
DISSERTATION

A HYBRID MODEL CHECKING APPROACH TO ANALYSING RULE CONFORMANCE APPLIED

TO HIPAA PRIVACY RULES

Submitted by

Phillipa Bennett

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2017

Doctoral Committee:

Advisor: James Bieman
Co-Advisor: Geri Georg

Sudipto Ghosh
Daniel Turk

Copyright by Phillipa Bennett 2017

All Rights Reserved

ABSTRACT

A HYBRID MODEL CHECKING APPROACH TO ANALYSING RULE CONFORMANCE APPLIED

TO HIPAA PRIVACY RULES

Many of today’s computing systems must show evidence of conformance to rules. The rules may come from

business protocol choices or from multi-jurisdictional sources. Some examples are the rules that come from

the regulations in the Health Insurance Portability and Accountability Act (HIPAA) protecting the privacy

of patient information and the Family Educational Rights and Privacy Act (FERPA) protecting the privacy

of student education records. The rules impose additional requirements on already complex systems, and

rigorous analysis is needed to show that any system implementing the rules exhibit conformance. If the

analysis finds that a rule is not satisfied, we adjudge that the system fails conformance analysis and that it

contains a fault, and this fault must be located in the system and fixed.

The exhaustive analysis performed by Model Checking makes it suitable for showing that systems satisfy

conformance rules. Conformance rules may be viewed in two, sometimes overlapping, categories: process-

aware conformance rules that dictate process sequencing, and data-aware conformance rules that dictate

acceptable system states. Where conformance rules relate to privacy, the analysis performed in model check-

ing requires the examination of fine-grained structural details in the system state for showing conformance to

data-aware conformance rules. The analysis of these rules may cause model checking to be intractable due to

a state space explosion when there are too many system states or too many details in a system state. To over-

come this intractable complexity, various abstraction techniques have been proposed that achieve a smaller

abstracted system state model that is more amenable to model checking. These abstraction techniques

are not useful when the abstractions hide the details necessary to verify conformance. If non-conformance

occurs, the abstraction may not allow isolation of the fault. In this dissertation, we introduce a Hybrid

Model Checking Approach (HMCA) to analyse a system for both process- and data-aware conformance rules

without abstracting the details from a system’s detailed process- and data models.

ii

Model Checking requires an analysable model of the system under analysis called a program graph and a

representation of the rules that can be checked on the program graph. In our approach, we use connections

between a process-oriented (e.g. a Unified Modelling Language (UML) activity model) and a data-oriented

(e.g. UML class model) to create a unified paths-and-state system model. We represent this unified model

as a UML state machine. The rule-relevant part of the state machine along with a graph-oriented formalism

of the rules are the inputs to HMCA. The model checker uses an exhaustive unfolding of the program graph

to produce a transition system showing all the program graph’s reachable paths and states. Intractable

complexity during model checking is encountered when trying to create the transition system. In HMCA,

we use a divide and conquer approach that applies a slicing technique on the program graph to semi-

automatically produce the transition system by analysing each slice individually, and composing its result

with the results from other slices. Our ability to construct the transition system from the slices relieves a

traditional model checker of that step. We then return to use model checking techniques to verify whether

the transition system satisfies the rules. Since the analysis involves examining system states, if any of the

rules are not satisfied, we can isolate the specific location of the fault from the details contained in the slices.

We demonstrate our technique on an instance of a medical research system whose requirements include

the privacy rules mandated by HIPAA. Our technique found seeded faults for common mistakes in logic that

led to non-conformance and underspecification leading to conflicts of interests in personnel relationships.

iii

ACKNOWLEDGEMENTS

I remember when I was in high school, in sixth form as it is in the Caribbean, I decided that I would

pursue getting a Ph.D. As I write this acknowledgement, on the verge of defending this dissertation, I am

thankful for the fulfilment of this dream. Of course, I had a lot of inspiration along the way. For theis

inspiration, I would like to say to:

• My mother Viviene Bennett, thank you for your inspiration and unswerving devotion. You are my

greatest cheerleader.

• My high school math teacher, Ms. Allen who taught me from first through fifth form, thank you for

teaching math in such a way that I loved it.

• My high school sixth form geography teacher (whose name I have now forgotten) who inspired me to

dream this dream.

• Dr. Ezra Mugisa, a↵ectionately known as Doc, at the University of the West Indies, Mona, where I

obtained my undergraduate and masters degrees, thank you for your continued mentorship.

• My previous advisor here at Colorado State University, Dr. Robert France who passed away during

my studies, I am forever indebted to you for your patience and mentoring.

• My current advisors Prof. James Bieman and Dr. Geri Georg, you both have encouraged me in more

ways than in dissertation writing. I have many life lessons from relating with you.

I appreciate you all.

iv

DEDICATION

To Moms, who stayed with her children in spite of the lure to greener pastures.

v

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

DEDICATION . v

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ALGORITHMS . xxi

LIST OF LISTINGS . xxii

1 Introduction . 1

1.1 Conformance Analysis in Practice . 1

1.2 Challenges in Conformance Analysis . 2

1.3 Hybrid Model Checking Approach (HMCA) to Conformance Analysis 4

1.3.1 Model Rule Conformance in terms of Model Checking 5

1.3.1.1 Construct Program graph . 5

1.3.1.2 Construct Conformance Rule Representation 6

1.3.2 Conformance Analysis . 6

1.3.3 Provide Feedback . 7

1.3.4 Addressing Challenges and HMCA Contributions . 7

1.4 Evaluation . 8

1.5 Document Organisation . 9

2 Related Work . 11

2.1 RCA Approaches . 11

2.1.1 General Complexity Handling in RCA . 11

vi

2.1.1.1 Odessa . 11

2.1.1.2 System Logs and Petri Net Decomposition 12

2.1.2 Bottlenecks in Weak and Strong Conformance . 12

2.1.3 Compliance Monitoring and Conformance Checking 12

2.2 Process and Data-aware rules . 13

2.3 Conformance Rules . 15

2.3.1 Checklists in Rule Conformance . 15

2.3.2 Generalised Rule Specifications . 15

2.3.2.1 Dwyer’s Patterns . 15

2.3.2.2 Reference Architectures as Rules . 16

2.3.3 Formal Languages to Encode Legal Requirements. 16

2.4 Summary and Open Problems . 17

3 Background . 21

3.1 Alloy . 21

3.2 Model Checking . 22

3.3 Slicing . 23

3.4 NJH System . 23

3.4.1 System Components of Interest . 24

4 Motivating HMCA: Näıve RCA . 26

4.1 Evaluation Design . 26

4.1.1 Questions . 26

4.1.2 NJH System Operations and Data of Interest . 26

4.1.3 Rules . 27

4.2 Rule Conformance Analysis (RCA) using the Alloy Analyzer 27

4.2.1 Overview ofAlloy . 27

4.2.2 Alloy Specifications . 29

vii

4.2.3 Model Execution Results in the Alloy Analyzer . 29

4.3 RCA using Promela/Spin . 31

4.3.1 Overview of Spin/Promela . 31

4.3.2 National Jewish Health (NJH) Promela Specifications 32

4.3.3 Promela Model Verification Results in Spin . 33

4.3.3.1 Evaluating Promela/Spin on a Small Model 33

4.3.3.2 NJH Model . 38

4.4 Discussion of Results and Summary . 40

5 HMCA and NJH . 42

5.1 Phase 1: Model Construction . 42

5.1.1 Construct Activity Model and Class Model . 42

5.1.2 Construct Entity Views . 43

5.1.2.1 Individual Entity Views . 43

5.1.2.2 Composing Entity Views . 45

5.1.3 Modelling Conformance Rules . 45

5.1.4 Map Rule Specific Entity Views to System Models . 47

5.1.4.1 Map Operations to Activities in the Activity Model 47

5.1.4.2 Map Atomic Propositions to Concrete Class Model Elements 47

5.1.5 Annotate Activity Diagram with Details from the Class Model 49

5.1.6 Create Concrete Rule Specific State Machine from Annotated Activity Diagram and

Entity Views . 49

5.2 Phase 2: Model Analysis . 51

5.2.1 Identifying the Slice of Interest . 52

5.2.2 Adding Operation Specification . 52

5.2.3 Probing the Illegal State. 53

5.2.4 Determining Operation States. 54

5.3 Phase 3: Results and Feedback . 55

viii

6 HMCA Overview . 60

6.1 HMCA Generalisation . 60

6.2 Construct . 62

6.3 Analyse . 64

6.4 Provide Feedback . 66

7 Non-Conformance Feedback . 68

7.1 Updating NJH Models . 68

7.1.1 Entity Views . 68

7.1.1.1 Individual Entity Views . 68

7.1.1.2 Rule Specific Entity View . 69

7.1.2 HIPAA Conformance Rules . 70

7.1.2.1 De-identified Conformance Rule . 70

7.1.2.2 Identified Conformance Rules . 72

7.1.3 Class Models and Activity Model Annotations . 72

7.1.3.1 Class Model . 72

7.1.3.2 Activity Model Annotations . 72

7.1.4 Analysis . 76

7.1.4.1 Slicing . 76

7.1.4.2 Transition Systems . 77

7.1.4.3 Understanding Non-Conformance . 77

7.2 Feedback Context and Overview . 80

7.3 USE Tool Object Model Generator . 89

7.3.1 Object Model Generation Commands . 90

7.4 USE Specifications . 91

7.5 Detailed Algorithms: How to Construct the Object Model for the Feedback 92

7.5.1 Represent Alloy Slice as a UML USE Object Model 92

7.5.2 Generate Feedback as a Complete Object Model . 92

ix

7.6 Examining Object Models . 95

7.7 Summary . 106

8 Validating HMCA . 107

8.1 Introduction . 107

8.2 Adding a New Parts to HIPAA Conformance Rule: Exposing Faulty Logic 107

8.2.1 Updating Conformance Rule for the Identified Access Ticket 107

8.2.2 Alloy Specifications . 111

8.2.3 Examining Feedback Object Models . 113

8.2.4 Understanding Why Non-Conformance Occurs . 113

8.3 Adding a New NJH Conformance Rule: Identifying Conflict of Interest Situations 118

8.3.1 DC Conflict of Interest Case 1 . 120

8.3.2 DC Conflict of Interest Case 2 . 122

8.3.3 DC Conflict of Interest Case 3 . 122

8.3.4 DC Conflict of Interest Case 4 . 122

8.3.5 Eliminate DC Conflicts of Interest . 130

8.4 Summary . 130

9 Children Special Population . 135

9.1 Introduction . 135

9.2 Requirements for Protecting Children in the HIPAA Regulations 135

9.2.1 Approving Access Tickets to Use Children Protected Populations 136

9.2.2 Executing Queries With Access Tickets Approved for Children Protected Populations 139

9.2.2.1 Potential Conflict of Interests Not Considered under HIPAA 148

9.3 Summary . 148

10 How to Apply HMCA . 157

10.1 Introduction . 157

10.2 Overall Prerequisites for Applying HMCA . 158

x

10.3 Construction Phase . 158

10.3.1 Prerequisites . 158

10.3.2 Steps . 159

10.3.2.1 Step 1: Construct UML Activity Model . 159

10.3.2.2 Step 2: Construct UML Class Model . 159

10.3.2.3 Step 3: Construct Individual Entity Views 160

10.3.2.4 Step 4: Construct Non-deterministic Finite Automata (NFA) Rules 161

10.3.2.5 Step 5: Generate RSEV and MRSEV . 161

10.3.3 Automation and Tool Support . 162

10.4 Analysis Phase . 163

10.4.1 Prerequisites . 163

10.4.2 Steps . 163

10.4.2.1 Step 1: Model Slicing . 163

10.4.2.2 Step 2: Alloy Specification and Analysis . 164

10.4.2.3 Step 3: Generating the TS . 165

10.4.2.4 Step 4: Check Conformance Rule . 165

10.4.3 Automation and Tool Support . 165

10.4.3.1 Manual Tasks . 166

10.4.3.2 Automated Tasks . 166

10.5 Feedback Phase . 167

10.5.1 Prerequisites . 167

10.5.2 Steps . 167

10.5.2.1 Step 1: Extract Alloy Counterexample . 167

10.5.2.2 Step 2: Generate UML Object Models . 167

10.5.2.3 Step 3: On-Demand Feedback . 168

10.5.2.4 Step 4: Update Models (and Re-Analyse) . 168

10.5.3 Automation and Tool Support . 169

xi

10.5.3.1 Automated Tasks . 169

10.5.3.2 Manual Tasks . 169

11 Insights . 171

11.1 Impact of New Information on Previously Defined Rules . 171

11.2 Managing Specification Size Complexity . 171

11.3 Understanding Tool Nuances: Translating Alloy Specifications into OCL Specifications 171

11.3.1 Reasoning About Closures . 172

11.3.2 Intra Association Constraints . 176

11.3.2.1 Why c3 is Di�cult to Specify. 178

11.3.2.2 Making c3 Specifiable in OCL . 179

11.3.2.3 Semantics and Scoping Constraints that A↵ected c3 180

11.3.3 Ternary Relations and Multiplicities . 181

11.4 Summary . 181

12 Conclusions and Future Directions . 183

12.1 HMCA Contribution Conclusions . 183

12.2 Limitations of HMCA . 185

12.3 Future directions . 185

12.3.1 Analysing Changed and Conflicting Rules . 186

12.3.2 Hidden path analysis . 186

12.3.3 Alternate Rule Representations . 186

12.3.4 How much Feedback to Show . 187

13 BIBLIOGRAPHY . 188

Appendix A Motivating HMCA: NJH Specification Models . 202

A.1 Promela Model . 202

A.2 Alloy Models . 209

xii

Appendix B Initial Specifications . 245

B.1 Alloy Model Slice for the Query Operation . 245

B.2 Important Model Checks . 256

Appendix C Feedback Specifications . 258

C.1 Counterexample in the CheckConformance Operation . 258

C.1.1 Slice 5: Alloy Specifications . 258

C.1.2 Slice 5: Alloy Counterexample XML representation . 259

C.1.3 Slice 5: Alloy Counterexample USE representation (see Figure 7.17 for a graphical

representation of the object model) . 265

C.2 USE Commands for Generating On-Demand Object Models in the NJH System 266

C.2.1 USE Class Models . 266

C.2.2 OCLConstraints . 274

C.2.3 ASSL Procedures . 280

C.2.4 SOIL Commands . 292

C.2.5 USE Commands to Generate On-Demand Feedback 295

Appendix D Validating Specifications . 298

D.1 Updated Alloy Specifications . 298

D.1.1 Alloy Specifications for Slice 3 to Approve Access Ticket 298

D.1.2 Alloy Specifications for Slice 5 to Check Conformance 314

D.2 Updated UML Specification Environment (USE) Class Model Specifications and Constraints

for Slice 3 to ApproveAccessTicket Operation . 330

Appendix E Children Protected Population Specifications . 335

E.1 Updated USE Class Model Specifications and Constraints for Slice 3 to ApproveAccessTicket

Operation . 335

xiii

LIST OF TABLES

2.1 Dwyer’s Patterns [32, 33] for Specifying Conformance Rules, adapted. 16

2.2 Related Work Summary . 18

4.1 Verification Details for Alloy Predicates and Assertions in Table Notes 30

4.2 Computer Specifications for Verification . 33

4.3 Verification ltl1 in t1 for M = 3 . 36

4.4 Verification of ltl1 in t1 for M = 4 . 37

4.5 Verification of ltl1 in t1 for M = 5 . 39

4.6 Verification Details for Spin Model without Analysing Process-Aware Rule or Never-Claim . . . 40

B.1 Important Model Checks for the runQuery method . 257

xiv

LIST OF FIGURES

4.1 Class Model for the NJH system supporting the operations in Section 4.1.2 28

5.1 Researcher/Project Entity View . 44

5.2 Patient Health Information Entity View for De-identified Access 45

5.3 De-identified Rule Specific Entity View . 46

5.4 Graph Formalism for the HIPAA De-identified Rule . 47

5.5 AD Segment for De-identified Health Information Access . 48

5.6 System State of Interest to De-identified Query, View, and Download Actions 50

5.7 Transition System Indicating Conformance to the De-identified Rule 55

5.8 Transition System Indicating Non-Conformance to the De-identified Rule 56

5.9 Non-Conformance: Query2 returns Identified Data . 58

6.1 Generalised HMCA . 61

6.2 Constructing in HMCA . 63

6.3 Analysing in HMCA . 65

6.4 Feedback in HMCA . 67

7.1 Researcher Entity View (Updated from Figure 5.1) . 69

7.2 Patient Health Information Entity View (Updated from Figure 5.2) 69

7.3 Identified and DeIDed Rules Specific Entity View . 70

7.4 Conformance Rules as NFA for the Identified and DeIDed access tickets 71

7.5 NJH Unsliced Class Model: Includes all AccessRules and DecisionRules and Children as Protected

Population . 73

7.6 Conformance Rules as Graph Formalisms for the Identified and DeIDed access tickets 78

7.7 Illegal states for the DeIDed access ticket . 79

7.8 Illegal states for the Identified access ticket with a TotallyIDed data transformation 81

xv

7.9 NJH Class Model: Capturing Model Elements for Qualifier Researcher to Checking Access Ticket

Conformance on Query Results . 82

7.10 Slice 1 (S1) - Qualifier Researcher Slice . 84

7.11 Slice 2 (S2) - Approve Researcher Licence Slice . 85

7.12 Slice 3 (S3) - Approve Project Access Ticket Slice . 86

7.13 Slice 4 (S4) (excludes shaded areas) - Data Collector, PI, or Researcher Runs Query Slice 87

7.14 Slice 5 (S5) - Check Conformance Slice . 88

7.15 Alloy Analyzer Conformance Counterexample in Slice 5 . 96

7.16 Class Model for Slice 5 . 97

7.17 Non-Conformance Object Model for Slice 5 . 98

7.18 Class Model for Slice 4 Outlining Overlapping Model Elements in Slices 5 and 4 100

7.19 Class Model for Slice 3 Outlining Overlapping Model Elements in Slices 4 and 3 102

7.20 Non-Conformance Object Model for Slice 4 Identifying Failure and the Fault. (overlapping objects

with Slice 5 are highlighted) . 103

7.21 Object Model for Slice 3 (overlapping objects with Slice 4 are highlighted) 104

7.22 Merged Object Model for Slices 3, 4, and 5. Slice 3 is outlined by the purple dashed line, Slice 4

is outlined by the blue dashed line, Slice 5 is outlined by the green dashed line, and the Failure

is outlined by the yellow dashed line. 105

8.1 Updated Class Model for Slice 3 Outlining ProjectDataTransformRequired Association Now Re-

quired in Slice 5 . 109

8.2 Updated Class Model for Slice 5 with the Now Required ProjectDataTransformRequired Associ-

ation Required to Check Conformance . 110

8.3 Non-Conformance in Slice 5 when an Identified Access Ticket is used and a TotallyIDed Data

Transform is Required . 114

8.4 Conformance in Slice 5 when an DeIDed Access Ticket is used and a TotallyIDeDed Data Trans-

form is Required . 115

xvi

8.5 Conformance in Slice 5 when an Identified Access Ticket is used and an AllowIDed Data Transform

is Required . 116

8.6 Partial Class Diagram Slice extracted from Slice 3 Showing Personnel Relationships influencing

Access Ticket Approval . 119

8.7 DC Conflict of Interest Project’s PI supervises Project’s DC : Project2 ’s PI Personnel5 directly

supervises its DC Personnel0. 121

8.8 DC Conflict of Interest Project’s PI indirectly supervises Project’s DC : Project1 ’s PI Personnel1

indirectly supervises its DC Personnel0. 123

8.9 DC Conflict of Interest, Supervision of Project’s Direct Source’s DC by Project’s PI : Project2

has Source Project0, and Project2 ’s PI, Personnel1, supervises Project0 ’s DC, Personnel3. 124

8.10 DC Conflict of Interest, Supervision of Project’s Indirect Source’s DC by Project’s PI : Project3

has indirect Source Project1 and Project3 ’s PI Personnel3 directly supervises Project1 ’s DC

Personnel0. 125

8.11 DC Conflict of Interest, Indirect Supervision of Project’s Indirect Source’s DC by Project’s

PI : Project3 has indirect Source Project1 and Project3 ’s PI Personnel1 indirectly supervises

Project1 ’s DC Personnel2. 126

8.12 DC Conflict of Interest, Project’s Direct Source’s DC is the same as the Project’s PI : Project2

has a Source Project0, and Project2 ’s PI Project0 ’s DC are the same, Personnel2. 127

8.13 DC Conflict of Interest, Project’s Indirect Source’s DC is the same as the Project’s PI : Project3

has indirect data source Project1, yet Project3 ’s PI is the same as Project1 ’s DC Personnel1. . . 128

8.14 DC Conflict of Interest, Project’s PI is the same as the DC for one of it Direct Sources: Project2

has a Source Project0 and one of Project2 ’s PMs Project0 ’s data collector are the same, Personnel2.129

8.15 DC Conflict of Interest, Project’s PI is the same as the DC for one of it Indirect Sources: Project3

has indirect Source Project1, and one of Project3 ’s PM s is the same as Project1 ’s DC Personnel2.131

8.16 Updated Slice 3 with DecisionRules for Conflict Of Interest Situations Outlined by the Red

Dotted line . 132

xvii

9.1 Updated Class Model for Slice 3 Supporting Children as a Protected Population (new class model

elements outlined by the dashed red lines) . 137

9.2 Slice 3 Object Model for approved Identified access ticket for Project 1 using all DecisionRules

(see annotation 5). Also to use the data for the children protected population, each child and

parent/guardian/ward organisation of the cild must give explicit assent and consent respectively

(see annotation numbered 6). Numbered annotations correspond to associations so numbered in

Figure 9.1 and explained in Section 9.2.1. 140

9.3 Slice 3 Object Model for Unapproved, i.e., cannot be approved, Identified access ticket for

Project 1 using new DecisionRules because the IRB has determined that RiskNotAllowed. Num-

bered annotations correspond to associations so numbered in Figure 9.1 and explained in Section

9.2.1. 141

9.4 Slice 3 Object Model for unapproved, i.e., cannot be approved, Identified access ticket for Project 1

using new DecisionRules because of a conflict of interest: Personnel1 is an IRBMember and

the ProjectDataDollector for Project 1. Numbered annotations correspond to associations so

numbered in Figure 9.1 and explained in Section 9.2.1. 142

9.5 Slice 3 Object Model for Unapproved, i.e., cannot be approved, DeIDed Access Ticket for Project 1

using New DecisionRules because a DeIDed access ticket cannot be used to access protected

populations. Numbered annotations correspond to associations so numbered in Figure 9.1 and

explained in Section 9.2.1. 143

9.6 Class Model Elements from Slice 3 Overlapping in Slice 4 (outlined by the dashed red line) . . . 144

9.7 Updated Class Model for Slice 4 Supporting Children as Protected Population: new elements

outlined by the dashed red line . 145

9.8 Object Model For Slice 4 showing that Query 0 correctly accesses and returns QryData2, the

data for Patient2 identified as a HIPAAChild, because no AccessRule prohibits access (focus is on

relationships in the area highlighted in yellow). Numbered annotations correspond to associations

so numbered in Figure 9.7 and explained in Section 9.2.2. 149

xviii

9.9 Access Denial Scenario 1: (Partial) Object Model for Slice 4 showing that Query 0 must be

denied access to DataItem2 belonging to Patient2 (focus is on relationships in the area high-

lighted in yellow). This is because the ChildAssentAndResponsibilityConsent AccessRule and the

ProjectConsentAssentReq (see line annotated with 6) require that Patient2 give Allow assent to

participate in the research - yet the ChildParticipationAssent association link to Patient2 (see

association annotated with 8) shows DisAllow. Numbered annotations correspond to associations

so numbered in Figure 9.7 and explained in Section 9.2.2. 150

9.10 Access Denial Scenario 2: (Partial) Object Model for Slice 4 showing that Query 0 must be denied

access to DataItem2 belonging to Patient2 (focus is on relationships in the area highlighted in

yellow). This is because the ChildAdvocateForWardOfState AccessRule requires that Patient2,

a ward of WardOrg1, be associated with an advocate through the ChildAdvocate, yet this link

is missing. Numbered annotations correspond to associations so numbered in Figure 9.7 and

explained in Section 9.2.2. 151

9.11 Access Denial Scenario 3: (Partial) Object Model for Slice 4 showing that Query 0 must be denied

access to DataItem2 belonging to Patient2 (focus is on relationships in the area highlighted in

yellow). This is because the ChildAdvocateNotAssocWithResearchOrWardOrg AccessRule does

not allow Patient2 ’s Advocate Personnel1 (see line annotated with 11), to be associated with the

institution that has responsibility for Patient2 (see line annotated with 12 from Personnel1 and

ChildParticipationPerm annotated with 7). Numbered annotations correspond to associations so

numbered in Figure 9.7 and explained in Section 9.2.2. 152

9.12 Access Denial Scenario 4: (Partial) Object Model for Slice 4 showing that Query 0 must be de-

nied access to DataItem2 belonging to Patient2 (focus is on relationships in the area highlighted

in yellow). This is because the HideSpecialPopulation AccessRule does not allow a DeIDed ac-

cess ticket (see line annotated with 5) to access protected populations. Numbered annotations

correspond to associations so numbered in Figure 9.7 and explained in Section 9.2.2. 153

xix

9.13 Potential Conflict of Interest: (Partial) Object Model for Slice 4 showing that the parent of

Patient2, Personnel2 (see association annotated with 7) is an IRBMember (see line annotated

with 3). Focus is on relationships in the area highlighted in yellow. Numbered annotations

correspond to associations so numbered in Figure 9.7 and explained in Section 9.2.2. 154

11.1 Class Model for discussing tool nuances . 173

11.2 Supervisors Association in S3 . 175

11.3 Slice: Partial slice of S4 highlighting the RDType Association. 182

xx

LIST OF ALGORITHMS

1 Generate On-Demand Feedback Object Model Sequence Construction 92

2 Convert Alloy Instance to USE UML Object Model . 93

3 Extract Overlapping Objects . 93

4 Complete Feedback . 93

5 Create Potential Objects . 94

6 Create Potential Associations . 94

7 Cleanup Object Model - Delete Unused Potential Objects . 94

xxi

LIST OF LISTINGS

4.1 t
i

, a Promela Example: non-deterministic add and remove 3 known values from a channel 34

5.1 Alloy Signatures . 52

5.2 Alloy Relationships . 52

5.3 Probing runQuery Model for the Identified State . 53

5.4 Executing AlwaysDeIDedConformance . 53

5.5 Testing runQuery Model for the De-identified State . 54

5.6 Probing for Conformance when Data is Properly Categorised . 55

5.7 Probing for a Non-Conformance Instance when a Data Item is Improperly Categorised 57

8.1 HIPAA Conformance Specifications: VDAllowed is set . 111

8.2 Helper Predicates used to Check Conformance . 112

11.1 Defining DataAccessAgreement in Alloy . 172

11.2 Defining DataAccessAgreement in the USE for OCL . 172

11.3 Defining Constraint for DataAccessAgreement in Alloy . 174

11.4 Defining Irreflexive Binary Relations in Alloy . 174

11.5 Defining Constraint for DataAccessAgreement in OCL . 174

11.6 Defining QryReturns and QryWorksOn in Alloy . 177

11.7 Defining Constraint for Relationship between QryReturns and QryWorksOn in Alloy 177

11.8 Definition of Associations for QryReturns, QryWorksOn and RDType in USE 178

11.9 Incorrect Definition of Constraint between QryReturns RDType in OCL 179

11.10 Definition of Constraint between QryReturns RDType in OCL 180

11.11 Definition of Constraint between QryReturns RDType in USE 180

11.12 Definition of Constraint between QryReturns RDType in OCL 180

A.1 NJH Promela model for approving an access ticket using the NoSupsInPIandDC decision rule . . 202

A.2 Full NJH structural model, i.e., without additional constraints, operation specifications, or con-

formance rules. These are added in Listing A.3 through Listing A.3 209

xxii

A.3 Full NJH structural model: adding constraints. Imports Listing A.2 on line 24. 214

A.4 Full NJH structural model: adding operation specifications. Imports Listing A.3 on line 9. 226

A.5 Full NJH structural model: adding LTL rules. imports Listing A.4 on line 11. 238

B.1 Slice 4: runQueryAlloy Specifications . 245

C.1 Slice 5: CheckConformance XML Counterexample . 259

C.2 Slice 5: CheckConformance USE Counterexample . 265

C.3 USE Class Model for Slice 5 to Check Conformance . 266

C.4 USE Class Model for Slice 4 to Execute Query . 268

C.5 USE Class Model for Slice 3 to Approve Access Ticket . 271

C.6 USE Constraints applicable only to Slices 2, and 3 to Approve Researcher’s Licence and Approve

Access Ticket respectively - filename reference for listings in Section C.2.5 is slice 23g.cnsts . . . 274

C.7 USE Constraints applicable only to Slices 2, 3, and 4 to Approve Researcher’s Licence, Approve

Access Ticket, and Execute Query respectively - filename reference for listings in Section C.2.5 is

slice 234g.cnsts . 274

C.8 USE Constraints applicable only to Slices 3 and 4 to Approve Access Ticket and Execute Query

respectively - filename reference for listings in Section C.2.5 is slice 34g.cnsts 275

C.9 USE Constraints applicable only to Slices 3, 4 and 5 to Approve Researcher’s Licence, Approve

Access Ticket, and Execute Query respectively - filename reference for listings in Section C.2.5 is

slice 345g.cnsts . 275

C.10 USE Constraints applicable only to Slices 4 and 5 to Execute Query and Check Conformance

respectively - filename reference for listings in Section C.2.5 is slice 45g.cnsts 275

C.11 USE Constraints applicable only to Slice 5 to Check Conformance, filename reference for listings

in Section C.2.5 is slice 5g 1.cnsts . 276

C.12 USE Constraints applicable only to Slice 5 to Check Conformance, filename reference for listings

in Section C.2.5 is slice 5g 2.cnsts . 277

C.13 USE Constraints applicable only to Slice 4 to Execute Query - filename reference for listings in

Section C.2.5 is slice 4g.cnsts . 277

xxiii

C.14 OCL Constraints applicable only to Slice 3 to Approve Access Ticket - filename reference for

listings in Section C.2.5 is slice 3g.cnsts . 278

C.15 ASSL Procedures for Slice 4 to Execute Query . 280

C.16 ASSL Procedures for Slice 3 to Approve Access ticket . 288

C.17 SOIL Commands used to re-create objects from slice 5 needed in other slices - filename reference

for listings in Section C.2.5 is slice 5 overlap\overlapping objects 1.soil 292

C.18 SOIL Commands used to re-create objects from slice 5 needed in other slices - filename reference

for listings in Section C.2.5 is slice 5 overlap\overlapping objects 2.soil 292

C.19 SOIL Commands used to re-create objects from slice 5 needed in other slices - filename reference

for listings in Section C.2.5 is slice 5 overlap\overlapping objects 3.soil 292

C.20 SOIL Commands used to re-create objects from slice 5 needed in other slices - filename reference

for listings in Section C.2.5 is slice 5 overlap\overlapping objects 4.soil 292

C.21 SOIL Commands used to re-create objects from slice 5 needed in other slices - filename reference

for listings in Section C.2.5 is slice 5 overlap\overlapping objects 5.soil 292

C.22 SOIL Commands used to re-create objects from slice 4 needed in slice 3 - filename reference for

listings in Section C.2.5 is slice 4 overlap\overlapping objects 1.soil 293

C.23 SOIL Commands used to re-create objects from slice 4 needed in slice 3 - filename reference for

listings in Section C.2.5 is slice 4 overlap\overlapping objects 2.soil 293

C.24 SOIL Commands used to re-create objects from slice 4 needed in slice 3 - filename reference for

listings in Section C.2.5 is slice 4 overlap\overlapping objects 3.soil 293

C.25 USE Commands to Generate Object Model for Slice 4 to Execute Query 295

C.26 USE Commands to Generate Object Model for Slice 3 to Approve Access Ticket 297

D.1 Updated Alloy Specifications for Slice 3 to Approve Access Ticket 298

D.2 Updated Alloy Specifications for Slice 5 to CheckConformance . 314

D.3 USE Class Model for Slice 3 to Approve Access Ticket . 330

D.4 USE Class Model for Slice 5 to Check Conformance . 332

xxiv

D.5 Additional USE Constraints applicable only to Slices 3 and 5 to Approve Access Ticket and Check

Conformance respectively . 334

E.1 USE Class Model for Slice 3 to Approve Access Ticket . 335

E.2 USE Class Model for Slice 4 to Execute Query . 339

E.3 Full USE Class Model for the NJH sysyem . 344

xxv

1. INTRODUCTION

Conformance analysis in systems can be non-trivial because of system size and of the complex interplay of

conformance requirements from di↵erent sources. The requirements are imposed through rules that stem from

business protocol choices or from legal and standards regulations. Examples of standards and regulations

include the Health Insurance Portability and Accountability Act (HIPAA) [2, 3] and the Gramm-Leach-

Bliley Act (GLBA) [77] that apply to the privacy of non-public health information and financial information

respectively. A system that is governed either by HIPAA or by GLBA must not only show conformance to the

format of information shared with others, but also to the processes accessing and updating the information.

For example, the HIPAA regulations tells us:

1. that totally de-identified patient health information may be shared with researchers;

2. that total de-identification means that the patient’s health information does not contain any data that

can be used to identify or link to other data sets to identify the patient; and

3. which pieces of data can identify a patient.

These ensure that the patient’s privacy is protected, while still allowing researchers access to medical records

for conducting research.

1.1 Conformance Analysis in Practice

The main approach to conformance analysis has been to use model checking [17, 27, 33, 32, 52, 60, 62,

58, 59, 71]. Model checking is an exhaustive model-based verification technique [14] that relies on having

an abstraction of a system represented as a program graph that is a unified representation for both order of

process execution on paths and system structural (hereafter referred to as state) changes along the paths.

The model checker uses an exhaustive unfolding of the program graph to produce a transition system showing

all the program graph’s reachable paths and states. Properties that depend on the sequencing or occurrence

of system processes on paths and/or states are then verified on the transition system. The model checker

can tell us whether 1) a property is satisfied, 2) it is not satisfied by producing a counterexample from the

transition system, and 3) in some cases that it is neither possible to prove nor disprove a property. For the

1

last situation, a model checker may not be able to give a definite answer due to space and time complexities

or insu�cient detail in the model. While the latter situation will not be examined as a part of this research,

we note that:

1. if the model checker is not able to give an answer due to space and time complexities, it may mean the

program graph need to be represented more abstractly (and details needed to show conformance may

be los)t;

2. if there is insu�cient detail in the model, it may mean that the property cannot be verified using the

abstractions in the model and both the program graph and/or the property may need revisions; and

3. after the revisions the property may need to be reanalysed.

1.2 Challenges in Conformance Analysis

In order to use model checking in conformance analysis, we identify six challenges below.

1. Rule Representation. The rules are often published informally or in legal terms and are not under-

standable by automated systems [27, 30, 40]. Any e↵ort to show conformance to these rules requires a

language for representing the rules to be used as input for conformance analysis. In addition, since it is

the actions executed and the corresponding system state changes that are analysed to determine rule

conformance, we must be able to define the rules based on the observable actions and states shown in

the transition system.

2. Changing Rules. Changed rules [61] represent changed contexts in which to show conformance. For

example, data mining techniques may be used to search for new relationships or linkages in data. If

the newly revealed relationships can be used to make inferences and potentially identify subjects [12],

then, especially where conformance rules address privacy concerns, rule in the system must be changed.

To address this challenge, changes made to conformance rules must be re-verified on a system that

previously passed conformance. In addition, applying versioning to a rule base may be important in

identifying the version of a rule to which a system conforms.

2

3. Rule Types. Conformance rules may be process-aware [21, 58, 61] and/or data-aware [27, 52]. Process-

aware rules are defined using regular patterns on the sequencing of processes, while data-aware rules

are defined using system states to say what conformance means. Conformance analysis for each type

of rule has di↵erent requirements. For example, in model checking showing conformance to data-

aware rules may require additional computations and sophisticated techniques than those required for

checking process-aware rules to handle large state spaces. This is because the number of processes may

be considerably smaller than the size of the state space in a concrete system representation, so process-

aware rules may have far less computational requirements or require less sophisticated techniques. To

demonstrate conformance therefore, a requirement in this challenge is to be able to show conformance

to data-aware rules without the need to use abstractions of details.

4. System Complexity. For conformance analysis, the complexity of a system may depend on whether

the system enforces a large set of rules that may have interdependencies and conflicts, and/or a large

amount of data with complex relationships. Where rules conflict, we may need additional mechanisms

to prioritise conformance rule satisfaction. Such prioritisation may also be used to provide metrics that

measure system conformance levels [61]. In addition, di↵erent system abstractions (representations)

may hide the system complexity. For example, showing conformance on implementations reveals an

aspect of complexity - unbounded and/or unanticipated executions paths and system state. These

aspects may not be encountered when showing conformance on system design specifications because

designs may not fully capture all of the ways software will be used. In addition, showing system

conformance a priori by examining requirements, designs or at run-time, or a posteriori by examining

audit logs of system executions against a model of what is expected, may all be important in system

conformance analysis.

5. Hidden Paths. Conformance analysis failure, i.e., non-conformance to rules, due to privacy leaks occur

because of the presence of hidden paths in the system. Hidden paths may exist when a system is

used in non-standard ways because loopholes exist in the system, or when rules that should change

in response to new and/or changed functionalities in the system are not changed. The fifth challenge

therefore is to be able to identify such potential and preventable rule violations [62].

3

6. Model Granularity and Analysis Results. We need to present meaningful analysis results so that rule

conformance failure can be properly linked to specific system actions and states [13, 52, 61]. For this,

we need a system representation with enough granularity to find and isolate the fault causing the

failure.

Showing conformance to process-aware rules is one of the strengths of model checking [58, 61, 85, 86]

because large, i.e. high-level, abstractions can be applied to the states resulting in smaller computation

and memory requirements. On the other hand, showing conformance to data-aware rules may cause the

model checker to hang because of a state space explosion when there are too many states or details of

states to consider. Conformance analysis has been successfully demonstrated for process-aware rules [61].

Approaches for showing conformance to data-aware rules may be less successful since they also employ large

abstractions for the system states to overcome the intractable complexities [27, 52]. In situations where

showing satisfaction to data-aware rules require analysing detailed and/or concrete system states, applying

abstractions is not a feasible solution in conformance analysis because the abstractions hide the very details

needed to check conformance. In order to handle the analysis of detailed system states when verifying

data-aware rules this dissertation proposes and outlines a hybrid model checking approach (HMCA) for rule

conformance analysis (RCA).

1.3 Hybrid Model Checking Approach (HMCA) to Conformance Analysis

HMCA is proposed for use in RCA to overcome the intractable analysis of current model checking tools

when checking data-aware rules. We propose HMCA as a hybrid approach because it:

1. o↵ers exhaustive analysis within a certain scope; and

2. does not use current model checking tools, but proposes the use of other modeling and analysis tools.

As with model checking, RCA using HMCA consists of constructing models, including conformance rule

representations, then analysing the models, and finally providing feedback for conformance rule violations.

We discuss an overview of our model construction in Section 1.3.1, analysis in Section 1.3.2, and providing

feedback in Section 1.3.3. In Section 1.3.4 we outline the contributions HMCA makes in reference to the

challenges discussed in Section 1.2.

4

1.3.1 Model Rule Conformance in terms of Model Checking

In order to use model checking in RCA, we need to construct an analysable system program graph and

conformance rule representation.

1.3.1.1 Construct Program graph

For constructing our analysable system program graph, we start with both a UML activity model as a

representation of (the human system interactions) as paths in the system, and a UML design class model

where the operations have pre- and post conditions as a representation of the overall system state. Both

these models are constructed using details provided by a domain expert for the system under analysis and

by an analyst with expertise in constructing the models.

We propose a technique to add details to the the activity diagram by associating it with details from

the class diagram to produce an annotated activity model. We then transform the annotated activity model

to a UML system state machine model as the latter closely represents the semantics of transition systems

[10, 9, 31, 35, 37, 42, 43, 73]. However, depending on the size of the initial activity model, its transformation

may produce a complex state machine. We observe that in many cases, showing that the system conforms

to a rule only requires detailed examination of some of the operations in the system state machine. In this

case we may decompose the transformed system state machine to produce smaller state machine views that

are rule-specific. Since rules always examine a target, i.e., states of objects of interest, we must first identify

that target. These objects of interest are the focus of the decomposed state machine views, hereafter called

the entity views. These entity views include operations that are extracted from the system state machine

and states that are abstract descriptions of the system state from the class model related to the object of

interest.

Each rule may reference the operations and states in more than one entity views, so our interest will

be to analyse the entity views applicable to the rule. We therefore create a rule-specific entity view that

is a single entity view, or the composition of more than one individual entity views that represents the set

of all the operations and parts of the system state required to show conformance to the rule. We use each

rule-specific entity view as a program graph for HMCA to analyse.

5

1.3.1.2 Construct Conformance Rule Representation

We use a graph formalism, a non-deterministic finite automaton (NFA) [14, see Chapter 4], to define

conformance rules based on the elements in each rule-specific entity view, i.e., the sequencing or occurrence

of operations and states to define process- and data-aware rules respectively.

1.3.2 Conformance Analysis

We analyse each rule-specific entity view to determine rule conformance to it applicable rule. However,

our analysis of data-aware rules means that we are likely to encounter intractable complexity because we

will not apply abstractions to the state beyond those used in the class diagram. We therefore construct a

transition system using the following steps.

1. Model reduction. Recall that intractable complexity is usually encountered when the state space being

analysed is too large. Model reduction techniques, such as model slicing [81, 82] for UML class and

object models has been shown to reduce space and time complexities in model analysis for structural

and operational constraints. Therefore, we adapt this technique to slice our class diagram according

to operations, i.e., we create smaller class models, each containing the class model elements referenced

in each operation in the rule-specific entity view. Each small class model is called a slice. This allows

us to produce smaller state analysis sub-problems.

2. Local analysis, i.e., slice analysis. We use each slice as an intermediate model that we analyse in a

semi-automated way. We transform each slice to an equivalent Alloy language specification [1, 47, 49].

We then use the Alloy Analyser, whose strength is in analysing structural models within a certain

scope to determine potential final states.

3. Construct Transition System. We use the states from each slice to construct the transition system.

4. Evaluate Property on the Transition System. We check whether the NFA rule representation is satisfied

in the transition system using model checking techniques.

6

1.3.3 Provide Feedback

If the transition system shows a rule violation, then this represents a failure in the system. In this case,

we identify the slice of the class model in which the non-conformance occurs, and extract from it the evidence

of a fault in the system. We pinpoint the location of the fault to aid in fixing the fault.

1.3.4 Addressing Challenges and HMCA Contributions

HMCA makes the following contributions by addressing the challenges in Section 1.2; each numbered

item corresponds to the same numbered challenge:

1. Construct rule representation from details in entity views - we construct conformance rule represen-

tations so that they can be checked on our system program graph. The emphasis here is that we can

represent the conformance rules using elements from our system models. The details are in sections

5.1.3, 6.2, and 7.1.2.

2. Analyse changed rules - HMCA can be used in the analysis of changed rules and for metrics to judge

the level of system conformance. However we relegate specific techniques to streamline analysis of

changed rules to future work.

3. Analyse and get results for rule types - the focus is on being able to analyse data-aware rules at the

level of detail required where current model checking tools fail. We analyse data-aware rules using

slicing techniques on the program graph to create the transition system. The details are in in sections

5.2, 6.3, and 7.1.4.

4. No need to apply large abstractions to handle system complexity - we handle a large amount of data

in the state by using entity view as decompositions of the system state machine. The details are in

sections 5.1.2, 6.2, and 7.1.1

5. Finding hidden paths - HMCA can provide hidden path analysis by examining how:

(a) the results from slices may be recombined to create paths not documented in the system activity

diagram; and

7

(b) the segments or elements of the class model that are not used in the analysis of any rule and

whether these segments can lead to rule violations because they create a way to traverse a path

not checked by the rules under analysis.

However we relegate specific techniques to to find hidden paths to future work.

6. Model Granularity and Analysis Results - We provide meaningful and useful feedback on faults that

cause rule conformance failures by using connections between activity and class models. The details

are in sections 5.3, 6.4, and 7.2 through 7.6.

1.4 Evaluation

Our evaluation of HMCA involves examining a real world system possessing all the challenges outlined in

Section 1.2. For this, we use the National Jewish Health (NJH) medical research system (see Section 3.4 for

more details) where conformance rules come from the Health Insurance and Portability Act 1996 (HIPAA).

It is important that systems like those at the NJH undergo conformance analysis because the penalties for

non-conformance are severe, and the public’s perception of the trustworthiness of the organisations involved

in a rule violation can decline.

