CONJUNCTIVE OPERATION
OF A SURFACE RESERVOIR
AND OF GROUNDWATER STORAGE
THROUGH A HYDRAULICALLY
CONNECTED STREAM

by
Hubert J. Morel-Seytoux

February 1984

Completion Report No. 130



Technical Completion Report
B-204-COLO
Agreement No. 14-34-0001-9147

CONJUNCTIVE OPERATION OF A SURFACE
RESERVOIR AND OF GROUNDWATER STORAGE THROUGH

A HYDRAULICALLY CONNECTED STREAM

by

Dr. Hubert J. Morel-Seytoux

Department of Civil Engineering
Colorado State University

Submitted to

Bureau of Reclamation
United States Department of the Interior
Washington, D.C. 20242

The research on which this report is based was financed in part
by the U.S. Department of the Interior, as authorized by the
Water Research and Development Act of 1978 (P.L. 95-467).

COLORADO WATER RESOURCES RESEARCH INSTITUTE
Colorado State University
Fort Collins, CO 80523

Norman A. Evans, Director

February 1984



ABSTRACT

Analytical solutions are described to represent the impact of net
withdrawal from an aquifer on water table elevations and on induced
seepage (negative return flow) from a river in hydraulic connection with
the aquifer., These analytical solutions are prerequisite to the formu-
lation and solution of a conjunctive opiimal strategy of use of surface
and ground waters for irrigation purposes. Optimal continuous time
solutions are sought for rates of release from an upstream surface
reservoir, for diversion rates of streamflows downstream from the dam
and upstream of an irrigation area and for rates of pumping in the irri-
gation zone via the classical techniques of Calculus of Variations,

However instead of leading to an Euler~Lagrange system of partial
differential equations the formulation leads to a system of Fredholm
linear integral equations of the second kind. The clear economic mean-
ing for the optimal strategy is a trade—off between two marginal costs:
immediate value of not incurring a penalty for failing to meet a down-
stream legal «right versus the capitalized cost of additional 1ift as a

result of early pumping in the season.



FOREWORD

Maximum benefit from water use in irrigation is obtained by minim—
izing the cost of water (assuming cropping practices are fixed). The
cost of groundwater is greater than the cost of surface water due to
pumping costs, If surface supply is inadequate to meet full water
requirements, some groundwater use is necessary. Furthermore, groundwa-—
ter use may be 2 mandatory element in an efficient water—-cycle system
such as occurs in the South Platte River Basin, The management question
which this research addresses is, ''What is the correct mix of the two
sources to optimize returns from the available water?’

A two-pronged approach was used in this study: (1) modify and adapt
a hydrologic simeiation technology developed with Department of
Interior’s partial support in a prior matching grant project (CR87) and,
(2) develop the theory and procedure for incorporating optimization
analysis into the hydrologic model,

The hydrologic system of interest is the South Platte River Basin
in Colorado. Water in an alluvial aquifer in good hydraulic connection
with the river is managed conjunctively with surface water. Groundwater
pumping is permitted only if its impacts on surface stream flow is
offset by augmentation water, Wzter wusers contemplate a main-stem
storage reservoir and need new technology to find the best conjunctive
reservoir and groundwater management strategy.

A previeusly develoned hvdrologic simulation model was modified to
incorporate the presence of ar upetream storage reservoir. Possible
combinations of storage capacity, release rules for the reservoir and
pumping rules for downstream aguifer were investigated with the model.
The. operational cavability of the model to simulate this system on a
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weekly time scale was demonstrated. Its utility for testing and
evaluating conjunctive management options was likewise demonstrated to
be excellent,

A dissertation on the conjunctive surface-groundwater simulation
model will be available from Colorado State University (Restrepo, 1984)
in the future. A table of contents is appended at the end of this
report. Technical details for an earlier version of model were previ-
ously reported in Completion Report No. 87 available from the Colorado
Water Resources Research Institute and are not repeated in this report.
More advanced modeling features were developed for the Colorado Commis-—
sion of Higher Education, the Groundwater Users Association of the South
Platte and the Ministry of Agriculture and Water of the Kingdom of Saudi
Arabia (Illangasekare and Morel-Seytoux, 1983a,b; Morel-Seytoux and
Illangasekare, 1983),

The second approach to meeting water user need for new technology
is development of innovative methodology for incorporating optimization
capability into the hydrologic model. A theory and procedure for find-
ing an optimal strategy for managing surface storage conjunctively with
groundwater pumping has been developed. This report gives details of
the theory and the procedure. A hypothetical, idealized case is used to
illustrate its application,

The next step in development of this new combined hydrologic
simulation—optimization technology will be to incorporate the optimiza-—
tion procedure with the simulation model. With this combination optimal
reservoir release and groundwater pumping decisions can be made continu-
ously throughout the season of operation. Of course, the new technology

will be equally valuable for init:al planning of project operationms.
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RESEARCH OBJECTIVES

The overall objective of the research was the development of a
me thodology to demonstrate the value of conjunctive management of an
upstream surface reservoir with a downstream aquifer as water supplies.
The methodology must incorporat properly the physical interactions
between the stream, the aquifer and the wells as well as account for the
agronomic (irrigation) and legal constraints. The methodology must be
cost—effective so that it can be used for actual operations by various
local groups of water users.

In this report only a brief review of a promising method of attack
will be given. Generally speaking the thrust of the research has been
in the direction of development of new and imaginative methods that will
greatly reduce the cost of management studies of conjunctive use of sur-
face and ground waters when in hydraulic connection without significant
reduction in accuracy. In this regard the project was successful,

In a separate document, a dissertation (Restrepo, 1984) a more
fully developed classical approach is used to provide specific quantita-
tive answers to problems of management for a reach of the South Platte
River. It addresses the problem of finding the optimal capacity and
release rules of an upstream reservoir as well as the withdrawal rules

for the downstream aquifer storage. A table of contents is appended at

the end of this report,
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PART 1
DRAWDOWN AND RETURN FLOW RESPONSES

TO UNIFORM WITHDRAWAL IN A ONE-DIMENSIONAL
HOMOGENEOUS SEMI-INFINITE AQUIFER

INITIAL CONDITIONS

At time zero drawdown, s, is zero everywhere (i.e., for 0  x { =),

BOUNDARY CONDITIONS
At the river bank of a fully penetrating river drawdown remains
zero at all times, i.e., s=0 at x=0 for all times. Abscissa x is meas-

ured in a direction perpendicular to river course with origin at river

bank.

WITHDRAWAL EXCITATION

Withdrawal occurs uniformly over an interval of length a on each
side of the fully penetrating river. The river reach length is Lr'
Thus the area of withdrawal (which is also the cultivated irrigated
area) is A = aLr. The excitation (withdrawal) rate for the area A is Q
(volume per unit time) or the excitation rate per unit area is q (depth

per unit time). Naturally Q and q are related by the equation: Q=Aq.

DRAWDOWN RESPONSE TO UNIFORM WITHDRAWAL

The drawdown response due to a unit impulse of uniform withdrawal
per unit area over the interval (o,a) satisfying the initial condition
of zero drawdown everywhere and zero drawdown at all times at the river
bank is easily derived (e.g., Morel-Seytoux, 1977) from the knowledge of
the Green’'s function for the one-dimensional Iinear Boussinesq equation,

The solution is:



ks (x,t) = 5%-{erf(—5:5—) - erf(-2tX ) 4 2erf(—%—)) [1]
-4 2 “yt 2 ﬂyt 2 th
where ¢ is effective porosity, y = % is aquifer diffusivity and T is
transmissivity.
Verification

For any x in the interval (o,a) at time zero (plus) Eq. [1] yields

for drawdown the value:

k, o (x.,0) = 2—1’5{erf(w) ~ erf(w) + 2erf(®)} = 2—?;[1-1+2] =

which is correct, representing the instantaneous drawdown to an impulse

A 3L

of withdrawal of one unit volume per unit area. For any x > a at time

zero (plus) Eq. [1)] yields for drawdown the value:

_ 1
ks,q(x,o) = 2¢

which is correct since water table is initially horizontal,

{erf(-=) — erf(=) + 2erf(=)} = 5%[-1—1+2] =0

For any time at the river bank (x=0) Eq. [1] yields for drawdown

the value:

1 a a 1
= —ferf( ) — erf( } + 2erf(o)} = Zerf(o) =0
2¢ 2 th 2 dyt p

which again checks. Thus Eq. [1] provides correctly the response of

k (o,t)
S,q

drawdown to a uniform unit impulse withdrawal excitation over the inter-

val (o,a).

