurs a high energy consumption overhead because scanning is 

performed very frequently (as can be seen by the high density of green dots that represent Wi-Fi 

scan instances in Figure 6 for the 1 second interval case). As the Wi-Fi scan interval increases, 

the paths traced start deviating notably from the actual path, and the estimation errors increase. 

In general, KNN provides better accuracy than Linear Regression. For a 1 second interval, the 

average error distance for KNN is only 1.138 meters. However, KNN also consumes more 

energy to make predictions compared to Linear Regression, especially for low scan intervals. 

The energy cost of KNN drops dramatically when going from a scan interval of 1 to an interval 

of 2 seconds. 
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The reduction in the calls to the KNN testing phase algorithm accounts for this notable drop, 

with diminishing returns for higher interval values.  

Figure 7.12: Paths traced for various Wi-Fi scan intervals for the LearnLoc framework using KNN along the 
Clark L2 South path; green dots represent an instance of a Wi-Fi scan along the path 
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Based on the results from this study, we concluded that a 1 second scan interval is too expensive 

to be viable. A very high interval value (e.g., 8-16 seconds) is also not viable due to the 

associated high inaccuracy of location estimation. We ultimately decided to consider a scan 

interval of 2 seconds, which provides sufficiently high prediction accuracy while consuming a 

reasonable amount of energy. We use this scan interval value for LearnLoc in our experiments in 

the next section where we compare LearnLoc to prior work. 

7.3.2 Location Algorithm Comparison 

To show the effectiveness of our proposed LearnLoc framework for localization, we compared it 

to two prior works that use classical inertial navigation [33] and sensor fusion based inertial 

navigation [25] for Indoor Localization. Figure 7.13 shows the localization accuracy results for 

the two variants of LearnLoc and the approaches from [33] and [25], while Figure 7.14 shows 

the energy consumed to obtain the Indoor Localization predictions across the techniques. Results 

are shown for the four indoor path benchmarks discussed earlier. Figures 7.15-7.20 provide a 

detailed look at the predicted indoor paths when using the five techniques for all the 

benchmarked indoor paths.  

It can be observed from Figure 7.13 that the KNN variant of our proposed LearnLoc framework 

achieves the best accuracy across all paths, out of all the techniques considered. The accuracy for 

Neural Network technique is between the accuracy for KNN and Linear Regresson variants. The 

accuracy of the Linear Regression variant and sensor fusion techniques is quite similar, while the 

classical inertial navigation technique performs the worst. It is interesting to observe that KNN 

performs the best in the Engineering building while the Classical technique has one of its worst 

performances in that building. This can be attributed to the high amount of magnetic interference 

due to the abundance of lab equipment and metal walls and surfaces present in that building. It is 
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also interesting to note that all the techniques work well in the Clark building. This is because 

Clark is a relatively old building with wooden and brick walls. There are very few metallic 

structures present in the building and hence there is a very little magnetic interference that can 

impact magnetometer or Wi-Fi readings. The lackluster performance of the Linear Regression 

variant was found to be the result of non-linearities in the relationship between the Wi-Fi 

fingerprints and location data that a linear model is unable to capture. Neural Networks does a 

better job at handling non-linearities and so the higher accuracy. 

 

Figure 7.13: Avg. error distance for Indoor Localization techniques 

From the illustration of the paths traced by the Indoor Localization techniques for the Clark L2 

South benchmark path in Figure 7.15, several observations can be made. The path traced by the 

classical technique greatly deviates from the actual path. This is due to the error accumulation 
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over time. The sensor fusion technique performs better but still suffers from error accumulation. 

It is clear that both of these techniques require some form of recalibration periodically, if their 

errors are to be bounded.  

 

Figure 7.14: Energy consumption for Indoor Localization techniques 

The use of Wi-Fi together with our learning techniques allows us the ability to generate more 

robust predictions over time with LearnLoc. The green points in the Linear Regression, Neural 

Networks and KNN variants of LearnLoc show the instances where a Wi-Fi scan was performed. 

For the Linear Regression variant, the generated linear model is not very tolerant to noisy 

readings and as a result its predictions are not consistently accurate along the path. The KNN 

variant of LearnLoc performs the best out of all the localization techniques, with an average error 

of 2.228 meters.  

The energy consumed by all Indoor Localization techniques is shown in Figure 7.14. The energy 

consumed on the Library Basement path was the lowest out of all other paths as it was the 
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shortest path in the study. It can be observed from the figure that KNN is one of the most 

expensive techniques when it comes to energy consumption. This is attributed to the high 

computation overhead to generate predictions during the Test phase of the KNN algorithm. 

However, this energy value is still low enough to enable viable implementation on a smartphone. 

If lower energy is desired, it is possible to increase the Wi-Fi scan interval to trade-off energy 

with estimation accuracy (as shown in Section 7.3.1). The Neural Network technique consumes 

less energy than the KNN variant with accuracy slighty less than KNN. But Neural Network 

variants require the lengthy training phase. Empowering smartphones with higher processing 

power can bring down these training times enabling the Neural Network variant to be usable. 

The sensor fusion technique can be seen to consume less energy than the Linear Regression 

variant even though the energy for an individual prediction for sensor fusion from Table 6.1 is 

higher than that for Linear Regression. The high energy for Linear Regression is primarily due to 

the need for energy consuming Wi-Fi scans which the sensor fusion technique avoids.  
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Figure 7.15: Paths traced by Indoor Localization techniques along the Clark L2 South benchmark path 
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Figure 7.16: Paths traced by Indoor Localization techniques along the Clark L2 North benchmark path 
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Figure 7.17: Paths traced by Indoor Localization techniques along the Engineering B benchmark path 
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Figure 7.18: Paths traced by Indoor Localization techniques along the Library Basement benchmark path 
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Figure 7.19: Paths traced by Indoor Localization techniques along the Library L2 benchmark path 
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Figure 7.20: Paths traced by Indoor Localization techniques along the Library L3 benchmark path 
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Chapter 8  

Summary and Future Work 

Context aware and location-based services will inevitably continue to grow in the global market. 

These services have entered the market space already as commercial positioning and navigation 

systems manifested as GPS devices that were accessible to only a handful of people. But with the 

surge of the mobile device market these services are available to almost everyone who owns a 

smartphone today. The advancement in research and technology has led to precise navigation 

outdoors but absence of satellite signals in the indoor space poses challenges for Indoor 

Navigation. In spite of the increasing customer expectation, the adoption of Indoor Navigation 

services is relatively slow due to lack of research resources. The availability of varied sensors on 

smartphone platforms has led to sensor based Indoor Positioning solutions but the in accuracies 

of these techniques and their power demand are deceptive in their claim as an outright solution 

for Indoor Positioning. Wi-Fi signal strength based solutions work in the favor of the notion to 

control infrastructural costs. Hence, the increasing demand of accurate, energy efficient Indoor 

Positioning system within the available infrastructure is shaping the future of Indoor Localization 

solutions and platforms.  

8.1 Summary 

In this thesis we presented the LearnLoc Indoor Localization framework. We presented three 

variants of our framework: one that uses K Nearest Neighbor (KNN) regression based learning 

and the other that use Linear Regression and Artifitial Neural Networks (ANN). Our 

experimental studies show that the KNN machine learning based LearnLoc approach is robust to 

noise and magnetic interference and significantly outperforms other approaches from prior work. 

Our KNN-based approach provides highly accurate Indoor Localization with approximately 1 to 
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3 meters accuracy. This accuracy however comes at a cost: high-energy consumption. If energy 

is a critical concern for a given mobile device, one possibility is to trade-off prediction accuracy 

with energy costs by adapting the KNN algorithm. We showed that it is possible to perform such 

a trade-off by varying the Wi-Fi scan interval. Our ANN approach achieves accuracy comparable 

to the KNN-based approach. It even has the advantage of consuming less energy than the KNN 

approach but it involves a lengthy training phase that cannot be improved for real time usage of 

the ANN algorithm. The promising results from this study are very encouraging.  

8.2 Future Work 

All the variants of our LearnLoc show promising results for accurate Indoor Positioning by 

controlling the energy cost. However much work can be done to improve the strategies. Our 

ongoing work is attempting to explore other learning algorithms and perform more aggressive 

trade-offs between accuracy and energy.  

Ongoing work is focusing on collecting more ambient fingerprints other than Wi-Fi and use 

classification based learning algorithms to achieve higher accuracy. We are exploring ways of 

determining a fine-grained energy model that accounts for such compute and memory intensive 

algorithms. We are also working on the use of more complicated learning algorithms like 

Support Vector Machine (SVM) on the device.   

In the linear regression based approach we offload and upload the data from the phone manually. 

One solution to improving this would be to make this more dynamic by enabling LearnLoc to 

automatically offload the data with the help of a wireless data connection like Wi-Fi. 

There are other plans for future work in the area of simulatenous location and mapping (SLAM). 

This would enable LearnLoc to create maps automatically by crowdsourcing paths traced by 
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users in the same building. Another plan is to crowdsource the fingerprinting data that can 

account for the variations of the Wi-Fi signals over time and also for any changes to the Wi-Fi 

router positions that has resulted in change of Wi-Fi signal strength over an area. 

In LearnLoc we did not analyze the memory usage by the different variants in the platform. Most 

of the learning algorithms have matrix operations and computations that require sizable memory. 

We plan to account for the memory usage of these operations and do a comparative study of the 

memory requirements for all the variants in LearnLoc.  

Although there are always ways for software optimization and unexplored techniques for energy 

efficient Indoor Positioning, the work presented in this thesis brings us one-step closer to the 

rising consumer demands in Indoor Positioning based location services using smartphones.  
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Appendix A 

Source Code 

This section presents the majority of the source code for the implementation of the three 

strategies in LearnLoc. Sections A.1 provides the source code for inertial navigation techniques 

i.e the Classic and Sensor Fusion techniques. Section A.2 and A.3 provides the source code for 

the step detection algorithm. Section A.4 provides the source code for the Wi-Fi scan activity to 

collect fingerprints.  

Section A.5 shows the source code for the main Activity in the LearnLoc Android application, 

and Section A.6 to A.9 provide the source code for the three strategies that use the KNN, ANN 

and Linear Regression algorithms.  

A.1 CompassSensorWatcher.Java 

/** 
 * Class to get Orientation (Azimuth) using Sensor Fusion and Classic Approach 
 * @author Viney Ugave (vinzzz@rams.colostate.edu) 
 * Improved and Customized from  https://code.google.com/p/wificompass/ 
 */ 
package com.colostate.mecs.vinzzz.IL.location; 
 
import com.colostate.mecs.vinzzz.IL.helper.ToolBox; 
 
import android.content.Context; 
import android.hardware.Sensor; 
import android.hardware.SensorEvent; 
import android.hardware.SensorEventListener; 
import android.hardware.SensorListener; 
import android.hardware.SensorManager; 
import android.util.Log; 
 
 
public class CompassSensorWatcher implements SensorEventListener { 
 
 private static final String TAG = "CompassSensorWatcher"; 
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 protected SensorManager sensorManager; 
 
 protected Sensor compass; 
 
 protected Sensor accelerometer; 
  
 protected Sensor rotationVector; 
 
 protected Context context; 
 
 float[] inR = new float[16]; 
 
 float[] I = new float[16]; 
 
 float[] gravity = new float[3]; 
 
 float[] geomag = new float[3]; 
  
 float[] rotVec = new float[3]; 
 
 
 float[] orientVals = new float[3]; 
 
 float azimuth = 0; 
 
 float angle = 0; 
 
// String azimuthText = ""; 
 
 int minX = 0, minY = 0, maxX = 0, maxY = 0, centerX = 0, centerY = 0, width = 
0, height = 0; 
 
 float l = 0.3f; 
  
 protected CompassListener listener; 
 
 protected float lastAzimuth = 0f; 
  
  
  
 
 public CompassSensorWatcher(Context context,CompassListener cl,float 
lowpassFilter) { 
  Log.d(TAG, "Instantiated CompassSensorWatcher"); 
  this.context = context; 
  this.listener=cl; 
  this.l=lowpassFilter; 
   
  sensorManager = (SensorManager) 
context.getSystemService(Context.SENSOR_SERVICE); 
  compass = sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD); 
  accelerometer = 
sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER); 
  rotationVector = 
sensorManager.getDefaultSensor(Sensor.TYPE_ROTATION_VECTOR); 
// 
 Log.d(TAG,sensorManager.getSensorList(Sensor.TYPE_ACCELEROMETER).toString() ); 
  try { 
   sensorManager.registerListener(this, compass, 
SensorManager.SENSOR_DELAY_UI); 
   sensorManager.registerListener(this, accelerometer, 
SensorManager.SENSOR_DELAY_UI); 
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   sensorManager.registerListener(this, rotationVector, 
SensorManager.SENSOR_DELAY_UI); 
 
   Log.d(TAG, "Registered Sensor Listeners"); 
  } catch (Exception e) { 
   Log.e("could not register listener", e.toString()); 
  } 
 } 
   
 
 /* 
  * (non-Javadoc) 
  *  
  * @see 
android.hardware.SensorEventListener#onAccuracyChanged(android.hardware.Sensor, int) 
  */ 
 @Override 
 public void onAccuracyChanged(Sensor sensor, int accuracy) { 
//  Log.d(TAG, "Magnetometer Accuracy: "+accuracy); 
 } 
 
 /* 
  * (non-Javadoc) 
  *  
  * @see 
android.hardware.SensorEventListener#onSensorChanged(android.hardware.SensorEvent) 
  */ 
 @SuppressWarnings("deprecation") 
 @Override 
 public void onSensorChanged(SensorEvent event) { 
 
  // Logger.d("sensor changed "+event); 
  // we use TYPE_MAGNETIC_FIELD to get changes in the direction, but use 
SensorManager to get directions 
  if (event.accuracy == SensorManager.SENSOR_STATUS_UNRELIABLE) 
   return; 
 