HIPAA rules include both process- and data-aware rules. For example, HIPAA mandates that to control

privacy leaks, health information maintained and stored by an organisation should only be shared with

(trusted) associates. In the NJH’s system, this is enforced as a process-aware rule to verify that researchers

are qualified, or have been approved through a qualification process, before they are allowed to apply for

specific permissions for accessing patient health information. In work prior [23] to this dissertation, we

examined how a system-wide state machine view of the NJH system can allow us to verify conformance to

process-aware rules. This view required using large abstractions to represent the system state, and could

become complex without abstractions when verifying data-aware rules.

Since HIPAA rules also mandate the formats of patient health information that is shared, the NJH

system must enforce them using data-aware rules. We will examine two of these rules. The first requires

that shared patient health information has all identifying data removed, i.e., data is de-identified using the

8

HIPAA deidentified conformance rule1. The second requires that that shared patient health information

has no identifying data removed, i.e., data is identified. For these, HIPAA outlines the specific data about

a patient that can be used to identify a patient. Within the scope of both these conformance rules, we

must consider the ways that data for special populations, i.e., pregnant women and neonates, prisoners, and

children, may be shared. This is because these special patient populations that have additional rules that

further protect their privacy. In our evaluation we included the children protected population.

Firstly, we provide an initial demonstration of HMCA by constructing, analysing, and providing feedback

on conformance rule violations related to HIPAA de-identified conformance rule. The details are in Chapter

5 and Sections 7.2 through 7.6.

Secondly, we include the HIPAA identified conformance rule and evaluate how well HMCA is able to find

faults:

1. through fault seeding - first by inserting a logic error in a rule and second by adding a transition to

the system state machine that is not considered in the rule; and

2. highlight that these seeded faults correspond to real-world problems - the logic fault causes non-

conformance to the previously verified HIPAA de-identified conformance rule and the second fault

causes conflicts of interest.

The details of this validation is in Chapter 8.

Finally, we model the rules governing access to data for children as this is important to the NJH and we

argue that doing so will work as a proof of concept for the other protected populations. The details are in

Chapter 9.

1.5 Document Organisation

We describe related work in Chapter 2, and background tools and techniques, and give more details on

the NJH system in Chapter 3. In Chapter 4 we provide motivation for HMCA by examining RCA in specific

model checking tools to show how intractable complexity results when using design class models. In addition

to the specifics of HMCA already highlighted in sections 1.3.4 and 1.4, we describe how HMCA is applied

1Since the focus of this dissertation is not on HIPAA regulations, we used simplifications of them in order to demonstrate
HMCA.

9

to the NJH system in Chapter 5, we describe HMCA in Chapter 6, an expansion of the feedback stage of

HMCA in Chapter 7, and the analysis for the children protected population in Chapter 9. In Chapter 10

we describe how HMCA can be applied in other domains requiring RCA. We follow with some insights that

may be helpful when applying HMCA in Chapter 11. Our final chapter, Chapter 12, gives our conclusions

and future directions.

10

2. RELATED WORK

In this chapter, we summarise related work in rule conformance analysis (RCA). The key areas of dis-

cussion are (1) the approaches to RCA in Section 2.1, (2) the types of conformance rules in Section 2.2 ,

and (3) how conformance rules are specified in Section 2.3. We give a summary and some open problems in

Section 2.4.

In our discussion compliance and conformance are interchangeable concepts, and each is used based on

their use by the authors. However, in the rest of the dissertation we will use conformance.

2.1 RCA Approaches

2.1.1 General Complexity Handling in RCA

In this section we describe approaches to RCA that uses decomposition and/or distributed processing to

handle the complexity in RCA.

2.1.1.1 Odessa

Montanari et al. [67] developed the Odessa environment that uses network distribution in RCA. The

rules being analysed are specified in a security policy and the data needed for each rule may be distributed

on di↵erent servers to the network. The observation in Odessa is that rule parts may be analysed at the

server where the data they need are located. For example, given a rule

rule1 : r1! r2

where ! means implies, then if r1 can be checked on server S1 and r2 on server S2, then we can assign r1

to S1 and send r1 ’s results to S2 ; S2 then evaluates r2 and rule1. Since S1 and S2 evaluate parts of rule1,

they are assigned to a group called a predicate group. In addition, there may also be replication of data on

separate servers, so for resilience rule1 may also be evaluated in another predicate group. The distribution

of the rule parts to di↵erent servers and rules to di↵erent groups enables evaluation of large-scale policies.

11

2.1.1.2 System Logs and Petri Net Decomposition

Broucke et al. [85] describe an approach to RCA that compares event logs that are replayed as streams

against a system expected behaviour that is modelled as a Petri Net. To address scalability, the Petri Net

is decomposed into subprocesses. Each log is then replayed and matched to subprocess(es) that are enabled

by events in the Petri Net. An event that cannot be executed on the sub-model may identify an illegal or

missing process.

2.1.2 Bottlenecks in Weak and Strong Conformance

In addition to their specification language (see Section 2.3.3), Chowdhury et al. [27] provide a demon-

stration that system actions show weak or strong conformance to the encoded rules. Their notions of weak

conformance and strong conformance are redefinitions of those originally proposed by Barth et al.[17]. When

applied to system actions, a contemplated action shows weak conformance to a policy if it does not violate

the present requirements and can be checked on finite traces of past events. These requirements are spec-

ified using conjunctions and disjunctions and no future operators. An action shows strong conformance to

a policy if its obligatory requirement is consistent with the current requirements and can be checked by

concatenating a finite trace that fulfils weak conformance with an infinite trace satisfying the obligation.

These requirements are specified using implications and future temporal operators. Strong conformance

also means that the contemplated action neither prevents obligations nor causes unsatisfiable obligations.

During analysis, the authors found that the policy became a bottleneck, so they propose slicing (see Section

3.3) based on obligations. However their slicing technique only reduces the bottlenecks if obligations do not

depend on each other.

2.1.3 Compliance Monitoring and Conformance Checking

In order to analyse rules, another approach is to use a priori conformance monitoring [5, 13, 19, 18,

24, 26, 62, 63, 66, 71, 86] or a posteriori conformance checking [46, 76, 84, 85, 86]. Conformance rule

monitoring (CRM) requires continuous polling in systems to detect where rules are satisfied, violated, or

violable so that measures could be taken to disallow rule violation [62] during execution. CRM also applies to

12

checking designs for conformance rule violations [21]. Conformance rule checking (CRC) requires verifying

that process logs conform to process models and rules, and includes having models of fitness to measure

levels of conformance.

CRM approaches may be further identified as 1) automaton based monitoring, 2) logic based monitoring,

or 3) violation pattern based monitoring according to the formalism used to specify the rules. Automaton

based monitoring [63, 71] uses linear temporal logic (LTL) that is transformed to an automaton. In this

approach patterns [32, 33] may be used to hide the complexity of LTL. Logic based monitoring [5, 66, 71]

makes use of logic formalisms. Violation pattern based monitoring is used to query design models [21] and

partial execution traces for rule violation patterns [13, 24, 50, 86].

Both CRM and CRC require exhaustive exploration using model checking to extract conformance evi-

dence from the paths, states, events, or system logs (as seen in Section 2.1.1.1). While model checking has

been the main method used in RCA, Petri Nets [72, 71, 85] have also been used. Petri Nets is a mathemat-

ical modelling language used to describe distributed systems and therefore can be used to easily model and

analyse concurrent systems. Model checking on the other hand must use interleaving semantics to reason

about concurrent systems executions. Model checking has good tool support, so petri-net practitioners have

been using model checking techniques to analyse systems modelled as Petri Nets [53, 54, 55].

2.2 Process and Data-aware rules

RCA separates process-aware from data-aware conformance rules because of the di↵erent memory re-

quirements for each type of rule. Knuplesch et al. [52] describe an approach to 1) identify and monitor

individual activations of a conformance rule, 2) proactively prevent rule violations by using techniques that

are able to identify rules that could be violated in the future, and 3) provide root cause identification in case

of rule violations. A rule is modelled as a compliance rule graph and is instantiated each time a rule is to be

checked. Monitoring is accomplished by using pattern matching of events in the compliance rule graph. In

addition, events trigger an instance of compliance rule graphs for each applicable data item. Rule matching

uses antecedents that wait for consequents: if consequents are observed then the rule is satisfied but the rule

can also be violable if the consequent has an event that must not occur (checked on future events). The

13

intervention to prevent violations is semi-automatic such that it can enable (and force execution of) events

that should be observed or disable events that should not be observed before the process preceding the event

ends. Since event observation is per rule activation, and rule activation is per applicable data item, rule

enabling or disabling is used to provide feedback when violations occur.

While model checking is used in their RCA, Knuplesch et al. also identify that data-aware rules may

cause a state-space explosion in a large domain. The authors propose to minimise the state explosion by:

1. applying an automatic pre-processing step that reduces concrete data values to abstraction classes

based on the data values that appear in the rules - this step produces an abstract process model and

abstract data-aware compliance rules;

2. using the abstract process model and the abstract data-aware compliance rules to perform conformance

analysis and produce a conformance report; and

3. applying an automatic post-processing step that converts the abstract process model back to a concrete

model - this only occurs where conformance rules have not been satisfied in order to provide user

feedback.

The authors demonstrate this automatic pre- and post-processing for numerical data.

Ly et al. [59, 60, 62] propose the use of patterns as a compliance rule graph for specifying path rules based

on activity occurrences and sequences using first-order logic. The patterns use precedence and antecedent

activities that must happen, cannot happen, etc. This is in e↵ect a language for specifying rules that is a

simplification for the non-technical user, yet has formal semantics that can be analysed, similar to Dwyer’s

temporal patterns discussed in Section 2.3.2.1.

As an extension of Ly et al.[60], Ly et al. [58, 61] describe specifying and analysing both process-aware and

data-aware conformance rules by supporting loop-free process models, using abstractions of data conditions

from Knuplesch et al. [52]. They further state that data-aware rules include those where 1) process-aware

rules include examining data, 2) rules imply that a data condition needs to be checked, and 3) data conditions

are included directly in the rules.

14

2.3 Conformance Rules

This section describes approaches to specifying and/or analysing conformance rules.

2.3.1 Checklists in Rule Conformance

Checklists can show conformance to the Standards for Safeguarding Customer Information (Safeguards

Rule) [36] and the Volcker Rule [34] for financial transactions as mandated by the Federal Trade Commission.

The Safeguards Rule checklist allows companies to assess and address operational risks related to customer

information. The Volcker Rule is an improvement to the Gramm-Leach-Bliley Act in relation to covered

funds, investment activity and a�liated transactions.

Rashidi-Tabrizi et al. [74] describes a framework for expressing legal requirements for compliance as

goals that includes decomposing, attaching importance, conditions and exceptions. The framework uses

the Goal-oriented Requirement Language (GRL) to formalise legal text in order to make it amenable to

conformance analysis. This formalisation yields a goal model. The framework can be used as an analysis

tool when auditing a system for compliance based on answering questions. Conformance is given a 100 value

if compliant, and otherwise a value of 0-99 that indicates the level of compliance. The framework is not

mapped to a system implementation so it is in e↵ect a checklist.

Though checklists are important, they do not enable us to extract evidence of conformance from comput-

erised systems that support an organisation’s operations. However they may be more understandable than

their corresponding laws and regulations and may be useful as requirements for specifying more formalised

conformance rules.

2.3.2 Generalised Rule Specifications

2.3.2.1 Dwyer’s Patterns

Conformance rules based on actions or a sequence of actions may be specified using first order logic

(FOL) and first order temporal logic (FOTL) based on Dwyer’s patterns [32, 33]. Dwyer identifies that

the main hindrance to specifying and using tools that analyse a system of paths may be unfamiliarity with

specifications, specification notations, and specification strategies. Dwyer proposes eight common patterns

15

based on temporal logic. We summarise them in Table 2.1. For example, in a system that uses permissions

to restrict access to sensitive data, an applicable rule is that permissions must be granted prior to access.

In this case, we use the Precedence pattern in the Order pattern group to specify that permission approval

must always precede the access. Every path in the system that accesses data must be shown to satisfy this

rule in order for the system to show conformance to the rule. While the example given uses actions, the

patterns may also be used with states and events.

Table 2.1: Dwyer’s Patterns [32, 33] for Specifying Conformance Rules, adapted.

Pattern
Group

Pattern Name Pattern Description

Occurrence

Absence A given system state/action/event does not occur within a scope.
Existence A given system state/action/event must occur within a scope.
Universality A given system state/action/event must exist throughout a scope.
Bounded Existence A given system state/action/event must occur k times within a scope.

Order

Precedence
A system state/action/event P must always be preceded by another system
state/action/event Q within a scope.

Response
A system state/action/event P must always be followed by another system
state/action/event Q within a scope.

Chain Precedence
A sequence of system states/actions/events P1, . . . , Pn must always be
preceded by a sequence of system states/actions/events Q1, , . . . , Qn.

Chain Response
A sequence of system states/actions/events P1, . . . , Pn must always be
followed by a sequence of system states/actions/events Q1, . . . , Qn.

2.3.2.2 Reference Architectures as Rules

Buchgeher and WeinReich [26] propose focusing on the reuse of reference architectures in conformance

analysis. A reference architecture is a set of rules that consist of roles together with the constraints on

the roles and role relationships for a particular domain. RCA is made possible when a system realises the

reference architecture and inherits its rules. The realisation involves making bindings from the architecture

to specific roles in the actual implementation. This allows evaluation of the reference architecture rules.

2.3.3 Formal Languages to Encode Legal Requirements.

The following are examples of formal languages to encode rules from laws and regulations:

1. May et al. [65] present a formalism, called Privacy APIs, to encode HIPAA 2000 and 2003 consent rules

which relate to when health care providers must obtain patient consent before performing treatment,

payment, and other activities related to health care operations. HIPAA 2003 consent rules are a

simplification of the HIPAA 2000 consent rules. After encoding the rules, May et al. convert their

16

formalism into the specification language of the SPIN model checker and check whether the formalism

satisfies desired invariants as well as to explore the di↵erences between the two versions of the rules.

2. Barth et al. [17] propose C1, a language for specifying policies based on a fixed set of predefined

predicates using propositional linear temporal logic (pLTL).

3. Basin et al. [18, 19] use metric first-order temporal logic to specify rules, and they also developed a

monitoring algorithm for the rules.

4. DeYoung et al. [30] develop an improvement to C1, a policy language called PrivacyLFP as a specifi-

cation language for HIPAA and GLBA.

5. Garg et al. [38] propose a first-order logic-based privacy policy specification language that can encode

HIPAA policies. They present an auditing algorithm that incrementally inspects the system log against

a policy and detects violations.

6. Chowdhury et al. [27] propose a policy (rule) specification language based on first-order temporal logic

as an improvement over C1 that they use to encode all 84 disclosure-related clauses of HIPAA.

7. Becker et al. [20, 21, 22, 29, 80] describe a business process graph-based query language and matching

algorithm. The query language is pattern based and can be used to specify infringement patterns, legal

requirement identification patterns, risk management patterns, and change management patterns. The

checking algorithm is able to analyse for conformance rule violations for all these patterns. The query

language is applicable to arbitrary graph-based modelling languages for both simple and complex

conformance rules.

2.4 Summary and Open Problems

The results of our related work are summarised as a matrix in Table 2.2.

RCA uses either a conformance rule monitoring approach or a conformance rule checking approach.

Each RCA approach considers process-aware rules and/or data-aware rules with only two of the approaches

considering data-aware rules. This is due to the additional considerations required to minimise intractable

17

1
8

T
a
b
le

2
.2
:
R
el
a
te
d
W
o
rk

S
u
m
m
a
ry

T
A
B
L
E

N
O
T
E
S

C
R
C

-
C
o
n
fo
rm

a
n
ce

R
u
le

C
h
ec
k
in
g

C
R
M

-
C
o
n
fo
rm

a
n
ce

R
u
le

M
o
n
it
o
ri
n
g

D
A
R

-
D
a
ta

A
w
a
re

R
u
le

M
C

-
M
o
d
el

C
h
ec
k
in
g

P
A
R

-
P
ro
ce
ss

A
w
a
re

R
u
le

P
N

-
P
et
ri

N
et

C
el
l
en

tr
ie
s
-
Y

m
ea

n
s
y
es
,
a
n
em

p
ty

ce
ll
en

tr
y
m
ea

n
s
n
o
.

R
e
fe
re

n
c
e

A
p
p
ro

a
ch

R
u
le

F
o
rm

a
li
sm

H
o
w

R
u
le
s
S
p
e
c
ifi

e
d

M
e
th

o
d

C
R
M

C
R
C

P
A
R

D
A
R

A
u
to
m
a
to
n

L
o
g
ic

P
a
tt
er
n

M
C

P
N

A
lb
er
ti

et
a
l.

[5
],
M
o
n
ta
li
et

a
l.

[6
6
]

Y
Y

A
w
a
d
&

W
es
k
e[
1
3
],
B
ir
u
k
o
u
et

a
l.

[2
4
]

Y
Y

B
a
rt
h
et

a
l.

[1
7
]

Y
Y

Y

B
a
si
n
et

a
l.

[1
8
,
1
9
]

Y
Y

Y
B
ec
k
er

et
a
l.

[2
1
]

Y
Y

Y

B
u
ch

g
eh

er
&

W
ei
n
re
ic
h
[2
6
]

Y
Y

C
h
o
w
d
h
u
ry

et
a
l.

[2
7
]

Y
Y

Y
Y

D
eY

o
u
n
g
et

a
l.
[3
0
]

Y
Y

Y

D
w
y
er

et
a
l.

[3
2
,
3
3
]

Y
Y

Y
Y

Y

E
a
rn

es
t
&

Y
o
u
n
g
[3
4
],
F
T
C

[3
6
],
R
a
sh

id
i-
T
a
b
ri
zi

et
a
l.

[7
4
]

Y
G
a
rg

et
a
l.

[3
8
]

Y
Y

Y

H
u
y
n
h
&

L
e
[4
6
],
R
o
zi
n
a
t
et

a
l.

[7
6
],
V
a
n
d
er

A
a
ls
t
et

a
l.

[8
4
]

Y

J
a
co

b
se
n
et

a
l.

[5
0
]

Y
Y

Y
Y

K
n
u
p
le
sc
h
et

a
l.

[5
2
],
L
y
et

a
l.

[5
8
]

Y
Y

Y
Y

Y

L
y
et

a
l.

[5
9
,
6
0
,
6
1
,
6
2
]

Y
Y

Y
Y

M
a
g
g
i
et

a
l.

[6
3
]

Y
Y

M
a
y
et

a
l.

[6
5
]

Y
Y

Y

M
o
n
ta
n
a
ri

et
a
l.

[6
7
]

Y

P
es
ic

&
V
a
n
d
er

A
a
ls
t
[7
1
]

Y
Y

Y
Y

B
ro
u
ck
e
et

a
l.

[8
5
]

Y
Y

W
ei
d
li
ch

et
a
l.

[8
6
]

Y
Y

Y

complexity when the state explosion problem occurs for data-aware rules. While di↵erent specification for-

malisms exist for specifying rules, all the formalisms outlined are useful in both conformance rule monitoring

and conformance rule checking. More approaches use model checking than Petri Nets for RCA.

Conformance reflects that a system adheres to governing rules. The rules are requirements that may be

available before a system is developed and can be incorporated into the development process. A conformance

rule monitoring approach may be used and instituted at design-time or at run-time. In contrast, conformance

rule checking on system process logs allows one to check conformance in existing systems, or when rules are

not available or included in the development process.

Conformance rules are based on laws and regulations and are usually not in a form that is analysable in

computerised systems. Most of these rules are formalised using automata, logic, or patterns. Rules based

on patterns may be the easiest for non-technical analysts to use. However, pattern-based rules may not

be as expressive as the policies specified using automata and logic because automata and logic allow more

fine-grained specifications. Further, rules specified using patterns must be transformed into more formal

representations before analysis.

Both model checking and Petri Nets allow us to represent systems under conformance test and to perform

exhaustive analysis to show rule satisfaction. Process-aware rules are easier to test because they often do

not encounter the state explosion problem since process representations can be largely abstracted without

loss of generality. However, where the details for showing conformance lie in examining detailed system

structure, the analysis of data-aware rules using the large abstractions proposed are insu�cient. We have

seen that decomposition and/or network distribution have been used as a scalability technique in RCA.

These techniques are also useful in minimising the state explosion problem.

One of the areas not examined in RCA is where hidden paths cause RCA to fail. Hidden paths may exist

because path possibilities are not well understood or constrained. Representations may focus on the paths

that are allowed and on restricting path possibilities that should not be allowed, however hidden paths in

either of these categories may exist. While normal operations may not execute actions that constitute hidden

paths, they may be started through other channels such as a backdoor into the system. Hidden path analysis

19

is very important in evaluating systems for security leaks, particularly for network security algorithms that

could violate privacy.

Another area of RCA not examined is rule interactions. There is often overlap in the elements of a system

that analysis for each rule examines. In addition, concurrent activation of rules may mean that the same

element instantiation is shared among rules, and sequencing of analysis may be important. In this case the

approaches based on Petri Nets hold great promise for tractable and scalable analysis for rule interactions

because we can adopt and adapt the techniques used to prove properties about interacting processes.

20

3. BACKGROUND

In this chapter, we give the background required to understand HMCA. We use both Alloy and model

checking to specify and verify conformance to rules. Model slicing reduces the size of the models to be

checked. Our evaluation applies HMCA to validate the NJH Research System against HIPAA rules.

3.1 Alloy

Alloy [1, 47, 49] is a formal specifications language that is described as a relational logic because it

combines the quantifiers of first-order logic and the operators of relational calculus. In Alloy, a specification is

made up of elements that are atoms and relations. Atoms are a modelling abstraction used to define entities

and are indivisible, immutable, and uninterpreted. Relations, also called fields, define the relationships

between two or more atoms. Both atoms and relations are viewed as, or a part of, signatures in the Alloy

language. Constraints are included in the model as facts. Predicates are parameterised constraints that can

be used to simulate instances of the model or as a part of other facts or other predicates. Though strictly

not a part of the model, assertions may be used to define constraints that should follow from the facts.

Alloy is well supported by the Alloy Analyzer that has an embedded SAT-solver used to evaluate Alloy

expressions. The Alloy Analyzer is able to simulate model examples of predicates or find counter-examples

of assertions using user-defined scopes that are upper bounds on the number of each element.

Both predicates and assertions may be used to check invariants of UML class models [64, 81]. To do this,

we use Alloy to specify an equivalent representation of the class diagram using atoms and relations. Any

additional invariants from the class diagram that use Object Constraint Language (OCL) may be specified

using facts, and object models may be specified using predicates. The Alloy Analyzer is able to check

that a predicate is consistent with an Alloy model by generating an instance of the model according to the

constraints in the predicate. In the case where we want to check that certain instances of a model are never

possible, we use assertions. When simulating predicates, if an instance cannot be generated then we know

that the object model defined by the predicate is inconsistent with the model. When checking assertions, if

21

an instance, i.e. a counter-example, is found then we know that the object model defined by the assertion is

inconsistent with the model.

Unlike model checking (see Section 3.2), the Alloy Analyzer is in the class of model finder tools because

of its use of simulation to experiment with a restrictive set of scenarios compared to model checking that uses

exhaustive exploration to verify properties. However, the Alloy Analyzer is still able to produce good results

due to its reliance on the small scope hypothesis that justifies testing models with small scopes because a

high proportion of faults may be uncovered when testing a program for all test inputs using small scopes

[8, 48].

3.2 Model Checking

Model checking is a model-based verification technique [14] that performs an exhaustive brute-force

exploration of system models to show that a property is satisfied. The system model describes how the

system behaves, while the property specifies what the system should or should not do. The exploration

performed in model checking examines all the possible states of a system in a systematic way to truly show

that the properties are satisfied.

Both the system model of possible behaviours and the property of interest must be defined in a math-

ematically precise and unambiguous manner. The system model is often expressed as a Transition System

(TS) model or as models whose executions may be transformed to TSs. For example, UML activity diagrams

have semantics that are closely represented in transition system models [9, 35, 37, 42, 73, 31]. The properties

of interest in this research are in the class of safety properties because they represent invariants in the system.

These invariants may be described using a linear temporal property represented as a non-deterministic finite

automaton (NFA) to be checked on the system model. We provide examples and further explanations of

both the TS and the NFA in Chapter 5.

Model checking can have any of three outcomes: the property is valid in the model, the property is not

valid in the model, or the memory required to enumerate the states in the model is larger that the physical

limits of the computer’s memory. If a state is encountered that violates a property, model checking uses

simulation to replay the violation as a counter-example that shows how the behaviour is reachable in the

22

system model. The simulation may also contain useful state information from the model that can be used

to debug or adapt the model or property in order to reverify the property.

The outcome that exceeds the physical limits of the computer’s memory requires that we revisit the model

and apply abstraction techniques to reduce the state-space required. These abstractions must preserve the

validity or non-validity of the properties. Alternatively, the abstractions may reduce the precision in the

model and in the case of a property violation critical state information may be lost.

3.3 Slicing

Model Slicing [11, 25, 56, 57, 78, 79], analogous to program slicing [87], is a technique for decomposing

models as a way to handle complexity in model analysis. The observation is that not all elements of a model

are required for the analysis of each property (e.g. constraint). Therefore, we can create slices of a model

that contain only those elements required for a local analysis. Slicing requires defining slicing criteria in

order to perform the decomposition.

Our interest in slicing is specifically with the technique to slice UML class models and object models

as described in Sun et al. [81, 82] as a way to promote scalable and rigorous analysis. In their work, a

system represented using a class diagram is sliced by OCL invariants, or operation contracts written using

the Object Constraint Language (OCL) [68].

The slicing allows each invariant and operation contract to be checked individually for scopes (using the

Alloy Analyzer) well beyond those that would be allowed if the model were not sliced. Sun et al. also describe

a technique to sequence slices for operations to check that invariants are not violated when operations are

executed. In addition to the smaller memory requirement for analysing each slice, the authors also show that

the technique significantly reduces analysis time and preserves analysis results such that the sliced models

showed the same results as the unsliced model.

3.4 NJH System

NJH has a system, here after refered to as the NJH system, for sharing patient health information with

researchers. This research system implements rules to maintain privacy of patient health information that

stem from HIPAA regulations. In order to have access to patient health information from the NJH data

23

sources, individual researchers or projects must first apply for, and have approved permission. Each approval

defines pre-approved queries, and rules that dictate the format of the query results and whether the query

results may only be viewed or if they can also be downloaded. The process of applying for a permission,

setting up rules for each permission, querying the data sources using an approved permission, and delivering

the query results according to a permission’s predetermined format is used by NJH to help determine that

it is conforming to the rules from HIPAA regulations. However, NJH currently does not verify HIPAA rules

in their system, but assumes that their process is su�cient to satisfy them. In addition, their system uses

a combination of manual and automatic steps in this process, so that automatically showing conformance

to rules is not always possible. In order to automatically show conformance we need to describe the NJH

system using formal techniques that create analysable models.

3.4.1 System Components of Interest

Structurally, the NJH system may be viewed in terms of the access control system that it implements, the

patient information that it creates and manages, and the conformance rules it verifies. Specifically relating

to HIPAA, the access control scheme assigns the following permissions to researchers and projects to access

patient health information:

1. Fishing License: allows access to only counts of requested data.

2. Prep License: requested data is viewable and not downloadable.

3. Access ticket : data is downloadable according to any the following formats:

(a) totally De-identified where

i. columns having one of the 18 types of HIPAA-defined identifiers such as patient names are

removed;

ii. date columns are modified to show year only;

iii. ages of 90 years or older are grouped into a single value;

iv. geographic locations shown are only states or larger geographic subdivisions; and

24

v. geographic codes are modified to show only leftmost three digits of zip codes where the total

population of those zip codes is > 20, 000 or else display zip code 000.

The De-identified access ticket will hereafter be referred to as the DeIDed access ticket.

(b) coded or linked [70] where personal identifiers are substituted with codes so as to make them

indirectly identifiable. This is di↵erent from anonymous, anonymised, or de-identified such that

the link between the code and the personal identifier is maintained but not known to the researcher.

(c) a limited data set (LDS) where the following are removed from the query result

i. columns having one of the 15 types of HIPAA LDS identifiers, and

ii. any geographic locations smaller than town or city or zipcode.

(d) identified where the results are displayed without alteration.

Conformance rules include process-aware rules that specify that sequential processes are followed, e.g.,

application and approval before querying, and data-aware rules, e.g., patient health information in a query’s

result does not violate the kind of permission issued and used to execute the query.

25

4. MOTIVATING HMCA: NAı̈VE RCA

Since HMCA proposes to handle complexity using model slicing to decompose the analysis tasks, we

will evaluate conformance analysis on unsliced models in order to highlight the limitations of current model

checking/finding tools. Specifically, we will use the Spin model checking tool and the Alloy Analyzer model

finding tool. We conducted analysis on process models of the NJH system using the UPPAAL [4] model

checking tool [23]. However, this analysis was preliminary in a bid to understand process sequencing and

interleaving for process-aware rules. We were able to verify the process models to be free of deadlock and not

to violate any of the process-aware rules. We identified that RCA requires us to produce a more complete

state model beyond the use of numeric symbolic representations in UPPAAL. The analysis we perform here

will cover both data- and process-aware rules in a single model using the NJH system.

We discuss the design in Section 4.1 and the verification for the Alloy Analyzer and Spin in sections 4.2

and 4.3 respectively. We end this chapter with a discussion of the results and summary in Section 4.4.

4.1 Evaluation Design

4.1.1 Questions

From our evaluations of the tools, we wish to answer the following questions:

Question 1: What kinds of rules are best suited for each tool?

Question 2: What are the space and time measures when using the tools and how can we use these

measures to motivate HMCA?

4.1.2 NJH System Operations and Data of Interest

For our analysis we will highlight operations where:

1. a researcher may:

(a) apply to be qualified;

(b) apply for a fishing licence; and

26

(c) execute queries using a fishing licence.

An approved Item 1a is the prerequisite for Item 1b, and an approved Item 1b is the prerequisite for

Item 1c.

2. a project may:

(a) apply for an access ticket; and

(b) execute queries using an access ticket.

In order to have an approved Item 2a, one of the requirements is that all the researchers assigned to

the project must have an approved Item 1b, and an approved Item 2a is the prerequisite for Item 2b.

3. process-aware rules and data-aware rules are checked (see Section 4.1.3 below).

The UML class model supporting these operations is shown in Figure 4.1. It shows 61 classes, 26 associations,

and 7 operations.

4.1.3 Rules

The rules of interest are to:

1. enforce operation sequencing for all the operation sequences implied in Section 4.1.2, e.g. a researcher

has to be qualified before they can have a fishing licence approved;

2. check whether a query’s result conforms to the required transformations, e.g. that the results are

de-identified in accordance with the DeIDed access ticket annotated with G in Figure 4.1; and

3. check whether a query’s result conforms to additional rules, i.e., inclusion/exclusion based on patient

consent.

The first is a process-aware rule rule and the others data-aware rules.

4.2 RCA using the Alloy Analyzer

4.2.1 Overview ofAlloy

Refer to Section 3.1 for a description of the Alloy Analyzer.

27

2
8

A

B

C

G

H

E

F

F
ig
u
re

4.
1:

C
la
ss

M
o
d
el

fo
r
th
e
N
J
H

sy
st
em

su
p
p
o
rt
in
g
th
e
o
p
er
a
ti
o
n
s
in

S
ec
ti
o
n
4
.1
.2

4.2.2 Alloy Specifications

We have created Alloy specifications to:

1. represent all the structural details in Figure 4.1;

2. include operation specifications for each of the operations in Section 4.1.2;

3. include assertions for process-aware ruless using Dwyer’s chain precedence pattern to specify:

(a) if the operation to approve a researcher’s licence application is successful in the current state, then

it must be that the operation to qualify the same researcher was successful prior to the operation

to approve the licence;

(b) if the operation to approve a project’s access ticket application is successful in the current state,

then it must be that all of its associated researchers have prior approved licences;

(c) if the operation to execute any of a project’s queries is successful in the current state, then it

must be that the operation to approve the (same) project’s access ticket was successful prior to

the execution of the query; and

(d) if the operation to check whether a query’s return data conforms its associated project’s access

ticket is successful in the current state, then we know that the operations to execute the query

was successful prior to the conformance check;

4. include as an assertion a data-aware rule using Dwyer’s absence pattern to specify that no data that

a query returns is identified when a DeIDed access ticket is used, and the converse, that if the data

returned is de-identified then a DeIDed access ticket was used is also true.

The full Alloy model is in Appendix A.2.

4.2.3 Model Execution Results in the Alloy Analyzer

The Alloy Analyzer is limited to use 4GB of memory for analysis. This will have an impact on the scope

for analysis and the time taken to perform the analysis. We show the analysis results in Table 4.1. The

29

3
0

T
ab

le
4.
1:

V
er
ifi
ca
ti
o
n
D
et
a
il
s
fo
r
A
ll
oy

P
re
d
ic
a
te
s
a
n
d
A
ss
er
ti
o
n
s
in

T
a
b
le

N
o
te
s

T
A
B
L
E

N
O
T
E
S

T
h
e
fo
ll
o
w
in
g
ID

s
a
re

u
se
d
in

th
e
ta
bl
e
to

id
en

ti
fy

th
e
p
re
d
ic
a
te
s/
a
ss
er
ti
o
n
s

1
3
lt
l
A
p
p
ro
v
eR

es
L
ic
en

ce
A
ft
er
Q
u
a
li
fy
R
es

1
4
lt
l
P
ro

je
ct
A
p
p
ro
v
eA

ft
er
T
ea

m
A
n
d
P
IL

ic
en

ce
A
p
p
ro
v
e1

1
5
lt
l
R
u
n
Q
u
er
y
A
ft
er
P
ro

je
ct
A
p
p
ro
v
e1

1
6
lt
l
U
p
d
a
te
C
o
n
fo
rm

a
n
ce
A
ft
er
R
u
n
Q
u
er
y

1
7
C
o
n
fo
rm

a
n
ce

ID
V
a
ri
a
b
le
s

P
ri
m

a
ry

V
a
ri
a
b
le
s

C
la
u
se

s
T
im

e
to

G
e
n
e
ra

te
V
a
ri
a
b
le
s
a
n
d

C
la
u
se

s
(h

:m
m

:s
s.
s)

R
e
su

lt
S
o
lv
in

g
ti
m

e
(h

:m
m

:s
s.
s)

T
o
ta

l
T
im

e
to

g
e
n
e
ra

te
a
n
d

so
lv
e

(h
:m

m
:s
s.
s)

1
3

1
4
2
5
1
0
9

1
5
0
3
9

3
0
8
1
0
0
2

0
:0
5
:0
2
.4
4
4

N
o
co

u
n
te
re
x
a
m
p
le

fo
u
n
d

0
:0
0
:0
0
.3
7
2

0
:0
5
:0
2
.8
1
6

1
4

1
4
1
5
9
0
9

1
5
0
3
9

3
0
5
4
1
2
2

0
:0
2
:5
0
.3
2
6

N
o
co

u
n
te
re
x
a
m
p
le

fo
u
n
d

0
:0
0
:0
0
.4
2
6

0
:0
2
:5
0
.7
5
2

1
5

9
3
2
5
0
9
6

1
5
0
3
9

1
9
5
3
2
0
9
6

6
:5
8
:2
0
.9
1
7

N
o
co

u
n
te
re
x
a
m
p
le

fo
u
n
d

0
:0
0
:0
3
.6
3
4

6
:5
8
:2
4
.5
5
1

1
6

1
1
5
7
9
6
8

1
5
0
3
9

3
2
0
6
0
0
0

6
:4
7
:4
7
.3
5
2

N
o
co

u
n
te
re
x
a
m
p
le

fo
u
n
d

0
:0
0
:0
0
.6
9
6

6
:4
7
:4
8
.4
8

1
7

3
7
9
0
7
8

1
5
0
6
3

8
4
0
2
3
7

0
:0
0
:0
6
.5
9
6

N
o
co

u
n
te
re
x
a
m
p
le

fo
u
n
d

0
:0
0
:0
0
.1
8

0
:0
0
:0
6
.6
1
4

T
o
ta
l
ti
m
e
to

g
en

er
a
te

v
a
ri
a
b
le
s
a
n
d
cl
a
u
se
s

1
3
:5
4
:0
7
.6
3
5

T
o
ta
l
S
o
lv
in
g
T
im

e
(h

:m
m
:s
s.
s)

0
:0
0
:0
5
.1
4
6

table notes show the names of the Alloy assertions.1 These assertions were executed with a scope of 8 but

15 Rule, i.e., use a maximum of 8 instances for all the signatures but use 15 for the rules. The names and

numbers in the table notes are matched with the table entries, i.e., ID ’s in the table. The items in the table

with:

1. IDs 13-16, are process-aware rules used to verify that the sequences of operations as defined in Section

4.1.2 are never violated; and

2. ID 17 is a data-aware rule that verifies that query results conform to access tickets used to execute the

query.

These results show that assertions with IDs 15 and 16 that we have also highlighted in the table have

the longest running times, almost 7 hours each.

4.3 RCA using Promela/Spin

4.3.1 Overview of Spin/Promela

The model checking tool Spin, uses the Promela language to specify models [45]. Each Promela model

may be verified according to assertions, Linear Temporal Logic (LTL) formula, or never claims, i.e., violation

of correct behaviour, in the model. If an error is found then the verification steps leading to the error (saved

as a trail) may be replayed in simulation mode to show the violation. In theory, Spin can be configured to

use as much memory and processors as available on a computer or a number of accessible computers.

For the verification, Spin o↵ers 5 di↵erent storage/search modes: 1) exhaustive, 2) exhaustive plus min-

imised automata (MA), 3) exhaustive plus collapse compression (Collapse), 4) hash-compact (HC), and

5) Bitstate. Some of the modes may be combined, e.g., MA+Collapse and HC+Collapse. When an exhaus-

tive analysis can be completed we are assured that if Spin reported that no errors were found, that it is

indeed so. HC and bitstate perform approximate searches but give good results where exhaustive searches

are not possible. An exhaustive analysis is usually more space intensive than the other modes for the same

computer resource allocation.

1The names are descriptive enough to identify which operations are involved.

31

Spin has been developed as a tool to verify process models, and so, does not include constructs for

specifying structural constraints beyond those that may be represented with numerical (integer) data types.

Additionally, Spin is not suited for the complex computations in data. The power of Spin as a model checking

tool lies in the fact that it can be used to exhaustively analyse all interleaving of process statements in a

non-deterministic way. From this interleaving, we know that if there is an error within the bounds of memory

assigned to the analysis, it will be found.

Even though each piece of numeric data requires a small amount of memory, the exhaustive combination

of process variables cause a state space explosion that can quickly reach the assigned memory bounds.

This means that abstraction techniques are required by the modeller. In addition, Spin employs memory

minimisation techniques to further reduce a state space explosion. However each application of abstraction

or memory minimisation may cause loss of details or precision respectively.

Regardless of these limitations and constraints, our aim is to test the memory limits for RCA using Spin,

especially for the operations highlighted in Section 4.1.2 and their associated structural details in Figure

4.1.

4.3.2 NJH Promela Specifications

Since we are aware of the limitations of Spin to handle (low-level abstractions in) data, we decided

to develop a Promela spec for the NJH system incrementally to tests its limits. We decided to focus on

operations where an access ticket is applied for, approved, or declined. The model in Figure 4.1 captures

the DecisionRules used to approve an access ticket (see annotation E and H in the figure). Except for the

QualifierPresent decision rule, all the other decision rules are used when approving a project’s access ticket

application. We decided to start with the NoSupsInPIandDC decision rule.

The NoSupsInPIandDC rule declines a project’s access ticket if the project’s principal investigator and

data collector are in a supervisory relationship. These can be determined using the elements at annotations

A, B and C in Figure 4.1. In the Promela model, we use:

1. the init process to initialise a random configuration of personnel in the supervisor association and for

a project’s principal investigator and data collector;

32

Table 4.2: Computer Specifications for Verification

Name Type Processors Memory Operating System

C1 HP-Z800-XeonE5645-SAS 12x2.4Gh 96Gb Linux(Fedora)

C2 HP-Z440-XeonE5-1650v3 6x3.5Gh 32Gb Linux(Fedora)
C3 HP-Z440-XeonE5-1650v3 6x3.5Gh 32Gb Linux(Fedora)

2. a process to approve a project’s access ticket application;

3. a process to decline a project’s access ticket application;

4. an LTL formula to verify that the NoSupsInPIandDC rule is never violated; and

5. a never claim to ensure that a project’s access ticket cannot be approved and declined at the same

time.

It is important to add the never claim because 1) Spin’s analysis examines all interleaving of the processes,

2) we use di↵erent variables to indicate approved or declined access ticket application, and 3) we want to

ensure that race conditions will not set both variables. The Promela model is shown in Appendix A.1.

4.3.3 Promela Model Verification Results in Spin

After analysing the Promela model of the NJH system using many di↵erent configurations for memory,

storage/search modes, and number of processors to the limits of those available for the computers in Table

4.2, we were unable to determine its maximum depth, search space, or number of transitions. Therefore, we

decided to explore a (di↵erent) smaller Promela model to try to understand why we were not able to achieve

full exploration of the NJH model. We describe the smaller model in Section 4.3.3.1 and the best results we

have achieved for the NJH Promela model in Section 4.3.3.2.

4.3.3.1 Evaluating Promela/Spin on a Small Model

The smaller model, hereafter called t1, is shown in Listing 4.1. It defines:

1. a message channel, sChan, whose size is determined by the value stored in the variable M (see lines 1,

2, and 5 of the listing);

33

Listing 4.1: t
i

, a Promela Example: non-deterministic add and remove 3 known values from a channel

1 #ifndef M
2 #define M 3
3 #endif
4

5 chan send_chan = [(M*M)-1] of {byte }// a message channel of (M*M)-1 slots
6

7 /**
8 * LTL
9 **/

10 /* ensures that we have some nondeterminism in the approve and decline of
11 projects
12 */
13 ltl ltl1 {
14 /* infinitely executing the statement in init with label end implies
15 (ensures) we infinitely execute the statement labeled end_again in get() */
16 []<>send@end_send -> []<>get@end_get }
17

18 init { assert(17>M);}
19

20 active proctype send() {
21 end_send: do
22 // send value 50to the channel
23 :: send_chan!50
24

25 // send value 198to the channel
26 :: send_chan!198
27

28 // send num to the channel
29 :: send_chan!M
30 od}
31

32 active proctype get() {
33 byte num;
34

35 end_get:
36 send_chan?num;
37 goto end_get }

34

2. an initialisation process init that ensures that sChan cannot have more than the 255 slots that Spin

allows2;

3. a process, send() that loops forever to non-deterministically to put any of 3 values on the channel;

4. a process get() that removes a value from the channel; and

5. an LTL formula, ltl1 that ensures fairness between the two processes.

Executing the model in verification mode works to :

1. verify that ltl1 is not violated; and

2. enumerate all the possible ways the three values can be placed in and removed from the channel.

4.3.3.1.1 Simpler verification for of t1 for M = 3 and M = 4. Some results for verifying t1 under all

the di↵erent storage/search modes for M = 3 and M = 4 are shown in Tables 4.3 and 4.4 respectively.

The verification was conducted on computer C3 (see more details for this computer in Table 4.2) and each

verification used a single processor.

While many of the storage modes explored all of the search space, the least memory requirement is for a

storage mode using MA, and this row is highlighted in grey. Compared to all the executions where a single

mode is used, the MA mode requires the most time to complete.

4.3.3.1.2 Verification of t1 for M = 5. For t1, M = 5 makes a channel of size 24 slots. Within an

84GB memory allotment to the verification from computer C1 listed in Table 4.2, we have not been able to

determine the limits for M = 5. We show verification results for some of the storage modes for M = 5 in

Table 4.5.

The question mark in the Percent of Total States Explored column indicates that the search space was

not completely explored so we cannot say what percentage of the states were explored.

Specifically, in the case of:

1. the Exhaustive storage mode, the memory bound was reached without exploring all the state space;

2We can pass to the model from the command line a di↵erent value of M than its value of 2 defined in the model.