Drawdown Response to a General Excitation (withdrawal) Rate per Unit Area

The general solution is as usual (Morel-Seytoux, 1979, p.16) of the
form:

t
s(x,t) = fﬁ{erf(-———ﬁ—l——) - erf(—2¥% ) 4 2erf(—2——)) q(r)de

0 2 [y (t-1) 2 \Jy(t-T) 2 \|y(t-t) [2]




One obtains the response to the withdrawal discharge Q(t) (volume per

time) by simply replacing q(<t) by Q&:) in Eq. [2] or explicitly:

t
Ei;f[erf[———i:z—-—}—erf{———éiz-——}+2erf{————5————]]Q(t)dt

ol 2\v(t-—m) 2 [y (t-v) 2 \[y(t-1) | [31

s(x,t) =

RETURN FLOW RATE

The return flow response per unit length of river reach (from one

side of the river) due to a uniform unit impulse withdrawal rate per

unit area is obtained as usual (e.g., Morel-Seytoux, 1979, p.53) by cal-

culating the flux of water across the saturated thickness at river bank

(x=0), namely:

i
1 aks (x,t) | " _ 4yt)
—‘9—-——ax £=0 = kq (1) =~ \|x Hoze ) [4]
4 VTt

Derivations of this result have been provided previously (Morel-Seytoux,

1977).

Return Flow Rate Due to a General Withdrawal Pattern Over the Irrigated Area

Again use of the convolution equation yields for the return flow

along the river reach the expression:

2
—a

t T4y (t-t)
N W 54 P S -
Q_(t) = - af J Q(t)dr
° L

=3

| S,

[51



CUMULATIVE RETURN FLOW VOLUME

The cumulative return flow volume up to time t is defined as:

t

Wr = £Qr(t)df [6]

The unit impulse response of cumulative return flow is obtained as usual

(Morel-Seytoux, 1979, p.58) by integrating Eq. [4] with respect to time,

namely:

2
_-8 _
t _ 4y
Ky o) = - 2 J% [ (A=) 4o (71
T’ o T
or equivalently:
2
-2
t 4yt
ky (t)=—Lr\E;-f(1-e ) dz (8]
r*d 0 T

SIMPLIFICATION IN NOTATIONS

In general drawdown will be evaluated only at a characteristic dis—
tance from the river where drawdown is roughly the average drawdown in
the aquifer below the irrigated area. The unit impulse given by Eq. [1]

when evaluated at that abscissa is denoted simply:

k(1) = 5%{erf( 87X ) _ erf(—2¥E ) 4 2erf(—X—)) (9]

2 \[yt 2 \[7t 2 \vt




where x has & particular value (e.g., %) and the excitation is that per

unit area. Thus the representative (average) drawdown at the selected

abscissa is given by the equation:

_ t t
S(6) = fr_(t-1)g()de = ifks(t~r)Q(r)dt [10]
o]

o

Similarly the unit impulse kernel of return flow rate is simply

denoted kr(t) and defined by the equation:

2
, _a
4vt
__1jlx - )
k (t) = a\]-; (111

and the return flow rate is given in general by the expression:

t
Q_(t) = / k_(t-t)Q(r)dr [12])
(o]

SUMMARY OF FORMULAE

Drawdown Unit Impulse Kernel Due to Uniform Withdrawal Rate per Unit Area

k (1) = ﬁ{etf( a\'[i_) — erf( a\}f_) + 2erf(—=E—)} [13)
2 \lyt 2 \yt 2 \rt

Representative (mean) Drawdown Due to a General Pattern of Vithdrawal

_ t
s(t) = i £ k_(t-t)Q(r)dr [14]

Return Flow Rate Unit Impulse Kernel Due to Uniform Withdrawal Rate
Per Unit Area




2
a

k (t) = - l.JE il.:.&.f!fl
T - a \n W?

[15]

Return Flow Rate from River Reach Due to a General Pattern of Withdrawal

t
Qr(t) =f kr(t—t)Q(t)dt [16]
o
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PART 2

FORMULATION OF THE MINIMIZATION PROBLEM OF COST OPERATIONS
FROM PUMPING AND SURFACE WATER DIVERSIONS FOR IRRIGATION

INTRODUCTION

For a system already constructed (i.e., with existing reservoirs,
canals, wells, etc,) and capable of delivering enough water from com-
bined surface and underground supply to meet crop need for optimal crop
yield, the maximization of profits from water use is simply obtained by
minimization of the cost of water acquisition, In this case the income
from the sale of the crops is fixed, It is the sum of the products of
price by optimal yield for the various crops. Generally the cost of
groundwater is greater than that of surface water as a result of the
energy cost for lifting the water. Thus profit can be maximized by
minimizing the cost of water. This is achieved by using the right
amount of surface and ground waters at the right time in order not to
drawdown the aquifer too much. This is of course accomplished by using
the surface supply whenever available and groundwater only as a supple-
mental source. However surface water availability may be limited by the
demand of senior downstream surface water rights. The minimization

problem arises as a result of such constraints.

WATER COSTS

Diversion amounts per unit time will be expressed either as
discharges or velocities (i.e., depths per unit time, which is volume
per unit area per unit time). The function D(t) represents the diver-
sion rate (expressed as depth per unit time) from the stream at a diver—

sion point upstream of the irrigation area, Figure 1 displays the



upstream reservoir

|
| river | Irrigation
L, «-| area
a a
- |- -

sen| lﬁgr_@gynstream
diversion canal

Figure 1, Overall Configuration of System with Upstream Reservoir, Stream,
Irrigation Area and Senior Downstream Diversion
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overall configuration of the system., Water is released at a rate (velo-
city) x(t) at point U (upstream point cf system of interest),. Without
any loss this flow reaches point D (diversion point) where a certain
amount D(t) (velocity) is diverted. The remaining flow in the river
(i.e., x(t)-D(t)) will then continue through the irrigation area.
Through the reach of length Lr the river is in hydraulic connection with
the aquifer. As a result the outgoing flow rate at point R will have
increased (algebraically) by the return flow for the reach, qt(t)
expressed as a velocity. Naturally all discharges are converted to
velocities by dividing them by the total irrigation area, A,

If s denotes the unit cost of surface water diversion then instan-
taneous cost of diversion is csD(t)A and the total cost over the irriga-
tion season is its integral over the irrigation season. The unit cost
cq does not vary within the season (an assumption).

The cost of groundwater is more complex, as it depends on the 1lift,
Drawdown being measured from the initial position of the water table at
beginning of irrigation season, used as origin of time, the lifting cost
depends on the total 1ift, which is the initial 1ift plus the additional
lift due to further drawdown during the season., If , represents the
initial unit cost of pumping and cm the marginal cost of pumping (i.e.,
cost per unit pumped volume per additional unit of drawdown) then the
total groundwater cost during the irrigation season of duration T plus

the total surface diversion cost, is given by the expression:

T _ T
Z=1 [co * e s(t)] a(t)dt + [ CSAD(t)dt [1]
[e] o]
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where s(t) is a representative drawdown for the area and Q(t) is the
pumped discharge,. The drawdown s(t) being a linear function of pumped
discharges, it is clear from Eq. [1] that the total water cost will be a

quadratic function of pumping rates and a linear onme of surface diver—

sion rates,

CONSTRAINTS

There are limitations to the availability of water from the surface
reservoir. Denoting by XT the total available volume of water for the
season from the reservoir per unit of irrigation area then clearly the
total volume of release cannot be greater than that amount. However,
because cost of surface water is relatively cheap, that total volume

will indeed be used. Consequently the constraint takes the form:

T
[ x(t)dt = X [2]

o T
where T is the duration of the irrigation season. There is a downstream
water right which is a total volumetric right for the season, denoted WT
when expressed per unit area of irrigation. Consequently since river
outflow from the irrigation area is instantaneously x(t)-D(t) + qr(t)'

the mathematical expression of the required total satisfaction of water

right is:

O

[x(t) - D(t) + qr(t)]dt = Wp (31

The equality is justified by the fact that the upstream users have no

interest in losing cheap water to downstream users,



To produce a crop abundantly and of good quality, a proper amount
of water has to be delivered to the crop. This amount varies and is
denoted e(t) (for evapotranspiration need). This function is a known
function of time. Not all the water diverted will reach the plant (in
its specific location in a furrow, etc,). Some of it is lost by seepage
before it gets to the field. The fraction of diverted water that will
actually reach the fields is denoted Ef. Of that amount which reaches
the fields only a fraction denoted Ep will actually reach the plant and
be transpired, In other words to meet the plant need e(t) an amount
D(t) is to be diverted which is e(t)/Epr, an amount which can be sub-
stantially greater than the plant need. Pumped water can also be used
to meet that need. Being withdrawn right on the field, pumped water
suffers only one inefficiency. The constraint (requirement) that plant

need be met takes the mathematical form:

