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ABSTRACT 
 
 
 

IDENTIFYING SINGLE NUCLEOTIDE POLYMORPHISMS ASSOCIATED WITH BEEF 

CATTLE TERRAIN-USE IN THE WESTERN UNITED STATES 

 
 

Beef cattle are drawn to areas with gentle terrain, which may result in heavy grazing near 

riparian zones and minimal grazing on rugged terrain. Traditional management tools to improve 

grazing distribution can be costly; therefore, genomic selection has been proposed as a means of 

improving beef cattle grazing patterns. The objective of this thesis was to identify single nucleotide 

polymorphisms (SNP) associated with beef cattle terrain-use in the western U.S. Variant detection 

using RNA-sequencing data obtained from Angus cardiovascular tissues and Brangus reproductive 

tissues revealed 48 potential causative mutations in five genes that were previously associated with 

terrain-use indices: SDHAF3, RUSC2, SUPT20H, MAML3, and GRM5. In an additional study, 

Bayesian multiple-regression was performed using BovineHD genotypes and global positioning 

system (GPS) data collected from 80 beef cows managed in Arizona, Montana, and New Mexico. 

Results of this analysis suggested that beef cattle terrain-use was polygenic; however, additional 

observations were needed to validate the quantitative trait loci (QTL) identified. Subsequent 

genome-wide association studies (GWAS) were performed for six terrain-use traits using 

BovineSNP50 genotypes and distribution data collected from a multi-breed population of cattle (n 

= 330) managed in the western U.S. These analyses identified 32 QTL and 29 putative candidate 

genes with diverse functions related to hypoxia, heat stress, feed efficiency, weight traits, energy 

metabolism, and lactation. In conclusion, results presented in this thesis suggested that terrain-use 
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is polygenic and may be improved with genetic selection; however, additional studies are needed 

to further elucidate the genetic mechanisms underlying terrain-use of beef cattle.  
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CHAPTER 1: INTRODUCTION 

 
 

Introduction 

Beef production in the United States is greatly important to rural economies and is often 

the top agricultural commodity for cash receipts (NASS, 2016; DelCurto et al., 2017). From a 

global perspective, the United States is the largest beef producer  and one of the largest exporters 

of beef (FAS, 2018). Most of the land dedicated to beef production in the United States consists 

of rangeland and pastures in the mid-west/western states that are unsuited for urban development 

or cultivated crops (Sorensen et al., 2018). Subsequently, beef producers in the western U.S. face 

several challenges including the arid/semi-arid climate and rough topography (DelCurto et al., 

2017).  

Western rangelands support ~20% of the U.S. beef cattle inventory (DelCurto et al., 2017) 

and there may be opportunity for increased utilization of rangelands if beef cattle grazing 

distribution can be improved (Tanaka et al., 2007). Recent estimates suggest that one third of 

western rangelands receive minimal grazing due to physical attributes of the land that deter grazing 

(Bailey et al., 2017). For example, vegetation found in remote areas of pasture, further than 3.2 

km from the nearest water source, often receive minimal grazing because cattle prefer to graze 

within 3.2 km of water (Valentine, 1947; Holechek, 1988). Improving grazing distribution may  

therefore increase forage harvest and reduce supplemental feeding (Tanaka et al., 2007) as well as 

minimize chronic heavy grazing that can negatively impact water and soil quality, vegetation, and 

wildlife habitat (Kauffman and Krueger, 1984; Heady and Child, 1994; CAST, 2002).  

Initial management tools to improve grazing patterns of beef cattle included fencing, water 

development, herding, and supplementation (Bailey et al., 2018). While these methods proved 
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effective, they required large financial investment, which limited their implementation in most 

beef production systems (Tanaka et al., 2007). Genetic selection of beef cattle has been proposed 

as a strategy to improve grazing distribution or terrain-use and preliminary studies, using single-

single nucleotide polymorphism (SNP) analyses, identified candidate SNP associated with terrain-

use traits (Bailey et al., 2015). The aim of this thesis was to further examine the previously 

identified SNP and genes as well as identify additional quantitative trait loci (QTL) to further 

elucidate the role of genetics in beef cattle terrain-use. More specifically, using beef cow genotype 

and phenotype data, the project objectives were to: 1) identify potential causative mutations within 

the five genes previously associated with terrain-use (SDHAF3, RUSC2, SUPT20H, MAML3, and 

GRM5) using RNA-sequencing data; 2) investigate these candidate QTL using a Bayesian 

methodology that accounts for SNP-interactions; and 3) perform genome-wide association studies 

(GWAS) with new data (n = 330 cattle from 14 ranches) for six terrain-use traits using Bayesian 

multiple-regression.
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CHAPTER 2: LITERATURE REVIEW 

 
 

Livestock Grazing  

History of Livestock Production Systems in the Western United States 

Rangeland refers to land managed as a natural ecosystem in which the native vegetation is 

primarily composed of grasses, grass-like plants, forbs, or shrubs (Bedell, 1998). Rangelands 

comprise approximately half of earth’s land surface and 31% of the total land area in the United 

States (761 million acres; U.S.; Havstad et al., 2009). As discussed by Derner and Jin (2012), 

“rangelands are the largest and among the most diverse land resources in the United States.” Alpine 

regions, deserts, grasslands, marshes, meadows, savannas, shrublands, and tundra are all 

considered rangelands (Bedell, 1998). Most of the nation’s rangelands are in the western U.S. 

where the diverse landscape includes low-elevation plains and basins as well as high-elevation 

rough country characterized by steep slopes and shallow/rocky soils (Figure 2.1; Havstad et al., 

2009; DelCurto et al., 2017).  

The western rangelands became the focal point of the cattle boom in the mid-1800’s when 

newly constructed railroads provided access to eastern markets (Bohrer, 1975; Sayre and 

Fernandez-Gimenez, 2003). Financial capital enabled settlers in the western U.S. to expand their 

herds on credit (Bentley, 1898; Jackson, 1956; Atherton, 1972) and the open range provided vast 

amounts of forage (Cook and Redente, 1993). In the mid-1880’s, severe drought during summer 

months depleted range resources and cattle market prices fell. Producers were unable to reduce 

their herds due to debt incurred at the time of purchase as selling animals when market prices were 

low caused the settlers to default on their loans (Sayre and Fernandez-Gimenez, 2003). When 

extreme winter conditions arrived many cattle starved to death in what would later be termed the 
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“tragedy of the commons” (Sayre and Fernandez-Gimenez, 2003). While the tragedy of the 

commons significantly reduced the number of cattle grazing on public lands, overgrazing left a 

lasting impact on the rangelands (Bohrer, 1975; Sayre and Fernandez-Gimenez, 2003).  

 

 

Figure 2.1. Map depicting land use in the United States in 2012 (Sorensen et al., 2018). 
 

Jared G. Smith, H. L. Bentley, David Griffiths, E. O. Wooton, and Frederic Clements were 

some of the first to document the deteriorating rangelands that resulted from open access and heavy 

grazing (USDA Forest Service, 1944; Holechek, 1981; Sayre et al., 2012). These botanists and 

agronomists noted soil erosion, an increased number of poisonous plants, a higher number of 

woody plants, and fewer palatable plants in the rangelands spread throughout the United States 

(Holechek, 1981). These reports, along with many others, helped form the discipline of range 

science, as well as laws and policies regarding rangeland management (Sayre et al., 2012). 
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In 1898, the government started issuing permits to protect federal lands from what Sayre 

et al. (2012) described as “too many livestock, too often, and for too long.” These permits limited 

the number of livestock allowed to graze on federal lands at a given time. In 1905, the Forest 

Service was established under the Department of Agriculture and this agency formed livestock 

grazing allotments as a means of coordinating grazing use and improving range conditions. During 

the next decade grazing laws were passed to protect national forest lands that were previously 

depleted by overgrazing. In 1934, the Taylor Grazing Act was passed and management 

responsibility for all remaining public lands was assigned by the Grazing Service which later 

became the Bureau of Land Management (BLM). Under the BLM, public rangelands in the 

western United States were separated into fenced allotments and leased to ranchers (Sayre et al., 

2012). 

In the years that followed, citizens became increasingly interested in the use of public 

lands. Rangelands previously used primarily for livestock grazing harbored untapped resources 

that could be exploited by the growing urban population. Consequently, laws were passed to 

further dictate the utilization of public lands in the western U.S. These laws include the Multiple-

Use Sustained-Yield Act of 1960, which described the five major uses of national forests: range, 

timber, watershed, wildlife, and outdoor recreation. Comparably, the Classification and Multiple 

Use Act of 1964 required the BLM to classify public lands based upon equal consideration for 

wildlife, recreation, soil, water, range, forestry, land, and minerals. The National Environmental 

Policy Act of 1969 required all federal actions including the U.S. Forest Service and the BLM to 

evaluate the impact of federal actions, with emphasis on environmental consequences. Lastly, the 

Federal Land Policy and Management Act of 1976 expanded upon the 1964 act that governed how 

the BLM manages public lands (Hagenstein, 1971; Havstad et al., 2009). 
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While laws associated with the use of public lands reflected the changing needs of a 

growing country, these acts resulted in additional challenges for the livestock industry. Ranchers 

were and are faced with many challenges including the production of larger quantities of animal 

products on reduced land areas. Tolleson and Meiman (2015) reported that between 1982 and 2007 

the total area of cropland, pastureland, and rangeland in the United States declined by 63, 12, and 

9 million acres, respectively. This substantial loss in agricultural lands was a direct result of urban 

development and an increased interest in recreational areas, endangered species conservation, and 

environmental sustainability (Hendrickson, 2015; Tolleson and Meiman, 2015).  

As public land use becomes increasingly controversial, it is important to acknowledge the 

positive aspects of livestock production and its contribution to food security. Beef cattle production 

provides: 1) essential amino acids and micro/macro nutrients for human consumption, 2) fertilizer, 

3) products for human medicine, 4) brush control, fire prevention, and nutrient enrichment in 

wildlife areas, and 5) income for individual households and the nation (Tolleson and Meiman, 

2015; Mottet et al., 2017). According to the National Agricultural Statistics Service (NASS) of the 

USDA, cattle production was the top agricultural commodity in 2015, generating $78.2 billion in 

cash receipts in the U.S. (cash income from commodity sales; NASS, 2016). In July of 2017, 

approximately 102.6 million head were reported in the cattle and calves inventory and of these 

102.6 million, 32.5 million head were classified beef cows and 4.7 million were beef replacement 

heifers weighing more than 500 pounds  (NASS, 2017).  

Historically, western rangelands have supported 20% of the beef cattle inventory and 

“approximately 20% of the animal unit months (AUMs) for western livestock production are 

derived from public lands” (DelCurto et al., 2017; Drouillard, 2018). Consequently, it is crucial to 

implement grazing management strategies that will optimize production and appeal to the 
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environmentally conscious consumer who values public lands for recreation, wildlife habitat, etc. 

(DelCurto et al., 2017). 

Effects of Grazing on Vegetation and Riparian Zones  

Briske et al. (2008) summarized four major principles that must be considered when 

managing rangelands or forming grazing management plans: 1) plant growth and survival, 2) 

primary productivity, 3) forage quality, and 4) species composition. At the center of rangeland 

management, is the desire to have healthy vegetation which begins with the fundamental concept 

of plant growth and survival. Nearly all plants rely on photosynthesis as a means of deriving the 

chemical energy needed for growth and cellular respiration. “The process of photosynthesis 

requires photosynthetically active radiation, water, and carbon dioxide,” all of which are obtained 

through the root system and the leaves (Ashton, 1998). Extended periods of heavy grazing 

negatively affect a plant’s ability to perform photosynthesis due to continual defoliation (Briske 

and Richards, 1995). In turn, a chronic reduction in photosynthesis negatively impacts the number 

of branches as well as root mass, distribution, and longevity (Hodgkinson and Becking, 1978). In 

altering the structure of the plant, chronic intensive grazing restricts water and nutrient uptake and 

successively plant growth (Briske et al., 2008). Conversely, limiting the grazing period and 

providing the vegetation with a rest period has been shown to promote plant growth and re-growth 

(Holechek et al., 2001) which are important for long-term productivity (Huston and Pinchak, 

1991).  

While chronic defoliation may negatively impact plant growth, studies have shown that 

herbivory may positively impact plant performance under favorable conditions (McNaughton, 

1979b; Paige and Whitham, 1987; Briske et al., 2008). This concept has been termed grazing 

optimization or grazing overcompensation (McNaughton, 1979b; Vail, 1992; Hayashi et al., 2007). 
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Grazing optimization describes how the productivity of grazed plants will surpass that of ungrazed 

plants when grazing intensity reaches an optimal level and then decreases (McNaughton, 1979a). 

For grazing optimization to occur, the grazing pattern must consist of heavy grazing early in the 

growing season followed by a rest period in which grazing is restricted or non-existent (Frank and 

McNaughton, 1993). Similarly, grazing overcompensation refers to improved plant fitness 

following grazing (Vail, 1992). Studies compiled by Leriche et al. (2001) suggest that herbivory 

may improve plant performance due to: 1) greater light availability, 2)  reduction of water stress, 

3) elevated nutrient cycling due to the herbivores’ excretory products, 4) altered biomass 

reallocation, and 5) increased photosynthetic rate. Livestock and wildlife herbivory are therefore 

an important part of the western rangeland ecosystem.  

Plant growth, survival, and productivity leads us to the third rangeland management 

principle, forage quality. The nutrients that can be derived from a plant are dictated by forage 

quality or the ratio of cell soluble contents to structural components (Briske et al., 2008). This ratio 

is influenced by tissue age, tissue type, plant function, cell wall components (cellulose and lignin), 

and plant secondary compounds (Huston and Pinchak, 1991). For example, tissue age is inversely 

related to the proportion of soluble cell contents. Plants with a higher ratio of cell soluble contents 

have a higher forage quality making them desirable to grazing animals (Briske et al., 2008). 

Frequent grazing positively impacts the soluble to structural component ratio or forage quality by 

lowering the average tissue age (Walker et al., 1989). This relationship can improve animal 

performance by increasing the amount of nutrients available to the animal upon consumption of 

the vegetation (McNaughton, 1984). On the contrary, grazing plans that involve long rest periods 

result in decreased forage quality due to an increase in average tissue age (Briske et al., 2008).  
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As discussed by Huston and Pinchak (1991), the value of a particular plant species is often 

determined using forage quality which is based upon chemical composition (crude protein, 

minerals, fat, etc.). If the goal of the rangeland beef operation is to optimize animal performance, 

then maximizing rangeland forage quality may appear desirable or even necessary. However, 

maximizing forage quality may “reduce long term secondary production by decreasing the stability 

of the forage resource” (Huston and Pinchak, 1991). Furthermore, lower quality plant species may 

better promote long term production due to longer growing seasons, greater dry matter production, 

or a higher tolerance for herbivory (Huston and Pinchak, 1991). 

While the previous principles can be applied to an individual species or plant, species 

composition considers the plant community. As herbivores graze on preferred plants or groups of 

plants, they modify the community composition. As Briske et al. (2008) noted, “selective grazing 

of individual species or species groups places them at a competitive disadvantage with less 

severely grazed species or species groups and alters competitive interactions.” Briske et al. (2008) 

is referring to the concept of increasers, decreasers, or invader plants. Species that decline in the 

presence of herbivores due to defoliation and heavy grazing are classified as decreasers. These 

species tend to be more palatable and are therefore consumed at a higher rate. In contrast, species 

that increase during grazing due to their moderate palatability or higher tolerance for defoliation 

are categorized as increasers. Invaders are thought of as opportunists for they appear in the plant 

community during periods of grazing in which dominant species are suppressed. These invader 

species replace more palatable species with higher forage qualities (Archer and Smeins, 1991).  

Rangeland ecologists and managers used these fundamental principles of range 

management to develop grazing systems that promoted healthy ecosystems and optimized 

livestock production (DelCurto et al., 2005; Briske et al., 2011). In the 1950’s, deferred-rotation 
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grazing systems, which promoted herbivory after seed maturation, were the preferred grazing 

system in the western U.S. Gradually, numerous grazing systems were implemented on the western 

rangelands: rest-rotation, Santa Rita, seasonal suitability, best pasture, and short duration grazing 

(Howery et al., 2000). While many of these grazing systems attempted to address overgrazing in 

riparian zones, degradation of these areas continues to trouble the western U.S. (Howery et al., 

2000; DelCurto et al., 2005). Perhaps this is due to improper implementation or a lack thereof; 

nonetheless, degradation of riparian zones is problematic as these zones provide habitat for small 

mammals and aquatic species, nutrient rich forage for herbivores, and function in watershed 

hydrology and stream morphology (Kauffman and Krueger, 1984). 

As summarized by Kauffman and Krueger (1984), overgrazing in riparian zones may 

negatively impact plant performance, soil and water quality, and animal biodiversity. Chronic, 

heavy grazing may reduce, alter, or eliminate vegetative cover which may increase soil erosion, 

reduce mammalian habitat, and increase water temperatures (Kauffman and Krueger, 1984; CAST, 

2002). Heavy grazing may also lead to soil compaction and consequently, reduced plant growth 

(Heady and Child, 1994; CAST, 2002). Livestock excrement in riparian zones may reduce water 

quality (e.g., suspended solids) which can have negative implications for aquatic life and humans 

who come into contact with the water source (Kauffman and Krueger, 1984; CAST, 2002).  

Abiotic and Biotic Factors that Affect Grazing Distribution 

Livestock grazing distribution is defined as the dispersion of grazing animals in a pasture 

or allotment (Volesky et al., 1996). Issues with grazing distribution arose in the 1800’s when 

domestic livestock were first introduced to rangelands, but concentrated grazing (i.e., large 

concentrations of cattle grazing in one area) continues to be a challenge for modern rangeland 

operations (Williams, 1954; DelCurto et al., 2005). Livestock do not uniformly disperse 
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throughout a management unit, but instead, often congregate in desirable areas. Uniform grazing 

distribution is difficult to obtain on western rangelands because numerous abiotic and biotic factors 

influence the grazing patterns of cattle (Bailey et al., 1996; Bailey, 2005; Lunt, 2013). 

Cattle in the western United States typically graze in extensive rangeland pastures of rough 

terrain. In studying the grazing patterns of these beef cattle, researchers have identified an 

association between topographic features and site selection (Bailey et al., 1996). Research 

published by Valentine (1947) demonstrated that grazing intensity has an inverse relationship with 

distance travelled from water. Valentine (1947) reported that forage utilization was 38% greater 

in areas less than 0.8 km from the water source as compared to areas located approximately 3.2 to 

4 km from the water. Holechek (1988) used the results of Valentine (1947) and others to formulate 

suggested reductions in grazing capacity that corresponded with distance from water. Areas 

located 1.6 to 3.2 km from water were associated with a 50% reduction in grazing capacity whereas 

areas greater than 3.2 km were deemed “ungrazable” (Holechek, 1988). Similarly, Roath and 

Krueger (1982) recognized that forage utilization nears zero for areas located ≥ 80 vertical meters 

above water. Results of this study suggest that vertical distance from water influences grazing 

patterns. 

Previous studies also suggest that percent slope may limit pasture utilization. Upon 

studying the effect of slope on grazing distribution in a mountainous region of southwestern 

Montana,  Mueggler (1965) observed a negative relationship between percent slope and utilization. 

Gillen et al. (1984) reported similar findings, cattle preferred to graze on slopes of less than 20% 

grade in the Malheur National Forest. As with distance from water, Holechek (1988) provided 

recommendations for reduction in grazing capacity given percent slope: slope 0 to 10 (no 



  

12 
 

reduction), slope 11 to 30 (30% reduction), slope 31 to 60 (60% reduction), and slope > 60 

(ungrazable).  

Bailey et al. (1996) described many biotic factors that affect herbivore grazing patterns 

including: species composition, plant morphology, and forage quality and quantity. Grazing 

frequency and duration for a particular area are well-documented as corresponding with nutrient 

availability in a given plant community (Senft et al., 1987; Bailey et al., 1996). Briefly, cattle 

prefer to graze in areas that contain large quantities of high quality forage (Bailey et al., 1996). As 

summarized by Bailey (2005), increased utilization of riparian zones is unsurprising because 

forage production in riparian zones can be 6x greater than forage production in the uplands and 

riparian forage may contain a higher crude protein. 

Management Strategies to Improve Livestock Grazing Distribution 

Uneven grazing distribution challenges beef production and rangeland sustainability in the 

western U.S. Concentrated grazing can reduce forage harvest which increases the need for 

supplemental feed (Vallentine, 1990; Tanaka et al., 2007), and degrades riparian areas (Kauffman 

and Krueger, 1984); therefore, developing tools to improve the grazing patterns of domestic 

livestock is necessary (Stephenson, 2015; Bailey et al., 2018). While heterogeneous pastures 

hinder the rapid improvement of grazing uniformity, several management methods have 

successfully altered the grazing patterns of range cattle (Stephenson, 2015). Bailey (2004) 

separated grazing management strategies into two categories: 1) methods that alter the attributes 

of the management unit and 2) methods that modify livestock behavior. Traditional methods such 

as water development, fencing, and seasonal distribution (i.e., when grazing occurs), fall within 

the first category whereas low-stress herding and supplementation are within the second (Bailey, 

2004).  
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Altering pasture management to improve livestock grazing patterns is not a novel concept. 

In fact, many of the traditional methods listed above were implemented in the early 1900’s shortly 

after cattle were introduced to rangelands in the United States (Williams, 1954). Ingram (1930) 

reported instances of producers hauling water to undesirable areas of their pastures to improve 

sheep grazing patterns in 1918. Pechanec and Stewart (1949) confirmed the importance of water 

developments on sheep rangelands in southern Idaho and Harris (1950) recommended using 

temporary water developments to draw cattle to ungrazed regions. Additionally, Ganskopp (2001) 

evaluated the utility of water developments for improving cattle grazing patterns and found that 

grazing patterns were drastically altered with the introduction of a new water source.  

A more direct method of altering grazing distribution is fence construction. Stoddart and 

Smith (1943) documented the use of boundary, division, and drift fences to control grazing on 

rangelands. In 1954, Williams suggested using fencing to divide extensive rangelands into multiple 

pastures each containing a permanent water source. According to Bailey and Rittenhouse (1989), 

fencing homogeneous areas can improve grazing uniformity by eliminating the heterogeneity of 

the landscape that promotes concentrated grazing in desirable areas. For instance, cattle will graze 

in areas with rough terrain if the pasture does not contain gentle terrain. This provides an 

opportunity to protect riparian areas that are often overgrazed due to the abundance of high quality 

forage (Roath and Krueger, 1982; Bailey et al., 2004).  

As discussed by Bailey et al. (1996), cattle are drawn to areas that have higher quantities 

of high quality forage in heterogenous pastures. Ranchers can use this relationship between forage 

quality and grazing patterns to their advantage when attempting to improve grazing distribution. 

In mountainous regions, high quality forage can be found in the uplands during the early summer 

months; however, during the late summer, the forage quality decreases significantly due to tissue 
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aging and drier soils. Forage within riparian areas is relatively unaffected by the changing seasons 

because soils in these areas have a higher moisture content (Vallentine, 1990). Parsons et al. (2003) 

studied the effect of season on the grazing patterns of cow/calf pairs in eastern Oregon and reported 

that cattle grazed in the uplands more during the early summer months than the late summer 

months; therefore, suggesting that early summer grazing may improve riparian conditions in 

mountainous regions and that livestock dispersion in areas with rugged terrain is best in the fall 

and early winter because all forage is dormant and of low quality.  