35

3
6

T
a
b
le

4
.3
:
V
er
ifi
ca
ti
o
n
lt
l1

in
t 1

fo
r
M

=
3

S
to
ra
g
e

M
o
d
e

sC
h
a
n

S
iz
e

D
ep

th
R
ea

ch
ed

S
ta
te
s

S
to
re
d

S
ta
te
s

M
a
tc
h
ed

T
ra
n
si
-

ti
o
n
s

P
er
ce
n
t

o
f
T
o
ta
l

S
ta
te
s

E
x
p
lo
re
d

E
q
u
iv
a
le
n
t

M
em

o
ry

U
sa
g
e
fo
r

S
ta
te
s

(M
B
)

A
ct
u
a
l

M
em

o
ry

U
sa
g
e

fo
r

S
ta
te
s

(M
B
)

M
em

o
ry

C
o
m
p
re
s-

si
o
n
fo
r

S
ta
te
s
(%

)

H
a
sh

T
a
b
le

(M
B
)

B
it

S
ta
ck

(M
B
)

P
ro
c

a
n
d

C
h
a
n

S
ta
ck

(M
B
)

A
ct
u
a
l

M
em

o
ry

U
se
d

(M
B
)

T
im

e
T
a
k
en

(s
.s
s)

E
x
h
a
u
s-

ti
v
e

8
1
5
0
6
9

1
9
6
8
3

5
9
0
4
0

7
8
7
2
3

1
0
0
.0
0
%

1
.5
0
2

1
.1
6
5

7
7
.5
6
%

1
0
2
4

1
0
7
8
.4
8

0
.0
2

M
A

8
1
5
0
6
9

1
9
6
8
3

5
9
0
4
0

7
8
7
2
3

1
0
0
.0
0
%

1
.5
0
2

0
.6
7
8

4
5
.1
4
%

0
5
3
.9
9
4

0
.2
1

C
o
ll
a
p
se

8
1
5
0
6
9

1
9
6
8
3

5
9
0
4
0

7
8
7
2
3

1
0
0
.0
0
%

1
.5
0
2

1
.3
6

9
0
.5
5
%

1
0
2
4

1
0
7
8
.6
7
5

0
.0
2

M
A

+
C
o
ll
a
p
se

8
1
5
0
6
9

1
9
6
8
3

5
9
0
4
0

7
8
7
2
3

1
0
0
.0
0
%

1
.5
0
2

1
.1
5
9

7
7
.1
6
%

1
0
2
4

1
0
7
8
.3
8
4

0
.3

H
C
4

8
1
4
9
8
3

1
9
6
1
1

5
8
8
2
4

7
8
4
3
5

9
9
.6
3
%

1
.4
9
6

0
.9
7

6
4
.8
4
%

1
0
2
4

1
0
7
8
.2
8
5

0
.0
2

H
C
4
+

C
o
ll
a
p
se

8
1
5
0
6
9

1
9
6
8
3

5
9
0
4
0

7
8
7
2
3

1
0
0
.0
0
%

1
.5
0
2

1
.3
6

9
0
.5
5
%

1
0
2
4

1
0
7
8
.6
7
5

0
.0
2

B
it
st
a
te

8
1
5
0
6
9

1
9
6
8
3

5
9
0
4
0

7
8
7
2
3

1
0
0
.0
0
%

1
.3
5
2

1
6

7
.6
2
9

7
7
.7
1
9

0
.0
2

S
ea

rc
h
S
p
a
ce

A
ss
ig
n
ed

=
1
0
0
0
0
0
0
,
M
em

o
ry

A
ss
ig
n
ed

=
2
0
4
8
M
B
,
M
em

o
ry

U
se
d
fo
r
D
F
S
S
ta
ck

=
5
3
.4
0
6
M
B

3
7

T
a
b
le

4
.4
:
V
er
ifi
ca
ti
o
n
o
f
lt
l1

in
t 1

fo
r
M

=
4

S
to
ra
g
e

M
o
d
e

sC
h
a
n

S
iz
e

D
ep

th
R
ea

ch
ed

S
ta
te
s

S
to
re
d

S
ta
te
s

M
a
tc
h
ed

T
ra
n
si
-

ti
o
n
s

P
er
ce
n
t

o
f
T
o
ta
l

S
ta
te
s

E
x
-

p
lo
re
d

E
q
u
iv
a
le
n
t

M
em

o
ry

U
sa
g
e
fo
r

S
ta
te
s

(M
B
)

A
ct
u
a
l

M
em

o
ry

U
sa
g
e

fo
r

S
ta
te
s

(M
B
)

M
em

o
ry

C
o
m
p
re
s-

si
o
n
fo
r

S
ta
te
s
(%

)

H
a
sh

T
a
b
le

(M
B
)

B
it

S
ta
ck

(M
B
)

P
ro
c

a
n
d

C
h
a
n

S
ta
ck

(M
B
)

A
ct
u
a
l

M
em

o
ry

U
se
d

(M
B
)

T
im

e
T
a
k
en

(s
.s
s)

E
x
h
a
u
s-

ti
v
e

1
5

2
8
2
7
4
4
6
1

4
3
0
4
6
7
2
1

1
.2
9
E
+
0
8

1
.7
2
E
+
0
8

1
0
0
.0
0
%

3
6
1
2
.6
2
5

2
3
0
0
.6
1
4

6
3
.6
8
%

1
0
2
4

4
9
2
5
.9
7
8

5
3
.5

M
A

1
5

2
8
2
7
4
4
6
1

4
3
0
4
6
7
2
1

1
.2
9
E
+
0
8

1
.7
2
E
+
0
8

1
0
0
.0
0
%

3
6
1
2
.6
2
5

1
3
0
.1
0
5

3
.6
0
%

0
1
7
3
2
.1
5
5

4
8
2

C
o
ll
a
p
se

1
5

2
8
2
7
4
4
6
1

4
3
0
4
6
7
2
1

1
.2
9
E
+
0
8

1
.7
2
E
+
0
8

1
0
0
.0
0
%

3
6
1
2
.6
2
5

2
6
2
8
.2
7
4

7
2
.7
5
%

1
0
2
4

5
2
5
3
.9
0
7

8
6
.9

M
A

+
C
o
ll
a
p
se

1
5

2
8
2
7
4
4
6
1

4
3
0
4
6
7
2
1

1
.2
9
E
+
0
8

1
.7
2
E
+
0
8

1
0
0
.0
0
%

3
6
1
2
.6
2
5

1
2
6
7
.4
2
4

3
5
.0
8
%

1
0
2
4

3
8
9
3
.1
6
7

4
.1
4
e+

0
4

H
C
4

1
5

2
0
4
0
5
3
4
1

3
8
2
6
6
3
7
7

1
.1
6
E
+
0
8

1
.5
4
E
+
0
8

8
9
.4
8
%

3
2
1
1
.4
4
2

1
4
5
9
.9
5
4

4
5
.4
6
%

1
0
2
4

4
0
8
6
.0
3
6

3
7
.1

H
C
4
+

C
o
ll
a
p
se

1
5

2
8
2
7
4
4
6
1

4
3
0
4
6
7
2
1

1
.2
9
E
+
0
8

1
.7
2
E
+
0
8

1
0
0
.0
0
%

3
6
1
2
.6
2
5

2
6
2
8
.2
7
4

7
2
.7
5
%

1
0
2
4

5
2
5
3
.9
0
7

6
2

B
it
st
a
te

1
5

2
7
7
3
9
1
6
9

3
9
6
4
4
3
4
7

1
.2
2
E
+
0
8

1
.6
2
E
+
0
8

9
4
.0
5
%

3
0
2
4
.6
2
4

1
6

7
6
2
.9
3
9

1
0
5
8
.2
1

2
9
0
5
.3
5
6

6
1
.8

S
ea

rc
h
S
p
a
ce

A
ss
ig
n
ed

=
3
0
0
0
0
0
0
0
,
M
em

o
ry

A
ss
ig
n
ed

=
9
1
9
2
M
B
,
M
em

o
ry

U
se
d
fo
r
D
F
S
S
ta
ck

=
1
6
0
2
.1
7
3
M
B

2. MA storage mode, the maximum search depth assigned to the verification was reached at time =

1.15e+04 seconds (3 hours) when only 5.68e+08 states and 1.19e+09 transitions were explored; the

values shown in Table 4.5 are for when we interrupted the search after 22 hours; and

3. Bitstate storage mode, the search completed without reaching the memory bounds or search depth of

either of the Exhaustive or the MA storage modes.

4.3.3.2 NJH Model

We instantiated the model with 8 projects, 8 personnel having supervisors3 defined from which we

randomly chose both the principal investigator and the data collector. We executed the verification with up

to 24GB of memory. Table 4.6 shows results for some of the storage modes. These results show us that the

verification was able to:

1. reach a search depth of 7,876,539 as shown for the exhaustive mode;

2. store 8.49e+10 states as shown for the MA mode; and

3. explore 9.34e+11 transitions as shown for the MA mode.

However, we neither know if the search depth reached nor the transitions explored are the complete state

space. Of the four rows in the table, the row highlighted in grey, gave the best result; the best result is

determined as the verification that explored the most states. For this row, the verification:

1. was assigned all the processors on computer C2 described in Table 4.2, 24GB of memory, and a MA

storage/search mode;

2. reached only 13% of the depth of the exhaustive mode;

3. explored more than 2000 times the transitions of the exhaustive mode;

4. was (manually) terminated after 10 days, 23 hours, 36 minutes, and 40 seconds with the knowledge

that the full state space for the model has not been explored; and

3The Supervisor association is a tree.

38

3
9

T
a
b
le

4
.5
:
V
er
ifi
ca
ti
o
n
o
f
lt
l1

in
t 1

fo
r
M

=
5

S
to
ra
g
e

M
o
d
e

D
ep

th
R
ea

ch
ed

S
ta
te
s
S
to
re
d

S
ta
te
s

M
a
tc
h
ed

T
ra
n
si
ti
o
n
s

P
er
-

ce
n
t

o
f

T
o
ta
l

S
ta
te
s

E
x
-

p
lo
re
d

E
q
u
iv
a
-

le
n
t

M
em

o
ry

U
sa
g
e
fo
r

S
ta
te
s

(M
B
)

A
ct
u
a
l

M
em

o
ry

U
sa
g
e

fo
r

S
ta
te
s

(M
B
)

M
em

-
o
ry

C
o
m
-

p
re
s-

si
o
n
fo
r

S
ta
te
s

(%
)

H
a
sh

T
a
-

b
le

(M
B
)

B
it

S
ta
ck

(M
B
)

P
ro
c

a
n
d

C
h
a
n

S
ta
ck

(M
B
)

A
ct
u
a
l

M
em

o
ry

U
se
d

(M
B
)

T
im

e
T
a
k
en

(s
.s
s)

E
x
-

h
a
u
s-

ti
v
e

8
6
8
1
1
3
5
6
5

4
.9
1
5
5
0
9
8
e+

0
8

5
.3
6
2
6
5
9
6
e+

0
8

1
.0
2
7
8
1
6
9
e+

0
9

?
4
5
0
0
2
.8
3
6

3
0
5
6
2
.4
3
8

6
7
.9
1
%

2
0
4
8

8
6
0
1
5
.9
3
0

9
0
6

M
A

9
9
9
9
9
9
9
9
9

4
.8
2
2
9
9
5
4
e+

0
9

1
.7
5
6
1
7
1
7
e+

1
0

2
.2
3
8
4
7
1
3
e+

1
0

?
4
4
1
5
5
8
.4
1
4

4
7
4
7
.6
3
8

1
.0
8
%

5
8
1
5
2
.0
5
3

7
9
8
1
3
.2
3

B
it
-

st
a
te

1
2
8
6
8
0
3
4
7

8
2
0
0
9
7
9
8

4
.7
2
8
9
2
0
5
e+

0
8

5
.5
4
9
0
1
8
4
e+

0
8

?
6
8
8
2
.5
3
6

1
6

7
6
2
9
.3
9
5

5
3
9
9
.6
8
9

6
6
4
5
3
.8
9
1

3
5
3

sC
h
a
n
S
iz
e
=

3
1
,
S
ea

rc
h
S
p
a
ce

A
ss
ig
n
ed

=
1
0
0
0
0
0
0
0
0
0
,
M
em

o
ry

A
ss
ig
n
ed

=
2
0
4
8
M
B
,
M
em

o
ry

U
se
d
fo
r
D
F
S
S
ta
ck

=
5
3
4
0
6
M
B

Table 4.6: Verification Details for Spin Model without Analysing Process-Aware Rule or Never-Claim

CPUs
Depth
Reached

States Stored Transitions
Memory
Used
(MB)

Time (s.ss) Storage Mode

1 7876539 3.4e+07 4.61e+08 6637.351 656 Exhaustive

6 1000039 8.49e+10 9.34e+11 -
9.49e+05 (approx.
11 days)

MA

6 610204 7.770891e+10 8.4079559e+11 17715.799
9.42e+04 (approx.
26 hrs)

Bitstate

12 627994 3.891082e+10 4.2225942e+11 9979.258
6.81e+04 (approx.
19 hrs)

Bitstate

5. did not use all of the 24GB assigned to it: since we terminated the execution we were unable to

determine the amount of memory used.

In comparison to the test program, this model has a larger number of states, and it is possible that while

the MA storage mode could explore them, it takes too much time.

4.4 Discussion of Results and Summary

Our first evaluation question asked:

What kinds of rules are best suited for each tool?

and our second evaluation question asked:

What are the space and time measures when using the tools and how can we use these measures

to motivate HMCA?

The results in tables 4.3 through 4.6 confirm that Promela/Spin is not designed for data intensive pro-

cessing. However, even the large abstractions we applied to model and check the NoSupsInPIandDC rule

contained too many states because our verification was not able to explore all its states. Therefore, while

Promela/Spin is suited for checking properties for process interleaving, even using large abstractions of data

cause a large explosion of the state space. We note that even with a small configuration of projects and

researchers all the possible execution states could not be explored.

Therefore, for the first question from Section 4.1.1, we conclude that Spin, like UPPAAL, is most suited

for analysing process-aware rules using very large abstractions. This is supported from the analysis results.

The analysis results also answer the second question such that we know that Spin is not suitable for RCA

when we need to use the details in a data model to show rule conformance.

40

On the other hand, the results in Table 4.1 show that the Alloy Analyzer was able to handle the analysis

of complex data relationships in data-aware rules. However, it showed much longer execution times when

we combined both process-aware rules and data-aware rules in a single model. Since the Alloy Analyzer is

able to return results for data-aware rules, we know that applying slicing, as discussed by Sun et. al, will

yield better results, i.e., shorter execution times.

Therefore, for the first question from Section 4.1.1, we conclude that the Alloy Analyzer with slicing is

best suited for data-aware rules. This shows that the Alloy Analyzer may be useful in HMCA.

41

5. HMCA AND NJH

HMCA follows three phases in conformance analysis: model construction, model analysis, and providing

feedback. The aim in the construction phase is to have formally analysable system models and a represen-

tation of the rules that can be checked on the system models. In the analysis phase we show the application

of a divide and conquer strategy to construct the transition system. For the final phase we provide feedback

to the user especially where conformance rules have not been satisfied. While our proposal for analysing

rule conformance is generalisable, it is most easily explained when applied to an example. For this, we will

use the NJH research system whose conformance rules come from HIPAA regulations. We will show how to

1) construct models, 2) analyse them for conformance to HIPAA de-identification (a DeIDed access ticket

in the NJH System); we will hereafter refer to this as the HIPAA de-identified rule, and 3) provide feedback

in the case of non-conformance. In addition, for the purposes of explaining conformance to the de-identified

rule, we simplified its definition to only cover de-identification of dates, i.e., dates contain only a year value.

The rest of this chapter explains HMCA using the NJH system. We return to a generalisation of HMCA

in Chapter 6.

5.1 Phase 1: Model Construction

5.1.1 Construct Activity Model and Class Model

In previous work [23, 39] we constructed a path representation of the system as a UML activity diagram,

and a system structure representation as a UML class diagram.

The input for the activity diagram was from the Map of Integrated Bioinformation and Specimen Centre

Research Support flowchart [44] that shows the process used by researchers to apply for licenses and access

tickets and to access data. Flowchart constructs, e.g., sequential flows, choice, and loops, have equivalent

representations in UML activity diagrams, so our aim was to transform the flowchart to a more formal

activity diagram. However, the flowchart had non-standard flowchart representations, e.g., more than a

single flow out of, and into action nodes, so we applied normalisations, e.g., inserting decision and merge

points so we could distinguish the flows in and out of action nodes. These normalisations ensured that the

42

flowchart was well-formed. In preparation for transforming the flowchart to an activity diagram, we also

distinguished whether the paths out of decision nodes should be concurrent flows or not so we could know

where to apply an activity diagram fork and join transformation versus an if-then-else transformation. In

order to have all possible paths represented we ensured that all possible values for a decision were included.

The transformation rules we applied to the flowchart to produce the activity diagram were mainly from our

experience with flowcharts and our observation of how to represent them, together with the added formalisms

of activity diagrams.

The design-level class diagram was constructed through our understanding of the structural elements and

relationships required to support the activities in the activity diagram in Sections 5.1.5 and 5.1.6.

5.1.2 Construct Entity Views

Activity diagrams have semantics that make them amenable to state machines and transition systems

[9, 10, 31, 35, 37, 42, 73], so we applied transformations to the system activity diagram to create a system-

wide state machine in [23, 39]. However, the state machine produced is still quite complex and does not

allow us to isolate the parts of it that relate to showing conformance to specific rules. In order to handle

complexity in the NJH system, we identify and model di↵erent aspects of the NJH system as separate state

machine entity views, hereafter referred to as entity views.

The entities may be understood as objects in the system that either perform operations that change their

own states, or are states of interest to rule conformance, e.g., researchers and patient health information.

The focus of constructing entity views is to bring understanding to the individual states of entities and how

the composition of these individual entity states influence the complete system state.

5.1.2.1 Individual Entity Views

We construct an entity view by extracting operations performed by the entity on other entities in the

system, e.g., researcher queries patient health information. Each constructed entity view is a representation

of abstract operations and state pertaining to that entity.

For the DeIDed access ticket, the entities of interest are the researcher and the patient’s health information

that will be accessed by the researcher. We show in Figure 5.1 the researcher’s entity view in the NJH system.

43

ApplyingApplying DownloadingDownloadingQueryingQuerying

ViewingViewing

Approve

Download

Query

Download

View

Query

Query

Apply

Figure 5.1: Researcher/Project Entity View

The nodes in Figure 5.1 use atomic propositions to show what the researcher is doing e.g., Applying for an

access ticket, and the edges show the operations, e.g., from the Applying state an Approve operation takes

the researcher to the Querying state. While the researcher does not carry out the Approve operation it is

important to include it in the researcher’s entity view as it a↵ects the reachability of other states. This

entity view contains non-determinism as we have not shown the additional conditions that di↵erentiate the

enabling of any of the edges exiting the states. This entity view also reflects the operations and states for a

project. One of the aspects of the DeIDed rule is whether the Query operation result contains any patient’s

identifying information.

The entity view shown in Figure 5.2 is a view of the patient’s health information for de-identified access:

we specifically use atomic propositions to model that the health information can be Identified or De-identified

when either of the View or Download operations are performed; the use of the {} on the self loop from the

Identified state means that any operation is allowed, e.g. a researcher could be viewing or downloading

Identified patient health information. This view also contains non-determinism as we have not shown the

additional conditions from the system state that di↵erentiate the enabling of either of the edges exiting the

Identified state.

44

Figure 5.2: Patient Health Information Entity View for De-identified Access

5.1.2.2 Composing Entity Views

When a researcher obtains a DeIDed access ticket, we are then interested in both the researcher and the

patient health information entity views. In order to understand the system in terms of what the researcher

is doing and the state of the health information, we compose the views. We show the composition of the

entity views in Figure 5.3. The process of composing the views relies on the handshaking [14, see section

2.2.3] of operations, such that when identical operations occur on the label of an edge, their next states are

combined into one state. The composition of the entity views produces a rule specific entity view, that now

labels a state with a 2-tuple atomic proposition; the first element identifies the state of the researcher, and

the second element is the state of the patient health information.

In any real system implementing querying operations, the results are immediately accessible, i.e., querying

and viewing will appear to a researcher to be an atomic operation, so showing that the state changes in the

patient health information occurs after the View or Download operations is an acceptable representation.

Again, this rule specific entity view contains non-determinism, e.g., the Download operation is a label on

edges from the <Querying, Identified> state to both the <Downloading, Identified> and the <Downloading,

De-identified> states. This non-determinism identifies that these possibilities exist in the system at this

level of abstraction.

5.1.3 Modelling Conformance Rules

The rule specific entity view in Figure 5.3 contains some states that show non-conformance to the de-

identified rule, i.e., the states identified by <Downloading, Identified> and <Viewing, Identified> are illegal

and we must be able to probe a transition system for their occurrence. A transition system produced by a

model checker may be viewed as sequences of states, or traces.

45

Figure 5.3: De-identified Rule Specific Entity View

An example of a partial trace for Figure 5.3 is

<Applying, Identified><Querying, Identified><Viewing, Identified>...

and the model checker must identify that this transition system shows non-conformance because an illegal

state is present in the trace when a DeIDed access ticket is used.

In order to find this non-conformance, we specify a property using a graph formalism, called a non-

deterministic finite automata, NFA [14, see Chapter 4], that checks the transition system for illegal states.

Figure 5.4 shows the formalism for the de-identified rule specified using the atomic propositions in Figure

5.3. It shows that the system is in state Conforms when View or Download is executed with a DeIDed

access ticket. An NFA processes each item (e.g., <Applying, Identified>) in the trace and if the final state,

shown by the node with two elipses, can be reached then the system does not satisfy the property.

We add that the system may still be adjudged to be conforming to the HIPAA de-identified rule even if

the Query operation gives Identified results since the non-conformance happens when Identified results are

viewed or downloaded. The use of the Not <Viewing, Identified> or Not <Downloading, Identified> label

on the self loop into the Conforms state ensures that neither <Viewing, Identified> nor <ViewDownloading,

Identified> are true for the system to be adjudged to be in conformance to the rule.

46

Figure 5.4: Graph Formalism for the HIPAA De-identified Rule

5.1.4 Map Rule Specific Entity Views to System Models

5.1.4.1 Map Operations to Activities in the Activity Model

The operations in a rule specific entity view (e.g. Figure 5.3) are abstractions of actual activities in the

activity diagram discussed in Section 5.1.1, and we may map these abstractions to their refinement in the

activity diagram. It is important to have such a mapping in order to identify actual system processes that

will be examined when analysing for rule conformance. In Figure 5.5, we show a portion of the activity

diagram of the NJH system for obtaining a DeIDed access ticket and the subsequent querying using the

same access ticket.

With reference to the labeled activities in the activity diagram, we know that:

1. A1 (Decide if research can use de-id’d data) through A5 (Apply for DeIDed access ticket) maps to the

Apply operation in Figure 5.3;

2. A11 (Grant DeIDed access ticket) maps to the Approve operation;

3. A13 and A18 together with A25 each maps to the Query operation; and

4. A26 maps to the View (or Download) operation.

5.1.4.2 Map Atomic Propositions to Concrete Class Model Elements

The atomic propositions used to identify states in a rule specific entity view represent abstractions of

actual system states and we can map these abstractions to the concrete representation of the states in the

class diagram. In order to distinguish patient health information as Identified or De-identified we will need

to provide tests. We will return to how we define these tests in Sections 5.2.3 and 5.2.4 in the analysis

phase.

47

4
8

De
cid

e
if

re
se

ar
ch

 ca
n

us
e

de
-id

en
tif

ie
d

da
ta

Us
e

de
-

id
en

tif
ie

d
da

ta
?

Cr
ea

te
 p

ro
to

co
l f

or

pr
oj

ec
t

Cr
ea

te
 D

at
a

Co
lle

ct
or

 p
ro

po
sa

l

Ap
pl

y
fo

r D
eI

De
D

ac
ce

ss
 ti

ck
et

Us
e

Da
ta

 in

re
se

ar
ch

Gr
an

t D
eI

De
D

ac
ce

ss
 ti

ck
et

DC
 e

xt
ra

ct
s d

at
a

an
d

se
nd

s t
o

HB
S

HB
S

de
-id

en
tif

ie
s

da
ta

 a
nd

 d
el

iv
er

s i
t

Da
ta

 fr
om

cli

ni
ca

l D
B?

HB
S

fin
ds

 fo
r

no
n-

hu
m

an

su
bj

ec
ts?

DC
 p

ro
po

sa
l

pa
rt

of

ap
pl

ica
tio

n?

HB
S

de
te

rm
in

es
 D

C
qu

al
ifi

ed
?

Ot
he

r d
e-

en
tif

ie
d

ch
ec

ks
 p

as
s?

Da
ta

 in
 R

DB
?

A1

A2

A4

A5

A1
3

A1
8

A2
5

A2
6

Q
ue

ry
 R

DB
 fo

r d
e-

id
en

tif
ie

d
da

ta

Re
se

ar
ch

 c
om

pl
et

e

Su
bm

it
pr

ot
oc

ol
 to

 IR
B

Su
bm

it
pr

ot
oc

ol

to
 IR

B

EN
D

EN
DEN

D

M
er

ge
 n

od
e

M
er

ge
 n

od
e

YE
S

N
O

YE
S

N
O

YE
S

N
O

YE
S

N
O

YE
S

N
O

YE
S

N
O

A1
1

M
er

ge
 n

od
e

DC
 p

ro
po

sa
l

pa
rt

of

ap
pl

ica
tio

n?

YE
S

N
O

F
ig
u
re

5
.5
:
A
D

S
eg
m
en
t
fo
r
D
e-
id
en
ti
fi
ed

H
ea
lt
h
In
fo
rm

a
ti
o
n
A
cc
es
s

5.1.5 Annotate Activity Diagram with Details from the Class Model

The details of the system state that allows a researcher to execute a query and view (or download) its

result are of interest. We show in Figure 5.6 the class diagram segment of the system state that these

operations access when using a DeIDed access ticket.1

The runQuery method in the Query class in Figure 5.6 is mapped to the activities in the activity diagram

corresponding to querying (e.g., A13 in Figure 5.5) referred to as the activity diagram query segment below.

We add annotations to the activity diagram query segment with pre-, and postconditions specified in the

class diagram. The activity diagram query segment is annotated with the runQuery specification:

• Input : Researcher, Query, and associated Project (which allows us to obtain the project’s access ticket

from ProjAT);

• Precondition: Researcher requesting access is authorised (as indicated by the access ticket);

• PostCondition: output is Identified or De-identified ; and

• Output : QryReturns Association.

5.1.6 Create Concrete Rule Specific State Machine from Annotated Activity Diagram

and Entity Views

A de-identified rule-specific entity view state machine is shown in the composed entity views of the

researcher and patient health information in Figure 5.3. We must map details of the annotated activity and

the class diagram to this state machine. The mapping tell us which of the system activities and states are

of interest to analysing conformance to the HIPAA de-identified rule. For simplicity we do not show the

mapped region of this diagram (but these are discussed in more detail in Section 7.1).

This mapped rule-specific entity view is a more concrete representation of the (abstract) rule-specific

entity view such that for each:

• operation in the entity views there is traceability to:

– its corresponding method in the class model,

1The class diagram segment represents changes that are improvements to the class diagram initially developed in [23].

49

5
0

F
ig
u
re

5.
6:

S
y
st
em

S
ta
te

o
f
In
te
re
st

to
D
e-
id
en
ti
fi
ed

Q
u
er
y,

V
ie
w
,
a
n
d
D
ow

n
lo
ad

A
ct
io
n
s

– the part of the class model that corresponds to its signature, i.e., input, and

– its pre- and postconditions based on the class model.

• state, its abstract atomic proposition can be traced to its concrete state as represented in the class

model.

We use the mapped rule specific entity view as the program graph that we will use to extract evidence

of conformance to our simplified de-identified rule. In the analysis phase we will discuss the specific class

diagram methods linked to the operations in the mapped rule specific entity view.

5.2 Phase 2: Model Analysis

The analysis result needed to show conformance to the HIPAA de-identified rule is a transition system

that does not contain either the <Viewing, Identified> or the <Downloading, Identified> states for the

DeIDed access ticket. In order to achieve tractable analysis results when producing the transition system

from the mapped de-identified rule-specific entity view created in Section 5.1.6, we create the transition

system semi-automatically by individually analysing the state produced by each operation. The slicing

technique extracts (copies) the class model elements required for each method into a smaller class model.

The class model slice is transformed into an equivalent Alloy model and we use the Alloy Analyzer to probe

the model for its resulting state when the associated operation is performed.

The Alloy language allows us to define predicates and functions whose return values may later be used

as other constraints in the model or used to generate instances of the model. In addition, we may use the

predicates and functions in assertions to verify that all instances of a model possess certain properties or

are in a particular state. The order of operations defined in the de-identified rule-specific entity view state

machine tells us how to insert each mapped method’s state into the transition system. The final step will

be to verify that the transition system does not violate our simplified statement of the HIPAA de-identified

rule.

51

5.2.1 Identifying the Slice of Interest

From our discussion in Section 5.1.2.2, since the Query and View operations together may be viewed as

a single atomic operation, we may assign the job of de-identifying the data to any of their mapped methods.

In our model, we assign the job of de-identifying the data to the runQuery method and our analysis will be

to determine whether its result could cause the View (or Download) method to produce in an illegal state.2

In an Alloy model, classes are represented using signatures. For example, using the sig keyword we define

the Individual and Type classes from Figure 5.6 and make the Individual class inherit from Type class using

the code in Listing 5.1.

Listing 5.1: Alloy Signatures

abstract sig Type {}
sig Individual extends Type {}

Associations between classes are represented using relationships between signatures. For example, Listing

5.2 shows the Alloy representation for the DataValues association from Figure 5.6 where each DataItem is

associated with exactly one DataValue.

Listing 5.2: Alloy Relationships

DataValues: DataItem -> one DataValue

5.2.2 Adding Operation Specification

The Alloy model that contains the equivalent representation for classes and associations must be extended

to add specifications for pre- and postconditions of the runQuery operation. The precondition includes:

1) the researcher is authorised to execute the query and 2) the results before the query executes are not

(yet) known. The postcondition defines the query result. In general, operation specifications declare that

when an operation’s precondition is satisfied, then the operation’s result expressed in the postcondition is

also satisfied. We enforce this operation’s specification by constraining the model to only change in response

to the runQuery method executing. For runQuery ’s full Alloy operation specifications see Appendix B.1.

2 As a reminder, even if the result the runQuery method makes available to the View method is Identified, we cannot
adjudge that the system is in an illegal state until the View method terminates.

52

5.2.3 Probing the Illegal State.

Our specific interest is to determine the state of the query result after any execution of the runQuery

method. Assertions are used to examine whether all possible configurations of signatures and relationships

in our system always adhere to our expectation of the system. The AlwaysDeIDedConformance3 assertion

in Listing 5.3 models our main expectation of the results of operations.

Listing 5.3: Probing runQuery Model for the Identified State

assert AlwaysDeIDedConformance{
all njh: NJH, q: njh.queries |

all qi: q.(njh.QryWorksOn), ri: q.(njh.QryReturns) |
ConformanceDeIDed[njh, q, qi, ri] }

njh is an instance of the system. AlwaysDeIDedConformance is an assertion that looks at every possible

instantiation of the Alloy model and checks whether all its queries using a DeIDed access ticket return de-

identified data. We use the predicate ConformanceDeIDed to check that each piece of return data in each

query’s result is de-identified when a de-identified access ticket is used to run the query. We test this assertion

using the statement in Listing 5.4 that uses a scope of 3, i.e., generates a maximum of three (3) instances

for each signature, and executes this check; further, we expect the system not to find counterexamples, i.e.,

expect 0.

Listing 5.4: Executing AlwaysDeIDedConformance

check AlwaysDeIDedConformance for 3expect 0

If no counterexamples are found we know that when the DeIDed access ticket is used, each piece of data

in the query’s result is always de-identified within the scope defined. While we may use larger scopes, the

Alloy Analyzer justifies testing models with small scopes because a high proportion of bugs may be uncovered

when testing a program for all test inputs using small scopes (see Section 3.1). If AlwaysDeIDedConformance

returns a counterexample, we know that some query using the DeIDed access ticket terminated in an illegal

state.

3We use a concatenation of words in the names of the assertions, predicates and functions as an easy way to identify their
purpose.

53

5.2.4 Determining Operation States.

In our model, we not only want to determine if an illegal state could be reached, but also that the

legal state is possible. While AlwaysDeIDedConformance returning counterexamples tells us about the pres-

ence of illegal states, if it does not return counterexamples we still require a further sanity check because

it may be that the model produces no instances and therefore no counterexamples could be returned. In

terms of Figure 5.3 we must also determine if the <Viewing, De-identified> state is reachable. The pred-

icate CanGetConformanceDeIDed in Listing 5.5 produces an instance of the system where a query’s result

is de-identified. BasicDeIdentifiedDateConditions is a predicate that sets up conditions such that a sys-

tem instance njh contains a query qry that extracts some data qi and has associated return data ri. not

IdentifiedDate[ri.(njh.DataValues)] ensures that ri is de-identified according to our simplified definition of

de-identified data (i.e. dates are returned as years).

Listing 5.5: Testing runQuery Model for the De-identified State

pred CanGetConformanceDeIDed
[njh: NJH, qry: Query, qi: QryData, ri: RetData] {

BasicDeIdentifiedDateConditions[njh, qry, qi, ri]
and not IdentifiedDate[ri.(njh.DataValues)] }

run CanGetConformanceDeIDed for 3but 1NJH expect 1

We expect that CanGetConformanceDeIDed will produce an instance. We use as evidence that the

<Viewing, De-identified> and the<Viewing, Identified> states are reachable when CanGetConformanceDeI-

Ded gives an instance and AlwaysDeIDedConformance gives counterexamples respectively. We note how-

ever, that we do not have enough evidence to show that the <Viewing, Identified> state is reachable when

CanGetConformanceDeIDed finds no instance, or that the <Viewing, De-Identified> state is reachable when

AlwaysDeIDedConformance find no counterexamples.

We use the evidence of the reachability of the states when constructing our transition system. While a

program graph, such as the one represented in the mapped rule-specific entity view state machine described in

Section 5.1.6, represents the possible states and operations in the system, the transition system is a concrete

representation of the actual reachable states (or operations) in the execution of the program graph. For

example, if CanGetConformanceDeIDed returns instances and AlwaysDeIDedConformance does not return

counterexamples, we expect the that the analysis of the mapped rule specific state machine to produce

54

Figure 5.7: Transition System Indicating Conformance to the De-identified Rule

the states in the transition system shown in Figure 5.7. However, if CanGetConformanceDeIDed returns

instances and AlwaysDeIDedConformance returns counterexamples, then we know that the transition system

shown in Figure 5.8 containing the illegal states will be constructed from the analysis results. This is because

a counterexample from the AlwaysDeIDedConformance means that there is non-conformance.

5.3 Phase 3: Results and Feedback

The presence of counterexamples for the AlwaysDeIDedConformance assertion represents an illegal state

in the system. When an illegal state is encountered, we may use other assertions and predicates to further

probe the specifications to find the conditions under which unexpected results were returned. If identified

data is returned from a query using a DeIDed access ticket, we must be able to generate a detailed system

instance that pinpoints the specific project, query, data the query worked on, and the corresponding data

returned by the query that produced the illegal state, i.e., object instances of the classes in Figure 5.6.

In our model, all the data that require a de-identifying date transformation are marked using the DICat

association in Figure 5.6. Therefore, our first check is to ensure that our Query operation specification

correctly de-identifies marked data. We use the assertion in Listing 5.6 to make this check. If we find

counterexamples then we know that our operation specifications are incorrect. ConformanceDeIDedHDateSet

is a predicate that returns true if all the data extracted by a query that is marked as requiring de-identification

has been de-identified in the query’s result.

55

Figure 5.8: Transition System Indicating Non-Conformance to the De-identified Rule

Listing 5.6: Probing for Conformance when Data is Properly Categorised

assert AlwaysDeIDedConformanceWhenHDateSet {
all njh: NJH, q: njh.queries |

all qi: q.(njh.QryWorksOn), ri: q.(njh.QryReturns) |
ConformanceDeIDedHDateSet[njh, q, qi, ri] }

check AlwaysDeIDedConformanceWhenHDateSet for 3expect 0

However, if this assertion finds no counterexamples, then our probing must continue as the reason for

the non-conformance is elsewhere in the model. For the de-identifying transformation to work properly, our

model relies on human intervention to link the following:

1. date data items with their appropriate HIPAA category using the DICat association in Figure 5.6,

2. transformation rules with the HIPAA categories associated with data they need to transform, using

the ATTransforms association in Figure 5.6,

3. access rules to the return data types that they should transform using the ARAppliesTo association in

Figure 5.6, and

4. the access tickets to the appropriate transformation rules, using the ATRules association in Figure 5.6.

56

Our next logical step is to use other assertions to probe the model to verify that these links have been

properly created. We have created an example to demonstrate what occurs if data items have not been

properly marked for a de-identifying transformation. The predicate in Listing 5.7 may be used to generate an

instance where a query qry terminates in an illegal state because some data item that the query extracted from

the data sources qi, and transformed ri, were not properly marked as requiring a de-identifying transformation

by creating a DICat association. NonConformanceDeIDedFullDateHDateUnSet is the predicate used to find

where this occurs.

Listing 5.7: Probing for a Non-Conformance Instance when a Data Item is Improperly Categorised

pred DeIDedNonConformanceFullDateWhenHDateUnSet
[njh: NJH, qry: Query, qi: QryData, ri: RetData] {

NonConformanceDeIDedFullDateHDateUnSet [njh, qry, qi, ri]}

While the instance produced by the Alloy Analyzer may be viewed graphically, it may not be ideal

for giving feedback to the non-technical user. The Alloy Analyser allows the instance to be exported to

the Extensible Markup Language (XML) format that we may parse for the query, data items and their

associations that resulted in the illegal state. A graphical example of the feedback relevant to this problem

is shown in Figure 5.9, where the elements determined to be involved are labeled with the variables used to

run the predicate. For example, when giving the feedback, the main variables of interest from the call to

the NonConformanceDeIDedFullDateHDateUnSet predicate are qry, qi, and ri. These variables are used as

additional labels for Query2, QryData1 and RetData respectively in Figure 5.9; QryData1 is the data item

extracted by Query2 and RetData is the result that is in an illegal state because QryData1 was not properly

linked to HDate to indicate that it should be de-identified.

The counterexample gives us an indication of what needs to be corrected in the model. For this example,

we may add corrections to the runQuery post condition to ensure that it recognises data values that are

dates and de-identifies them, or add a constraint that all DataValue classes that are dates are linked to the

HDate HIPAA category. We applied the correction as a constraint to associate all date DataValue classes

with the HDate HIPAA category in the model. This constraint added in the Alloy model must be propagated

to the corresponding class diagram. Through the mapping to the mapped rule-specific entity view described

in Section 5.1.6, we know what states in that view are a↵ected. We must also reflect the new constraint in

57

5
8

F
ig
u
re

5
.9
:
N
o
n
-C

o
n
fo
rm

a
n
ce
:
Q
u
er
y2

re
tu
rn
s
Id
en

ti
fi
ed

D
a
ta

the part of the annotated activity diagram in Section 5.1.5 dealing with DataValue objects, and from there

changes may need to be made to the portions of the work flow initially linked to this part of the activity

diagram. If, however, the correction was applied in the postcondition, since the Query operation in the rule

specific entity view has annotations from the class diagram, the post condition change to the class diagram’s

runQuery method can be propagated through this mapping.

Appendices B.1 and B.2 give details on the important predicates and assertions for the runQuery oper-

ation.

59

6. HMCA OVERVIEW

6.1 HMCA Generalisation

The process used and the models created for verifying system conformance to our simplified de-identification

HIPAA rule may be generalised for verifying other rules. We use Figure 6.1 to represent the main activities

of HMCA, and with each activity show its inputs and outputs as models/artefacts1. We will refer to this

view of HMCA as an external view because we highlight the major activities and the models/artefacts that

are used across these activities. In this external view of HMCA we use the numbers 1 through 6 to highlight

the steps.

At step 1 we take as input conformance Rule Requirements, e.g. HIPAA regulations, that we use to drive

the construction of the models needed for the analysis phase. We highlight that we need more formal:

1. data-oriented system models and for this we construct a UML Class Diagram that give us the additional

details needed to identify specific places in the system where the rules are not satisfied;

2. process-oriented system models, and for each rule we construct an Annotated Rule-Specific Entity View

(ARSEV) as a state machine and will use it to test conformance for each rule; and

3. rule representation, and for this we construct a Rule NFA for each rule using the atomic propositions

labelling the system states in the ARSEV to define conformance rules by defining illegal states e.g.,

the simplified HIPAA de-identified rule in Figure 5.4.

Each constructed model requires verification from the respective domain experts to verify that they are

correct. We also show the links between models/artefacts that are important to maintain by using traceability

links. In the construction phase, we link each conformance Rule Requirement to its representation as a Rule

NFA, each Rule NFA to its corresponding ARSEV, and since the ARSEV’s annotations also come from the

Class Diagram (see Section 5.1.6) we also provide traceability links between them.

In the analysis phase we produce a Transition System from each ARSEV and use it to check whether

the corresponding conformance rule has been satisfied. In order to determine system state and to avoid in-

1The diagrams in this section are best view in colour to di↵erentiate the purpose of each coloured line.

60

6
1

An
no

ta
te

d
Ru

le
-S

pe
cif

ic
En

tit
y

Vi
ew

 (A
RS

EV
)

Tr
an

sit
io

n
Sy

st
em

 (T
S)

Co
un

te
re

xa
m

pl
e

Ru
le

 N
FA

Co
ns

tr
uc

t
An

al
ys

ab
le

M

od
el

s

An
al

ys
e

AR
SE

V
fo

r
ru

le
 co

nf
or

m
an

ce

Pr
ov

id
e

Fe
ed

ba
ck

Tr
ac

ea
bi

lit
y

Tr
ac

ea
bi

lit
y

Sl
ice

s
Sl

ice
s

Up
da

te
s

Tr
ac

ea
bi

lit
y

Tr
ac

ea
bi

lit
y

Ye
s

Ru
le

 R
eq

ui
re

m
en

ts
Tr

ac
ea

bi
lit

y

M
od

ify
 S

lic
es

Pe
rfo

rm

Sl
ici

ng

TS
 S

at
isf

ie
s R

ul
e

No

Cl
as

s
Di

ag
ra

m
 (C

D)

Tr
ac

ea
bi

lit
y

Sl
ici

ng

Cr
ite

ria

1

2

3

5

4
6

M
od

el
/A

rt
ef

ac
t

O
pe

ra
tio

n

Co
nt

ro
l f

lo
w

O
ut

pu
t f

lo
w

In
pu

t F
lo

w

Ke
y Tr

ac
ea

bi
lit

y
Id

en
tif

ie
s

tr
ac

ea
bi

lit
y

lin
ks

 b
et

w
ee

n
th

e
m

od
el

s/
ar

te
fa

ct
s

M
od

el
/A

rt
ef

ac
t

O
pe

ra
tio

n

Co
nt

ro
l f

lo
w

O
ut

pu
t f

lo
w

In
pu

t F
lo

w

Ke
y Tr

ac
ea

bi
lit

y
Id

en
tif

ie
s

tr
ac

ea
bi

lit
y

lin
ks

 b
et

w
ee

n
th

e
m

od
el

s/
ar

te
fa

ct
s

M
od

el
/A

rt
ef

ac
t

O
pe

ra
tio

n

Co
nt

ro
l f

lo
w

O
ut

pu
t f

lo
w

In
pu

t F
lo

w

Ke
y Tr

ac
ea

bi
lit

y
Id

en
tif

ie
s

tr
ac

ea
bi

lit
y

lin
ks

 b
et

w
ee

n
th

e
m

od
el

s/
ar

te
fa

ct
s

M
od

el
/A

rt
ef

ac
t

O
pe

ra
tio

n

Co
nt

ro
l f

lo
w

O
ut

pu
t f

lo
w

In
pu

t F
lo

w

Ke
y Tr

ac
ea

bi
lit

y
Id

en
tif

ie
s

tr
ac

ea
bi

lit
y

lin
ks

 b
et

w
ee

n
th

e
m

od
el

s/
ar

te
fa

ct
s

F
ig
u
re

6
.1
:
G
en
er
a
li
se
d
H
M
C
A

tractable analysis results when using a model checker, we construct the transition system semi-automatically

by slicing to produce smaller models. Though we do not separate the slicing of the models from the analysis

phase, we include it as a separate step in our external view because we later allow the slices to be modified

and re-analysed, and slicing the models takes place only once2. Slicing requires as input the Class Diagram,

Slicing Criteria i.e. each method in the class diagram or each operation in the ARSEV that may correspond

to a sequence of several methods in the class diagram, and the ARSEV from the construction phase. The

analysis performed at step 3 produces the transition system.

If the conformance rule is satisfied in the transition system, the Yes branch at step 4 is taken and our

process ends. However, the No branch at step 4 becomes important when the conformance rule being checked

is not satisfied. This No branch at step 4 allows us to provide counterexamples at step 5, to modify the

Alloy slices at step 6, and to re-analyse for rule conformance at step 3.