EprD(t) + qu(t) = e(t) [4]

OPTIMIZATION FORMULATION

The optimization problem is one of minimization of the objective
function defined by Eq. [1]. This objective function is not fully
explicited because s(t) is a function of the net withdrawal rate (per
unit area). This net withdrawal rate is the difference between pumped

rate and aquifer recharge from water application, The net withdrawal

rate (velocity) is thus:

an(t) = q(t) = (1= )a(t) = (1-EE )D(t) s
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or defining for simplicity E

£p = Epr and Er = l—Efp, which is the

recharge efficiency of the surface diversion:

= [6]
q,(t) = qu(t) - E D(1)

From the theory of linear systems the drawdown s(t) is expressed as a

convolution integral:

_ t
s(t) = f k (t-t)q (v)dr [71
0

The specific form of the kernel depends upon the representation of the
aquifer behavior and its characteristics, For a very simple situation
the kernel ks(-) was derived earlier (see Eq. [13] in Part I). Substi-
tution of Eq. [7] into the objective function transforms the optimiza-

tion problem in the explicit form:

T t T
Minimize {£ le *e £ k (t-0) [Eja()-E D(0) ]lalt)dt + o £ D(t)dt} [8]

subject to the various constraints defined by Eqs. [2], [3] and [4].
There are three decision functions: x(t), D(t), and q(t). Two of them
are not really independent due to constraint Eq. (4], That equation can

be used to express D(t) in terms of q(t) and e(t), namely:

D(1) = &) - % (9]
fp f

and in turn Eq. [9] can be used to eliminate D(t) from the objective

function in Eq. [8]. After substitution the objective function takes

the form:



T T T t
z=c, fq(t)dt + cq /o(t)dt + < f {fk (t-t)
o o
[ E_e(t) Er ]
Lqu(t) - 1 E E; Jdt}q(t)dt
or:
T T T t -
2= o faltyat + o fp(dt + ¢ [ (fx_(t-0) [2E - g0 aziq(e) at
o s m s E
o o o o L °f ] [10]
E
where for simplicity the known function 1-E e(-) has been redefined,
r

temporarily, as f(-.). Thus the optimization of the objective function
depends now explicitly on two arbitrary functions: =x(t) and q(t). To

complete the elimination of D(t) from the objective function its

integral has to be rewritten in the form:

T T T
[ D()dt = f e(t)dt _  g(t)dt
o o Efp o Ef

Substitution of this expression into the objective function yields:

c c T

z = (c_ - —) f q(t)dt + == [ e(t)dt +
o E
f o fp o

T t

c [ U x (t-v) [QLEL - f(r)]dt} q(t)dt [11]
m s E
o o L °f 1

The problem, once more, is to minimize this objective function with
respect to the unknown functions q(t) and x(t) subject to the con-

straints defined by Eqs. [2] and [3]. After elimination of D(t) from

Eq. [3] that constraint takes the form:
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T
_ {e(t) _ aft) =
£ {x(t) {I-Ef E, ] + q (1)) dt = W

or, defining the total depths of evapotranspiration crop need, of water

right and of pumpage as:

T

ET = { e(t)dt

T
QT = [ q(t)dt

o)

T
and WT = [ w(t)dt
o

where w(t) is the downstream surface water right rate (velocity),

finally:
T 1 T
- Eg [ q(t)dt - T f {k_(t-t)q(x)drldt = Xp - Wp
o f o
1 T t
-1 Ep -/ U k_(t-0) f(r)drlde [12]
r o] [o]

Note that the kernel of return flow due to withdrawal is a negative

function so that the second term on the left hand side is actually posi-

tive., The same comment applies for the last term on the right hand

side.

FORMULATION SUMMARY

The minimization problem involves the objective function:

c T ¢ T T t E_e(x)
z = (¢ - Eé) fa(t)dt + —= fe(t)dt + o / {fks(t—r) alz) L ]df}q(t)dt
o]

() _
£ Epr o o o L Ef 1-E

r s
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and the equality constraint:

—EI; + E } (t)dt + }{} k (t- )[Q(r) -
T 1-E £’ 9 e T | E 1-E
r o 0o f r

XTrW

There are two unknown functions, q(t) and z(t), but only one appears in
Eqs. [13] and [14]. The problem appears to be one in classical Calculus
of Variations. In order to discover (hopefully) a general method of

solution a simple limiting case will be investigated first,

SIMPLE SPECIAL CASE

Let us assume that the cost of surface water is very cheap (i.e.,
c, = 0 for practical purposes), that initial cost of pumping is very
small (i.e., c, = 0), and that efficiencies Ef and Ep are both one.

Then in this case the objective function reduces to:

t

T
z = c Y k _(t-t)q(t)drlq(t)dt [15]
o (o]

and the equality constraint reduces to:

T T t
X ~WyEp + £ q(t)dt + £ {£ k_(t-t)q(r)dcldt = 0 [16]

One possible strategy of operation is not to pump at all, In that case
the cost is minimal (zero). However such strategy is feasible only if
XT—WTrET > 0 that is if the irrigation requirement ET and WT can bothk be
met by seasonal surface storage availability XT' If such volume is not
sufficient then the need will have to be supplied by depleting the

aquifer somewhat, Thus in the situation of a deficit in surface water
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availability (i.,e., XT CEp+ WT) it will be necessary to draw water
from the aquifer. In order to get a feeling about the problem and its
solution, let us consider the effect of different strategies: for exam
ple, withdrawal of full pumping need at beginning of season, at the end

of the season or continuously throughout the season.

Full Pumping Need Taken at End of Season

In this case the withdrawal is a unit impulse of magnitude QT

(expressed as a depth). The objective function of Eq. [15] becomes:

T t
2, = ¢ £ {£ ks(t—'r:)Q.ID&(T—-c)dr}Q.ID&(T-t)dt [17]

(The subscript e refers to the strategy of pumping at end of season)
where Ds(-) is the Dirac delta function singular at time T. The inner

integral is zero except at t=t=T, where it takes the value %ks(o)QT, and

the total pumping cost is:

©

2 [18]
O

(¥}
wals

In this case QT = EptWp~X; so that the total cost is explicitly:

_‘m 2 [19]
2se = 2 (EptWpXq)

Full Pumping Need Taken at Beginning of Season

The withdrawal is a unit impulse of magnitude QT but occurring at

time 0. The objective function of Eq. [15] takes the form:
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T t
Zep = °m £ {gks(t—t)QTDG(t)dt}QTDs(t)dt

or
T
Z 4 = ¢ £ 3 Qpk _(t)QDg(t)dt (201
or
2
°m 2 SmoT [21]
zsb =2 ks(o)QT - 29

(The subscript b refers to the strategy of pumping at beginning of sea—

son.) QT is now given by the constraint equation [16], namely:

T
XT—WT—ET+QT + )(: QTkr(t)dt =0

or

T
1+ f k_(t)dt [22]
(o]

Since kr(-) is a negative function QT in Eq. [22] exceeds the strict
need ET&WTrXT. The cost in this strategy of early pumping is larger
than for the case of pumping at the last minute, Naturally pumping at
the last minute is not a feasible strategy because the crop need e(t)
must be satisfied at all times, Similarly the early pumping strategy is

not feasible unless the water is stored and delivered as needed during

the season,.
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Use of Groundwater After Exhaustion of Surface Water Supply (last resort)

Until the time t0 such that:

to

[ e(t)dt = Xp - W [24]
o

then clearly (?) the optimal policy is (might be) to meet the crop need
from the reservoir release and by diversion of surface water. Past time

to one must pump from the aquifer but then again just to meet the need

or in this case:

a(t) = e(t) for ot (t(T [25]
The minimum cost will be attained for a value:
T t
2 = ¢ g' {g' k _(t-t) e(r)dc} e(t)dt [26]
o o

(The subscript 1 refers to fact that groundwater is used as last

resort.) However, one constraint, Eq. [16] is not satisfied, because the

last term introduces a lack of balance, namely the integral:

T t
[ f k_(t-1) e(r)de) dt
tO tO

Enough surface water is available to meet the downstream water right in
the interval to to T but not to compensate for the seepage induced by

pumping.