For centuries, ranchers have used herding to move livestock from one area to another; 

however, its efficacy in the management of grazing distribution is controversial. Some view 

herding as ineffective because livestock often return to riparian areas in the absence of range 

rider(s); however, others describe herding as an excellent way to improve grazing uniformity on 

rangelands (Williams, 1954; Skovlin, 1957; Butler, 2000). Bailey et al. (2008) demonstrated that 

low-stress herding (i.e., a combination of pressure and release movements) can improve pasture 

utilization by increasing the amount of time cattle graze in the uplands and decreasing the amount 

of time cattle graze in riparian areas. However, as discussed by (Tanaka et al., 2007) the 

effectiveness of herding varies by ranch and is related to the frequency of herding, herding 

techniques, and natural cattle movements.  

According to Bailey et al. (2008) supplementation can be combined with herding to 

improve pasture utilization. When cattle were herded to a site that contained both a salt block and 

low-moisture block (i.e., dehydrated molasses supplement), forage utilization within a 600-meter 

radius of the supplementation site increased by 10 to 20%. This is consistent with Bentley (1941) 

who reported that cattle grazed in the areas surrounding the supplementation site when salt blocks 

were placed 1.2 km from water. Tanaka et al. (2007) concluded that producers may use strategic 
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supplementation to increase grazing uniformity, lengthen the grazing season, and reduce the 

amount of hay fed in the fall. 

While modifying pasture attributes and animal behaviour has proven to be effective, these 

practices are laborious and generally too costly for most beef production systems. Tanaka et al. 

(2007) examined the effectiveness of water development, fencing, herding, and supplementation 

from an economic standpoint for a 300-head cow-calf operation and found that implementing these 

production practices increased production costs by an estimated $1.35 per animal unit month 

(AUM), $1.55 per AUM, $3.30 per AUM, $6.83 per AUM, respectively. This presents a need for 

new management practices to be developed and implemented. Research suggests that modifying 

animal behavior via genomic selection may improve grazing distribution on western rangelands 

(Bailey et al., 2001a; Bailey et al., 2001b; Bailey, 2004; Bailey et al., 2004; Bailey, 2005; Bailey 

et al., 2006; Bailey et al., 2015). 

Genetic Basis of Grazing Distribution 

Numerous studies document beef cattle’s varied terrain-use in extensive and mountainous 

pastures. In studying the home range of cattle in the southern Blue Mountains of Oregon, Roath 

and Krueger (1982) discovered that livestock distribute unevenly across pastures and vegetation 

types. Moreover, areas containing desirable forage were left ungrazed when surrounded by rugged 

terrain. Howery et al. (1996) reported terrain-use differences for cattle sharing a common home 

range. Time spent grazing and resting in riparian zones and upland habitats varied by animal within 

four distinct home ranges. These studies, along with others, suggest that individual animal 

selection may improve livestock dispersion and pasture utilization (Roath and Krueger, 1982; 

Howery et al., 1996; Howery et al., 1998). 
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 Bailey (1999) presented four premises that must be true for selective culling to effectively 

improve beef cattle grazing patterns: 1) there must be substantial between-animal variation for 

terrain-use, 2) terrain-use phenotypes must be relatively easy to measure or predict, 3) terrain-use 

must be a heritable trait (differences in terrain-use must be inherent), and 4) terrain-use cannot be 

negatively correlated with performance traits. Bailey et al. (2001b) reported that Tarentaise cattle 

a breed that originated in the French Alps grazed steeper slopes and travelled to higher elevations 

than the Hereford cattle originating in England. Additionally, residual correlations revealed no 

association between terrain-use traits (slope, elevation, and distance from water) and animal 

performance (weight, height, and body condition score). Subsequent research by Bailey et al. 

(2001a) compared the terrain-use of cows sired by Angus, Charolais, Piedmontese, and Salers 

bulls. Daughters of Piedmontese bulls, with origins in the Italian Alps, grazed at higher elevations 

than daughters of Angus bulls (Scotland). These results support the findings of Bailey et al. 

(2001b). 

In 2004, Bailey and colleagues demonstrated the utility of using global positioning system 

(GPS) technology to collect terrain-use data. Observations recorded by researchers on horseback 

were used to categorize cows as hill climbers (prefer steep slopes and high elevations) or bottom 

dwellers (prefer gentle terrain and riparian zones). During the following year, nine cows that 

exhibited extreme terrain-use (4 hill climbers and 5 bottom dwellers) were monitored using GPS 

tracking collars. Global positioning system coordinates reinforced the concept of bottom dwellers 

and hill climbers as there were no changes in terrain preference from the previous grazing season. 

Additionally, Bailey et al. (2006) determined that hill climbers and bottom dwellers maintain their 

grazing patterns even when they are moved to different pastures. Results of these studies (Bailey 

et al., 2001a; Bailey et al., 2001b; Bailey et al., 2004; Bailey et al., 2006) provide evidence to 
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suggest that individual animal selection is a suitable method for improving livestock dispersion on 

large-scale beef operations.  

To further elucidate the role of genetics in beef cattle terrain-use, Lunt (2013) conducted a 

study in which embryo transfers were performed using donor/recipient cows that were categorized 

as hill climbers or bottom dwellers (i.e., embryos from cows classified as hill climbers were placed 

in cows classified as bottom dwellers, and vice versa). Donor cows were bred to one Simmental 

sire resulting in 39 heifer calves. Terrain-use phenotypes (slope, elevation, distance from water, 

distance travelled per day, and ratio index combining slope, elevation, and distance from water) 

were collected using GPS tracking collars when these heifer calves reached maturity (6 to 8 years 

old). Statistical analysis revealed no significant association between terrain-use traits and recipient 

status (hill climber vs bottom dweller; P > 0.10). Furthermore, donor status was not significantly 

associated with slope, elevation, distance travelled per day, or the ratio index (P > 0.10). On 

average, distance travelled from water was greater for cows whose donor dams were categorized 

as hill climbers (P = 0.07). As concluded by Lunt (2013), further studies were needed to discern 

the genetic factors that influence grazing patterns.  

Bailey et al. (2015) conducted a study in which 158 cows were tracked using Lotek 3300 

GPS collars and 80 cattle were genotyped using an Illumina BovineHD Beadchip. Average slope, 

elevation, and distance travelled from water were calculated for each animal and used to quantify 

terrain-use using two indices: rough and rolling. Single nucleotide polymorphisms (SNP) that were 

significantly associated with the indices were incorporated into a 50 SNP custom genotyping panel 

which was then used to genotype the original 80 cows as well as an additional 78 cows. A marker-

trait association analysis identified 12 SNP in 5 candidate genes (SDHAF3, SUPT20H, GRM5, 

MAML3, and RUSC2) that may be associated with terrain-use. These SNP explained 34 to 36% of 
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the variation in the rolling and rough indices, which suggested that terrain-use is a moderately 

heritable, polygenic trait that may be improved using genomic selection.  

Mercado et al. (2018) examined the repeatability of terrain-use in extensive rangeland 

pastures using GPS tracking data obtained from cows on 5 different ranches in the western U.S. 

Intra-class correlation estimates for terrain-use traits (averaged per week) varied by ranch: slope 

(0 to 0.60), elevation (0 to 0.71), and distance from water (0.02 to 0.77). Results of this repeated 

measures analysis suggest that terrain-use may be moderate to highly repeatable; however, 

additional records are needed to confirm the repeatability of terrain-use.  

Monitoring Livestock Grazing Patterns 

Initial livestock behaviour studies involved tracking animals on foot, horseback, or by 

vehicle. Herbel and Nelson (1966) studied the grazing patterns of beef cattle in the Chihuahuan 

Desert using a vehicle equipped with a spotlight. Howery et al. (1996) hiked to various locations 

in study pastures to document the locations and activities of crossbred cattle. Bailey et al. (2004) 

classified cows as hill climbers or bottom dwellers based upon locations recorded by riders on 

horseback. While these studies provided fundamental knowledge regarding grazing patterns and 

activities, the tracking methodologies provided low accuracy. Visual observations were difficult 

to obtain at night, unfavourable during poor weather conditions, and strenuous in areas with rugged 

terrain. This severely impacted the frequency and accuracy at which positions were recorded 

(Howery et al., 1996; Bailey et al., 2018).  

In the late 1980s and early 1990s, researchers began using global positioning system 

technology to “collect fine-scale location data for far-ranging species” (Thomas et al., 2012). As 

discussed by Recio et al. (2011), GPS technology enabled researchers to increase the frequency 

and accuracy of their tracking as well as track animals on a 24-hour basis in diverse weather 
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conditions and terrain. During the past 30 years, GPS technology has been used to study livestock 

movement, activity, and resource utilization (Bailey, 2000; Turner et al., 2000; Ganskopp; Johnson 

and Ganskopp, 2008; Swain et al., 2011; Bailey et al., 2018). 

Commercial GPS collars greatly improved livestock behavior research; however, this 

technology was costly and provided limited data-storage (Clark et al., 2006). Each GPS collar cost 

$1,500 to $2,000, making it difficult to simultaneously track a large number of cows (i.e., obtain 

a sufficient sample size; Anderson et al., 2013). In addition, many commercial collars lacked 

sufficient data-storage needed for high-frequency data collected over long periods of time (Clark 

et al., 2006). Thus, several more economical (< $1,000) GPS collars were developed (Clark et al., 

2006; Allan et al., 2013; Knight, 2016; McGranahan et al., 2018). As discussed by Forin-Wiart et 

al. (2015) these low-cost collars must be deployed and examined to ensure adequate performance 

and accuracy because they may be inferior to commercial collars. Knight et al. (2018a) compared 

beef cow terrain-use data obtained using Lotek 3300 GPS collars ($2,000; Lotek Wireless, New 

Market, Ontario, Canada) and igotU Gt-120 GPS tracking collars ($250; Knight et al., 2018a) to 

identify major discrepancies between the two collars. No difference was observed between the 

terrain-use measurements obtained from the two collars (P ≥ 0.37); however, an additional 

comparison of Lotek and igotU collars revealed that the igotU collars had a 13.8% lower fix rate 

(proportion of fix attempts that resulted in a location) and 21.7% more missed observations and 

0.17% more inaccurate data points (Knight et al., 2018b). Ultimately, “the choice of which tracking 

collar to use is a function of functionality and cost” (Thomas et al., 2012). 
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Genomic Technologies 

Bovine Genome 

In the early 1930’s, the Fort Keogh Livestock and Range Research Laboratory in Miles 

City, MT partnered with the Montana Agricultural Experiment Station to exploit heterosis and 

develop true-breeding lines of Hereford cattle. These lines were suitable for western rangelands, 

exhibited high fertility, and provide high-quality beef (Black and Knapp Jr, 1936; Durham, 2010). 

Line 1 was developed in 1934 when two sons of Advance Domino 13, Advance Domino 20 and 

Advance Domino 54 from Kremmling, CO, were bred to 50 cows from Miles City, MT. The 

female progeny produced in these matings were then bred to the paternal half-sibling of their sire. 

Subsequent generations of Line 1 Herefords have an average genetic relationship with Advance 

Domino 13 of ≥ 39% (MacNeil, 2009).  

The high level of homozygosity within Line 1 Hereford made these cattle an excellent 

resource for genetic research (Krehbiel, 2017). More specifically, Line 1 was used to derive the 

first estimates of heritability and the genetic correlations for economically relevant traits (ERT) in 

beef cattle. Additionally, the deoxyribonucleic acid (DNA) of L1 Domino 99375 was used to 

create a bacterial artificial chromosome (BAC) library for future research on causal mutations 

associated with ERT. The most substantial contribution of the Line 1 Herefords to bovine genetics 

research came in 2003 when DNA from L1 Dominette 01449 was used to establish the bovine 

reference genome (Elsik et al., 2009; Durham, 2010). 

Richard Gibbs and George Weinstock, with the collaboration of numerous international 

researchers, began sequencing the bovine genome in December 2003 at Baylor College of 

Medicine’s genome sequencing center. Researchers used Sanger sequencing with 7.1-fold 

coverage of the bovine reference genome, physical maps (generated using genomic DNA 
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fragments cloned into BAC), and whole-genome shotgun sequencing to develop and release the 

first draft of the Bos taurus bovine genome (BTAU4.0) in 2009. BTAU4.0 contained 135,743 

contigs (N50 contig size: 48.7 Kb) and 13,388 scaffolds, of which, 90% were mapped to the 29 

bovine autosomes and the x chromosome (Burt, 2009; Zhou et al., 2015). 

Shortly after BTAU4.0 was released, researchers at the University of Maryland’s Center 

for Bioinformatics and Computational Biology developed a new bovine reference genome 

(UMD2) using Baylor’s raw sequence data. Unlike BTAU4.0, UMD2 was assembled using 

paired-end BAC sequences, mapping data, and the human genome sequence. These new 

assembly techniques enabled researchers to map 91% of the contigs (44,433; N50 contig size: 

93.56) to the 29 autosomes and sex chromosomes. In comparison, UMD2 had greater sequence 

coverage as well as fewer sequence gaps, misassemblies, and single nucleotide polymorphism 

errors than BTAU4.0 (Burt, 2009; Zhou et al., 2015).  

Improvements were made to both BTAU4.0 and UMD2 (sequence gaps filled and 

corrected misassemblies) and new versions were released: UMD3.1 and BTAU4.6. While the 

updated assemblies were superior in comparison to the original bovine assemblies, inconsistencies 

between the UMD and BTAU assemblies continue to limit the accuracy of results from genomic 

analyses. Zhou et al. (2015) developed a bovine optical map (BtOM1.0) to identify discrepancies 

between the assemblies and provide information needed to improve UMD and BTAU. In 

comparing BtOM1.0 to UMD3.1.1 and BTAU4.6.1, 4,754 and 7,463 discordances were observed. 

Results of this analysis confirmed the need for one standard, well-constructed bovine reference 

genome. As discussed by Medrano (2017), “well-annotated genome assemblies in agricultural 

species have become essential tools to enable the understanding of phenotypic variation and 

practical applications of DNA technologies.” Furthermore, an accurate assembly allows us to 
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better understand genome evolution and architecture, long-range gene regulation, polymorphisms, 

and pathologies associated with genome architecture (Partipilo et al., 2011).  

The USDA Agricultural Research Service attempted to address this challenge by 

developing a bovine reference assembly using a de-novo assembly method and Pacific Biosciences 

long-read sequencing (ARS-UCD1.2). Briefly, de-novo assembly involves comparing raw 

sequence reads to identify overlapping regions that can be joined to generate a continuous sequence 

(Viluma, 2017). Long-read sequencing enables researchers to overcome challenges associated 

with assembling complex eukaryotic genomes containing repetitive DNA sequences. Unlike short-

read sequencing, long-read sequencing produces reads that span long repetitive sequences 

reducing the number of gaps and poorly assembled repetitive regions (Berlin et al., 2015; De 

Bustos et al., 2016). Reference assembly statistics suggest that ARS-UCD1.2 will be superior to 

the current public reference assemblies (Table 2.1). 

 

Table 2.1. Assembly statistics for bovine reference assembly ARS-
UCD1.2 (Released 04/11/2018; NCBI, 2018a). 

Statistic  
Total sequence length, bp 2,715,853,792 
Total assembly gap length, bp 28,162 
Gaps between scaffolds 0 
Number of scaffolds 2,211 
Scaffold N50, bp 103,308,737 
Scaffold L50, bp 12 
Number of contigs 2,597 
Contig N50, bp 25,896,116 
Contig L50, bp 32 
Total number of chromosomes and plasmids 31 
Number of component sequences (WGS or clone) 2,211 
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Single Nucleotide Polymorphisms 

As defined by Vogel and Motulsky (1987), “a polymorphism is a Mendelian or monogenic 

trait that exists in the population in at least two phenotypes (and presumably at least two 

genotypes), neither of which is rare-that is, neither of which occurs with a frequency of less than 

1-2%.” Single nucleotide substitutions/polymorphisms (SNP) are polymorphisms that occur 

during DNA replication when one base or nucleotide is substituted for another. This phenomenon 

is commonly referred to as a substitution mutation, point mutation, or base substitution. There are 

two types of nucleotide substitutions: transitions and transversions. Transitions occur when a two-

ring purine is substituted for a two-ring purine or when a one-ring pyrimidine is substituted for 

another one-ring pyrimidine. Transversions occur when a one-ring purine is interchanged with a 

two-ring pyrimidine or vice versa (Vignal et al., 2002). Studies examining SNP associated with 

human disease suggest that the most prevalent nucleotide substitutions are as follows: C substituted 

for T, T substituted for C, G substituted for A, and substituted to G. Thus, transitions are more 

common than transversions (Antonarakis and Cooper, 2013).  

Single nucleotide polymorphisms are found throughout the genome in both coding (i.e., 

exons) and non-coding regions (i.e., introns, intergenic regions, 5’ or 3’ untranslated regions, 

promoters, and transcription factor binding sites). As discussed by Shen et al. (1999), “the 

frequency of SNPs varies between genomic regions and between coding and noncoding 

sequences.” Variants found within coding regions can be characterized as synonymous (codon 

encodes for the same amino acid) or non-synonymous (codon encodes for a different amino acid). 

Non-synonymous SNP are further classified as missense or nonsense variants. Missense SNP 

occur when the codon substitution alters the amino acid and nonsense SNP occur when the codon 

substitution results in a stop codon that prematurely stops protein translation (Klug et al., 2013). 
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Simply put, SNP location governs SNP function. This is important because SNP located within 

exons or regulatory regions can alter gene function/expression and consequently, an animal’s 

health or performance (Ibeagha-Awemu et al., 2008). It is important to note that although 

synonymous SNP were previously deemed insignificant, recent studies suggest that synonymous 

SNP may alter protein structure, function, and expression by operating in pre-mRNA splicing, as 

well as mRNA stability and structure. In addition, synonymous variants may influence protein 

translation, and co-translational protein folding (Hunt et al., 2009).  

While SNP may be multiallelic (i.e., containing three or more nucleotides), most SNP are 

bi-allelic containing only two nucleotides. This tendency to be bi-allelic can be attributed to the 

low frequency of single base pair substitutions and the higher frequency of transitions compared 

to transversions (Vignal et al., 2002). Another key characteristic of SNP is their high abundance 

in comparison to other genetic variants. In 2013, dbSNP listed 13,146,622 SNP for the bovine 

genome and 66,994 of these were nonsynonymous SNP (Adelson et al., 2014). Daetwyler et al. 

(2014) reported 26.7 million SNP identified during the 1000 bull genomes project. This high 

prevalence, in addition to genetic stability and the ease at which they can be analyzed with high-

throughput technology, make SNP a useful tool in genomic analyses (Heaton et al., 2001). 

Single Nucleotide Polymorphism Discovery and Genotyping  

Single nucleotide polymorphism discovery includes scanning DNA sequences for novel 

SNP and genotyping animals for known SNP. Novel SNP detection is accomplished using either 

a global (genome-wide) approach or a targeted approach. The global approach is used to randomly 

detect SNP across the entire genome, whereas the targeted approach is used to identify SNP within 

candidate genes or a population of interest (Kwok and Chen, 2003). Genotyping cattle for known 

SNP is completed in two steps: 1) allelic discrimination and 2) signal detection. Allelic 
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discrimination describes the process of differentiating between alleles at a specific locus. This 

process is commonly completed using hybridization, primer extension, or enzyme cleavage 

(Twyman, 2005). 

As described by Twyman (2005), in a hybridization-based assay allele specific 

oligonucleotide probes labelled with radioactive or fluorescent tags are used to detect SNP. When 

the probe binds to the complementary sequence, the tag is detected, enabling researchers to 

determine which allele is present at the locus of interest. During an allele-specific single-base 

extension (primer extension), primers are designed to anneal to the nucleotide that directly 

precedes the locus of interest. After the primer has annealed, DNA polymerase extends the primer 

by adding a base that is complementary to the single nucleotide polymorphism. Fluorescently 

labeled deoxynucleotides (dNTP) provide a detectable signal that enables researchers to determine 

the allele of the SNP. Restriction fragment length polymorphism (RFLP) analysis utilizes allele 

specific enzymatic cleavage to detect single nucleotide polymorphisms. In this analysis, the DNA 

sample is digested with restriction endonucleases and then the fragments are separated according 

to length using gel electrophoresis. When a variant occurs in the restriction site, the restriction 

endonuclease will fail to cut the DNA resulting in a larger fragment than expected.  

The second step in SNP genotyping is signal detection, which enables researchers to 

identify which allele is present at the locus of interest. Three common methods of signal detection 

include the use of fluorescence, mass spectrometry, or pyrosequencing. Microarrays or bead arrays 

use direct fluorescent detection in which nucleotides are tagged with fluorescent dye. In contrast, 

Taqman genotyping assays and Molecular beacon assays use fluorescence resonance energy 

transfer (FRET) quenching in which donor and acceptor fluorophores produce a fluorescent signal. 

Unlike the previous methods, signal detection using mass spectrometry is based upon the 
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molecular weight of the DNA fragments instead of fluorescent tags. A mass spectrophotometer 

uses differences in molecular mass to differentiate between alleles. Lastly, pyrosequencing 

technology is based upon the pyrophosphate that is released when a dNTP is added to a DNA 

strand. Pyrophosphate is used to convert adenosine 5’-phosphosulphate (APS) to adenosine 

triphosphate (ATP) which results in luciferase activity that generates a chemiluminescent signal 

(i.e., visible light) that can be detected (Twyman, 2005; Dale et al., 2012). 

Commercial genotyping panels (SNP-chips) are the most common method of genotyping 

cattle because they provide accurate genotyping for thousands of SNP that have been previously 

validated. Genotyping panels are based upon microarray technology in which hundreds or 

thousands of probes (oligonucleotides, amplicons, DNA fragments, or RNA fragments) are aligned 

on a glass or silico surface (Heller, 2002). Single stranded DNA is fragmented, tagged with a 

fluorescent and washed over the microarray to allow hybridization with complementary strands 

(Govindarajan et al., 2012). Illumina Inc. (San Diego, CA) manufactures a variety of commercial 

genotyping panels as well as custom genotyping panels for targeting specific regions of the 

genome: BovineLD, BovineSNP50, BovineHD, Infinium iSelect high definition (HD), iSelect 

high-throughput screening (HTS), and XT iSelect Custom BeadChips (Table 2.2).  
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Table 2.2. Commercial DNA microarray panels developed by Illumina Inc. (San Diego, CA) for 
genotyping cattle. 

Microarray 
Product 

Number of 
SNP 

Average 
Distance 
Between 
SNP (Kb) Cost Common Applications Reference 

BovineLD 7,931 383 $40 Imputation 

Boichard et 
al. (2012) 

BovineSNP50 53,714 50.6 $100 

Genome-wide 
association studies 

Matukumalli 
et al. (2009) 

BovineHD 777,962 3.43 $200 

Genome-wide 
association studies 

Matukumalli 
et al. (2011) 

 

Single nucleotide polymorphism discovery has successfully been conducted in both beef 

and dairy cattle. Single nucleotide polymorphism discovery using RNA-sequencing technology 

has identified SNP associated with puberty, growth, development, and feed efficiency in beef cattle 

and lactation in Holsteins (Cánovas et al., 2010; Dias et al., 2017; Pareek et al., 2017). Stothard et 

al. (2011) used whole-genome resequencing to detect genetic differences (i.e. SNP and CNV) 

between Angus and Holstein bulls. Williams et al. (2009) implemented SNP discovery using 

sequence-tagged sites in European cattle to identify SNP associated with beef production and 

quality. Each of these studies demonstrated the utility of SNP discovery for identifying the genetic 

source of phenotypic variation in economically relevant traits.  