  // Gets the value of the sensor that has been changed 
  switch (event.sensor.getType()) { 
  case Sensor.TYPE_ACCELEROMETER: 
   gravity = event.values.clone(); 
//   Log.d(TAG, "Accelerometer onSensorChanged() "); 
//   Log.d(TAG,String.valueOf(gravity[0]) ); 
   break; 
  case Sensor.TYPE_MAGNETIC_FIELD: 
   geomag = event.values.clone(); 
//   Log.d(TAG, "Magnetic Field onSensorChanged() "); 
//   Log.d(TAG,"Magnetic : "+String.valueOf(geomag[0])); 
   break; 
  case Sensor.TYPE_ROTATION_VECTOR: 
   rotVec=event.values.clone(); 
   break; 
  } 
// 
  //Classic = Acc+Mag 
  // If gravity and geomag have values then find rotation matrix 
  if (gravity != null && geomag != null) { 
   
   // checks that the rotation matrix is found 
   boolean success = SensorManager.getRotationMatrix(inR, I, gravity, 
geomag); 
   if (success) { 
    SensorManager.getOrientation(inR, orientVals); 
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    angle = (float) ToolBox.normalizeAngle(orientVals[0]); 
    azimuth = (float) Math.toDegrees(angle); 
//    Log.d(TAG,String.valueOf(azimuth) ); 
    lowPassFilter(); 
     
    angle=(float) Math.toRadians(azimuth); 
     
//    azimuthText = getAzimuthLetter(azimuth) + " " + 
Integer.toString((int) azimuth) + "¬∞"; 
 
    if(listener!=null){ 
    
 listener.onCompassChanged(azimuth,angle,getAzimuthLetter(azimuth)); 
    } 
   } 
  }//Acc+Mag 
   
   
  //Sensor Fusion  
  if (rotVec != null) { 
   SensorManager.getRotationMatrixFromVector(inR,rotVec); 
   SensorManager.getOrientation(inR, orientVals); 
 
   angle = (float) ToolBox.normalizeAngle(orientVals[0]); 
   azimuth = (float) Math.toDegrees(angle); 
   angle=(float) Math.toRadians(azimuth); 
    
   if(listener!=null){ 
   
 listener.onCompassChanged(azimuth,angle,getAzimuthLetter(azimuth)); 
   } 
 
    
  }//Sensor Fusion 
    
   
 } 
  
  
 public void stop(){ 
  try { 
   sensorManager.unregisterListener(this); 
  } catch (Exception e) { 
   Log.w("could not unregister listener", e); 
  } 
 } 
 
 public String getAzimuthLetter(float azimuth) { 
  String letter = ""; 
  int a = (int) azimuth; 
 
  if (a < 23 || a >= 315) { 
   letter = "N"; 
  } else if (a < 45 + 23) { 
   letter = "NO"; 
  } else if (a < 90 + 23) { 
   letter = "O"; 
  } else if (a < 135 + 23) { 
   letter = "SO"; 
  } else if (a < (180 + 23)) { 
   letter = "S"; 
  } else if (a < (225 + 23)) { 
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   letter = "SW"; 
  } else if (a < (270 + 23)) { 
   letter = "W"; 
  } else { 
   letter = "NW"; 
  } 
 
  return letter; 
 } 
 
 protected void lowPassFilter() { 
  // lowpass filter 
  float dazimuth = azimuth -lastAzimuth; 
 
//  // if the angle changes more than 180¬∞, we want to change direction and 
follow the shorter angle 
  if (dazimuth > 180) { 
   // change to range -180 to 0 
   dazimuth = (float) (dazimuth - 360f); 
  } else if (dazimuth < -180) { 
   // change to range 0 to 180 
   dazimuth = (float) (360f + dazimuth); 
  } 
  // lowpass filter 
  azimuth = lastAzimuth+ dazimuth*l; //maybe use one in the book  
   
  azimuth%=360; 
   
  if(azimuth<0){ 
   azimuth+=360; 
  } 
   
  lastAzimuth=azimuth; 
   
//  lastAzimuth=azimuth=ToolBox.lowpassFilter(lastAzimuth, azimuth, l); 
   
//  oldValue + filter * (newValue - oldValue); 
 
 } 
 
  
 
} 
 
 

A.2 StepDetection.Java 

package com.colostate.mecs.vinzzz.IL.location; 
 
import java.util.Timer; 
import java.util.TimerTask; 
 
import android.content.Context; 
import android.hardware.Sensor; 
import android.hardware.SensorEvent; 
import android.hardware.SensorEventListener; 
import android.hardware.SensorManager; 
 
 
/** 
 *   
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 * This class is fed with data from the Accelerometer and Compass sensors. If a step 
is detected on the acc data it calls the trigger function on its interface 
StepTrigger, with the given direction. 
 * Usage: Create an object: stepDetection = new StepDetection(this, this, a, peak, 
step_timeout_ms); 
 * Adopted from WiFi Compass (https://code.google.com/p/wificompass/ ) 
 */ 
public class StepDetection implements CompassListener { 
 public static final long INTERVAL_MS = 1000 / 30; 
 
 // Hold an interface to notify the outside world of detected steps 
 /** 
  * @uml.property name="st" 
  * @uml.associationEnd 
  */ 
 protected StepTrigger st; 
 
 // Context needed to get access to sensor service 
 protected Context context; 
 
 protected static SensorManager sm; // Holds references to the SensorManager 
 
 // List<Sensor> lSensor; // List of all sensors 
 
 protected float lastComp; 
 
 protected Timer timer; 
 
 protected StepDetector detector; 
 
 protected Sensor accelerometer; 
 
 /** 
  * Handles sensor events. Updates the sensor 
  */ 
 public SensorEventListener mySensorEventListener = new SensorEventListener() { 
  @Override 
  public void onAccuracyChanged(Sensor sensor, int accuracy) { 
   // Auto-generated method stub 
  } 
 
  @Override 
  public void onSensorChanged(SensorEvent event) { 
   switch (event.sensor.getType()) { 
   case Sensor.TYPE_ACCELEROMETER: 
    st.onAccelerometerDataReceived(System.currentTimeMillis(), 
event.values[0], event.values[1], event.values[2]); 
    // just update the oldest z value 
    detector.addSensorValues(System.currentTimeMillis(), 
event.values); 
    break; 
 
   default: 
   }// switch (event.sensor.getType()) 
  } 
 }; 
 
 public StepDetection(Context context, StepTrigger st, double a, double peak, 
int step_timeout_ms) { 
  this.context = context; 
  this.st = st; 
 
  this.detector = new StepDetector(a, peak, step_timeout_ms); 
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 } 
 
 public void load() { 
  load(SensorManager.SENSOR_DELAY_FASTEST); 
  CompassMonitor.registerListener(context, this); 
 } 
 
 /** 
  * Enable step detection 
  */ 
 public void load(int sensorDelay) { 
 
  if (timer == null) { 
   // Sensors 
   sm = (SensorManager) 
context.getSystemService(Context.SENSOR_SERVICE); 
 
   accelerometer = sm.getDefaultSensor(Sensor.TYPE_ACCELEROMETER); 
 
   sm.registerListener(mySensorEventListener, accelerometer, 
sensorDelay); 
 
   // Register timer 
   timer = new Timer("UpdateData", false); 
   TimerTask task = new TimerTask() { 
 
    @Override 
    public void run() { 
     updateData(); 
    } 
   }; 
   timer.schedule(task, 0, INTERVAL_MS); 
  } 
 } 
 
 /** 
  * Disable step detection 
  */ 
 public void unload() { 
  if (timer != null) { 
   timer.cancel(); 
   timer.purge(); 
   timer = null; 
   sm.unregisterListener(mySensorEventListener); 
  } 
 } 
 
 /** 
  * This is called every INTERVAL_MS ms from the TimerTask. 
  */ 
 protected synchronized void updateData() { 
  // Get current time for time stamps 
  long now_ms = System.currentTimeMillis(); 
 
  st.onTimerElapsed(now_ms, detector.getLastAcc(), new double[] 
{lastComp}); 
 
  // Check if a step is detected upon data 
  if (detector.checkForStep()) { 
   // Call algorithm for navigation/updating position 
   st.onStepDetected(now_ms, lastComp); 
 
  } 
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 } 
 
 /** 
  * @return 
  * @uml.property name="a" 
  */ 
 public double getA() { 
  return detector.getA(); 
 } 
 
 /** 
  * @return 
  * @uml.property name="peak" 
  */ 
 public double getPeak() { 
  return detector.getPeak(); 
 } 
 
 /** 
  * @return 
  * @uml.property name="step_timeout_ms" 
  */ 
 public int getStep_timeout_ms() { 
  return detector.getStepTimeoutMS(); 
 } 
 
 /** 
  * @param a 
  * @uml.property name="a" 
  */ 
 public void setA(double a) { 
  detector.setA(a); 
 } 
 
 /** 
  * @param peak 
  * @uml.property name="peak" 
  */ 
 public void setPeak(double peak) { 
  detector.setPeak(peak); 
 } 
 
 /** 
  * @param stepTimeoutMs 
  * @uml.property name="step_timeout_ms" 
  */ 
 public void setStep_timeout_ms(int stepTimeoutMs) { 
  detector.setStepTimeoutMS(stepTimeoutMs); 
 } 
 
 /* (non-Javadoc) 
  * @see at.fhstp.wificompass.CompassListener#onCompassChanged(float, 
java.lang.String) 
  */ 
 @Override 
 public void onCompassChanged(float azimuth, float angle, String direction) { 
  st.onCompassDataReceived(System.currentTimeMillis(), azimuth, 0, 0); 
  this.lastComp=azimuth; 
 } 
} 
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A.3 StepDetector.Java 

package com.colostate.mecs.vinzzz.IL.location; 
 
import android.util.Log; 
 
/** 
 * Class used by StedDetection for detecting Steps 
 * @author Viney Ugave(vinzzz@rams.colostate.edu) 
 * 
 */ 
public class StepDetector { 
 protected static final int vhSize = 6; 
 
 protected double[] values_history = new double[vhSize]; 
 
 protected int vhPointer = 0; 
 
 public static final int WINDOW = 5; 
 
 private static final String TAG = "StepDetector"; 
 
  
 protected double a; 
 
 protected double peak; 
 
 protected int stepTimeoutMS; 
 
 protected long lastStepTs = 0; 
 
 // last acc is low pass filtered 
 protected double[] lastAcc = new double[] {0.0, 0.0, 0.0}; 
 
 
 protected int round = 0; 
  
  
 protected boolean logSteps=true; 
 
  
 protected long lastUpdateTimestamp=0; 
  
  
 protected long lastSecond=0; 
 protected int valuesPerSecond=0; 
 
 public StepDetector( double a, double peak, int step_timeout_ms) { 
  this.a = a; 
  this.peak = peak; 
  this.stepTimeoutMS = step_timeout_ms; 
 } 
 
 public synchronized void addSensorValues(long timestamp,float values[]) { 
  // simple lowpass filter 
  lastAcc[0]+=a*(values[0]-lastAcc[0]); 
  lastAcc[1]+=a*(values[1]-lastAcc[1]); 
  lastAcc[2]+=a*(values[2]-lastAcc[2]); 
  lastUpdateTimestamp=timestamp; 
  if(timestamp<lastSecond+1000){ 
   valuesPerSecond++; 
  }else { 
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   if(true/*logSteps&&Logger.isTraceEnabled()*/) 
//    Log.v(TAG,valuesPerSecond+" sensor values received in the 
last second"); 
   lastSecond=timestamp; 
   valuesPerSecond=0; 
  } 
 } 
 
 protected double lowpassFilter(double oldValue, double newValue) { 
  return oldValue + a * (newValue - oldValue); 
 } 
 
 /** 
  * This is called every INTERVAL_MS ms from the TimerTask. 
  */ 
 public synchronized boolean checkForStep() { 
  boolean ret = false; 
 
  // Get current time for time stamps 
   
 
  addData(lastAcc[2]);//adding z values 
 
  // Check if a step is detected upon data 
  if ((lastUpdateTimestamp - lastStepTs) > stepTimeoutMS) { 
 
   for (int t = 1; t <= WINDOW; t++) { 
    if ((values_history[(vhPointer - 1 - t + vhSize + vhSize) % 
vhSize] - values_history[(vhPointer - 1 + vhSize) % vhSize] > peak)) { 
 
     if(logSteps) 
//      Log.v(TAG,"Detected step with t = " + t + ", 
diff = " + peak + " < " 
//       + (values_history[(vhPointer - 1 - t + 
vhSize + vhSize) % vhSize] - values_history[(vhPointer - 1 + vhSize) % vhSize])); 
     // Set latest detected step to "now" 
     lastStepTs = lastUpdateTimestamp; 
     // Call algorithm for navigation/updating position 
     // st.trigger(now_ms, lCompass); 
//     Logger.i( "Detected step  in  round = " + round + " @ 
" + now_ms); 
     ret = true; 
     break; 
    } 
   } 
 
  } 
  round++; 
  return ret; 
 } 
 
 protected void addData(double value) { 
  values_history[vhPointer % vhSize] = value; 
  vhPointer++; 
  vhPointer = vhPointer % vhSize; 
 } 
 
 /** 
  * @return the a 
  */ 
 public double getA() { 
  return a; 
 } 
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 /** 
  * @param a the a to set 
  */ 
 public void setA(double a) { 
  this.a = a; 
 } 
 
 /** 
  * @return the peak 
  */ 
 public double getPeak() { 
  return peak; 
 } 
 
 /** 
  * @param peak the peak to set 
  */ 
 public void setPeak(double peak) { 
  this.peak = peak; 
 } 
 
 /** 
  * @return the stepTimeoutMS 
  */ 
 public int getStepTimeoutMS() { 
  return stepTimeoutMS; 
 } 
 
 /** 
  * @param stepTimeoutMS the stepTimeoutMS to set 
  */ 
 public void setStepTimeoutMS(int stepTimeoutMS) { 
  this.stepTimeoutMS = stepTimeoutMS; 
 } 
 
 /** 
  * @return the lastStepTs 
  */ 
 public long getLastStepTs() { 
  return lastStepTs; 
 } 
 
 /** 
  * @return the lastAcc 
  */ 
 public double[] getLastAcc() { 
  return lastAcc; 
 } 
 
 /** 
  * @return the round 
  */ 
 public int getRound() { 
  return round; 
 } 
 
 /** 
  * @return the logSteps 
  */ 
 public boolean isLogSteps() { 
  return logSteps; 
 } 
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 /** 
  * @param logSteps the logSteps to set 
  */ 
 public void setLogSteps(boolean logSteps) { 
  this.logSteps = logSteps; 
 } 
 