Pumping as Last Resort but with Continuous Satisfaction of Water Right

The water right function is actuvally wusually defined as a rate
wit). The continuous {permanent) satisfaction of the water right

requires that:

x(t) - D(t) + a (t) = wit)
A strategy that would meet irrigation need and water right without pump~-
ing until surface storage is exhausted will dry the river beyond that
point. Xf drying of the river is not acceptable, which will now be
assumed, pumping will have to occur before the seasonal surface storage
availability is depleted. The time of ipitiation of pumping tp is now
an  unknown, Until the time tp the strategy is to relesse water to meet

consumptive use and water right, that is:

x(t) = el(t) + wit) 0 ¢t ¢t 128}

t~

Let the integrals of x(:}, e(<) and w{+) up to that time tp be denoted
Xp, Ep and Wp. Beyond that time the reservoir release is used solely to

meet the water right and to compensate for the seepage rate induced by

pumping, that is:

{291

| ZaN
r~
f
3

x{t) = w(t) - qr(t) t
whereas the pumping rate is determined by the consumptive wuse require~
ment, namely:

qlt) = e(t) t f30

[ e
-~
i~
3



The return flow qr(t) is related to the pumping rate, in this case e(t),

by the relation:

t
qr(t) = 3' kt(t-t)e(t)dt

[31]
P
Substitution in Eq. [29] yields the explicit constraint:
t
x(t) = w(t) - k (t- d
) { St-De(v)dr [32]
P
The objective function to be minimized is:
T t
2go = o g'{g' k_(t-t)e(r)dr} e(t)dt [33]

PP

(The subscript c refers to the fact that water right is satisfied con—
tinuously.) The problem is reduced to one of minimization with respect

to one unknown parameter tp' Redefining the origin of time at the

beginning of pumping and the pumping duration time T--tp as Tp, then Eq.
[33] takes the slightly simblet form:
Tp ¢
2, = o ﬁ' {£ k_(t-t)e(r)dr} e(t)dt [34]

The minimization of Eq [34] for Tp is subject to the constraint over the

irrigation season that:

T
p t
XT—WTrET QT + [ kr(t—t)e(r)}dt =0 [35]
o o
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Defining for convenience the excess need over seasonal storage water

availability, namely E +W, X, as Ny, Eq. [35] takes the form:

Pl 1
[ le(t) + f kr(t'T)E(T)dt dt = Np [36]
o | o ]

Actually Eq. [36] determines Tp since kr(-), e(+) and N are given.
Then once Tp is calculated from Eq. [36], substitution of the numerical
value of Tp in Eq. [34] yields the value of pumping cost for the season.
Prior to time tp = T-—Tp the release rate is given by Eq. [28] and after

tp it is given by Eq. [32]. The diversion rate is e(t) before tp and

zero afterward.

Pumping as Supplement to Surface Diversion with Continuous Satisfaction
of Water Right

In the previous strategy need was met solely by surface water up to

initiation of pumping and thereafter solely by pumping. An alternative
(more general) would initiate pumping while surface diversion continues.
It is rather intuitively clear that such a strategy would induce seepage
from river earlier and consequently require a larger fraction of XT to
meet downstream water rights., A smaller fraction of XT would be used
for irrigation and as a result a greater pumped volume would be required
to meet the consumptive use. Altogether the strategy would cost more.
Nevertheless it is instructive to consider this strategy. In this case

the release rate is related to need, water right and pumping by the

relation:

t
x(t) = e(t) + w(t) - q(t) - f k_(t-t)q(r)de {371
o

whereas the objective still is:
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t

T
Zoo = op £ {£ k_(t-t)qlr)dc} qlt)de [38)

{The second subscript s refers to the fact that in this strategy ground-
water is used as a supplement not entire replacement for surface water,)

The global form of Eq., {37] for the irrigation season is written more

generally:
T T t
[ g(tydr + [ (f k (t-t)qlr)dt)dt ) Ny
o o o

This inequality expresses the fact that the downstream flow must meet or

exceed the water right. The inegquality may be rewritten in the form:

T T t
- [ qttddt = [ ([ k_(t-t)q(r)de)dt + Np £ 0 [391
[2] ] [+

which is the standard form t¢ express the constraint to write the
Lagrangian function (for example to derive the Kuhn-Tucker theorem), In
particuler it is known that at the minimum the Lagrange multiplier A is
pasttive or zero,

Fundamentally the problem is to minimize the objective given by Eq. [38]
for the unknown function g{t)} subject to Eq. {39], The Lagrangian func~-

tion associated with the objective function in Eq, *[38] is:

1

T
L=c I u k (t-v)qlridr} qlt)dt
o o

! T T t
+ 2§~ [ g(t)de - [ {f kr(t~r)q(r)dr} dt + Nj]
L o o o J

[40]



It remains to derive the Euler-Lagrange equation for this functional
problem. The change in Lagrangian when q(t) changes to q(t)+en(t),

where en(t) represents a variation in q(t), is:

T t T t
AL = c e [ u k (t-t)q(v)dtin(t)dt + c e [ k (t-t)n(r)do) q(t)dt
o] o] 0 0
T T t 2
- xe [ q()at - xe [ (f k (t-t)n(r)dr)dt + O(e )
o o o [41]

If the function q(t) is to minimize L then the coefficient of &€ must be
zero for all arbitrary n(t). After interchange of order of integration

in the second and fourth integral in Eq. [41] one obtains.

T t
AL = ¢ ¢ [ k (t-t)q(r)dr)n(t)dt
o o
T T
+ e e ks(t—t)q(t)dt)n(t)dt
o T
T T T 2
- e [ q(v)at - ae [ (f kr(t—t)dt)n(t)dt + 0(e7)
o o T [42]

Changing the name of the time variables in the second and fourth

integral yields:

T t T
AL = ¢ £ tey £ E_(t-t)q(t)dT + ¢ { k (t-t)q(v)dr
T
-A-=-r S kt(t—t)dt} n(t)dt [43]

t
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The Euler-Lagrange equation is thus:

t T T
cm[f ks(t-t)q(t)dr + f ks(r—t)q(r)dt! = a1+ [ kr(t~t)dt) [44]
(V) t t

It is an integral equation for the unknown function q(:). Eq. [44] can

be expressed in a more standard form by defining a kernel:

*
K w =k (luh L4s1

and by taking T = « in the second irrigation (beyond the real irrigation

season then e(t) = 0 and q(t) = 0). Eq. [44] takes the form:

® T
< / ks(t—t)q(r)dt =i (1+ [ kr(t—t)dr) [46]
o t

which is a linear integral equation of the first kind. The solution is
a function of the (unknown) Lagrange multiplier A. This multiplier is
then found by substitution of the solution q(t,A) into the constraint
Eq. [39], taken as an equality, which becomes an algebraic equation to
be solved for A. Once A is obtained substitution of its value into the
solution q(t,A) yields the optimal solution q*(t) to the problem.

However the solution so obtained is not valid if q(t) is ¢ 0 or >
e(t), since clearly O and e(t) are bounds for the pumping r;te in the
supplemental strategy.

Suppose that the optimal solution was on the lower bound constraint
at time t (thus q(t)=0). The only feasible variation is n(t) > 0. If
indeed the objective is at a minimum then AL has to be positive for a

positive variation n(t). It follows that if q=0 is optimal in the

interval (O.tp) the coefficient of &£(t) in that range in Eq. [43] has to



faw]
on

be positive namely:

t T

-3

fE (o) g(odr + [k (-thqfridr ) 2 (1+ [ k_(r-0)do)
o i o t

or more precisely since g is zero in interval (O,tp}

T T

WX e
3’ k (z~t)qltldy > . {1+ { k (v t)dt)  for 0 { t £ ty 1471
P

Since A is positive, this equation implies that g=0 up to time tp

can be optimal provided that beyond that time pumping is largs enough
and/or that tp is small (i,e., pumping is initiasted early} sndfor that
cm is large, Similarly one may question whether or not q{t} = e{t) can
be an optimal policy. Suppose that the optimal sgolution was on the
upper bound for times te Lt LT In that range the only feasible

varistion is n{t} < 0. The coefficient of n{t) in that range of times

has to be negative, thus:

t
e t
f k (t-tiq{v)de + ! k (t-t)e(r)dr
) i
&
T N T
+ {f k (v-thelr)dr ¢ ;; (1+ .ikt('wt)ét) for t Lt LT g0