Single Nucleotide Polymorphism Validation  

Prior to downstream application or commercial use, newly discovered SNP need to be 

validated in an independent population. Advances in sequencing technology have enabled 

researchers to associate thousands of SNP with beef cattle trait levels; however, discovery 

populations are often small (< 1,000 animals) and false positives may be observed due to 

sequencing errors, misaligned reads, or a poorly assembled reference genome (Barendse, 2005; 

Van Eenennaam et al., 2007; Kumar et al., 2012). Barendse (2005) developed a 5-step process to 
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identify, validate, and commercialize novel SNP: 1) verify the importance of the trait and identify 

methods of improvement (genetic and non-genetic), 2) discover and then confirm the association 

between the SNP and phenotype, 3) calculate the size of the SNP effect and its economic impact, 

4) examine SNP in close proximity with the candidate gene to better understand the causative 

mutation, and 5) design assay.  

Genome-wide Association Studies   

Genome-wide association studies (GWAS) refer to association studies in which high-

density SNP spanning the genome are examined to identify variants significantly associated with 

disease or heritable quantitative traits (Hirschhorn and Daly, 2005). As defined by Bourdon (1997), 

a quantitative trait is “a trait in which phenotypes show continuous (numerical) expression.” 

Designing GWAS requires careful consideration of sample size, the number of markers for 

genotyping, selection criteria for individuals and markers, and statistical methodology (Hirschhorn 

and Daly, 2005; Balding, 2006). As discussed by Mei and Wang (2016) in GWAS the number of 

independent variables or markers (p) often greatly exceeds the number of observations (n). This is 

commonly known as the “large p small n” or “fat-short data” problem. When p greatly exceeds n, 

it is computationally challenging to use standard regression methods to derive parameter estimates. 

In fact, multiple regression based on ordinary least-squares cannot simultaneously estimate all 

parameters (Fernando and Garrick, 2013). To overcome challenges associated with “large p small 

n”, researchers have implemented statistical methodologies that individually estimate SNP effects.  

Single-SNP analyses were the most common method of conducting GWAS and can be 

performed using continuous traits (linear regression), case-control outcomes (logistic regression), 

and ordered-categorical variables (adjacent categories regression model; Balding, 2006). Using a 

single-SNP approach, “simple regression models or mixed models with a fixed substitution effect 
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of the SNP genotype along with a polygenic effect” are used to test the association between 

individual markers and the phenotype (Fernando et al., 2017). The standard method of identifying 

significant genotype-phenotype associations is to calculate a p‑value for the null hypothesis which 

states that none of the SNP are associated with the phenotype (Stephens and Balding, 2009).  

While this methodology has proven successful in identifying genotype-phenotype 

associations, single-SNP testing has several limitations. During single-SNP testing thousands of 

variants are individually examined, through multiple comparisons, to identify associations 

(Johnson et al., 2010; Hong and Park, 2012; Fernando and Garrick, 2013; Yazdani and Dunson, 

2015). These analyses often identify few SNPs with small effect leaving a large portion of the 

genetic variance unaccounted for and multiple testing correction is needed to reduce the number 

of false positives (genome-wide type I error rate). Linkage disequilibrium between SNP violates 

the assumption of independent comparisons making standard methods of controlling genome-wide 

type I error rate (Bonferroni correction and false discovery rate) inappropriate (Johnson et al., 

2010; Yazdani, 2014). More specifically, conservative corrections applied to many SNP reduces 

the statistical power and increases the type II error rate (Johnson et al., 2010; Fernando and 

Garrick, 2013).  

Bayesian approaches, in which all SNP are simultaneously fit in the model as a random 

effect, were originally developed for genomic selection by Meuwissen et al. (2001). However, 

previous studies demonstrate that Bayesian models can be applied to GWAS to alleviate single-

SNP testing limitations. First, all SNP can be simultaneously tested for an association which 

eliminates issues associated with multiple hypothesis testing and allows researchers to account for 

a larger proportion of genetic variance (Fernando and Garrick, 2013). In doing so, researchers can 

better understand the biological system because rarely does a single SNP form the genetic basis of 



  

30 
 

a phenotype. Second, Bayesian approaches present an opportunity for multiple testing corrections 

that do not negatively impact statistical power (i.e., control the proportion of false positives; 

Fernando and Garrick, 2013). 

Bayesian Inference 

Bayes’ theorem was first introduced in Thomas Bayes’ paper, An Essay Towards Solving 

a Problem in the Doctrine of Chances (Bolstad and Curran, 2017). As described by Bolstad and 

Curran (2017), Bayes’ theorem “showed how inverse probability could be used to calculate 

probability of antecedent events from the occurrence of the consequent event.” Put simply, Bayes’ 

is used to calculate the probability of an event given evidence or data. Bayes’ theorem is 

represented mathematically as follows: 

𝑃(𝐴|𝐵) =  𝑃(𝐵|𝐴)𝑃(𝐴)𝑃(𝐵)  ∝  𝑃(𝐴)𝑃(𝐵|𝐴) 

Where, A represents the unknown parameter of interest and B represents the observed data. This 

theorem indicates that the posterior distribution of the unknown parameter given the observed data (𝑃(𝐴|𝐵)) is equal to the product of the likelihood of the unknown parameter (𝑃(𝐵|𝐴)) given the 

observed data and the prior distribution of the unknown parameter (𝑃(𝐴)) divided by the marginal 

distribution of the observed data (𝑃(𝐵)). Bayes’ theorem can also be written as the product of the 

likelihood and the prior distribution (de Vos, 2004). This theorem was later used to develop 

Bayesian inference, the foundation of Bayesian statistics (Bolstad and Curran, 2017). Bayesian 

inference is a form of statistical inference in which observed data are used to estimate the 

probability of a given hypothesis being true (de Vos, 2004). 

As discussed in the previous section, Meuwissen et al. (2001) was the first to propose 

BayesA and BayesB as Bayesian estimation methods for genomic selection. Briefly, using BayesA 
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all available SNP are included in the model and the prior distribution of SNP effects is based upon 

the assumption that many QTL have a small effect while few QTL have a moderate to large effect. 

In comparison, a BayesB model includes only a portion of the available SNP and the prior 

distribution of SNP effects indicates that most QTL have no effect (𝜋) and very few have a 

moderate effect (1- 𝜋). Both BayesA and BayesB assume unequal variance (van den Berg et al., 

2013; Zeng, 2016). Habier et al. (2011) later developed BayesC and BayesC π which have the 

same prior distribution as BayesB, but these models assume constant variance. Finally, Bayes C 

has a fixed value for π whereas the π in BayesC π is unknown (Table 2.3;  Zeng, 2016). 

BayesC estimation methods are recommended when examining novel traits that lack sound 

prior information because prior assumptions have a lesser impact on BayesC than BayesA and 

BayesB (Garrick and Fernando, 2013). BayesC has been successfully applied to GWAS in beef 

cattle. Peters et al. (2012) used a BayesC model to identify QTL associated with growth and 

ultrasound traits in Brangus cattle. Similar methodology was applied by Peters et al. (2013) to 

associate genomic windows with first service conception and heifer pregnancy. Richardson et al. 

(2016) and Zeng (2016) demonstrated the utility of BayesC for estimating the residual and genetic 

variances of bovine tuberculosis and pulmonary arterial pressure (PAP) measurements, 

respectively. 

As discussed by Dekkers (2012), quantitative trait locus (QTL) detection criteria in 

Bayesian-based GWAS vary by study. Several studies have reported important genomic regions 

based upon posterior inclusion probability (PIP) or the proportion of iterations in the Markov chain 

Monte Carlo (MCMC) chain that included a particular SNP or genomic window (van den Berg et 

al., 2013; Speidel et al., 2018) whereas other studies have used the proportion of variance explained 

by a SNP or markers within a genomic window as detection criteria (Fan et al., 2011; Sun et al., 
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2011b; Onteru et al., 2012; Peters et al., 2012, 2013). Additionally, detection criteria may involve 

both PIP and the proportion of genetic variance explained (Wolc et al., 2012). 

 

Table 2.3. Comparison and description of Bayesian Alphabet (Zeng, 2016). 

Method  Bayes A Bayes B Bayes C Bayes Cπ 

Reference Meuwissen et al. 
(2001) 

Meuwissen et al. 
(2001) 

Habier et al. 
(2011) 

Habier et al. 
(2011) 

     

Prior 
distribution1  

 

    

     

Implication A large number 
of SNP of small 
effect, a small 

proportion with 
moderate to large 

effect 

π proportion of 
SNP with zero 

effect, (1-π) 
proportion with 

moderate to large 
effect 

π proportion of 
SNP with zero 

effect, (1-π) 
proportion with 

moderate to large 
effect 

π proportion of 
SNP with zero 

effect, (1-π) 
proportion with 

moderate to large 
effect 

     

Π NO YES YES YES 
     

Sample π NO NO NO YES 
     

Constant 
variance  

NO NO YES YES 

     
Sampler 

Gibbs sampling 
Metropolis-

Hastings 
Gibbs sampling Gibbs sampling 

1Prior marginal distribution of SNP effects 

 

Selection Methods  

Traditional Selection Methods 

Genetic improvement in the livestock industry is based upon the concept of selecting sires 

and dams that will produce progeny that will outperform the prior generation (Dekkers, 2012). 

Moreover, “the purpose of selection programs is to accelerate the rate of genetic change or 

selection response per unit of time, ∆G, toward a given breeding objective” (Van Eenennaam et 

 t - distribution 0

t - distribution

ì
í
ï

îï
0

t - distribution

ì
í
ï

îï
0

t - distribution

ì
í
ï

îï



  

33 
 

al., 2014). As discussed by Dekkers (2012), animals in breeding programs are selected based upon 

their estimated breeding values (EBV), which represent their breeding potential or genetic merit 

as a parent. These breeding values are estimated by summing the additive genetic effect of all loci 

that contribute to the trait of interest. Genetic evaluation programs generate EBV using phenotype 

data, pedigree information, and best linear unbiased predictions (BLUP) mixed model procedures.  

Using these traditional methods, the rate of genetic change is influenced by the accuracy 

of the prediction, selection intensity, and generation interval, and genetic variation. More 

specifically, accuracy, selection intensity, and genetic variation are positively associated with the 

rate of genetic change while generation interval is negatively associated with the rate of genetic 

gain (Dekkers, 2012; Van Eenennaam et al., 2014). Traditional selection methods based upon EBV 

have resulted in rapid genetic gain in beef cattle traits that are moderate to highly heritable and 

easy to measure including: birth weight, weaning weight, yearling weight, mature cow weight, etc. 

(Miller, 2010; Boichard et al., 2016). In contrast, these selection methods were inefficient for lowly 

heritable traits or traits that were difficult to measure (Boichard et al., 2016).  

Marker Assisted Selection  

While traditional selection programs have proven to be effective, they are limited by our 

ability to collect phenotypic data and make predictions early in an animal’s life. These limitations 

led to the development of marker assisted selection (MAS) techniques, which incorporate marker 

information into the EBV to increase the accuracy of prediction (Goddard and Hayes, 2007). 

Fernando and Grossman (1989) described MAS using BLUP as a two-step process: 1) map QTL 

and 2) obtain EBV using pedigree and QTL information. Although MAS generated a lot of 

excitement due to its potential, this approach only identified QTL with large effects due to over-

conservative multiple testing correction and the limited genetic variance that was explained by the 



  

34 
 

genotypes representing QTL. Thus, its implementation in the livestock industry has been minimal 

and very little genetic progress has made using MAS (Dekkers, 2004; Meuwissen et al., 2016). 

Genomic Selection 

Following the development of marker assisted selection, Meuwissen et al. (2001) proposed 

a similar approach called genomic selection (Figure 2.2). In genomic selection, genotypes are 

obtained for a large established reference population with phenotypic data. Single nucleotide 

polymorphisms effects are estimated using the reference population and a prediction equation is 

derived. The prediction equation is applied to selection candidates who possess genotypic data but 

may lack phenotypic data. In applying the equation, molecular breeding values (MBV) also known 

as genomic estimated breeding values (GEBV) or direct genomic value (DGV) can calculated for 

the selection candidates (Goddard and Hayes, 2007; Van Eenennaam et al., 2014; Boichard et al., 

2016; Meuwissen et al., 2016). As discussed by Van Eenennaam et al. (2014), numerous statistical 

models, with varying assumptions regarding the distribution of marker effects, have been 

developed to calculate MBV. This includes: genomic best linear unbiased prediction (GBLUP), 

Bayesian regression (BayesA, BayesB, BayesC𝜋), LASSO, Bayesian Lasso, and elastic net 

(Goddard, 2009; Hastie et al., 2009; Van Eenennaam et al., 2014). 
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Figure 2.2. Diagram depicting the genomic selection process in livestock (Van Eenennaam et 
al., 2014).  

 

Following the derivation of MBV, genomic selection can be performed using two 

approaches: 1) MBV can be used to select superior individuals when there is no established EBV, 

expected progeny difference (EPD), or indicator traits for the trait of interest (Saatchi and Garrick, 
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2013), or 2) MBV can be incorporated into genetic evaluations to generate genomic-enhanced 

estimated breeding values (GE-EBV; Van Eenennaam et al., 2014). The latter can be completed 

using three different methodologies including a multi-trait approach in which the MBV is fit as a 

correlated trait (Kachman, 2008), post-evaluation blending which combines EBV/EPD with MBV 

(Spangler, 2011; Spangler, 2012) and the use of a genomic relationship matrix instead of the 

traditional pedigree-based relationship matrix (Legarra et al., 2009).  

If the population of interest (i.e., selection candidates) includes animals that lack genotype 

information, multiple-step genomic selection or single-step GBLUP can be used to estimate GE-

EBV. In multiple-step genomic selection, genetic prediction is completed in the following manner:  

1) estimated breeding values are calculated, 2) pseudo-phenotypes (i.e., phenotypes calculated 

using records from ungenotyped relatives) are determined for a genotyped population, 3) marker 

effects are estimated, and 4) total EBV is calculated using EBV and GEBV (Van Eenennaam et 

al., 2014; Meuwissen et al., 2016). Single-step GBLUP (SSGBLUP) eliminates the need for 

multiple steps because “all data are accounted for in a single estimation step” (Meuwissen et al., 

2016). This method combines genotypic information, pedigree information, and phenotypic 

records from both genotyped and ungenotyped animals. Moreover, the relationship matrix is 

formed using both pedigree and genotypic information (Legarra et al., 2009; Christensen and 

Lund, 2010). 

Incorporating genetic information into genetic evaluations may increase the accuracy of 

existing EBV/EPD and subsequently, increase the accuracy of selection. Moreover, generation 

interval may be shortened as genetic information can be collected at birth which enables the use 

of younger bulls (Goddard and Hayes, 2007; Spangler, 2012). As described by Armstrong et al. 

(1997), genetic information provides opportunity to decrease the age at first breeding and increase 
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the number of progeny. As previously discussed, increasing the accuracy of selection or decreasing 

the generation interval will increase the rate of genetic change. However, it is important to note 

that the accuracy of MBV depend on size of the reference population, how related the reference 

population is to the selection candidates, effective population size, heritability of the trait, marker 

density, genomic architecture for the trait, and statistical method (Goddard, 2009). 

Genomic selection can have a significant impact on the rate of genetic gain for traits 

recorded late in an animal’s life, sex-limited traits, and difficult-to-measure traits. In fact, in 

difficult-to-measure traits the rate of genetic gain may increase 20 to 100% following the 

implementation of genomic selection (van der Werf, 2013). As summarized by Meuwissen et al. 

(2016), genomic selection has already been incorporated into the dairy and beef industries. In the 

dairy industry, producers are using genomic selection to improve milk production, fertility, and 

somatic cell count and in the beef cattle production, researchers are focusing their attention on 

difficult-to-measure traits such as meat quality, feed efficiency, and disease resistance.  
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CHAPTER 3: SNP DISCOVERY FOR CAUSITIVE MUTATIONS IN GENES ASSOCIATED 

WITH BEEF COW TERRAIN-USE USING RNA-SEQ 

 
 

Introduction 

Concentrated grazing (i.e., large concentrations of cattle grazing in one area) near riparian 

zones is common in extensive rangeland pastures with rough topography and heterogeneous 

vegetation. Cattle often prefer to graze lush forage on gentle terrain with minimal grazing 

occurring in the uplands (Senft et al., 1987; Bailey et al., 1996). Pasture attributes may be modified 

to promote grazing in rough terrain (e.g., water developments); however, genetic selection 

provides opportunity for improved pasture utilization at a lower cost than permanent infrastructure. 

A genome-wide association study identified twelve SNP within five candidate genes (GRM5, 

MAML3, RUSC2, SDHAF3, and SUPT20H) that were associated with beef cattle terrain-use 

indices. When combined, these SNP explained 34 to 36% of the variation in terrain-use phenotypes 

which suggested that terrain-use is heritable and polygenic (Bailey et al., 2015). Subsequent 

studies are needed to further examine these chromosomal loci and identify potential causative 

mutations for future association analyses.  

RNA-seq analysis is a cost-effective alternative to whole genome sequencing that can be 

used to detect sequence variants in transcribed regions of genes (Cánovas et al., 2010; Piskol et 

al., 2013). Single nucleotide polymorphisms residing within transcribed exons (e.g. missense 

variants) can change the base pairs within codons that correspond to the amino acid sequences that 

form the primary structure of a protein. In altering the protein structure, SNP can alter the 

biological function of the protein and the resulting phenotype (Klug et al., 2013).  
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Variant detection using RNA sequencing data has proven successful in human studies as 

well as domestic livestock including: cattle, horses, sheep, goats, pigs, and chickens (Fortes et al., 

2012; Park et al., 2012; Chitwood et al., 2013; Koringa et al., 2013; Zhang et al., 2013; Chen et 

al., 2015; Wang et al., 2015; Ghosh et al., 2016). In cattle, SNP discovery may reveal variants to 

be used in marker assisted selection or genomic selection programs to increase the rate of genetic 

improvement (Pareek et al., 2017). Recently, studies have demonstrated the utility of combining 

GWAS and RNA-seq analysis to identify variants and candidate genes associated with 

economically relevant traits in commercial crops and livestock (Fortes et al., 2012; Fortes et al., 

2014; Suárez-Vega et al., 2015; Lu et al., 2016).  

The objective of this study was to identify potential causative mutations in the five genes 

that were previously associated with terrain-use indices. Single nucleotide polymorphisms 

identified in this study may be used to develop a custom genotyping panel for future association 

analyses with terrain-use phenotypes.  

Materials and Methods  

All procedures involved in animal handling and management were in accordance with 

guidelines set forth by the Institutional Animal Care and Use Committee of New Mexico State 

University (protocol number: 2010-013) and Colorado State University (protocol number: 13-

4111A).   

Animals 

The Angus and Brangus (5/8 Angus x 3/8 Brahman) cattle used in this study were from the 

John E. Rouse-Colorado State University Beef Improvement Center located near Riverside, 

Wyoming and the New Mexico State University Brangus breeding program located at the 

Chihuahuan Desert Rangeland Research Center northeast of Las Cruces, New Mexico. The Angus 
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steers were the subjects of a high-altitude tolerance study (Cánovas et al., 2016) and the Brangus 

heifers were from a fertility study (Cánovas et al., 2014); subsequently, animals were not measured 

for terrain-use traits. However, RNA-sequencing data generated from these studies were used to 

identify potential causative mutations within five putative candidate genes associated with beef 

cattle terrain-use. 

In the high-altitude tolerance study, 58 tissue samples were collected from six 

cardiovascular regions on 10 Angus steers: left ventricle, right ventricle, pulmonary artery, aorta, 

Longissimus dorsi muscle, and lung (Cánovas et al., 2016; Table 3.1). In the fertility study, sixty-

four tissues were collected from the reproductive system of eight Brangus heifers: hypothalamus, 

pituitary gland, liver, uterus, endometrium, ovary, adipose tissue, and Longissimus dorsi muscle. 

Two endometrium samples failed laboratory preparation leaving 62 Brangus tissues for analyses 

(Cánovas et al., 2014; Table 3.1).  

 

Table 3.1. Tissue samples collected from Angus steers and Brangus 
heifers (Cánovas et al., 2014; Cánovas et al., 2016). 

Tissue  Breed n 

Adipose tissue Brangus 8 
Aorta Angus 10 
Endometrium Brangus 6 
Hypothalamus  Brangus 8 
Left ventricle Angus 12 
Liver  Brangus 8 
Longissimus dorsi muscle   Angus & Brangus 16 
Lung Angus  10 
Ovary Brangus 8 
Pituitary gland  Brangus 8 
Pulmonary artery Angus 6 
Right ventricle Angus 12 
Uterus Brangus 8 
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Ribonucleic Acid Extraction and Sequencing 

Ribonucleic acid extraction was completed using Trizol (Invitrogen, Carlsbad, CA) and the 

TruSeq Stranded mRNA Sample Preparation kit (Illumina, California, USA; Cánovas et al., 2014; 

Cánovas et al., 2016). As summarized by Cánovas et al. (2014), poly-T oligo attached magnetic 

beads was used to purify messenger RNA (mRNA) with poly-A tails from total RNA. Messenger 

RNA was then fragmented and converted to complementary DNA (cDNA) using reverse 

transcriptase and primers. Following cDNA synthesis, adaptors were ligated to the ends of double-

stranded cDNA and PCR amplification was used to generate cDNA libraries. The 

Illumina HiSeq 2000 analyser generated approximately 30 million single read sequences (100 bp) 

for each sample. 

SNP Discovery using RNA-sequencing analysis  

Angus and Brangus sequences were aligned to the annotated bovine reference genome 

(UMD3.1; release annotation 87) and analysed using CLC Genomics Workbench software 

(version 9.5; CLC Bio, Aarhus, Denmark) as described by Cánovas et al. (2010). After standard 

quality control filters were applied, 56 Angus samples and 60 Brangus samples were available for 

RNA-seq analysis: adipose tissue (n = 8), aorta (n = 8), endometrium (n = 6), hypothalamus (n = 

6), left ventricle (n = 12), liver (n = 8), Longissimus dorsi muscle (n = 16), lung (n = 10), ovary (n 

= 8), pituitary gland (n = 8), pulmonary artery (n = 6), right ventricle (n = 12), and uterus (n = 8). 

Analysis was performed for each breed using two assembly methods: 1) individual samples 

and 2) a pool of all samples. Sequence reads were pooled during assembly to increase the number 

of reads available for alignment (i.e., increase coverage) and improve variant detection (Piskol et 

al., 2013). Individual sample analysis was performed for each Angus tissue (n = 56) whereas 

individual sample analysis for Brangus tissues included: hypothalamus, pituitary gland, liver, 
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adipose, and Longissimus dorsi muscle (n = 38). The pooled sample analyses for Angus and 

Brangus contained all available tissues: Angus (n = 56) and Brangus (n = 60).  

Following alignment, variant detection was completed using the Fixed Ploidy Variant 

Detection tool within CLC Genomics Workbench Software (CLC Bio, Aarhus, Denmark). As 

described by Dias et al. (2017), “this tool detects germline variants and discards variants when 

representation in reads is due to sequencing errors or mapping artifacts.” Similar variant detection 

parameters were applied to both the individual sample assemblies and the pooled sample 

assemblies (Table 3.2). Only SNP located within Glutamate metabotropic receptor 5 (GRM5), 

Mastermind Like Transcriptional Coactivator 3 (MAML3), RUN and SH3 domain containing 2 

(RUSC2), Suppressor of Ty 20 Homolog (SUPT20H), and Succinate Dehydrogenase Complex 

Assembly Factor 3 (SDHAF3) were considered due to the previously observed 

association between these five genes and terrain-use (Table 3.3; Bailey et al., 2015).  

 

Table 3.2. CLC Genomics Workbench (CLC Bio, Aarhus, Denmark) fixed ploidy variant 
detection parameters for RNA-sequencing data from Angus cardiovascular and Brangus puberty 
tissues.  