 /** 
  * @return the valuesPerSecond 
  */ 
 public int getValuesPerSecond() { 
  return valuesPerSecond; 
 } 
 
} 
 

A.4 WifiScanner.Java 

package com.colostate.mecs.vinzzz.IL.wifi; 
 
import java.util.Date; 
import java.util.Iterator; 
import java.util.List; 
import java.util.Vector; 
 
import com.colostate.mecs.vinzzz.IL.exceptions.WifiException; 
import com.colostate.mecs.vinzzz.IL.location.LocationServiceFactory; 
import com.colostate.mecs.vinzzz.IL.model.BssidResult; 
import com.colostate.mecs.vinzzz.IL.model.Location; 
import com.colostate.mecs.vinzzz.IL.model.WifiScanResult; 
 
import android.content.BroadcastReceiver; 
import android.content.Context; 
import android.content.Intent; 
import android.content.IntentFilter; 
import android.net.wifi.ScanResult; 
import android.net.wifi.WifiManager; 
import android.util.Log; 
/** 
 * Class for WiFi Scan 
 * @author viney 
 * 
 */ 
public class WifiScanner { 
 
 private static final String TAG = "WifiScanner"; 
 protected static Vector<BroadcastReceiver> receivers = null; 
 
 public static BroadcastReceiver startScan(Context ctx, 
   WifiResultCallback callback) throws WifiException { 
  if (receivers == null) { 
   receivers = new Vector<BroadcastReceiver>(); 
  } 
 
  BroadcastReceiver wifiScanReceiver = null; 
  final Context context = ctx; 
  final WifiResultCallback resultCallback = callback; 
 
  WifiManager wm = (WifiManager) context 
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    .getSystemService(Context.WIFI_SERVICE); 
 
  // Logger.d( "trying to start a wifi scan"); 
 
  if (!wm.isWifiEnabled()) { 
 
   Log.d(TAG, "WiFi is disabled, trying to enable it"); 
   wm.setWifiEnabled(true); 
   try { 
    Thread.sleep(2500); 
   } catch (InterruptedException e) { 
 
   } 
 
   if (wm.isWifiEnabled()) { 
 
    Log.d(TAG, "WiFi could not be enabled"); 
   } else { 
//    Log.d(TAG, "WiFI enabled successfully"); 
 
   } 
  } 
 
  if (!wm.isWifiEnabled()) { 
 
   throw new WifiException( 
     "WiFi could not be enabled, please enable it!"); 
  } 
 
//  Log.d(TAG, "WiFi is enabled"); 
 
  IntentFilter i = new IntentFilter(); 
  i.addAction(WifiManager.SCAN_RESULTS_AVAILABLE_ACTION); 
 
  wifiScanReceiver = new BroadcastReceiver() { 
   public void onReceive(Context c, Intent i) { 
 
//    Log.d(TAG, "received ScanResult"); 
    // Code to execute when SCAN_RESULTS_AVAILABLE_ACTION event 
    // occurs 
    WifiManager w = (WifiManager) c 
      .getSystemService(Context.WIFI_SERVICE); 
    List<ScanResult> l = w.getScanResults(); // Returns a 
<list> of 
             
  // scanResults 
    context.unregisterReceiver(this); 
 
    if (receivers.contains(this)) 
     receivers.remove(this); 
 
    Location curLocation = LocationServiceFactory 
      .getLocationService().getLocation(); 
 
 
//    for (Iterator<ScanResult> it = l.iterator(); it.hasNext();) 
{ 
//     ScanResult sr = it.next(); 
//     System.out.println(sr.BSSID + " " + sr.SSID + " " 
//       + sr.level + "dBm " + sr.frequency + 
"MHz " 
//       + sr.capabilities + "\n"); 
//    } 
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    WifiScanResult wifiScanResult = new WifiScanResult( 
      new Date().getTime(), curLocation, null); 
 
    for (ScanResult sr : l) { 
 
     BssidResult bssid = new BssidResult(sr, 
wifiScanResult,curLocation); 
     wifiScanResult.addTempBssid(bssid); 
           
    } 
 
    if (resultCallback != null) 
     resultCallback.onScanFinished(wifiScanResult); 
 
   } 
  }; 
 
  context.registerReceiver(wifiScanReceiver, i); 
 
  receivers.add(wifiScanReceiver); 
 
//  Log.d(TAG, "starting Wifi Scan"); 
  // Now you can call this and it should execute the broadcastReceiver's 
  // onReceive() 
  wm.startScan(); 
 
  return wifiScanReceiver; 
 
 } 
 
 public static void stopScanning(Context ctx) { 
  // we don't stop scanning, we just unregister all Broadcast Intent 
  // Receivers 
 
  if (receivers != null) 
   for (BroadcastReceiver rcvr : receivers) { 
    try { 
     ctx.unregisterReceiver(rcvr); 
    } catch (Exception e) { 
    } 
   } 
  receivers = new Vector<BroadcastReceiver>(); 
 
 } 
 
 public static void stopScanner(Context ctx, BroadcastReceiver receiver) { 
  try { 
 
   ctx.unregisterReceiver(receiver); 
  } catch (Exception ex) { 
   // Logger.e("could not unregister receiver",ex); 
  } 
  if (receivers.contains(receiver)) { 
   receivers.remove(receiver); 
  } 
 
 } 
 
} 
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A.5 ProjectActivity.Java 

package com.colostate.mecs.vinzzz.IL.IndoorNavTest; 
 
import java.text.ParseException; 
import java.util.ArrayList; 
import java.util.HashMap; 
import java.util.HashSet; 
import java.util.Iterator; 
import java.util.List; 
import java.util.Set; 
import java.util.Vector; 
import java.util.concurrent.Executors; 
import java.util.concurrent.ScheduledExecutorService; 
import java.util.concurrent.ScheduledFuture; 
import java.util.concurrent.TimeUnit; 
 
import android.app.Activity; 
import android.app.AlertDialog; 
import android.app.Dialog; 
import android.app.ProgressDialog; 
import android.content.BroadcastReceiver; 
import android.content.Context; 
import android.content.DialogInterface; 
import android.content.Intent; 
import android.database.Cursor; 
import android.database.SQLException; 
import android.graphics.Bitmap; 
import android.graphics.BitmapFactory; 
import android.graphics.PointF; 
import android.graphics.drawable.AnimationDrawable; 
import android.hardware.SensorManager; 
import android.net.Uri; 
import android.os.Bundle; 
import android.os.Handler; 
import android.os.Message; 
import android.text.InputType; 
import android.util.Log; 
import android.view.Menu; 
import android.view.MenuItem; 
import android.view.View; 
import android.view.View.OnClickListener; 
import android.widget.Button; 
import android.widget.EditText; 
import android.widget.LinearLayout; 
import android.widget.ProgressBar; 
import android.widget.Toast; 
 
import com.colostate.ML.KNN.KNN; 
import com.colostate.ML.LinearRegression.Regression; 
import com.colostate.ML.LinearRegression.Regression2; 
import com.colostate.ML.NeuralNetwork.NeuralNetwork; 
import com.colostate.ML.SVM.SupportVectorMachine; 
import com.colostate.mecs.vinzzz.IL.IndoorNavTest.R.menu; 
import com.colostate.mecs.vinzzz.IL.database.BssidResultDataSource; 
import com.colostate.mecs.vinzzz.IL.database.BssidResultHelper; 
import com.colostate.mecs.vinzzz.IL.database.LocationCopyDataSource; 
import com.colostate.mecs.vinzzz.IL.database.ProjectListDataSource; 
import com.colostate.mecs.vinzzz.IL.exceptions.WifiException; 
import com.colostate.mecs.vinzzz.IL.location.LocationChangeListener; 
import com.colostate.mecs.vinzzz.IL.location.LocationServiceFactory; 



 
 

91 

import com.colostate.mecs.vinzzz.IL.location.SensorFusion; 
import com.colostate.mecs.vinzzz.IL.location.StepDetectionProvider; 
import com.colostate.mecs.vinzzz.IL.model.BssidResult; 
import com.colostate.mecs.vinzzz.IL.model.Location; 
import com.colostate.mecs.vinzzz.IL.model.LocationCopy; 
import com.colostate.mecs.vinzzz.IL.model.ProjectList; 
import com.colostate.mecs.vinzzz.IL.model.TrainingData; 
import com.colostate.mecs.vinzzz.IL.model.WifiScanResult; 
import com.colostate.mecs.vinzzz.IL.view.MeasuringPointDrawable; 
import com.colostate.mecs.vinzzz.IL.view.MultiTouchDrawable; 
import com.colostate.mecs.vinzzz.IL.view.MultiTouchView; 
import com.colostate.mecs.vinzzz.IL.view.OkCallback; 
import com.colostate.mecs.vinzzz.IL.view.RefreshableView; 
import com.colostate.mecs.vinzzz.IL.view.ScaleLineDrawable; 
import com.colostate.mecs.vinzzz.IL.view.SiteMapDrawable; 
import com.colostate.mecs.vinzzz.IL.view.UserDrawable; 
import com.colostate.mecs.vinzzz.IL.wifi.WifiResultCallback; 
import com.colostate.mecs.vinzzz.IL.wifi.WifiScanner; 
/** 
 * Main Test Project Activity 
 * @author viney 
 * 
 */ 
public class ProjectActivity extends Activity implements RefreshableView, 
  LocationChangeListener, WifiResultCallback, OnClickListener { 
 
 private static final String TAG = "ProjectActivity"; 
 
 protected static String pID = null; 
 protected static String mapScaleX = null; 
 protected static String mapScaleY = null; 
 protected static String backgroundImagePath = null; 
 protected static String mlTechnique = null; 
 protected static String tProjId = null; 
 
 SensorManager sensorManager; 
 SensorFusion sensorFusion; 
 
 protected final Context context = this; 
 protected MultiTouchView multiTouchView; 
 protected ProjectList site; 
 protected SiteMapDrawable map; 
 protected UserDrawable user; 
 protected Vector<Location> stepsLoc; 
 
 private LocationCopy locationCopy; 
 private LocationCopyDataSource datasourceLocation; 
 
 // ML 
 
 // Training 
 private LocationCopyDataSource datasourceTrainingLocation; 
 private List<String> uniqueBssids; 
 private int xyTrainingPoints; 
 
 // Neural Network 
 private NeuralNetwork nn; 
 // SVM 
 private SupportVectorMachine svm; 
 // KNN 
 private KNN knn; 
 // Linear regression 
 private Regression reg; 
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 private Regression2 reg2; 
 
 // ML thresholds 
 private float mlMaxThreshold; 
 private float mlMinThreshold; 
 // for step pred algo 
 int counterFirstStep = 0; 
 double lastPredX; 
 double lastPredY; 
 
 private BssidResult BssidResult; 
 private BssidResultDataSource datasourceBssidResult; 
 private BssidResultDataSource datasourceTrainBssidResult; 
 public Cursor bssidsCursor; 
 private List<BssidResult> trainingData; 
 private List<TrainingData> tData; 
 
 protected StepDetectionProvider stepDetectionProvider = null; 
 protected boolean walkingAndScanning = false; 
 
 // Wifi 
 public static final String SCAN_INTERVAL = "scan_interval"; 
 protected int schedulerTime = 2; 
 protected final ScheduledExecutorService scheduler = Executors 
   .newScheduledThreadPool(1); 
 protected BroadcastReceiver wifiBroadcastReceiver; 
 protected boolean ignoreWifiResults = false; 
 protected Runnable wifiRunnable; 
 protected ScheduledFuture<?> scheduledTask = null; 
 protected ArrayList<WifiScanResult> unsavedScanResults; 
 
 protected Handler messageHandler; 
 protected static final int MESSAGE_REFRESH = 1, MESSAGE_START_WIFISCAN = 2; 
 private static final int DIALOG_SET_THRESHOLDS = 0; 
 private static final int DIALOG_SET_WIFI_SCAN_RATE = 1; 
 
 private BssidResultHelper database; 
 
 // Scaler to measure accuracy 
 protected ScaleLineDrawable scaler = null; 
 protected float scalerDistance; 
 
 ProgressDialog progressBar; 
 
 @Override 
 protected void onCreate(Bundle savedInstanceState) { 
 
  multiTouchView = new MultiTouchView(this); 
 
  this.setContentView(R.layout.activity_project); 
  super.onCreate(savedInstanceState); 
  Bundle extras = getIntent().getExtras(); 
 
  // Show progress dialog 
 
  // getting all pre set values from Project database 
  site = new ProjectList(); 
  site.setId(Long.parseLong(extras.getString("siteID"))); 
  site.setGridSpacingX(Float.parseFloat(extras.getString("mapScaleX"))); 
  site.setGridSpacingY(Float.parseFloat(extras.getString("mapScaleY"))); 
  site.setNorth(Float.parseFloat(extras.getString("mapNorth"))); 
  backgroundImagePath = extras.getString("backgroundImagePath"); 
  mlTechnique = extras.getString("mlTechnique"); 
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  tProjId = extras.getString("tProjId"); 
 
  stepsLoc = new Vector<Location>(); 
 
  MultiTouchDrawable.setGridSpacing(site.getGridSpacingX(), 
    site.getGridSpacingY()); 
  map = new SiteMapDrawable(this, this); 
  map.setAngleAdjustment(site.getNorth()); 
 
  user = new UserDrawable(this, map); 
  user.setNorth(site.getNorth()); 
 
  if (!(backgroundImagePath.equals(null) | backgroundImagePath 
    .equals("null"))) { 
   setBackgroundImage(backgroundImagePath); 
 
  } else { 
   Log.d(TAG, "No Background"); 
   // For bigger blank screen 
   // Log.d(TAG, "Width : "+map.getWidth()+" Height 
:"+map.getHeight() 
   // ); 
   site.setSize(map.getWidth() * 6, map.getHeight() * 4); 
   map.setSize(map.getWidth() * 6, map.getHeight() * 4); 
   user.setRelativePosition(map.getWidth() / 2, map.getHeight() / 2); 
 
  } 
 
  // for (WifiScanResult wsr : site.getScanResults()) { 
  // new MeasuringPointDrawable(this, map, wsr); 
  // } 
 