€

Since A is positive Eq. [48] implies that te cannot be too small and/or
thet prior to t_ q{t) must be small and/or that ¢, i5 small, Egs, [4
and {48] imply that st early times a solution g=0 is optimal and that
late times g=e is optimal. There remains 2z question about the possi
ity of an optimal ¢ in the range (0,e) durimg the interval (tp,te)

that case Eq. {44] must hold for Y Lt Lt
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This discussion provides & basis to check whether the “'bang-bang’’
solution that is =0 up to tp and g=e thereafter is indeed optimal. The

solution for tp in this strategy is given by Eq. [36] or more precisely

by:

T T

[ le(ty + f k (t-t)e(v)dr{dt = Ny [49]
t t

Pl P ]

Having determined tp one would next verify that Eq. [47] holds, in this

case:

T T

[k (e-the(n)de » 2 (1+ [ k_(x-t)dv)
t m t
P
for 0ttt (501

The value of A is determined from Eq. [46] for g{t) being a step func-—

tion jumping from zero to e(tp) at t=tp, namely:

T
Cm g' ks(t*tp)e(t)dt
A o= b

T
1+ f kr(T—tp)dt [51}

t
p

One would also need to verify that Eq. [48] holds, in this case:

t T T

- - S -
g' k (t-telr)dr + { k_(r-t)elr)dr ¢ : (1+ { k (v-t)dz [52]
P

From the value of A in Eq. [51], Eq. [50] takes the more specific form:



T T
3' ks(t—t)e(r)dr 3' ks(r—tp)e(t)dr
P 3 P
T - T
1+ [k (z-t)dr 1+ f k (v-t )de
t t
p
for 0Lt Lty [53]
Similarly Eq. [52] takes the form:
t T T
[k (t-t)elr)dT + [k (z-t)e(r)dr ! ks(r—tp)e(t)dt
t
tD ¢ tv
T = T
1+ / kr(r—t)dt 1+ f kr(r—tp)dr
t t
p
for tp <t «T [54]
It is not possible to state whether the ‘*bang-bang’’ solutiom is

the optimal omne in all situations, The satisfaction of Eqs., [53] and
[54] depends upon the shape of the kermels ks(-) and kr(-) and of the

crop need e(-).

Consider the simpler case when the irrigation area extends far from

the river. In that case the return flow kernel has the form:
k(1) = -3 \E—l\lz [55)
t

In particular its integral with respect to time (the unit step kernel)

is:

t
__.1.|x 1 _ualx\r
Kr(t) ~ a \n I dv = = 3 A\ t
o <

Consequently:
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T
- = sy = _ 2 (X V-1
{ kr(r tydr = Kr (T-t) = . J; Tt
whereas:
T 5 7
k - = — - - = .
tf (T tp)d'c K (T tp) " \‘: \lT tp
P

For t ( tp then it follows that the denominator of the left—hand
side of Eq. [53] is less than that on the right—hand side. Fverything
else the same, the larger the seepage flow (that is the better the

hydraulic connection between stream and aquifer) the longer one waits to

pump to operate optimally.

Similarly again for the case of an area extending far from the
river the drawdown kernel has the form:
kK (t) = L erf (—%—) [56]
s $

2yt

Supposing a constant consumptive use e{t) then the numerator on the

left—hand side of Eq. [53]1 is proportional to:

——-L.ztv-—
T ' 5 Zy(tp-t)
[ erf L——-JL"’* dr = g“ f erf (u) du
t 12 (¥ (z=1) ] L4 2 u?
P — X

2¥(T-t)

whereas on the right-hand side the numerator is proportional to:

S erf (u) du
2 2
u
X
2¢v(T-t
Y p)

The main contribution to these integrals comes from the Jlower limit,

Thus for constant e the numerator on the left-hand side tends to be

greater than the numerator on the right-hand side. The discussion tends
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to indicate that in many situations the bang-bang policy will be optimal

but it is not sure.

General Procedure (for still the simple case)

One presumes that the ''bang-bang’'' policy is optimal. The value
of tp is determined from Eq. [49]. One then checks that Eq. [53] is
satisfied for t g,tp. One checks that Eq. [54] is satisfied for all t
> tp. If the checks are positive then the optimal solution was
obtained. In the negative one must relax the assumption that at initia—
tion of pumping pumping rate takes immediately the value of irrigation
need. At this stage an iterative procedure becomes necessary. Select-
ing wvalues of tp and t_ a priori one solves Eq. [44] for values of t in

the interval (tp,te), more specifically:

t
t e
e | [k (t-t)alx)dr + [ k_(z-t)q(x)dr
Ltp t ]
T T
= cn tf k_(t-t)e(zr)dr + A(1 - { k_(x-t)dv) (57]

[

The solution of this integral equation depends upon A. Substitution of

this solution for q(t,A) in Eq. [39] leads more specifically to the

expression:
te T T t
N, - (t,A)dt - t)dt - k (t- =
T g' q ) { e(t)dt { (g' L(t—t)alr,d)dr)dt = 0 [58]
P e P p

Once A obtained one proceeds to Eqs. {47] and [48] for checks on

optimality. If the tests are positive the solution has been found. Tn

the negative one must reestimate tp and te, etc,
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CONCLUSIONS

The classical techniques for optimization of decision functions
such as pumping rates, release rates, etc., are not powerful enough to
find the optimal patterns as continuous functions of time as they really
are, Instead the unknown functions are discretized over the time hor-
jzon, Often in addition to discretization, simplifications are made in
the dependence of the objective function on the decision functioms. In
particular, as in Dynamic Programming, the instantaneous objective func-
tion cannot have a memory dependence on previous decisions, Yet this is
precisely the case when there is interaction between stream and aquifer,

In this study it was decided to take a crack at the problem from a
Functional Optimization point of view. Because of the intrinsic memory
of the cost function on past decisions, mnot surprisingly the Euler-
Lagrange equation turns out to be an integral equation rather than a
differential equation (the classical case and only one discussed in the
mathematical 1literature). In the simple case considered for which the
Euler Lagrange equation was derived, the optimality condition has a
clear economic meaning. Under optimal operations at any given time the
marginal capitalized cost of future extra lifts due to additional unit
of pumped water at that time equals the immediate marginal penalty cost
for failing to meet the downstream legal right by one unit at the same
time. Based on this optimality criterion optimal release and pumping
decisions can be taken continuously throughout the season of operations,
Unfortunately analytical solution of an integral equation, even a linear
one, is not an easy task, In fact exact solutions are rare. However
there are efficient numerical techniques of solution. Lack of time and

other commitments did not permit to explore this new procedure in a



quantitative manner for specific values of parameters for a reach of a
river in hydraulic connection with an aquifer, at the present time.
This will be done in the future. One must capitalize om a good idea

when one encounters one!
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WATER TEMPERATURE AS A QUALITY FACTQR IN THE USE OF STREAMS
AND RESERVOIRS

GEORYDRAULICS AT THE UNCONFORMITY BETWEEN BEDROCK AND
ALLUVIAL AQUIFERS

BACTERIAL MOVEMENT THROUGH FRACTURED BEDROCK
AN APPLICATION OF MULTI-VARIATE ANALYSIS IN HYDROLOGY

SELECTION QF TEST VARIABLE FOR MINIMAL TIME DETECTION QF
BASIN RESPONSE TO NATURAL OR INDUCED CHANGES

GROUNDWATER RECHARGE AS AFFECTED BY SURFACE VEGETATION AND
MANAGEMENT

THEQRY AND EXPERIMENTS IN THE PREDICTION OF SMALL
WATERSHED RESPONSE

EXPERIMENTS IN SMALL WATERSHED RESPONSE
SYSTEMATIC TREATMENT OF INFILTRATION WITH APPLICATIONS

AN EXPERIMENTAL STUDY OF SOIL WATER FLOW SYSTEMS INVOLVING
HYSTERESIS

GEOLOGIC FACTORS IN THE EVALUATION OF WATER POLLUTION
POTENTIAL AT MOUNTAIN DWELLING SITES

A SYSTEM FOR GEOLOGIC EVALUATION OF POLLUTION AT MOUNTAIN
DOWELLING SITES

COMPUTER ESTIMATES OF NATURAL RECHARGE FROM SOIL MOISTURE
DATA - HIGH PLAINS OF COLORARG

ENGINEERING AND ECOLOGICAL EVALUATION OF ANTITRANSPIRANTS
FOR INCREASING RUNQOFF IN COLORADQO WATERSHEDS

DETERMINATION OF SNOW DEPTH AND WATER EQUIVALENT BY REMOTE
SENSING

HYDRAULIC CONDUCTIVITY OF MOUNTAIN SOILS
WATER REQUIREMENTS FOR URBAN LAWNS IN COLORADO
APPLICATIONS OF REMOTE SENSING IN HYDROLOGY

URBAN LAWN IRRIGATION AND MANAGEMENT PRACTICES FOR WATER
SAVING WITH MINIMUM EFFECT ON LAWN QUALITY

Authors

Rasmussen

Meiman, Grant
Kuo, Cox

Holland

Smith, Yevjevich,
Holland

Schulz, Yevjevich
Morel-Seytaux
Verma, Cermak

Ward, J.