This external view of HMCA hides many internal sub-activities that produce intermediate models/arte-

facts so we provide decompositions of each phase as HMCA internal views in Subsections 6.2 to 6.4 below.

6.2 Construct

Using the same conventions in the key from Figure 6.1, we show a more detailed view of the construction

phase in Figure 6.2 by giving a step-wise decomposition as internal sub-activities and include additional

models/artefacts used and produced. We use the numbers 1 through 8 to highlight the steps. Some of the

highlights are that:

• we show the specific sub-activities that use and produce models/artefacts, e.g. Rule Requirements is

used at step 4 and the Rule NFA is constructed at step 5;

• we include additional internal models/artefacts, produced at steps 1, 3, 4, and 6;

• we include internal traceability links for the models/artefacts, e.g., the ARSEV now has traceability

with the Annotated Activity Diagram (AAD) because we link its operations with the actions in the

AAD;

2However,if changes are made to the operation specifications in the system class model, the slicing must be re-done.

62

6
3

A
n

n
o

ta
te

d
 R

SE
V

 (
A

R
SE

V
)

1
2

7

8

C
o

n
st

ru
ct

 E
n

ti
ty

V

ie
w

s

C
o

n
st

ru
ct

R

u
le

-S
p

e
ci

fi
c

E
n

ti
ty

V

ie
w

C
o

n
st

ru
ct

 A
ct

iv
it

y
D

ia
gr

am
, C

la
ss

 D
ia

gr
am

,
an

d
 d

e
ci

d
e

S
lic

in
g

C

ri
te

ri
a

A
ct

iv
it

y
D

ia
gr

am
 (

A
D

)

C
la

ss
 D

ia
gr

am

(C
D

)

E
n

ti
ty

 V
ie

w
s

(E
V

s)
E

n
ti

ty
 V

ie
w

s
(E

V
s)

C
o

n
st

ru
ct

 R
u

le

N
FA

R

u
le

 N
FA

R
u

le
-S

p
e

ci
fi

c
E

n
ti

ty
 V

ie
w

 (
R

SE
V

)

C
o

n
st

ru
ct

A

n
n

o
ta

te
d

 A
D

A
n

n
o

ta
te

d
 A

ct
iv

it
y

D
ia

gr
am

 (
A

A
D

)

C
o

n
st

ru
ct

 A
n

n
o

ta
te

d
 R

SE
V

Tr
a

ce
ab

ili
ty

Tr
a

ce
ab

ili
ty

3

4

5

6

R
u

le
 R

e
q

u
ir

em
en

ts
Tr

a
ce

ab
ili

ty
Sl

ic
in

g
C

ri
te

ri
a

Tr
a

ce
ab

ili
ty

Tr
a

ce
ab

ili
ty

Tr
a

ce
ab

ili
ty

Tr
a

ce
ab

ili
ty

Tr
a

ce
ab

ili
ty

Tr
a

ce
ab

ili
ty

F
ig
u
re

6
.2
:
C
o
n
st
ru
ct
in
g
in

H
M
C
A

• we have organised some of the internal activities using two parallel paths identified by steps 2-6-7 and

2-3-4-5-7 because the models/artefacts used and produced along these paths do not overlap; and

• at step 8, we require the two parallel paths 2-6-7 and 2-3-4-5-7 to complete in order to construct the

ARSEV that depends on the models/artefacts previously produced on the identified paths.

We note that although our explanations in Section 5.1.1 started with a flowchart and its conversion to

an activity diagram, HMCA assumes that we will have an activity diagram representation of the system’s

actions.

6.3 Analyse

Using the same conventions in the key from Figure 6.1, we show a more detailed view of the analysis phase

in Figure 6.3 by giving a step-wise decomposition of the internal sub-activities and and include additional

models/artefacts used and produced. We use numbers, 1 through 5, to highlight the sub-activities.

The highlights in this phase are that though sub-activities 2 through 4 are not observable externally, they

add the models from which we extract the states to use in constructing the Transition System. Slicing in

sub-activity 1 partitions the class diagram using the Slicing Criteria; currently we use the operations in the

ARSEV as the slicing criteria. We transform each class diagram slice to an equivalent Alloy model. While

the class diagram may contain constraints specified using the Object Constraint Language (OCL) [68], these

are not automatically transformed in the Alloy model because many of the concepts in OCL are not directly

representable in the Alloy language. Thus, adding of the constraints is a manual activity. In addition to

the constraints, we add Alloy predicates and assertions to extract state information from the models. The

alloy specifications are included in the Constrained Alloy Slices (CAS). This equivalent representation of the

class diagrams slices as Alloy models help us to undertake detailed analysis to check that operations do not

terminate in illegal states, or if they do, to pinpoint where problems in the system specification exist. We

then use the states indicated from the execution of the assertions and predicates to construct the transition

system in sub-activity 5.

64

Perform Slicing:
Slice CD (Slicing)

Analyse: Extract States
from Slices and

 Construct Transition
System

Analyse: Check if Rule
Satisfied on TS

Annotated RSEV (ARSEV)

Transition
System (TS)

Traceability

Traceability

Slicing Criteria

1

2

3

CD

Rule NFA

Traceability

Analyse: Add
constraints and

state specifications
to slices

 Basic Alloy Slices Basic Alloy Slices

4

Perform Slicing:
Transform CD Slice

to Alloy Model

CD SlicesCD Slices

Traceability

Traceability

Constrained Alloy Slices (CASs)Constrained Alloy Slices (CASs)

Traceability

5

Figure 6.3: Analysing in HMCA

65

6.4 Provide Feedback

We also show a more detailed view of the feedback phase in Figure 6.4 by giving a step-wise decomposition

of the internal sub-activities and include additional models/artefacts used and produced.

We use numbers 1 through 6 to highlight the important steps. We repeat sub-activity 5 from Figure

6.3 as step 1 because its results determines the flow and may be re-used in the feedback phase. Step 2

shows branching flows based on the results in step 1. When a conformance rule is not satisfied, step 3 is

taken, otherwise we go to step 5. In step 3, we extract a counterexample from the transition system. The

counterexample will indicate structural conditions under which a rule fails and we can use this to modify

the constraints in the Alloy model in step 4, and re-analyse the conformance rule in step 1. In step 5, if any

of the CASs have been modified, we must reconcile their modifications with the ARSEV, which produces

a modified ARSEV. Since each CAS has indirect traceability to the class digram slices, the reconciliation

applies to the class diagram as well.

Currently, analysis in HMCA considers each rule individually, so the steps must be followed for each rule.

We consider that HMCA is complete on the No branch of step 5, or after step 6 completes for all the rules.

66

6
7

An
no

ta
te

d
RS

EV
 (A

RS
EV

)
O

r
M

od
ifi

ed
 A

RS
EV Tr
an

sit
io

n
Sy

st
em

 (T
S)

Tr
ac

ea
bi

lit
y

Tr
ac

ea
bi

lit
y

Co
un

te
re

xa
m

pl
e

Tr
ac

ea
bi

lit
y

1

5
2

Ru
le

 N
FA

Fe
ed

ba
ck

: E
xt

ra
ct

 C
ou

nt
er

ex
am

pl
e

TS
 sa

tis
fie

s R
ul

e?

N
o

3

Ye
s

Fe
ed

ba
ck

: M
od

ify

Sl
ic

es

6

An
al

ys
e

AR
SE

V
fo

r
ru

le
 c

on
fo

rm
an

ce

CA
Ss or

M
od

ifi
ed

 C
AS

s

CA
Ss or

M
od

ifi
ed

 C
AS

s

Tr
ac

ea
bi

lit
y

Fe
ed

ba
ck

: R
ec

on
cil

e
M

od
ifi

ed
 S

lic
es

 w
ith

AR

SE
V

Sl
ic

es
 M

od
ifi

ed
?

N
o

Ye
s

4

U
pd

at
es

CD
 o

r M
od

ifi
ed

 C
D

Tr
ac

ea
bi

lit
y

Tr
ac

ea
bi

lit
y

F
ig
u
re

6
.4
:
F
ee
d
b
a
ck

in
H
M
C
A

7. NON-CONFORMANCE FEEDBACK

In this chapter we provide additional and updated models for the NJH system to complement the models

in Chapter 5, and discuss the feedback phase of HMCA in more details. The models presented will provide

the background for sections 7.2 through 9.3. The additional models are in Section 7.1 and the details of the

feedback phase are in sections 7.2 through 7.6. We give a summary of the feedback phase in Section 7.7.

7.1 Updating NJH Models

We discuss updates to and include new 1) entity views, 2) HIPAA conformance rules as NFAs for the

DeIDed and the Identified access tickets, 3) class model, 4) annotated activity model, and 5) transition

systems and non-conforming states in analysis. These were previously discussed in sections 5.1 and 5.2.

7.1.1 Entity Views

Recall that an entity may be understood as an object in the system that either perform operations that

change its own states, or is a state of interest to rule conformance. Therefore, entity views are needed to

bring understanding to the individual states of entities and how the composition of these individual entity

states influence the complete system state. We discussed the entity views and rule specific entity views for

the DeIDed access ticket in section 5.1.2. However, since we only considered cases where the data used

start out in an Identified state, our models must be updated to include where the data can start out in a

De-identified state, i.e., since a project may use data from di↵erent sources and some of them may have data

that is in an Identified or1 De-identified state.

7.1.1.1 Individual Entity Views

Both individual entity views, i.e., the Patient Health Information Entity View and the Researcher Entity

View require updating as we now include new operations and states for the former and new transitions for

the latter. We show in Figure 7.1 the updated Researcher Entity View. We compare this with Figure 5.1

where we now have a new state for when a researcher is being qualified.

1This is to be interpreted as the inclusive-OR

68

ApplyingApplying DownloadingDownloadingQueryingQuerying

ViewingViewing

Approve

Download

Query

Download

View

Query

Query

Request Qualify

QualifyingQualifying

Approve and Apply

Figure 7.1: Researcher Entity View (Updated from Figure 5.1)

Figure 7.2: Patient Health Information Entity View (Updated from Figure 5.2)

We show in Figure 7.2 the updated Patient Health Information Entity View. We compare this to Figure

5.2 where we no longer have a separate De-identified state as this is included in the state labelled Identified or

De-identified. Since the or is the inclusive-OR the data may be in three distinct states: only Identified, only

De-identified or both Identified and De-identified. As with the previous data entity view in Figure 5.2, this

view also contains non-determinism as we have not shown the additional conditions from the system state

that di↵erentiate the enabling of either of the edges exiting the Identified or De-identified state. Though

this entity view updates the model for the DeIDed access ticket, we note that it also applies to the Identified

access ticket.

7.1.1.2 Rule Specific Entity View

The changes in the individual entity views must be propagated to the rule specific entity views. Recall

that the latter is constructed based on the handshaking [14, see section 2.2.3] of operations in the former,

69

<Applying, Identified or
De-identified>

<Applying, Identified or
De-identified>

<Viewing, Identified or
De-identified>

<Viewing, Identified or
De-identified>

<Querying, Identified or
De-identified>

<Querying, Identified or
De-identified>Approve

View

Query

Query

Request Qualify
<Downloading, Identified or

De-identified>
<Downloading, Identified or

De-identified>

Download

Query

Download<Qualifying, Identified
or De-identified>

<Qualifying, Identified
or De-identified>

Approve and Apply

Figure 7.3: Identified and DeIDed Rules Specific Entity View

such that when identical operations occur on the label of an edge, their next states are combined into one

state. We show in Figure 7.3 the composition of the views in figures 7.1 and 7.2. Since both the Identified

and the De-identified states may occur together in the rule specific entity view, the composition gives an

entity view for both the Identified and the DeIDed access tickets.

Again, this rule specific entity view contains non-determinism. For example, though there is a single edge

from the <Querying, Identified or De-identified> state to the <Downloading, Identified or De-Identified>

state, this (edge) is an abstraction for three edges because of the three di↵erent ways the Identified or

De-identified clause in the states may be assessed to be true. This non-determinism identifies that these

possibilities exist in the system at this level of abstraction.

7.1.2 HIPAA Conformance Rules

HIPAA conformance rules specify how the system will be adjudged to be conforming to HIPAA regula-

tions. We previously discussed these in Section 5.1.3 and we now return to updating and adding new ones

based on the new rule specific entity view in Figure 7.3.

7.1.2.1 De-identified Conformance Rule

Figure 7.4a is the same as Figure 5.4. It shows the conformance rule for the DeIDed access ticket and is

specified using the atomic propositions in Figure 7.3. We repeat it here because it will be useful in identifying

70

Conforms <Viewing, Identified> or <Downloading, Identified>

Not <Viewing, Identified > or
Not <Downloading, Identified>

Does_not_conform

(a) Rule NFA for the DeIDed access ticket (Same as Figure 5.4)

ConformsConforms <Viewing, De-identified> or <Downloading, De-identified>

not <Viewing, De-identified > or
not <Downloading, De-identified>

Does_not_conformDoes_not_conform

(b) Rule NFA for the Identified access ticket with a TotallyIDeD data transformation

ConformsConforms false

<Viewing, De-identified>
 or

<Viewing, Identified>
or

<Downloading, De-identified>
 or

<Downloading,Identified>

Does_not_conformDoes_not_conform

(c) Rule NFA for the Identified access ticket with an AllowDeIDed data transformation

Figure 7.4: Conformance Rules as NFA for the Identified and DeIDed access tickets

71

non-confining states for the models in the analysis phase as discussed later in Section 7.1.4. It shows that

the system is in state Conforms when View or Download is used to access De-identified health information.

7.1.2.2 Identified Conformance Rules

Figure 7.4b shows the conformance rule for an Identified access ticket requiring a TotallyIDed data

transformation. It is specified using the atomic propositions in Figure 7.3. It shows that the system is in

state Conforms when View or Download is used to access identified health information.

Figure 7.4c shows the conformance rule for an Identified access ticket requiring an AllowDeIDed data

transformation. It is also specified using the atomic propositions in Figure 7.3. It shows that the system

is in state Conforms when View or Download is used to access either identified or de-identified health

information. We note that, since the AllowDeIDed data transformation permits that both the Identified and

the De-identified data states specified in our system to show conformance, there is no case where there can

be non-conformance, i.e., the label on the edge into the Does not conforms state is false. This means that

all the modelled states of health information will conform to this rule. We also note that when other data

transformations are included, e.g., for those allowed by the Coded access ticket (see Section 3.4), all the rule

formalisms must be updated or else the system will be underspecified due to data states being excluded from

the rules and this may result in non-conformance.

7.1.3 Class Models and Activity Model Annotations

7.1.3.1 Class Model

The unsliced class model for the NJH system is shown in Figure 7.5. It includes all the model elements

as discussed up to and including Chapter 9.

7.1.3.2 Activity Model Annotations

As we did in Section 5.1.4 to Map Rule Specific Entity Views to System Models, where we showed the

annotations for the query operation, we now update and add the annotations for all the operations. In

particular, we show the annotations for operations that allow the advancing to the di↵erent states in Figure

7.3.

72

7
3

De
cis

ion
Ru

le
De

ID
ed

Da
taI

tem
na

me
 : S

trin
g

Cli
nic

alD
B

Ide
nti

fie
d

Qr
yD

ata

PID
efi

ne
d

Re
se

arc
he

r

Pr
oje

ctM
em

be
rsD

efi
ne

d

Ca
nn

otG
ive

No
Su

ps
InP

Ian
dD

C

Da
ta

HI
PA

AC
at

Qu
ali

fie
rP

res
en

t

Ch
ild

As
se

ntA
nd

Re
sp

on
sib

ilit
yC

on
se

nt

Di
sA

llo
w

Pu
rpo

se

Pr
oje

ctC
on

se
ntA

ss
en

tR
eqDi

rec
tB

en
efi

t

Ri
sk

No
tA

llo
we

d

Tr
an

sfo
rm

HD
ate

Fis
hin

g

Di
rec

tB
en

efi
tG

en
era

lis
ab

le

Pr
oje

ctS
pe

cia
lRe

se
arc

hA
pp

rov
al

Lic
en

ed
Te

am
An

dP
I

Pe
rso

nn
el

Pa
tie

ntD
ata

RD
Ty

pe

Pa
tie

nt

Ch
ild

Ad
vo

ca
teF

orW
ard

Of
St

ate
Ty

pe

Gu
ard

ian

Pa
tie

ntC
on

se
nt

Da
taA

cc
es

sA
gre

em
en

tP
res

en
t

To
tal

lyI
De

d

Mi
nim

alR
isk

Fu
rth

erU
nd

ers
tan

din
gP

rev
en

tio
nA

lle
via

tio
n

Ch
ild

ren

Ac
ce

ss
Ru

le

Ch
ild

Pa
rtic

ipa
tio

nP
erm

All
ow

De
ID

ed

Co
ns

en
t

No
tR

eq
uir

ed

Qu
ery

run
Qu

ery
(re

s :
 R

es
ea

rch
er,

 pr
oj

: P
roj

ec
t)

do
wn

loa
d()

vie
w(

)

Ch
ild

Ad
vo

ca
teN

otA
ss

oc
Wi

thR
es

ea
rch

Or
Wa

rdO
rg

Co
ns

en
tR

eq
uir

em
en

t
So

me
So

urc
es

De
fin

ed

Gr
ou

p

Qu
ali

fie
r

Qu
ali

fyR
es

ea
rch

er(
res

 : R
es

ea
rch

er)

Al
low

HD
ate

Hid
eS

pe
cia

lPo
pn

Ca
nU

se
To

tal
lyD

eID
ed

Re
qu

ire
d

Sp
ec

ial
Re

se
arc

hA
pp

rov
ed

To
tal

lyD
eID

ed

Da
taS

ou
rce

Pr
ior

ity
OK

Do
wn

loa
dA

llo
we

d
Do

wn
loa

dD
isa

ble
d

Wa
rdO

rg

Qr
yR

etu
rns

Cl
ini

ca
lD

BN
ee

ds
Da

taC
oll

ec
tor

Da
te

da
y :

 In
teg

er
mo

nth
 :

Int
eg

er
ye

ar
: In

teg
er

isI
de

nti
fie

d()
 : B

oo
lea

n
isN

otI
de

nti
fie

d()
 : B

oo
lea

n

Ru
le

ap
ply

Ru
le(

)

So
me

Pu
rpo

se
No

tD
ire

ctT
rea

tm
en

t
IRB

So
me

Qu
eri

es
De

fin
ed

Sp
ec

ial
Po

pn

Di
rec

tTr
ea

tm
en

t

HI
PA

AC
hil

d

Re
se

arc
hR

isk

Ind
ivi

du
al

Ca
teg

ory

Ch
ild

ren
Re

se
arc

hR
isk

Re
tD

ata

Pa
ren

t

Da
taT

ran
sfo

rm

Pe
rso

nR
ole

Sp
ec

ial
Su

bje
ct

Da
taS

ou
rce

Re
se

arc
h

No
Ov

erl
ap

PIT
ea

mD
CI

RB

Pr
oje

ct

Lic
en

ce

Re
sp

on
sib

lity
Ro

le

Ac
ce

ss
Tic

ke
t

Pe
rm

iss
ion

Pe
rso

n

Sta
tus

1..
* AR
Ap

pli
es

To
*

*AR
Hid

es

*

*
AR

Tr
an

sfo
rm

s *

*

AT
Pr

ior
ity

*

0..
1 Ch

ild
Ad

vo
ca

te

*

*
Ch

ild
Pa

rtic
ipa

tio
nA

ss
en

t

*

*

DI
Ca

t

*

*
DI

So
urc

e
0..

1

*Da
taA

cc
es

sA
gre

em
en

t

*

1
Da

taV
alu

es
*

0..
1

En
ter

ed
On

*

1..
*

IR
BM

em
be

rs
0..

1

1..
*

Pe
rm

Ru
les

*

0..
1

Pr
oje

ctA
T

*

0..
1Pr

oje
ctD

ata
Co

lle
cto

r

*

0..
1Pr
oje

ctD
ata

Tr
an

sfo
rm

Re
qu

ire
d

*

*Pr
oje

ctM
em

be
rs

*

0..
1

Pr
oje

ctP
I*

0..
1

Pr
oje

ctP
urp

os
e

*
*

Pr
oje

ctQ
ue

rie
s

*

*
Pr

oje
ctS

ou
rce

s

*
*

Pr
oje

ctS
pe

cia
lRe

se
arc

h
*

*

Qr
yW

ork
sO

n

*

0..
1

Re
se

arc
he

rL

*

0..
1

Re
se

arc
he

rQ
ua

lifi
er

*

*

Sp
ec

ial
Pa

tie
nt

* *
Su

pe
rvi

so
rs

*

0..
1

VD
All

ow
ed

*

1..
*

Wa
rdA

ss
oc

iat
es

*

0..
1

0..
1

0..
1

*

0..
1

0..
1

*

*

*

*

*

*

*

0..
1

*

*

*

0..
1

*
*

0..
1

F
ig
u
re

7.
5:

N
J
H

U
n
sl
ic
ed

C
la
ss

M
o
d
el
:
In
cl
u
d
es

a
ll
A
cc
es
sR

u
le
s
a
n
d
D
ec
is
io
n
R
u
le
s
a
n
d
C
h
il
d
re
n
a
s
P
ro
te
ct
ed

P
o
p
u
la
ti
o
n

7.1.3.2.1 Approve RequestQualify for Researcher.

• Input : Researcher r, Qualifier q;

• Precondition:

1. Personnel that is passed in as Qualifier is Authorised to perform this function; and

2. there is no link in the ResearcherQualifier association between r and q

• PostCondition: Link in the ResearcherQualifier association between r and q; and

• Output : Success.

7.1.3.2.2 Approve a Researcher’s Licence Application.

• Input : Researcher r, and Licence f ;

• Precondition:

1. r qualified; and

2. there is no link in the ResearcherL association between r and f

• PostCondition: Link in the ResearcherL association between r and f ; and

• Output : Success.

7.1.3.2.3 Approve a Project’s Application for an access ticket.

• Input : Project p, AccessTicket at;

• Precondition:

1. All DecisionRules for at return true; and

2. there is no link in the ProjectAT association between p and at (see footrnote2)

2This second condition is su�cient because any p can only have a single access ticket

74

• PostCondition:

1. Link in ProjectAT association between p and at; and

2. for each SpecialSubject linked to p in the ProjectSpecialResearch association, there is a link in the

ProjectConsentAssentReq association

• Output : Success.

7.1.3.2.4 Execute a Query.

• Input : Query qry, Researcher r;

• Precondition: r is authorised to execute qry;

• PostCondition: each

1. QryData linked to qry in the QryWorksOn association, all applicable AccessRules for qry’s access

ticket returns true; and

2. RetData, rd, in the QryReturns association is:

(a) is transformed according to the DataTransform linked to qry in the ProjectDataTransform-

Required association through its associated project;

(b) linked to some QryData, qd, in QryWorksOn for qry ;

(c) linked to some Type in RDType such that

if rd is linked to 1 qd in QryWorksOn then

Type = Individual

else

Type = Group

(d) is Identified or De-identified.

• Output : Success

75

7.1.3.2.5 Check Conformance.

• Input : Query qry;

• Precondition: qry has RetData in the QryReturns association;

• PostCondition: for the applicable conformance rule, each RetData linked to qry through the QryRe-

turns association does not return the Does not conform state3; and

• Output : conformance rule state.

7.1.3.2.6 View (or Download) query’s results.

• Input : Researcher r, Query qry;

• Precondition:

1. qry has RetData in the QryReturns association; and

2. r is authorised to view (or download as applicable) qry’s RetData in QryReturns.

• PostCondition: true; and

• Output : Success.

7.1.4 Analysis

This section completes the models for the Analysis phase as previously discussed in Section 5.1.6.

7.1.4.1 Slicing

Recall that we use Slicing to partition the class model in Figure 7.5 in order for HMCA to produce

tractable analysis. We use the operations discussed in Section 7.1.3.2 as the slicing criteria to produce 5

slices as follows to:

1. qualify a researcher in slice 1 that is produced using the annotations in Section 7.1.3.2.1. This slice is

shown later in Figure 7.10.

3 We are able to determine the applicable conformance rule (as specified in Figure 7.4) indicated by the access ticket and
DataTransform linked to qry through its associated project in the ProjectAT and ProjectDataTransformRequired associations
respectively.

76

2. approve a researcher’s application for fishing licence in slice 2 that is produced using the annotations

in Section 7.1.3.2.2. This slice is shown later in Figure 7.11.

3. approve a project’s access ticket in slice 3 that is produced using the annotations in Section 7.1.3.2.3.

This slice is shown later in Figure 9.1.

4. execute a query in slice 4 that is produced using the annotations in Section 7.1.3.2.4. This slice is

shown later in Figure 9.7. With reference to Figure 7.1, the View and Download operations also occur

in slice 4.

5. check conformance to the HIPAA regulations in slice 5 that is produced using the annotations in Section

7.1.3.2.5. This slice is shown later in Figure 8.2.

7.1.4.2 Transition Systems

Recall that the rule specific entity view in Figure 7.3 is a program graph that represents the possible

states and operations in the system. Recall also that a transition system (TS) is a concrete representation

of the actual reachable states or operations in the execution of the program graph.

Through a process of unfolding a TS is constructed from Figure 7.3 to produce Figure 7.6. Note that we

show the TS as 3 separate subfigures to represent the di↵erent starting concrete values in the data states.

Figure 7.6a shows the TS where the data starts in a De-identified state, Figure 7.6b shows the TS where the

data starts in a Identified state, and Figure 7.6c shows the TS where the data starts both in the Identified

and the De-identified state.

7.1.4.3 Understanding Non-Conformance

Using the rules in Figure 7.4 we determine which states in each of the TSs in Figure 7.6 indicate non-

conformance to the rules.

7.1.4.3.1 DeIDed access ticket. For the DeIDed access ticket with a TotallyDeIDed data transformation,

the states highlighted in red in the subfigures of Figure 7.7 will cause the de-identified conformance rule in

Figure 7.4a to enter the Does not conform state. For example, Figure 7.7a shows that if the data starts out

77

<Applying, De-identified><Applying, De-identified> <Querying, De-identified><Querying, De-identified>Approve

Query

Request Qualify

<Downloading, De-identified><Downloading, De-identified>

Download

Query

<Viewing, De-identified><Viewing, De-identified>

View

Query

<Qualifying, De-identified><Qualifying, De-identified>

Approve and Apply

(a) TS where data begins in the De-identified state

<Applying, Identified><Applying, Identified> <Downloading, Identified><Downloading, Identified><Querying, Identified><Querying, Identified>

<Viewing, Identified><Viewing, Identified>

Approve

Download

Query

Download

View

Query

Query

Approve and Apply

<Downloading, De-identified><Downloading, De-identified>

Download

Query

<Viewing, De-identified><Viewing, De-identified>
View

Query

<Qualifying, Identified><Qualifying, Identified>Request Qualify

(b) TS where data begins in the Identified state

<Applying, Identified
and De-identified>

<Applying, Identified
and De-identified>

<Downloading, Identified><Downloading, Identified><Querying, Identified and
De-identified>

<Querying, Identified and
De-identified>

Approve

Download

Query

Query

Request Qualify
<Downloading, De-identified><Downloading, De-identified>

Download

Query

<Viewing, Identified><Viewing, Identified> <Viewing, Identified and De-identified><Viewing, Identified and De-identified>

Download

Query

<Viewing, De-identified><Viewing, De-identified> <Downloading, Identified and De-identified><Downloading, Identified and De-identified>

View

View

View

Query

Query

Query

<Qualifying, Identified and De-identified><Qualifying, Identified and De-identified>

Approve and Apply

(c) TS where data begins in the both the Identified and De-identified states

Figure 7.6: Conformance Rules as Graph Formalisms for the Identified and DeIDed access tickets

78

<Applying, Identified><Applying, Identified> <Downloading, Identified><Downloading, Identified><Querying, Identified><Querying, Identified>

<Viewing, Identified><Viewing, Identified>

Approve

Download

Query

Download

View

Query

Query

Approve and Apply

<Downloading, De-identified><Downloading, De-identified>

Download

Query

<Viewing, De-identified><Viewing, De-identified>
View

Query

<Qualifying, Identified><Qualifying, Identified>Request Qualify

(a) Illegal states for the DeIDed access ticket with a TotallyDeIDed data transformation for the TS where data begins
in the Identified state

<Applying, Identified
and De-identified>

<Applying, Identified
and De-identified>

<Downloading, Identified><Downloading, Identified><Querying, Identified and
De-identified>

<Querying, Identified and
De-identified>

Approve

Download

Query

Query

Request Qualify
<Downloading, De-identified><Downloading, De-identified>

Download

Query

<Viewing, Identified><Viewing, Identified> <Viewing, Identified and De-identified><Viewing, Identified and De-identified>

Download

Query

<Viewing, De-identified><Viewing, De-identified> <Downloading, Identified and De-identified><Downloading, Identified and De-identified>

View

View

View

Query

Query

Query

<Qualifying, Identified and De-identified><Qualifying, Identified and De-identified>

Approve and Apply

(b) Illegal states for the DeIDed access ticket with a TotallyDeIDed data transformation for theTS where data begins
in the both the Identified and De-identified states

Figure 7.7: Illegal states for the DeIDed access ticket

79

in the Identified state we know that Viewing or Downloading a query’s result that is still in the Identified

state is non-conformance. An example of finding this non-conformance is shown in Figure 7.15 where we

showed non-conformance using a counterexample generated using the Alloy Analyzer and an equivalent

representation in Figure 7.17 using a UML object model (in Chapter 7). We note that the TS in Figure 7.6a

has no illegal states for the DeIDed access ticket since all its states are De-identified.

7.1.4.3.2 Identified access ticket with a TotallyIDed data transform. For the Identified access ticket with

a TotallyIDed data transformation, the states highlighted in red in the subfigures of Figure 7.8 will cause

the rule in Figure 7.4b to enter the Does not conform state. For example, Figure 7.8a shows that if the

data starts out in the De-identified state, we know that Viewing or Downloading a query’s result will show

non-conformance because it is impossible to re-identify Deidentified data. In addition, Figure 7.8b shows

that if the data starts out in the Identified state, we know that Viewing or Downloading in a De-identified

state is evidence of non-conformance. An example of finding this non-conformance is shown in Figure 8.3

(in Chapter 8).

7.1.4.3.3 Identified access ticket with a AllowDeIDed data transform. For the Identified access ticket with

a AllowDeIDed data transformation, none of the data states in the TSs as shown in Figure 7.6 will indicate

non-conformance. This is because this access ticket an its accompanying data transformation permits both

the Identified and De-identified data states.

7.2 Feedback Context and Overview

In HMCA we use the Alloy Analyzer to generate a counterexample when a rule is not satisfied. We wish

to show the feedback in a format that is easier to understand so we will convert the Alloy counterexample

to an equivalent UML object model. However the object model created from the Alloy counterexample may

not have enough information in it to understand why non-conformance occurs because the counterexample

is an instance of the slice in which the checking of the rule occurred. For example, we show the current UML

class model to support operations of interest for the NJH system in Figure 7.9 and in Figures 7.10 through

7.14 the objects and associations from Figure 7.9 that are in each slice.

80

<Applying, De-identified><Applying, De-identified> <Querying, De-identified><Querying, De-identified>Approve

Query

Request Qualify

<Downloading, De-identified><Downloading, De-identified>

Download

Query

<Viewing, De-identified><Viewing, De-identified>

View

Query

<Qualifying, De-identified><Qualifying, De-identified>

Approve and Apply

(a) Illegal states for the Identified access ticket with a TotallyIDed data transformation for the TS where data begins
in the De-identified state

<Applying, Identified><Applying, Identified> <Downloading, Identified><Downloading, Identified><Querying, Identified><Querying, Identified>

<Viewing, Identified><Viewing, Identified>

Approve

Download

Query

Download

View

Query

Query

Approve and Apply

<Downloading, De-identified><Downloading, De-identified>

Download

Query

<Viewing, De-identified><Viewing, De-identified>
View

Query

<Qualifying, Identified><Qualifying, Identified>Request Qualify

(b) Illegal states for the Identified access ticket with a TotallyIDed data transformation for the TS where data begins
in the Identified state

<Applying, Identified
and De-identified>

<Applying, Identified
and De-identified>

<Downloading, Identified><Downloading, Identified><Querying, Identified and
De-identified>

<Querying, Identified and
De-identified>

Approve

Download

Query

Query

Request Qualify
<Downloading, De-identified><Downloading, De-identified>

Download

Query

<Viewing, Identified><Viewing, Identified> <Viewing, Identified and De-identified><Viewing, Identified and De-identified>

Download

Query

<Viewing, De-identified><Viewing, De-identified> <Downloading, Identified and De-identified><Downloading, Identified and De-identified>

View

View

View

Query

Query

Query

<Qualifying, Identified and De-identified><Qualifying, Identified and De-identified>

Approve and Apply

(c) Illegal states for the Identified access ticket with a TotallyIDed data transformation for theTS where data begins
in the both the Identified and De-identified states

Figure 7.8: Illegal states for the Identified access ticket with a TotallyIDed data transformation

81

8
2

F
ig
u
re

7.
9:

N
J
H

C
la
ss

M
o
d
el
:
C
ap

tu
ri
n
g
M
o
d
el

E
le
m
en
ts

fo
r
Q
u
a
li
fi
er

R
es
ea
rc
h
er

to
C
h
ec
k
in
g
A
cc
es
s
T
ic
k
et

C
o
n
fo
rm

a
n
ce

o
n
Q
u
er
y
R
es
u
lt
s

If the following sequence of operations occurred:

personnel per1 qualifies researcher r (slice 1, S1, in Figure 7.10)

! approve researcher r for fishing licence f (slice 2, S2, in Figure 7.11)

! approve project p1 to use d, q1 is a part of p1’s queries, researcher r

is a project member in p1 (slice 3, S3, in Figure 7.12)

! researcher r runs query q1 using d (slice 4, S4, in Figure 7.13)

! check conformance to de-identified access ticket d, for the

results from query, q1 (slice 5, S5, in Figure 7.14)

and, if conformance failed in slice 5, the counterexample only contains instances of elements in that slice.

However, the user may need an object model of the full system model to determine the reason for non-

conformance.

In order to give the user enough information to determine the reason for non-conformance, we will

show the feedback as a UML object model. To do this, we augment the object model generated from the

counterexample with additional objects and links in such a way that is consistent with the constraints of the

system class model. The USE tool provides capabilities to create object models and check that they satisfy

the constraints in the associated class model. In addition, we can supply the tool with a partial object model

and use its generation capabilities to add objects and links to have a valid instance of the associated class

model. In order to accomplish this with the USE tool, we must include all the Alloy model constraints that

have been created to run the analysis as OCL constraints.

In order to reduce the cognitive overload of showing the object model of the full system all at once,

we will sequence the feedback as instances of the slices in figures 7.10 to 7.14. The general procedure is

to construct the feedback as an on-demand (user-driven) sequence of object models, starting in the slice

that the non-conformance is observed and generating the object model for the previous slices as needed. In

each subsequent object model, we will highlight the overlapping objects and links with each previous object

model. For instance, in our running example where conformance failed, the first object model in the sequence

is the counterexample from slice 5, the second an object model from slice 4, etc. The user will be shown the

first object model in the sequence and can request the second, and so on.

83

8
4

Sl
ic

e
1

F
ig
u
re

7
.1
0
:
S
li
ce

1
(S

1
)
-
Q
u
a
li
fi
er

R
es
ea
rc
h
er

S
li
ce

8
5

Sl
ic

e
2

F
ig
u
re

7
.1
1
:
S
li
ce

2
(S

2
)
-
A
p
p
ro
ve

R
es
ea
rc
h
er

L
ic
en
ce

S
li
ce

8
6

Sl
ic

e
3

F
ig
u
re

7
.1
2
:
S
li
ce

3
(S

3
)
-
A
p
p
ro
ve

P
ro
je
ct

A
cc
es
s
T
ic
ke
t
S
li
ce

8
7

Sl
ic

e
4

F
ig
u
re

7.
13
:
S
li
ce

4
(S

4
)
(e
x
cl
u
d
es

sh
a
d
ed

a
re
a
s)

-
D
a
ta

C
o
ll
ec
to
r,

P
I,
o
r
R
es
ea
rc
h
er

R
u
n
s
Q
u
er
y
S
li
ce

8
8

Sl
ic

e
5

F
ig
u
re

7
.1
4
:
S
li
ce

5
(S

5
)
-
C
h
ec
k
C
o
n
fo
rm

a
n
ce

S
li
ce

Depending on the size and complexity of the class model and constraints, constructing the feedback

in this way may save computations. In the next section we discuss the specific commands that the USE

tool provides for generating object models. Section 7.4 discusses the USE specifications and we return to a

detailed examination of generating the feedback in Section 7.5. We show in Section 7.6 how the generated

object models may be used to analyse and understand why conformance failed. Section 7.7 ends this chapter

with some conclusions and future directions.

7.3 USE Tool Object Model Generator

The USE tool can generate object models that conform to a class model with OCL constraints. To ac-

complish this, it employs A Snapshot Sequence Language (ASSL) [41]. ASSL provides additional commands

to the OCL and Simple OCL-based Imperative Language (SOIL) languages already included in USE.

SOIL provides commands to create, delete, and insert objects and links among objects, but does not

ensure that the objects and links satisfy constraints in the corresponding class model; so using these com-

mands may produce an ill-formed object model. Using the SOIL language to produce object models produces

deterministic models, i.e., the same object model each time the commands are executed.

ASSL commands include equivalent commands provided by SOIL and additional ones that can perform

guided searches in the space of objects and insert links among them that satisfy the constraints in the class

model. The commands will only report success, i.e., objects and links created will persist, if the object model

created satisfy all the constraints, otherwise a rollback occurs and the object model is returned to the state

it was before the commands were executed. In this way, we are assured that the object model returned is

well-formed. While the SOIL commands may be issued directly in the USE tool, the ASSL commands must

be packaged in a procedure and the procedure executed using other special USE commands.

The guided searches of some of the ASSL commands mean that we do not have a deterministic object

model, in the same way as using SOIL commands, even if the same ASSL commands are re-executed. In order

to produce deterministic object models from ASSL, we can take advantage of how the USE tools logs when

an ASSL procedure reports success and generates equivalent SOIL commands to recreate the exact object

model that is returned. In addition, the searching for valid states means that executing ASSL procedures

89

may be computationally intensive. Both having the SOIL commands available and not having to re-execute

a computationally intensive procedure are important when generating the sequence of object models with

overlapping objects and links. For example, when generating the object model for slice 4 the same instances

of the overlapping objects and links from slice 5 must be used.

Having the SOIL commands used to create the object model for slice 5 presents an opportunity for reuse

because we can extract the commands for the overlapping object and use them as the starting point for

generating slice 4.

7.3.1 Object Model Generation Commands

ASSL commands include those to:

1. Create objects, e.g.,

(a) Create(Personnel) to create and return a single Personnel object; and

(b) CreateN(Personnel, 5) to create and return 5 Personnel objects as a sequence of objects.

Create gives the objects created arbitrary identifiers.

2. Delete objects and associations, e.g.,

(a) Delete(Personnel1) to delete the object identified by Personnel1; and

(b) Delete(Personnel� > allInstances()� > asSequence()) to delete all objects of type Personnel.

3. Insert links between objects to form associations; e.g., Insert(ResearcherQualifier, p1, r) to add a

link between p1 and r in the ResearcherQualifier association;

4. Randomly generate objects, values, or associations links:

(a) Any(seq : Sequence(T)), to make and return a random selection from a sequence objects or values

of type T and use or assign it to a variable of the same type

(b) Try(seq : Sequence(T)) also works like the Any() command;

90

(c) Try(a : Association,

seq1 : Sequence(T1), seq2 : Sequence(T2)[, ..., seqn : Sequence(T
n

)]⇤)

to generate random association links among objects from the sequences given.

While we noted that both the Any(seq : Sequence(T)) and the Try(seq : Sequence(T)) commands

produce the same results, they are semantically di↵erent because the latter also checks whether the

assignments satisfy the constraints in the class model before returning the object/association. As

discussed before, if any of the commands in an ASSL procedure causes the object model to be in an

inconsistent state, the procedure will not succeed.

7.4 USE Specifications

The slicing of the class model in the construction phase of HMCA described in Section 6.2 allows us

to not only produce the Alloy slices, but to also produce equivalent class model slices. Since we are using

the USE tool, the class model slices must be represented in the USE language. This representation may be

achieved by employing an algorithm similar to Algorithm 2 that transforms the Alloy counterexample into a

USE object model. The constraints that ensured well-formed slices were included in the Alloy specifications.

In order for our generation program to work correctly and produce well-formed object models, we must now

add the equivalent Alloy constraints to the sliced USE class models using OCL constraints.

Alloy and OCL have many similarities as specification languages and in their associated tools, i.e., the

Alloy Analyzer and USE. However one of their main di↵erence is in their support for sets and collections.

In OCL sets and other collections are one-dimensional, but in Alloy everything is a set [15]. For this and

other di↵erences, it is not always possible to automatically transform Alloy to OCL because several Alloy

expressions do not have a one-to-one equivalent in UML or OCL [28]. Since overcoming these challenges are

not the focus of this research, the reader may examine the papers for translating Alloy to UML annotated

with OCL in [6, 7] and the examination of translation back to Alloy in [28].

We transformed the constraints in the Alloy specifications to OCL manually. Refer to Appendix C for

the detailed UML and OCL constraints for each slice. Our manual transformations provided many insights

that may be useful not only for the automatic translation of Alloy to OCL, but also for insights on how the

91

di↵erence in their support for sets and collections may produce slightly di↵erent associations/relationships

and constraints among classes/signatures. We will return to discussing this in Chapter 11 where we give

insights into the details of applying HMCA.

7.5 Detailed Algorithms: How to Construct the Object Model for the Feedback

Algorithm 1 outlines the high-level steps we will take to generate and request on-demand object models.

It makes reference to Algorithm 2 to convert an Alloy instance to a USE object model, Algorithm 3 to extract

overlapping objects from object models, and Algorithm 4 to complete an object model so that it satisfies the

constraints in the class model. The first is outlined in Section 7.5.1, the second and third in Section 7.5.2.

The ASSL procedures and USE commands that implement the algorithms for the NJH system are listed in

Appendix C.

Algorithm 1 Generate On-Demand Feedback Object Model Sequence Construction

1: procedure OnDemandFeedback(cm
use

: USEClassModel,
cm

seq

: Sequence < USEClassModel >, inst
aa

: AlloyInstance)
2: current cm

seq

.first()
3: om

use

 ConvertAlloyInstanceToOM(inst
aa

)
. See Algorithm 2 in Section 7.5.1

4: Show(om
use

)
. displays object model

5: getNext UserRequestsNext()
. UserRequestsNext() is a Boolean value

6: while getNext ^ cm
seq

.hasNext() do
7: current current [cm

seq

.getNext()
8: om

use

 ExtractOverlappingObjects(current, om
use

)
. See Algorithm 3 in Section 7.5.2

9: om
use

 CompleteFeedback(current, om
use

)
. See Algorithm 4 in Section 7.5.2

10: Show(om
use

)
11: getNext UserRequestsNext()

7.5.1 Represent Alloy Slice as a UML USE Object Model

Algorithm 2 outlines the steps to convert an Alloy instance to an object model.

7.5.2 Generate Feedback as a Complete Object Model

Algorithm 3 to Algorithm 7 gives the steps to generate a complete an object model with the objects and

associations to satisfy a given class model.