  LocationServiceFactory.getLocationService().setRelativeNorth( 
    site.getNorth()); 
  LocationServiceFactory.getLocationService().setGridSpacing( 
    site.getGridSpacingX(), site.getGridSpacingY()); 
  stepDetectionProvider = new StepDetectionProvider(this); 
  stepDetectionProvider.setLocationChangeListener(this); 
 
  // Message Handler implementation 
  messageHandler = new Handler() { 
   @Override 
   public void handleMessage(Message msg) { 
    switch (msg.what) { 
    case MESSAGE_REFRESH: 
     /* Refresh UI */ 
     if (multiTouchView != null) 
      multiTouchView.invalidate(); 
     break; 
 
    case MESSAGE_START_WIFISCAN: 
     // start a wifiscan 
     startWifiBackgroundScan(); 
     break; 
 
    } 
   } 
  }; 
 
  wifiRunnable = new Runnable() { 
 
   @Override 
   public void run() { 
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    // try { 
    // Thread.sleep(10000); 
    // } catch (InterruptedException e) { 
    // Log.d(TAG, "Error in Wifi Thread"); 
    // e.printStackTrace(); 
    // } 
    messageHandler.sendEmptyMessage(MESSAGE_START_WIFISCAN); 
   } 
 
  }; 
 
  unsavedScanResults = new ArrayList<WifiScanResult>(); 
 
  // schedulerTime = this.getPreferences(Activity.MODE_PRIVATE).getInt( 
  // SCAN_INTERVAL, schedulerTime); 
 
  Log.d(TAG, "On Creat'd"); 
 
  init(); 
  Toast.makeText(context, "Please be patient training the ML Algo....", 
    Toast.LENGTH_LONG).show(); 
 
  Thread T = new Thread(new Runnable() { 
   public void run() { 
    prepareforML(); 
   } 
  }); 
  T.start(); 
  try { 
   T.join(); 
   Toast.makeText(context, 
     "Training Complete.. You may now use the app !! :) ", 
     Toast.LENGTH_LONG).show(); 
  } catch (InterruptedException e) { 
   e.printStackTrace(); 
  } 
 
 } 
 
 /** 
  * Func that will prepare training data and call select ML Technique 
  */ 
 private void prepareforML() { 
  getTrainingData(); 
  prepareTrainingData(); 
 
 } 
 
 /** 
  * Func that will prepare the training data(Identify Unique Bssids and list 
  * them) 
  */ 
 @SuppressWarnings("unchecked") 
 private void prepareTrainingData() { 
  if (trainingData != null) { 
   // Get all BSSIDs 
   List<String> unsortedBssids = new ArrayList<String>(); 
   for (int i = 0; i < trainingData.size(); i++) { 
    unsortedBssids.add(trainingData.get(i).getBssid()); 
   } 
 
   // Get Unique BSSIDS 
   Set sortedBssids = new HashSet<String>(); 
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   sortedBssids.addAll(unsortedBssids); 
 
   uniqueBssids = new ArrayList<String>(); 
   Iterator iterator = sortedBssids.iterator(); 
   while (iterator.hasNext()) { 
    String tempBssid = iterator.next().toString(); 
    int j = 0; 
    for (int i = 0; i < trainingData.size(); i++) { 
     if (tempBssid.equals(trainingData.get(i).getBssid() 
       .toString())) { 
      j++; 
     } 
    } 
    /* Set bssid threshold as necessary */if (j > 0) { 
     uniqueBssids.add(tempBssid); 
    } 
   } 
   Log.d(TAG, 
     "Got all unique BSSIDS. Size = " 
       + String.valueOf(uniqueBssids.size())); 
   sortedBssids = null; 
   unsortedBssids = null; 
 
   // Get quadruple(x,y,level,bssid) of all Unique BSSIDs 
 
   tData = null; 
   tData = new ArrayList<TrainingData>(); 
   Iterator iterator1 = uniqueBssids.iterator(); 
   while (iterator1.hasNext()) { 
    String tempBssid1 = iterator1.next().toString(); 
    for (int i = 0; i < trainingData.size(); i++) { 
     if (tempBssid1.equals(trainingData.get(i).getBssid() 
       .toString())) { 
      tData.add(new 
TrainingData(trainingData.get(i).getX(), 
        trainingData.get(i).getY(), 
trainingData.get(i) 
          .getLevel(), 
trainingData.get(i) 
          .getBssid())); 
     } 
    } 
   } 
 
   Log.d(TAG, "No. of Training Samples = " + tData.size()); 
   trainingData = null; 
 
   // Get unique X,Y 
 
   Set xy = new HashSet<TrainingData>(); 
   for (int i = 0; i < tData.size(); i++) { 
    xy.add(new TrainingData(tData.get(i).getX(), tData.get(i) 
      .getY(), tData.get(i).getLevel(), tData.get(i) 
      .getBssid())); 
   } 
 
   Log.d(TAG, "No. of training wifi scans(xy) = " + xy.size()); 
   setXYTrainingPoints(xy.size()); 
 
   // Create a training 2D array for sorted final training array 
   double[][] X = new double[getXYTrainingPoints()][]; 
   int n = 0; 
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   // Group BSSID based on XY 
   Iterator it = xy.iterator(); 
   while (it.hasNext()) { 
 
    TrainingData temp = (TrainingData) it.next(); 
    List<TrainingData> setXY = new ArrayList<TrainingData>();// 
Set 
             
      // of 
             
      // single 
             
      // XY 
 
    for (int i = 0; i < tData.size(); i++) { 
     if (temp.getX() == tData.get(i).getX() 
       && temp.getY() == tData.get(i).getY()) 
{ 
      setXY.add(tData.get(i)); 
     } 
    } 
 
    // See what dont match and give def value 
    Iterator it1 = uniqueBssids.iterator(); 
    while (it1.hasNext()) { 
     String tempUBssid = it1.next().toString(); 
     int T = 0; 
     int F = 0; 
     for (int j = 0; j < setXY.size(); j++) { 
      if 
(setXY.get(j).getBssid().equals(tempUBssid)) { 
       T++; 
      } else { 
       F++; 
      } 
     } 
     if (T == 1) { 
      // This means BSSID present 
 
     } else { 
      if (T == 0 && F > 0) { 
       setXY.add(new 
TrainingData(setXY.get(0).getX(), 
         setXY.get(0).getY(), 0, 
tempUBssid)); 
       // Log.d(TAG, "Adding for " + 
tempUBssid); 
      } 
 
     } 
 
    } 
    // Log.d(TAG, "X,Y= (" + setXY.get(0).getX() + "," 
    // + setXY.get(0).getY() + ") Size= " + setXY.size()); 
 
    // then sort according to uniqueBSSIDS and put in an 
Training 2D 
    // Array 
    X[n] = sortTrainingBSSIDs(setXY); 
 
    n++; 
   } 
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   n = 0; 
 
   Log.d(TAG, "Got all training data in X[][]"); 
   trainML(X); 
 
  } else { 
   Log.d(TAG, "Please load training data!"); 
  } 
 
 } 
 
 /** 
  * Func to train the ML Algo from prepared data 
  *  
  * @param x 
  */ 
 private void trainML(double[][] x) { 
  // init data 
  setMlMaxThreshold(120); 
  setMlMinThreshold(40); 
 
  if (mlTechnique.equals("NN")) { 
   Log.d(TAG, "Training ML technique using Neural Networks"); 
 
   int inNodes = uniqueBssids.size();// Unique BSSIDS contains all 
the 
            // 
bssids 
   int hidNodes = 14; 
   int outNodes = 2; 
 
   nn = new NeuralNetwork(inNodes, hidNodes, outNodes); 
 
   int maxEpochs = 4000; 
 
   // nn.train(x, maxEpochs); 
   // Log.d(TAG, "NN Training complete !!"); 
   // 
   // Log.d(TAG, "Testing for Train set "); 
   // // Test train set 
   // double[][] xy = nn.test(x); 
   // printMatrix(xy, "XYPredicted"); 
   // double error = nn.Accuracy(nn.getT(), xy); 
   // System.out.println("Accuracy = " + error); 
 
  } else if (mlTechnique.equals("SVM")) { 
   Log.d(TAG, "Training ML technique using SVM Regression"); 
 
   int inNodes = uniqueBssids.size();// Unique BSSIDS contains all 
the 
   // bssids 
   int outNodes = 2; 
 
   svm = new SupportVectorMachine(3, 3, inNodes, outNodes, 3, 
     0.0000001f, false); 
 
   svm.train(x); 
   Log.d(TAG, "SVM Training complete !!"); 
   Log.d(TAG, "Testing for Train set "); 
   float[] predict = svm.test(x, 1); 
   for (int i = 0; i < x.length; i++) { 
    Log.d(TAG, "x = " + x[i][inNodes + 1]); 
   } 
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   for (int i = 0; i < predict.length; i++) { 
    Log.d(TAG, "predict X= " + predict[i]); 
   } 
  } else if (mlTechnique.equals("KNN")) { 
   Log.d(TAG, "Training ML technique using KNN Regression"); 
 
   int inNodes = uniqueBssids.size();// Unique BSSIDS contains all 
the 
   // bssids 
   int outNodes = 2; 
   int kNN = 2; 
 
   knn = new KNN(inNodes, outNodes, kNN); 
 
   knn.train(x); 
   Log.d(TAG, "KNN Training complete !!"); 
 
   // Log.d(TAG, "Testing for Train set "); 
   // double[][] xy =knn.test(x); 
   // // Test train set 
   // printMatrix(xy, "XYPredicted"); 
 
  } else if (mlTechnique.equals("Regression")) { 
   int inNodes = uniqueBssids.size();// Unique BSSIDS contains all 
the 
   // bssids 
   int outNodes = 1; 
 
   reg = new Regression(inNodes, outNodes); 
   // reg2= new Regression2(inNodes, outNodes); 
 
   // reg.train(x); 
   // reg2.train(x); 
   Log.d(TAG, "Linear Regression Training complete !!"); 
 
   // Log.d(TAG, "Testing for Train set "); 
   // double[][] xy = reg.test(x); 
   // printMatrix(xy, "XPredicted"); 
 
  } 
 } 
 
 /** 
  * Func to test the ML Algo from test data 
  *  
  * @param t 
  */ 
 
 private double[][] testML(double[][] t) { 
 
  if (mlTechnique.equals("NN")) { 
   Log.d(TAG, "Testing ML technique for Neural Networks"); 
   return nn.test(t); 
 
  } else if (mlTechnique.equals("SVM")) { 
   Log.d(TAG, "Testing ML technique for SVM"); 
   // return svm.test(t); 
   return null; 
  } else if (mlTechnique.equals("KNN")) { 
   Log.d(TAG, "Testing ML technique for KNN"); 
   return knn.test(t); 
  } else { 
   return null; 
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  } 
 } 
 
 private void setXYTrainingPoints(int size) { 
  this.xyTrainingPoints = size; 
 } 
 
 private int getXYTrainingPoints() { 
  return this.xyTrainingPoints; 
 } 
 
 /** 
  * Sort the BSSIDS according to Unique BSSIDS 
  */ 
 private double[] sortTrainingBSSIDs(List<TrainingData> data) { 
  // 
  // Iterator I = data.iterator(); 
  // while (I.hasNext()) { 
  // TrainingData TD = (TrainingData) I.next(); 
  // Log.d(TAG, 
  // "X= " + TD.getX() + " Y= " + TD.getY() + " BSSID= " 
  // + TD.getBssid() + " Level= " + TD.getLevel()); 
  // } 
 
  Iterator uniqueIt = uniqueBssids.iterator(); 
  /** 
   * tempRow contains sorted BSSID in the order: [db,db,db ......x,y] 
   */ 
  double[] tempRow = new double[uniqueBssids.size() + 2]; 
  int m = 0; 
  while (uniqueIt.hasNext()) { 
 
   String bssidTemp = uniqueIt.next().toString(); 
   for (int i = 0; i < data.size(); i++) { 
    if (data.get(i).getBssid().equals(bssidTemp)) { 
     tempRow[m] = data.get(i).getLevel(); 
    } 
   } 
   m++; 
  } 
  tempRow[m] = data.get(0).getX(); 
  tempRow[m + 1] = data.get(0).getY(); 
 
  return tempRow; 
 } 
 
 /** 
  * Get training data(bssids) from Content Provider 
  */ 
 @SuppressWarnings("deprecation") 
 private void getTrainingData() { 
  try { 
   trainingData = null; 
   String[] projection = { database.COLUMN_ID, database.COLUMN_X, 
     database.COLUMN_Y, database.COLUMN_BSSID, 
     database.COLUMN_SSID, database.COLUMN_CAPABILITIES, 
     database.COLUMN_FREQUENCY, database.COLUMN_LEVEL }; 
   String uri = null; 
   uri = 
"content://com.colostate.mecs.vinzzz.IL.contentproviderbssid/bssids/" 
     + tProjId; 
   bssidsCursor = this.managedQuery(Uri.parse(uri), projection, null, 
     null, null); 
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   datasourceTrainBssidResult = new BssidResultDataSource(this); 
   trainingData = datasourceTrainBssidResult 
     .getAllBssidResult(bssidsCursor); 
   bssidsCursor.close(); 
 
   Log.d(TAG, "Got Training Data"); 
 
  } catch (ParseException e) { 
   Log.e(TAG, "Error Getting Training Data"); 
   e.printStackTrace(); 
  } 
 } 
 
 /** 
  * InitUI Method 
  *  
  * @return void 
  */ 
 private void init() { 
  // UI Stuff 
  ((Button) findViewById(R.id.start_wifiscan_button)) 
    .setOnClickListener(this); 
 
  // Open DB - Steps/Location 
  datasourceLocation = new LocationCopyDataSource(this, "location_" 
    + site.getId()); 
  try { 
   datasourceLocation.open(); 
   Vector<PointF> oldSteps = new Vector<PointF>(); 
   List<LocationCopy> mLocations; 
   mLocations = datasourceLocation.getAllLocations(); 
   boolean stepFlag = false; 
 
   for (LocationCopy value : mLocations) { 
    if (value != null) { 
     oldSteps.add(new PointF(value.getX(), value.getY())); 
     stepFlag = true; 
    } else { 
     stepFlag = false; 
    } 
   } 
   if (stepFlag) { 
    Log.d(TAG, "No. of Steps =" + oldSteps.size()); 
    map.setSteps(oldSteps); 
    LocationCopy temp = mLocations.get(mLocations.size() - 1); 
    user.setRelativePosition(temp.getX(), temp.getY());// Last 
known 
             