Parameter  Individual Samples1 Pooled Samples2 

Ploidy  2 2 
Variant probability (%) 90 90 
Minimum coverage (reads) 10 20 
Minimum count (reads) 2 2 
Minimum variant frequency (%) 5 5 
Minimum central quality  20 20 
Minimum neighbourhood quality  15 15 
Relative read direction filter (%)  1 1 

1Individual assembly method in which RNA sequence reads from an individual tissue are aligned to the 
reference assembly.  
2Pooled assembly method in which RNA sequence reads from all tissues are aligned to the reference 
assembly.  
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Table 3.3. Description of candidate genes and single nucleotide polymorphisms associated with 
terrain-use indices in beef cattle. 

Chr1 Gene Location2 SNP3 Position4 Mutation 
Functional 
Consequence 

4 SDHAF3 14364655..14452243 rs134515496 14487987 A/G Intergenic 
8 RUSC2 60134638..60196456 rs43555524 60157511 G/A Intronic 
12 SUPT20H 24668812..24708465 - 24598260 - - 
12 SUPT20H 24668812..24708465 rs110062743 24593452 T/G Intergenic 
17 MAML3 17863364..18327762 rs133913408 18318983 A/G Missense 
17 MAML3 17863364..18327762 rs109619368 18299593 T/C Intronic 
29 GRM5 6598128..7240213 rs42921468 6598207 G/A Intergenic 
29 GRM5 6598128..7240213 rs42161939 7083900 C/A Intergenic 
29 GRM5 6598128..7240213 rs43744222 7128587 T/C Synonymous 
29 GRM5 6598128..7240213 rs210610001 7128668 A/G Synonymous 
29 GRM5 6598128..7240213 rs42162705 7240504 A/C Downstream 
29 GRM5 6598128..7240213 rs42162708 7241306 C/T Downstream 

1Chromosome number. 
2Chromosome position in Bos taurus UMD3.1.1. (Ensembl genome database). 
3Reference SNP cluster identification assigned by National Center for Biotechnology Information (NCBI). 
4SNP position according to Bos taurus UMD3.1.1. 

 

The Variant Effect Predictor (VEP) tool (McLaren et al., 2016) from the Ensembl genome 

database (Release 92; Zerbino et al., 2017) was used to determine the functional consequence of 

the SNP and examine their novelty. Note that SNP may be assigned more than one functional 

consequence using the VEP tool. To reduce the number of false positive SNP, variants identified 

using the individual sample approach were compared to the variants identified in the pooled 

sample approach to identify concordant SNP for subsequent analyses. Similarly, results of the 

Angus analysis were compared to results of the Brangus analysis. A Venn diagram depicting these 

comparisons was created using Venny 2.1 (http://bioinfogp.cnb.csic.es/tools/venny/index.html).  

Results  

 

Single nucleotide polymorphism discovery in which Angus transcripts from 

cardiopulmonary tissues were individually aligned to the bovine reference genome revealed 108 

SNP within GRM5, MAML3, RUSC2, SUPT20H, and SDHAF3. The greatest number of variants 

http://bioinfogp.cnb.csic.es/tools/venny/index.html


  

44 
 

(n = 37) was found within RUN and SH3 domain containing 2. In comparison, the Angus pooled 

sample analysis identified 560 SNP within the five candidate genes. In this analysis, Mastermind 

Like Transcriptional Coactivator 3 harboured the largest number of SNP (n = 155).  

Eighty-six concordant SNP were revealed when Angus individual sample variants were 

compared to the Angus pooled sample variants. As reported by the Ensembl genome database 

VEP, 61 of these variants were novel whereas 25 were existing or known variants. Moreover, 79% 

of the SNP were intronic, 6% were downstream variants, 5% were synonymous, 4% were 

missense, 2% were splice acceptors, 2% were splice region variants, and 1% were in three prime 

untranslated regions (3'-UTR). One of the four missense SNP was in MAML3 (rs109371446) and 

three were in RUSC2 (rs467493459, rs43556445, and rs448324087).  

The individual sample analysis using Brangus tissues revealed 235 SNP in the five 

candidate genes and the pooled sample analysis identified 1,090 SNP. In accordance with the 

Angus results, RUSC2 (n = 69) and MAML3 (n = 288) contained the largest number of variants in 

the individual and pooled analysis, respectively. One hundred and eighty SNP were identified 

using both assembly approaches. Of these 180 SNP, 78 were previously documented and 102 were 

considered novel. As with the Angus variants, the Brangus variants had a wide-range of functional 

consequences: 81% intronic, 7% synonymous, 6% downstream variants, 4% missense, 2% splice 

region variants, and 1% splice acceptor variants. The missense SNP were associated with MAML3 

(rs480743060, rs133913408, and rs109371446), RUSC2 (rs43556445, rs208172401, and 

rs517656634), and SUPT20H (rs134305602).  

A comparison of the Angus and Brangus results revealed 48 congruent single nucleotide 

polymorphisms (Figure 3.1). The greatest number of SNP were found within GRM5 (n = 

19), while MAML3 contained the lowest number of variants (n = 2). A further examination of these 
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48 SNP, using the Ensembl genome database VEP (McLaren et al., 2016), suggested that 34 

variants were novel and 14 had been previously identified. Functional consequences of these single 

nucleotide polymorphisms followed the same trend as those previously discussed. Many SNP were 

classified as intronic (81.25%), several SNP were considered exonic (12.5%), and three SNP had 

more than one functional consequence (6.25%; Table 3.4). Missense SNP were located within 

MAML3 (rs109371446) and RUSC2 (rs43556445). 

 

Table 3.4. Functional consequences of the 48 concordant 
single nucleotide polymorphisms. 

Functional Consequence1 Number of SNP 

Downstream gene, Splice Acceptor 1 
Intronic 39 
Missense 2 
Synonymous 4 
Splice Region, Intronic 2 

1Variants may be assigned more than one functional 
consequence. 
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Figure 3.1. A comparison of the single nucleotide polymorphisms discovered using RNA-
sequencing data from two breeds of cattle (Angus & Brangus) and two assembly approaches 
(Individual & Pooled). 

 

Discussion  

Numerous studies have demonstrated that RNA-seq data can be used for variant detection 

in domestic livestock. Moreover, performing RNA-seq analysis alongside GWAS provides 

opportunity for validation and functional analysis of candidate genes. In the current study, RNA-

seq data obtained from Angus tissue samples revealed 108 SNP when an individual sample 

approach was applied and 560 SNP when a pooled sample approach was used. These results were 

consistent with the assertion that pooling sequence reads results in increased power for variant 
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detection. Single nucleotide polymorphism prevalence varied by gene which was expected given 

the results of previous studies (Lehne et al., 2011; Dias et al., 2017).  

A comparison of the two assembly approaches revealed 86 concordant variants. Functional 

analysis of the 86 concordant variants revealed many intronic SNP and very few exonic SNP. 

Variants located in noncoding regions may affect the phenotype through alternative splicing; 

however, RNA splicing removes introns from precursor mRNA (pre-mRNA) prior to it becoming 

mRNA and so SNP discovered using RNA-seq analysis are expected to be exonic (Wang and 

Cooper, 2007; Klug et al., 2013). The high prevalence of intronic SNP in this RNA-seq analysis 

may be attributed to a multitude of factors including: poor reference assembly 

sequencing/annotation and isolation of pre-mRNA during mRNA extraction.  

Since the release of the first bovine reference genome in 2009, numerous studies have 

generated results that suggest the presence of assembly and annotation errors in both UMD and 

BTAU (Elsik et al., 2009; Bohmanova et al., 2010; Zhou et al., 2015; Utsunomiya et al., 2016). 

Furthermore, assembly statistics for UMD3.1.1 included 69,281 spanned gaps and 3,193 un-

spanned gaps in which sequence information is missing (NCBI, 2018b). These errors and gaps in 

the reference genome can have a substantial effect on RNA-seq analyses that call variants based 

upon sequencing reads aligned to a reference genome. Future analyses should be completed using 

the new bovine reference assembly ARS-UCD1.2 that contains updated locations for candidate 

genes (Table 3.5) and only 386 gaps (NCBI, 2018a).  
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Table 3.5. Comparison of candidate gene locations in bovine reference 
assembly UMD3.1.1 and ARS-UCD1.2. 

  Location2 (bp) 

Candidate Gene  Chr1 UMD3.1.1 ARS-UCD1.2 

SDHAF3  4 14364655..14452243 14476714..14567927 
RUSC2 8 60134638..60196456 59723630..59785507 
SUPT20H  12 24668812..2470846 24646264..24685744 
MAML3 17 17863364..18327762 17559644..18020917 
GRM5 29 6598128..7240213 6557063..7201730 

1Chromosome number. 
2Location in Bos taurus reference genome according to National Center for 
Biotechnology Information (NCBI). 

 

In addition to the reference assembly, the RNA extraction method may have contributed to 

the number of intronic SNP identified in the RNA-seq data. As discussed by Yousefi et al. (2018), 

intronic SNP are often identified in RNA-seq analyses because pre-mRNA (containing introns) 

may be captured during mRNA isolation. More specifically, RNA extraction methods that purify 

mRNA molecules based upon the presence of a poly-A tail, also known as poly(A) capturing 

protocols, may capture pre-mRNA (Piskol et al., 2013).  

Variant detection using Brangus tissue samples generated results similar to those in the 

Angus analysis. The individual assembly method (n = 235) identified fewer SNP than the pooled 

assembly method (n = 1, 090) and the candidate genes containing the largest number of SNP were 

RUSC2 and MAML3. Likewise, most of the Brangus SNP were classified as intronic which 

warrants subsequent analyses. One significant difference between the Angus and Brangus analyses 

was the total number of variants detected. The Brangus RNA-seq data contained twice as many 

SNP in the candidate genes as the Angus data. This result may be attributed to the breed 

composition of Brangus, 3/8 Brahman and 5/8 Angus. Variant detection using Bos taurus and Bos 

indicus cattle and candidate genes associated with growth and development revealed that Brangus 
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cattle had a greater number of SNP than both Angus and Brahman cattle. Moreover, Brangus cattle 

had both Angus derived SNP and Brahman SNP (Figure 3.2; Figure unpublished).  

Forty-eight SNP were identified in the four analyses which suggested that they are true 

variants and not false positives due to technical error. Nine of the forty-eight SNP were considered 

exonic; however, only those classified as missense, splice region, or splice acceptor/donor were of 

interest. Synonymous variants encode the same amino acid which implies that they are not 

causative mutations. In contrast, nonsynonymous variants alter the amino acid sequence and the 

resulting protein structure, which suggests that these SNP would likely influence the phenotype 

(Koufariotis et al., 2014; Iso-Touru et al., 2016). As discussed by Iso-Touru et al. (2016), SNP 

located in splice sites or flanking regions containing regulatory elements (i.e., upstream and 

downstream) may also have a large influence on the phenotype.  

Missense variants were located within MAML3 and RUSC2 while splice acceptor and 

splice region variants were identified in SUPT20H and RUSC2, respectively. Mastermind Like 

Transcriptional Coactivator 3 was found within the Notch signaling pathway, a highly-conserved 

pathway associated with cell fate determination during metazoan development and tissue renewal 

(Kopan and Ilagan, 2009). Wu et al. (2002) suggested that MAML3 expression may influence 

Notch signalling and the biological processes regulated by the Notch signalling pathway: 

proliferation, apoptosis, neurogenesis, myogenesis, vasculogenesis, and other similar processes. 

Previous studies suggested that neurogenesis frequently occurs in the hippocampus of adult 

mammals; therefore, it has been proposed that neurogenesis is important for learning and memory 

(Gross, 2000). As discussed by Bailey et al. (1996), learning and memory influence diet and 

feeding site selection for large herbivores. 
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 RUN and SH3 domain containing 2 codes for iporin, a protein that interacts with Rab1b 

and Rab1-binding protein GM130 that regulate intracellular vesicle transport (Bayer et al., 2005). 

Vesicle transport is vital for maintaining cell function as it enables communication between 

cellular compartments (Bhuin and Roy, 2014). Suppressor of Ty 20 Homolog has a role in the 

autophagy pathway that is stimulated during periods of cellular stress (e.g., hypoxia, nutrient 

deprivation; Azad et al., 2008; Gatica et al., 2015). More specifically, SUPT20H is involved in the 

activation of ATG9 (Gatica et al., 2015) which is involved in the formation of autophagosomes 

(Papinski et al., 2014). 
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Figure 3.2. Diagram depicting single nucleotide polymorphism (SNP) discovery results for five candidate genes on BTA5 in Bos 
taurus and Bos indicus breeds. Blue bars indicate linkage disequilibrium (LD) given the four-gamete rule and red bars indicate LD 
according to Lewontin’s D’. Bos taurus SNP represented by yellow bar, Bos indicus SNP represented by orange bar, and Bos 
taurus/indicus SNP represented by green bar (Figure unpublished). 

SOCS2 LCTN IGFBP6 STAT2 PMCH IGF1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

Holstein 2 5 6 7 8 9 10 11 12 13 14 24 25 37 39 40 41 42 61 65 69 70

Brown Swiss 2 5 6 7 8 9 10 11 12 14 24 25 28 30 32 37 38 39 42 45 46 47 49 54 57 58 61 65 69 70 71

Jersey 2 5 6 7 8 9 10 12 13 14 24 25 37 38 39 42 45 46 57 61 66 69

Angus 2 5 6 7 8 9 10 12 14 23 24 25 28 30 32 36 37 39 42 45 46 57 61 65 69 70

Simmental 2 4 5 6 7 8 9 10 12 14 20 24 25 37 39 42 48 61 65 71

Brahman 1 2 3 5 8 12 15 16 17 18 19 20 21 22 26 27 29 30 31 33 34 35 36 41 43 44 45 46 47 48 49 50 51 52 53 55 56 57 59 60 62 63 64 67 68

Brangus 2 5 6 7 8 9 10 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29 30 32 33 34 35 36 37 38 39 41 42 43 44 45 46 47 48 49 50 51 52 53 55 56 57 59 61 62 63 64 65 67 68 69
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Conclusion 

Variant detection using RNA-seq data from Angus and Brangus cattle revealed 48 SNP in 

five candidate genes that were previously associated with beef cow terrain-use. Of the 48 

concordant SNP, 39 (81.25%) were considered intronic and 6 (12.5%) were characterized as 

exonic. Missense variants were identified within Mastermind Like Transcriptional Coactivator 3; 

however, additional analyses using the developing annotation for the ARS-UCD1.2 assembly 

should be completed to confirm the functional consequences of these SNP.   
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CHAPTER 4: INVESTIGATION OF CANDIDATE SNP PREVIOUSLY 

ASSOCIATED WITH TERRAIN-USE INDICES USING BAYESIAN-BASED GENOTYPE-

PHENOTYPE ASSOCIATIONS 

 
 

Introduction 

Beef cattle breeding programs were successful in implementing pedigree-based selection 

for easy-to-measure traits; however, these methods were inefficient for sex-limited traits, traits 

measured late in life, and difficult-to-measure traits. Genomic selection was developed as a means 

of improving artificial selection programs by incorporating single nucleotide polymorphism (SNP) 

data into estimated breeding value (EBV) predictions. Genomic selection may improve the rate of 

genetic gain for difficult-to-measure traits because phenotypic observations do not have to be 

collected for each animal and estimated breeding values (EBV) can be calculated for traits recorded 

in a reference population (Goddard and Hayes, 2007; Boichard et al., 2016; Meuwissen et al., 

2016).  

Terrain-use is an example of a difficult-to-measure trait that may potentially be improved 

using genomic selection methods. Terrain-use measurements are typically derived from global 

positioning system (GPS) data collected from cattle grazing in extensive rangeland pastures 

(Bailey et al., 2015; Bailey et al., 2018). Global positioning system collars that are used to obtain 

the terrain-use data are costly and therefore, make it difficult to obtain an adequate sample size 

(Bailey et al., 2018). Furthermore, rangeland beef operations are typically composed of 

commercial cattle (i.e., not registered with a breed association); therefore there is no pedigree 

information for use in calculation of EBV (Bailey et al., 2015). 
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Previous studies that examined the grazing patterns of cattle in the western United States 

(U.S.) suggested that terrain-use is a moderately heritable, polygenic trait (Bailey et al., 2015). 

Single-marker regression analyses using data from 80 beef cattle revealed four candidate genes 

located on Bos taurus autosome four, twelve, seventeen, and twenty-nine that were associated with 

terrain-use indices (Bailey et al., 2015). Additional studies are needed to confirm these results prior 

to the development of molecular breeding values (MBV) for selection.  

Previous studies, using both real and simulated data, have demonstrated the utility of 

combining several statistical methods including linkage disequilibrium haplotype-based analysis, 

single-marker association analysis, Bayesian regression, and weighted single-step GBLUP to 

decrease the number of false positives and increase the power of detecting QTL (Legarra et al., 

2015; Melo et al., 2017). Due to the polygenic nature of quantitative traits, multi-SNP models may 

better explain the genetic architecture underlying terrain-use than single-SNP analyses (van den 

Berg et al., 2013). Therefore, the objective of this study was to investigate the five SNP identified 

by Bailey et al. (2015) using Bayesian-based genotype-phenotype associations.  

Materials and Methods  

High-Density Genotypes and Global Positioning System Data 

As described by Bailey et al. (2015), data were obtained from 71 mature cows and 9 

yearling heifers managed on five ranches in Arizona, Montana, and New Mexico. This included: 

Chihuahuan Desert Rangeland Research Center managed by New Mexico State University 

(CDRRC; Las Cruces, NM), Corona Range and Livestock Center managed by New Mexico State 

University (Corona, NM), Hartley Ranch (Roy, NM), Thackeray Ranch managed by Montana 

State University (Havre, MT), and Todd Ranch (Willcox, AZ). Heterogenous ranches (i.e., varied 

topography and vegetation) were selected for the study to increase the likelihood of identifying 
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candidate SNP that influenced grazing patterns across varying terrain (Table 4.1). The data 

included high-density genotypes (777,962 SNP) and global positioning system (GPS) data from 

Lotek GPS 3300 collars (Lotek Wireless, New Market, Ontario, Canada). 

 

Table 4.1. Terrain characteristics of the five ranches used in the study where 80 beef cattle were 
managed during the study period in which they were tracked using global positioning system 
collars (Bailey et al., 2015). 

State Ranch n1 Breed2 
Pasture 
Size3, ha 

Elevation, 
m 

Slope, 
% 

Max Dist. 
Water4, km 

AZ Todd 16 Limousin 9065 1276-2010 1-130 4.8 
MT Thackeray 17 Simmental cross 336 1170-1400 0-107 1.5 
NM CDRRC 16 Brangus 3990, 

2830 
1250-1402 1-15 10.0 

NM Corona 22 Angus 
Angus cross 

1601, 
721 

1765-1851 0-32 4.7 

NM Hartley 9 Angus 
Angus cross 

1056 1500-1670 0-200 4.3 

1The number of cattle tracked at each ranch. 
2The Corona and Hartley Ranch maintained two breeds of cattle.  
3Cattle grazed in two pastures at the CDDRC and Corona Ranch during the study period. 
4Maximum distance cows may travel from water in the pasture.  

 

Quality control of genotype data was applied using PLINK 1.9 (Purcell and Chang, 2015) 

and standard filters: sample call rate ≥ 0.90, SNP call rate ≥ 0.90, minor allele frequency < 0.01, 

and Hardy-Weinberg Equilibrium < 0.0001. After quality control, 75 animals and 728,751 SNP 

were available for analysis. Genotypes were recoded from the AB format to numerical values (AA 

[-1], AB [0], and BB [1]) and missing genotypes were filled with the median for that locus. 

Terrain-use measurements including elevation (m) and slope (%) were derived for each 

collar coordinate using USGS Digital Elevation Maps (DEMs) with 10-meter spatial resolution 

and ArcGIS Spatial Analyst (Redlands, CA). Similarly, distance travelled from water (m) was 

calculated using USGS DEMs with 5-meter grid resolution and the ArcGIS Euclidean Distance 

tool (Redlands, CA) which calculated the distance between the GPS coordinate and the primary 
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water source in the pasture. The measurements for slope, elevation,  and  distance  travelled from 

water were averaged, across the study period, for each cow (Table 4.2) and then incorporated into 

two previously developed terrain-use indices (Bailey et al., 2015). The rough index was a 

normalized average of slope and elevation that was calculated using the following mathematical 

equation:  

Rough Index =  
[((slopekslopel )∗100) + ((elevationkelevationl )∗100) ]2  

 

where 𝑘 represented the average observation of a collared cow and 𝑙 represented the 

average observation of all collared cows at a given ranch. The rolling index was a 

normalized average of slope, elevation, and distance travelled from water: 

Rolling Index =  

[((slopekslopel )∗100)+((elevationkelevationl )∗100)+((distance from waterkdistance from waterl )∗100)]3  

 

where 𝑘 represented the average observation of a collared cow and 𝑙 represented the average 

observation of all collared cows at a given ranch. For both the rough and rolling index, cattle with 

values greater than 100 can be classified as hill climbers whereas values less than 100 suggest that 

the animal was a bottom dweller. When compared to their contemporaries, hill climbers utilize 

steeper slopes, higher elevations, and more remote areas of the pasture. In contrast, bottom 

dwellers prefer gentle slopes, lower elevations, and forage near water sources.  
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Table 4.2. Terrain-use traits, derived from global positioning system (GPS) data 
collected from 75 beef cows in rangeland pastures in the western U.S., averaged for 
each ranch. 

  Slope1, % Elevation2, m 
Distance from 

Water3, m 

Ranch n Mean SD4 Mean SD4 Mean SD4 

CDRRC 16 4.3 0.31 1313.2 1.2 1246.8 145.0 

Corona 19 3.7 0.31 1780.4 6.8 1807.3 336.1 

Hartley 8 13.6 3.68 1590.3 46.8 751.4 285.7 

Thackeray 16 18.9 1.43 1283.2 7.8 470.0 40.0 

Todd 16 7.6 1.82 1394.6 51.0 975.8 147.1 
1Average slope recorded for the cow during the tracking period. 
2Average elevation recorded for the cow during the tracking period. 
3Average distance the cow travelled from water during the tracking period. 
4Standard deviation.  

 

Genotype-Phenotype Association Analyses – All Available Markers 

Association analyses were performed using the BOLT software package (Release 1.2.7; 

http://www.thetasolutionsllc.com/bolt-software.html) and BayesC methodology described by 

Habier et al. (2011). Analyses were conducted for each of the candidate Bos taurus autosomes 

(BTA 4, 12, 17, 29) described by Bailey et al. (2015) and rough and rolling index values were used 

as phenotypes (Table 4.4). Single nucleotide polymorphisms were simultaneously fit in the 

following statistical model:  

𝑦 = X𝛽 + ∑ 𝑍𝑎 + 𝑒𝐾
𝑘=1  

where 𝑦 was the vector of rough or rolling index values, X was the incidence matrix relating fixed 

effects to the observations in 𝑦, β was the vector of fixed effect solutions, 𝐾 was the number of 

SNP in the analysis, 𝑍 was the vector of genotype covariates for SNP k (coded -1, 0, 1), 𝑎 was the 

vector of random allele substitution effects, and 𝑒 was the vector of residual effects. Model 

selection was performed using backward selection in which alpha was set at 0.05. The least 

http://www.thetasolutionsllc.com/bolt-software.html
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significant predictor was removed from the full model until only significant predictors (P < 0.05) 

remained. Breed, terrain type (mountainous or rolling), and season (spring, summer, fall, winter) 

were fit as fixed effects in the full model; however, these effects were linearly dependent with 

ranch and therefore, were removed from the final model. Ranch was not significant for the model 

containing rolling index observations (P = 0.693) or rough index observations (P = 0.989); 

however, ranch was biologically significant and therefore, it was included as a fixed effect in the 

models. This is in agreement with the models described by Bailey et al. (2015). Since autosomes 

were examined individually, the number of makers varied per analysis (Table 4.3). 