92

Algorithm 2 Convert Alloy Instance to USE UML Object Model

1: function ConvertAlloyInstanceToOM(aa : AlloyInstance)
2: init(om) . om initialised to type USEObjectModel
3: for sigs 2 aa.getSignatureInstances() do
4: om om [!new(s.getSigType(), s.getSigName())

. !new() translates to the Soil command: !new Class(object identifier)

5: for rels 2 aa.getRelations() do
6: inst

sigs

 rel.getRelationSignatureInstances() . returns ordered signature instances
7: if inst

sigs

6✓ sigs then
8: error
9: om om [Insert(rel.getName(), inst

sigs

[1], inst
sigs

[2][, ..., inst
sigs

[n]]⇤)
. See Section 7.3 for notes on Insert()

10: return om

Algorithm 3 Extract Overlapping Objects

1: function ExtractOverlappingObjects(cm
use

: USEClassModel, om
use

: USEObjectModel)
2: init(om

partial

)
3: assocs {a : Association | a 2 cm

use

.getAssociations()}
4: for a 2 assocs do
5: om

partial

 om
partial

[om
use

.getMappings(a)

6: return om
partial

Algorithm 4 Complete Feedback

1: function CompleteFeedback(cm
use

: USEClassModel, om
use

: USEObjectModel)
2: if cm

use

.unconstrained() 6|= om
use

then
. ensures that all objects and associations in om

use

have corresponding definitions in cm
use

3: error
4: a

diff

 {a : Association | a 2 cm
use

.getAssociations() ^ instance(a) /2 om
use

}
5: obj

p

 CreatePotentialObjects(om
use

, a
diff

) . See Algorithm 5
6: om

use

 om
use

[obj
p

7: om
c

 om
use

8: repeat
9: for a 2 a

diff

do
10: om

c

 CreatePotentialAssociations(om
c

, a)} . See Algorithm 6

11: until cm
use

.constrained() |= om
c

12: om
c

 Cleanup(om
c

, obj
p

) . See Algorithm 7
13: AcceptObjectModel(om

c

) . makes objects and associations added permanent
14: return om

c

93

Algorithm 5 Create Potential Objects

1: function CreatePotentialObjects(assocs : Set < Association >)
2: init(c

diff

) . c
diff

is initialised to Map < Class, V alue < Integer, Integer >>
3: for c: assocs.getAssociationEnds().getClasses() do
4: c

diff

.put(c, 0, 0)

5: for a : assocs do
. iterates through the multiplicities of the association ends to compute the min and max instances

required
6: for < ae : a.getAssociationEnds() > do
7: c cmm.get(ae.getClass())
8: c.value.first += ae.minMultiplicity()
9: c.value.second += +ae.maxMultiplicity() . if multiplicity is * then 0 is returned

10: obj
p

 {}
11: for < entry : c

d

iff > do
. the following if statements updates first and second values to ensure that we create at least

1 of
each missing object

12: if entry.value.first = 0 then entry.value.first 1

13: if entry.value.second = 0 then entry.value.second entry.value.first

14: obj
p

 obj
p

[Create(entry.key,Any([Sequence{c.value.first()..c.value.second())}])
. See Section 7.3 for notes on Create() and Any()

15: return obj
p

Algorithm 6 Create Potential Associations

1: function CreatePotentialAssociations(om: ObjectModel, assoc : Association)
2: init(seq) . seq is initialised to Sequence < Sequence < Object >>
3: i 1
4: for c : Class 2 assoc.getClasses() do
5: seq[i] om.getObjects(c).asSequence()
6: i += 1

7: Try(assoc, seq[1], .., seq[n]) . 1’s based indexing assumed
8: return om

Algorithm 7 Cleanup Object Model - Delete Unused Potential Objects

1: function CleanUp(om : USEObjectModel, o
p

: Set < Object >)
2: om Delete(o

p

� om.getAssociations().getAssociationEnds.getObjects()))
. See Section 7.3 for notes on Delete()

3: return om

94

7.6 Examining Object Models

Suppose, in our analysis of the Alloy model, conformance fails and gives us the counterexample in

Figure 7.15. We see that while the Query$0 was executed with a DeIDed access ticket, we are barred

from downloading its result, i.e., the VDAllowed relation links Query$0 with DownloadDisabled$0. Further

examination of the counterexample shows that:

1. downloading the query’s results is disabled because DataItem$3, whose DataValue is Date$1, has not

been (properly) de-identified, this is highlighted using the blus dashed line;

2. DataItem$3 was derived from DataItem$5, i.e., the edge from Query$0 to DataItem$5 shows that the

qryReturns relations links these instances with DataItem$3) ; and

3. other return data (DataItem$0, DataItem$1, and DataItem$2) have been derived from DataItem$4,

i.e., shown on the edges from Query$0 to DataItem$4, but these have been properly de-identified.

While the user executing the query may be disappointed/inconvenienced that the results of the query are

not available, the system owners/administrators will be relieved that conformance according to the DeIDed

access ticket has been demonstrated (verified). However, the system administrator will be concerned that

this scenario occurred and should investigate. HMCA’s next step will allow the administrator to examine

object models along the path to the non-conformance to try to determine the reason that DataItem 3 ’s

DataValue is returned identified.

Recall that we identified an equivalent class model for the counterexample as slice 5 (S5) in Figure 7.14;

we now show this slice as a separate class model in Figure 7.16. While only the object model is shown to

the user, we include the class model as a reference and note that this too may be included in the on-demand

feedback to give a further context for each object model. Following Algorithm 2, Convert Alloy Instance to

USE UML Object Model, we construct its equivalent object model in Figure 7.17.

This object model contains all the instances of the signatures and relations in the Alloy counterexample.

The failure is circled by a blue dashed line. Beyond showing that conformance was violated, this object model

is not helpful in identifying why conformance fails. Therefore, we ask the system to give us the previous slice

in which the query was executed. The slice in which the query was executed was identified as slice 4 (S4) in

95

9
6

F
ig
u
re

7
.1
5
:
A
ll
oy

A
n
a
ly
ze
r
C
o
n
fo
rm

a
n
ce

C
o
u
n
te
re
x
a
m
p
le

in
S
li
ce

5

9
7

D
at

a

Ac
ce

ss
Ti

ck
et

D
at

e
da

y
: I

nt
eg

er
m

on
th

 :
In

te
ge

r
ye

ar
 :

In
te

ge
r

is
Id

en
tif

ie
d(

) :
 B

oo
le

an
is

N
ot

Id
en

tif
ie

d(
) :

 B
oo

le
an

D
at

aI
te

m
na

m
e

: S
tri

ng

Q
ry

D
at

a

St
at

us

Q
ry

R
et

ur
ns

R
et

D
at

a
D

St
r

sV
al

 :
St

rin
g

Q
ue

ry

do
w

nl
oa

d(
)

vi
ew

()

D
ow

nl
oa

dA
llo

w
ed

D
eI

D
ed

D
ow

nl
oa

dD
is

ab
le

d

Id
en

tif
ie

d

Pr
oj

ec
t

Pe
rm

is
si

on

1
D

at
aV

al
ue

s
*

0.
.1

En
te

re
dO

n
*

0.
.1

Pr
oj

ec
tA

T

*

*
Pr

oj
ec

tQ
ue

rie
s

*
0.

.1
VD

Al
lo

w
ed

*

*

*

*

F
ig
u
re

7
.1
6
:
C
la
ss

M
o
d
el

fo
r
S
li
ce

5

9
8

F
ig
u
re

7
.1
7
:
N
o
n
-C

o
n
fo
rm

a
n
ce

O
b
je
ct

M
o
d
el

fo
r
S
li
ce

5

Figure 7.13; we show it as a separate class model in Figure 7.18 and outline the class model elements that

overlap with the class model for slice 5 (in Figure 7.16). We use Algorithm 3, Extract Overlapping Objects,

to extract the overlapping objects and links from Figure 7.17, i.e., the objects and links that are instances

of the overlap of the slices highlighted in Figure 7.18. We then pass the class model in Figure 7.18 and the

object model returned from Algorithm 3 to Algorithm 4, Complete Feedback, to generate an object model

satisfying Figure 7.18. Note that for representing the Alloy counterexample as an object model we made a

change to how dates are presented.

In Alloy a de-identified date is one that has a value for year, but does not have a value for neither day

nor month. In OCL we modelled a de-identified date as having a non-zero year, day = 0 and month = 0.

We then add the required instances of the other model elements to satisfy the constraints of slice 4. We

show this object model in Figure 7.20 and use a grey shading to highlight the objects and links that overlap

with the objects and links in the object model for slice 5. We also outline and label the failure using a blue

dashed line/ font and that show the data that have been correctly de-identified using a red dashed line/font.

We identified in the previous slice (slice 5) that the return data derived from DataItem 4 were properly

de-identified. We can therefore use this as the starting point to try to account for why this de-identification

was successful. We see that the setup of links ensures that DataItem 4 will be transformed by the DeIDed 0

access ticket, i.e., from DataItem 4 we navigate:

1. the DICat link to the HDate1 category that shows that DataItem 4 is correctly categorised;

2. the ARTransforms link from HDate1 to the TransformsHDate1 access rule that shows that the correct

transformation rule is linked;

3. the ARAppliesTo link from TransformsHDate1 to the Individual1 type that shows that individual

HDate instances, i.e. HDate1, are designated to be transformed; and

4. the PermRules link from TransformsHDate1 to the DeIDed 0 access ticket to ensure that the project’s

access ticket applies the TransformsHDate1 access rule.

Since the links we have seen are consistent with what we expect for de-identification, the user will (now)

check if these corresponding links also exist for DataItem 5 (as a way to possibly understand why data

99

1
0
0

F
ig
u
re

7.
18
:
C
la
ss

M
o
d
el

fo
r
S
li
ce

4
O
u
tl
in
in
g
O
ve
rl
a
p
p
in
g
M
o
d
el

E
le
m
en
ts

in
S
li
ce
s
5
a
n
d
4

derived from it were not properly de-identified). Our object model shows that it has not be categorised as an

HDate and observe that all the other data items whose data values are dates have been correctly categorised.

This is definitely an explanation for the non-conformance. The missing link that shows the fault is drawn

into Figure 7.20 using a green dashed line and labeled with the same colour font.

At this point we may request the system to show us the previous slice so we may investigate other reasons

for the non-conformance. An object model for slice 3, where the DeIDed 0 access ticket was approved for

Project 1, is shown next. It is constructed in a similar way as was described for constructing the object

model for slice 4. We show it in Figure 7.21 also highlighting in grey the overlapping object model elements

with slice 4 (the extracted class model is shown in Figure 7.19).

We do not identify any problems with the objects and links in this object model that could cause the

non-conformance shown in Figure 7.17. However, yet another step may be that the user requests to see an

object model with all the slices merged. We show this in Figure 7.22. In it there is further confirmation

that there is nothing in the overlaps of slice 3, 4, and 5 that could cause the non-conformance. Therefore,

we return to the previous object model for slice 4 to devise our next steps. These steps include examining

the OCL constraints to identify why DataItem 5 was not also categorised as an HDate.

Our specification shows that no constraint enforces that every DataItem that is a Date to be categorised

as an HDate, i.e., this system model leaves such categorisation to the discretion of the system administrator

even though HIPAA mandates it. To ensure that we can always pass the conformance checks, we add a

constraint to the OCL system model specification to ensure that all dates are categorised as HDate. The

constraints providing the fix must be added to both the USE and the Alloy specifications. Re-executing the

conformance check in the Alloy Specifications should now show no counterexamples. However, if we have a

counterexample, the previous investigation we performed on the object models gives us assurance that the

problem may be in the actual de-identification of the data and not in the system configuration represented

by the class model and constraints.

101

1
0
2

F
ig
u
re

7.
19
:
C
la
ss

M
o
d
el

fo
r
S
li
ce

3
O
u
tl
in
in
g
O
ve
rl
a
p
p
in
g
M
o
d
el

E
le
m
en
ts

in
S
li
ce
s
4
a
n
d
3

1
0
3

F
ig
u
re

7.
20
:
N
on

-C
on

fo
rm

an
ce

O
b
je
ct

M
o
d
el

fo
r
S
li
ce

4
Id
en
ti
fy
in
g
F
a
il
u
re

a
n
d
th
e
F
a
u
lt
.
(o
ve
rl
a
p
p
in
g
o
b
je
ct
s
w
it
h
S
li
ce

5
a
re

h
ig
h
li
g
h
te
d
)

1
0
4

F
ig
u
re

7.
21
:
O
b
je
ct

M
o
d
el

fo
r
S
li
ce

3
(o
ve
rl
a
p
p
in
g
o
b
je
ct
s
w
it
h
S
li
ce

4
a
re

h
ig
h
li
g
h
te
d
)

1
0
5

Slic
e 3

Fa
ilu

reSlic
e 5

Slic
e 4

F
ig
u
re

7.
22
:
M
er
ge
d
O
b
je
ct

M
o
d
el

fo
r
S
li
ce
s
3,

4
,
a
n
d
5
.
S
li
ce

3
is
o
u
tl
in
ed

b
y
th
e
p
u
rp
le

d
a
sh
ed

li
n
e,

S
li
ce

4
is
o
u
tl
in
ed

b
y
th
e
b
lu
e
d
a
sh
ed

li
n
e,

S
li
ce

5
is

ou
tl
in
ed

b
y
th
e
gr
ee
n
d
as
h
ed

li
n
e,

an
d
th
e
F
a
il
u
re

is
o
u
tl
in
ed

b
y
th
e
ye
ll
ow

d
a
sh
ed

li
n
e.

7.7 Summary

Non-conformance represents the failure of the system in the verification of rules and the validation of user

and external agency expectations. We have demonstrated that when non-conformance occurs, the object

models can be useful to a domain expert as a starting point into their investigation of the error state that

led to the failure. We have previously discussed in Chapter 1 how enforcing rules requires us to examine the

details of our system. Thus, the modelling and analysis at the granularity of the class and object models on

data fields is crucial.

While the object models are useful, in system like the NJH system it is not unrealistic for a query to

examine 10 million fields and to return results from 10 thousand of them. Further still, we know from a

human computer interface point of view, it is not feasible to show an object model with all 10 thousand

fields! Therefore, future research may include examining the scale of such object models and identifying

some semantics for what the feedback shown to the user should contain to make it usable, i.e., slicing the

feedback. For example, while we examined date fields to demonstrate non-conformance on individual fields,

there are other rule-parts regarding de-identification as discussed in Section 3.4.

One way to slice the feedback may be to first identify which parts of the rule were not satisfied leading

to the non-conformance and then to show only those objects and links relating to those rule parts. We may

further slice the object models by each (non-satisfying) rule part, and if the object model it still too large,

return a sample of the fields exhibiting the non-conformance. This proposed slicing of the object model

can be used to reduce the cognitive overload to the user and make the feedback more usable. In addition

to slicing, any request for previous slices must also use the rule part of predecessor slice so that the object

and links generated have the appropriate context and overlap. We will discuss additional verification and

validation of HMCA in Chapter 8.

106

8. VALIDATING HMCA

8.1 Introduction

In general, HMCA is designed to encode and analyse rules to tell us when non-conformance occurs. One

way to apply HMCA is to follow a step-wise process, i.e., for each rule 1) construct models of the system and

the rule, 2) analyse rule, 3) examine the feedback where non-conformance occurs, and 4) fix the system. So

far, we have used this step-wise process to analyse conformance of our example system, NJH, to the HIPAA

de-identified access rule, i.e., when a DeIDed access ticket is used the results of a query are de-identified. In

this chapter, we demonstrate:

1. additional validation through error seeding - first through a logic error in a rule and second through

incomplete analysis of indirect relationships; and

2. that these seeded errors correspond to real-world problems - the logic error causes non-conformance to

the previously verified HIPAA de-identified access rule and the second causes conflicts of interest.

For seeding the errors, we analyse two new scenarios not yet explained in our discourse. First we add

querying using the Identified access ticket, and show that even though we have not changed our specifications

for the DeIDed access ticket, non-conformance is detected. Second, we revisit conflicts of interest by adding

new information on how data collectors may conflict with researchers and show that non-conformance is also

detected due to underspecification in our system.

We discuss the identified access ticket to the HIPAA conformance rule in Section 8.2, the conflicts of

interest as both a decision rule for all access tickets and as a NJH conformance rule in Section 8.3, and end

this chapter with a summary in Section 8.4.

8.2 Adding a New Parts to HIPAA Conformance Rule: Exposing Faulty Logic

8.2.1 Updating Conformance Rule for the Identified Access Ticket

One of the decision rules used for granting a DeIDed access ticket is that the researchers indicate that

only totally de-identified data can be used. In this case we say that the access rule implies that the data

107

requires a TotallyDeIDed data transform. For an Identified access ticket, the researchers are required to

indicate whether they:

1. must have all of their data identified, which requires a TotallyIDed data transform; or

2. can use de-identified data, which allows the data to be either identified or de-identified. Here we say

that a AllowDeIDed data transform is required.

In the case of the AllowDeIDed the project’s data source, e.g., a previous project, may already or only

contain de-identified data, and rather than exclude it in the query result, the researchers are willing to use

it.

With the inclusion of the Identified access ticket, showing conformance to the HIPAA regulations now

has three required parts based on the access ticket type and the required data transformation such that:

1. (DeIDed ^ TotallyDeIDed) ! no date returned is identified1;

2. (IDed ^ TotallyIDed) ! no date returned is de-identified ; and

3. (IDed ^ AllowDeIDed) ! any date returned is identified or de-identified.

To show conformance for the DeIDed access ticket we did not require using TotallyDeIDed as a part of the

rule, because a well formed model meant that only the DeIDed access ticket had this condition. Therefore

it was su�cient to use

DeIDed ! no date returned is identified

in the conformance rule. This meant that the projectDataTransformRequired association outlined by the

red dashed line in Figure 8.1 was not required in slice 5 (See Figure 7.16) to show conformance for the

DeIDed access ticket. (Note that the subtypes of DataTransform have been updated from the subtypes

shown in figures 7.9 through 7.14 and Figure 7.19 where we replace NotTotallyDeIDed with AllowDeIDed

and add TotallyIDed to have the meanings as discussed above.) However, because the Identified access

ticket has two alternatives for the data transform, showing conformance requires that we now include the

projectDataTransformRequired association in slice 5. We show an updated slice 5 in Figure 8.2 to include

the projectDataTransformRequired association outlined by the red dashed line.

1Recall that an identified date means that in addition to a value for the year, the date has a value for the day or month
and de-identified means that it only has a value for the year.

108

1
0
9

F
ig
u
re

8.
1:

U
p
d
at
ed

C
la
ss

M
o
d
el

fo
r
S
li
ce

3
O
u
tl
in
in
g
P
ro
je
ct
D
at
aT

ra
n
sf
or
m
R
eq
u
ir
ed

A
ss
o
ci
a
ti
o
n
N
ow

R
eq
u
ir
ed

in
S
li
ce

5

1
1
0

F
ig
u
re

8.
2:

U
p
d
at
ed

C
la
ss

M
o
d
el

fo
r
S
li
ce

5
w
it
h
th
e
N
ow

R
eq
u
ir
ed

P
ro
je
ct
D
at
aT

ra
n
sf
or
m
R
eq
u
ir
ed

A
ss
o
ci
a
ti
o
n
R
eq
u
ir
ed

to
C
h
ec
k
C
o
n
fo
rm

a
n
ce

Listing 8.1: HIPAA Conformance Specifications: VDAllowed is set

all
njh: NJH, q: njh.queries |

let
p = njh.projectQueries.q,
pdtr = p.(njh.projectDataTransformRequired),
a = some pdtr & TotallyIDed implies totallyIDedTransform[njh, q],
b = some pdtr & TotallyIDed implies not totallyIDedTransform[njh, q],
c = some pdtr & AllowDeIDed iff allowDeIDedTransform[njh, q],
d = some pdtr & TotallyDeIDed implies totallyDeIDedTransform[njh, q] ,
e = some pdtr & TotallyDeIDed implies not totallyDeIDedTransform[njh, q] | {

/** Query results are downloadable */
some q->DownloadAllowed & njh.VDAllowed implies

((a and not b) or (d and not e) or c)

/** Query results are not downloadable */
some q->DownloadDisabled & njh.VDAllowed implies

((not a and b) or (not d and e)
) }

8.2.2 Alloy Specifications

Suppose2 we use the Alloy predicate in Listing 8.1 to update the conformance status of a query, i.e., the

query status in VDAllowed3. We ensure that the query status is correctly set to DownloadAllowed using

some q->DownloadAllowed & njh.VDAllowed implies

((a and not b)or (d and not e)or c)

to mean that a query has a DownloadAllowed status in VDAllowed if it is true that:

1. its associated project requires a TotallyIDed data transform and all the dates returned are identified,

i.e., a and not b; or

2. its associated project requires a TotallyDeIDed data transform and all the dates returned are de-

identified, i.e., d and not e; or

3. its associated project requires a AllowDeIDed data transform and the dates returned are either iden-

tified or de-identified, i.e., c.

2By “suppose” we mean a fault is seeded here.
3The ”VD” in VDAllowed is for Viewing or Download of query results.

111

Listing 8.2: Helper Predicates used to Check Conformance

private fun applicableDates(njh: NJH, q: Query): set Date {
{ Date &

dom[q.(njh.qryReturns)].(njh.dataValues) +
dom[q.(njh.qryReturns)].(njh.enteredOn) }}

private pred totallyIDedTransform (njh: NJH, q: Query) {
all d: applicableDates[njh, q] | identifiedDate[d]}

private pred totallyDeIDedTransform (njh: NJH, q: Query) {
all d: applicableDates[njh, q] | not identifiedDate[d]}

private pred allowDeIDedTransform (njh: NJH, q:Query) {
all d: applicableDates[njh, q] | identifiedDate[d] or not identifiedDate[d]}

We also ensure that the query status is correctly set to DownloadDisabled using:

some q->DownloadDisabled & njh.VDAllowed implies

((not a and b)or (not d and e))

that sets up an XOR situation for a query status. This formulation means that a query has a DownloadDis-

abled status in VDAllowed if it is true that:

1. its associated project requires a TotallyIDed data transform and some date is returned that is de-

identified, i.e., not a and b; or

2. its associated project requires a TotallyDeIDed data transform and some date is returned that is

identified, i.e., not d and e.

Listing 8.1 makes reference to other predicates, i.e., totallyIDedTransform[njh, q], allowDeIDedTransform[njh,

q] and totallyDeIDedTransform[njh, q], and we include them in Listing 8.2.

In order to check that we have not over constrained the model we (use predicates to) generate instances

of the model for all 5 conditions, i.e., a to e, in Listing 8.1 where we ensure that the query has the expected

status in VDAllowed. For example when both clauses of a are true the query has a DownloadAllowed status

and when both clauses of b are true the query has a DownloadDisabled status. We generate instances and

this gives us assurance that we have done it right.

The next step is to check conformance. For example, to ensure that a query that should not have a

DownloadAllowed status, indeed cannot, we use the Alloy snippet below:

112

some p.(njh.projectDataTransformRequired)& TotallyIDed and

some q->DownloadAllowed & njh.VDAllowed and (

some p.(njh.projectDataTransformRequired)& TotallyIDed implies

all r: applicableDates[njh, q] | identifiedDate[r])

in an assertion to check that a query q whose associated project p requires a TotallyIDed data transform

does not have de-identified dates in its result. HMCA detects non-conformance because the assertion finds

a counterexample.

8.2.3 Examining Feedback Object Models

We request feedback and we are shown the object model in Figure 8.3 where we see that DataItem 0,

DataItem 1 and DataItem 2 show a conformance failure for the Identified access ticket requiring a Total-

lyIDed data transform because their associated dates are de-identified. When a similar assertion is executed

for the DeIDed access ticket, it also returns a counterexample. The feedback from this is shown in Figure

8.4 where we see that DataItem 3, shows a conformance failure for the DeIDed access ticket requiring a

TotallyDeIDed data transform because its associated date is identified.

While not necessarily a part of feedback because there is no conformance failure, we include Figure 8.5,

when there is an Identified access ticket and the data transform required is AllowDeIDed. We note that the

figures 8.3, 8.4 and 8.5 use the same set of DataItems yet it is the access ticket and the data transforms that

tells us whether conformance rules have been violated or not.

Since the DeIDed access ticket also shows non-conformance and we know that in Section 7.6 we verified

that the status in VDAllowed was being set correctly for the DeIDed access ticket, it must be that there is

a fault in the way we set the status for each query in Listing 8.1.

8.2.4 Understanding Why Non-Conformance Occurs

Inspection of the predicate reveals that the statement

c = some pdtr & AllowDeIDed implies allowDeIDedTransform[njh, q]

in Listing 8.1 is causing the conformance failures. The fault is now obvious, i.e., the use of implies in the

statement is the faulty connector.

113

1
1
4

F
ig
u
re

8.
3:

N
on

-C
on

fo
rm

an
ce

in
S
li
ce

5
w
h
en

a
n
Id
en

ti
fi
ed

A
cc
es
s
T
ic
ke
t
is

u
se
d
a
n
d
a
T
ot
al
ly
ID

ed
D
a
ta

T
ra
n
sf
o
rm

is
R
eq
u
ir
ed

1
1
5

F
ig
u
re

8.
4:

C
on

fo
rm

an
ce

in
S
li
ce

5
w
h
en

a
n
D
eI
D
ed

A
cc
es
s
T
ic
ke
t
is

u
se
d
a
n
d
a
T
ot
al
ly
ID

eD
ed

D
a
ta

T
ra
n
sf
o
rm

is
R
eq
u
ir
ed

1
1
6

F
ig
u
re

8.
5:

C
on

fo
rm

an
ce

in
S
li
ce

5
w
h
en

a
n
Id
en

ti
fi
ed

A
cc
es
s
T
ic
ke
t
is

u
se
d
a
n
d
a
n
A
ll
ow

ID
ed

D
a
ta

T
ra
n
sf
o
rm

is
R
eq
u
ir
ed

The use of implies is appropriate for both DeIDed with a TotallyDeIDed data transform and Identified

with a TotallyIDed data transform, i.e.,

a = some pdtr & TotallyIDed implies totallyIDedTransform[njh, q]

and

d = some pdtr & TotallyDeIDed implies totallyDeIDedTransform[njh, q]

respectively, because these were not the only access tickets that allowed de-identified or identified dates.

We note that we could also use i↵ as the connector for the clauses in a and d, i.e., using

a = some pdtr & TotallyIDed iff totallyIDedTransform[njh, q]

and

d = some pdtr & TotallyDeIDed iff totallyDeIDedTransform[njh, q]

yet this neither cause changes in the instances we expected for the TotallyIDed and the TotallyDeIDed data

transformations nor HMCA finding non-conformance when their associated access tickets are used.

However, further analysis shows that it is indeed correct to use implies because using i↵ excludes the

AllowDeIDed transform from having dates that only contain all identified dates or all de-identified dates.

Therefore the AllowDeIDed transform would only contain a mixture of identified and de-identified dates to

get a DownloadAllowed status because the i↵ mandates that only the TotallyIDed data transform to contain

identified dates and the TotallyDeIDed data transform to contain de-identified dates.

In the case of Identified with an AllowDeIDed data transform, this was the only access ticket that allowed

both de-identified or identified dates to co-exist in the data it returns and still show conformance. Also,

using implies as the connector means that we have no specification about (the converse of) what status a

query should have if it has both identified and de-identified dates.

Therefore, for the clauses in c, i↵ is the required connector. We show the correct formulation below:

c = some pdtr & AllowDeIDed iff allowDeIDedTransform[njh, q]

This correction still allows us to generate instances for a to e in Listing 8.1 and yet produce no counterex-

amples for the conformance checks. The complete Alloy specification, including the correction of the fault,

is in Appendix D.1.2.

117

8.3 Adding a New NJH Conformance Rule: Identifying Conflict of Interest Situations

For our discussion in this section, we will make reference to these specific instances of the classes from

Figure 8.6:

1. DC, the person collecting the data from a ClinicalDB to be returned in a project query, is the Personnel

we reach by navigating the ProjectDataCollector association from the Project class;

2. PI, the principal investigator for a project, is the Researcher we reach by navigating the ProjectPI

association from the Project class;

3. PMs, the researchers for a project, are the Researchers we reach by navigating the ProjectMembers

association from the Project class;

4. Sup, the supervisor of another person, is the Personnel we reach by navigating the Supervisors asso-

ciation from the Personnel class; and

5. Sources are the DataSources we reach by navigating the ProjectSources association from the Project

class. Sources can be the ClinicalDB (the NJH’s DB) or other projects. In the case of the latter, we

assume that the project has made queries of its own and augmented the NJH with additional data, so

both the original data and the additional data are considered as the “sources”.

When a project requires data from a ClinicalDB, a DC must be assigned to the project to extract the

data from the database on behalf of the project. Since the DC, PI and PM ’s for a project are all drawn from

the same pool of Personnel and to prevent conflict of interest situations, there are some basic conditions

that must be true to get a project’s application for an access ticket approved. For a project (with respect to

Personnel) there should be:

1. no overlap in PI and PM ; and

2. no overlap in DC and (PI + PM).

These conditions have already been incorporated into slice 3 (see Figure 7.19) as the NoOverlapPITeamDC

DecisionRule for approving access tickets and to ensure that there are no violations. However, an examination

118

1
1
9

Ac
ce
ss
Ti
ck
et

D
at
aS
ou
rc
e

C
lin
ic
al
D
B

Pe
rm
is
si
on

Pe
rs
on
ne
l

Fi
sh
in
g

R
es
ea
rc
he
r

Li
ce
nc
e

Pr
oj
ec
t* D
at
aA

cc
es
sA
gr
ee
m
en
t

*

0.
.1

Pr
oj
ec
tA
T

*

0.
.1

Pr
oj
ec
tD
at
aC

ol
le
ct
or

*

*
Pr
oj
ec
tM
em

be
rs

*

0.
.1

Pr
oj
ec
tP
I

*

*
Pr
oj
ec
tS
ou
rc
es

*

0.
.1

R
es
ea
rc
he
rL

*

*

Su
pe
rv
is
or
s

*

F
ig
u
re

8.
6:

P
ar
ti
al

C
la
ss

D
ia
g
ra
m

S
li
ce

ex
tr
a
ct
ed

fr
o
m

S
li
ce

3
S
h
ow

in
g
P
er
so
n
n
el

R
el
a
ti
o
n
sh
ip
s
in
fl
u
en
ci
n
g
A
cc
es
s
T
ic
ke
t
A
p
p
ro
va
l

of the instances where an access ticket has been approved shows some other kinds of conflict of interest

situations with respect to the DC, PI, and PM s for a project. We use HMCA to detect these situations by

including a conformance rule that they should not exist.

Instead of using object diagrams to show instances of the situations, we will use the instances given by the

Alloy Analyzer because they show the direction of the relationships where the former does not. For example,

both the DataAccessAgreement and the ProjectSources in Figure 8.6 involve self relationships on the Project

class. In an object diagram, unless we show the role names at each association end, we cannot know how

to understand the links between objects. Showing the role names in addition to association names on the

object diagrams causes too much clutter for the size of the object diagrams required. Instead, the Alloy

Analyzer provides a better visualisation by showing the domain and range of a relationship4 (association)

by using directed edges. We will see these instances in figures 8.7 to 8.15. Note that the:

1. Alloy Analyzer instances shown will be partial instances of Slice 3 as depicted in Figure 8.6 where we

remove the elements not applicable to checking and showing the conflicts of interest; and

2. black dashed lines with labeled annotations in these instances were not generated by the Alloy Analyzer,

but were added manually to aid the reader in finding the example being described, e.g., the line labeled

“Project” on the upper right of Figure 8.7

In the following subsections we discuss 4 conflict of interest situations. The first involve supervisory

relationships and the others arise because a project can use another project as one of its Sources.

8.3.1 DC Conflict of Interest Case 1

The first situation is where the project’s PI is the Sup for the project’s DC. Using the Alloy partial

instance in Figure 8.7 as an example, we see that Project2 has an approved access ticket, shown by the

projectAT: Identified label inside the project’s ellipse, yet the PI, Personnel5, supervises its DC, Personnel0.

We note that this supervisory relationship does not have to be a direct one, i.e., the supervisory relationship

between the PI and the DC may be deeply nested.

4Since we already use Sources to describe the data source for a project, we wish to avoid confusion by saying source and
destination of a relationship (association), so we use the language of relations/functions, i.e., substitute domain for source and
range for destination.

120

1
2
1

P
I

D
at

a
C

o
lle

ct
o

r

Su
pe
rv
is
or

P
ro

je
ct

F
ig
u
re

8.
7:

D
C

C
on

fl
ic
t
of

In
te
re
st

P
ro
je
ct
’s

P
I
su
p
er
v
is
es

P
ro
je
ct
’s

D
C

:
P
ro
je
ct
2
’s

P
I
P
er
so
n
n
el
5
d
ir
ec
tl
y
su
p
er
v
is
es

it
s
D
C

P
er
so
n
n
el
0.

In general, detecting these deeply nested relationships requires the use of closure operations. An example

of the indirect supervisory relationship is shown in Figure 8.8, where Project1 ’s PI Personnel1 supervises

its DC Personnel0.

8.3.2 DC Conflict of Interest Case 2

The second situation is where the project’s PI is the Sup for the DC s on any of the project Sources.

Using the Alloy Analyzer partial instance in Figure 8.9 as an example, we see that Project2 has an approved

access ticket, yet its PI, Personnel1, supervises the DC, Personnel3 for Project0, a Source for Project2. The

conflict of interest still exists if the supervisory relationship is indirect or if the Source is indirect. We show

examples of these indirect cases with the Alloy Analyzer partial instances in Figure 8.10 and Figure 8.11.

In the former figure we see that Project3 has an approved access ticket, yet its PI, Personnel3, supervises

Personnel0, the DC for Project1, an indirect Source, through Project0, for Project3. In the latter figure we

see that Project3 has an approved access ticket, yet its PI, Personnel1, indirectly supervises Personnel2, the

DC for Project1, an indirect Source, also through Project0, for Project3.

8.3.3 DC Conflict of Interest Case 3

The third conflict of interest situation arises when a project’s PI is the DC for any of the project Sources.

Using the Alloy partial instance in Figure 8.12 as an example, we see that Project2 has an approved access

ticket, yet its PI Personnel2 is the same as the DC for Project0, a Source for Project2. The conflict of

interest still exists if the supervisory relationship is indirect or if the Source was indirect. We show an

example of this with the Alloy Analyzer partial instance in Figure 8.13 where we see that Project3 has an

approved access ticket, yet its PI, Personnel1 is the same as the DC for Project1, an indirect Source for

Project3.

8.3.4 DC Conflict of Interest Case 4

The final conflict of interest situation arises because the project’s PM s overlap with the DC for one of

the project’s Sources. Using the Alloy partial instance in Figure 8.14 as an example, we see that Project2

has an approved access ticket, yet one of it its PM ’s Personnel2 is the same as the DC for Project0, a Source

122

1
2
3

P
I

D
at

a
C

ol
le

ct
o

r

D
ir

e
ct

 S
u

p
e

rv
is

o
r

P
ro

je
ct

In
di

re
ct

 S
up

er
vi

so
r

F
ig
u
re

8.
8:

D
C

C
on

fl
ic
t
of

In
te
re
st

P
ro
je
ct
’s
P
I
in
d
ir
ec
tl
y
su
p
er
v
is
es

P
ro
je
ct
’s
D
C

:
P
ro
je
ct
1
’s
P
I
P
er
so
n
n
el
1
in
d
ir
ec
tl
y
su
p
er
v
is
es

it
s
D
C

P
er
so
n
n
el
0.

1
2
4

Su
pe
rv
is
or

P
ro

je
ct

D
at

a
C

ol
le

ct
o

r

So
u

rc
e

P
I

F
ig
u
re

8.
9:

D
C

C
on

fl
ic
t
of

In
te
re
st
,
S
u
p
er
v
is
io
n
o
f
P
ro
je
ct
’s

D
ir
ec
t
S
o
u
rc
e’
s
D
C

b
y
P
ro
je
ct
’s

P
I
:
P
ro
je
ct
2

h
a
s
S
ou

rc
e
P
ro
je
ct
0,

a
n
d
P
ro
je
ct
2
’s

P
I,

P
er
so
n
n
el
1,

su
p
er
v
is
es

P
ro
je
ct
0
’s

D
C
,
P
er
so
n
n
el
3.

1
2
5

P
ro

je
ct

D
at

a
C

ol
le

ct
o

r

So
u

rc
e

P
I

In
di

re
ct

 S
ou

rc
e

Su
pe
rv
is
or

F
ig
u
re

8.
10
:
D
C

C
on

fl
ic
t
of

In
te
re
st
,
S
u
p
er
v
is
io
n
o
f
P
ro
je
ct
’s

In
d
ir
ec
t
S
o
u
rc
e’
s
D
C

b
y
P
ro
je
ct
’s

P
I
:
P
ro
je
ct
3

h
a
s
in
d
ir
ec
t
S
ou

rc
e
P
ro
je
ct
1

a
n
d

P
ro
je
ct
3
’s

P
I
P
er
so
n
n
el
3
d
ir
ec
tl
y
su
p
er
v
is
es

P
ro
je
ct
1
’s

D
C

P
er
so
n
n
el
0.

1
2
6

P
I

D
at

a
C

ol
le

ct
o

r

D
ir

ec
t

Su
pe

rv
is

o
r

P
ro

je
ct

In
di

re
ct

 S
up

er
vi

so
r

D
ir

ec
t

So
ur

ce

In
di

re
ct

 S
ou

rc
e

F
ig
u
re

8.
11
:
D
C

C
on

fl
ic
t
of

In
te
re
st
,
In
d
ir
ec
t
S
u
p
er
v
is
io
n
o
f
P
ro
je
ct
’s

In
d
ir
ec
t
S
o
u
rc
e’
s
D
C

b
y
P
ro
je
ct
’s

P
I
:
P
ro
je
ct
3

h
a
s
in
d
ir
ec
t
S
ou

rc
e
P
ro
je
ct
1

an
d
P
ro
je
ct
3
’s

P
I
P
er
so
n
n
el
1
in
d
ir
ec
tl
y
su
p
er
v
is
es

P
ro
je
ct
1
’s

D
C

P
er
so
n
n
el
2.

1
2
7

D
at

a
C

o
ll

e
ct

o
r

So
u

rc
e

F
ig
u
re

8.
12
:
D
C

C
on

fl
ic
t
of

In
te
re
st
,
P
ro
je
ct
’s

D
ir
ec
t
S
ou

rc
e
’s

D
C

is
th
e
sa
m
e
a
s
th
e
P
ro
je
ct
’s

P
I
:
P
ro
je
ct
2

h
a
s
a
S
ou

rc
e
P
ro
je
ct
0,

a
n
d
P
ro
je
ct
2
’s

P
I
P
ro
je
ct
0
’s

D
C

ar
e
th
e
sa
m
e,

P
er
so
n
n
el
2.

1
2
8

P
ro

je
ct

 D
ir

e
ct

 S
o

u
rc

e

 In
di

re
ct

 S
ou

rc
e

D
at

a
C

o
lle

ct
o

r

P
I

F
ig
u
re

8.
13
:
D
C

C
on

fl
ic
t
of

In
te
re
st
,
P
ro
je
ct
’s

In
d
ir
ec
t
S
ou

rc
e
’s

D
C

is
th
e
sa
m
e
a
s
th
e
P
ro
je
ct
’s

P
I
:
P
ro
je
ct
3
h
a
s
in
d
ir
ec
t
d
a
ta

so
u
rc
e
P
ro
je
ct
1,

ye
t

P
ro
je
ct
3
’s

P
I
is

th
e
sa
m
e
as

P
ro
je
ct
1
’s

D
C

P
er
so
n
n
el
1.

1
2
9

P
ro

je
ct

P
ro

je
ct

M

e
m

b
er

D
at

a
C

ol
le

ct
o

r

So
u

rc
e

F
ig
u
re

8.
14
:
D
C

C
on

fl
ic
t
of

In
te
re
st
,
P
ro
je
ct
’s

P
I
is

th
e
sa
m
e
a
s
th
e
D
C

fo
r
o
n
e
o
f
it

D
ir
ec
t
S
ou

rc
es
:
P
ro
je
ct
2

h
a
s
a
S
ou

rc
e
P
ro
je
ct
0

a
n
d
o
n
e
o
f

P
ro
je
ct
2
’s

P
M
s
P
ro
je
ct
0
’s

d
at
a
co
ll
ec
to
r
ar
e
th
e
sa
m
e,

P
er
so
n
n
el
2.

for Project2. The conflict of interest still exists if the supervisory relationship is indirect or if the Source was

indirect. We show an example of this with the Alloy Analyzer partial instance in Figure 8.15 where we see

that Project3 has an approved access ticket, yet its one of it PM ’s, Personnel2 is the same as the DC for

Project1, an indirect Source for Project3.

8.3.5 Eliminate DC Conflicts of Interest

In order to eliminate these conflict of interest situations from the system, we must:

1. update the NoOverlapPITeamDC DecisionRule in Figure 8.16 with the third and fourth situations so

that there is never an overlap among the PI, DC, and PM s;

2. add a new DecisionRule NoSupsInPIandDC in Figure 8.16 for the first and second situations so that

a PI never supervises the DC for any of its Sources and include this rule in the approval for an access

ticket; and

3. update the conformance rule in the Alloy specifications with these four additional situations to the to

ensure that there are no violations.

Figure 8.16 shows the new and updated DecisionRules highlighted using the red dashed line. The com-

plete Alloy specifications for slice 3, including the new and updated the decision rules, and NJH conformance

rule, is in Appendix D.1.1.

8.4 Summary

We have shown two ways faults are commonly introduced into specifications and that HMCA uncovers

the faults by showing conformance failures.

The first fault covers errors in logic that may arise because some specific logic connectors, i.e., implies

and its stronger form i↵, are not well understood. This fault is interesting because, while we showed that

our specifications were correct with respect to the DeIDed access ticket in Chapter 7, when we extended

our analysis to include the Identified access ticket and its two associated data transformations, there was

non-conformance for the DeIDed access ticket. This non-conformance existed even though the specifications

pertaining to the DeIDed access ticket remained the same.

130

1
3
1

 In
di

re
ct

 S
ou

rc
e

D
at

a
C

o
lle

ct
o

r

 D
ir

ec
t

So
ur

ce

P
ro

je
ct

P
ro

je
ct

 M
em

be
r

F
ig
u
re

8.
15
:
D
C

C
on

fl
ic
t
of

In
te
re
st
,
P
ro
je
ct
’s

P
I
is

th
e
sa
m
e
a
s
th
e
D
C

fo
r
o
n
e
o
f
it

In
d
ir
ec
t
S
ou

rc
es
:
P
ro
je
ct
3

h
a
s
in
d
ir
ec
t
S
ou

rc
e
P
ro
je
ct
1,

a
n
d

on
e
of

P
ro
je
ct
3
’s

P
M

s
is

th
e
sa
m
e
as

P
ro
je
ct
1
’s

D
C

P
er
so
n
n
el
2.

1
3
2

F
ig
u
re

8.
16
:
U
p
d
at
ed

S
li
ce

3
w
it
h
D
ec
is
io
n
R
u
le
s
fo
r
C
o
n
fl
ic
t
O
f
In
te
re
st

S
it
u
a
ti
o
n
s
O
u
tl
in
ed

b
y
th
e
R
ed

D
o
tt
ed

li
n
e

An insight for this logic fault is that when more than one access tickets require the same data trans-

formation, there needs to be a careful and intentional examination of whether the relationship between the

access ticket together with the required data transformation and the format of the resulting data is a:

1. one-way relationship and in such a case implies is applicable, i.e., the former requires the latter, but

the latter does not require the former; or

2. two-way relationship and in such a case i↵ is applicable, i.e., the former requires the latter, and the

latter also requires the former.

In the NJH System this consideration is not only applicable to the DeIDed and the Identified access

tickets, but it is applicable to other access tickets since some require similar transformations to those already

discussed. For example, the Coded access ticket (see Section 3.4 for an explanation) mandates that some data

that is returned by queries be TotallyIdentified and others, under a new data transformation, be indirectly

identifiable. In this case the (new) Coded access ticket allows an Identified data transformation and we must

evaluate whether the parts of the conformance rule in Listing 8.1 still holds when we add clauses for the new

access ticket.

The second fault we discovered concerns a common way that specifications are incomplete: indirect

relationships among objects are missed. Essentially, these missed relationships are transitions in the NFA

rule representation (see sections 6.2 and 5.1.3) that should lead to an accepting state (non-conformance),

yet are not specified to do so in the Alloy specifications. These indirect relationships can only be uncovered

by computing all the ways objects can be related, i.e., computing relationship closures.

We note that we may refine these conflict of interest situations caused by indirect relationships further.

For example, an organisation like the NJH may run into problems because satisfying conflict of interest

conformance rules may require an increase in the number of personnel when the number of approved projects

is increased. For example, a DC on one project can only take on the role of a researcher for another non-

conflict of interest (directly and indirectly) project. If the DC has a conflict of interest with all the current

projects, then other new personnel are required for this DC to take on the role of, say, a PI on a new

project. However, acquiring new personnel may not be possible because of budgetary or other constraints.

One solution for this is to include in the specifications the idea of project lifetimes, and specify conflicts of

133

interest where project lifetimes overlap. Here, the work of [16, 83] that formalises overlapping lifetimes in

whole-part relationships would be pertinent in understanding the ways projects lifetimes may overlap.

Validating HMCA is as important step is showing that conformance failures can be detected for some

common types of faults. The addition of the Identified access ticket required that we add to the specifications

model elements for data transformations and associate them with the appropriate access tickets. This increase

of model elements did not significantly a↵ect the conformance analysis. Another way to validate HMCA is to

evaluate larger model slices due to, not just an increase in associations among current model elements, but

an increase due to adding new classes and associations among new and older model elements. For this we will

augment the NJH system with rules for protected populations, specifically children protected populations,

in Chapter 9.