    // location 
    Log.d(TAG, "Old Steps loaded successfully "); 
    stepFlag = false; 
   } 
 
  } catch (SQLException e) { 
   Log.d(TAG, "Could not find location database table"); 
   e.printStackTrace(); 
  } catch (ParseException e) { 
   Log.d(TAG, "Error retrieving old locations"); 
   e.printStackTrace(); 
  } 
 
  // Open DB - Wifi 
  datasourceBssidResult = new BssidResultDataSource(this, "wifi_" 
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    + site.getId()); 
  try { 
   datasourceBssidResult.open(); 
   List<BssidResult> mBssidResult; 
   mBssidResult = datasourceBssidResult.getAllBssidResult(); 
 
   // Get unique X,Y 
   Set xy = new HashSet<TrainingData>(); 
   for (int i = 0; i < mBssidResult.size(); i++) { 
    xy.add(new TrainingData(mBssidResult.get(i).getX(), 
      mBssidResult.get(i).getY(), 
mBssidResult.get(i) 
        .getLevel(), 
mBssidResult.get(i).getBssid())); 
   } 
 
   Log.d(TAG, "No. of TESTING wifi scans(xy) = " + xy.size()); 
   // Get unique X,Y 
 
   boolean stepFlag = false; 
 
   float compX = 0; 
   float compY = 0; 
 
   // Dont show wifi results 
   for (BssidResult value : mBssidResult) { 
    // Add wifi drawables 
    float tempX = value.getX(); 
    float tempY = value.getY(); 
 
    if (tempX != compX || tempY != compY) { 
     WifiScanResult wsr = new WifiScanResult(new 
Location(tempX, 
       tempY)); 
     new MeasuringPointDrawable(this, map, wsr); 
    } 
 
    compX = tempX; 
    compY = tempY; 
 
    // Log.d(TAG, "Old Wifi results loaded successfully "); 
 
   }// Dont show wifi results 
 
  } catch (SQLException e) { 
   Log.d(TAG, "Could not find Wifi database table"); 
   e.printStackTrace(); 
  } catch (ParseException e) { 
   Log.d(TAG, "Error retrieving old Wifi Results "); 
   e.printStackTrace(); 
  } 
 
  // UI Stuff 
  multiTouchView = ((MultiTouchView) 
findViewById(R.id.project_site_resultview)); 
  multiTouchView.setRearrangable(false); 
 
  multiTouchView.addDrawable(map); 
 
  Log.d(TAG, "Init Complete"); 
 
 } 
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 @Override 
 public boolean onCreateOptionsMenu(Menu menu) { 
  // Inflate the menu; this adds items to the action bar if it is present. 
  getMenuInflater().inflate(R.menu.projec_activity, menu); 
  return true; 
 } 
 
 @Override 
 protected void onDestroy() { 
  super.onDestroy(); 
 } 
 
 @Override 
 protected void onPause() { 
  Log.d(TAG, "On Pause'd"); 
  super.onPause(); 
  multiTouchView.unloadImages(); 
  map.unload(); 
 
  setWalkingAndScanning(false, false); 
  saveProject(); 
  bssidsCursor.close(); 
  datasourceLocation.close(); 
  datasourceBssidResult.close(); 
 
 } 
 
 private void saveProject() { 
  Log.d(TAG, "On saveProject"); 
  if (stepsLoc == null) { 
  } else { 
   for (Location locS : stepsLoc) { 
    if (locS != null) { 
     // Set arguments 
     locationCopy = new LocationCopy(); 
     // locationCopy.setId(locS.getId()); 
     locationCopy.setX(locS.getX()); 
     locationCopy.setY(locS.getY()); 
     locationCopy.setAccurancy(locS.getAccurancy()); 
     locationCopy.setTimestamp(locS.getTimestamp()); 
 
     // Add to database 
     try { 
      locationCopy = datasourceLocation 
        .createLocation(locationCopy); 
     } catch (ParseException e) { 
      e.printStackTrace(); 
      Log.e(TAG, 
        "Error adding data to 
step/location database"); 
     } 
    } 
   } 
  } 
  Log.d(TAG, "Location database updated"); 
 } 
 
 @Override 
 protected void onResume() { 
  super.onResume(); 
  Log.d(TAG, "setting context"); 
  multiTouchView.loadImages(this); 
  map.load(); 
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  try { 
   datasourceLocation.open(); 
   datasourceBssidResult.open(); 
  } catch (SQLException e) { 
   Log.d(TAG, "onResume error while opening DB"); 
   e.printStackTrace(); 
  } 
 
 } 
 
 protected void setBackgroundImage(String path) { 
 
  try { 
   Bitmap bmp = BitmapFactory.decodeFile(path); 
   site.setBackgroundBitmap(bmp); 
   map.setBackgroundImage(bmp); 
   site.setSize(bmp.getWidth(), bmp.getHeight()); 
   map.setSize(bmp.getWidth(), bmp.getHeight()); 
   user.setRelativePosition(bmp.getWidth() / 2, bmp.getHeight() / 2); 
   multiTouchView.invalidate(); 
 
  } catch (Exception e) { 
   Log.e(TAG, "could not set background", e); 
   Toast.makeText( 
     context, 
    
 getString(R.string.project_site_set_background_failed, 
       e.getMessage()), 
Toast.LENGTH_LONG).show(); 
  } 
 } 
 
 @Override 
 public void invalidate() { 
  if (multiTouchView != null) { 
   multiTouchView.invalidate(); 
  } 
 } 
 
 protected void startWifiBackgroundScan() { 
 
  try { 
   // we first stop the old receiver, so we wont receive duplicate 
   // results 
   // stopWifiScan(); 
 
   if (wifiBroadcastReceiver != null) { 
    // wifiBroadcastReceiver. 
   } 
 
   startWifiScan(); 
   // Toast.makeText(this, R.string.project_site_wifiscan_started, 
   // Toast.LENGTH_SHORT).show(); 
  } catch (WifiException e) { 
   Log.e(TAG, "could not start wifi scan", e); 
   Toast.makeText( 
     this, 
    
 getString(R.string.project_site_wifiscan_start_failed, 
       e.getMessage()), 
Toast.LENGTH_LONG).show(); 
  } 
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 } 
 
 /** 
  * start the wifi scan 
  */ 
 protected void startWifiScan() throws WifiException { 
  Log.d(TAG, "starting WiFi Scan"); 
 
  wifiBroadcastReceiver = WifiScanner.startScan(this, this); 
  ignoreWifiResults = false; 
 } 
 
 /** 
  * stop the wifi scan, if in progress 
  */ 
 protected void stopWifiScan() { 
  hideWifiScanDialog(); 
 
  if (wifiBroadcastReceiver != null) { 
 
   WifiScanner.stopScanner(this, wifiBroadcastReceiver); 
   wifiBroadcastReceiver = null; 
 
  } 
  // stop scan 
  // oh, wait, we can't stop the scan, it's asynchronous! 
  // we just have to ignore the result! 
  ignoreWifiResults = true; 
 
 } 
 
 /** 
  * hide the wifi scan dialog if shown 
  */ 
 protected void hideWifiScanDialog() { 
  // if (scanningImageView != null) { 
  // ((AnimationDrawable) scanningImageView.getDrawable()).stop(); 
  // // scanningImageView = null; 
  // } 
  // 
  // if (scanAlertDialog != null) { 
  // scanAlertDialog.cancel(); 
  // // scanAlertDialog = null; 
  // } 
 } 
 
 @Override 
 public void onLocationChange(Location loc) { 
  // info from StepDetectionProvider, that the location changed. 
  user.setRelativePosition(loc.getX(), loc.getY()); 
  map.addStep(new PointF(loc.getX(), loc.getY())); 
  stepsLoc.add(loc); 
  messageHandler.sendEmptyMessage(MESSAGE_REFRESH); 
 } 
 
 @SuppressWarnings("deprecation") 
 public boolean onOptionsItemSelected(MenuItem item) { 
 
  switch (item.getItemId()) { 
 
  case R.id.menuItemStart: 
   Log.d(TAG, "Menu Start/Stop selected"); 
   if (item.getTitle().equals("Start")) { 
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    item.setTitle("Stop"); 
   } else { 
    item.setTitle("Start"); 
   } 
   setWalkingAndScanning(!walkingAndScanning, true); 
   walkingAndScanning = !walkingAndScanning; 
   return false; 
 
  case R.id.menuItemStop: 
   Log.d(TAG, "Menu Stop selected"); 
   return false; 
 
  case R.id.menuItemCheckAccuracy: 
   Log.d(TAG, "Menu Accuracy selected"); 
   scaleOfMap(); 
   return false; 
 
  case R.id.menuItemDelLastStep: 
   Log.d(TAG, "Menu Del Last Step selected"); 
   delLastStep(); 
   return false; 
 
  case R.id.menuItemSetThreshold: 
   Log.d(TAG, "Menu Threshold selected"); 
   showDialog(DIALOG_SET_THRESHOLDS); 
   return false; 
 
  case R.id.menuItemSetWifiRate: 
   Log.d(TAG, "Menu Wifi Rate selected"); 
   showDialog(DIALOG_SET_WIFI_SCAN_RATE); 
   return false; 
 
  case R.id.menuItemDeleteData: 
   stepsLoc = null; 
   datasourceLocation.deleteAll();// Delete locations 
   datasourceBssidResult.deleteAll();// Delete all Wifi data 
   Log.d(TAG, "All data deleted"); 
   Toast.makeText(this, "All data deleted", 
Toast.LENGTH_SHORT).show(); 
   super.onBackPressed(); 
   return false; 
 
  } 
  return false; 
 } 
 
 /** 
  * Function to delete last step 
  */ 
 private void delLastStep() { 
  stepsLoc.remove(stepsLoc.size() - 1); 
 
  Vector<PointF> oldDSteps = new Vector<PointF>(); 
  boolean stepFlag = false; 
  for (Location dloc : stepsLoc) { 
   if (dloc != null) { 
    oldDSteps.add(new PointF(dloc.getX(), dloc.getY())); 
    stepFlag = true; 
   } else { 
    stepFlag = false; 
   } 
  } 
  if (stepFlag) { 
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   map.setSteps(oldDSteps); 
   LocationCopy temp = new LocationCopy(oldDSteps.lastElement().x, 
     oldDSteps.lastElement().y); 
   user.setRelativePosition(temp.getX(), temp.getY());// Last known 
             
   // location 
   messageHandler.sendEmptyMessage(MESSAGE_REFRESH); 
   // Log.d(TAG, "Old Steps loaded successfully "); 
   stepFlag = false; 
  } 
 
 } 
 
 protected void setWalkingAndScanning(boolean shouldRun, boolean ui) { 
  if (!shouldRun) { 
   // stop! 
 
   if (stepDetectionProvider.isRunning()) 
    stepDetectionProvider.stop(); 
   if (scheduledTask != null) { 
    scheduledTask.cancel(false); 
    scheduledTask = null; 
   } 
   stopWifiScan(); 
 
   // if(ui) 
   // ((Button) 
   // 
findViewById(R.id.project_site_step_detect)).setText(R.string.project_site_start_step_
detect); 
   // 
   // persistScanResults(ui); 
 
  } else { 
   // start 
   unsavedScanResults = new ArrayList<WifiScanResult>(); 
 
   if (!stepDetectionProvider.isRunning()) { 
    stepDetectionProvider.start(); 
   } 
 
   if (scheduledTask == null) { 
    scheduledTask = 
scheduler.scheduleWithFixedDelay(wifiRunnable, 
      5, (this.schedulerTime <= 0 ? 1 : 
this.schedulerTime), 
      TimeUnit.SECONDS); 
   } 
   // if(ui) 
   // ((Button) 
   // 
findViewById(R.id.project_site_step_detect)).setText(R.string.project_site_stop_step_d
etect); 
  } 
 } 
 
 @Override 
 public void onScanFinished(WifiScanResult wr) { 
  hideWifiScanDialog(); 
  if (!ignoreWifiResults) { 
   try { 
 
    Log.d(TAG, "received a wifi scan result!"); 
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    ignoreWifiResults = true; 
 
    wr.setProjectLocation(site); 
 
    if (walkingAndScanning) { 
     unsavedScanResults.add(wr); 
    } else { 
 
    } 
 
    new MeasuringPointDrawable(this, map, wr); 
 
    // StringBuffer sb = new StringBuffer(); 
    HashMap<String, Integer> ssids = new HashMap<String, 
Integer>(); 
    // if(wr.getBssids()!=null) 
 
    List<TrainingData> tempTest = new 
ArrayList<TrainingData>(); 
 
    for (BssidResult result : wr.getBssids()) { 
     ssids.put( 
       result.getSsid(), 
       (ssids.get(result.getSsid()) == null ? 
1 : ssids 
         .get(result.getSsid()) + 
1)); 
     // BssidResult result = it.next(); 
     // Logger.d("ScanResult: " + result.toString()); 
     // sb.append(result.toString()); 
     // sb.append("\n"); 
 
     // Add to WiFi Database 
     try { 
      result = datasourceBssidResult 
        .createBssidResult(result); 
     } catch (ParseException e) { 
      e.printStackTrace(); 
      Log.e(TAG, "Error adding data to Wifi 
database"); 
     } 
 
     // Add to temp test list 
     tempTest.add(new TrainingData(result.getX(), 
result.getY(), 
       result.getLevel(), result.getBssid())); 
 
     // System.out.println(result.getBssid() + " " 
     // + result.getSsid() + " " + result.getLevel() 
     // + "dBm " + result.getFrequency() + "MHz " 
     // + result.getCapabilities() + " x=" + result.getX() 
     // + " y=" + result.getY() + "\n"); 
 