Waltz, Sunada
Morrison, Allen

Yevjevich, Oynr-
Neilsen, Schulz

Morel-Seytaux

Klute, Danielson,
Linden, Hamaker

Yevjevich, Schulz
Schulz, Yevjevich
Morel-Seytoux

Klute, Gillham

Burns, McCrumb,
Morrison

Waltz
Longenbaugh
Kreith

Steinhoff, Barnes

Williams, Ponce,
Meiman, Spearnak

Danielson, Hart
Feldhake, Haw

Striffler, Fitz

Danielson,
Feldhake

Date
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1. PHYSICAL PROCESSES - o. Hydroleogic {cont'd)

Title

WATERLOGGING CONTRQL FOR IMPROVED WATER AND LAND USE
EFFICIENCIES: A SYSTEMATIC ANALYSIS

ARTIFICIAL GROUNDWATER RECHARGE, SAN LUIS VALLEY, COLORADO
MATHEMATICAL MODELS FOR PREDICTION OF SOIL MOISTURE PROFILES

IMPACT OF IRRIGATION EFFICIENCY IMPROVEMENTS ON WATER AVAIL-
ABILITY IN THE SQUTH PLATTE RIVER BASIN

WEEKLY CROP CONSUMPTIVE USE AND PRECIPITATION IN THE LOWER
SQUTH PLATTE AIVER BASIN (Fort Morgan, Sterling, and
Julasburg) 1947-197%

¢. Rydraulic

STABILIZATION OF ALLUVIAL CHANNELS
STABILITY OF SLOPES WITH SEEPAGE

DYNAMIC WATER ROUTING USING A PREDICTOR-CORRECTOR METHOD
WITH SEDIMENT ROUTING

POSSIBLE CAPTURE OF THE MISSISSIPPI BY THE ATCHAFALAYA RIVER

DESIGN OF WATER AND WASTEWATER SYSTEMS FOR RAPID GROWTH
AREAS - (BOOM TOWNS, MOUNTAIN RESORTS)

WEED SEED AND TRASH SCREENS FOR IRRIGATION WATER
PARSHALL MEASURING FLUMES OF SMALL SIZES

SELECTION AND INSTALLATION OF CUTTHROAT FLUMES FOR MEASURING
IRRIGATION AND ORAINAGE WATER

A SHUNT-LINE METERING SYSTEM FOR IRRIGATION WELLS
PARSHALL FLUMES OF LARGE SIZE

Authors Date
Simpson, Morel-
Seytoux, Young 12/80
Sunada 5/83
Morel-Seytoux 7/83

Bittinger, Danielson,
Evans, Hart, Morel-

Seytoux, Skinner 1/79
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Bhowmik, Simons 6/69
Muir, Simons 6/69
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Higby 8/83
Flack 7/76
1966
1957
1976
1977
1961

Page 2.
Price
S 6.00

7.00
4.00

6.00

Frea

4.00
4.00

.35
.25

.75
.50



Reqort
NO .

R

CR

§9

93

R 107

CR 110

CR

CR

CR

R

CR
CR

CR

CR

CR

(R

{s

&7

71

72

79

56

70
31

91

iisk

102

13

19

T, IYYSICAL 280(CESSES icont'd)

4. Geomorohic

Title

ENGINEERING ARD ECOLOGICAL EVALUATION OF ANTITRANSPIAANTS
EOR IRCREASING RUNOFF IN COLORAGQ WATERSHEDS

APPLICATION OF GEOMORPHIC PRINCIPLES TO ENVIROMMENTAL MANAGE-

MENT IN SEMIARID REGIONS

R0LE OF SEDIMENT IN NON-POINT SOURCE SALT LOADING WITHIN
THE UPPER COLORADO RIVER BASIN

GEQMORPKIC AND LITHOLOGIC CONTROLS OF DIFFUSE-SQURCE
SALINITY, GRAND VALLEY, WESTERN COLORADO

e. Geochemical

HYDROGEDLOGY AND WATER QUALITY STURILES IN THE CACHE LA
POUBRE BATIN, COLORADO

TOKIC HEAVY METALS IN GROUNDWATER OF A PORTION OF THE
FRONT RANGE MINERAL BELT (Partial Report)

SALT TRANSPORT IN SOIL PROFILES WITH APPLICATION 1O
{AAIGATION RETURN FLOW

TOXILC HEAVY METALS IN GROUNDWATER OF A PORTION OF THE
FRAONT RANGE MINERAL BELT {Final Report}

EVALUATION OF THE STORAGE OF DIFFUSE SOURCES OF SALINITY
IN THE UPPER COLORADO RIVER BASIN

2. PLANNING/EVALUATION METHODOLOGY

a. Y¥altuation

EVALUATION AND IMPLEMENTATION OF URBAN DRAINAGE AND FLOOD
CONTROL PROQECTS

AN ECONOMIC ANALYSIS OF WATER USE IN COLORADG'S ECONOMY

ACMIEVING URBAN WATER CONSERVATION: TESTING COMMUNITY
ACCEPTANCE

ELONOMIC SENEFITS FROM INSTREAM FLOW IN A COLORADQ
MOUNTAIN STYREAM

AN EMPIRICAL APPLICATION OF A MODEL FOR ESTIMATING THE
RECREATION VALUE OF INSTREAM FLOW

MEASURING RENEFITS AND THE ELONOMIC VALUE OF WATER (N
RECREATION OGN HIGH COUNTRY RESERVGIRS

EMPIRICAL APPLICATION OF A MODEL FOR ESTIMATING THE
RECREATION WALUE OF WATER (N RESERYOIRS COMPARED 7O
{NSTREAM FLOW

THE ENVIRONMENTAL OUALITY OBJELTIVE OF PRINCIPLES AND
STANDARDS FOR PLANNING

Authors

Kreith
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PLANNINGEVALUATION SETHOBOLOGY - 3, Yajuation (cont'd)

-

ttle

P

SCONOMIC VALUE OF BENEFITS FROM RECREATION AT HIGH MOUNTAIN
RESERVGIRS

THE SURVEY-BASED INPUT-QUTPUT MODEL AS A RESOURCE PLANNING
TagL

JIRECT AND [NDIRECT ECONOMIC EFFECTS OF HUNTING ARD
SIBRING TN ZOLJRADO - ey

8. System Simulation
COMPUTER SIMULATION OF WASTT TRANSPORT [N GROUNDWATER
AQUIFERS

SYSTEMATIC DESIGN OF LEGAL REGULATIONS FOR OPTIMAL
SURFACE -GROUNDWATER USAGE ~ PHASE |

FEASIBTLITY AND POTENTIAL OF ENWANCING WATER RECREATION
JPPORTUNITIES ON RIGH COURTRY RESERVOILRS

SYSTEMATIC JESIGN OF LEGAL REGULATIONS FGR GPTIMAL
SURFALE -GROUNDWATER USAGE, PHASE 2

DEVELOPMENT OF A SUBSURFACE HYOROLOGIC MODEL ANB USE FOR
(KTEGRATED MANAGEMENT OF SURFACE AND SUBSURFACE WATER
RESOURCES

DEVELOPMENT OF A STREAM-AQUIFER MQDEL SUITED FOR DEVELOPMENT

SYNTHESIS AND CALIBRATION OF A RIVER BASIN WATER MANAGEMENT
MODEL

WATERLOGGING CONTROL FOR IMPROVED WATER AND LANG USE
EFFICIENCIES: A SYSTEMATIC ANALYSIS

DAILY CPERATIONAL TOOL FOR MRXIMUM BEMERICIAL USE MANAGE-
MENT OF SURFACE AND GROUNDWATERS IN A BASIN

A RIVER BASIN NETWORK MODEL FOR CONJUNCTIVE USE OF SURFACE
ARD GROUNDOWATER: PROGRAM CONSIM

THE IMPALTS OF IMPROVING EFFICIENCY OF IRRIGATION SYSTEMS ON
WATER AVAILABILITY IN THE LOWER SOUTH PLATTE RIVER BASIN

WATER MAMAGEMENT MODEL FOR FRONT RANGE RIVER BASINS

AN INTERACTIVE RIVER BASIN WATER MONAGEMENT MODEL:
SYNTHESIS AND APFLICATION

& SIMULATION MODEL FOR AMALYZING TIMBER-WATER JOINT
PRGOUCTION [N THE COLORADO ROCKIES

Tage 4.