134

9. APPLYING HMCA TO CHILDREN AS PROTECTED POPULATIONS IN THE NJH

9.1 Introduction

HIPAA regulations mandate that sharing information on protected populations, such as children, preg-

nant women, foetuses and neonates, and prisoners must include additional protections over the kinds of

protections allowed by a given access ticket. In this chapter we expand our model of the NJH system to

include the HIPAA regulations as rules for the protection of children. The specific changes include:

1. an organisation’s Institutional Review Board (IRB) is required to also consider rules that govern the

use of children in research when approving access tickets; and

2. where approval has been given, additional rules give the conditions under which such data may be

accessed.

We have chosen to model the rules governing access to data for children as this is important to the NJH due

to the sensitive nature of accessing data for children. We discuss the HIPAA regulations concerning children

and how they are realised in our model in Section 9.2 and a summary that includes a discussion on why our

specification of the children protected population helps us to be able to extend the specification for other

protected populations in Section 9.3.

9.2 Requirements for Protecting Children in the HIPAA Regulations

The HIPAA regulations for protected populations in [69] stipulate that when an IRB approves proposals

for research, they must implement these additional protections for children included in research:

1. quantify the risk to the children such that if the risk is too great then no approval is issued to conduct

the research; and

2. when approval is given:

(a) to specify required additional assent from each child and consent from the parent, guardian, or

the ward organisation responsible for the child; and

135

(b) to require that children who are wards be assigned an advocate who is not connected in any way

to the research or the ward organisation.

We have updated the overall class model to include new model elements to capture the requirements for the

children protected population. Recall that in chapters 7 and 8 we discussed that an access ticket is approved

in slice 3 and queries are executed in slice 4. We have therefore re-sliced the overall model and will discuss

Item 1 as it applies to slice 3 in Section 9.2.1 and Item 2 as it applies to slice 4 in Section 9.2.2.

9.2.1 Approving Access Tickets to Use Children Protected Populations

Figure 9.1 shows the new slice 3 that now supports approving access tickets requiring the use of children.

The additional elements are enclosed using red dashed lines and annotated using grey shaded circles numbered

1 through 6. The following list of numbered items correspond to the numbered circles:

1. the ProjectSpecialResearch association is used by the project to indicate that the project application

for an access ticket includes access to the protected populations indicated. Currently, only the Children

protected population is supported, however, the model is set up to allow extending the SpecialSubject

class with other populations.

2. the ProjectSpecialResearchApproval association records the IRB’s decision on whether to grant the

project approval to use the special populations requested by the project. We use the Allow class to

indicate that approval has been given and the DisAllow class to indicate the approval has not been

given. Each decision must be accompanied by an indication of the risk exposure represented by the

ResearchRisk class: an approval is indicated by any of the ChildrenResearchRisk subclasses except the

RiskNotAllowed that is reserved for decisions that are not approved.

3. the IRBMembers association indicates the members of the IRB. It is important to include this associ-

ation in our model because the applying DecisionRule in Item 4b below requires it.

4. the PermRules association includes a new and an updated DecisionRule for issuing an access ticket:

(a) the SpecialResearchApproved is a new DecisionRule that checks that all special populations indi-

cated in Item 1 have approval in Item 2 before a project’s access ticket can be approved; and

136

1
3
7

Ne
w

 C
la

ss
es

 a
nd

 A
ss

oc
ia

tio
ns

 to
 Su

pp
or

t C
hi

ld
re

n
as

 P
ro

te
ct

ed
 P

op
ul

at
io

n

Ne
w

 a
nd

 U
pd

at
ed

De

cis
io

n
Ru

le
s t

o
Su

pp
or

t
Re

se
ar

ch
 U

sin
g

Ch
ild

re
n

as
 P

ro
te

ct
ed

 P
op

ul
at

io
n

1

2

3

4

5

6

F
ig
u
re

9.
1:

U
p
d
at
ed

C
la
ss

M
o
d
el

fo
r
S
li
ce

3
S
u
p
p
o
rt
in
g
C
h
il
d
re
n
a
s
a
P
ro
te
ct
ed

P
o
p
u
la
ti
o
n
(n
ew

cl
a
ss

m
o
d
el

el
em

en
ts

o
u
tl
in
ed

b
y
th
e
d
a
sh
ed

re
d

li
n
es
)

(b) NoOverlapPITeamDCIRB is an updated DecisionRule (previously NoOverlapPITeamDC) to now

include that no IRB member is allowed to be a part of the project team1.

5. if no applicable DecisionRule is violated, the project may be approved its access ticket application -

a link between a project and an access ticket in the ProjectAT association records this. For example,

the following set of object models for Figure 9.1 highlight important scenarios when we may approve

or not approve an access ticket for a project:

(a) Figure 9.2 is an object model that shows that Project 1 ’s access ticket is approved as no Decision-

Rule is violated (see annotation numbered 5). In this example, we note that the IRB has indicated

that there is a DirectBenefit to the children and has therefore approved the request for Project 1

to use children in their research (see numbered association 3). In addition, no IRBMember has

a conflict of interest with the project, i.e., the personnel in association numbered 3 have no links

with any of the personnel associated with the project.

(b) Figure 9.3 is an object model that shows that Project 1 ’s access ticket cannot be approved because

the IRB indicated that the risk was too great (see annotations numbered 2 and 5);

(c) Figure 9.4 is an object model that shows that Project 1 ’s access ticket cannot be approved because

the IRBMember, Personnel1 is the project’s DataCollector (follow annotation numbered 3 from

Personnel1 along the ProjectDataCollector association link to Project 1); and

(d) Figure 9.5 is an object model that shows that Project 1 ’s access ticket cannot be approved because

the IRB indicated that the risk was too great because the access ticket applied for is the DeIDed

access ticket (see annotations numbered 3 and 5).

6. the ProjectConsentAssentReq association is required for all approved decisions in the ProjectSpecial-

ResearchApproval association. The IRB uses this association to indicate whether each child and/or

parent/guardian/ward organisation are required to give assent or consent respectively for the child’s

data to be used by the project. We see an example of this in Figure 9.2 where the IRB has indicated

1As with checking the conflict of interests for the old NoOverlapPITeamDC rule explained in sections 8.3.2, 8.3.3, and
8.3.4, the updated rule must check for direct and indirect linkages of an IRBMember through the closure of the ProjectSources
associations.

138

that Project 1 must get explicit assent and consent from the child and the parent/guardian/ward or-

ganisation of the child respectively as a precondition for including the child’s data in their research

(see annotations numbered 6).

9.2.2 Executing Queries With Access Tickets Approved for Children Protected Popula-

tions

In order to execute queries where a project uses protected populations, elements of the class model

for approving an access ticket for children must be used. Specifically, we need to include the associations

numbered 1, 3, and 6 from Figure 9.1. We show in Figure 9.6 the class model elements from slice 3 that

overlap in slice where we execute a query for a project requiring the use of children.

Figure 9.7 shows the re-sliced slice 4 that now supports executing queries with access ticket for projects

requiring the use of children. The additional elements are enclosed in the shaded region outlined by the red

dashed line and grey shaded circles numbered 1 and 3 through 13. Note that the numbered annotations 1

and 3 through 6 are the same associations from slice 3 in Figure 9.1. The following list of numbered items

correspond to the numbered circles:

1. We have already given an explanation for the ProjectSpecialResearch association in Section 9.2.1, Item

1. This association is needed so that we know when a project is allowed to access specific protected

populations.

2. This association and corresponding annotation are not required in slice 4.

3. We have already given an explanation for the IRBMembers association in Section 9.2.1, Item 3. Though

this association is not explicitly required in slice 4, we include it because of potential conflict of interest

situations that can arise. We will return to this discussion in Section 9.2.2.1.

4. Instead of DecisionRules as discussed in Section 9.2.1, Item 4, the PermRules association now links to

AccessRules. Here, we include four new access rules to support the children protected population. In

order to explain the rules, we use object models that are instances of Figure 9.7 in figures 9.8 through

9.12 to highlight examples where children data may be accessed because no AccessRule is violated

139

1
4
0

5

2

1

4

3

4 4

5

6
6

F
ig
u
re

9.
2:

S
li
ce

3
O
b
je
ct

M
o
d
el

fo
r
ap

p
ro
ve
d
Id
en

ti
fi
ed

a
cc
es
s
ti
ck
et

fo
r
P
ro
je
ct

1
u
si
n
g
a
ll
D
ec
is
io
n
R
u
le
s
(s
ee

a
n
n
o
ta
ti
o
n
5
).

A
ls
o
to

u
se

th
e
d
a
ta

fo
r
th
e
ch
il
d
re
n
p
ro
te
ct
ed

p
op

u
la
ti
on

,
ea
ch

ch
il
d
a
n
d
p
a
re
n
t/
g
u
a
rd
ia
n
/
w
a
rd

o
rg
a
n
is
a
ti
o
n
o
f
th
e
ci
ld

m
u
st

g
iv
e
ex
p
li
ci
t
a
ss
en
t
a
n
d
co
n
se
n
t
re
sp
ec
ti
v
el
y

(s
ee

an
n
ot
at
io
n
n
u
m
b
er
ed

6)
.
N
u
m
b
er
ed

an
n
ot
a
ti
o
n
s
co
rr
es
p
o
n
d
to

a
ss
o
ci
a
ti
o
n
s
so

n
u
m
b
er
ed

in
F
ig
u
re

9
.1

a
n
d
ex
p
la
in
ed

in
S
ec
ti
o
n
9
.2
.1
.

1
4
1

5

1

2

4

3

F
ig
u
re

9.
3:

S
li
ce

3
O
b
je
ct

M
o
d
el

fo
r
U
n
ap

p
ro
ve
d
,
i.
e.
,
ca
n
n
o
t
b
e
a
p
p
ro
ve
d
,
Id
en

ti
fi
ed

a
cc
es
s
ti
ck
et

fo
r
P
ro
je
ct

1
u
si
n
g
n
ew

D
ec
is
io
n
R
u
le
s
b
ec
a
u
se

th
e
IR

B
h
as

d
et
er
m
in
ed

th
at

R
is
kN

ot
A
ll
ow

ed
.
N
u
m
b
er
ed

a
n
n
o
ta
ti
o
n
s
co
rr
es
p
o
n
d
to

a
ss
o
ci
a
ti
o
n
s
so

n
u
m
b
er
ed

in
F
ig
u
re

9
.1

a
n
d
ex
p
la
in
ed

in
S
ec
ti
o
n

9.
2.
1.

1
4
2

1

2

3

4
5

4

F
ig
u
re

9.
4:

S
li
ce

3
O
b
je
ct

M
o
d
el

fo
r
u
n
ap

p
ro
ve
d
,
i.
e.
,
ca
n
n
o
t
b
e
a
p
p
ro
v
ed
,
Id
en

ti
fi
ed

a
cc
es
s
ti
ck
et

fo
r
P
ro
je
ct

1
u
si
n
g
n
ew

D
ec
is
io
n
R
u
le
s
b
ec
a
u
se

o
f

a
co
n
fl
ic
t
of

in
te
re
st
:
P
er
so
n
n
el
1
is
an

IR
B
M
em

be
r
a
n
d
th
e
P
ro
je
ct
D
at
aD

ol
le
ct
or

fo
r
P
ro
je
ct

1.
N
u
m
b
er
ed

a
n
n
o
ta
ti
o
n
s
co
rr
es
p
o
n
d
to

a
ss
o
ci
a
ti
o
n
s
so

n
u
m
b
er
ed

in
F
ig
u
re

9.
1
an

d
ex
p
la
in
ed

in
S
ec
ti
on

9
.2
.1
.

1
4
3

1

2

3

4

5

F
ig
u
re

9.
5:

S
li
ce

3
O
b
je
ct

M
o
d
el

fo
r
U
n
ap

p
ro
ve
d
,
i.
e.
,
ca
n
n
o
t
b
e
a
p
p
ro
ve
d
,
D
eI
D
ed

A
cc
es
s
T
ic
k
et

fo
r
P
ro
je
ct

1
u
si
n
g
N
ew

D
ec
is
io
n
R
u
le
s
b
ec
a
u
se

a
D
eI
D
ed

ac
ce
ss

ti
ck
et

ca
n
n
ot

b
e
u
se
d
to

ac
ce
ss

p
ro
te
ct
ed

p
o
p
u
la
ti
o
n
s.

N
u
m
b
er
ed

a
n
n
o
ta
ti
o
n
s
co
rr
es
p
o
n
d
to

a
ss
o
ci
a
ti
o
n
s
so

n
u
m
b
er
ed

in
F
ig
u
re

9
.1

an
d
ex
p
la
in
ed

in
S
ec
ti
on

9.
2.
1.

1
4
4

Ov
erl

ap
pin

g E
lem

en
ts f

or
Slic

es
3 a

nd
 4 e

nc
los

ed
 by

 re
d d

ash
ed

lin

e,
exc

lud
es

sha
de

d a
rea

s

F
ig
u
re

9.
6:

C
la
ss

M
o
d
el

E
le
m
en
ts

fr
o
m

S
li
ce

3
O
ve
rl
a
p
p
in
g
in

S
li
ce

4
(o
u
tl
in
ed

b
y
th
e
d
a
sh
ed

re
d
li
n
e)

1
4
5

4

1

3

5

7 8

9

10

N
ew

 C
la

ss
e

s
a

n
d

 A
ss

o
ci

at
io

n
s

to
 S

u
p

p
o

rt
 C

h
il

d
re

n
 a

s
P

ro
te

ct
e

d
 P

o
p

u
la

ti
o

n

6

11

12

10
10

10

13

F
ig
u
re

9.
7:

U
p
d
at
ed

C
la
ss

M
o
d
el

fo
r
S
li
ce

4
S
u
p
p
o
rt
in
g
C
h
il
d
re
n
a
s
P
ro
te
ct
ed

P
o
p
u
la
ti
o
n
:
n
ew

el
em

en
ts

o
u
tl
in
ed

b
y
th
e
d
a
sh
ed

re
d
li
n
e

and where children data may not be accessed because at least one AccessRule is violated. We list the

examples here:

(a) No violation of access rules: we show in Figure 9.8 where Query 0 successfully accesses the data

for Patient2 because none of the access rules have been violated. Since we have not yet discussed

the AccessRules, our intention is presenting this first is for comparison with the violations of

access rules explained in items 4b through 4e and depicted in figures 9.9 to 9.12 below.

(b) Violation scenario 1: the ChildAssentAndResponsibilityConsent rule only allows access to a child’s

data if the assent/consent as required in the ProjectConsentAssentReq association is present in

the associations numbered 7 and 8 (see items 7 and 8 below for a description of these associations).

For example, Figure 9.9 shows that Query 0 should never have access to Patient2 ’s data because

this patient is a child and has not given assent.

(c) Violation scenario 2: the ChildAdvocateForWardOfState rule requires that a child who is the ward

of any institution have an advocate. For example, Figure 9.10 shows that Query 0 should never

have access to Patient2 ’s data because though they are a ward of WardOrg1 there is no person

assigned as an advocate for them.

(d) Violation scenario 3: the ChildAdvocateNotAssocWithResearchOrWardOrg rule expresses that

there should not be a conflict of interest between the person acting as the advocate for a child and

those associated with the WardOrg to which the child belongs or with those conducting the re-

search. For example, Figure 9.11 shows that Query 0 should never have access to Patient2 ’s data,

a ward of WardOrg1, because while they have an advocate (so rule ChildAdvocateForWardOfState

is not violated), this advocate, Personnel1, is an associate of WardOrg1. Note that there is no

conflict of interest with an advocate also serving as an IRBMember as shown for Personnel1 (see

annotations numbered 11 and 3).

(e) Violation scenario 4: the HideSpecialPopn rule ensures that for the DeIDed access ticket, all

protected population should be inaccessible. For example, Figure 9.12 shows that Query 0 should

never have access to Patient2 ’s data because the access ticket for Project 1, under which Query 0

executes, is DeIDed.

146

5. We have already given an explanation for the ProjectAT association in Section 9.2.1, Item 5. It is

required in slice 4 to know the access ticket for a project.

6. We have already given an explanation for the ProjectConsentAssentReq association in Section 9.2.1

Item, 6. It is required in slice 4 to check the ChildAssentAndResponsibilityConsent AccessRule. An

example of violating this rule has already been discussed in Item 4b above.

7. The ChildParticipationPerm indicates whether the child’s parent/guardian/ward organisation has

given consent for the child’s data to be used in research. This consent is given if the Consent value is

Allow and explicitly refused if the value is DisAllow. The CannotGive consent value is not applicable

to this association.

8. The ChildParticipationAssent indicates whether the child has given assent to be used in research.

This assent is given if the Consent value is Allow, explicitly refused if the value is DisAllow, and in

cases where the child cannot explicitly agree to or refuse to participate in the research, the value is

CannotGive (see Item 13 below for an expansion of this Consent value). In the case of the latter,

the child’s data can also be used in the research if the parent/guardian/ward organisation gives Allow

consent.

9. We include special HIPAA categories for special populations that are used (e.g., HDate) to indicate

that special rules apply to data associated with such categories. Here we include HIPAAChild to

support identifying data that belongs to children. This class is a specialisation of SpecialPopn so that

the model can be extended to support other protected populations.

10. Each patient that is included in a special population is indicated using the SpecialPatient association.

For example, figures 9.8 through 9.9 show that Patient2 is a child (see annotation numbered 10 in the

figures).

11. The ChildAdvocate association is used to link a child to an advocate. This association is important

in the checking of the ChildAdvocateForWardOfState and the ChildAdvocateNotAssocWithResearchOr-

WardOrg access rules as discussed in items 4c and 4d above respectively.

147

12. The WardAssociates association is used to link persons to a ward organisation. This is association

is important in the checking of the ChildAdvocateNotAssocWithResearchOrWardOrg access rule as

discussed Item 4d above.

13. We have included another subclass of Consent because the HIPAA regulations stipulate that while

the child’s assent should be sought, there may be cases when it cannot be given because the child is

incapable of doing so. Therefore, the CannotGive subclass records this and is interpreted as allowing

access to the child’s data.

9.2.2.1 Potential Conflict of Interests Not Considered under HIPAA

While the NoOverlapPITeamDCIRB DecisionRule and the ChildAdvocateNotAssocWithResearchOrWar-

dOrg AccessRule cover specific conflicts of interest among personnel involved in a project and persons as-

sociated with patients in special populations, an examination of the models seen so far shows the potential

for additional situations not explicitly covered under the HIPAA regulations. For example, Figure 9.13

shows that IRBMember, Personnel2, is the parent for Patient2 (see annotations numbered 3 and 7). In this

situation, a potential conflict of interest arises because of the objectivity required by IRBMembers when

approving access tickets for a project. As an extension of this idea, consider the situation where Personnel2

is the PI, DataCollector, or ProjectMember for Project 1. Should Query 0 be allowed to access the data for

Patient2? While our method does not make a decision to restrict access in these scenarios, the exercise of

modelling shows that we can potentially explore these relationships and uncover links not pre-determined to

be problematic. This ability can help organisations avoid conflicts of interest.

9.3 Summary

We have shown how our model supports children as a protected population by extending the overall model

and re-slicing to get new sliced models for slice 3 and slice 4. Additionally, we have discussed situations

under which an access ticket should not be issued and when data should not be accessible even if an access

ticket has been issued under the new rules for these populations. We also showed some areas where HIPAA is

148

1
4
9

10

4

3
3

4

4

4

7
8

66

1

5

F
ig
u
re

9.
8:

O
b
je
ct

M
o
d
el
F
or

S
li
ce

4
sh
ow

in
g
th
a
t
Q
u
er
y
0
co
rr
ec
tl
y
a
cc
es
se
s
a
n
d
re
tu
rn
s
Q
ry
D
at
a2

,
th
e
d
a
ta

fo
r
P
at
ie
n
t2

id
en
ti
fi
ed

a
s
a
H
IP
A
A
C
hi
ld
,

b
ec
au

se
n
o
A
cc
es
sR

u
le

p
ro
h
ib
it
s
ac
ce
ss

(f
o
cu
s
is
o
n
re
la
ti
o
n
sh
ip
s
in

th
e
a
re
a
h
ig
h
li
g
h
te
d
in

ye
ll
ow

).
N
u
m
b
er
ed

a
n
n
o
ta
ti
o
n
s
co
rr
es
p
o
n
d
to

a
ss
o
ci
a
ti
o
n
s

so
n
u
m
b
er
ed

in
F
ig
u
re

9.
7
an

d
ex
p
la
in
ed

in
S
ec
ti
o
n
9
.2
.2
.

1
5
0

1

3

3

5

6

7

10

8

6

F
ig
u
re

9.
9:

A
cc
es
s
D
en
ia
l
S
ce
n
ar
io

1:
(P

ar
ti
al
)
O
b
je
ct

M
o
d
el

fo
r
S
li
ce

4
sh
ow

in
g
th
a
t
Q
u
er
y
0

m
u
st

b
e
d
en
ie
d

a
cc
es
s
to

D
at
aI
te
m
2

b
el
o
n
g
in
g

to
P
at
ie
n
t2

(f
o
cu
s
is

on
re
la
ti
on

sh
ip
s
in

th
e
a
re
a
h
ig
h
li
g
h
te
d

in
ye
ll
ow

).
T
h
is

is
b
ec
a
u
se

th
e
C
hi
ld
A
ss
en

tA
n
dR

es
po
n
si
bi
li
ty
C
on

se
n
t
A
cc
es
sR

u
le

an
d

th
e
P
ro
je
ct
C
on

se
n
tA

ss
en

tR
eq

(s
ee

li
n
e
an

n
o
ta
te
d

w
it
h

6
)
re
q
u
ir
e
th
a
t
P
at
ie
n
t2

g
iv
e
A
ll
ow

a
ss
en
t
to

p
a
rt
ic
ip
a
te

in
th
e
re
se
a
rc
h

-
ye
t
th
e

C
hi
ld
P
ar
ti
ci
pa
ti
on

A
ss
en

t
as
so
ci
at
io
n

li
n
k
to

P
at
ie
n
t2

(s
ee

a
ss
o
ci
a
ti
o
n

a
n
n
o
ta
te
d

w
it
h

8
)
sh
ow

s
D
is
A
ll
ow

.
N
u
m
b
er
ed

a
n
n
o
ta
ti
o
n
s
co
rr
es
p
o
n
d

to
as
so
ci
at
io
n
s
so

n
u
m
b
er
ed

in
F
ig
u
re

9.
7
an

d
ex
p
la
in
ed

in
S
ec
ti
o
n
9
.2
.2
.

1
5
1

1
3

3
5

6

6

8

10

C
hi
ld
Pa
rt
ic
ip
at
io
n
P
er
m

7

F
ig
u
re

9.
10
:
A
cc
es
s
D
en
ia
l
S
ce
n
ar
io

2:
(P

ar
ti
al
)
O
b
je
ct

M
o
d
el

fo
r
S
li
ce

4
sh
ow

in
g
th
a
t
Q
u
er
y
0

m
u
st

b
e
d
en
ie
d
a
cc
es
s
to

D
at
aI
te
m
2

b
el
o
n
g
in
g
to

P
at
ie
n
t2

(f
o
cu
s
is

on
re
la
ti
on

sh
ip
s
in

th
e
ar
ea

h
ig
h
li
g
h
te
d
in

ye
ll
ow

).
T
h
is

is
b
ec
a
u
se

th
e
C
hi
ld
A
dv
oc
at
eF

or
W
ar
dO

fS
ta
te

A
cc
es
sR

u
le

re
q
u
ir
es

th
a
t

P
at
ie
n
t2
,
a
w
ar
d
of

W
ar
dO

rg
1,

b
e
as
so
ci
at
ed

w
it
h
a
n
a
d
v
o
ca
te

th
ro
u
g
h
th
e
C
hi
ld
A
dv
oc
at
e,

y
et

th
is
li
n
k
is
m
is
si
n
g
.
N
u
m
b
er
ed

a
n
n
o
ta
ti
o
n
s
co
rr
es
p
o
n
d

to
as
so
ci
at
io
n
s
so

n
u
m
b
er
ed

in
F
ig
u
re

9.
7
an

d
ex
p
la
in
ed

in
S
ec
ti
o
n
9
.2
.2
.

1
5
2

11

1
3

3
5

10

6

6

8

12

12

7

F
ig
u
re

9.
11
:
A
cc
es
s
D
en
ia
l
S
ce
n
ar
io

3:
(P

ar
ti
al
)
O
b
je
ct

M
o
d
el

fo
r
S
li
ce

4
sh
ow

in
g
th
a
t
Q
u
er
y
0

m
u
st

b
e
d
en
ie
d
a
cc
es
s
to

D
at
aI
te
m
2

b
el
o
n
g
in
g
to

P
at
ie
n
t2

(f
o
cu
s
is
on

re
la
ti
on

sh
ip
s
in

th
e
ar
ea

h
ig
h
li
g
h
te
d
in

ye
ll
ow

).
T
h
is
is
b
ec
a
u
se

th
e
C
hi
ld
A
dv
oc
at
eN

ot
A
ss
oc
W
it
hR

es
ea
rc
hO

rW
ar
dO

rg
A
cc
es
sR

u
le

d
o
es

n
ot

al
lo
w

P
at
ie
n
t2
’s
A
dv
oc
at
e
P
er
so
n
n
el
1
(s
ee

li
n
e
a
n
n
o
ta
te
d
w
it
h
1
1
),
to

b
e
a
ss
o
ci
a
te
d
w
it
h
th
e
in
st
it
u
ti
o
n
th
a
t
h
a
s
re
sp
o
n
si
b
il
it
y
fo
r
P
at
ie
n
t2

(s
ee

li
n
e
an

n
ot
at
ed

w
it
h
12

fr
om

P
er
so
n
n
el
1

an
d
C
hi
ld
P
ar
ti
ci
pa
ti
on

P
er
m

a
n
n
o
ta
te
d
w
it
h
7
).

N
u
m
b
er
ed

a
n
n
o
ta
ti
o
n
s
co
rr
es
p
o
n
d
to

a
ss
o
ci
a
ti
o
n
s
so

n
u
m
b
er
ed

in
F
ig
u
re

9.
7
an

d
ex
p
la
in
ed

in
S
ec
ti
on

9
.2
.2
.

1
5
3

5

F
ig
u
re

9.
12
:
A
cc
es
s
D
en
ia
l
S
ce
n
ar
io

4:
(P

ar
ti
al
)
O
b
je
ct

M
o
d
el

fo
r
S
li
ce

4
sh
ow

in
g
th
a
t
Q
u
er
y
0

m
u
st

b
e
d
en
ie
d
a
cc
es
s
to

D
at
aI
te
m
2

b
el
o
n
g
in
g
to

P
at
ie
n
t2

(f
o
cu
s
is
on

re
la
ti
on

sh
ip
s
in

th
e
ar
ea

h
ig
h
li
g
h
te
d
in

ye
ll
ow

).
T
h
is
is
b
ec
a
u
se

th
e
H
id
eS

pe
ci
al
P
op

u
la
ti
on

A
cc
es
sR

u
le

d
o
es

n
o
t
a
ll
ow

a
D
eI
D
ed

ac
ce
ss

ti
ck
et

(s
ee

li
n
e
an

n
ot
at
ed

w
it
h
5)

to
ac
ce
ss

p
ro
te
ct
ed

p
o
p
u
la
ti
o
n
s.

N
u
m
b
er
ed

a
n
n
o
ta
ti
o
n
s
co
rr
es
p
o
n
d
to

a
ss
o
ci
a
ti
o
n
s
so

n
u
m
b
er
ed

in
F
ig
u
re

9.
7
an

d
ex
p
la
in
ed

in
S
ec
ti
on

9.
2.
2.

1
5
4

10

1
3

5
6

6

8

3

7

F
ig
u
re

9.
13
:
P
ot
en
ti
al

C
on

fl
ic
t
of

In
te
re
st
:
(P

a
rt
ia
l)

O
b
je
ct

M
o
d
el

fo
r
S
li
ce

4
sh
ow

in
g
th
a
t
th
e
p
a
re
n
t
o
f
P
at
ie
n
t2
,
P
er
so
n
n
el
2

(s
ee

a
ss
o
ci
a
ti
o
n

an
n
ot
at
ed

w
it
h
7)

is
an

IR
B
M
em

be
r
(s
ee

li
n
e
an

n
o
ta
te
d
w
it
h
3
).

F
o
cu
s
is

o
n
re
la
ti
o
n
sh
ip
s
in

th
e
a
re
a
h
ig
h
li
g
h
te
d
in

y
el
lo
w
.
N
u
m
b
er
ed

a
n
n
o
ta
ti
o
n
s

co
rr
es
p
on

d
to

as
so
ci
at
io
n
s
so

n
u
m
b
er
ed

in
F
ig
u
re

9
.7

a
n
d
ex
p
la
in
ed

in
S
ec
ti
o
n
9
.2
.2
.

silent and yet our method revealed potential conflicts of interests, as we saw when a parent is an IRBMember.

These may present areas for HIPAA to examine and improve the regulations.

We note that other conflicts of interest such as for the NoOverlapPITeamDCIRB DecisionRule may be

refined. For example, it is usually the case when a conflict of interest arises, the IRBMember may abstain

from contributing to a decision. In this case the system may record which IRBMembers contributed to the

decision for the access ticket and use the NoOverlapPITeamDCIRB DecisionRule to ensure that there is no

conflict with those contributing to a decision.

We modelled the rules only for children as a protected population, yet, as we have discussed in the

sections 9.2.1 and 9.2.2 the model has been carefully presented to allow for extending it to other protected

populations.

In the first instance in Section 9.2.1, we identified that, in general, model elements to support the granting

of access ticket for any protected population are required for:

1. a project to indicate which special populations they require access to;

2. which decision rules applied to which special populations;

3. the IRB’s decision;

4. whether an approval for the project’s request for access to the special populations is required to approve

the access ticket; and

5. when the IRB approves the project’s request to use a specific protected population, whether the project

needs to have the consent of each person in to the protected population for their data to be included

in their research.

In the second instance in Section 9.2.2, we identified that, in general, model elements to support access

to any protected population are required for:

1. identifying those in protected populations;

2. capturing the individual consent of those in protected populations; and

3. access rules that apply to any or specific protected populations.

155

Special relationships may exist for specific protected populations, e.g., children that are wards, that are not

generalisable. Therefore, for each special population there may be specific model elements needed to support

access to that population and these may be added to the model when such are encountered.

We noted in Chapter 8 that increasing the number of rules is another way to validate HMCA. For

example, the increase of model elements for children protected population, specifically the associations

among the Person class, may require a larger scope when analysing the current model slices (see Section 3.1

for our discussion on scope in the Alloy Analyzer) to avoid the conflicts of interest. Since analysis time may

degrade for larger scopes, applying HMCA to the NJH System may use another level of slicing, i.e., slice per

decision rule in order to avoid intractability. Specifying slicing criteria in di↵erent ways is already a feature

of HMCA and a natural extension for dealing with intractability issues.

156

10. HOW TO APPLY HMCA

10.1 Introduction

HMCA is a method to analyse systems for conformance to laws and regulations, i.e., rule conformance

analysis (RCA), where the details required to perform such analysis may make using current model checking

tools intractable. In this dissertation we showed that analysing for conformance is possible without using

large abstractions of data that would hide the details in system data models on which conformance is tested.

Applying HMCA in any domain requires that we first construct models of the system that may start out

as informal models that guide the user to create more precise models of the process and data models that

represent a more mature understanding of the domain. Using these models together with the requirements

of the governing laws and regulations, we construct conformance rules that are used to both test and

extract evidence of conformance adherence or conformance violation. After the construction, HMCA checks

conformance to the rules using slicing of the models to ensure tractable analysis.

The slicing is driven by observing that:

1. separating the data for each process on a path in the process model gives better results in space and

time than handling elements in memory for all the processes along a path; and

2. chaining the results from each process can be used to analyse rules that apply to the path.

Finally, when a path or data is shown to not satisfy a rule, we may highlight the entire path or isolate the

process or data elements that caused the non-conformance.

This approach identifies the three phases of HMCA: 1) construct precise models for process, data, and

conformance rules, 2) analyse conformance rules by slicing to decompose the analysis steps, re-composing

the results in a form required by a model checker, and checking the result for conformance to the rules, and

3) providing feedback where rules cannot be satisfied.

Except for slicing that has been automated, our application of HMCA to the NJH system has been a

manual process. The purpose of this chapter is to describe how a user may go about applying HMCA. We

start by looking at HMCA in general by outlining its prerequisites in Section 10.2. Next, we outline for each

157

phase 1) the prerequisites, 2) the steps to follow, 3) a discussion highlighting where the e↵ort may be purely

manual or can be automated, and 4) any requirements for tool support or applicable tools. We outline these

in sections 10.3 through 10.5.

We note that this chapter is not meant to explain our theoretical proposal for HMCA. Such treatment

may be found in Chapter 6 and should be used either as a prerequisite or co-requisite to this chapter.

10.2 Overall Prerequisites for Applying HMCA

The prerequisite for the general application of HMCA is a good understanding of model checking tech-

niques especially as explained in the first four chapters of Baier and Katoen[14]. The focus should be on:

1. understanding why model checking may give intractable results - this will help the user to determine

whether HMCA is a solution for RCA in their application domain; and

2. how to use and interpret:

(a) a program graph (PG) as a model of the operations and data under analysis;

(b) non-deterministic finite automata (NFA) as representations of rules to be analysed; and

(c) a transition-system (TS) as evidence of actual operations and data states in the PG.

Each phase will have additional pre-requisites, and we outline them in the applicable subsections.

10.3 Construction Phase

The models in the construction phase may be categorised into 3 categories: process models, data model,

and rule representation. The process models are activity models and entity views. The data model is the

class model. The rule representation uses non-deterministic finite automata (NFA).

10.3.1 Prerequisites

The prerequisites for the construction phase of HMCA include a good understanding of:

1. UML models, specifically activity, class, and state machine models.

158

2. how to use OCL specifications to augment a class model with additional constraints, operation speci-

fications, and queries;

3. how the semantics of a state machine may allow it to be linked to an activity model, i.e., how each

operation in the former may be linked to a segment of the latter;

4. how the semantics of a state machine may allow it to be linked to a class model, i.e., how each abstract

state in the former may be mapped to a concrete state that is a segment of the latter; and

5. NFAs, specifically how to identify and use accepting states as evidence of non-conformance.

10.3.2 Steps

10.3.2.1 Step 1: Construct UML Activity Model

A UML activity model is the beginning process model used in HMCA. From it we gain understanding of

the activities that are important in the domain and how each activity impacts other activities. Of note in

creating the activity model is that we must ensure that all possible values for decision nodes are modelled.

This allows us to gain full understanding of all the possible paths in the system, we call this a completeness

requirement.

We also note that an activity model may be large and complex, so we may construct it at a high level of

abstraction and allow for activities to have nested activity models of the details of its internal flows. This

analysis may continue for many levels of nesting. Whether or not this nesting is used, all the activity models

and their associated elements have visibility within HMCA and can be linked to other models.

10.3.2.2 Step 2: Construct UML Class Model

A UML class model is the data model used in HMCA. In it we provide abstractions for the data that is

required to understand the domain. In addition to classes, associations among classes, and the multiplicity

constraints on the associations, we use OCL to add additional constraints not specifiable using the associa-

tions alone. The level of detail required in the class model is that of a design-level class model that includes

operations with their pre-and post conditions specified using OCL. Constructing the class model may be

iterative, i.e., we may return to update the class model after or during any of the steps in the construction

159

phase, as we consider the details needed to support the activities and decisions in the activity and other

models.

10.3.2.3 Step 3: Construct Individual Entity Views

We use UML state machine models to construct the entity views. Recall that an entity view represents

how an entity interacts with the system and does so using a subset of the activities in the activity model.

We therefore construct the state machine for an entity by identifying its:

1. abstract states and operations;

2. start and final states; and

3. adding edges among the states that are labelled with guards and operations that support advancing

to the next state.

The completeness requirement mentioned for activity models in Section 10.3.2.1 also applies to state ma-

chines. Completeness ensures that an entity can move to the final state in a state machine without being

permanently held up in an intermediate state. Alternatively, fulfilling the completeness requirement may

mean we denote states as a final state where the values for variables in the guards exiting the state do not

contain all the possible values that may be encountered. At this stage we have an unlinked individual entity

view.

Since the operations and states we mention here are abstractions for segments in the activity and class

models, constructing the entity views also involves providing traceability between the entity views and these

models such that:

1. each operation, op
i

, is linked to:

(a) an activity model segment, am
op

, which represents the concrete part of the system that implements

it; and

(b) a class model segment, cm
op

, which contains the elements included in its pre- and post conditions.

2. states are linked to:

160

(a) a class model segment, cm
s

; and

(b) activity model segments am
s

where it is used or decided;

3. variables used in the guards are linked to a concrete representation, cm
v

, which is a segment of the

class model; in addition, we specify how to extract the value of the variables from the cm
v

.

The same name for an operation, state, or variable and its associated values used in more than one entity

view represents the same element, therefore, once we link an item in one entity view, it is also linked to the

other entity views in which it is mentioned. We call the entity view that now has traceability to the activity

and data models a linked individual entity view.

10.3.2.4 Step 4: Construct NFA Rules

Each conformance rule is represented as a NFA. The NFA uses the operations and states from the

individual entity views created in Section 10.3.2.3 to specify conditions for advancing through the states.

The careful construction of the rule means that we must:

1. identify accepting states; and

2. ensure that the condition, constructed using operations and states from the individual entity views

leading to the accepting state, cannot also lead to non-accepting states.

10.3.2.5 Step 5: Generate RSEV and MRSEV

The final step in the construction phase is to create rule-specific entity views. We will create both a

simple (more abstract) rule specific entity view (RSEV) and mapped (more concrete) rule-specific entity

view, (MRSEV) for each rule.. They are generated by:

1. identifying the individual entity views created Section 10.3.2.3 that are required to check each rule;

and

2. composing these entity views into a single rule-specific entity view.

From Chapter 6, recall that this composing relies on the individual entity views having common edges, i.e.,

when edges are labelled with the same operation, we may separately combine all the guards and next states

161

using the logical or operator to create a single guard and a single state. The RSEV is created from the

unlinked individual entity views, and the MRSEV is created from the linked individual entity views.

This makes the RSEV a more abstract representation that may be useful for sharing information with

non-technical users. In model checking terms, the MSREV is the program graph we will use in analysis. We

create traceability between the rules and their associated individual entity views, RSEV, and MRSEV by

creating links among them. We note that a rule-specific entity view may be linked to more than one rule.

Of course, the linking of the individual entity views to the activity and class model segments also achieves

the linking of the the rule-specific entity views to these models as well.

10.3.3 Automation and Tool Support

The construction phase is mostly manual, yet we require a workbench where all the models can be

supported in the same tool. While tools exists to create one or more of the UML models used in HMCA (by

the same tool), no such tool exists that support our procedure to augment the activity and state machine

models to maintain traceability among the models. We have therefore identified the requirements for tool

support in the construction phase of HMCA below:

1. graphing functionality : since the models used are essentially graphs, we need functionality such as

those provided by the Eclipse Modelling Framework to create and maintain these graphs;

2. OCL language support : we may use the functionality provided by the USE tool or an alternate way to

include OCL specifications in the class model;

3. extracting linked model segments: while linking the models as described in the steps of the construction

phase in Section 10.3.2 is a manual process, the extraction of the applicable model segment may be

automated.

162

10.4 Analysis Phase

10.4.1 Prerequisites

The prerequisites for the analysis phase of HMCA include a good understanding of:

1. slicing as a technique to decompose specifications into smaller pieces in a bid to speed-up analysis; in

the context of HMCA the benefit of slicing is to eliminate intractable analysis in model checking;

2. the similarities in the semantics of UML class models and Alloy models that allow the former to be

represented as the latter;

3. the Alloy language and the Alloy Analyzer for writing and executing queries on specifications; and

4. model checking: specifically program graphs, using NFAs, know how program graphs are unfolded into

a transition system, and how to check the satisfaction of an NFA on a transition system.

10.4.2 Steps

10.4.2.1 Step 1: Model Slicing

The first step in the analysis phase is to perform slicing. Recall from Section 6.3 that slicing is used

to obtain tractable analysis in HMCA. A slice is created based on operations. Slicing is performed on the

class model. Therefore, the slicing criteria involves copying all the elements from the class model that an

operation needs into a new class model slice. For HMCA the elements, cm
i

, needed for each op
i

are those

in:

1. cm
op

, for its pre- and post conditions as discussed in Section 10.3.2.3;

2. all the cm
v

’s, for all the variables included in an operation’s guards on all the edges where the operation

is used as discussed in Section 10.3.2.3; and

3. all the cm
s

’s, for all next states that can be entered as discussed in Section 10.3.2.3.

Each cm
i

is a class model segment that is transformed into an equivalent Alloy model, aa
i

. This equivalence

excludes the additional constraints imposed by all the OCL constraints and/or some multiplicity constraints

163

such as those with specific numerical bounds beyond using 0..1, 1, ⇤, or 1..⇤. These additional constraints

must be added manually to the Alloy model, and this is done in the next step. We also create links among

each operation, cm
i

, and aa
i

.

10.4.2.2 Step 2: Alloy Specification and Analysis

We add to the aa
i

:

1. constraints to generate well-formed instances;

2. operation pre- and postconditions (for the operation that the slice represents); and

3. queries that extract the final states of an operation when the operation specification executes.

While we may not need to say much about the first two items, it is important to elaborate more on Item 3.

In order to determine the possible and actual final states of an operation we must add Alloy predicates and

assertions to the Alloy model. We are trying to determine which next states of an operation are possible,

and we must do this for both those that would cause any applicable conformance rule to enter accepting and

non-accepting states. Applicable rules are those rule NFAs that use this operation.

Predicates may be used to query for non-accepting states, i.e., an instance returned shows that the state

can be reached. We must do this for all the ways an accepting state is possible. For example if the clause

a _ (b ^ c)

is the condition for a non-accepting state, then we must ensure that we can generate an instance for each

way that the clause can return true.

While we may also use predicates to query for accepting states, it is best to use an assertion. Assertions

are used to tell us whether certain conditions are ever possible, i.e., Alloy produces a counterexample if the

conditions are possible, and no counterexample if they are not. In terms of the above clause, Alloy returns

a counterexample if it is possible to for the clause to return false.

Alloy generated instances from predicates, and counterexamples from assertions, serve as the evidence of

states occurring. Therefore we must link a state to a predicate or assertion with the understanding that an

instance from the predicate indicates that it is possible, and no counterexample from the assertion indicates

164

it is not possible. In this way we are able to extract from the Alloy specification the final states for an

operation.

10.4.2.3 Step 3: Generating the TS

Since we now know the final states for an operation, we may use these final states to unfold the MSREV

into a transition system. This unfolding is a model checking algorithm that gives the concrete execution

of the MSREV (the program graph). It therefore contains only the reachable states for the possibilities

presented in the MSREV. We link the transition system created to its MSREV. We note the final states for

an operation may apply to more than one MSREVs, and it is possible in HMCA to have partial unfolding

of these until each operation is analysed. In this way, we may analyse only the operations contained in a

single MSREV, and show conformance to its associated rules in a stepwise or iterative manner.

10.4.2.4 Step 4: Check Conformance Rule

An NFA captures the conformance rule in such a way that it is used to detect if any of its accepting states

are present in the transition system. Essentially, it specifies a pattern that is matched against a transition

system. The pattern matching algorithm starts at the first state in the transition system and checks if the

pattern presented in the NFA is able to reach its accepting state. This is how HMCA checks for conformance.

We are guaranteed that if the transition system shows a path to the accepting state it will be found. If any

such path exists, the conformance check returns that the transition system shows rule non-conformance,

otherwise rule conformance is confirmed. Checking conformance is halted when the first accepting state is

encountered and HMCA moves to its feedback stage.

10.4.3 Automation and Tool Support

Most of the complexity in HMCA is in the processing required in the analysis phase. While we have

done the analysis manually, we can achieve automation for the tasks that, given certain inputs, can execute

without additional intervention from the user.

165

10.4.3.1 Manual Tasks

The manual tasks in this phase are to provide:

1. slicing criteria;

2. additional formal specifications in the Alloy model; and

3. linking of predicates from the Alloy model to non-accepting states in applicable rules, and assertions

to accepting states.

10.4.3.2 Automated Tasks

Automation can be realised in:

1. slicing to:

(a) extract a class model slice, cm
i

, for each operation, op
i

, in accordance to the slicing criteria

determined in Section 10.4.3.1;

(b) link the each cm
i

with its associated op
i

;

(c) transform each cm
i

into an equivalent Alloy specification, aa
i

.

2. analyse each aa
i

to extract its final states:

(a) use the Alloy Analyzer to determine the final states possible in each slice; and

(b) since the Alloy Analyzer is a separate tool, we must be able to import the final states of each

operation back into a workbench such as one discussed in Section 10.3.3 in order to construct the

transition system.