A BayesC model assumes that a proportion of SNP have no effect (π) and a proportion of 

SNP have a nonzero effect (1-π). Single nucleotide polymorphism effects are normally distributed 

and have a common variance denoted by 𝜎𝛼2 (Fernando et al., 2017). For this analysis, 𝜋 was 0.995; 

therefore, the proportion of SNP with an effect (1-π) was 0.005. As discussed by Garrick and 

Fernando (2013), when examining a novel trait with BayesC, 𝜋 should be selected to ensure that 

the number of SNP fit in the model during each iteration does not exceed the number of 

observations. The variance of SNP effects was expressed as: 

𝜎𝛼2 =  𝑐𝜎𝑢22𝑘(1 − 𝜋)𝑝𝑞̅̅ ̅ 

where 𝑐 was the proportion of genetic variance accounted for by the SNP effects, 𝜎𝑢2 was the 

additive genetic variance, 𝑘 was the number SNP in the genotype matrix,  𝜋 was the proportion of 

SNP with null effect, and  𝑝𝑞̅̅ ̅ was the average of the product of the p and q loci frequencies. Table 

4.3 provides each of the previously discussed parameters as well as the heritability estimates from 

Bailey et al. (2015) that were used to estimate the additive genetic variance of the current data.  
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Table 4.3. Description of parameters used to calculate the variance of marker effects 
for Bayesian-based association studies with two terrain-use phenotypes and four Bos 

taurus autosomes.   

 Rolling Index Rough Index 

Parameter1 BTA4 BTA17 BTA29 BTA4 BTA12 BTA17 BTA29 

h2 0.34 034 0.34 0.36 0.36 0.36 0.36 

σ2
P 31.27 31.27 31.27 75.11 75.11 75.11 75.11 𝑐 1 1 1 1 1 1 1 

σ2
u 10.63 10.63 10.63 27.04 27.04 27.04 27.04 

k 33,252 21,160 13,887 33,252 24,729 21,160 13,887 

π 0.995 0.995 0.995 0.995 0.995 0.995 0.995 𝑝𝑞̅̅ ̅ 0.25 0.25 0.25 0.25 0.25 0.25 0.25 
1h2 = heritability estimate (Bailey et al., 2015); σ2

P = phenotypic variance; c = proportion of 
genetic variance explained by SNP effects; σ2

u = additive genetic variance; k = number of SNP, 
π = proportion of markers with null effect; 𝑝𝑞̅̅ ̅ = average of the product of the p and q loci 
frequencies. 

 
Single-site Gibbs sampling with 150,000 iterations was used to obtain the posterior mean 

of the allele substitution effects, the posterior variance of the allele substitution effects and the 

number of times the marker entered the model when sampled (marker count). Pre-conditioned 

conjugate gradient (PCG) solutions were used as starting values for the Markov chain Monte Carlo 

(MCMC) sampling chain, eliminating the need for a burn-in (Golden and Garrick, 2016). Posterior 

inclusion probability (PIP) or “the proportion of iterations that included a specific marker in the 

model” was calculated for each marker by dividing the marker count by the total number of 

iterations (van den Berg et al., 2013). As discussed by Yi et al. (2003), SNP with relatively large 

effects will appear more frequently during Gibbs sampling; therefore PIP can be used to identify 

important markers or genomic regions. Moreover, simulations conducted by Moser et al. (2015) 

suggest that high PIP values may be linked to causal variants or variants associated with the casual 

variant. Rstudio (version 3.3.2) was used to generate Manhattan plots and the SNP with the highest 

PIP were identified for every analysis. These SNP were considered the “top SNP” during the study 

and they were compared to the candidate SNP identified by  Bailey et al. (2015). 
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Table 4.4. Description of candidate single nucleotide polymorphisms (SNP) associated 
with beef cattle terrain-use indices developed by Bailey et al. (2015) 

RS ID1 CHR2 Position3 Gene4 Phenotype5 

rs134515496 4 14487987 SDHAF3 Rough & Rolling 
rs110062743 12 24593452 SUPT20H Rough 
rs109619368 17 18299593 MAML3 Rough & Rolling 
rs42161939 29 7083900 GRM5 Rough & Rolling 
rs43744222 29 7128587 GRM5 Rough & Rolling 

1Reference SNP cluster identification assigned by the National Center for Biotechnology 
Information (NCBI).  
2Autosome in which the SNP was located according to Bos taurus UMD3.1.1. 
3Autosome position in Bos taurus UMD3.1.1. 
4Positional candidate gene associated with the SNP. 
5Phenotype that the SNP was associated with: rough or rolling index. 

 

Genotype-Phenotype Association Analyses – One Megabase Windows 

On each autosome (BTA 4, 12, 17, 29), consecutive one megabase (Mb) genomic windows 

were derived and then the genomic windows containing the candidate SNP discovered by Bailey 

et al. (2015) were identified (Table 4.5). Genotype-phenotype associations were calculated using 

these one Mb windows and the rolling and rough index values. The analyses were run with BayesC 

methodology and the same statistical model as the GWAS using all markers (k ≥ 13,887). Briefly, 

ranch was fit as a fixed effect and markers were simultaneously fit as a random effect. The MCMC 

algorithm was run with 150,000 iterations and 𝜋 = 0.995. The variance of marker effects was 

calculated using the same formula; however, k was adjusted for each analysis to account for the 

reduction in markers. 
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Table 4.5. Description of one megabase genomic windows containing the SNP that 
were previously associated with beef cattle terrain-use indices. 

Window1 RS ID2 Number of SNP3 Start (bp)4 End (bp)4 

4_14 rs134515496 202 14000232 14988405 
12_24 rs110062743 352 24002782 24995225 
17_18 rs109619368 272 18004299 18998937 
29_7 rs42161939, rs43744222 284 7002538 7996355 

1Genomic window: autosome and nth 1 Mb window on that autosome. 
2Reference SNP cluster identification, assigned by National 
Center for Biotechnology Information (NCBI), for the 
candidate SNP within the window. 
3Number of SNP within the window. 
4Start of the 1 Mb window (bp). 
5End of the 1 Mb window (bp). 

 

Results 

The association analyses, in which the rough index values were the phenotype, provided 

evidence to support one of the five candidate SNP that were identified by Bailey et al. (2015) . The 

Manhattan plot that depicts the results of these four analyses (Figure 4.1) revealed a small peak on 

autosome four. The single nucleotide polymorphism with the highest PIP on this peak was 

rs110225180 (PIP = 0.011; Table 4.6). A posterior inclusion probability of 0.011 or 1.1% indicates 

that the SNP was included in the model in 1,650 iterations out of the 150,000 iterations that were 

ran for the Gibbs sampler. The top SNP on autosome four, rs110225180, was 86.3 Mb downstream 

of the candidate SNP that was previously identified on BTA4 (rs134515496) which had a PIP of 

0.006. Five markers were identified on autosome 12 including: rs42557694 (PIP = 0.017), 

rs136319514 (PIP = 0.015), rs109164448 (PIP = 0.015), rs110062743 (PIP = 0.015), and 

rs110450498 (PIP = 0.014). The top SNP (rs42557694) was 21.8 Mb downstream of the SNP 

previously associated with terrain-use (rs109164448). The candidate SNP located on autosome 17 

(rs109619368) was confirmed in this study (i.e., it was the top SNP on BTA17) with a PIP of 

0.015. Finally, the top three SNP on autosome 29 were rs42175994 (PIP = 0.020), rs110626028 
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(PIP = 0.018) and rs42161939 (PIP = 0.018). Bailey et al. (2015) reported an association between 

rs42161939 and both the rough and rolling indices. The second candidate SNP for this autosome, 

rs43744222, had a PIP of 0.016 or 0.16%.  

The second analysis, in which the rolling index values were the phenotype, failed to 

confirm the associations between the candidate SNP and the terrain-use indices. As with the rough 

index analysis, the Manhattan plot for the rolling index revealed small peaks on autosome four 

(Figure 4.2). The SNP that was previously reported on autosome four (rs134515496) had a 

posterior inclusion probability of 0.008 whereas the top SNP in this study (rs110340473) had a 

PIP of 0.010 (Table 4.7). Results of autosome 17 were similar to those of autosome four. The 

candidate locus identified in 2015 (rs109619368) had a relatively small PIP (0.009) compared to 

the locus with the highest PIP in this study (rs41637536; PIP = 0.020). The analysis using makers 

on autosome 29 identified three SNP of interest (rs42190442, rs42245670, and rs135313512); 

however, none of these SNP were identified by Bailey et al. (2015). Furthermore, none of these 

markers were in close proximity with the two candidate SNP discovered in 2015 (≥ 15 Mb).  

The association analyses performed using the one Mb genomic windows validated the five 

previously identified candidate SNP (Bailey et al., 2015) and their underlying genes (Figures 4.3 

and 4.4). On autosome four, rs134515496 and rs133330297 had PIP of 0.11 when associated with 

the rough index. Similarly, rs134515496 had the highest PIP (0.54) when rolling index values were 

used as the phenotype. On autosome 12, rs109164448 (PIP = 0.26), rs136319514 (PIP = 0.25), 

rs110450498 (PIP = 0.25), and rs110062743 (PIP = 0.23) were the top single nucleotide 

polymorphisms. While the SNP identified in 2015 (rs110062743) did not have the highest PIP, 

these four SNP were within a 0.007 Mb window which may suggest that markers are in linkage 

disequilibrium. As discussed by Bush and Moore (2012), “genotyped SNPs often lie in a region of 
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high linkage disequilibrium with an influential allele.” For both the rough and rolling indices, 

rs109619368 had the highest PIP on autosome 17. The posterior inclusion probability for this SNP 

was higher for the rough index analysis (PIP = 0.61) as compared to the rolling index analysis (PIP 

= 0.19). The two candidate SNP previously identified on autosome 29 were part of the top three 

SNP for the rough index phenotype: rs42161939 (PIP = 0.74), rs134606703 (PIP = 0.21), and 

rs43744222 (PIP = 0.20). The rolling index association analysis revealed similar results in which 

rs42161939 and rs43744222 had PIP of 0.40 and 0.17, respectively. 

 

 

Figure 4.1. Manhattan plot of a genome-wide association study for the rough index values of 75 
cows managed in Arizona, Montana, and New Mexico.  
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Figure 4.2. Manhattan plot of a genome-wide association study for the rolling index values of 
75 cows managed in Arizona, Montana, and New Mexico. 
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Table 4.6. Single nucleotide polymorphisms with the highest posterior inclusion 

probabilities, on autosome 4, 12, 17, and 29, in a genome-wide association study using 

rough index values of beef cows managed in the western U.S. 

RS ID1 CHR2 Position3 Gene4 
SNP 
location5 PIP6 

rs110225180 4 100820951 MTPN 0.194 Mb 0.011 
rs42557694 12 45411983 ENSBTAG00000046942 0.588 Mb 0.017 
rs109619368 17 18299593 MAML3 Intron 0.015 
rs42175994 29 26048742 ZDHHC13 Intron 0.020 

1Reference SNP cluster identification assigned by National Center for 
Biotechnology Information (NCBI). 
2Chromosome in which the SNP is located according to Bos taurus UMD3.1.1. 
3Chromosome position in Bos taurus UMD3.1.1. 
4Closest annotated gene. 
5Location of SNP within or near the gene. 
6Posterior inclusion probability: proportion of models (out of 1.0) in the 
MCMC chain that included the given SNP. 

 

Table 4.7. Single nucleotide polymorphisms with the highest posterior inclusion 

probabilities, on autosome 4, 17, and 29, in a genome-wide association study using 

rolling index values of beef cows managed in the western U.S. 

RS ID1 CHR2 Position3 Gene4 SNP location5 PIP6 

rs110340473 4 42817580 ENSBTAG00000022498 0.566 Mb 0.010 
rs41637536 17 30413148 INTU 0.008 Mb 0.200 
rs42190442 29 48029098 FADD Intron 0.021 

1Reference SNP cluster identification assigned by National Center for Biotechnology 
Information (NCBI). 
2Chromosome in which the SNP is located according to Bos taurus UMD3.1.1. 
3Chromosome position in Bos taurus UMD3.1.1. 
4Closest annotated gene. 
5Location of SNP within or near the gene. 
6Posterior inclusion probability: proportion of models (out of 1.0) in the 
MCMC chain that included the given SNP. 
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Figure 4.3. Manhattan plot depicting the results of a genome-wide association study using 
markers within one megabase genomic windows and rough index values of 75 cows managed in 
Arizona, Montana, and New Mexico. 
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Figure 4.4. Manhattan plot depicting the results of a genome-wide association study using 
markers within one megabase genomic windows and rolling index values of 75 cows managed 
in Arizona, Montana, and New Mexico.  

 

Discussion 

The association analyses using all markers (k ≥ 13,887) failed to confirm four of the five 

candidate SNP for the rough index and all five of the candidate SNP for the rolling index. These 

results were unexpected given that these candidate loci explained 12 to 24% of the variation in the 

rough index and 11 to 36% of the variation in the rolling index when analyzed using simple linear 

regression. On average, SNP account for 1 to 2% of the variation in the phenotype (Bailey et al., 

2015). A review of the literature suggested that accuracy of SNP detection may have been 

influenced by the data structure in which the number of markers greatly exceeded the number of 
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observations. This phenomenon is commonly referred to as “large p small n” or the “p≫n 

problem.” 

van den Berg et al. (2013) performed simulation scenarios to examine the effect of 

heritability, the number of quantitative trait loci (QTL), and sample size on the accuracy of QTL 

detection using BayesC and BayesC𝜋. Results of this analysis suggested that heritability and 

sample size were positively correlated with accuracy of detection (i.e., fewer false positives) while 

the number of QTL in the analysis was negatively correlated with accuracy. The p≫n problem 

was also described by Yazdani and Dunson (2015), “there are some clear limitations in scaling 

computation to very large p, as well as issues in obtaining reliable results when n is too small 

relative to p.”  

Association analyses using one megabase genomic windows (k ≤ 352) provided evidence 

to suggest that p≫n influenced the accuracy of SNP detection when the GWAS was performed 

using all markers (k ≥ 13,887). Truncating the number of markers from thousands to hundreds, to 

better suit the number of observations (n = 75), improved the accuracy of QTL detection and the 

top SNP identified in this study were in concordance with the simple linear regression results of 

Bailey et al. (2015). These results indicate that a larger sample size was needed to accurately 

perform QTL detection for these data using a Bayesian approach.  

Conclusion 

The Bayesian analyses using all markers (k ≥ 13,887) confirmed the association between 

rs109619368 on chromosome 17 and the rough index. The remaining candidate SNP failed to meet 

the detection criteria with low posterior inclusion probabilities. Subsequent analyses using one 

megabase genomic windows (k ≤ 352) provided evidence to support the findings of Bailey et al. 

(2015). More specifically, the five candidate SNP identified in 2015 had the highest PIP in this 
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study when the rough and rolling indices were the phenotypes. These results suggest that terrain-

use may be a polygenic trait; however, a larger sample size is needed to validate the SNP associated 

with terrain-use indices in beef cattle. 



  

70 
 

CHAPTER 5: GENOME-WIDE ASSOCIATION STUDIES OF BEEF COW TERRAIN-USE 

TRAITS USING BAYESIAN MULTIPLE-SNP REGRESSION 

 
 

Introduction 

Western beef producers utilize extensive rangeland pastures to maintain ~20% of the U.S. 

beef cattle inventory (DelCurto et al., 2017; Drouillard, 2018). Subsequently, producers face 

unique challenges associated with western rangeland topography including mountainous regions 

with rocky soils, steep slopes, and high elevation (DelCurto et al., 2017). These abiotic pasture-

attributes adversely affect grazing as cattle prefer gentle terrain (Valentine, 1947; Mueggler, 1965; 

Roath and Krueger, 1982; Holechek, 1988). This preference often results in reduced forage harvest 

in the uplands (Bailey et al., 2017) and damage to riparian zones as cattle heavily graze these areas 

(Kauffman and Krueger, 1984). Therefore, terrain-use is an important consideration of grazing 

management for western beef operations. 

The capital expenditure required for traditional grazing management practices (e.g., water 

development, fencing, supplementation) that may improve terrain-use is often very expensive 

(Tanaka et al., 2007); therefore, alternative practices warrant further consideration. Genetic 

selection has been proposed as a strategy to improve grazing patterns and Bailey et al. (2015) 

identified five quantitative trait loci (QTL) that may play a role in beef cattle terrain-use. While 

the results suggested that terrain-use is a polygenic trait that may be improved through genetic 

selection, these QTL and their underlying candidate genes need additional study. 

The small sample size (n = 158) of the study published by Bailey et al. (2015) may have 

limited the detection of associations between genotypes and phenotypes and the statistical method 

employed (single-marker regression) did not account for single nucleotide polymorphism (SNP) 
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interactions. A larger sample size and a more robust statistical method may improve SNP detection 

for terrain-use. Furthermore, additional terrain-use phenotypes should be examined because the 

rolling and rough index reported by Bailey et al. (2015) were trait ratios which complicate the 

development of estimated breeding values for selection. More specifically, unequal selection 

pressure may be placed on the component traits when direct selection is applied to trait ratios. In 

contrast, “linear selection indices place a predetermined amount of selection pressure on the traits 

of interest and therefore a predictable amount of genetic change should result” (Gunsett, 1984). 

For example, in economic selection indices for beef cattle, larger economic weights are applied to 

EPD with greater economic opportunity (Lindholm and Stonaker, 1957).  

The objectives of this study were to: 1) perform genome-wide association studies (GWAS) 

for six terrain-use traits (slope, elevation, vertical climb, distance travelled from water, rolling 

index, and rough index) using Bayesian methodologies and 2) survey the genome in consecutive, 

one megabase windows and calculate the proportion of total genetic variance explained by the 

markers within the windows for each terrain-use trait.  

Materials and Methods  

Study Sites and Cattle 

Global positioning system (GPS) data and a combination of Illumina BovineHD (777,962 

SNP) and BovineSNP50 genotypes (53,714 SNP) were obtained from 330 cows managed on 14 

rangeland beef cattle operations located in the western United States: Carter Ranch (San Simon, 

AZ), Chihuahuan Desert Rangeland Research Center managed by New Mexico State University 

(CDRRC; Las Cruces, NM), Colorado State University Beef Improvement Center (CSU-BIC; 

Riverside, WY), Corona Range and Livestock Center managed by New Mexico State University 

(Corona, NM), Ensz Ranch (Center, CO), Evans Ranch (Silver City, NM), Fort Union Ranch (Las 
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Vegas, NM), Gund Ranch managed by the University of Nevada (Austin, NV), Hartley Ranch 

(Roy, NM), O RO Ranch (Prescott, AZ), Silver Spur Ranches (Encampment, WY), Thackeray 

Ranch managed by Montana State University (Havre, MT), Todd Ranch (Willcox, AZ), and 

Wilbanks Ranch (Mayhill, NM). A description of each rangeland operation, including cattle breed 

and pasture topography, are provided in Table 5.1.  

Most of the cattle in this study were mature cows (n = 321); though, nine yearling heifers 

were studied at the Hartley Ranch. The cows varied in breed and physiological status (i.e., lactating 

verse non-lactating) across ranches (Table 5.2). Cattle were GPS monitored in the years 2011 to 

2017 for approximately 3 to 19 weeks using two types of collars: Lotek 3300 GPS collars (Lotek 

Wireless, New Market, Ontario, Canada) and igotU Gt-120 GPS tracking collars (Knight et al., 

2018a). Note that the length of GPS monitoring was dependent upon battery life. The GPS 

measurement interval (the time elapsed between coordinates) ranged from 5 to 15 minutes; 

however, the average interval was 10 minutes (Table 5.2). Assuming a 100% fix rate, a 10-minute 

interval would yield 144 coordinates for each cow for each day. 
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Table 5.1. Breed information and descriptions of pasture topography for rangeland beef operations in which cows were evaluated for 

terrain-use.  

 
 

 Elevation, m Slope3, % 
Distance from 
Water, km 

Ranch Breed Pasture size2, ha Range Mean Range Mean Max Mean 

Carter Brangus 4184 1074 - 1424 1143 0 - 83 4 3.7 1.3 
CDRRC 11/121 Brangus 3994 1218 - 1427 1306 0 - 30 6 8.7 4.6 
CDRRC 161 Brangus 1451 1209 - 1414 1309 0 - 100+ 23 4.9 2.2 

Corona 
Angus x Hereford 
Angus-cross 

721, 1601 1737 - 1836 1783 0 - 36 4 4.6 2.3 

Ensz Hereford-cross 26082 2494 - 3885 3219 0 - 62 13 1.4 0.2 
Evans Angus 3610 1687 - 1954 1837 0 - 100+ 12 4.7 1.7 
Fort Union Angus x Hereford 10063 2032 - 2564 2182 0 - 100+ 8 3.5 1.0 
Gund Angus-cross 1404 1760 - 2527 2085 10 - 100+ 37 0.8 0.3 

Hartley 
Angus 
Angus x Charolais 
Angus x Hereford 

1056 1491 - 1766 1591 0 - 100+ 11 4.4 1.1 

ORO 
Angus 
Angus x Hereford 

5719 1684 - 2126 1897 0 - 100+ 13 2.4 1.0 

CSU-BIC Angus 1351 2150 - 2411 2228 0 - 72 12 1.8 0.7 
Silver Spur P1 Angus 1649 2255 - 2601 2423 0 - 100+ 10 0.5 0.1 
Silver Spur FS1 Angus 6425 2255 - 3200 2757 0 - 100+ 17 0.6 0.1 

Thackeray 

Simmental x Hereford 
Simmental x Tarentaise 
Simmental x Hereford x 
Tarentaise 

336 1182 - 1385 1283 0 - 100+ 28 1.3 0.5 

Todd Limousin 9065 1277 - 2029 1454 0 - 100+ 20 4.0 1.3 
Wilbanks Angus-cross 1201 1851 - 2112 1971 1 - 86 23 3.4 1.8 

1Due to variation in pasture topography, pastures were classified as separate ranches: Chihuahuan Desert Rangeland Research Center pasture for 
cattle tracked in 2011 and 2012; Chihuahuan Desert Rangeland Research Center years pasture for cattle tracked in 2016; Silver Spur private land 
pasture; Silver Spur Forest Service Allotment. 
2Size of the pasture used during the study period. 
3Slope of 100+: the pasture contains very steep terrain that exceeds 45° (100%) slopes that cattle would rarely, if ever, use. 
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Table 5.2. Description of ranches, cows, and global positioning system (GPS) monitoring to 
evaluate terrain-use of beef cows in western U.S. mountain production systems. 

Ranch Year1 
Number of 
Days Tracked2 Season 

Interval3, 
min 

Cow 
Age4 

Physiological 
Status 

Carter 2011 75.75 Winter 15 Mature Dry 
CDRRC 2011 32.79 Summer 10 Mature Lactating 
CDRRC 2012 38 Winter 10 Mature Dry 
CDRRC 2016 84 Winter 10 Mature Dry 
Corona 2010 64.68 Summer 10 Mature Lactating 
Corona 2011 35.79 Summer 10 Mature Lactating 
Corona 2012 51 Summer 5 Mature Lactating 
Ensz 2016 71 Summer 10 Mature Lactating 
Evans 2012 59.42 Fall 10 Mature Dry 
Evans 2016 133 Fall 10 Mature Dry 
Fort Union 2017 85 Winter 10 Mature Dry 
Gund 2016 71 Summer 10 Mature Lactating 
Hartley 2009 122.88 Winter 15 Heifer Dry 
ORO 2017 113 Summer 10 Mature Dry 
CSU-BIC 2013 27 Summer 10 Mature Lactating 
CSU-BIC 2014 18 Summer 10 Mature Lactating 
Silver Spur 2017 119 Summer 10 Mature Lactating 
Thackeray 2011 37.63 Summer 10 Mature Lactating 
Todd 2011 90.58 Spring  15 Mature Dry 
Wilbanks 2015 89 Summer 10 Mature Lactating 

1Year that the GPS monitoring began. 
2Number of days that the cows were tracked. 
3Measurement interval for the GPS collars. 
4Cows that were 3 to 14 years old were considered mature cows. 
 