Ayzhor Jate Price
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McKean, Nobe 182 5.3
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2. PLANNING/EVALUATION METHODOLOGY {cont'd)

¢. Analytical Models

Title
ECONOMICS OF GROUNDWATER DEVELOPMENT IN THE HIGH PLAINS OF
ZOLORACC

(DENTIFICATION QF URBAN WATERSHED UNITS USING REMOTE
SPECTRAL SENSING

SELECTION OF TEST VARIABLE FOR MINIMAL TIME DETECTION OF
BASIN RESPONSE TO NATURAL OR INDUCED CHANGES

MATHEMATICAL MODELING OF WATER MANAGEMENT STRATEGIES IN
URBANIZING RIVER BASINS

MODELLING THE DYNAMIC RESPONSE OF FLOQDPLAINS TO URBANIZA-
TION IN EASTERN NEW ENGLAND

MODELS FOR SYSTEM WATER PLANNING WITH SPECIAL REFERENCE
TO WATER REUSE

AN EMPIRICAL APPLICATION OF A MODEL FOR ESTIMATING THE
RECREATION VALUE OF INSTREAM FLOW

EMPTRICAL APPLICATION OF A MODEL FOR ESTIMATING THE
RECREATICON VALUE OF WATER IN RESERVOIRS COMPARED TO
INSTREAM FLOW

WATERLOGGING CONTROL FOR IMPROVED WATER AND LAND USE
EFFICIENCIES: A SYSTEMATIC ANALYSIS !

INVESTIGATION OF OBJECTIVE FUNCTIONS AND OPERATION RULES
FOR STORAGE RESERVOIRS

PLANNING WATER REUSE: DEVELOPMENT QF REUSE THEQRY AND THE
INPUT-QUTPUT MODEL, VOL. 1: FUNDAMENTALS

PLANNING WATER REUSE: DEVELOPMENT OQF REUSE THEORY AND THE
INPUT-OUTPUT MODEL, vOL. II: APPLICATION

MATHEMATICAL MODELS FOR PREDICTION OF SQIL MOISTURE PROFILES

WATER FOR THE SOUTH PLATTE BASIN

PROCEEDINGS OF THE WORKSHOP ON INSTREAM FLOW HABITAT CRITERIA
EXPLORING WAYS OF INCREASING THE USE OF SOUTH PLATTE WATER

MODELS DESIGNED TO EFFICIENTLY ALLGCATE IRRIGATION WATER USE
BASED ON CROP RESPONSE 70 SOIL MOISTURE STRESS

ECONOMIC VALUE OF BENEFITS FROM RECREATION AT HIGH MOUNTAIN
RESERVOIRS

DEVELOPMENT OF METHODOLOGIES FOR DETERMINING OPTIMAL WATER
STORAGE STRATEGIES

THE SURVEY-BASED INPUT-DUTPUT MODEL AS A RESOURCE PLANNING
TOOL

AN INPUT-QUTPUT ANALYSIS OF SPORTSMAN EXPENDITURES IN COLGRADG

ENERGY AND WATER SCARCITY AND THE IRRIGATED AGRICULTURAL
ECONOMY OF THE COLORADO HIGH PLAINS: DIRECT ECONQMIC-
HYDROLOGIC IMPACT FQORECASTS (1979-2020)

OIRECT AND INDIRECT ECONOMIC EFFECTS OF HUNTING AND FISHING
IN COLORADO

Author
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2. OLANNING,EYALUATION METHODOLQGY {cont'd)

4. Planning Procadure

Title

MANUAL FOR TRAINING IN THE APPLICATION OF PRINCIPLES AND
STANOARDS (Water Resources Council)

3. DEMAND REQUCTION

IMPROVING EFFICIENCY IN AGRICULTURAL WATER USE

HYDRAULIC OPERATING CHARACTERISTICS OF LOW GRADIENT BORDER
CHECKS IN THE MANAGEMENT OF IRRIGATIQN WATER

HYDRAULICS OF LOW GRADIENT BORDER IRRIGATION SYSTEMS

[MPROVING EFFICIENCY IN AGRICULTURAL WATER USE
EVAPORATION OF WATER AS RELATED TO WIND BARRIERS

GROUNDWATER RECHARGE AS AFFECTED BY SURFACE VEGETATION -
AND MANAGEMENT

IMPROVEMENTS IN MOVING SPRINKLER IRRIGATION SYSTEMS FOR
CONSERVATION QF WATER

CONSOLIDATION OF IRRIGATION SYSTEMS: PHASE I'~ ENGINEERING,
LEGAL, AND SOCIOLOGICAL CONSTRAINTS AND/OR FACILITATORS

ENGINEERING AND ECOLOGICAL EVALUATION QF ANTITRANSPIRANTS
FOR INCREASING RUNQFF IN COLORADO WATERSHEDS

ACHIEVING URBAN WATER CONSERVATION, A HANDBCOK

ACHIEVING URBAN WATER CONSERVATION: TESTING COMMUNITY
ACCEPTANCE

CONSOLIDATION OF IRRIGATION SYSTEMS: PHASE II -~ ENGINEERING,
ECONOMIC, LEGAL AND SOCIOLOGICAL REQUIREMENTS

MUNICIPAL WATER USE IN NORTHERN COLORADO: DEVELOPMENT QF
EFFICIENCY-QF-USE CRITERION

URBAN LAWN IRRIGATION AND MANAGEMENT PRACTICES FOR WATER
SAVING WITH MINIMUM EFFECT ON LAWN QUALITY

SALT- AND DROUGHT-TOLERANT CROP PLANTS FOR WATER CONSERVATION

THE EFFECTS OF WATER CONSERVATION ON NEW WATER SUPPLY FOR
URBAN COLORADO UTILITIES

ANNOTATED BIBLIOGRAPHY ON TRICKLE IRRIGATION

WATER USE AND MANAGEMENT IN AN ARID REGION (Fort Collins,
Colarado and Vicinity)

CUTTING CITY WATER DEMAND

MODELS DESIGNED TO EFFICIENTLY ALLOCATE I[RRIGATION WATER
USE BASED ON CROP RESPONSE TO SOIL MOISTURE STRESS

IMPACT OF IRRIGATION EFFICIENCY IMPROVEMENTS ON WATER AVAIL-
ABILITY IN THE SQUTH PLATTE RIVER BASIN

AN ASSESSMENT OF WATER USE AND POLICIES IN NORTHERN
COLORADQ CITIES

Eval UATING WATER DISTRIBUTIONS OF SPRINKLER IRRIGATION SYSTEMS

Author Date
Caulfield 12/74
Kemper, Danielson 6/69
Heermann, Evans 6/68
Evans, Heermann,

Howe, Kincaid 6/70
Kemper 7/70
Verma, Cermak 6/ 71
Klute, Danielson,

Linden, Hamaker 12/72
Miles 6773
Skagerboe,

Radosevich, Viachas 6/73
Kraith 3/75
Flack, Weakley, Hi11 9/77
Snodgrass, Hill 9777