3. construct the transition system: organise the final states into a transition system; and

4. check the conformance rule: determine whether the accepting states of the NFA are present in the

transition system or not.

166

Our contributions are slicing and extracting the final states. We note that:

1. our implementation for slicing using operations as the slicing criteria has been developed for HMCA

in the Eclipse environment;

2. the writing and executing of Alloy specifications is also supported in the Eclipse environment;

3. the algorithms of the other tasks, i.e., constructing the transition system and checking conformance,

may also be developed in the Eclipse environment either as a new implementation or relying on libraries

from known model checking tools.

10.5 Feedback Phase

10.5.1 Prerequisites

The prerequisites for the feedback phase of HMCA include a good understanding of:

1. the similarities of the semantics between UML class models and Alloy models that allow an instance

(or counterexample) in the latter to be represented as an object model that is an instance of the former;

and

2. the USE tool with its associated SOIL and ASSL languages for specifying class models and generating

object models respectively.

10.5.2 Steps

10.5.2.1 Step 1: Extract Alloy Counterexample

Since we know the point in the transition system where the non-conformance occurs and the aa
i

where

non-conformance occurs, we may extract the counterexample, aac
i

. We save the aac
i

to an XML represen-

tation using the functionality provided in the Alloy Analyzer.

10.5.2.2 Step 2: Generate UML Object Models

Recall that in the analysis phase we generated an aa
i

from each cm
i

. We use this cm
i

to guide the

creation of an UML object model, omc
i

, from the aac
i

. This creation relies on the correspondence between

167

the semantics of Alloy and class models that allows an instance in the former to be transformed into an

object model of the latter, and vice versa. We note that we will have a one-to-one mapping for the elements

in the aac
i

to the elements in its corresponding omc
i

for both the identifier, attribute values, and type. Since

we have not o↵ered a proof that the aa
i

is equivalent to its associated cm
i

, it is important to have an extra

step to ensure that the omc
i

satisfies its associated cm
i

. If the omc
i

cannot satisfy the cm
i

, we know that

either the elements and/or constraints in the aa
i

or the cm
i

are incorrect and this must be addressed before

continuing.

10.5.2.3 Step 3: On-Demand Feedback

We implemented HMCA to provide feedback to the user in an on-demand fashion. The user may request

to see a progression of omc
i

s that led to the non-conformance. For example, if the non-conformance occurred

in slice cm
i

, from the MSREV we can know the trace of its previous class model slices that led to the non-

conformance observed in cm
i

. This (reverse) trace is the sequence:

< ..., cm
i�2, cmi�1, cmi

>

where each class model previous to cm
i

is called a cm
j

. We generate an object model, omc
j

, that satisfies

each cm
j

, starting from j � 1, in the trace as the user requests. Each omc
j

must contain the overlapping

elements from its (immediate) next omc
j+1 in the above trace.

10.5.2.4 Step 4: Update Models (and Re-Analyse)

A counterexample occurring in a particular state in the transitions system may be a symptom of a fault

that occurs in and is carried over from a previous state. Viewing the object models helps the user to identify

where the fault lies: by identifying a problem in an omc
i

, the links maintained in HMCA give the associated

aa
i

, cm
i

, op
i

, am
op

, and entity views (since we know the rule being analysed). Understanding what changes

are required in the models to show conformance to a rule is the job of the user/domain expert. If any changes

are made, HMCA should be used to re-analyse the conformance rule.

168

10.5.3 Automation and Tool Support

10.5.3.1 Automated Tasks

Automation supports the following tasks to:

1. extract the counter-example into an XML representation;

2. transform the aac
i

to an object model, omc
i

: we use the ASSL and SOIL languages provided in the

USE tool to drive the construction of the object models (see Section 10.5.3.2 for more details) and

once these are created they may be reused; and

3. generate additional object models: we also use the languages in the USE tool to construct these

additional object models (see Section 10.5.3.2 for more details) and once these are created they may

be reused.

While we have used manual steps to convert the aac
i

to the omc
i

, we have implemented procedures to

generate additional object models using the languages mentionned. We note that the Eclipse environment

provides integration of the functionality from both the Alloy Analyzer and the USE tools to accomplish

these tasks.

10.5.3.2 Manual Tasks

In addition to updating models as discussed in Section 10.5.2.4, the major manual task is the implemen-

tation of the algorithm to generate each omc
i

. We outlined the algorithms for generating the feedback in

Section 7.5.

An important guideline for generating each omc
i

is to ensure that the constraints in its corresponding

cm
i

are satisfiable and do not disallow the adding of object and/or links. The algorithms may need extra

tweaking that may not be generalisable, but instead depend on the elements and multiplicity constraints in

each cm
i

. One strategy is to add elements and the constraints that restrict those elements incrementally to

the omc
i

, checking satisfiability of its associated cm
i

with each addition.

For example, using the ASSL language provided in the USE tool to generate the omc
i

, constraints

imposed by multiplicities must be satisfied for adding objects and links among them; if constraints are not

169

satisfied, adding these elements is disallowed. This is because ASSL commands search for a configuration of

objects and links to create that satisfy the constraints. In contrast, using the SOIL language (also provided

for generating object models in the USE tool) does not disallow objects and links that do not satisfy the

multiplicity constraints, but this may result in an omc
i

that does not satisfy its corresponding cm
i

because

multiplicity constraints are violated. However, using SOIL is ideal when converting the initial aac
i

to an

omc
i

because of the one-to-one correspondence between the elements in the models.

In some cases, it may be that the constraints imposed by the multiplicities do not allow for any algorithm

to generate an omc
i

that satisfies its corresponding cm
i

. If this occurs, the only solution is to relax the

multiplicity on the association end in the system class model (constructed in Section 10.3.2.2) such that

we use the most generous multiplicity constraint, i.e., ⇤, and write OCL constraints to enforce the desired

multiplicity. In any of these scenarios, the USE tool allows scrips that can load class models, call ASSL

procedures, execute SOIL commands, load/unload constraints, and check constraints as the user desires.

170

11. INSIGHTS FROM APPLYING HMCA IN THE NJH SYSTEM

In this chapter we o↵er a review of insights that may be helpful when applying HMCA to other application

domains, tools, and complexity management.

11.1 Impact of New Information on Previously Defined Rules

When we add new operations and states to our models, it is important to know whether these new

elements can impact previously defined rules. For example, when we included information about the Identified

access ticket with its two types of required data transformation in Section 8.2, the rule for the DeIDed access

ticket was impacted and this required that we update all the models to account for this new information.

The lesson here is that our specifications may be weakened if we do not consider how new information a↵ects

what we have previously shown to be correct.

11.2 Managing Specification Size Complexity

Our experience has shown that managing the Alloy specifications for each slice and maintaining con-

sistency across specifications is challenging because the specifications themselves may be many pages long

and contain many overlapping elements. For the latter, many mistakes may be introduced because of the

need to repeat certain model elements in di↵erent slices. Therefore, we suggest a continuous refactoring

of the specifications to use the capabilities of both the Alloy Analyzer and the USE tools to first define

specifications incrementally and then to include/import/add them to the specifications for the current slice.

For example, in the Alloy Analyzer, when two slices overlap, we may extract the overlapping elements into a

separate file and use the open command to add them to the specifications for each slice. This functionality

o↵ers a kind of encapsulation to manage the complexity of specifications. The open command as described

is also included in the USE tool.

11.3 Understanding Tool Nuances: Translating Alloy Specifications into OCL Specifications

The analyst must be aware of the di↵erent semantics of each language. These semantics guide what

abstractions are made and how to understand them in the chosen languages. We discuss three such areas

171

Listing 11.1: Defining DataAccessAgreement in Alloy

abstract sig DataSource{}
sig Project extends DataSource{}
sig NJH {

projects: set Project,
...
/* p1->p2 means p1 gives p2 access to data produced by p1 */
dataAccessAgreement: projects -> projects,
... }

Listing 11.2: Defining DataAccessAgreement in the USE for OCL

abstract class DataSource end
class Project < DataSource end
association DataAccessAgreement between

Project[*] role owner
Project[*] role user

end

for understanding: 1) closures, 2) intra-associations, and 3) multiplicities on ternary relations for the speci-

fication languages used in HMCA In our discussions we will use Figure 11.1, a previous (and now outdated)

class model for the NJH system.

11.3.1 Reasoning About Closures

Associations where both the source and the destination are the same class, require that we compute the

association closure to reason about how a class instance relates to itself and to other instances of that class.

For example, let’s take the DataAccessAgreement annotated with A in Figure 11.1. In Alloy this association

is defined as a binary relation and we show this in Listing 11.1. In OCL this is similarly defined in Listing

11.2 using the syntax of the UML Specification Environment (USE) tool. So far we have not encountered

much di↵erence in the specification languages.

Since we know that no project requires a data access agreement with itself, we add a constraint to ensure

that a well-formed model does not contain these self relationships in the DataAccessAgreement association.

In Alloy, this is defined in Listing 11.3 to say that when we compute the closure of the relation, it is irreflexive.

The irreflexive definition is shown in Listing 11.4 and is a part of modules supplied with the Alloy Analyzer.

172

1
7
3

A

B

C

D

F
ig
u
re

1
1
.1
:
C
la
ss

M
o
d
el

fo
r
d
is
cu
ss
in
g
to
o
l
n
u
a
n
ce
s

Listing 11.3: Defining Constraint for DataAccessAgreement in Alloy

sig NJH{...} {
...
/* no project has a data access agreement with itself */
irreflexive[^dataAccessAgreement] }

Listing 11.4: Defining Irreflexive Binary Relations in Alloy

/** r is irreflexive */
pred irreflexive [r: univ -> univ] {

/**
iden contains all reflexive binary associations for the signatures in the model
& is set intersection */
no iden & r }

In USE, the definition of this constraint is defined di↵erently, since we must navigate the relationship to

define its closure. Recall that the roles, i.e., each association end, in the DataAccessAgreement were named

in the OCL definition in Listing 11.2. So, we start at the owner association-end, calculate its closure with

(and by) navigating to the user association-end, and specify that this closure does not contain the owner,

i.e., no self associations. We show this definition in OCL in Listing 11.5.

A comparison with defining the constraint first in Alloy and then in OCL using USE is that:

1. in Alloy we do not need to use navigation to reason about the contents of the association as Alloy

treats the association as a set of 2-tuples and can apply set/relational/functional algebra to reason

about it; this is called set semantics; and

2. translating this constraint to OCL was not as straightforward due to OCL semantics requiring navi-

gation to compute the contents of the association; this is called navigation semantics.

This di↵erence posed a greater challenge when dealing with constraints among associations, discussed below.

Listing 11.5: Defining Constraint for DataAccessAgreement in OCL

context Project
inv invDataAccessAggreement:

owner->closure(user)->excludesAll(owner)

174

Figure 11.2: Supervisors Association in S3

Without su�cient documentation it’s hard to determine the correct usage for a predefined operation. The

OCL operator closure computes the transitive closure of a binary association. To understand the challenge,

consider the Supervisor association shown in Figure 11.2. In order to say that this association should be

acyclic, a common mistake is to say (in OCL) that:

supervised.closure(supervisor)� > excludes(self)

However, on closer inspection, this is incorrect because it does allow loops. In fact, the statement can never

be true because the closure (always) include self because the navigation to check the property starts and ends

at the same place. This mistake may be made because the modeler thinks that both ends of the association

need to be traversed and hence include, both association ends when writing the invariant.

As a (more concrete) example, consider:

Personnel = {p1, p2, p3},

and

Supervisors = {(p1, p2), (p2, p3)}

then while both p1 and p2 have the supervisor role and both p2 and p3 have the supervised role, consideration

should be given to whether p2 that has both roles, could have a cycle. In order to get to p2 we must navigate

to the supervised association end and check if p2 could supervise themselves through the transitive closure

of other supervised traversable from p2.

The corrected invariant is:

supervised.closure(supervised)� > excludes(self)

175

Alternatively, using an equivalent argument as given above for traversing the supervised association end, the

invariant may be expressed using the supervisor association end:

supervisor.closure(supervisor)� > excludes(self)

Both forms are equivalent. Therefore, the closure must traverse along the same association end to correctly

specify the acyclic invariant.

11.3.2 Intra Association Constraints

Typically, when classes are involved in more than one association, there are constraints that a↵ect how

an instance of the class in one association relates to the same instance of the class in another association.

For example, let’s examine the QryWorksOn (B), QryReturns, and RDType associations identified by B,

C, and D respectively in Figure 11.1. QryWorksOn is needed to identify which DataItems are used in a

Query. Since not all instances of DataItem that a query works on are returned, QryReturns (C) shows

which DataItem instances from a Query are actually used to derive data returned by the query. Further,

QryReturns is used to show that some DataItem objects returned may be transformed, i.e. QryData and

RetData are di↵erent with respect to their associated Data. In order to show conformance later on, it is

important to link in QryReturns each RetData (r
i

) in a Query (q) with the set of QryData (qd
i

’s) from

which it was derived. RDType (D) is needed to state whether each RetData returned by a query is computed

from an Individual DataItem or a from Group of DataItem because di↵erent conformance rules may apply

to each type. Implicit in the multiplicities in QryReturns and RDType is that both QryData and RetData

instances could be associated with more than one query.

Here, three constraints are important:

1. (q, qd
i

, r1) 2 QryReturns ! (q, qd
i

) 2 QryWorksOn;

2. every (q, r1) pair found in QryReturns is also in RDType; and

3. if r1 is linked to several qd
i

’s for the same q in QryReturns then

(q, r1, Group) 2 RDType

else

(q, r1, Individual) 2 RDType

176

Listing 11.6: Defining QryReturns and QryWorksOn in Alloy

sig NJH {
...,
dataItems: set DataItem,
queries: set Query,
types: set Type,
...
/* a query can work on any kind of data item */
qryReturns: queries -> dataItems -> dataItems,

/* return data type, has 0or 1type */
RDType: queries -> retItems -> lone types,
... }

Listing 11.7: Defining Constraint for Relationship between QryReturns and QryWorksOn in Alloy

sig NJH{...} {
all

q: queries,
r: retItems |

let
/* QryData linked to r */
qrq = (r.(q.(qryReturns))) {

/* individual type */
some q -> r -> Individual & njh.RDType iff

#qrq = 1

/* group type */
some q -> r -> Group & njh.RDType iff
#qrq > 1 } } }

The first two constraints are relatively easy to write for both Alloy and OCL. Therefore, our focus is on

the third constraint. We’ll hereafter refer to this constraint as c3. For Alloy we show the definition of the

associations in Listing 11.6 and c3 in Listing 11.7. In Listing 11.7 qrq is computed for each (q, r) pair. We

ensure that if #qrq = 1 then the correct Type corresponding to the (q, r) pair in RDType is Individual and

if #qrq > 1 then the correct Type for the pair is Group.

In OCL defining c3 is not as straightforward as in Alloy. For example, given:

1. the definition of the associations in Listing 11.8;

2. with respect to r1, QryReturns contains

{(q1, qd1, r1), (q2, qd1, r1), (q2, qd2, r1), (q3, qd3, r1)}; and

177

Listing 11.8: Definition of Associations for QryReturns, QryWorksOn and RDType in USE

association QryReturns between
Query[*] role qry
RetData[*] role rData
QryData[*] role qData

end

association QryWorksOn between
Query[*] role query
QryData[*] role qryData

end

association RDType between
Query[*] role rd_qry
RetData[*] role rd_data
Type[1] role type

end

3. QryWorksOn = {(q1, qd1), (q1, qd2), (q2, qd1), (q2, qd2), (q3, qd3)}

c3 should ensure that for r1, RDType contains :

{(q1, r1, Individual), (q2, r1, Group), (q3, r1, Individual)}

However it is impossible to specify c3 without adding another constraint to the model to specify that each

r
i

is returned by only one query. We give an explanation in Section 11.3.2.1 and the reworked specification

for c3 in Section 11.3.2.2.

11.3.2.1 Why c3 is Di�cult to Specify.

Let’s propose that the constraint in Listing 11.9 correctly specifies c3. We note that navigation semantics

required us to navigate through both the QryReturns association to get the set of RetData to constrain and

the RDType association to constrain the same set of RetData’s corresponding Type. If instead, we navigated

to the Type class by going through the rData association-end and then to the type association-end, we get

a Bag of Type instead of a single Type. This is because each instance of RetData may be returned by more

than one query, and though the same, may be computed di↵erently.

The next step is to use the intersection of both the qData and the qryData to get to the set QryData

that RetData derives from. However, with the assignments given to QryReturns and QryWorksOn above,

this specification for c3 computes that for q1, the qd
i

’s that the r1 is derived from is the set {qd1, qd2} and

178

Listing 11.9: Incorrect Definition of Constraint between QryReturns RDType in OCL

context Query
inv invRDType:

rd_data = rData and
rData->forAll(r |

/* since no iff we have to write both ways */
((r.qData->intersection(qryData)->size()=1 implies

self.type->select(
oclIsTypeOf(Individual)=true).rd_data->includes(r))

and
(self.type->select(

oclIsTypeOf(Individual)=true).rd_data->includes(r) implies
r.qData->intersection(qryData)->size()=1))

and
/* again, since no iff we have to write both ways */
((r.qData->intersection(qryData)->size()>1 implies

self.type->select(
oclIsTypeOf(Group)=true).rd_data->includes(r))

and
(self.type->select(

oclIsTypeOf(Group)=true).rd_data->includes(r) implies
r.qData->intersection(qryData)->size()>1))

)

would incorrectly enforce (q1, r1, Group) in RDType! However this is di↵erent from what QryReturns tells

us, i.e., the singleton instance qd1. If the specification is rewritten to use the set of QryData that q1 used to

derive all its r
i

’s by using

self.qData(intersection(qryData))

where self refers to Query, the problem still exists if (q1, qd2, r2) was included in QryReturns. We have a

delima!

11.3.2.2 Making c3 Specifiable in OCL

After the detailed examination of how to specify that for q1, r1 is derived only from qd1, the only solution

is to add that each r
i

can only be returned by one q
i

. We add this constraint in Listing 11.10. Further,

RDType can be simplified to the specification in Listing 11.11. Finally, we restate c3:

if r1 is linked to several qd
i

’s in QryReturns

then

(r1, Group) 2 RDType

179

Listing 11.10: Definition of Constraint between QryReturns RDType in OCL

context RetData
inv retDataInOneQuery:

qry->size()<=1

Listing 11.11: Definition of Constraint between QryReturns RDType in USE

association RDType between
RetData[*] role rd_data
Type[1] role type

end

else

(r1, Individual) 2 RDType

We show the OCL specification for the restated c3 in Listing 11.12. The lesson when dealing with intra-

associations constraints is that the comparison between Alloy and OCL requires the analyst to keep in mind

that in OCL navigating through more than one association may produce a Bag or Set rather than a single

instance.

11.3.2.3 Semantics and Scoping Constraints that A↵ected c3

The way the association is written in Alloy helps us to use a smaller scope because each RetData may

be assigned to more than one query. However, this way to model QryReturns made it di�cult to specify

the original c3 in OCL. The Alloy Analyzer uses optimisation when generating instances to try to generate

the minimal set possible to satisfy all the constraints specified in the model. In USE, an object model may

Listing 11.12: Definition of Constraint between QryReturns RDType in OCL

context Query
inv invRDType:

rData->forAll(
if qData->size()=1 then

type->select(oclIsTypeOf(Individual)=true)->size=1
else

type->select(oclIsTypeOf(Group)=true)->size=1
endif

)

180

also be optimised in this way. However, as we have shown, additional thought is required to correctly model

the same association or relationship in Alloy and class models respectively because of the semantics of each

specification language.

11.3.3 Ternary Relations and Multiplicities

During the translation of Alloy to OCL, we discovered that the multiplicities in a ternary relationship

in Alloy are semantically di↵erent from the interpretation in the USE tool. For example, the RD Type

association, shown in Figure 11.3a, has a multiplicity at the Type end of 1. In Alloy, this association is

modelled as:

RDType: queries -> retItems -> one types

and may be interpreted as:

each Query and RetData pair is linked to exactly 1 Type, i.e., either a Group or and Individual.

This interpretation of the association is consistent in USE except where Type has subclasses. When

subclasses of Type exists, this invariant on the multiplicity becomes, each Query and RetData pair has

exactly 1 of each of the subclasses of Type (and Type if it is not abstract). In order to specify the originally

intent, the multiplicity at the Type end had to be relaxed as shown in Figure 11.3b. In addition, since we

intended that each RetData requires a Type, this was included as an invariant.

Analysis of the original specification in the USE tool showed the nuance in USE. This means that one

has to be careful when specifying the multiplicity for associations involving more than two classes.

11.4 Summary

In this chapter we recapped some insights from applying HMCA for RCA in the NJH system. While

understanding the impact of new information on previously defined rules and managing the complexities of

specification size are important, the major impact was with working through the nuances of the formal spec-

ification languages. While the Alloy language and class models with OCL constraints have many similarities

as specification languages and in their associated tools, their semantic di↵erences influence how we should

approach modelling activities. More information on these di↵erences may be explored in [15].

181

1
8
2

(a
)
O
ri
gi
n
al

R
D

T
yp
e
in

S
4

(b
)
U
p
d
at
ed

R
D

T
yp
e
in

S
4

F
ig
u
re

11
.3
:
S
li
ce
:
P
a
rt
ia
l
sl
ic
e
o
f
S
4
h
ig
h
li
g
h
ti
n
g
th
e
R
D
T
yp
e
A
ss
o
ci
a
ti
o
n
.

12. CONCLUSIONS AND FUTURE DIRECTIONS

Model checking is used for RCA because it allows the exhaustive examination of system models to show

conformance to rules. While the current model checking tools allow us to easily analyse process-aware rules,

they have challenges when analysing data-aware rules because of a state-space explosion that may cause the

analysis to be incomplete. For data-aware rules, using large abstractions ensure that the model checking tools

complete their analysis. However, using large abstractions may hide the details needed to check conformance

to the data-aware rules. In addition to the explosion of the state space, the current model checking tools are

not suited for analysing complex data relationships. We proposed HMCA to overcome these challenges.

12.1 HMCA Contribution Conclusions

Model checking is used for RCA because it allows the exhaustive examination of system models to show

conformance to rules. While the current model checking tools allow us to easily analyse process-aware rules,

they have challenges when analysing data-aware rules because of a state-space explosion that may cause the

analysis to be incomplete. For data-aware rules, using large abstractions ensure that the model checking tools

complete their analysis. However, using large abstractions may hide the details needed to check conformance

to the data-aware rules. In addition to the explosion of the state space, the current model checking tools are

not suited for analysing complex data relationships. We proposed HMCA to overcome these challenges.

In response to the state-space explosion, the main contribution of HMCA is to analyse data-aware rules

where current model checking tools fail. For HMCA, we show how to get results, i.e., analysis of rules can be

completed when using model checking techniques to analyse data-aware rules without hiding the details in

system models. Before this research, such analysis of data-aware rules was impossible at the level of details

used in HMCA, yet this was important because the details are needed to show conformance to rules such

as those extracted from the privacy requirements in the HIPAA regulations. We describe HMCA as hybrid

because it allows exhaustive model-based verification/analysis within a certain scope.

183

Since HMCA has its underpinnings in model checking techniques, we show how HMCA:

1. constructs design-level abstractions of the system under analysis and how to map conformance rules

to these abstractions ;

2. decomposes the analysis when checking each conformance rule by applying model slicing to produce

slices of the system state that avoids encountering a state-space explosion;

3. uses the Alloy Analyzer to provide an exhaustive and scoped analysis of each slice; and

4. provides on-demand and detailed feedback from the slices where the system shows non-conformance to

a rule.

In addition to providing a demonstration HMCA in the NJH system, we provided evaluations of HMCA

by using the NJH system:

1. to show how HMCA can be used to detect:

(a) common logic flaws in new conformance rules that result in non-conformance; and

(b) underspecification of conditions in the pre- or post conditions of an operations that uncovers ways

certain states are incorrectly allowed in the transition system.

2. for incorporating additional conditions that must be checked for conformance by including the privacy

requirements for the children protected population.

Evaluating HMCA in these ways shows another contribution as it helps to validate that non-conformance

can be found even when complex data relationships exist in the models under analysis.

We also provided a description of the steps that other users may follow to implement HMCA in other

domains. Finally, we gave insights gained from our practical application of HMCA in the NJH that may be

helpful, especially to draw awareness to situations where similar but di↵ering semantics in formal specifica-

tions languages may impact specification in ways that are unexpected. Our description of steps and insights

is important for HMCA to be a next step in developing tools based on model checking for RCA.

184

12.2 Limitations of HMCA

Factors that limit HMCA’s ability to produce correct results include:

1. Having correct models that are a true reflection of the system under analysis and includes asking how

do we know that they satisfy the specifications?

2. Accurately interpreting of regulations, such as those in HIPAA, and translating them into conformance

rules.

3. Providing the required elements in a slice. While slicing gives us a smaller sized model and allows us to

avoid a state-space explosion that does not allow analysis to complete for data-aware rules, a limiting

factor for slicing is providing the correct slicing criteria. Currently we an operation’s guard together

with it’s pre- and post conditions for this criteria. However if they are not specified correctly we may

be performing analysis on a slice that has too little or too much details. In the case of the latter, we

may not be analysing the correct state or have hidden paths (see Section 12.3.2).

4. The abstractions, memory, and scope required to perform the analysis using the Alloy Analyzer. The

Alloy Analyzer become a limiting factor when the time needed to analyse each slice increases to the

due to the size of the slice or the memory bounds are reached without completing the analysis because

of the scope required. One of the ways to reduce the limits is to recognise that more complex rules

may require the use of finer grained slices and this is translates into specifying the entity views using

operations that will result in small slices

For the first two limitations, we must rely on the domain experts to confirm correct interpretation of the

models.

12.3 Future directions

We outline some areas where HMCA can benefit from additional research. The areas discussed in sections

12.3.1 to 12.3.3 were first outlined as challenges to RCA in Section 1.2 and should be referenced for additional

details.

185

12.3.1 Analysing Changed and Conflicting Rules

Changed rules can be addressed by using HMCA to re-analyse the rules. One of the ways HMCA can

be used is to track the changes in rules, system conformance to the rules, and to include ways to judge the

level of conformance of the system to the rules. We noted in our related work how metrics such as weak

and strong conformance (see Section 2.1.2) are used judge the level of conformance in systems. These and

other metrics may be used or developed in areas where conformance may be measured on di↵erent levels or

systems in a particular domain are being compared.

When rules conflict, one of the ways HMCA may be used is in detecting such conflicts by identifying the

conditions that make satisfying them mutually exclusive. This would be a further way to validate HMCA

to be able to uncover these situations that have impossible system states. These conflicts may be deemed

as an over-specification of the model.

12.3.2 Hidden path analysis

Hidden paths may exist when path possibilities are not well understood or constrained by what is specified

in the process-aware rules and data-aware rules. The rules may focus on the allowed paths and how changes

in the systems state are e↵ected along the paths. In addition, the rules may restrict those path possibilities

that should not be allowed. However, hidden paths in either of these categories may exist. We may discover

hidden paths where the results from local analyses may be recombined to create paths not documented in

the system activity diagram. Finding hidden paths are important and may be of high value because they

may cause rules to be violated, or reveal that other rules are needed.

12.3.3 Alternate Rule Representations

In addition to showing how to represent rules from laws and regulations in [17, 27, 30, 65], other ap-

proaches, specifically using 1) automaton [63, 71], 2) logic [5, 66], and 3) patterns [13, 50, 86] have been

used to represent conformance rules. Patterns are useful as abstractions of rule specifications. They also can

be used as rule specification notations, and finally they can provide guidance to the modeller as to which

elements need to be included in the specifications (i.e. specification strategies).

186

While we used both LTL and Dwyer’s patterns (see Section 2.3.2.1) when evaluating the model checking

tools and the Alloy Analyzer in Chapter 4, HMCA uses NFA to specify the rules. Dwyer’s Patterns provide

an alternative way to represent the conformance rules. For example, to define the DeIDed conformance rule

we may use the Absence pattern to specify that the <Viewing, Identified> state should never be observed

when a de-identified access ticket is used to view a query’s results.

Since Dwyer’s patterns have underpinnings in temporal logic, we may:

1. transform the pattern rule representations to linear temporal logic, and then to NFA, or

2. independent of patterns, use linear temporal logic to specify the rules, and then transform them to

NFAs.

A next logical step is to prove equivalence for the (same) rule in each of the representations. This requires

the use of other model checking techniques (e.g. Bisimulation [51]).

12.3.4 How much Feedback to Show

In the summary of Chapter 7 we discussed that we may identify semantics for what the feedback shown

to the user should contain (see Section 7.7 for the details). Such semantics can help in designing suitable

user interfaces. It requires continuous evaluation and may be specific to each domain in which HMCA is

used.

187

13. BIBLIOGRAPHY

[1] (2015, October) The Alloy Model Analyzer, http://alloy.mit.edu/alloy/. [Online]. Available:

http://alloy.mit.edu/alloy/

[2] (2015, July) HIPAA Administrative Simplification Statute and Rules. [Online]. Available:

http://www.hhs.gov/ocr/privacy/hipaa/administrative/

[3] (2015, July) HIPAA Violations and Enforcement. [Online]. Available: http://www.ama-assn.

org/ama/pub/physician-resources/solutions-managing-your-practice/coding-billing-insurance/

hipaahealth-insurance-portability-accountability-act/hipaa-violations-enforcement.page?

[4] (2015, June) UPPAAL. [Online]. Available: http://www.uppaal.org

[5] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, M. Montali, and P. Torroni,

“Expressing and verifying business contracts with abductive logic programming,” in Normative

Multi-agent Systems, 18.03. - 23.03.2007, ser. Dagstuhl Seminar Proceedings, G. Boella,

L. W. N. van der Torre, and H. Verhagen, Eds., vol. 07122. Internationales Begegnungs- und

Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2007. [Online]. Available:

http://drops.dagstuhl.de/opus/volltexte/2007/901

[6] K. Anastasakis, “A model driven approach for the automated analysis of uml class diagrams.” Ph.D.

dissertation, University of Birmingham, Birmingham, 2009.

[7] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, “On challenges of model transformation from

UML to Alloy,” Software & Systems Modeling, vol. 9, no. 1, p. 69, 2008. [Online]. Available:

http://dx.doi.org/10.1007/s10270-008-0110-3

[8] A. Andoni, D. Daniliuc, and S. Khurshid, “Evaluating the ”small scope hypothesis”,” MIT Laboratory

for Computer Science, 200 Technology Square, Cambridge, MA 02139, Tech. Rep., 2003. [Online].

Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.7702&rep=rep1&type=pdf

188

[9] É. André, C. Choppy, and T. Noulamo, “Modelling timed concurrent systems using activity diagram

patterns,” in Knowledge and Systems Engineering - Proceedings of the Sixth International Conference

KSE 2014, Hanoi, Vietnam, 9-11 October 2014, ser. Advances in Intelligent Systems and Computing,

V. Nguyen, A. Le, and V. Huynh, Eds., vol. 326. Springer, 2014, pp. 339–351. [Online]. Available:

http://dx.doi.org/10.1007/978-3-319-11680-8 27

[10] É. André, C. Choppy, and G. Reggio, “Activity diagrams patterns for modeling business

processes,” in Software Engineering Research, Management and Applications [selected papers

from the 11th International Conference on Software Engineering Research, Management and

Applications, SERA 2013, Prague, Czech Republic, August 7-9, 2013]., ser. Studies in Computational

Intelligence, R. Y. Lee, Ed., vol. 496. Springer, 2013, pp. 197–213. [Online]. Available:

http://dx.doi.org/10.1007/978-3-319-00948-3 13

[11] K. Androutsopoulos, D. Binkley, D. Clark, N. Gold, M. Harman, K. Lano, and Z. Li, “Model

projection: simplifying models in response to restricting the environment,” in Proceedings of the 33rd

International Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May

21-28, 2011, R. N. Taylor, H. C. Gall, and N. Medvidovic, Eds. ACM, 2011, pp. 291–300. [Online].

Available: http://doi.acm.org/10.1145/1985793.1985834

[12] O. Angiuli, J. Blitzstein, and J. Waldo, “How to de-identify your data,” Communications of the ACM,

vol. 58, no. 12, pp. 48–55, Nov. 2015. [Online]. Available: http://doi.acm.org/10.1145/2814340

[13] A. Awad and M. Weske, “Visualization of compliance violation in business process models,” in Business

Process Management Workshops, BPM 2009 International Workshops, Ulm, Germany, September

7, 2009. Revised Papers, ser. Lecture Notes in Business Information Processing, S. Rinderle-Ma,

S. W. Sadiq, and F. Leymann, Eds., vol. 43. Springer, 2009, pp. 182–193. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-12186-9 17

[14] C. Baier and J.-P. Katoen, Principles of Model Checking (Representation and Mind Series). The MIT

Press, 2008.

189

[15] M. Balaban, P. Bennett, K. H. Doan, G. Georg, M. Gogolla, I. Khitron, and M. Kifer, “A comparison

of textual modeling languages: OCL, Alloy, FOML,” in OCL@MoDELS, 2016. [Online]. Available:

http://oclworkshop.github.io/2016/papers/OCL16 paper 3.pdf

[16] F. Barbier, B. Henderson-Sellers, A. L. Parc-Lacayrelle, and J. M. Bruel, “Formalization of the whole-

part relationship in the unified modeling language,” IEEE Transactions on Software Engineering, vol. 29,

no. 5, pp. 459–470, May 2003.

[17] A. Barth, A. Datta, J. C. Mitchell, and H. Nissenbaum, “Privacy and contextual integrity: Framework

and applications,” in 2006 IEEE Symposium on Security and Privacy (S&P 2006), 21-24 May

2006, Berkeley, California, USA. IEEE Computer Society, 2006, pp. 184–198. [Online]. Available:

http://dx.doi.org/10.1109/SP.2006.32

[18] D. A. Basin, F. Klaedtke, S. Marinovic, and E. Zalinescu, “Monitoring compliance policies over

incomplete and disagreeing logs,” in Runtime Verification, Third International Conference, RV 2012,

Istanbul, Turkey, September 25-28, 2012, Revised Selected Papers, ser. Lecture Notes in Computer

Science, S. Qadeer and S. Tasiran, Eds., vol. 7687. Springer, 2012, pp. 151–167. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-35632-2 17

[19] D. A. Basin, F. Klaedtke, and S. Müller, “Monitoring security policies with metric first-order

temporal logic,” in SACMAT 2010, 15th ACM Symposium on Access Control Models and Technologies,

Pittsburgh, Pennsylvania, USA, June 9-11, 2010, Proceedings, J. B. D. Joshi and B. Carminati, Eds.

ACM, 2010, pp. 23–34. [Online]. Available: http://doi.acm.org/10.1145/1809842.1809849

[20] J. Becker, P. Bergener, P. Delfmann, and B. Weiß, “Modeling and checking business process

compliance rules in the financial sector,” in Proceedings of the International Conference on

Information Systems, ICIS 2011, Shanghai, China, December 4-7, 2011, D. F. Galletta

and T. Liang, Eds. Association for Information Systems, 2011. [Online]. Available: http:

//aisel.aisnet.org/icis2011/proceedings/projmanagement/12

190

[21] J. Becker, P. Delfmann, H.-A. Dietrich, M. Steinhorst, and M. Eggert, “Business process compliance

checking – applying and evaluating a generic pattern matching approach for conceptual models

in the financial sector,” Information Systems Frontiers, pp. 1–47, 2014. [Online]. Available:

http://dx.doi.org/10.1007/s10796-014-9529-y

[22] J. Becker, P. Delfmann, S. Herwig, and L. Lis, “A generic set theory-based pattern matching

approach for the analysis of conceptual models,” in Conceptual Modeling - ER 2009, 28th

International Conference on Conceptual Modeling, Gramado, Brazil, November 9-12, 2009. Proceedings,

ser. Lecture Notes in Computer Science, A. H. F. Laender, S. Castano, U. Dayal, F. Casati,

and J. P. M. de Oliveira, Eds., vol. 5829. Springer, 2009, pp. 41–54. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-04840-1 6

[23] P. Bennett, W. Sun, W. Ted, G. Georg, I. Ray, and M. G. Kahn, “Analyzing regulatory conformance in

medical research systems using multi-paradigm modeling,” in Joint Proceedings of the 3rd International

Workshop on the Globalization Of Modeling Languages and the 9th International Workshop on

Multi-Paradigm Modeling co-located with ACM/IEEE 18th International Conference on Model Driven

Engineering Languages and Systems, GEMOC+MPM@MoDELS 2015, Ottawa, Canada, September 28,

2015., ser. CEUR Workshop Proceedings, B. Combemale, J. DeAntoni, J. Gray, D. Balasubramanian,

B. Barroca, S. Kokaly, G. Mezei, and P. V. Gorp, Eds., vol. 1511. CEUR-WS.org, 2015, pp. 22–31.

[Online]. Available: http://ceur-ws.org/Vol-1511/paper-MPM01.pdf

[24] A. Birukou, V. D’Andrea, F. Leymann, J. Serafinski, P. Silveira, S. Strauch, and M. Tluczek, “An

integrated solution for runtime compliance governance in SOA,” in Service-Oriented Computing - 8th

International Conference, ICSOC 2010, San Francisco, CA, USA, December 7-10, 2010. Proceedings,

ser. Lecture Notes in Computer Science, P. P. Maglio, M. Weske, J. Yang, and M. Fantinato, Eds., vol.

6470, 2010, pp. 122–136. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-17358-5 9

191

[25] A. Blouin, B. Combemale, B. Baudry, and O. Beaudoux, “Modeling model slicers,” in Model Driven

Engineering Languages and Systems, 14th International Conference, MODELS 2011, Wellington, New

Zealand, October 16-21, 2011. Proceedings, ser. Lecture Notes in Computer Science, J. Whittle,

T. Clark, and T. Kühne, Eds., vol. 6981. Springer, 2011, pp. 62–76. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-24485-8 6

[26] G. Buchgeher and R. Weinreich, “Towards continuous reference architecture conformance analysis,” in

Software Architecture - 7th European Conference, ECSA 2013, Montpellier, France, July 1-5, 2013.

Proceedings, ser. Lecture Notes in Computer Science, K. Drira, Ed., vol. 7957. Springer, 2013, pp.

332–335. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-39031-9 32

[27] O. Chowdhury, A. Gampe, J. Niu, J. von Ronne, J. Bennatt, A. Datta, L. Jia, and W. H.

Winsborough, “Privacy promises that can be kept: a policy analysis method with application to the

HIPAA privacy rule,” in 18th ACM Symposium on Access Control Models and Technologies, SACMAT

’13, Amsterdam, The Netherlands, June 12-14, 2013, M. Conti, J. Vaidya, and A. Schaad, Eds. ACM,

2013, pp. 3–14. [Online]. Available: http://doi.acm.org/10.1145/2462410.2462423

[28] A. Cunha, A. Garis, and D. Riesco, “Translating between alloy specifications and UML class diagrams

annotated with OCL,” Software & Systems Modeling, vol. 14, no. 1, pp. 5–25, 2015. [Online]. Available:

http://dx.doi.org/10.1007/s10270-013-0353-5

[29] P. Delfmann, M. Steinhorst, H. Dietrich, and J. Becker, “The generic model query language GMQL

- conceptual specification, implementation, and runtime evaluation,” Inf. Syst., vol. 47, pp. 129–177,

2015. [Online]. Available: http://dx.doi.org/10.1016/j.is.2014.06.003

[30] H. DeYoung, D. Garg, L. Jia, D. K. Kaynar, and A. Datta, “Experiences in the logical specification of

the HIPAA and GLBA privacy laws,” in Proceedings of the 2010 ACM Workshop on Privacy in the

Electronic Society, WPES 2010, Chicago, Illinois, USA, October 4, 2010, E. Al-Shaer and K. B. Frikken,

Eds. ACM, 2010, pp. 73–82. [Online]. Available: http://doi.acm.org/10.1145/1866919.1866930

192

[31] L. B. R. dos Santos, V. A. de Santiago Junior, and N. L. Vijaykumar, “Transformation of UML

behavioral diagrams to support software model checking,” in Proceedings 11th International Workshop

on Formal Engineering approaches to Software Components and Architectures, FESCA 2014, Grenoble,

France, 12th April 2014., ser. EPTCS, B. Buhnova, L. Happe, and J. Kofron, Eds., vol. 147, 2014, pp.

133–142. [Online]. Available: http://dx.doi.org/10.4204/EPTCS.147.10

[32] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Property specification patterns for finite-state

verification,” in Proceedings of the Second Workshop on Formal Methods in Software Practice, March

4-5, 1998, Clearwater Beach, Florida, USA, M. A. Ardis and J. M. Atlee, Eds. ACM, 1998, pp. 7–15.

[Online]. Available: http://doi.acm.org/10.1145/298595.298598

[33] ——, “Patterns in property specifications for finite-state verification,” in Proceedings of the 1999

International Conference on Software Engineering, ICSE’ 99, Los Angeles, CA, USA, May 16-22,

1999., B. W. Boehm, D. Garlan, and J. Kramer, Eds. ACM, 1999, pp. 411–420. [Online]. Available:

http://portal.acm.org/citation.cfm?id=302405.302672

[34] Earnest and Young. (2015, November) The Volcker Rule: Covered funds, investment activity

and a�liated transactions. [Online]. Available: http://www.ey.com/Publication/vwLUAssets/

EY-4 steps-to-Volcker-Rule-compliance/$FILE/ey-4-steps-to-Volcker-Rule-compliance.pdf

[35] R. Eshuis, “Symbolic model checking of UML activity diagrams,” ACM Trans. Softw. Eng. Methodol.,

vol. 15, no. 1, pp. 1–38, January 2006.

[36] Federal Trade Commission. (2015, November) Financial institutions and customer information:

Complying with the safeguards rule. [Online]. Available: https://www.ftc.gov/tips-advice/

business-center/guidance/financial-institutions-customer-information-complying

[37] F. Fernandes and M. Song, “UML-Checker: An approach for verifying UML behavioral diagrams,” JSW,

vol. 9, no. 5, pp. 1229–1236, 2014. [Online]. Available: http://dx.doi.org/10.4304/jsw.9.5.1229-1236

193

[38] D. Garg, L. Jia, and A. Datta, “Policy auditing over incomplete logs: theory, implementation and

applications,” in Proceedings of the 18th ACM Conference on Computer and Communications Security,

CCS 2011, Chicago, Illinois, USA, October 17-21, 2011, Y. Chen, G. Danezis, and V. Shmatikov, Eds.

ACM, 2011, pp. 151–162. [Online]. Available: http://doi.acm.org/10.1145/2046707.2046726

[39] G. Georg, P. Bennett, and W. Sun, “Example for MODELS MPM workshop paper,” June 2015, internal

document.

[40] C. Giblin, S. Müller, and B. Pfitzmann, “From Regulatory Policies to Event Monitoring Rules: Towards

Model-Driven Compliance Automation,” IBM Research GmbH. Zurich Research Laboratory, Tech. Rep.,

2006.

[41] M. Gogolla, J. Bohling, and M. Richters, “Validating UML and OCL models in USE by automatic

snapshot generation,” Software & Systems Modeling, vol. 4, no. 4, pp. 386–398, 2005. [Online].

Available: http://dx.doi.org/10.1007/s10270-005-0089-y

[42] H. Grönniger, D. Reiss, and B. Rumpe, “Towards a semantics of activity diagrams with semantic

variation points,” in Model Driven Engineering Languages and Systems - 13th International Conference,

MODELS 2010, Oslo, Norway, October 3-8, 2010, Proceedings, Part I, ser. Lecture Notes in Computer

Science, D. C. Petriu, N. Rouquette, and Ø. Haugen, Eds., vol. 6394. Springer, 2010, pp. 331–345.

[Online]. Available: http://dx.doi.org/10.1007/978-3-642-16145-2 23

[43] O. M. Group, “OMG unified modeling language specification,” Standard Released by the OMG Group,

Tech. Rep., September 2013. [Online]. Available: http://www.omg.org/spec/UML/2.5/Beta2/PDF/

[44] N. J. Health, “Map of integrated bioinformation and specimen centre research support,” Internal NJH

Document.

[45] G. J. Holzmann, The SPIN Model Checker - Primer and Reference Manual. Addison-Wesley, 2004.

194

[46] V. H. Huynh and A. N. T. Le, “Process mining and security: Visualization in database intrusion

detection,” in Intelligence and Security Informatics - Pacific Asia Workshop, PAISI 2012, Kuala

Lumpur, Malaysia, May 29, 2012. Proceedings, ser. Lecture Notes in Computer Science, M. Chau,

G. A. Wang, W. T. Yue, and H. Chen, Eds., vol. 7299. Springer, 2012, pp. 81–95. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-30428-6 7

[47] D. Jackson, “Alloy: A lightweight object modelling notation,” ACM Trans. Softw. Eng. Methodol.,

vol. 11, no. 2, pp. 256–290, 2002. [Online]. Available: http://doi.acm.org/10.1145/505145.505149

[48] ——, Software Abstractions: Logic, Language, and Analysis. The MIT Press, 2012.