    } 
 
    // Test using tempTest for ML Algo and add step to stepsLoc 
 
    // Add def values 
    Iterator it2 = uniqueBssids.iterator(); 
    while (it2.hasNext()) { 
     String tempUBssid = it2.next().toString(); 
     int T = 0; 
     int F = 0; 
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     for (int j = 0; j < tempTest.size(); j++) { 
      if 
(tempTest.get(j).getBssid().equals(tempUBssid)) { 
       T++; 
      } else { 
       F++; 
      } 
     } 
     if (T == 1) { 
      // This means BSSID present 
 
     } else { 
      if (T == 0 && F > 0) { 
       tempTest.add(new 
TrainingData(tempTest.get(0) 
         .getX(), 
tempTest.get(0).getY(), 0, 
         tempUBssid)); 
      } 
 
     } 
 
    } 
 
    // Sort List 
    double[][] T = new double[1][]; 
    T[0] = sortTrainingBSSIDs(tempTest); 
 
    // for (int i = 0; i < T[0].length; i++) { 
    // System.out.println(T[0][i]); 
    // } 
    // Test for ML 
    double predictedXY[][] = testML(T); 
    if (predictedXY != null) { 
     System.out.println("Predicted X = " + 
predictedXY[0][0] 
       + " Y = " + predictedXY[0][1]); 
 
     Location lastLoc = stepsLoc.lastElement(); 
 
     // new logic for comparing last predicted value 
     // to avoid convergence 
     if (counterFirstStep == 0) { 
 
     } else { 
      double distanceLastPred = Math.sqrt(Math.pow( 
        (predictedXY[0][0] - lastPredX), 
2) 
        + Math.pow((predictedXY[0][1] - 
lastPredY), 2)); 
      if (distanceLastPred > 20) { 
       double distance = Math 
         .sqrt(Math.pow( 
          
 (predictedXY[0][0] - lastLoc.getX()), 
           2) 
           + Math.pow( 
            
 (predictedXY[0][1] - lastLoc 
             
  .getY()), 2)); 
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       Log.d(TAG, "Distance of predicted = " + 
distance); 
       Toast.makeText(this, 
         "Distance of predicted = " 
+ distance, 
        
 Toast.LENGTH_SHORT).show(); 
       if (distance > getMlMinThreshold() 
         && distance < 
getMlMaxThreshold()) { 
        // Log.d(TAG, 
        // "Min/Max Threshold = 
"+getMlMinThreshold()+"/"+getMlMaxThreshold()); 
        // Add predicted step 
        Log.d(TAG, "Adding predicted 
step"); 
        onLocationChange(new Location( 
          (float) 
predictedXY[0][0], 
          (float) 
predictedXY[0][1])); 
       } else { 
 
       } 
 
      } 
     } 
     counterFirstStep = counterFirstStep + 1; 
     lastPredX = predictedXY[0][0]; 
     lastPredY = predictedXY[0][1]; 
    } 
 
    // UI stuff 
    user.bringToFront(); 
    multiTouchView.invalidate(); 
 
    // Toast.makeText( 
    // this, 
    // this.getString(R.string.project_site_wifiscan_finished, 
    // ssids.size(), wr.getBssids().size()), 
    // Toast.LENGTH_SHORT).show(); 
 
   } catch (SQLException e) { 
    Log.e(TAG, "could not update wifiscanresult!", e); 
    Toast.makeText( 
      this, 
     
 this.getString(R.string.project_site_wifiscan_failed, 
        e.getMessage()), 
Toast.LENGTH_LONG).show(); 
   } 
 
  } 
 } 
 
 @Override 
 public void onScanFailed(Exception ex) { 
  hideWifiScanDialog(); 
  if (!ignoreWifiResults) { 
 
   Log.e(TAG, "Wifi scan failed!", ex); 
   Toast.makeText( 
     this, 
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     this.getString(R.string.project_site_wifiscan_failed, 
       ex.getMessage()), 
Toast.LENGTH_LONG).show(); 
 
  } 
 
 } 
 
 @Override 
 public void onClick(View v) { 
  switch (v.getId()) { 
 
  case R.id.start_wifiscan_button: 
   Log.d(TAG, "start a wifiscan"); 
   try { 
    startWifiScan(); 
    Toast.makeText(getApplicationContext(), "Doing Wifi Scan 
...", 
      Toast.LENGTH_LONG).show(); 
 
   } catch (WifiException e) { 
    Log.e(TAG, "could not start wifi scan!", e); 
    Toast.makeText(this, 
      R.string.project_site_wifiscan_start_failed, 
      Toast.LENGTH_LONG).show(); 
   } 
 
   break; 
  } 
 } 
 
 @SuppressWarnings("deprecation") 
 @Override 
 protected Dialog onCreateDialog(int id) { 
  switch (id) { 
  case DIALOG_SET_THRESHOLDS: 
   AlertDialog.Builder thresholdDialog = new 
AlertDialog.Builder(this); 
 
   thresholdDialog.setTitle("Set Thresholds"); 
   thresholdDialog.setMessage("Set the Min(1) and Max(2) 
thresholds"); 
 
   // Set an EditText view to get user input 
   final EditText minInput = new EditText(this); 
   final EditText maxInput = new EditText(this); 
   final LinearLayout lila1 = new LinearLayout(this); 
 
   lila1.setOrientation(LinearLayout.VERTICAL); 
   minInput.setSingleLine(true); 
   minInput.setRawInputType(InputType.TYPE_CLASS_NUMBER 
     | InputType.TYPE_NUMBER_FLAG_DECIMAL); 
 
   maxInput.setSingleLine(true); 
   maxInput.setRawInputType(InputType.TYPE_CLASS_NUMBER 
     | InputType.TYPE_NUMBER_FLAG_DECIMAL); 
 
   lila1.addView(minInput); 
   lila1.addView(maxInput); 
 
   thresholdDialog.setView(lila1); 
 
   thresholdDialog.setPositiveButton("OK", 
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     new DialogInterface.OnClickListener() { 
      public void onClick(DialogInterface dialog, 
        int whichButton) { 
 
       try { 
        float valueMin = 
Float.parseFloat(minInput 
         
 .getText().toString()); 
        float valueMax = 
Float.parseFloat(maxInput 
         
 .getText().toString()); 
 
        setMlMinThreshold(valueMin); 
        setMlMaxThreshold(valueMax); 
 
        // Destroy activity 
 
        // Log.d(TAG, "Thresholds set to 
=" 
        // + getMlMinThreshold() + "," 
        // + getMlMaxThreshold()); 
        Toast.makeText( 
          context, 
          "Thresholds set to 
=" 
            + 
getMlMinThreshold() + "," 
            + 
getMlMaxThreshold(), 
         
 Toast.LENGTH_SHORT).show(); 
        dialog.cancel(); 
 
       } catch (NumberFormatException nfe) { 
        Log.w(TAG, "Wrong number format 
format!"); 
        Toast.makeText(context, "Not a 
number !", 
         
 Toast.LENGTH_SHORT).show(); 
       } 
      } 
     }); 
 
   thresholdDialog.setNegativeButton("Cancel", 
     new DialogInterface.OnClickListener() { 
      public void onClick(DialogInterface dialog, 
        int whichButton) { 
       // Canceled. 
      } 
     }); 
 
   return thresholdDialog.create(); 
 
  case DIALOG_SET_WIFI_SCAN_RATE: 
   AlertDialog.Builder wifiRateDialog = new 
AlertDialog.Builder(this); 
 
   wifiRateDialog.setTitle("Set Wifi Rate"); 
   wifiRateDialog.setMessage("Set the Wifi Scan rate"); 
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   // Set an EditText view to get user input 
   final EditText scanRate = new EditText(this); 
   scanRate.setRawInputType(InputType.TYPE_CLASS_NUMBER 
     | InputType.TYPE_NUMBER_FLAG_DECIMAL); 
 
   wifiRateDialog.setView(scanRate); 
 
   wifiRateDialog.setPositiveButton("OK", 
     new DialogInterface.OnClickListener() { 
      public void onClick(DialogInterface dialog, 
        int whichButton) { 
 
       try { 
        int valueScanRate = 
Integer.parseInt(scanRate 
         
 .getText().toString()); 
 
        setSchedulerTime(valueScanRate); 
 
        // Destroy activity 
 
        // Log.d(TAG, "Wifi Scan Rate set 
to =" 
        // + getSchedulerTime()+"sec"); 
        Toast.makeText( 
          context, 
          "Wifi Scan Rate set 
to =" 
            + 
getSchedulerTime() + "sec", 
         
 Toast.LENGTH_SHORT).show(); 
 
        dialog.cancel(); 
 
       } catch (NumberFormatException nfe) { 
        Log.w(TAG, "Wrong number format 
format!"); 
        Toast.makeText(context, "Not a 
number !", 
         
 Toast.LENGTH_SHORT).show(); 
       } 
      } 
     }); 
 
   wifiRateDialog.setNegativeButton("Cancel", 
     new DialogInterface.OnClickListener() { 
      public void onClick(DialogInterface dialog, 
        int whichButton) { 
       // Canceled. 
      } 
     }); 
   return wifiRateDialog.create(); 
 
  default: 
   return super.onCreateDialog(id); 
  } 
 } 
 
 /** 
  * @return the mlMaxThreshold 
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  */ 
 public float getMlMaxThreshold() { 
  return mlMaxThreshold; 
 } 
 
 /** 
  * @param mlMaxThreshold 
  *            the mlMaxThreshold to set 
  */ 
 public void setMlMaxThreshold(float mlMaxThreshold) { 
  this.mlMaxThreshold = mlMaxThreshold; 
 } 
 
 /** 
  * @return the mlMinThreshold 
  */ 
 public float getMlMinThreshold() { 
  return mlMinThreshold; 
 } 
 
 /** 
  * @param mlMinThreshold 
  *            the mlMinThreshold to set 
  */ 
 public void setMlMinThreshold(float mlMinThreshold) { 
  this.mlMinThreshold = mlMinThreshold; 
 } 
 
 /** 
  * @return the schedulerTime 
  */ 
 public int getSchedulerTime() { 
  return schedulerTime; 
 } 
 
 /** 
  * @param schedulerTime 
  *            the schedulerTime to set 
  */ 
 public void setSchedulerTime(int schedulerTime) { 
  this.schedulerTime = schedulerTime; 
 } 
 
 protected void scaleOfMap() { 
  if (scaler == null) { 
   scaler = new ScaleLineDrawable(context, map, new OkCallback() { 
 
    @Override 
    public void onOk() { 
     onMapScaleSelected(); 
    } 
 
   }); 
   scaler.getSlider(1).setRelativePosition(map.getWidth() / 2 - 60, 
     map.getHeight() / 2); 
   scaler.getSlider(2).setRelativePosition((map.getWidth() / 2 + 60), 
     (map.getHeight() / 2)); 
   multiTouchView.invalidate(); 
 
  } else { 
   onMapScaleSelected(); 
  } 
 } 
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 // close scaler 
 @SuppressWarnings("deprecation") 
 protected void onMapScaleSelected() { 
  scalerDistance = scaler.getSliderDistance(); 
 
  scaler.removeScaleSliders(); 
  map.removeSubDrawable(scaler); 
  scaler = null; 
  invalidate(); 
 } 
 
 /** 
  * Function to print out a 2D array 
  *  
  * @param matrix 
  */ 
 public void printMatrix(double[][] matrix, String variableName) { 
  System.out.println(); 
  System.out.println("***Matrix " + variableName + "[" + matrix.length 
    + "]" + "[" + matrix[0].length + "]" + " =\n"); 
  for (int r = 0; r < matrix.length; r++) { 
   for (int c = 0; c < matrix[r].length; c++) 
    System.out.print(matrix[r][c] + " "); 
   System.out.println(); 
  } 
  System.out.println(); 
 } 
} 

 
 
A.6 KNN.Java 

package com.colostate.ML.KNN; 
 
import java.util.Arrays; 
import java.util.PriorityQueue; 
 
import com.colostate.mecs.vinzzz.model.matrix.MatrixMathematics; 
 
/** 
 * Controller class for KNN regression ML Algo 
 *  
 * @author Viney Ugave(vinzzz@rams.colostate.edu) 
 *  
 */ 
public class KNN { 
 
 /** 
  * Number of Inputs 
  */ 
 private int numInput; 
 /** 
  * Number of outputs 
  */ 
 private int numOutput; 
 /** 
  * Number of Samples 
  */ 
 private int numSamples; 
 
 /** 
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  * The value of K (no. of nearest neighbours) 
  */ 
 private int K; 
 
 // Train specific arrays 
 /** 
  * Input values 
  */ 
 private double[][] X; 
 /** 
  * Target values 
  */ 
 private double[][] T; 
 
 // Test specific arrays 
 /** 
  * Input values 
  */ 
 private double[][] Xtest; 
 /** 
  * Target values 
  */ 
 private double[][] Ttest; 
 
 /** 
  * @param numInput 
  * @param numOutput 
  */ 
 public KNN(int numInput, int numOutput) { 
  this.numInput = numInput; 
  this.numOutput = numOutput; 
  this.K = 1; 
 } 
 
 /** 
  * Constructor 
  *  
  * @param numInput 
  * @param numOutput 
  * @parar K 
  */ 
 public KNN(int numInput, int numOutput, int K) { 
  this.numInput = numInput; 
  this.numOutput = numOutput; 
  this.K = K; 
 } 
 
 /** 
  * Function to set training data and context 
  *  
  * @param Xtrain 
  */ 
 public void train(double[][] Xtrain) { 
 
  setNumSamples(Xtrain.length); 
  separateAndSetXT(Xtrain, true); 
 
 } 
 
 @SuppressWarnings("null") 
 public double[][] test(double[][] testData) { 
  separateAndSetXT(testData, false); 
  double[][] ytest = new double[Xtest.length][]; 
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  double[] distance = new double[X.length]; 
  double[] kDistance = new double[K]; 
 
  // for every output sample 
  for (int i = 0; i < Xtest.length; i++) { 
   for (int j = 0; j < X.length; j++) { 
    distance[j] = getDistance(Xtest[i], X[j]); 
    System.out.println(distance[j]); 
   } 
 
   // find nearest K 
   kDistance = findNearestK(distance); 
 
   // Get Indexes of nearest K 
   int[] kIndex = findIndexes(kDistance, distance); 
 
   // Get average for regression 
   ytest[i] = findAverage(kIndex); 
 