Phenotypes 

Quality control measures applied to the GPS data and derivation of terrain-use traits (slope, 

elevation, and distance travelled from water) using USGS Digital Elevation Maps (DEMs) and 

ArcGIS software (Redlands, CA) were described by Bailey et al. (2015). Derivation of terrain-use 

measurements from GPS data was also described in Chapter 4. Slope and elevation were 

determined for each GPS coordinate using a DEM with a 10-m resolution for each pasture. 

Moreover, slope was calculated as the change in Y (ΔY) divided by the change in X (ΔX) 

multiplied by 100. Distance travelled from water was determined using DEMs with 5-m resolution 
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and the ArcGIS Euclidian Distance tool (Redlands, CA). Average slope, elevation, and distance 

travelled from water were then calculated for each cow using the GPS coordinates collected over 

the tracking period (Table 5.3). These trait averages where then used as three different phenotypic 

measures in the GWAS. In addition, slope, elevation, and distance travelled from water were 

incorporated into two previously developed terrain-use indices: rough index and rolling index 

(Bailey et al., 2015). As previously discussed in chapter three, the rough index was the normalized 

average of slope and elevation whereas the rolling index was the normalized average of slope, 

elevation, and distance travelled from water. Values generated using these indices were used as 

two additional phenotypes for GWAS.  

Elevation was challenging to consistently describe across ranches due to variation in the 

location of the water source. Most of the study sites had water developments located at lower 

elevations in the pasture or grazing allotment; however, several ranches (CDRRC 16 and Evans) 

had water sources located at higher elevations. In the first scenario (A), higher elevation suggested 

improved grazing distribution; however, in the second scenario (B) a higher elevation suggested 

poor grazing distribution (Figure 5.1). To account for the variation in water source location and its 

effect on elevation measurements, new traits were developed to estimate the cows’ use of 

elevation: vertical distance to water and change in elevation. Vertical distance to water was 

calculated using the following formula: 

Vertical distance to water =  |𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑔 − 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑤| 
where 𝑔 represented the elevation of the cow for a given GPS coordinate and 𝑤 represented the 

elevation for nearest water source. Figure 5.2 provides an example calculation for vertical distance 

to water. Vertical distance to water could not be calculated for all ranches due to challenges 

associated with flowing water (i.e., streams); therefore, change in elevation was used as an 
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alternative measurement for Carter, Corona, Ensz, Fort Union, Gund, ORO, CSU-BIC and Silver 

Spur ranches. Change in elevation was calculated by subtracting the lowest elevation in the study 

pasture from the elevation of each GPS location collected on the cow (Figure 5.3). As with the 

previous traits, change in elevation and vertical distance to water were averaged across all GPS 

coordinates collected during the study period to generate one phenotypic value per cow. For the 

GWAS, vertical distance to water and change in elevation were executed as one phenotype termed 

vertical climb (Table 5.4). Vertical climb could not be calculated for two animals due to omission 

of data; therefore, the sample size for vertical climb was 328 cows versus 330 for the other 

phenotypes (slope, elevation, distance from water, rolling index, and rough index). 
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Table 5.3. Descriptive statistics for terrain-use traits derived from global positioning system (GPS) measures of beef cows managed in 

the western U.S.  

  Elevation2, m Slope3, % Distance from Water4, m 

Ranch n Min Mean Max SD5 Min Mean Max SD5 Min Mean Max SD5 

Carter 12 1143.0 1153.2 1164.7 8.1 1.9 2.1 2.5 0.2 696.3 828.9 929.2 56.1 
CDRRC 11-121 32 1310.7 1315.5 1325.2 3.2 3.7 4.7 5.9 0.5 1026.9 1478.4 1864.7 260.4 
CDRRC 161 12 1314.7 1320.5 1327.3 4.0 5.5 6.1 6.7 0.4 1391.7 1555.8 1718.9 109.9 
Corona 38 1760.6 1779.8 1792.9 7.6 3.2 3.7 4.5 0.2 1194.6 1898.6 2570.6 287.6 
Ensz 16 3147.9 3252.2 3325.2 54.6 6.0 6.9 8.0 0.6 139.7 232.4 282.9 39.7 
Evans 28 1732.5 1780.5 1816.6 22.9 6.7 7.9 8.7 0.5 1134.9 1522.6 1803.4 188.3 
Fort Union 31 2114.4 2165.0 2363.5 47.4 4.3 6.7 11.0 1.5 434.2 724.4 1261.6 146.3 
Gund 15 1919.4 1984.9 2107.0 61.3 16.0 22.6 30.2 3.5 210.7 264.5 344.0 41.4 
Hartley 8 1537.7 1590.3 1655.4 46.8 9.5 13.6 18.7 3.7 390.5 751.4 1162.3 285.7 
ORO 19 1792.6 1849.8 1934.0 37.2 6.6 10.3 12.7 1.4 674.8 904.6 1238.2 129.1 
CSU-BIC 37 2174.4 2204.3 2233.8 15.6 6.3 8.9 10.9 1.1 345.0 444.9 592.4 76.5 
Silver Spur P1 19 2381.2 2412.1 2442.8 19.4 5.2 7.0 8.1 0.6 71.5 80.1 89.5 6.1 
Silver Spur FS1 9 2500.5 2583.1 2699.0 60.8 7.4 8.1 9.3 0.6 76.9 85.2 97.0 7.0 
Thackeray 16 1266.3 1283.2 1293.8 7.8 14.5 18.9 20.7 1.4 388.6 470.0 530.2 40.0 
Todd 16 1325.0 1394.6 1495.9 51.0 4.7 7.6 11.1 1.8 763.3 975.8 1234.8 147.1 
Wilbanks 15 1929.9 1951.2 1978.9 15.3 12.9 14.6 18.4 1.9 680.5 941.0 1394.0 226.9 

1Due to variation in pasture topography, pastures were classified as separate ranches: Chihuahuan Desert Rangeland Research Center pasture for 
cattle tracked in 2011 and 2012; Chihuahuan Desert Rangeland Research Center years pasture for cattle tracked in 2016; Silver Spur private land 
pasture; Silver Spur Forest Service Allotment. 
2Elevation derived from each GPS coordinate; averaged across all coordinates in the study period for a given cow.  
3Slope calculated as (ΔY/ΔX) x 100; averaged across all coordinates in a study period for a given cow.  
4Distance travelled from water calculated using the nearest water source; averaged across all coordinates in a study period for a given cow.  
5SD: standard deviation.  
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Figure 5.1. Diagram depicting the effect of water location on elevation measurements of beef 
cows. A) Typical scenario where higher elevation reflects improved grazing distribution; B) 
Unusual scenario where higher elevation reflects poor grazing distribution. 

 

 

Figure 5.2. Diagram depicting the calculation of vertical distance to water for beef cows using 
the elevation at which the cow is located and the elevation of the nearest water source. 
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Figure 5.3. Diagram depicting the calculation of change in elevation for beef cows using the 
lowest elevation in the pasture and the elevation at which the cow is located. 
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Table 5.4. Descriptive statistics by ranch for vertical climb, derived from global positioning 
system (GPS) measurements of beef cows managed in extensive, rugged rangeland pastures in 
the western U.S. 

  Vertical Climb1, m 

Ranch n Min Mean Max SD2 

Carter 12 69.0 80.3 90.6 8.6 
CDRRC 11-12a 31 10.2 15.8 32.6 5.3 
CDRRC 16b 12 31.5 48.9 65.3 10.9 
Corona 37 9.7 15.6 20.7 3.2 
Ensz 16 653.9 758.3 831.2 2980.7 
Evans 28 40.2 74.2 103.2 19.7 
Fort Union 31 82.4 132.9 331.5 47.4 
Gund 15 159.5 225.0 347.0 61.3 
Hartley 8 12.8 27.0 59.8 15.8 
ORO 19 108.6 165.8 250.0 37.2 
CSU-BIC 37 24.4 54.2 83.8 15.6 
Silver Spur Pc 19 126.2 157.1 187.8 19.4 
Silver Spur FSd 9 245.5 328.1 444.0 60.8 
Thackeray 16 35.4 48.6 56.9 5.7 
Todd 16 48.0 117.6 218.9 51.0 
Wilbanks 15 24.7 45.9 68.5 13.2 

1Due to variation in pasture topography, pastures were classified as separate ranches: Chihuahuan Desert 
Rangeland Research Center pasture for cattle tracked in 2011 and 2012; Chihuahuan Desert Rangeland 
Research Center years pasture for cattle tracked in 2016; Silver Spur private land pasture; Silver Spur 
Forest Service Allotment. 
2Vertical climb calculated using vertical distance from water or change in elevation formula. 
3SD: standard deviation. 

 

Genotypes  

BovineHD genotypes (777,962 SNP) were obtained from 293 cows in the study. The other 

37 cows were genotyped with the BovineSNP50 Beadchip (53,714 SNP). The high-density SNP 

data were truncated to match the BovineSNP50 data to generate cohesive genotype data for 

analyses (n = 330). Due to differences in sample size, genotype quality control for vertical climb 

was performed separately from the effort for slope, elevation, distance travelled from water, rolling 

index and rough index. Genotype quality control was completed using PLINK 1.9 (Purcell and 

Chang, 2015) and standard filters: SNP call rate ≥ 0.90, minor allele frequency < 0.01, and Hardy-
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Weinberg Equilibrium < 0.000001, sample call rate ≥ 0.90, and heterozygosity rate ± 3 standard 

deviations from the mean.  

Marker filters were applied prior to individual filters to maintain a larger sample size. As 

discussed by Anderson et al. (2010), applying individual quality control filters prior to marker 

filters favors the retention of markers over individuals. With limited data for a GWAS (few 

hundred cows), sample size was deemed more important than the number of markers in the study. 

Linkage disequilibrium (LD) pruning was performed using an R2 threshold of 0.2 and then 

relatedness of individuals and population structure were evaluated using identity by descent and 

principle component analysis (PCA). First and second degree relatives (pi‐hat > 0.2; Marees et al., 

2018) were retained in this study (n = 154) to maintain the sample size. A PCA plot, generated 

using RStudio (version 3.3.2), did not suggest population stratification (i.e., subpopulations with 

systematic differences in allele frequencies due to ancestry) as individuals did not form distinct 

clusters (Figure 5.4). Therefore, after quality control, 321 animals and 42,603 SNP were available 

for the vertical climb analysis and 323 animals and 42,699 SNP were available for all other 

analyses. Genotypes were recoded from AB format to numerical values (AA [-1], AB [0], and BB 

[1]) and missing genotypes were filled with the median for that locus. 
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Figure 5.4. Principle component analysis (PCA) plot for a multi-breed population of beef cows 
(n = 323) managed on fourteen ranches across the western U.S. 

 

Statistical Analyses and Bioinformatics 

 

A genome wide association study was conducted for each phenotype using the BOLT 

software package (Release 1.2.7; http://www.thetasolutionsllc.com/bolt-software.html) and 

BayesC methodology developed by Habier et al. (2011). The most appropriate model for the 

Bayesian GWAS was as follows:  

𝑦 = X𝛽 + ∑ 𝑍𝑎 + 𝑒𝐾
𝑘=1  

where 𝑦 was the vector of observations, X was the incidence matrix relating fixed effects to the 

observations in 𝑦, β was the vector of unknown fixed effect solutions, 𝐾 was the number of SNP 

in the analysis, 𝑍 was the vector of genotype covariates for SNP k (coded -1, 0, 1), 𝑎 was the vector 

of random allele substitution effects, and 𝑒 was the vector of residual effects. Given the difficulty 

http://www.thetasolutionsllc.com/bolt-software.html
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of measuring terrain-use across western U.S. rangeland ranches, numerous fixed effects were 

examined during model selection including: ranch, breed, terrain type (mountainous or rolling), 

season (spring, summer, fall, winter), physiological status (lactating or dry), collar type (Lotek or 

igotU), and the GPS tracking start date. Backward selection with alpha 0.05 was used to identify 

significant predictors for each model. All predictors except collar type were linearly dependent 

with GPS tracking start date and therefore, these variables were removed from the models. Collar 

type was not significant, and thus the most appropriate model included GPS start date as a fixed 

effect. Fitting start date in the model was analogous to fitting a designated contemporary group to 

account for environmental differences among cows on ranches and pastures.  

As described in Chapter 4, BayesC models assume that a proportion of SNP have no effect 

on the phenotype (π) and the proportion SNP with an effect (1-π) are normally distributed with a 

common variance denoted by 𝜎𝑎2 (Fernando et al., 2017). For these association analyses, 𝜋 was 

0.995 and the variance of marker effects was calculated using the following equation: 

𝜎𝛼2 =  𝑐𝜎𝑢22𝑘(1 − 𝜋)𝑝𝑞̅̅ ̅ 

where 𝑐 represented the proportion of genetic variance explained by SNP effects, 𝜎𝑢2 represented 

the additive genetic variance, 𝑘 represented the number of markers, 𝜋 represented the proportion 

of SNP with null effect, and 𝑝𝑞̅̅ ̅ represented the average of the product of the p and q loci 

frequencies. Parameters used to derive the variance of marker effects for each phenotype are 

described in Table 5.5.  
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Table 5.5. Parameters used to calculate the variance of marker effects for Bayesian-based 
genotype-phenotype association analyses using six beef cattle terrain-use traits.  

Parameter1 
Distance from 

Water Elevation Slope 
Rolling 
Index 

Rough 
Index 

Vertical 
Climb 

h2 0.34 0.34 0.34 0.34 0.36 0.34 

σ2
P 30097.28 1007.85 1.95 42.74 48.71 994.95 𝑐 1 1 1 1 1 1 

σ2
u 10233.08 342.67 0.66 14.53 17.54 338.28 

k 42,699 42,699 42,699 42,699 42,699 42,603 

π 0.995 0.995 0.995 0.995 0.995 0.995 𝑝𝑞̅̅ ̅ 0.25 0.25 0.25 0.25 0.25 0.25 
1h2 = heritability estimate (Bailey et al., 2015); σ2

P = phenotypic variance; c = proportion of genetic variance 
explained by SNP effects; σ2

u = additive genetic variance; k = number of SNP, π = proportion of markers 
with null effect; 𝑝𝑞̅̅ ̅ = average of the product of the p and q loci frequencies. 

 

Allele substitution effects, variance of the allele substitution effects, and the number of 

times the marker was included in the model (count) were derived using a single-site Gibbs sampler 

with 150,000 iterations. Posterior inclusion probability (PIP) was calculated for each marker and 

the five SNP with the highest PIP were identified for each phenotype. These SNP were termed the 

candidate SNP throughout the study. Cattle QTL database (Cattle QTLdb; 

https://www.animalgenome.org/cgi-bin/QTLdb/BT/index) was used to determine if the QTL had 

been previously associated with beef cattle traits. Ensembl genome database (Release 94; Zerbino 

et al., 2017) was used to identify genes within one megabase of the candidate SNP and the 

annotated gene located nearest to SNP was deemed the putative candidate gene. Gene ontology 

was examined using AgBase (version 2.00; http://agbase.arizona.edu/index.html). 

As summarized by Wolc et al. (2012) and Garrick and Fernando (2013), Bayesian multiple-

SNP regression may fail to reveal strong associations between individual markers and the trait of 

interest (i.e., low PIP or small percentage of genetic variance explained) due to linkage 

disequilibrium; therefore, associations are often identified using genomic windows. For this study, 

non-overlapping one megabase genomic windows were derived using the annotation for bovine 

https://www.animalgenome.org/cgi-bin/QTLdb/BT/index
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assembly UMD3.1.1. The Markov chain Monte Carlo (MCMC) sampling chain values were used 

to calculate the proportion of genetic variance explained by the markers in the genomic windows 

and the five genomic windows explaining the largest portion of genetic variance were deemed 

regions of interest. The SNP with the highest PIP within the region of interest was considered the 

lead SNP and Ensembl genome database (Release 94; Zerbino et al., 2017) was used to identify 

the annotated gene located nearest to the lead SNP. Beef cattle traits previously associated with the 

QTL were identified using Cattle QTLdb (https://www.animalgenome.org/cgi-

bin/QTLdb/BT/index) and AgBase (version 2.00; http://agbase.arizona.edu/index.html) was used 

to assess the gene ontology. 

Results 

Slope 

The GWAS, in which percent slope was the phenotype, revealed QTL on chromosome 10 

and 17 (Figure 5.5). Of the five candidate SNP identified in this analysis, four were located on 

chromosome 10 and one was located on chromosome 17 (Table 5.6). The SNP with the highest 

PIP was rs29013509 with a value 0.14. Therefore, rs29013509 was included in approximately 

21,000 iterations out of 150,000 in the MCMC chain. In comparison, the four-other candidate SNP 

identified in this analysis (rs42415241, rs109097567, rs41848746, and rs29013631) had relatively 

low PIP ranging from 0.05 to 0.06.  

Like the five candidate markers, the top five genomic windows were on chromosome 4, 

10, 17, and 29 (Figure 5.6). The markers within the 20th window on chromosome 10 explained 

0.0057% of the genetic variance of percent slope and the SNP located in 38th genomic window 

explained 0.0045% of the genetic variance (Table 5.7). Genomic windows identified on 
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chromosome 4, 17, and 29 explained 0.0019%, 0.0018%, and 0.0017%, respectively. In total, the 

proportion of genetic variance explained by the one megabase genomic windows was 0.98%.  

Comparing the candidate markers identified in the GWAS to the genomic windows and 

their lead SNP revealed a high level of concordance. Four of the candidate markers were located 

within the top genomic windows and three of the candidate SNP were also considered lead SNP 

(rs29013509, rs42415241, rs41848746). These results provide evidence to support the importance 

of these QTL regarding percent slope traversed by beef cows in western rangelands.  

 

 

Figure 5.5. Manhattan plot of a multi-breed genome-wide association study for percent slope 
traversed by 323 beef cows in the western U.S.  
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Table 5.6. Top five single nucleotide polymorphisms (SNP) identified in the 
multi-breed genome-wide association study for percent slope traversed by beef 
cows (n = 323) in the western U.S. 

RS ID1 CHR2 Position3 Window4 Gene5 SNP location6 PIP7 

rs29013509 10 20498087 10_20 TBC1D21 0.026 Mb 0.14 
rs42415241 10 38986604 10_38 EPB42 0.448 Mb 0.06 
rs109097567 10 19494672 10_19 ADPGK 0.085 Mb 0.05 
rs41848746 17 61920415 17_61 TBX3 0.432 Mb 0.05 
rs29013631 10 38826667 10_38 EPB42 0.160 Mb 0.05 

1Reference SNP cluster identification assigned by the National Center for Biotechnology 
Information (NCBI). 
2Chromosome in which the SNP is located according to Bos taurus UMD3.1.1. 
3Chromosome position in Bos taurus UMD3.1.1. 
4Genomic window: chromosome and nth 1 Mb window on that chromosome. 
5Closest annotated gene. 
6Location of SNP within or near the gene. 
7Posterior inclusion probability: proportion of models (out of 1.0) in the MCMC chain 
that included the given SNP. 

 

 

Figure 5.6. Manhattan plot of the proportion of genetic variance explained by markers in one 
megabase consecutive genomic windows for percent slope traversed by 323 beef cows in the 
western U.S.  
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Table 5.7. Top five genomic windows (1 Mb) identified in the multi-breed genome-wide 
association study for percent slope traversed by beef cows (n = 323) in the western U.S. 

Window1 Start2 (bp) End3 (bp) SNP4 Var5, % Lead SNP6 Gene7 

10_20 20008636 20932671 20 0.0057 rs29013509 TBC1D21 
10_38 38026306 38986604 15 0.0045 rs42415241 EPB42 
4_61 61015911 61972879 24 0.0019 rs43109323 SEPT7 

17_61 61028494 61955493 21 0.0018 rs41848746 TBX3 
29_14 14009294 14983423 20 0.0017 rs42477618 ENSBTAG00000022427 

1Genomic window: chromosome and nth 1 Mb window on that chromosome. 
2Start of the 1 Mb window (bp). 
3End of the 1 Mb window (bp). 
4Number of SNP within the window.  
5Percentage of genetic variance explained by the genomic window. 
6Lead SNP: SNP with highest PIP. 
7Closest annotated gene. 
 

Elevation and Vertical Climb 

 
The Manhattan plot of the genotype to phenotype association analysis for elevation 

revealed several notable peaks on chromosome 4, 7, 11, 12, 23, and 24 (Figure 5.7). Further 

examination of the markers within the peaks, and their associated PIP, suggested that the candidate 

SNP for elevation were intronic and intergenic variants on chromosome 4, 11, 12, 23 and 24 (Table 

5.8). This included: rs41600226 (PIP = 0.18), rs43408732 (PIP = 0.17), rs109716600 (PIP = 0.12), 

rs41633961 (PIP = 0.12), and rs109669554 (PIP = 0.12). Analysis using genomic windows 

revealed similar chromosomal regions (chromosomes 4, 7, 11, 23, and 24) related to elevation 

(Figure 5.8). The 47th window on chromosome 23 explained the largest proportion of genetic 

variance for elevation (0.0052%). Three windows explained 0.0036% of the genetic variance 

including: the 79th window on chromosome 4, 86th window on chromosome 7, and 18th window 

on chromosome 24 (Table 5.9). The fifth genomic window on chromosome 11 explained a slightly 

lower proportion of genetic variance (0.0030%) than the other top four windows. In total, the 

genomic windows explained 0.86% of the genetic variance. As with slope, three of the candidate 
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SNP for elevation were also considered lead SNP within the genomic windows analysis 

(rs41600226, rs43408732, and rs109716600). 

Genome-wide association study results for vertical climb paralleled the results produced in 

the association analysis using the phenotype elevation. Again, important genomic regions were 

identified on chromosomes 4, 11, 12, and 23 (Figure 5.9) and rs41600226 had the highest rate of 

inclusion with a PIP of 0.16 (Table 5.10). Re-ranking occurred amongst the candidate SNP on 

chromosome 4, 11, and 12 and rs110978254 on chromosome 22 replaced rs110978254 on 

chromosome 24 in the top five SNP. In general, the PIP for the five candidate SNP were generally 

lower in the vertical climb analysis than the elevation analysis.  

Three of the five genomic windows for vertical climb were also associated with elevation 

(chromosome 11, 23, and 24; Figure 5.9). The markers within 47th window on chromosome 23 

explained 0.0050% of the genetic variance, the 91st window on chromosome 11 accounted 

0.0034%, and the 18th window on chromosome 24 explained 0.0028% of the genetic variance in 

elevation (Table 5.11). The 55th window on chromosome 22 that explained 0.0028% of the genetic 

variance and the 70th window on chromosome 12 that explained 0.0026% of the genetic variance 

were unique to vertical climb. The proportion of genetic variance explained by SNP within the 

non-overlapping genomic windows was 0.86%. A comparison of candidate markers and genomic 

windows for vertical climb revealed a high level of concordance with four overlapping SNP 

(rs41600226, rs109502510, rs110978254, and rs41633961). These results suggested that the QTL 

on chromosomes 11, 12, 22, and 24 are important regions for the vertical climb of beef cattle.  
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Figure 5.7. Manhattan plot of a multi-breed genome-wide association study for elevation (m) 
traversed by 323 beef cows in the western U.S. 