Vlachos, Huszar,
Radosevich, Skogerbce 5/80

White, DiNatale,

Greenberg, Flack 3/80

fanieisan,

Feldhake 5/81

Nabors 10/81

E1Yinghouse,

McCoy 12/82

Smith, Walker 6/75

Andersan, DeRemer,

Hall 9/77

Flack 5/79

Anderson, Yaron,

Young 5/77

Bittinger, Danielson,

Evans, Hart, Morel-

Seytoux, Skinner 1/79

DiNatale 3/81
1976
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<. SUPPLY AUGMENTATION

itle

SNOW ACCUMULATION IN RELATION TO FOREST CANOPY

CONTROLLED ACCUMULATION QF BLOWING SNOW

STUDIES OF THE ATMOSPHERIC WATER BALANCE

SNOW-AIR INTERACTIONS AND MANAGEMENT OF MOUNTAIN
WATERSHED SNOWPACK

WAATERLOGGING CONTROL FOR IMPROVED WATER AND LAND USE
EFFICIENCIES: A SYSTEMATIC ANALYSIS

PLANNING WATER REUSE: DEVELOPMENT QF REUSE THEQORY AND
THE INPUT-QUTPUT MODEL, VOL. I: FUNDAMENTALS

PLANNING WATER REUSE: DEVELOPMENT OF REUSE THEORY AND
THE INPUT-QUTPUT MODEL, VOL. II:. APPLICATION

ARTIFICIAL GROUNDWATER RECHARGE, SAN LUIS VALLEY,
COLORADC

SNOWPACK AUGMENTATION 8Y CLOUQD SEEDING IN COLORADG AND UTAH

THE IMPACTS OF IMPROVING EFFICIENCY OF IRRIGATION SYSTEMS ON
WATER AVAILABILITY IN THE LOWER SQUTH PLATTE RIVER BASIN

5. MANAGEMENT OF HYORCLOGIC EXTREMES

ECONOMICS AND ADMINISTRATION OF WATER RESOURCES
EXPERIMENTAL INVESTIGATION OF SMALL WATERSHED FLOCDS

EXPERIMENTAL INVESTIGATION OF SMALL WATERSHED FLOODS

EVALUATION AND IMPLEMENTATION OF URBAN DRAINAGE AND FLDOD
CONTROL PROJECTS

URBAN DRAINAGE AND FLOOD CONTROL PROJECTS: ECONOMIC, LEGAL,
AND FINANCIAL ASPECTS

DEVELOPMENT OF A DRAINAGE AND FLOOD CONTROL MANAGEMENT
PROGRAM FOR URBANIZING COMMUNITIES - PART 1

DEVELCOPMENT OF A DRAINAGE AND FLOOD CONTROL MANAGEMENT
PROGRAM FOR URBANIZING COMMUNITIES - PART II

DROUGHT - INDUCED PROBLEMS AND RESPONSES OF SMALL TOWNS AND
RURAL WATER ENTITIES IN COLORADO: TRE 1976-78 DRQUGHT

INCREASING THE ECONOMIC EFFICIENCY AND AFFORDABILITY OF
STORM DRAINAGE PROJECTS

FLOOD PLAIN MANAGEMENT OF THE CACHE LA POUDRE RIVER NEAR
SORT COLLINS, COLORASO

CACHE LA POUURE RIVER NEAR FORT COLLINS, COLORADO - FLOOD
MANAGEMENT ALTERNATIVES - RELOCATIONS AND LEVIES

FACTORS AFFECTING PUBLIC ACCERTANCE OF FLOOD INSURANCE
IN LARIMER AND WELD COUNTIES, COLORADO

PROCEEDINGS, COLORADG OROUGHT WORKSHOPS
THE NATIONAL FLOOD INSURANCE PROGRAM IN LARIMER COUNTY,
COLORADO AREA

RESEARCH DATA ASSEMBLY FOR SMALL WATERSHED FLOGDS, PART 11

Author cate

Meiman, Froenhlich,

Dils *6/69
Rasmussen 6/69
Rasmussen 8/Mn
Meiman, Grant 6/74
Simpson, Morel-
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Title

STASIBILITY IND SCTENTIAL OF ENHANCING WATER RECREATION
OPPCRTUNITIES ON HIGH COUNTRY RESERVOIRS

SELECTING AND CLANNING HIGH COUNTRY RESERVOIRS FOR
RECREATION WITHIN A MULTIPURPOSE MANAGEMENT FRAMEWQRK

EMPIRICAL APPLICATION OF A MODEL FOR ESTIMATING THE
RECREATION VALUE OF WATER IN RESERVQIRS COMPARED TO
INSTREAM FLOW

SEFEITS OF WILDERNESS LEGISLATION ON WATER-PROJECT
SEVELOPMENT IN COLORADO

IMPLEMENTATION OF THE FEDERAL WATER PROJECT RECREATION
ACT IN COLORADO

TECERAL WATER RECREATION [N COLORADO:
AND ANALYSIS

RECREATION BENEFITS OF WATER QUALITY: ROCKY MQUNTAIN
VAT IONAL PARK, SQUTH PLATTE RIVER BASIN, COLORADO

COMPREHENSIVE VIEW

B, WATER QUALITY

1. IDENTIFY AND CONTROL ENTERING POLLUTANTS

HYDROGEOLOGY AND WATER QUALITY STUDIES IN THE CACHE LA
POUDRE BASIN, COLGORADG

WATERFOWL-WATER TEMPERATURE RELATIONS IN WINTER

GEQLOGIC FACTORS IN THE EVALUATION OF WATER POLLUTION
POTENTIAL AT MOUNTAIN DWELLING SITES

RESEARCH NEEDS AS RELATED TO THE OEVELOPMENT QF SEDIMENT
STANDARDS IN RIVERS

TOXIC HEAVY METALS [N GROUNDWATER OF A PORTION OF THE
FRONT RANGE MINERAL BELT

SALT TRANSPORT IN SOIL PROFILES WITH APPLICATION TO
IRRIGATION RETURN FLOW

TOXIC HEAVY METALS IN GROUNDWATER OF A PORTION OF THE
FRONT RANGE MINERAL BELT

EVALUATION OF THE STORAGE OF DIFFUSE SQURCES QF SALINITY
IN THE UPPER COLORADO RIVER BASIN

POLLUTTONAL CHARACTERISTICS OF STORMWATER RUNOFF

DETECTION OF WATER QUALITY CHANGES THROUGH QPTIMAL TESTS
AND RELIABILITY OF TESTS
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3. WATER DATA, PROCECTIONS, GENERAL INFORVATION fcont'a)
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AN INPUT-QUTPUT ANALYSIS OF SPORTSMAN EXPENOITURES IN COLORADQ McKean

AN INPUT-QUTPUT STUDY OF THE XKREMMLING REGION OF WESTERN
COLCRADD

AN ECONQMIC INPUT-CUTPUT STUDBY QF THE HIGH PLAINS REGION
JF SASTERN COLIRADO

ENERGY SRQOUCTION AND uSE Iy CTLORADC'S HIGH PLAINS REGION
COMMUNITY AND SOCIO-ECONOMIC ANALYSIS OF COLORAGO'S HIGH
PLAINS REGION

ENERGY AND WATER SCARCITY AND THE IRRIGATED AGRICULTURSL
ECONOMY OF THE COLORADO HIGH PLAINS: DIRECT ECONOMIC-
HYOROLOGIC IMPACT FORECASTS (19739-2020)

THE ECONOMIES OF MESA COUNTY AND GARFIELD, MOFFAT, RIQ
BLANCC, AND ROUTT COUNTIES, COLORAOG

THE ECONGMY OF THE POWDER RIVER BASIN REGION OF EASTERN
WYOMING: JESCRIPTION aND ANALYSIS

AN INTERINOUSTRY ANALYSIS OF THREE FRONT RANGE FOOTHILLS

COMMUNITIES: ESTES PARK, GILPIN COUNTY, AND WOOOLAND
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THE ZCONQMY QF LINCCLN, SUBLETTE, SWEETWATER AND UINTA
COUNTIES, WYOMING, ROCK SPRINGS BLM DISTRICT

THE £CONQMY QF ALBANY, CARBON AND FREMONT COUNTIES,
WYOMING, RAWLINS BLM DISTRICT

THE ECONOMY OF BIG HORN, HOT SPRINGS, PARK, AND WASHAKIE
COUNTIES, WYOMING, WORLAND BLM DISTRICT

THE ECONOMY OF EASTERN WYOMING, CASPER BLM DISTRICT

DESIGN OF WATER AND WASTEWATER SYSTEMS FOR RAPID GROWTH
AREAS (BOOM TOWNS, MOUNTAIN RESORTS)

[RRIGATION OEVELOPMENT PQTENTIAL IN COLORADO
PICEANCE BASIN INVENTORY
A GUIDE TO COLORADG WATER LAW

CHEMICAL QUALITY OF GROUNDWATER IN THE PROSPECT VALLEY
AREA, COLORADO

ECONOMIC ANALYSIS OF WATER USE IN BOULDER, LARIMER AND WELD

COUNTIES, WITH PROJECTIONS TQ 1980

PUBLIC WATER SUPPLIES JF COLORADG 1953-1860
COLORADO 'S GROUNDWATER PROBLEMS

GROUNDWATER IN THE 8LJ0U YALLEY

PUMP TRRIGATION OM THE COLORADO HIGH PLAINS

GROUNDWATER MANAGEMENT DISTRICT JIRECTOR'S HANDBOOK
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