  } 
  return ytest; 
 } 
 
 /** 
  * Function to find avg 
  *  
  * @param kInd 
  * @return 
  */ 
 @SuppressWarnings("null") 
 private double[] findAverage(int[] kInd) { 
  // Hard coded for 2 outputs need to change 
  double[] result = new double[2]; 
  double sumX = 0; 
  double sumY = 0; 
  for (int i = 0; i < kInd.length; i++) { 
   int index = kInd[i]; 
   sumX = sumX + this.T[index][0]; 
   sumY = sumY + this.T[index][1]; 
 
  } 
 
  result[0] = new Double(sumX / kInd.length); 
  result[1] = new Double(sumY / kInd.length); 
  return result; 
 } 
 
 /** 
  * Function to get index of the K nearest Neighbours 
  *  
  * @param kDistance 
  * @param distance 
  * @return 
  */ 
 private int[] findIndexes(double[] kDis, double[] dis) { 
  int[] index = new int[kDis.length]; 
  for (int i = 0; i < kDis.length; i++) { 
   for (int j = 0; j < dis.length; j++) { 
    if (kDis[i] == dis[j]) { 
     index[i] = j; 
 
    } 
   } 
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  } 
 
  return index; 
 } 
 
 /** 
  * Function to get nearest K distance 
  *  
  * @param distance 
  * @return 
  */ 
 private double[] findNearestK(double[] dist) { 
  double[] sortedDistance = Arrays.copyOf(dist, dist.length); 
  Arrays.sort(sortedDistance); 
  double[] low = Arrays.copyOfRange(sortedDistance, 0, this.K); 
  return low; 
 } 
 
 /** 
  * Function to find Euclidean distance between arguments 
  *  
  * @param ds 
  * @param ds2 
  * @return 
  */ 
 private double getDistance(double[] ds, double[] ds2) { 
  if (ds.length == ds2.length) { 
   double sum = 0; 
   for (int i = 0; i < ds2.length; i++) { 
    sum = sum + Math.pow(ds[i] - ds2[i], 2); 
    // System.out.println("ds= "+ds[i]+" ds2= "+ds2[i]); 
 
   } 
   sum = Math.sqrt(sum); 
   return sum; 
  } else { 
   System.out.println("Dimensions of Train and Test dont match"); 
   return 0; 
  } 
 } 
 
 /** 
  * Function to separate inputs and outputs from a 2d array 
  *  
  * @param XT 
  *            2d array containing i/p & o/p like {[x1,x2,x3,.....y1,y2], 
  *            [x11,x22,x33,....y21,y23]} 
  * @param isTrain 
  *            true if training, false if test 
  */ 
 private void separateAndSetXT(double[][] XT, boolean isTrain) { 
  int nSamples = getNumSamples(); 
  if (isTrain) { 
   double[][] tempX = new double[nSamples][this.numInput]; 
   double[][] tempT = new double[nSamples][this.numOutput]; 
 
   for (int i = 0; i < nSamples; i++) { 
    System.arraycopy(XT[i], 0, tempX[i], 0, this.numInput); 
    System.arraycopy(XT[i], this.numInput, tempT[i], 0, 
      this.numOutput); 
   } 
 
   setX(tempX); 
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   setT(tempT); 
 
  } else { 
   nSamples = XT.length;// For Indoor Nav 
   double[][] tempX = new double[nSamples][this.numInput]; 
   double[][] tempT = new double[nSamples][this.numOutput]; 
 
   for (int i = 0; i < nSamples; i++) { 
    System.arraycopy(XT[i], 0, tempX[i], 0, this.numInput); 
    System.arraycopy(XT[i], this.numInput, tempT[i], 0, 
      this.numOutput); 
   } 
 
   setXtest(tempX); 
   setTtest(tempT); 
 
  } 
 
 } 
 
 /** 
  * @return the numInput 
  */ 
 public int getNumInput() { 
  return numInput; 
 } 
 
 /** 
  * @param numInput 
  *            the numInput to set 
  */ 
 public void setNumInput(int numInput) { 
  this.numInput = numInput; 
 } 
 
 /** 
  * @return the numOutput 
  */ 
 public int getNumOutput() { 
  return numOutput; 
 } 
 
 /** 
  * @param numOutput 
  *            the numOutput to set 
  */ 
 public void setNumOutput(int numOutput) { 
  this.numOutput = numOutput; 
 } 
 
 /** 
  * @return the numSamples 
  */ 
 public int getNumSamples() { 
  return numSamples; 
 } 
 
 /** 
  * @param numSamples 
  *            the numSamples to set 
  */ 
 public void setNumSamples(int numSamples) { 
  this.numSamples = numSamples; 
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 } 
 
 /** 
  * @return the x 
  */ 
 public double[][] getX() { 
  return X; 
 } 
 
 /** 
  * @param x 
  *            the x to set 
  */ 
 public void setX(double[][] x) { 
  X = x; 
 } 
 
 /** 
  * @return the t 
  */ 
 public double[][] getT() { 
  return T; 
 } 
 
 /** 
  * @param t 
  *            the t to set 
  */ 
 public void setT(double[][] t) { 
  T = t; 
 } 
 
 /** 
  * @return the xtest 
  */ 
 public double[][] getXtest() { 
  return Xtest; 
 } 
 
 /** 
  * @param xtest 
  *            the xtest to set 
  */ 
 public void setXtest(double[][] xtest) { 
  Xtest = xtest; 
 } 
 
 /** 
  * @return the ttest 
  */ 
 public double[][] getTtest() { 
  return Ttest; 
 } 
 
 /** 
  * @param ttest 
  *            the ttest to set 
  */ 
 public void setTtest(double[][] ttest) { 
  Ttest = ttest; 
 } 
 
} 
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A.7 NeuralNetwork.Java 

package com.colostate.ML.NeuralNetwork; 
 
import java.util.Random; 
 
import com.colostate.mecs.vinzzz.model.matrix.IllegalDimensionException; 
import com.colostate.mecs.vinzzz.model.matrix.Matrix; 
import com.colostate.mecs.vinzzz.model.matrix.MatrixMathematics; 
 
/** 
 * Neural Network class that implements a simple forward pass back propagation 
 * neural net as explained by Dr Chuck Anderson in : 
 * http://www.cs.colostate.edu/ 
 * ~anderson/cs545/index.html/doku.php?id=notes:notesneuralnet1 
 *  
 * @author Viney Ugave(vinzzz@rams.colostate.edu) 
 */ 
public class NeuralNetwork { 
 /** 
  * Number of Inputs 
  */ 
 private int numInput; 
 /** 
  * Number of hidden layers 
  */ 
 private int numHidden; 
 /** 
  * Number of outputs 
  */ 
 private int numOutput; 
 /** 
  * Number of Samples 
  */ 
 private int numSamples; 
 /** 
  * Learning rate rhoh 
  */ 
 private double rhoh; 
 /** 
  * Learning rate rhoo 
  */ 
 private double rhoo; 
 
 // Train specific arrays 
 /** 
  * Input values 
  */ 
 private double[][] X; 
 /** 
  * Target values 
  */ 
 private double[][] T; 
 
 // Test specific arrays 
 /** 
  * Input values 
  */ 
 private double[][] Xtest; 
 /** 
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  * Target values 
  */ 
 private double[][] Ttest; 
 
 // Weight Matrices 
 /** 
  * Weight matrix for hidden layer 
  */ 
 Matrix V; 
 /** 
  * Weight matrix for output layer 
  */ 
 Matrix W; 
 
 // Matrices needed for calculation 
 /** 
  * Output Matrix from Hidden layer 
  */ 
 Matrix Z; 
 /** 
  * Output Matrix from Output layer 
  */ 
 Matrix Y; 
 /** 
  * Error in Output 
  */ 
 Matrix E; 
 
 private static Random rnd; 
 private MatrixMathematics mMath; 
 
 /** 
  * Constructor for NeuralNetwork 
  *  
  * @param numInput 
  *            Number of i/p 
  * @param numHidden 
  *            Number of hidden layers 
  * @param numOutput 
  *            Number of o/p 
  */ 
 public NeuralNetwork(int numInput, int numHidden, int numOutput) { 
  this.numInput = numInput; 
  this.numHidden = numHidden; 
  this.numOutput = numOutput; 
  this.rhoh = 0.00000001; 
  this.rhoo = 0.1; 
  this.rnd = new Random(0); 
 } 
 
 /** 
  * Constructor for NeuralNetwork 
  *  
  * @param numInput 
  *            Number of i/p 
  * @param numHidden 
  *            Number of hidden layers 
  * @param numOutput 
  *            Number of o/p 
  * @param rhoh 
  *            Learning rate 
  * @param rhoo 
  *            Learning rate 
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  */ 
 public NeuralNetwork(int numInput, int numHidden, int numOutput, 
   double rhoh, double rhoo) { 
  this.numInput = numInput; 
  this.numHidden = numHidden; 
  this.numOutput = numOutput; 
  this.rhoh = rhoh; 
  this.rhoo = rhoo; 
  this.rnd = new Random(0); 
 } 
 
 /** 
  * Function that inits the weights i.e V and W 
  */ 
 private void initWeights() { 
 
  // Init Matrix Math operator 
  mMath = new MatrixMathematics(); 
 
  // Calculate learning rate 
  setRhoh(this.rhoh / (getNumSamples() * getNumOutput())); 
  setRhoo(this.rhoo / getNumSamples()); 
 
  // Init Weights 
  double[][] tempV = new double[this.numInput + 1][this.numHidden]; 
  double[][] tempW = new double[this.numHidden + 1][this.numOutput]; 
 
  // Initialize weights to uniformly distributed values between small 
  // normally-distributed between -0.1 and 0.1 
  double lo = -0.1; 
  double hi = 0.1; 
  // for V 
  for (int i = 0; i < tempV.length; i++) { 
   for (int j = 0; j < tempV[0].length; j++) { 
    tempV[i][j] = (hi - lo) * rnd.nextDouble() + lo; 
   } 
  } 
  // for W 
  for (int i = 0; i < tempW.length; i++) { 
   for (int j = 0; j < tempW[0].length; j++) { 
    tempW[i][j] = (hi - lo) * rnd.nextDouble() + lo; 
   } 
  } 
 
  // set the weight matrices 
  this.V = new Matrix(tempV); 
  this.W = new Matrix(tempW); 
 
 } 
 
 /** 
  * Function to train Neural Net 
  *  
  * @param Xtrain 
  *            2d double array containing the training set 
  * @param epochs 
  *            number of iterations to run as to minimize the error 
  */ 
 public void train(double[][] Xtrain, int epochs) { 
 
  setNumSamples(Xtrain.length); 
  separateAndSetXT(Xtrain, true); 
  initWeights(); 



 
 

123 

 
  // Training Input 
 
  Matrix X = new Matrix(getX()); 
  Matrix X1 = new Matrix(getX()).insertColumnWithValue1(); 
 
  // Training Target 
  Matrix T = new Matrix(getT()); 
 
  for (int i = 0; i < epochs; i++) { 
   // Output Matrices 
   Z = new Matrix(X1.getNrows(), V.getNcols());// 1 already added in 
X 
   Y = new Matrix(Z.getNrows(), W.getNcols()); 
 
   // Error Matrice 
   E = new Matrix(Y.getNrows(), Y.getNcols()); 
 
   try { 
    // Forward pass on training data 
    Z = mMath.multiply(X1, V); 
    Z = Z.tanH(); 
 
    Matrix Z1 = new 
Matrix(Z.getValues()).insertColumnWithValue1(); 
    Y = mMath.multiply(Z1, W); 
 
    // Error in output 
    E = mMath.subtract(Y, T); 
 
    // Backward pass - the backpropagation and weight update 
steps 
 
    // 1.Calculating V 
    Matrix temp = Z.squareTheMatrix();// (1-Z**2) 
    temp = temp.subtractFromConstant(1); 
    Matrix temp1 = mMath.transpose(mMath.createSubMatrix(W, 
0));// W[1:,:].T 
    Matrix temp2 = mMath.multiply(E, temp1);// np.dot( error, 
             
 // W[1:,:].T) 
    Matrix temp3 = mMath.multiplyElements(temp2, temp);// 
np.dot( 
             
    // error, 
             
    // W[1:,:].T) 
             
    // * 
             
    // (1-Z**2) 
    Matrix temp4 = mMath.multiply(mMath.transpose(X1), 
temp3);// np.dot( 
             
      // X1.T, 
             
      // np.dot( 
             
      // error, 
             
      // W[1:,:].T) 
             
      // * 
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      // (1-Z**2)) 
    Matrix temp5 = temp4.multiplyByConstant(getRhoh()); 
    V = mMath.subtract(V, temp5);// V = V - rh * np.dot( X1.T, 
            // 
np.dot( error, W[1:,:].T) * 
            // (1-
Z**2)) 
 
    // 2.Calculating W 
    Matrix temp6 = mMath.multiply(mMath.transpose(Z1), E);// 
np.dot( 
             
     // Z1.T, 
             
     // error) 
    Matrix temp7 = temp6.multiplyByConstant(getRhoo());// ro * 
             
    // np.dot( 
             
    // Z1.T, 
             
    // error) 
    W = mMath.subtract(W, temp7);// W = W - ro * np.dot( Z1.T, 
            // 
error) 
 
    // System.out.println("Iteration"+i); 
    // printMatrix(E.getValues(),"E"); 
   } catch (IllegalDimensionException e) { 
    e.printStackTrace(); 
   } 
  } 
  System.out.println("Training Complete! "); 
 
 } 
 
 public double[][] test(double[][] testData) { 
  separateAndSetXT(testData, false); 
  Matrix Ytest = new Matrix(Y.getNrows(), Y.getNcols()); 
  Matrix Xtest1 = new Matrix(getXtest()).insertColumnWithValue1(); 
 
  // Forward pass 
  Matrix temp8 = mMath.multiply(Xtest1, getV());// np.dot(Xtest1,V) 
  temp8 = temp8.tanH();// np.tanh(np.dot(Xtest1,V)) 
  Matrix temp9 = new Matrix(temp8.insertColumnWithValue1().getValues());// 
addOnes(np.tanh(np.dot(Xtest1,V))) 
  Ytest = mMath.multiply(temp9, getW());// 
np.dot(addOnes(np.tanh(np.dot(Xtest1,V))), 
            // W) 
 