 

Table 5.8. Top five single nucleotide polymorphisms (SNP) identified in the multi-breed 
genome-wide association study for elevation (m) traversed by beef cows (n = 323) in the 
western U.S. 

RS ID1 CHR2 Position3 Window4 Gene5 SNP location6 PIP7 

rs41600226 23 47219946 23_47 EEF1E1 Intron 0.18 
rs43408732 4 79996650 4_79 INHBA Intron 0.17 
rs109716600 24 18893792 24_18 CELF4 0.925 Mb 0.12 
rs41633961 12 70064114 12_70 ENSBTAG00000032603 Intron 0.12 
rs109669554 11 93142448 11_93 MRRF 0.004 Mb 0.12 

1Reference SNP cluster identification assigned by National Center for Biotechnology Information 
(NCBI). 
2Chromosome in which the SNP is located according to Bos taurus UMD3.1.1. 
3Chromosome position in Bos taurus UMD3.1.1. 
4Genomic window: chromosome and nth 1 Mb window on that chromosome. 
5Closest annotated gene. 
6Location of SNP within or near the gene. 
7Posterior inclusion probability: proportion of models (out of 1.0) in the MCMC chain 
that included the given SNP. 
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Figure 5.8. Manhattan plot of the proportion of genetic variance explained by markers in one 
megabase consecutive genomic windows for elevation (m) traversed by 323 beef cows in the 
western U.S. 

 

Table 5.9. Top five genomic windows (1 Mb) identified in the multi-breed genome-wide 
association study for elevation (m) traversed by beef cows (n = 323) in the western U.S. 

Window1 Start2 (bp) End3 (bp) SNP4 Var5, % Lead SNP6 Gene7 

23_47 47005648 47953939 19 0.0052 rs41600226 EEF1E1 

7_86 86044835 86936090 21 0.0036 rs110681394 EDIL3 

4_79 79215287 79996650 9 0.0036 rs43408732 INHBA 

24_18 18036453 18990335 14 0.0036 rs109716600 CELF4 

11_91 91068648 91995272 19 0.0030 rs109502510 ENSBTAG00000039201 
1Genomic window: chromosome and nth 1 Mb window on that chromosome. 
2Start of the 1 Mb window (bp). 
3End of the 1 Mb window (bp). 
4Number of SNP within the window.  
5Percentage of genetic variance explained by the genomic window. 
6Lead SNP: SNP with highest PIP. 
7Closest annotated gene. 
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Figure 5.9. Manhattan plot of a multi-breed genome-wide association study for vertical climb 
of 321 beef cows managed in the western U.S. 

 

Table 5.10. Top five single nucleotide polymorphisms (SNP) identified in the multi-breed 
genome-wide association study for vertical climb of 321 beef cows managed in the western U.S. 

RS ID1 CHR2 Position3 Window4 Gene5 SNP location6 PIP7 

rs41600226 23 47219946 23_47 EEF1E1 Intron 0.16 
rs109502510 11 91680069 11_91 ENSBTAG00000039201 0.535 Mb 0.12 
rs41633961 12 70064114 12_70 ENSBTAG00000032603 Intron 0.11 
rs43408732 4 79996650 4_79 INHBA Intron 0.10 
rs110978254 22 55257755 22_55 ATP2B2 Intron 0.10 

1Reference SNP cluster identification assigned by National Center for Biotechnology Information 
(NCBI). 
2Chromosome in which the SNP is located according to Bos taurus UMD3.1.1. 
3Chromosome position in Bos taurus UMD3.1.1. 
4Genomic window: chromosome and nth 1 Mb window on that chromosome. 
5Closest annotated gene. 
6Location of SNP within or near the gene. 
7Posterior inclusion probability: proportion of models (out of 1.0) in the MCMC chain 
that included the given SNP. 
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Figure 5.10. Manhattan plot of the proportion of genetic variance explained by markers in one 
megabase consecutive genomic windows for vertical climb of 321 beef cows managed in the 
western U.S. 

 

Table 5.11. Top five genomic windows (1 Mb) identified in the multi-breed genome-wide 
association study for vertical climb of 321 beef cows managed in the western U.S. 

Window1 Start2 (bp) End3 (bp) SNP4 Var5, % Lead SNP6 Gene7 

23_47 47005648 47953939 19 0.0050 rs41600226 EEF1E1 

11_91 91068648 91995272 19 0.0034 rs109502510 ENSBTAG00000039201 

22_55 55063369 55913908 22 0.0028 rs110978254 ATP2B2 

24_18 18036453 18990335 14 0.0028 rs109716600 CELF4 

12_70 70000094 70290528 11 0.0026 rs41633961 ENSBTAG00000032603 
1Genomic window: chromosome and nth 1 Mb window on that chromosome. 
2Start of the 1 Mb window (bp). 
3End of the 1 Mb window (bp).  
4Number of SNP within the window.  
5Percentage of genetic variance explained by the genomic window. 
6Lead SNP: SNP with highest PIP. 
7Closest annotated gene. 
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Distance Travelled from Water   

 
Unlike slope, elevation, or vertical climb, the Manhattan plot for distance travelled from 

water failed to reveal any notable peaks (Figure 5.11). In addition, posterior inclusion probabilities 

for the markers in this GWAS were extremely low (PIP < 0.05) when compared to the other 

analyses. The top markers included rs41598300 on chromosome 16 (PIP = 0.03), rs109226946 on 

chromosome eight (PIP = 0.03), rs109175805 on chromosome 5 (PIP = 0.02), rs42599235 on 

chromosome 21 (PIP = 0.02) and rs43256975 on chromosome 1 (PIP = 0.02). A description of 

these SNP and their positional candidate genes are provided in Table 5.12.  

The top five genomic windows for distance travelled from water were located on 

chromosome 1, 5, 8, 16 and 17 (Figure 5.12). These individual windows explained 0.0012 to 

0.0014% of the genetic variation for distance travelled from water. The proportion of genetic 

variance explained by all of the one megabase genomic windows was 1.07%. As with the posterior 

inclusion probability values, these percentages were low in comparison to the proportion of genetic 

variance explained for the five other phenotypes. Four of the five candidate SNP were also 

considered lead SNP within the top five genomic windows. This included rs109226946 within the 

86th window on chromosome 8, rs41598300 within the 80th window on chromosome 16, 

rs43256975 within the 108th window on chromosome 1, and rs109175805 the 101st window on 

chromosome 5 (Table 5.13).  
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Figure 5.11. Manhattan plot of a multi-breed genome-wide association study for the distance 
beef cows (n = 323) travelled from water while managed on rangeland in the western U.S. 

 

Table 5.12. Top five single nucleotide polymorphisms (SNP) identified in the multi-breed 

genome-wide association study for the distance beef cows (n = 323) travelled from water while 

managed on rangeland in the western U.S 

RS ID1 CHR2 Position3 Window4 Gene5 
SNP 
location6 PIP7 

rs41598300 16 80407423 16_80 NR5A2 0.344 Mb  0.03 
rs109226946 8 86442366 8_86 PHF2 0.017 Mb 0.03 
rs109175805 5 101518663 5_101 A2ML1 Intron 0.02 
rs42599235 21 47902442 21_47 ENSBTAG00000000655 Intron 0.02 
rs43256975 1 108154057 1_108 C1H3orf80 0.067 Mb 0.02 

1Reference SNP cluster identification assigned by National Center for Biotechnology Information 
(NCBI). 
2Chromosome in which the SNP is located according to Bos taurus UMD3.1.1. 
3Chromosome position in Bos taurus UMD3.1.1. 
4Genomic window: chromosome and nth 1 Mb window on that chromosome. 
5Closest annotated gene. 
6Location of SNP within or near the gene. 
7Posterior inclusion probability: proportion of models (out of 1.0) in the MCMC chain 
that included the given SNP. 
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Figure 5.12. Manhattan plot of the proportion of genetic variance explained by markers in one 
megabase consecutive genomic windows for the distance beef cows (n = 323) travelled from 
water while managed in the western U.S. 

  

Table 5.13. Top five genomic windows (1 Mb) identified in the multi-breed genome-
wide association study for the distance beef cows (n = 323) travelled from water 
while managed in the western U.S. 

Window1 Start2 (bp) End3 (bp) SNP4 Var5, % Lead SNP6 Gene7 

8_86 86101796 86974867 18 0.0014 rs109226946 PHF2 

16_80 80010239 80985485 22 0.0012 rs41598300 NR5A2 

1_108 108000927 108935413 20 0.0012 rs43256975 C1H3orf80 

5_101 101124171 101974400 15 0.0012 rs109175805 A2ML1 

17_56 56023773 56963536 17 0.0012 rs109952637 IFT81 
1Genomic window: chromosome and nth 1 Mb window on that chromosome. 
2Start of the 1 Mb window (bp). 
3End of the 1 Mb window (bp). 
4Number of SNP within the window.  
5Percentage of genetic variance explained by the genomic window. 
6Lead SNP: SNP with highest PIP. 
7Closest annotated gene. 
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Rolling Index  

 
The Bayesian GWAS using the rolling index identified candidate SNP on chromosome 10, 

13, 18, and 24 (Figure 5.13). The highest PIP was associated with rs29021957 (PIP = 0.06) an 

intergenic variant located on chromosome 24. The second highest posterior inclusion probability 

(PIP = 0.05) was associated with rs110514275 on chromosome 10 (Table 5.14). The other top SNP 

(rs41582500, rs41576569, and rs11003025) had PIP of 0.04; therefore, 4% of samples included 

these SNP in the model. The top five genomic windows included the 63rd window on chromosome 

13, the 55th window on chromosome eight, the 6th window on chromosome 24, the 15th window 

on chromosome 10, and the 45th window on chromosome 16 (Figure 5.14; Table 5.15). The SNP 

within the consecutive, one megabase genomic windows explained 0.99% of the genetic variance. 

The concordance between the candidate SNP and the lead SNP within the genomic windows 

suggested that four of the five candidate SNP were important for terrain-use.  

The SNP identified in this study were compared to the eight candidate SNP that were 

previously associated with the rolling index (Bailey et al., 2015). Table 5.16 provides a description 

of the SNP identified in 2015 and their associated candidate genes. Unfortunately, the SNP 

identified using Bayesian approach did not parallel those identified by Bailey et al. (2015).  
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Figure 5.13. Manhattan plot of a multi-breed genome-wide association study for the rolling 
index values of 323 beef cows managed in the western U.S. 

 

Table 5.14. Top five single nucleotide polymorphisms (SNP) identified in the multi-
breed genome-wide association study for the rolling index values of beef cows (n = 
323) managed in the western U.S. 

RS ID1 CHR2 Position3 Window4 Gene5 SNP location6 PIP7 

rs29021957 24 6276349 24_6 CBLN2 .655 Mb 0.06 
rs110514275 10 15202658 10_15 ITGA11 0.006 Mb 0.05 
rs41582500 18 57115739 18_57 LRRC4B Intron 0.04 
rs41576569 13 63369536 13_63 CDK5RAP1  Intron 0.04 
rs110030253 13 63391193 13_63 CDK5RAP1  Intron 0.04 

1Reference SNP cluster identification assigned by National Center for Biotechnology 
Information (NCBI). 
2Chromosome in which the SNP is located according to Bos taurus UMD3.1.1. 
3Chromosome position in Bos taurus UMD3.1.1. 
4Genomic window: chromosome and nth 1 Mb window on that chromosome. 
5Closest annotated gene. 
6Location of SNP within or near the gene. 
7Posterior inclusion probability: proportion of models (out of 1.0) in the MCMC chain 
that included the given SNP. 
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Figure 5.14. Manhattan plot of the proportion of genetic variance explained by markers in one 
megabase consecutive genomic windows for the rolling index values of 323 beef cows 
managed in the western U.S. 
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Table 5.15. Top five genomic windows (1 Mb) identified in the multi-breed 
genome-wide association study for the rolling index values of beef cows (n = 323) 
managed in the western U.S. 

Window1 Start2 (bp) End3 (bp) SNP4 Var5, % Lead SNP6 Gene7 

13_63 63015278 63978193 23 0.0026 
rs41576569, 
rs110030253 

CDK5RAP1  

8_55 55004792 55996200 22 0.0024 rs41619378 TLE4 

24_6 6047561 6914110 17 0.0021 rs29021957 CBLN2 

10_15 15072778 15974499 21 0.0020 rs110514275 ITGA11 

16_45 45017787 45552538 10 0.0018 rs41811366 CA6 

1Genomic window: chromosome and nth 1 Mb window on that chromosome. 
2Start of the 1 Mb window (bp). 
3End of the 1 Mb window (bp). 
4Number of SNP within the window.  
5Percentage of genetic variance explained by the genomic window. 
6Lead SNP: SNP with highest PIP. 
7Closest annotated gene. 

 

Table 5.16. Description of candidate single nucleotide 
polymorphisms (SNP) previously associated with the 
rolling index through single marker regression 
(Bailey et al., 2015).  

RS ID1 CHR2 Position3 Candidate Gene4 

rs134515496 4 14487987 SDHAF3 

rs109619368 17 18299593 MAML3 

- 29 6598207 GRM5 

rs42161939 29 7083900 GRM5 

rs43744222 29 7128587 GRM5 

- 29 7128668 GRM5 

- 29 7240505 GRM5 

rs42162708 29 7241306 GRM5 
1Reference SNP cluster identification assigned by National 
Center for Biotechnology Information (NCBI). 
2Chromosome in which the SNP is located according to 
 Bos taurus UMD3.1.1. 
3Chromosome position in Bos taurus UMD3.1.1. 
4Closest annotated gene. 
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Rough Index 

 

The Manhattan plot for the rough index revealed peaks on chromosome 10, 24, 27, and 29 

(Figure 5.15). The marker identified on chromosome 10, rs29013509, was also one of the 

candidate markers for slope (Table 5.6). In the rough index GWAS, the PIP for rs29013509 was 

0.14 whereas in the slope analysis the PIP was 0.13 (Table 5.17). The marker with the second 

highest PIP (0.08) was identified on chromosome 29 (rs110590993) as was the SNP with the third 

highest posterior inclusion probability (rs43703968; PIP = 0.07). Bailey et al. (2015) discovered 

two SNP on chromosome 29 that were associated with the rough index: rs42161939 and 

rs43744222 (Table 5.19). The markers identified in this Bayesian regression were located 

approximately 6.8 Mb to 10.9 Mb downstream from the SNP identified in 2015. The two-other 

candidate SNP identified in this analysis had PIP of 0.07 and were located on chromosome 24 

(rs110959252) and 27 (rs42120868). 

Three of the five genomic windows for the rough index contained lead SNP that were also 

considered candidate SNP (rs29013509, rs110959252, and rs42120868). The proportion of genetic 

variance explained by the 20th window on chromosome 10 was 0.0047% making it the top window 

in this analysis. The 42nd window on chromosome 24 explained 0.0041% of the genetic variance 

and the 17th window on chromosome 27 explained 0.0036% of the genetic variance for the rough 

index (Figure 5.16; Table 5.18). The cumulative proportion of genetic variance explained by the 

genomic windows was 0.99%.  As with the individual marker results, several of the genomic 

windows for the rough index matched those identified for slope. The 20th and 38th window on 

chromosome 10 as well as the 61st window on chromosome four were part of the top five windows 

in both analyses. In general, these genomic windows explained a larger proportion of genetic 

variance for slope than for the rough index.  
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Figure 5.15. Manhattan plot of a multi-breed genome-wide association study for the rough 
index values of 323 beef cows managed in the western U.S. 

 

Table 5.17. Top five single nucleotide polymorphisms (SNP) identified in the multi-
breed genome-wide association study for the rough index values of beef cows (n = 
323) managed in the western U.S. 

RS ID1 CHR2 Position3 Window4 Gene5 
SNP 
location6 PIP7 

rs29013509 10 20498087 10_20 TBC1D21 0.026 Mb 0.13 
rs110590993 29 11905442 29_11 ENSBTAG00000027868 0.200 Mb 0.08 
rs110959252 24 42665926 24_42 PIEZO2 Intron 0.07 
rs43703968 29 13959142 29_13 ENSBTAG00000022427 0.377 Mb 0.07 
rs42120868 27 17956728 27_17 FRG1 0.288 Mb  0.07 

1Reference SNP cluster identification assigned by National Center for Biotechnology Information 
(NCBI). 
2Chromosome in which the SNP is located according to Bos taurus UMD3.1.1. 
3Chromosome position in Bos taurus UMD3.1.1. 
4Genomic window: chromosome and nth 1 Mb window on that chromosome. 
5Closest annotated gene. 
6Location of SNP within or near the gene. 
7Posterior inclusion probability: proportion of models (out of 1.0) in the MCMC chain 
that included the given SNP. 
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Figure 5.16. Manhattan plot of the proportion of genetic variance explained by markers in one 
megabase consecutive genomic windows for the rough index values of 323 beef cows in the 
western U.S. 

 

Table 5.18. Top five genomic windows (1 Mb) identified in the multi-breed 
genome-wide association study for the rough index values of beef cows (n = 
323) managed in the western U.S. 

Window1 Start2 (bp) End3 (bp) SNP4 Var,5 % Lead SNP6 Gene7 

10_20 20008636 20932671 20 0.0047 rs29013509 TBC1D21 
24_42 42048793 42967505 17 0.0041 rs110959252 PIEZO2 
27_17 17007677 17956728 18 0.0036 rs42120868 FRG1 
10_38 38026306 38986604 15 0.0033 rs29013631 EPB42 

4_61 61015911 61972879 24 0.0032 rs43109323 SEPT7 
1Genomic window: chromosome and nth 1 Mb window on that chromosome. 
2Start of the 1 Mb window (bp). 
3End of the 1 Mb window (bp). 
4Number of SNP within the window.  
5Percentage of genetic variance explained by the genomic window. 
6Lead SNP: SNP with highest PIP. 
7Closest annotated gene. 
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Table 5.19. Description of candidate single nucleotide 
polymorphisms (SNP) previously associated with the 
rough index through single marker regression (Bailey 
et al., 2015). 

RS ID1 CHR2 Position3 Candidate Gene4 

rs134515496 4 14487987 SDHAF3 

- 8 60157511 RUSC2 

- 12 24598260 SUPT20H 

rs110062743 12 24593452 SUPT20H 

rs109619368 17 18299593 MAML3 

rs109619368 17 18299593 MAML3 

rs42161939 29 7083900 GRM5 

rs43744222 29 7128587 GRM5 
1Reference SNP cluster identification assigned by National 
Center for Biotechnology Information (NCBI). 
2Chromosome in which the SNP is located according to Bos 
taurus UMD3.1.1. 
3Chromosome position in Bos taurus UMD3.1.1. 
4Closest annotated gene. 
 

Discussion 

Genome-wide association studies using data collected from cows managed on rangeland 

operations in the western United States identified QTL that may be important for terrain-use in 

extensive rangeland pastures. In total, 30 candidate SNP were identified for slope, elevation, 

vertical climb, distance travelled from water, rolling index and rough index. Four of the 30 SNP 

were associated with more than one terrain-use trait; therefore, 26 unique SNP, on 17 

chromosomes, were discovered to have an association with at least one terrain use outcome. The 

posterior inclusion probabilities for the markers in the six GWAS were considered low. The 

maximum PIP identified for a single SNP across the six analyses was 18% (rs41600226 on 

chromosome 23) which meant the highest rate of inclusion was 27,000 out of 150,000 samples. 

Moreover, the mean PIP for elevation and vertical climb was 0.6% whereas the mean PIP for slope, 

distance travelled from water, rolling index and rough index was 0.5%.  
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Although the PIP were low, Manhattan plots for five of the six traits had notable peaks and 

there is no standard threshold for determining significance based on posterior inclusion probability. 

Furthermore, previous mammalian studies suggested that posterior inclusion probability varies 

greatly depending upon the trait of interest. Wolc et al. (2012) examined QTL associated with 

laying hen egg weight and selected candidate SNP based upon the highest PIP and largest 

proportion of genetic variance explained. In the study of Wolc et al. (2012), the candidate SNP 

had PIP ranging from 0.19 to 1.00. Speidel et al. (2018) examined the genetic architecture of heifer 

pregnancy and stayability in Red Angus cattle and set a PIP threshold for each trait. Speidel et al. 

(2018) reported lower PIP for heifer pregnancy than stayability. More specifically, the maximum 

PIP for heifer pregnancy was 6% whereas the max PIP for stayability was 100%. Speidel et al. 

(2018) hypothesized that the low inclusion of markers for heifer pregnancy was due to a lack of 

phenotypic data (n = 567) and the low heritability of the trait (h2 = 0.12). Perhaps, the PIP for the 

terrain-use traits presented in this study have been influenced by similar factors. The moderate 

sample size of this study limited the statistical power for SNP detection and results suggested that 

terrain-use traits may be lowly heritable. Yet, this study was challenged by landscape diversity 

among ranches, breed of cattle, and GPS monitoring attributes. Higher quality data with more 

uniformity could improve QTL detection and SNP effect estimates.  

Twenty-four genomic windows, spanning 13 chromosomes, were associated with the six 

terrain-use traits and six of the windows (4_61, 11_91, 10_20, 10_38, 23_47, and 24_18) were 

linked to multiple traits. Within the genomic windows, 25 lead SNP were identified. Parallel with 

the PIP, the genomic windows explained a low proportion of genetic variance for the terrain-use 

traits. Across the six traits, the maximum proportion of genetic variance explained by a single 

window was 0.0057%. Again, these estimates may have been influenced by the heritability and 
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marker density (i.e., the number of markers captured in the genomic window). A greater proportion 

of genetic variance can be explained using dense genotyping arrays as there is greater linkage 

disequilibrium between causative mutations and the surrounding markers (Jensen et al., 2012). 

Another important consideration regarding the proportion of genetic variance explained is the 

genetic architecture underlying quantitative traits. As discussed by Mackay (2001) and Moser et 

al. (2009), complex quantitative traits are influenced by many QTL with small effects (i.e., QTL 

explain a small percentage of total genetic variance on an individual basis). This assumption is in 

agreeance with Cole et al. (2009) who examined the effect of 38,416 SNP for 5,360 Holstein bulls 

on dairy traits.  

A review of the literature suggested that the low proportion of genetic variance explained 

by the QTL in this study is within the realm of percentages reported for other beef cattle traits. 

Peters et al. (2013) reported that the highest proportion of genetic variance explained by a single 

window for 205-day weight and 365-d weight, which are moderately to highly heritable traits, in 

Brangus heifers were 0.0203% and 0.0089%. Additionally, the maximum proportion of genetic 

variance explained for rib fat, intramuscular fat, and longissimus muscle were, 0.0200%, 0.0167%, 

and 0.0156%, respectively.  

A comparison of the candidate SNP to the genomic windows revealed 32 QTL and 29 

putative candidate genes that may play a role in beef cow terrain-use. Thirty of the QTL had been 

previously documented in Cattle QTLdb and linked to numerous beef cattle production traits 

(Appendix I). Unfortunately, the 29 putative candidate genes identified in this analysis (Appendix 

II) were not concordant with the five genes identified by Bailey et al. (2015) nor did they validate 

the genes discovered in chapter four. Confirmation of the previously identified genes may have 

been hindered by differences in SNP density (high-density genotypes vs. 50k genotypes), 
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statistical methodology (single-SNP regression vs. Bayesian multiple-SNP regression), genomic 

architecture, and extreme topography variation between rangeland beef cattle operations. 