  System.out.println("Testing Complete!"); 
  return Ytest.getValues(); 
 
 } 
 
 /** 
  * Function to separate inputs and outputs from a 2d array 
  *  
  * @param XT 
  *            2d array containing i/p & o/p like {[x1,x2,x3,.....y1,y2], 
  *            [x11,x22,x33,....y21,y23]} 
  * @param isTrain 
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  *            true if training, false if test 
  */ 
 private void separateAndSetXT(double[][] XT, boolean isTrain) { 
  int nSamples = getNumSamples(); 
  if (isTrain) { 
   double[][] tempX = new double[nSamples][this.numInput]; 
   double[][] tempT = new double[nSamples][this.numOutput]; 
 
   for (int i = 0; i < nSamples; i++) { 
    System.arraycopy(XT[i], 0, tempX[i], 0, this.numInput); 
    System.arraycopy(XT[i], this.numInput, tempT[i], 0, 
      this.numOutput); 
   } 
 
   setX(tempX); 
   setT(tempT); 
 
  } else { 
   nSamples = XT.length;// For Indoor Nav 
   double[][] tempX = new double[nSamples][this.numInput]; 
   double[][] tempT = new double[nSamples][this.numOutput]; 
 
   for (int i = 0; i < nSamples; i++) { 
    System.arraycopy(XT[i], 0, tempX[i], 0, this.numInput); 
    System.arraycopy(XT[i], this.numInput, tempT[i], 0, 
      this.numOutput); 
   } 
 
   setXtest(tempX); 
   setTtest(tempT); 
 
  } 
 
 } 
 
 public double Accuracy(double[][] tar, double[][] pred) { 
  Matrix Target = new Matrix(tar); 
  Matrix Ypredicted = new Matrix(pred); 
 
  if (Target.getNrows() == Ypredicted.getNrows() 
    && Target.getNcols() == Ypredicted.getNcols()) { 
   try { 
    Matrix error = mMath.subtract(Target, Ypredicted); 
    error = error.squareTheMatrix(); 
    double err = mMath.Mean(error); 
    err = Math.sqrt(err); 
 
    return err; 
 
   } catch (IllegalDimensionException e) { 
    e.printStackTrace(); 
   } 
  } 
  return -1; 
 } 
 
 public double Accuracy(Matrix Target, Matrix Ypredicted) { 
 
  if (Target.getNrows() == Ypredicted.getNrows() 
    && Target.getNcols() == Ypredicted.getNcols()) { 
   try { 
    Matrix error = mMath.subtract(Target, Ypredicted); 
    error = error.squareTheMatrix(); 
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    double err = mMath.Mean(error); 
    err = Math.sqrt(err); 
 
    return err; 
 
   } catch (IllegalDimensionException e) { 
    e.printStackTrace(); 
   } 
  } 
  return -1; 
 } 
 
 /** 
  * @return the numInput 
  */ 
 public int getNumInput() { 
  return numInput; 
 } 
 
 /** 
  * @param numInput 
  *            the numInput to set 
  */ 
 public void setNumInput(int numInput) { 
  this.numInput = numInput; 
 } 
 
 /** 
  * @return the numHidden 
  */ 
 public int getNumHidden() { 
  return numHidden; 
 } 
 
 /** 
  * @param numHidden 
  *            the numHidden to set 
  */ 
 public void setNumHidden(int numHidden) { 
  this.numHidden = numHidden; 
 } 
 
 /** 
  * @return the numOutput 
  */ 
 public int getNumOutput() { 
  return numOutput; 
 } 
 
 /** 
  * @param numOutput 
  *            the numOutput to set 
  */ 
 public void setNumOutput(int numOutput) { 
  this.numOutput = numOutput; 
 } 
 
 /** 
  * @return the numSamples 
  */ 
 public int getNumSamples() { 
  return numSamples; 
 } 
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 /** 
  * @param numSamples 
  *            the numSamples to set 
  */ 
 public void setNumSamples(int numSamples) { 
  this.numSamples = numSamples; 
 } 
 
 /** 
  * @return the rhoh 
  */ 
 public double getRhoh() { 
  return rhoh; 
 } 
 
 /** 
  * @param rhoh 
  *            the rhoh to set 
  */ 
 public void setRhoh(double rhoh) { 
  this.rhoh = rhoh; 
 } 
 
 /** 
  * @return the rhoo 
  */ 
 public double getRhoo() { 
  return rhoo; 
 } 
 
 /** 
  * @param rhoo 
  *            the rhoo to set 
  */ 
 public void setRhoo(double rhoo) { 
  this.rhoo = rhoo; 
 } 
 
 /** 
  * @return the x 
  */ 
 public double[][] getX() { 
  return X; 
 } 
 
 /** 
  * @param x 
  *            the x to set 
  */ 
 public void setX(double[][] x) { 
  X = x; 
 } 
 
 /** 
  * @return the t 
  */ 
 public double[][] getT() { 
  return T; 
 } 
 
 /** 
  * @param t 
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  *            the t to set 
  */ 
 public void setT(double[][] t) { 
  T = t; 
 } 
 
 /** 
  * @return the xtest 
  */ 
 public double[][] getXtest() { 
  return Xtest; 
 } 
 
 /** 
  * @param xtest 
  *            the xtest to set 
  */ 
 public void setXtest(double[][] xtest) { 
  Xtest = xtest; 
 } 
 
 /** 
  * @return the ttest 
  */ 
 public double[][] getTtest() { 
  return Ttest; 
 } 
 
 /** 
  * @param ttest 
  *            the ttest to set 
  */ 
 public void setTtest(double[][] ttest) { 
  Ttest = ttest; 
 } 
 
 /** 
  * @return the v 
  */ 
 public Matrix getV() { 
  return V; 
 } 
 
 /** 
  * @param v 
  *            the v to set 
  */ 
 public void setV(Matrix v) { 
  V = v; 
 } 
 
 /** 
  * @return the w 
  */ 
 public Matrix getW() { 
  return W; 
 } 
 
 /** 
  * @param w 
  *            the w to set 
  */ 
 public void setW(Matrix w) { 
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  W = w; 
 } 
 
 /** 
  * Function to print out a 2D array 
  *  
  * @param matrix 
  */ 
 public void printMatrix(double[][] matrix, String variableName) { 
  System.out.println(); 
  System.out.println("***Matrix " + variableName + "[" + matrix.length 
    + "]" + "[" + matrix[0].length + "]" + " =\n"); 
  for (int r = 0; r < matrix.length; r++) { 
   for (int c = 0; c < matrix[r].length; c++) 
    System.out.print(matrix[r][c] + " "); 
   System.out.println(); 
  } 
  System.out.println(); 
 } 
 
} 

 
 
A.8 Regression.Java 

package com.colostate.ML.LinearRegression; 
 
import com.colostate.mecs.vinzzz.model.matrix.Matrix; 
import com.colostate.mecs.vinzzz.model.matrix.MatrixMathematics; 
import com.colostate.mecs.vinzzz.model.matrix.NoSquareException; 
/** 
 * Controller class for Linear Regression 
 * @author viney 
 * 
 */ 
public class Regression { 
 
 /** 
  * Number of Inputs 
  */ 
 private int numInput; 
 /** 
  * Number of outputs 
  */ 
 private int numOutput; 
 /** 
  * Number of Samples 
  */ 
 private int numSamples; 
  
 // Train specific arrays 
 /** 
  * Input values 
  */ 
 private double[][] X; 
 /** 
  * Target values 
  */ 
 private double[][] T; 
 
 // Test specific arrays 
 /** 
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  * Input values 
  */ 
 private double[][] Xtest; 
 /** 
  * Target values 
  */ 
 private double[][] Ttest; 
 
 // Weight Matrices 
 /** 
  * Weight matrix 
  */ 
 Matrix W; 
  
 private MatrixMathematics mMath; 
 
  
 /**Constructor 
  * @param numInput 
  * @param numOutput 
  */ 
 public Regression(int numInput, int numOutput) { 
  this.numInput = numInput; 
  this.numOutput = numOutput; 
 } 
  
 /** 
  * Function to train the regression model 
  *  
  * @param Xtrain 
  *            2d double array containing the training set 
  */ 
 public void train(double[][] Xtrain) { 
  setNumSamples(Xtrain.length); 
  separateAndSetXT(Xtrain, true); 
   
  // Training Input 
  Matrix X = new Matrix(getX()); 
  Matrix X1 = new Matrix(getX()).insertColumnWithValue1(); 
 
  // Training Target 
  Matrix T = new Matrix(getT()); 
   
  try { 
   Matrix temp = mMath.transpose(X);//X.T 
   Matrix temp1 = mMath.multiply(temp, X);//np.dot(X.T, X) 
   Matrix temp3 = mMath.multiply(temp, T);//np.dot(X.T,T) 
   Matrix temp4 = mMath.inverse(temp1);//np.dot(X.T,X)- inverse 
   W =mMath.multiply(temp4, temp3); 
    
    
  } catch (NoSquareException e) { 
   e.printStackTrace(); 
  } 
   
 } 
  
 public double[][] test(double[][] testData) { 
  separateAndSetXT(testData, false); 
   
  Matrix Xtest =new Matrix(getXtest()); 
   
  Matrix Ytest=mMath.multiply(Xtest, W); 
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  return Ytest.getValues(); 
   
 } 
 /** 
  * Function to separate inputs and outputs from a 2d array 
  *  
  * @param XT 
  *            2d array containing i/p & o/p like {[x1,x2,x3,.....y1,y2], 
  *            [x11,x22,x33,....y21,y23]} 
  * @param isTrain 
  *            true if training, false if test 
  */ 
 private void separateAndSetXT(double[][] XT, boolean isTrain) { 
  int nSamples = getNumSamples(); 
  if (isTrain) { 
   double[][] tempX = new double[nSamples][this.numInput]; 
   double[][] tempT = new double[nSamples][this.numOutput]; 
 
   for (int i = 0; i < nSamples; i++) { 
    System.arraycopy(XT[i], 0, tempX[i], 0, this.numInput); 
    System.arraycopy(XT[i], this.numInput, tempT[i], 0, 
      this.numOutput); 
   } 
 
   setX(tempX); 
   setT(tempT); 
 
  } else { 
   nSamples = XT.length;// For Indoor Nav 
   double[][] tempX = new double[nSamples][this.numInput]; 
   double[][] tempT = new double[nSamples][this.numOutput]; 
 
   for (int i = 0; i < nSamples; i++) { 
    System.arraycopy(XT[i], 0, tempX[i], 0, this.numInput); 
    System.arraycopy(XT[i], this.numInput, tempT[i], 0, 
      this.numOutput); 
   } 
 
   setXtest(tempX); 
   setTtest(tempT); 
 
  } 
 
 } 
 
 
 
 
 /** 
  * @return the numInput 
  */ 
 public int getNumInput() { 
  return numInput; 
 } 
 
 
 /** 
  * @param numInput the numInput to set 
  */ 
 public void setNumInput(int numInput) { 
  this.numInput = numInput; 
 } 



 
 

132 

 
 
 /** 
  * @return the numOutput 
  */ 
 public int getNumOutput() { 
  return numOutput; 
 } 
 
 
 /** 
  * @param numOutput the numOutput to set 
  */ 
 public void setNumOutput(int numOutput) { 
  this.numOutput = numOutput; 
 } 
 
 
 /** 
  * @return the numSamples 
  */ 
 public int getNumSamples() { 
  return numSamples; 
 } 
 
 
 /** 
  * @param numSamples the numSamples to set 
  */ 
 public void setNumSamples(int numSamples) { 
  this.numSamples = numSamples; 
 } 
 
 
 /** 
  * @return the x 
  */ 
 public double[][] getX() { 
  return X; 
 } 
 
 
 /** 
  * @param x the x to set 
  */ 
 public void setX(double[][] x) { 
  X = x; 
 } 
 
 
 /** 
  * @return the t 
  */ 
 public double[][] getT() { 
  return T; 
 } 
 
 
 /** 
  * @param t the t to set 
  */ 
 public void setT(double[][] t) { 
  T = t; 
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 } 
 
 
 /** 
  * @return the xtest 
  */ 
 public double[][] getXtest() { 
  return Xtest; 
 } 
 
 
 /** 
  * @param xtest the xtest to set 
  */ 
 public void setXtest(double[][] xtest) { 
  Xtest = xtest; 
 } 
 
 
 /** 
  * @return the ttest 
  */ 
 public double[][] getTtest() { 
  return Ttest; 
 } 
 
 
 /** 
  * @param ttest the ttest to set 
  */ 
 public void setTtest(double[][] ttest) { 
  Ttest = ttest; 
 } 
 
 
 /** 
  * @return the w 
  */ 
 public Matrix getW() { 
  return W; 
 } 
 
 
 /** 
  * @param w the w to set 
  */ 
 public void setW(Matrix w) { 
  W = w; 
 } 
 
} 
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ABBREVIATIONS

3D   3-Dimensional 

3G/4G   3rd and 4th Generation (of cellular mobile networks) 

AP   Access Point 

API   Application Programming Interface 

ARM   Advanced RISC Machine 

FCC   Federal Communications Commision 

LBS   Location Based Services 

CPU   Central Processing Unit 

GNSS   Global Navigation Satellite System 

GPS   Global Positioning System 

GLONASS  Globalnaya navigatsionnaya sputnikovaya sistema 

HTC   High Tech Computer corporation 

KNN   K-Nearest Neighbor 

LBA   Location-Based Application 
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MEMS   MicroElectroMechanical System 

MHz/GHz  MegaHertz/GigaHertz 

mW   milliWatts 

ANN   Artifitial Neural Network 

OS    Operating System 

PC   Personal Computer 

Li   Lithium 

LTE   Long-Term Evolution 

QoS   Quality of Service 

RAM   Random Access Memory 

mAh   milliAmpere Hour 

RFID   Radio Frequency Identification 

RSSI   Received Signal Strength Indicator 

MAC   Media Access Control 

SMS   Short Message Service 

SVM   Support Vector Machine 

UI   User Interface 
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VRL   Variable Rate Logging 

WiFi   Wireless Fidelity 

 