Bailey et al. (2015) used BovineHD genotypes and single-SNP to identify QTL associated 

with beef cattle terrain-use. Significant markers identified in this analysis were used to develop a 

custom-genotyping panel for subsequent GWAS. The genotype data in this study was derived from 

a BovineSNP50 panel; therefore, the eight candidate SNP discovered by Bailey et al. (2015) were 

not replicated in this study. In this study, Bayesian methodology was used instead of single-SNP 

regression because simultaneously fitting markers accounts for all SNP in linkage disequilibrium 

(LD) with the QTL which decreases the proportion of unexplained genetic variance (Hayes et al., 

2010; Fan et al., 2011; Dekkers, 2012; Fernando et al., 2017). In addition, Bayesian multiple-

regression results in fewer false positives because population structure was explained in the model 

(Dekkers, 2012). Differences in the genomic architecture (i.e., allele or genotypic frequencies) 

between study populations most likely influenced QTL detection (Greene et al., 2009). Crawford 

et al. (2018) reported a similar scenario in which a linear mixed model analysis using data from 

cattle maintained at the CSU-BIC (n = 532) failed to confirm a previously reported association 

between mean pulmonary arterial pressures (mPAP) and the A allele of rs208684340 in EPAS1 

(Newman et al., 2015). Crawford et al. (2018) acknowledged the potential contribution of genetic 

architecture to the lack of validation between the two studies. 

The putative candidate genes identified in this study were five physiological and 

production categories: cardiovascular system, growth traits and feed efficiency, energy 

metabolism, heat stress, and lactation. Seven of the putative candidate genes function in the 

cardiovascular system: CBLN2, EDIL3, EEF1E1, ENSBTAG00000032603, EPB42, PIEZO2, and 

TBX3. A GWAS for pulmonary arterial hypertension (PAH) in humans revealed an association 
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between Cerebellin 2 Precursor (CBLN2) and PAH susceptibility. More specifically, the SNP in 

close proximately (0.052 Mb upstream) to CBLN2, rs2217560, had an odds ratio of 1.97 [1.59 – 

2.45] (Germain et al., 2013). EGF Like Repeats And Discoidin Domains 3 (EDIL3) has a role in 

the regulation of angiogenesis and may be involved in the development and remodeling of vessel 

walls (Ho et al., 2004). Previous studies in mammals suggested that angiogenesis may be 

stimulated under hypoxic conditions to ensure that cells are supplied with oxygen (Fong, 2008; 

Krock et al., 2011). EGF Like Repeats and Discoidin Domains 3 was differentially expressed in 

right ventricle tissues of Angus steers with high pulmonary arterial pressure (PAP) measures as 

compared to those with low PAP measures (unpublished data; N.F. Crawford). Eukaryotic 

Translation Elongation Factor 1 Epsilon 1 (EEF1E1) has been associated with coronary arterial 

calcification (CAC) in humans and CAC is predominant in individuals with coronary heart disease 

(Wojczynski et al., 2013; Liu et al., 2015). ENSBTAG00000032603 was identified in a proteomics 

analysis that examined the effect of prenatal hypoxia, induced by highland environments, on fetal 

sheep heart development (Li et al., 2018). ENSBTAG00000032603 is also a documented 

orthologue of ABCC4 (ENSG00000125257), a gene that may be involved in the development of 

Kawasaki disease in humans. Kawasaki disease causes vasculitis of arteries and can result in fatal 

coronary arterial aneurysm (Khor et al., 2011).  

In humans, Erythrocyte Membrane Protein Band 4.2 (EPB42) is involved in the regulation 

of red blood cell shape and function. Erythrocytes rely on deformability (i.e., the ability to change 

in shape) to navigate small capillaries; therefore, deformation is critical for circulation and 

subsequently oxygen and carbon dioxide transport. Altered shape of erythrocytes may hinder 

deformation and negatively impact circulation (Diez-Silva et al., 2010). Piezo Type 

Mechanosensitive Ion Channel Component 2 (PIEZO2) has a role in mechanically-activated cation 



  

109 
 

channels that are key component of mechanotransduction. Mechanotransduction regulates many 

physiological processes including: vascular tone, blood flow, lung growth, bone and muscle 

homeostasis (Coste et al., 2010). Like EDIL3, PIEZO2 was also differentially expressed in right 

ventricle tissues of high PAP steers as compared to low PAP steers (unpublished data N.F. 

Crawford). A GWAS by Levy et al. (2009) suggested that T-Box 3 (TBX3) may be involved in 

diastolic blood pressure of humans.  

In this study, all of the ranches except Carter Ranch were in moderate (1,200 to 1,600 m) 

to high-elevation regions (≥1,600 m) as classified by Pauling et al. (2018), where a reduction in 

atmospheric pressure results in lower partial pressure of oxygen (PaO2; Peacock, 1998). This may 

help explain the association between the previously discussed candidate genes and the terrain-use 

traits. Cattle that are utilizing rugged terrain in high altitude regions may experience hypoxia as 

oxygen consumption increases in active muscle cells (Hoppeler and Weibel, 2002). In hypoxic 

conditions, mammals may undergo physiological changes to compensate for the lack of oxygen 

including angiogenesis, erythrocyte modification, and heart remodeling (Holt and Callan, 2007; 

Bharti et al., 2011; Krock et al., 2011). Furthermore, cattle maintained in high-elevation regions 

may develop high altitude disease as a result of hypoxia induced pulmonary arterial hypertension 

(Holt and Callan, 2007). Bailey et al. (2016) examined the relationship between terrain-use of 

Angus cows managed at the CSU-BIC (elevation of 2,150 to 2,411 m) and pulmonary arterial 

pressure (PAP) as PAP measurements are an indicator of pulmonary arterial hypertension. Results 

of this study suggested no significant correlation (r = 0.23) between PAP measurements and 

terrain-use traits; however, the authors acknowledged that the study population may have consisted 

of Angus beef cows adapted to high-elevation; therefore, additional studies with harsher terrain, 

higher elevations, and non-adapted cattle may reveal a relationship between PAP and terrain-use.  
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As previously discussed, three of the putative candidate genes (INHBA, LRRC4B, and 

SEPT7) were associated with growth traits and feed efficiency in cattle. A global gene expression 

profiling using liver samples revealed that Inhibin Subunit Beta A (INHBA) was highly expressed 

in samples collected from Angus bulls with low residual feed intake (RFI; Chen et al., 2011). 

Quantitative real-time PCR for liver samples confirmed that INHBA was upregulated in Angus 

bulls with low RFI (Chen et al., 2012). A GWAS conducted by Hardie et al. (2017) revealed an 

association between the genomic region (Mb 57 on BTA18) containing Leucine Rich Repeat 

Containing 4B and metabolic body weight in multiparous Holstein cows. As discussed by Hardie 

et al. (2017), “in mid-lactation dairy cows, RFI is often computed as the residual of the regression 

of intake on a form of ECM production, metabolic BW (MBW), and energy gained or lost in body 

tissues.” Septin 7 (SEPT7) has been associated with weaning weight direct and yearling weight in 

Maine-Anjou cattle (Saatchi et al., 2014).  

The functions of INHBA, LRRC4B, and SEPT7 are particularly interesting given the 

potential relationship between cow-size and terrain-use and locomotion and RFI. A preliminary 

study by Gannon et al. (2018) suggested that larger Brangus cows (i.e., heavier mature weight, 

larger heart girths and greater hip heights) travelled further from water than smaller cows when 

grazing in extensive, rugged rangeland pasture during winter months. Herd et al. (2004) identified 

a positive correlation (0.32) between daily pedometer counts and RFI. Perhaps, larger body size is 

favorable for increased terrain-use whereas increased terrain-use, that requires greater energy 

expenditure, is unfavorable for RFI. Additional studies with an independent population are needed 

to further examination the relationship between mature cow weight/size, residual feed intake, and 

terrain-use traits. 
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Regarding energy metabolism, ADP Dependent Glucokinase (ADPGK) catalyzes the 

phosphorylation of glucose to glucose-6-phosphate using adenosine di phosphate (ADP) and this 

process mediates the first step of glycolysis (Ronimus and Morgan, 2004; Richter et al., 2012). 

During glycolysis, glucose is converted into pyruvate during which adenosine triphosphate (ATP) 

and nicotinamide adenine dinucleotide plus hydrogen (NADH) are generated. Pyruvate can then 

be used to produce volatile fatty acids (VFA’s), methane, and carbon dioxide (Cheeke and 

Dierenfeld, 2010). Volatile fatty acids are a major energy source for ruminants and cattle expend 

more energy walking up hill than they would walking on gentle terrain (Brosh et al., 2006; Freer 

et al., 2007). In addition, under hypoxic conditions the rate of glycolysis may increase to help 

compensate for a reduction in oxidative phosphorylation (Fong, 2008), a process in which ATP 

are synthesized (Berg et al., 2002). Again, additional studies are needed to investigate the 

relationship between energy metabolism and terrain-use of beef cattle in the western U.S.  

Another interesting candidate gene identified in this terrain-use study was PHD finger 

protein 2 (PHF2). In a study designed to understand high-altitude adaption of Ladakhi cattle, 

Verma et al. (2018) compared transcriptome signatures of peripheral blood mononuclear 

cells from Ladakhi cattle to the signatures of a tropically adapted breed (Sahiwal). Results 

suggested that PHF2 was upregulated in the Sahiwal cattle maintained in an arid/semi-arid 

region. Kolli et al. (2014) reported that PHF2 was downregulated in the leukocytes of Zebu cattle 

that experienced heat stress. Both feedlot cattle and those grazing in pastures can experience heat 

stress (Birkelo et al., 1991) and out of the 20 groups of cattle tracked during this study (Table 5.2), 

twelve groups were tracked during the summer months when higher temperatures can cause heat 

stress. As summarized by Silanikove (2000), domestic ruminants may reduce their locomotion 
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during periods of extreme heat and instead seek water and shade in an attempt to maintain cooler 

body temperatures.  

One of the putative candidate genes, ATPase plasma membrane Ca2+ transporting 2 

(ATP2B2), is involved in intracellular calcium homeostasis, which is critical for maintaining 

eukaryotic cell function (Garcia and Strehler, 1999). In mammals, ATPase plasma membrane 

Ca2+ transporting 2 has been associated with milk traits (Ogorevc et al., 2009) and a comparison 

of milk fat globule membrane proteins in milk samples collected from humans and cattle revealed 

the presence of ATP2B2 in both human and cattle milk (Zhang et al., 2017). In this study, a SNP 

within ATP2B2 was associated with vertical climb and approximately 56% of the cattle included 

in this GWAS were lactating during the study period. In a two year grazing study by Bailey et al. 

(2001a), nonlactating cows grazed at greater vertical distances from water than lactating cows. 

During the second year of the study, nonlactating cows grazed on steeper slopes than lactating 

cows. These results suggest that nonlactating cows utilize rugged terrain more efficiently than 

lactating cows.  

Facioscapulohumeral muscular dystrophy (FSHD) region gene 1 (FRG1), which was in 

close proximity to a SNP (0.288 Mb) associated with the rough index, is a highly conserved gene 

in both invertebrates and vertebrates which suggests it has an important biological function 

(Grewal et al., 1998). As summarized by Sun et al. (2011a), FRG1 is critical for the development 

of the muscular and vascular system. In humans, FSHD region gene 1 has been associated with 

facioscapulohumeral muscular dystrophy a disorder characterized by muscle weakness and 

atrophy (Ferri et al., 2015).  

The quantitative trait loci detected in this study support the polygenic nature of complex 

traits; moreover, varying gene functions observed in these QTL allude to the interaction of 



  

113 
 

biological pathways regulating beef cow terrain-use traits. Detection was limited by the moderate 

sample size and lack of uniformity in the data. Therefore, a large independent population of beef 

cows, composed of one breed, grazing on uniform pastures or larger groups in variable pastures is 

needed to refine terrain-use measurements and further elucidate the role of genetics in beef cattle 

terrain-use phenotypes. 

Conclusion 

The objective of this study was to perform GWAS for six terrain-use traits to identify 

individual markers and genomic windows associated with beef cattle terrain-use in the western 

U.S. The Bayesian-based analyses, using data from 330 beef cows managed on 14 ranches, 

revealed 32 SNP and 29 putative candidate genes for terrain-use. Many of the QTL were previously 

associated with beef and dairy cattle health and performance traits. Four of the 29 putative genes 

lacked functional annotation; however, the remaining 25 genes were related to a variety of 

biological processes including hypoxia, feed efficiency, heat stress, and glycolysis. 
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APPENDIX I: QUANTITATIVE TRAIT LOCI AND ASSOCIATED TRAITS 

 
 

Table A.1. Quantitative trait loci (QTL) associated with terrain-use in the western United States and beef cattle traits that were 
previously associated with the QTL as reported by the Cattle QTL Database1. 

RS ID2 CHR3 Position4 Trait5 

rs43256975 1 108154057 milk palmitoleic acid content 
rs43109323 4 61702691 GL, FP, parasites mean of natural logarithm, SC, WW, YH, YW  
rs43408732 4 79996650 -  
rs109175805 5 101518663 milk capric acid content, milk caproic acid content, milk caprylic acid content, milk decenoic 

acid content, milk myristic acid content, milk myristoleic acid content, milk oleic acid 
content, milk palmitoleic acid content 

rs110681394 7 86485159 BW, COLDT, DMI 
rs41619378 8 55927704 adhesion, BW, CE, CW, FA, HT, LM, MS, milk butyric acid content, milk lauroleic acid 

content, muscle calcium content, SB, SS, TWIN 
rs109226946 8 86442366 angularity, BW, CW, milk capric acid content, milk myristic acid content, MY 
rs110514275 10 15202658 BD, BW, WW, CE, GIT weight, HT, LM, milk alpha-casein percentage, FY, milk protein 

percentage, PY, muscle nitrogen content, muscle pH, social separation (vocalization), 
strength, SUBFAT, TL, UA 

rs109097567 10 19494672 BD, BW, WW, YW, CE, CW, long-chain fatty acid content, LM, medium-chain fatty acid 
content, milk alpha-casein percentage, FY, PY, muscle nitrogen content, muscle pH, myristic 
acid content, myristoleic acid content, palmitoleic acid content, social separation 
(vocalization), strength, SUBFAT, TL, TWIN, UA 

rs29013509 10 20498087 ADG, BD, BW, WW, YW, CE, CW, LM, milk alpha-casein percentage, FY, PY, muscle 
nitrogen content, muscle pH, social separation (vocalization), strength, SUBFAT, TL, TWIN, 
UA 

rs29013631 10 38826667 YH, MEATP, milk alpha-casein percentage, FY, PY, muscle nitrogen content, muscle pH, 
non-return rate, SF, SCC, SUBFAT, TL, tick resistance, UA 

rs42415241 10 38986604 FY, SF, muscle pH, muscle nitrogen content, non-return rate, SCC, UA, FY, tick resistance, 
SUBFAT, MEATP, milk alpha-casein percentage, YH 

rs109502510 11 91680069 milk beta-lactoglobulin protein content, stearic acid content 
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rs109669554 11 93142448 milk beta-lactoglobulin protein content, milk butyric acid content, milk caproic acid content, 
RFI, stearic acid content 

rs41633961 12 70064114 muscle iron content 
rs41576569 13 63369536 DMI, milk capric acid content, milk caproic acid content, milk caprylic acid content, milk 

myristoleic acid content, milk palmitoleic acid content, SC, TL 
rs110030253 13 63391193 DMI, milk capric acid content, milk caproic acid content, milk caprylic acid content, milk 

myristoleic acid content, milk palmitoleic acid content, SC, TL 
rs41811366 16 45309651 ADG, WW, bone percentage, CW, fat thickness at the 12th rib, juiciness, SC, social 

separation (vocalization) 
rs41598300 16 80407423 - 
rs109952637  17 56310258 milk myristoleic acid content, milk palmitoleic acid content, SF, trans-16-C18:1 fatty acid 

content 
rs41848746 17 61920415 milk myristoleic acid content, milk palmitoleic acid content, SF, trans-16-C18:1 fatty acid 

content 
rs41582500 18 57115739 birth index, calf size, CE, palmitic acid content, retail product yield, SB 
rs42599235 21 47902442 abomasum displacement, CW, gastrointestinal nematode burden, LM, SCC 
rs110978254 22 55257755 bovine tuberculosis susceptibility, MSPD, MY 
rs41600226 23 47219946 infectious bovine keratoconjunctivitis susceptibility, milk palmitoleic acid content 
rs29021957 24 6276349 BD, body form composite, CE, CW, LM, oleic acid content, strength 
rs109716600 24 18893792 angularity, BD, BFCI, BW, CE, CW, fat thickness at the 12th rib, feet and leg conformation, 

immunoglobulin G level, interval to first estrus after calving, LM, MS, FP (EBV), PCVM, 
oleic acid content, percentage decrease in PCV up to day 150 after challenge, strength 

rs110959252 24 42665926 feed conversion ratio, gastrointestinal nematode burden, MS, milk myristic acid content, oleic 
acid content, UA, UCI, udder depth 

rs42120868 27 17956728 BW, MW, WW, CW, dairy form, dystocia, fat thickness at the 12th rib, HT, MS, FP, PY, MY, 
non-return rate, PCV variance, PCVI minus PCVM, percentage decrease in PCV up to day 
100 after challenge, percentage decrease in PCV up to day 150 after challenge, SF 

rs110590993 29 11905442 BW, MW, WW, BWF scaled by BWI, CW, fat thickness at the 12th rib, FA, GL, HT, 
CONCEPT, interval to first estrus after calving, LM, margaric acid content, PY, MSPD, 
myristic acid content, paired testes volume, paired testes weight, parasites natural logarithm of 
mean number, PTA type, RFI, rump angle, SS, TPL, temperament, TEND, UA, UCI 
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rs43703968 29 13959142 BWF scaled by BWI, MW, WW, CW, fat thickness at the 12th rib, FA, GL, HT, LM, 
margaric acid content, PY, MY, paired testes volume, paired testes weight, parasites natural 
logarithm of mean number, PTA type, RFI, rump angle, SS, TPL, TEND, UA, UCI, UH, UW 

rs42477618 29 14009294 BWF scaled by BWI, MW, WW, CW, fat thickness at the 12th rib, FA, GL, HT, margaric 
acid content, LM, PY, MY, paired testes volume, paired testes weight, parasites natural 
logarithm of mean number, PTA type, RFI, rump angle, SS, TPL, TEND, UA, UCI, UH, UW 

1https://www.animalgenome.org/cgi-bin/QTLdb/BT/index. 
2Reference SNP cluster identification assigned by the National Center for Biotechnology Information (NCBI). 
3Chromosome in which the SNP was located according to Bos taurus UMD3.1.1. 
4Position (bp) in which the SNP was located according to Bos taurus UMD3.1.1. 
5ADG: average daily gain, BD: body depth, BFCI: body form composite index, BW: birth weight, BWF: final body weight, BWI: initial body 
weight, CE: calving ease, COLDT: cold tolerance, CONCEPT: inseminations per conception, CW: carcass weight, DMI: dry matter intake, EBV: 
estimated breeding value, FA: foot angle, FP: milk fat percentage, FY: milk fat yield, GIT: gastrointestinal tract, GL: gestation length, HT: mature 
height, LM: Longissimus muscle area, MEATP: meat percentage, MS: marbling score, MSPD: milking speed, MW: mature weight, MY: milk 
yield, PCV: packed red blood cell volume, PCVI: initial packed red blood cell volume, PCVM: minimum packed red blood cell volume, PTA: 
predicted transmitting ability, PY: milk protein yield, RFI: residual feed intake, SB: stillbirth, SC: scrotal circumference, SCC: somatic cell count, 
SF: shear force, SS: structural soundness, SUBFAT: subcutaneous fat, TEND: tenderness score, TL: teat length, TPL: teat placement, TWIN: 
twinning, UA: udder attachment, UCI: udder composite index, UH: udder height, UW: udder width, WW: weaning weight, YH: yearling height, 
YW: yearling weight. 
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APPENDIX II: GENE ONTOLOGY  

 
 

Table A.2. Twenty-nine genes associated with grazing distribution traits of beef cows managed in the western U.S. and their gene 
ontology according to AgBase1.  

Gene Symbol Gene Name Biological Process Molecular Function Cellular Component  

A2ML1 Alpha-2-macroglobulin like 
1 

regulation of 
endopeptidase 
activity 

peptidase inhibitor 
activity 

extracellular space 

ADPGK ADP Dependent 
Glucokinase 

glucose metabolic 
process 

ADP-specific 
glucokinase activity 

endoplasmic reticulum 

ATP2B2 ATPase plasma membrane 
Ca2+ transporting 2 

calcium ion 
transmembrane 
transport 

calcium-transporting 
ATPase activity 

integral component of 
membrane 

C1H3orf80 Chromosome 1 C3orf80 
homolog 

- - integral component of 
membrane 

CA6 Carbonic Anhydrase 6 one-carbon 
metabolic process 

carbonate dehydratase 
activity 

extracellular space 

CBLN2 Cerebellin 2 Precursor positive regulation 
of synapse 
assembly 

- extracellular space 

CDK5RAP1  CDK5 Regulatory Subunit 
Associated Protein 1 

tRNA modification transferase activity cytoplasm 

CELF4 CUGBP Elav-Like Family 
Member 4 

regulation of 
alternative mRNA 
splicing, via 
spliceosome 

RNA binding nucleus  

EDIL3 EGF Like Repeats And 
Discoidin Domains 3 

positive regulation 
of cell-substrate 
adhesion 

integrin binding extracellular vesicle 

EEF1E1 Eukaryotic translation 
elongation factor 1 epsilon 1 

translational 
elongation 

translation elongation 
factor activity 

nucleus 



  

145 
 

ENSBTAG00000000655 ENSBTAG00000000655 - - - 
ENSBTAG00000022427 ENSBTAG00000022427 - - - 
ENSBTAG00000027868 ENSBTAG00000027868 - - - 
ENSBTAG00000032603 ENSBTAG00000032603 - - - 
ENSBTAG00000039201 ENSBTAG00000039201 - - - 
EPB42 Erythrocyte Membrane 

Protein Band 4.2 
peptide cross-
linking 

protein-glutamine 
gamma-
glutamyltransferase 
activity 

- 

FRG1 FSHD region gene 1 - actin filament binding nucleolus 
IFT81 Intraflagellar Transport 81 tubulin binding intraciliary transport intraciliary transport 

particle B 
INHBA Inhibin Subunit Beta A G1/S transition of 

mitotic cell cycle 
signaling receptor 
binding 

inhibin A complex 

ITGA11 Integrin subunit alpha 11 substrate-dependent 
cell migration 

collagen binding focal adhesion 

LRRC4B Leucine Rich Repeat 
Containing 4B 

positive regulation 
of synapse 
assembly 

signaling receptor 
binding 

cerebellar mossy fiber 

MRRF Mitochondrial Ribosome 
Recycling Factor 

translation ribosomal large subunit 
binding 

mitochondrion 

NR5A2 Nuclear receptor subfamily 5 
group A member 2 

regulation of 
transcription, DNA-
templated 

transcriptional activator 
activity, RNA 
polymerase II proximal 
promoter sequence-
specific DNA binding 

nucleus 

PHF2 PHD finger protein 2 protein 
demethylation 

transcription coactivator 
activity 

nucleolus 

PIEZO2 Piezo type mechanosensitive 
ion channel component 2  

- mechanosensitive ion 
channel activity 

integral component of 
membrane 

SEPT7 Septin 7 - GTP binding septin complex 
TBC1D21 TBC1 domain family 

member 21  
intracellular protein 
transport 

GTPase activator activity intracellular 
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TBX3 T-Box 3 regulation of 
transcription, DNA-
templated 

DNA-binding 
transcription factor 
activity 

nucleus 

TLE4 Transducin Like Enhancer of 
Split 4 2 

regulation of 
transcription, DNA-
templated 

- nucleus 

1http://agbase.arizona.edu/index.html 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