[49] D. Jackson, I. Schechter, and I. Shlyakhter, “Alcoa: the alloy constraint analyzer,” in Proceedings of

the 22nd International Conference on on Software Engineering, ICSE 2000, Limerick Ireland, June

4-11, 2000., C. Ghezzi, M. Jazayeri, and A. L. Wolf, Eds. ACM, 2000, pp. 730–733. [Online].

Available: http://doi.acm.org/10.1145/337180.337616

[50] H. Jacobsen, V. Muthusamy, and G. Li, “The PADRES event processing network: Uniform querying

of past and future events (das PADRES ereignisverarbeitungsnetzwerk: Einheitliche anfragen auf

ereignisse der vergangenheit und zukunft),” it - Information Technology, vol. 51, no. 5, pp. 250–261,

2009. [Online]. Available: http://dx.doi.org/10.1524/itit.2009.0549

[51] P. Jancar, “Bisimulation equivalence of first-order grammars is Ackermann-hard,” CoRR, vol.

abs/1312.3910, 2013. [Online]. Available: http://arxiv.org/abs/1312.3910

[52] D. Knuplesch, L. T. Ly, S. Rinderle-Ma, H. Pfeifer, and P. Dadam, “On enabling data-aware compliance

checking of business process models,” in Conceptual Modeling - ER 2010, 29th International Conference

on Conceptual Modeling, Vancouver, BC, Canada, November 1-4, 2010. Proceedings, ser. Lecture Notes

in Computer Science, J. Parsons, M. Saeki, P. Shoval, C. C. Woo, and Y. Wand, Eds., vol. 6412.

Springer, 2010, pp. 332–346. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-16373-9 24

195

[53] F. Kordon, A. Linard, M. Beccuti, D. Buchs, L. Fronc, L. Hillah, F. Hulin-Hubard, F. Legond-Aubry,

N. Lohmann, A. Marechal, E. Paviot-Adet, F. Pommereau, C. Rodŕıguez, C. Rohr, Y. Thierry-Mieg,

H. Wimmel, and K. Wolf, “Model checking contest at Petri Nets, report on the 2013 edition,” CoRR,

vol. abs/1309.2485, 2013. [Online]. Available: http://arxiv.org/abs/1309.2485

[54] F. Kordon, A. Linard, D. Buchs, M. Colange, S. Evangelista, L. Fronc, L. Hillah, N. Lohmann,

E. Paviot-Adet, F. Pommereau, C. Rohr, Y. Thierry-Mieg, H. Wimmel, and K. Wolf, “Raw report on

the model checking contest at Petri Nets 2012,” CoRR, vol. abs/1209.2382, 2012. [Online]. Available:

http://arxiv.org/abs/1209.2382

[55] F. Kordon, A. Linard, D. Buchs, M. Colange, S. Evangelista, K. Lampka, N. Lohmann, E. Paviot-Adet,

Y. Thierry-Mieg, and H. Wimmel, “Report on the model checking contest at Petri Nets 2011,”

Transactions on Petri Nets and Other Models of Concurrency, vol. 6, pp. 169–196, 2012. [Online].

Available: http://dx.doi.org/10.1007/978-3-642-35179-2 8

[56] K. Lano and S. K. Rahimi, “Slicing of UML models using model transformations,” in Model Driven

Engineering Languages and Systems - 13th International Conference, MODELS 2010, Oslo, Norway,

October 3-8, 2010, Proceedings, Part II, ser. Lecture Notes in Computer Science, D. C. Petriu,

N. Rouquette, and Ø. Haugen, Eds., vol. 6395. Springer, 2010, pp. 228–242. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-16129-2 17

[57] ——, “Slicing techniques for UML models,” Journal of Object Technology, vol. 10, pp. 11: 1–49, 2011.

[Online]. Available: http://dx.doi.org/10.5381/jot.2011.10.1.a11

[58] L. T. Ly, D. Knuplesch, S. Rinderle-Ma, K. Göser, H. Pfeifer, M. Reichert, and P. Dadam, “Seaflows

toolset - compliance verification made easy for process-aware information systems,” in Information

Systems Evolution - CAiSE Forum 2010, Hammamet, Tunisia, June 7-9, 2010, Selected Extended

Papers, ser. Lecture Notes in Business Information Processing, P. So↵er and E. Proper, Eds., vol. 72.

Springer, 2010, pp. 76–91. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-17722-4 6

196

[59] L. T. Ly, S. Rinderle, and P. Dadam, “Semantic correctness in adaptive process management

systems,” in Business Process Management, 4th International Conference, BPM 2006, Vienna,

Austria, September 5-7, 2006, Proceedings, ser. Lecture Notes in Computer Science, S. Dustdar,

J. L. Fiadeiro, and A. P. Sheth, Eds., vol. 4102. Springer, 2006, pp. 193–208. [Online]. Available:

http://dx.doi.org/10.1007/11841760 14

[60] L. T. Ly, S. Rinderle-Ma, P. Dadam, and B. Pernici, “Design and verification of instantiable compli-

ance rule graphs in process-aware information systems,” in Advanced Information Systems Engineering,

Proceedings, vol. 6051. Heidelberger Platz 3, D-14197 Berlin, Germany: Springer-Verlag Berlin, 2010,

pp. 9–23.

[61] L. T. Ly, S. Rinderle-Ma, K. Göser, and P. Dadam, “On enabling integrated process

compliance with semantic constraints in process management systems - requirements, challenges,

solutions,” Information Systems Frontiers, vol. 14, no. 2, pp. 195–219, 2012. [Online]. Available:

http://dx.doi.org/10.1007/s10796-009-9185-9

[62] L. T. Ly, S. Rinderle-Ma, D. Knuplesch, and P. Dadam, “Monitoring business process compliance using

compliance rule graphs,” in On the Move to Meaningful Internet Systems: OTM 2011 - Confederated

International Conferences: CoopIS, DOA-SVI, and ODBASE 2011, Hersonissos, Crete, Greece,

October 17-21, 2011, Proceedings, Part I, ser. Lecture Notes in Computer Science, R. Meersman, T. S.

Dillon, P. Herrero, A. Kumar, M. Reichert, L. Qing, B. C. Ooi, E. Damiani, D. C. Schmidt, J. White,

M. Hauswirth, P. Hitzler, and M. K. Mohania, Eds., vol. 7044. Springer, 2011, pp. 82–99. [Online].

Available: http://dx.doi.org/10.1007/978-3-642-25109-2 7

[63] F. M. Maggi, M. Montali, M. Westergaard, and W. M. P. van der Aalst, “Monitoring business

constraints with linear temporal logic: An approach based on colored automata,” in Business

Process Management - 9th International Conference, BPM 2011, Clermont-Ferrand, France, August

30 - September 2, 2011. Proceedings, ser. Lecture Notes in Computer Science, S. Rinderle-Ma,

F. Toumani, and K. Wolf, Eds., vol. 6896. Springer, 2011, pp. 132–147. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-23059-2 13

197

[64] S. Maoz, J. O. Ringert, and B. Rumpe, “Semantically configurable consistency analysis for class and

object diagrams,” CoRR, vol. abs/1409.2313, 2014. [Online]. Available: http://arxiv.org/abs/1409.2313

[65] M. J. May, C. A. Gunter, and I. Lee, “Privacy APIs: Access control techniques to analyze and

verify legal privacy policies,” in 19th IEEE Computer Security Foundations Workshop, (CSFW-19

2006), 5-7 July 2006, Venice, Italy. IEEE Computer Society, 2006, pp. 85–97. [Online]. Available:

http://doi.ieeecomputersociety.org/10.1109/CSFW.2006.24

[66] M. Montali, F. M. Maggi, F. Chesani, P. Mello, and W. M. P. van der Aalst, “Monitoring business

constraints with the event calculus,” ACM TIST, vol. 5, no. 1, p. 17, 2013. [Online]. Available:

http://doi.acm.org/10.1145/2542182.2542199

[67] M. Montanari, E. Chan, K. Larson, W. Yoo, R. H. Campbell, J. Camenisch, S. FischerHubner, Y. Mu-

rayama, A. Portmann, and C. Rieder, “Distributed security policy conformance,” in Future Challenges

In Security and Privacy For Academia and Industry, vol. 354. Heidelberger Platz 3, D-14197 Berlin,

Germany: Springer-Verlag Berlin, 2011, pp. 210–222.

[68] Object Management Group. (2015, December) Object Constraint Language (OCL). [Online]. Available:

http://www.omg.org/spec/OCL/

[69] U. D. of Health and H. Services, “Code of Federal Regulations, Title 45, public wel-

fare, department of health and human services, part 46, protection of human subjects,”

https://www.hhs.gov/ohrp/regulations-and-policy/regulations/45-cfr-46/index.html, July 2009. [On-

line]. Available: https://www.hhs.gov/ohrp/regulations-and-policy/regulations/45-cfr-46/index.html

[70] O�ce of Ethics and Compliance: Human Research Protection Program, University of California, San

Francosco. (2015, April) The Human Research Protection Program, Definitions. [Online]. Available:

http://irb.ucsf.edu/definitions

198

[71] M. Pesic and W. van der Aalst, “A declarative approach for flexible business processes management,”

in Business Process Management Workshops, ser. Lecture Notes in Computer Science, J. Eder and

S. Dustdar, Eds. Springer Berlin Heidelberg, 2006, vol. 4103, pp. 169–180. [Online]. Available:

http://dx.doi.org/10.1007/11837862 18

[72] C. A. Petri, “Communication with automata,” Ph.D. dissertation, Universität Hamburg, 1966.

[73] A. Raschke, “Translation of UML 2 activity diagrams into finite state machines for model checking,” in

35th Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2009, Patras,

Greece, August 27-29, 2009, Proceedings. IEEE Computer Society, 2009, pp. 149–154. [Online].

Available: http://doi.ieeecomputersociety.org/10.1109/SEAA.2009.60

[74] R. Rashidi-Tabrizi, G. Mussbacher, and D. Amyot, “Legal requirements analysis and modeling with

the measured compliance profile for the goal-oriented requirement language,” in Sixth International

Workshop on Requirements Engineering and Law, RELAW 2013, 16 July, 2013, Rio de Janeiro, Brasil,

D. Amyot, A. I. Antón, T. D. Breaux, A. K. Massey, and P. P. Swire, Eds. IEEE Computer Society,

2013, pp. 53–56. [Online]. Available: http://dx.doi.org/10.1109/RELAW.2013.6671346

[75] S. Rinderle-Ma, F. Toumani, and K. Wolf, Eds., Business Process Management - 9th International

Conference, BPM 2011, Clermont-Ferrand, France, August 30 - September 2, 2011. Proceedings,

ser. Lecture Notes in Computer Science, vol. 6896. Springer, 2011. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-23059-2

[76] A. Rozinat and W. M. P. van der Aalst, “Conformance checking of processes based on

monitoring real behavior,” Inf. Syst., vol. 33, no. 1, pp. 64–95, 2008. [Online]. Available:

http://dx.doi.org/10.1016/j.is.2007.07.001

[77] Senate Banking Committee, “Gramm-Leach-Bliley Act - disclosure of nonpublic personal information,”

1999. [Online]. Available: https://www.ftc.gov/tips-advice/business-center/privacy-and-security/

gramm-leach-bliley-act

199

[78] A. Shaikh, R. Clarisó, U. K. Wiil, and N. Memon, “Verification-driven slicing of UML/OCL models,”

in ASE 2010, 25th IEEE/ACM International Conference on Automated Software Engineering, Antwerp,

Belgium, September 20-24, 2010, C. Pecheur, J. Andrews, and E. D. Nitto, Eds. ACM, 2010, pp.

185–194. [Online]. Available: http://doi.acm.org/10.1145/1858996.1859038

[79] A. Shaikh, U. K. Wiil, and N. Memon, “Evaluation of tools and slicing techniques for

e�cient verification of UML/OCL class diagrams,” Adv. Software Engineering, vol. 2011, pp.

370 198:1–370 198:18, 2011. [Online]. Available: http://dx.doi.org/10.1155/2011/370198

[80] M. Steinhorst, P. Delfmann, and J. Becker, “vGMQL - Introducing a visual notation for the generic

model query language GMQL,” in Short Paper Proceedings of the 6th IFIP WG 8.1 Working Conference

on the Practice of Enterprise Modeling (PoEM 2013), Riga, Latvia, November 6-7, 2013., ser.

CEUR Workshop Proceedings, J. Grabis, M. Kirikova, J. Zdravkovic, and J. Stirna, Eds., vol. 1023.

CEUR-WS.org, 2013, pp. 146–155. [Online]. Available: http://ceur-ws.org/Vol-1023/paper14.pdf

[81] W. Sun, “Using slicing techniques to support scalable rigorous analysis of class models,” Ph.D. disser-

tation, Colorado State University, 2015.

[82] W. Sun, R. B. France, and I. Ray, “Contract-aware slicing of UML class models,” in Model-Driven

Engineering Languages and Systems - 16th International Conference, MODELS 2013, Miami, FL,

USA, September 29 - October 4, 2013. Proceedings, ser. Lecture Notes in Computer Science, A. Moreira,

B. Schätz, J. Gray, A. Vallecillo, and P. J. Clarke, Eds., vol. 8107. Springer, 2013, pp. 724–739.

[Online]. Available: http://dx.doi.org/10.1007/978-3-642-41533-3 44

[83] H. B. K. Tan, L. Hao, and Y. Yang, “On formalization of the whole-part relationship in the unified

modeling language,” IEEE Transactions on Software Engineering, vol. 29, no. 11, pp. 1054–1055, Nov

2003.

200

[84] W. M. P. van der Aalst, B. F. van Dongen, C. W. Günther, R. S. Mans, A. K. A. de Medeiros,

A. Rozinat, V. Rubin, M. Song, H. M. W. E. Verbeek, and A. J. M. M. Weijters, “ProM 4.0:

Comprehensive support for Real process analysis,” in Petri Nets and Other Models of Concurrency -

ICATPN 2007, 28th International Conference on Applications and Theory of Petri Nets and Other

Models of Concurrency, ICATPN 2007, Siedlce, Poland, June 25-29, 2007, Proceedings, ser. Lecture

Notes in Computer Science, J. Kleijn and A. Yakovlev, Eds., vol. 4546. Springer, 2007, pp. 484–494.

[Online]. Available: http://dx.doi.org/10.1007/978-3-540-73094-1 28

[85] S. K. L. M. vanden Broucke, J. Munoz-Gama, J. Carmona, B. Baesens, J. Vanthienen, R. Meersman,

H. Panetto, T. Dillon, M. Missiko↵, L. Liu, O. Pastor, A. Cuzzocrea, and T. Sellis, “Event-based real-

time decomposed conformance analysis,” in On the Move To Meaningful Internet Systems: Otm 2014

Conferences, vol. 8841. Heidelberger Platz 3, D-14197 Berlin, Germany: Springer-Verlag Berlin, 2014,

pp. 345–363.

[86] M. Weidlich, H. Ziekow, J. Mendling, O. Günther, M. Weske, and N. Desai, “Event-based monitoring

of process execution violations,” in Business Process Management - 9th International Conference, BPM

2011, Clermont-Ferrand, France, August 30 - September 2, 2011. Proceedings, ser. Lecture Notes in

Computer Science, S. Rinderle-Ma, F. Toumani, and K. Wolf, Eds., vol. 6896. Springer, 2011, pp.

182–198. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-23059-2 16

[87] M. Weiser, “Program slicing,” in Proceedings of the 5th International Conference on Software

Engineering, ser. ICSE ’81. Piscataway, NJ, USA: IEEE Press, 1981, pp. 439–449. [Online]. Available:

http://dl.acm.org/citation.cfm?id=800078.802557

201

APPENDIX A. MOTIVATING HMCA: NJH SPECIFICATION MODELS

A.1 Promela Model

Listing A.1: NJH Promela model for approving an access ticket using the NoSupsInPIandDC decision rule

1 /**
2 * Purpose: NJH RCA Analysis
3 *
4 * Author: Phillipa Bennett
5 *
6 * Answering the question :
7 * 1. Can we use Spin to answer - what is Tractable RCA?
8 * 2. How can we use spin for for process order mutations?
9 *

10 * Date created: March 15, 2016
11 *
12 * Version: 1
13 *
14 * Parameters: updated March 23, 2016
15 * Safety: safety, +invalid endstates violation, +assertion violations
16 * Storage mode: exhaustive, +collapse compression
17 * Search mode: depth first + partial order reduction, iterative, unreachable
18 * Advanced parameters
19 * Extra compile options: -O2 -DVECTORSZ=3072 -DMA=2000
20 * Physical memory available: 7000
21 * Estimates state search space: 1000
22 * Maximum search depth: 100000000
23 * Extra runtime options:
24 *
25 * TBD -
26 * 1. Find a way to specify alternate end states - low priority
27 *
28 * Need to write about -
29 1. idea of how spin can be used for process order mutations.
30 **/
31

32 /**
33 * Define
34 **/
35

36 #define PROC_BITS 3 // number of bits needed to represent process
37 #define PROCS 7 // this will depend on final Activity diagram used
38

39

40 #define PROJ_BITS 2// number of bits required to access project in projects
41 #define PROJS 4 // spin’s current max is an unsigned n-bit where n = 8
42

43 #define SUPERS_BIT 5 // number of bits required to access supervisors
44 #define SUPERS 32 // number of persons needing supervisors
45

46 /**
47 * Declarations
48 **/
49

50 mtype {deidentified, identified, none} // permission types
51

202

52 typedef Proc_Run{
53 bool executed[PROCS];} /* helps to check process pre-requisites,
54 * except for apply */
55

56 typedef Supervisor {
57 unsigned s_id : SUPERS_BIT;}
58

59 typedef Project {
60 mtype access_ticket;
61 bool data_collector_present = false;
62 unsigned
63 pi: SUPERS_BIT,
64 data_collector : SUPERS_BIT;
65 bool submit = 0; // prerequisite for apply process
66 Proc_Run runs;}
67

68 Project projects[PROJS];
69 bool approve_and_decline = false;
70

71 Supervisor sups[SUPERS]; /* e.g. sups[12] = 56means supervisor of researcher
72 * with r_id 12is researcher with r_id 56*/
73 unsigned sup_root : SUPERS_BIT; /* this is the root of the sups tree */
74

75 /* In order to get an array of unsigned, I needed this workaround */
76 typedef Unsigned {unsigned id: SUPERS_BIT;}
77

78 bool init_complete = false;
79

80 /**
81 * LTL
82 **/
83 /* ensures that we have some nondeterminism in the approve and decline of
84 projects
85 */
86 ltl ltl1 {
87 /* infinitely executing the statement in approve with label app
88 implies (ensures) we infinitely execute the statement labeled dec
89 in approve(), implies (ensures) we infinitely execute the statement
90 labeled dec in decline() */
91 []<>approve@app ->
92 ([]<>approve@dec && []<>decline@dec)
93 }
94

95 /**
96 * NEVER claims
97 **/
98

99 /* **********
100 A project must not be both approved and declined over this
101 simulation/verification */
102 never noApproveDeclineOnSameProject{
103 true;
104 do
105 :: approve_and_decline -> break;
106 :: else -> skip;
107 od;
108 }
109

110 /**
111 * Inline
112 **/
113

203

114 /* **********/
115 inline add_supervisors_3bit() {
116 //numbers generated from https://www.random.org/sequences/
117 // root is 1
118 sup_root = 1;
119 sups[1].s_id = 1; sups[6].s_id = 1;
120 sups[2].s_id = 6; sups[0].s_id = 6;
121 sups[4].s_id = 2;
122 sups[5].s_id = 0;
123 sups[3].s_id = 4; sups[7].s_id = 4;
124 }
125

126 /* **********/
127 inline add_supervisors_5bit() {
128 //numbers generated from https://www.random.org/sequences/
129 // root is 1
130 sup_root = 1;
131 sups[1].s_id = 1; sups[14].s_id = 1;
132

133 sups[11].s_id = 14; sups[20].s_id = 14;
134

135 sups[17].s_id = 11; sups[5].s_id = 11; sups[15].s_id = 11;
136 sups[29].s_id = 11; sups[9].s_id = 11;
137

138 sups[2].s_id = 20;
139

140 sups[22].s_id = 17;
141

142 sups[4].s_id = 5; sups[31].s_id = 5;
143

144 sups[23].s_id = 15; sups[24].s_id = 15;
145

146 sups[10].s_id = 29; sups[21].s_id = 29;
147

148 sups[28].s_id = 9; sups[8].s_id = 9;
149

150 sups[26].s_id = 2; sups[25].s_id = 2;
151

152 sups[13].s_id = 22; sups[3].s_id = 22;
153

154 sups[6].s_id = 4;
155

156 sups[27].s_id = 31; sups[18].s_id = 31; sups[16].s_id = 31;
157 sups[12].s_id = 31;
158

159 sups[19].s_id = 23; sups[7].s_id = 23; sups[30].s_id = 23;
160

161 sups[0].s_id = 24;
162 }
163

164 inline check_supervisor_assignments() {
165

166 for (m: 0..(SUPERS-1)) {
167 if
168 :: m == sup_root ->
169 assert(sups[m].s_id == m);
170 :: else ->
171 assert(sups[m].s_id != m);
172 fi;
173 }
174 }
175

204

176 /* **********/
177 inline set_process_bit() {
178 d_step{
179 // update the process bit
180 projects[project].runs.executed[id] = 1;
181 // assert
182 assert(projects[project].runs.executed[id] == 1&&
183 projects[project].runs.executed[dependsOn] == 1);
184 }
185 }
186

187 inline check_approve_conditions () {
188 approve_project =
189 projects[project].access_ticket != none &&
190 (!projects[project].data_collector_present == true ||
191 !(
192 // common supervisor
193 (sups[projects[project].data_collector].s_id ==
194 sups[projects[project].pi].s_id)
195

196 // data collector supervisor is project’s pi
197 || (sups[projects[project].data_collector].s_id ==
198 projects[project].pi)
199

200 // pi supervisor is project’s data collector
201 || (sups[projects[project].pi].s_id ==
202 projects[project].data_collector)
203)
204);
205 }
206

207 /**
208 * Processes
209 **/
210

211 /**************************************/
212 active proctype apply () {
213 unsigned
214 dependsOn : PROC_BITS = 0,
215 id : PROC_BITS = 0,
216 project : PROJ_BITS;
217

218 //init_complete == true;
219 /* end: */
220 again:
221 select(project: 0..3);
222 if
223 :: projects[project].runs.executed[id] == 0&&
224 projects[project].submit == 1->
225 /* progress: */ set_process_bit();
226 :: else -> skip;
227 fi
228 goto again;
229 }
230

231 /**************************************/
232 active proctype approve () {
233 // process changes these values
234 unsigned project : PROJ_BITS;
235 bool approve_project;
236

237 // process does not change these values

205

238 unsigned
239 dependsOn : PROC_BITS = 0,
240 id : PROC_BITS = 1;
241

242 //init_complete == true;
243 /* end: */
244 again:
245 approve_project = true;
246 select(project: 0..3);
247 if
248 :: projects[project].runs.executed[dependsOn] == 1&&
249 projects[project].runs.executed[id] == 0->
250

251 check_approve_conditions();
252 if
253 :: approve_project == true ->
254 app: /* progress: */ {set_process_bit();}
255 :: else ->
256 dec: {projects[project].access_ticket = none;}
257 fi;
258 :: else -> skip;
259 fi;
260 goto again;
261 }
262

263 /**************************************/
264 active proctype decline () {
265 // process does not change these values
266 unsigned
267 dependsOn : PROC_BITS = 0,
268 id : PROC_BITS = 2;
269

270 // process changes this value
271 unsigned project: PROJ_BITS
272 bool approve_project;
273

274 //init_complete == true;
275 /* end: */
276 again:
277 approve_project = true;
278 select(project: 0..3);
279 if
280 :: (projects[project].runs.executed[dependsOn] == 1&&
281 projects[project].runs.executed[id] == 0) ->
282 check_approve_conditions();
283 if
284 :: approve_project == true ->
285 dec: /* progress: */ {set_process_bit();}
286 :: else -> skip;
287 fi;
288 :: else -> skip;
289 fi;
290 goto again
291 }
292

293 /**************************************/
294 proctype proc (byte id, dependsOn) {
295 //(unsigned dependsOn: PROC_BITS, id: PROC_BITS) {
296 unsigned project : PROJ_BITS;
297

298 //init_complete == true;
299 /* end: */

206

300 again:
301 select(project: 0..3);
302 if
303 :: projects[project].runs.executed[id] == 0&&
304 projects[project].runs.executed[dependsOn] == 1->
305 /* progress: */ set_process_bit();
306 :: else -> skip;
307 fi
308 goto again;
309 }
310

311 /**************************************/
312 active proctype check_approve_and_decline() {
313 // process changes this values
314 unsigned project : PROJ_BITS;
315

316 //init_complete == true;
317 /* end: */
318 again:
319 select(project: 0..3);
320 assert(projects[project].submit == 1);
321 if
322 :: projects[project].runs.executed[1] == 1&&
323 projects[project].runs.executed[2] == 1->
324 approve_and_decline = 1;
325 //assert(false);
326 :: else -> skip;
327 fi;
328 goto again;
329

330 }
331

332 /**************************************/
333 init{
334 unsigned
335 // for choosing values non-deterministicly
336 n : SUPERS_BIT = 0;
337 // for counters, cannot use unsigned type vor variables used in for loops?
338 byte l, m;
339

340 add_supervisors_5bit();
341 check_supervisor_assignments();
342 m = 0;
343

344 for (l: 0..(PROJS-1)) {
345

346 for (m: 0..(PROCS-1)) {
347 projects[l].runs.executed[m] = false;
348 }
349

350 if
351 :: projects[l].access_ticket = deidentified;
352 :: projects[l].access_ticket = identified;
353 fi
354

355 // choose project’s pi
356 select(n: 0..31);
357 projects[l].pi = n;
358

359 // choose whether project has data collector
360 if
361 :: projects[l].data_collector_present = false

207

362 :: projects[l].data_collector_present = true
363

364 fi
365

366 if
367 :: projects[l].data_collector_present == true ->
368 // ensure data collector chosen will not overlap with pi
369 choose_n_again: {
370 select(n: 0..31);
371 if
372 :: projects[l].pi == n ->
373 goto choose_n_again;
374 :: else -> skip;
375 fi;
376 }
377

378 // assign data collector
379 projects[l].data_collector = n;
380 assert(projects[l].pi != projects[l].data_collector);
381 :: else -> skip;
382 fi
383 projects[l].submit = 1;
384 }
385

386 init_complete = true;
387

388 // query
389 run proc (3, 1);
390

391 // transform
392 run proc (4, 3);
393

394 // view
395 run proc (5, 4);
396

397 // download
398 run proc(6, 4);
399 }

208

A.2 Alloy Models

The model for the full NJH system used in the motivation is presented in four parts, Listing A.2 through

Listing A.5.

Listing A.2: Full NJH structural model, i.e., without additional constraints, operation specifications, or

conformance rules. These are added in Listing A.3 through Listing A.3

1 /********** ********** ********** ********** ********** ********** **********
2 Begin Structural Model, NJH
3 /********** ********** ********** ********** ********** ********** **********/
4 module NJH
5

6 /********** ********** ********** ********** **********
7 base abstract signatures
8 ********** ********** ********** ********** **********/
9 abstract sig

10 Category,
11 Data,
12 DataSource,
13 DataTransform,
14 Permission,
15 Purpose,
16 Rule,
17 Status,
18 Type {}
19

20 /********** ********** ********** ********** **********
21 extended abstract signatures
22 ********** ********** ********** ********** **********/
23 abstract sig
24 AccessTicket,
25 Licence
26 extends Permission{}
27

28 abstract sig
29 AccessRule,
30 DecisionRule
31 extends Rule {}
32

33 abstract sig HIPAACat extends Category{}
34 abstract sig Consent extends Category{}
35

36 /********** ********** ********** ********** **********
37 unextended concrete signatures
38 ********** ********** ********** ********** **********/
39 sig Day,
40 Month,
41 Name,
42 Patient,
43 Personnel, // this cannot be abstract
44 Query,
45 Year {}
46

47 sig DataItem {
48 name: Name}
49

209

50 /********** ********** ********** ********** **********
51 extended concrete signatures
52 ********** ********** ********** ********** **********/
53 one sig
54 DeIDedTransformHDate,
55 IdentifiedDoesNotTransformHDate,
56 PatientConsent
57 //ProtectedChild,
58 //ProtectedPregnantWomen
59 extends AccessRule {}
60

61 one sig
62 CanUseTotallyDeIDed,
63 DataAccessAgreementPresent,
64 DataSourcePriorityOK,
65 LicenedTeamAndPI,
66 NoOverlapPITeamDC,
67 NoSupsInPIandDC,
68 PIDefined,
69 ProjectMembersDefined,
70 QualifierPresent,
71 SomePurposeNotDirectTreatment,
72 SomeQueriesDefined,
73 SomeSourcesDefined
74 extends DecisionRule {}
75

76 one sig
77 Allow,
78 Disallow
79 extends Consent {}
80

81 one sig
82 TotallyDeIDed,
83 NotTotallyDeIDed
84 extends DataTransform {}
85

86 sig Project extends DataSource{}
87 one sig ClinicalDB extends DataSource{}
88

89 one sig
90 HDate,
91 HProtectedChild,
92 HProtectedPregnantWoman
93 extends HIPAACat {}
94

95 one sig Fishing extends Licence {}
96

97 one sig DeIDed,
98 Identified
99 extends AccessTicket {}

100

101 one sig
102 DirectTreatment,
103 Research
104 extends Purpose{}
105

106 one sig
107 DownloadAllowed,
108 DownloadDisabled
109 extends Status {}
110

111 one sig

210

112 Group,
113 Individual
114 extends Type {}
115

116 sig Date extends Data {
117 day: lone Day,
118 month: lone Month,
119 year: Year }{
120 // day iff month also exists
121 some day iff some month }
122 sig dStr extends Data {}
123 /********** ********** ********** ********** **********
124 subset concrete signatures
125 ********** ********** ********** ********** **********/
126 sig
127 Qualifier,
128 Researcher
129 in Personnel{}
130

131 //changed extends to in, due to identified access ticket
132 sig
133 QryData,
134 RetData
135 in DataItem {}
136

137 /********** ********** ********** ********** **********
138 NJH Closed System
139 ********** ********** ********** ********** **********/
140 sig NJH {
141 accessRules: set AccessRule,
142 accessTickets: set AccessTicket,
143 categories: set Category,
144 consents: set Consent,
145 dataItems: set DataItem,
146 dates: set Date,
147 decisionRules: set DecisionRule,
148 hCats: set HIPAACat,
149 licences: set Licence,
150 patients: set Patient,
151 permissions: set Permission,
152 personnel: set Personnel,
153 projects: set Project,
154 purposes: set Purpose,
155 qryItems: set QryData,
156 qualifiers: set Qualifier,
157 queries: set Query,
158 researchers : set Researcher,
159 retItems: set RetData,
160 rules: set Rule,
161 sources: set DataSource,
162 statuses: set Status,
163 transforms: set DataTransform,
164 types: set Type,
165 values: set Data,
166

167 /* access rules applies to these types. */
168 ARAppliesTo: accessRules -> some types,
169

170 /* access rule transforms data linked to this hipaa category */
171 ARTransforms: accessRules -> hCats,
172

173 // access rule hides these categories if they are disallowed by Consent

211

174 ARHides: accessRules -> categories,
175

176 /* helps to determine
177 1. if data from a project can be used as a data source */
178 ATPriority : accessTickets -> accessTickets,
179

180 // p1->p2 means p1 gives p2 access to data produced by p1
181 dataAccessAgreement: projects -> projects,
182

183 /* data items must a value or not. */
184 dataValues: dataItems -> one values,
185

186 /* each data item is linked to a perticular hipaa category. we do not need to
187 link the retitems because we know the DICat of retItems through the
188 RDFromQD relation */
189 DICat: (dataItems - retItems) -> hCats,
190

191 /* not neccessary to have a direct (i.e. one-to-one) link between retItems
192 and sources becaues retItems may be grouped. Data sources of retItems
193 are found through the RDFromQD relation */
194 DISource: dataItems -> one sources,
195

196 enteredOn: dataItems -> lone dates,
197

198 /* not neccessary to have a direct (i.e. one-to-one) link between retItems
199 and patients becaues retItems may be grouped. Patients associated
200 with retItems are found through the RDFromQD relation */
201 patientData: patients one -> some qryItems -> one consents,
202

203 /* permission has applicable decision and access rules that must be
204 applied to approve the licence or to access the data. */
205 permRules: permissions -> some rules,
206

207 /* project access tickets, each one has at most one */
208 projectAT: projects -> lone accessTickets,
209

210 /* project data collector, each project has at most one */
211 projectDataCollector: projects -> lone personnel,
212

213 projectDataTransformRequired: projects -> one transforms,
214

215 /* project team members */
216 projectMembers: projects -> researchers,
217

218 /* project principal investigator */
219 projectPI: projects -> lone researchers,
220

221 /* project purpose */
222 projectPurpose: projects -> lone purposes,
223

224 /* project queries */
225 projectQueries: projects one -> queries,
226

227 /* project sources, could be other projects too */
228 projectSources: projects -> sources,
229

230 // a query can work on any kind of data item
231 qryReturns: queries -> dataItems -> dataItems,
232

233 // a query can return any kind of data item
234 qryWorksOn: queries -> dataItems,
235

212

236 /* returned data from query data, each piece of retdata is derived from
237 at most 1qryitem because we are only working on the Individual Type
238 right now.
239 Hoewever because we are using different access tickets, qryItems
240 may be linked to more than one return types. The max is 2because
241 we have two fifferent Transform rules*/
242 //RDFromQD: retItems -> one qryItems,
243

244 /* return data type, has 0or 1type */
245 RDType: queries -> retItems -> lone types,
246

247 /* researcher licence */
248 researcherL: researchers -> lone licences,
249

250 /* researcher qualifier, at most one qualifier */
251 resQualifier: researchers -> lone qualifiers,
252

253 /* supervisors, each personnel has at most one supervisor */
254 supervisors: personnel lone -> personnel,
255

256 /* determines is query results meets conformance and the next
257 operation, i.e. view/download is allowed */
258 VDAllowed: queries -> lone statuses }
259

260 /********** ********** ********** ********** ********** ********** **********
261 End Structural Model, NJHg
262 /********** ********** ********** ********** ********** ********** **********/
263

264 /********** ********** ********** ********** ********** ********** **********
265 These are not a part of the model. The provide sanity
266 checks before going on to write the operation specifications
267 /********** ********** ********** ********** ********** ********** **********/
268 /********** ********** ********** ********** **********
269 any instance of the model
270 ********** ********** ********** ********** **********/
271 private pred show (njh: NJH) {}
272 run show for 7but exactly 15Rule, 1NJH expect 1

213

Listing A.3: Full NJH structural model: adding constraints. Imports Listing A.2 on line 24.

1 /********** ********** ********** ********** ********** ********** **********
2 Begin Structural Model With (Generator) Invariants, NJHg
3

4 Executing any of the predicates or assertions requires a
5 minimum of 13rules
6

7 To do:
8 17/04/2016
9 To add invariants for

10 1. how an AT is obtained - done 25/04/2016
11 2. for how runQuery changes
12 qryWorksOn,
13 qryReturns,
14 RDType,
15 enteredOn
16 3. How Update Conformance works with qryReturns
17

18 /********** ********** ********** ********** ********** ********** **********/
19 module NJHg
20

21 /********** ********** ********** ********** **********
22 imports
23 /********** ********** ********** ********** **********/
24 open NJH
25 open util/relation
26 open util/ternary
27

28 /********** ********** ********** ********** **********
29 INVARIANTS
30 separating the invariants for each set,
31 relation, or related sets and relations
32 allows for easier decomposition later on
33 when doing slicing
34 ********** ********** ********** ********** **********/
35 // this signature is exported from the model, it is used in inv[]
36 pred generator (njh: NJH) {
37 all
38 njh: NJH |
39

40 //for sets
41 invCategory[njh] and
42 invDatItems[njh] and
43 invDates[njh] and
44 invPermissions[njh] and
45 invPersonnel[njh] and
46 invRules[njh] and
47 invSources[njh] and
48

49 // for relations
50 invARAppliesTo[njh] and
51 invATPriority[njh] and
52 invARHides[njh] and
53 invARTransforms[njh] and
54 invDataAccessAggreement[njh] and
55 invDISource[njh] and
56 invEnteredOn[njh] and
57 invPatientDataAndDICat[njh] and
58 invPermRules[njh] and
59 //invProjectAT and

214

60 invProjectDataCollector[njh] and
61 invProjectSources[njh] and
62 invQryReturns[njh] and
63 invQryWorksOn[njh] and
64 invRDType[njh] and
65 invResearcherL[njh] and
66 invResQualifier[njh] and
67 invSupervisors[njh] and
68 invVDAllowed[njh] and
69 setPredefinedConfigurations[njh] }
70

71 /********** ********** ********** ********** **********
72 Some Functions and Predicates to be reused
73 ********** ********** ********** ********** **********/
74

75 fun DeIDedDateTransform (d: Date): Date {
76 {ri: Date |
77 no ri.day and
78 no ri.month and
79 ri.year = d.year }}
80

81 fun IdentifiedDateTransform (d: Date): Date {
82 { ri: Date | ri = d }}
83

84 pred identifiedDate (d: Date) {
85 some d.day }
86

87 /********** ********** ********** ********** **********
88 Set Invariants,
89 ordered alphabetically as best as possible
90 ********** ********** ********** ********** **********/
91

92 private pred invCategory (njh: NJH) {
93 njh.categories =
94 njh.consents + njh.hCats }
95

96 private pred invDatItems (njh: NJH) {
97 (njh.qryItems + njh.retItems) in njh.dataItems}
98

99 private pred invDates (njh: NJH) {
100 // closed system constraint - any date is a part of the set of dates
101 njh.dates = (njh.values & Date) + ran[njh.enteredOn]
102

103 all
104 d: Date |
105 (d in njh.dates and identifiedDate[d]) implies
106 DeIDedDateTransform[d] in njh.dates}
107

108 private pred invPermissions (njh: NJH) {
109 njh.permissions = njh.accessTickets + njh.licences }
110

111 private pred invPersonnel (njh: NJH) {
112 (njh.researchers + njh.qualifiers) in njh.personnel}
113

114 private pred invRules (njh: NJH) {
115 njh.rules = njh.accessRules + njh.decisionRules }
116

117 private pred invSources (njh: NJH) {
118 njh.projects in njh.sources }
119

120 /********** ********** ********** ********** **********
121 Relation Invariants,

215

122 ordered alphabetically as best as possible
123 ********** ********** ********** ********** **********/
124

125 // replaces TransFormHDateAppliesToIndividual in old specifications
126 private pred invARAppliesTo [njh: NJH] {
127 some njh.ARAppliesTo &
128 DeIDedTransformHDate-> Individual }
129

130 private pred invATPriority (njh: NJH) {
131 irreflexive[^(njh.ATPriority)] }
132

133 private pred invARHides (njh: NJH) {
134 no njh.ARHides & njh.ARTransforms }
135

136 // DeIDedTransformHDate applies to HDate HIPAACat
137 private pred invARTransforms (njh: NJH) {
138 some njh.ARTransforms & DeIDedTransformHDate -> HDate }
139

140 //p1->p2 means p1 gives p2 access to data produced by p1
141 private pred invDataAccessAggreement (njh: NJH) {
142 // no project has a data access agreement with itself
143 irreflexive[^(njh.dataAccessAgreement)]
144

145 /* a project with a data access agreement with another
146 project has that project as a data source */
147 ~(njh.dataAccessAgreement) in njh.projectSources }
148

149 private pred invDISource1 (njh: NJH) {
150 all
151 s: njh.sources |
152 some s & Project
153 // project can only have retItems as data items
154 implies
155 njh.DISource.s in njh.retItems
156 // otherwise no retitems as data items
157 else
158 njh.DISource.s in (njh.dataItems - njh.retItems) }
159

160 /* we can trace every ri back to some (set of) patientData qi (qis)
161 and if any of the qi’s is linked to HDate, and the access ticket used
162 to create the ri is DeIDed, the ri must also be de-identified. */
163 private pred invDISource2 (njh: NJH) {
164 all
165 da: (njh.DISource).(njh.projects) |
166 some njh.qryReturns.da implies
167 some da -> ClinicalDB & njh.DISource.(njh.projectSources) }
168

169 private pred invDISourceAndEnteredOn (njh: NJH) {
170 all
171 di: njh.dataItems |
172 some di.(njh.DISource) & ClinicalDB implies
173 identifiedDate[di.(njh.enteredOn)] }
174

175 private pred invDISource (njh: NJH) {
176 invDISource1[njh] and
177 invDISource2[njh] and
178 invDISourceAndEnteredOn[njh]}
179

180 private pred invEnteredOn (njh: NJH) {
181 // dataItems in Patient data
182 all
183 di: mid[njh.patientData] | {

216

184 // each has a date entered, we don’t care if retItems are not in enteredOn?
185 some di.(njh.enteredOn) and
186 // each enteredOn data has a day and month (constraint in Date signature
187 // ensures that month is non-empty iff day is non-empty)
188 some di.(njh.enteredOn.day) }}
189

190 // replaces AllDatesCorrectlyCategorised in old specifications
191 private pred invPatientDataAndDICat[njh: NJH] {
192 /* All dates in patient data are correctly categorised
193 as HDate HIPAACat */
194 all
195 di: mid[njh.patientData] |
196 some di.(njh.dataValues) & Date implies
197 some di.(njh.DICat) & HDate }
198

199 // replaces TransformHDateIsDeIDedRule in old specifications
200 private pred invPermRules (njh: NJH) {
201 // DeIDedTransformHDate is linked with DeIDed access ticket
202 some njh.permRules &
203 DeIDed -> DeIDedTransformHDate and
204 // (so far) only the DeIDed access ticket has the DeIDedTransformHDate rule
205 njh.permRules.DeIDedTransformHDate = DeIDed }
206

207 private pred invProjectAT (njh: NJH) {
208 // ********** for approve project access ticket
209 all
210 p: njh.projects |
211 let
212 dr =
213 CanUseTotallyDeIDed +
214 DataAccessAgreementPresent+
215 DataSourcePriorityOK +
216 LicenedTeamAndPI +
217 NoOverlapPITeamDC +
218 NoSupsInPIandDC +
219 PIDefined +
220 ProjectMembersDefined +
221 SomePurposeNotDirectTreatment +
222 SomeQueriesDefined +
223 SomeSourcesDefined,
224 di = dr - CanUseTotallyDeIDed,
225 d = DeIDed,
226 i = Identified,
227 pat = njh.projectAT |
228

229 some p.pat implies (
230

231 // specific for DeIDed access tickets
232 some p -> d & pat implies (
233 // kind of Transformation access ticket allows
234 some p->TotallyDeIDed & njh.projectDataTransformRequired and
235 // rules that apply to the DeIDed access ticket
236 d.(njh.permRules) & njh.decisionRules = dr)
237

238 and
239

240 // specific for Identified access tickets
241 some p -> i & pat implies (
242 // kind of Transformation access ticket allows
243 some p -> NotTotallyDeIDed & njh.projectDataTransformRequired and
244 // rules that apply to the DeIDed access ticket
245 d.(njh.permRules) & njh.decisionRules = di)

217

246

247 and
248

249 all
250 ps: p.(njh.projectSources) & njh.projects | {
251 // application of the DataAccessAgreementPresent Decision Rule
252 some ps -> p & njh.dataAccessAgreement and
253 /* application of the DataSourcePriorityOK Decision Rule
254

255 if access ticket being considered has priority over
256 the access tickets of any of its project sources
257 (i.e. other projects) }then we cannot approve the
258 project because the data returned would not be at
259 the level required */
260 no (d+i) -> ps.(njh.projectAT) & njh.ATPriority }
261 and
262

263 let
264 team = p.(njh.projectMembers),
265 pi = p.(njh.projectPI),
266 dc = p.(njh.projectDataCollector) | {
267

268 all
269 r: (team + pi) | {
270 /* application of the LicenedTeamAndPI Decision Rule
271 each pi and team member has a licence */
272 some r.(njh.researcherL) }and
273 /* application of the NoOverlapPITeamDC Decision Rule
274 1. neither pi nor dc are a part of project team */
275 no (pi + dc) & team and
276 // 2. pi and da are not the same
277 no pi & dc and
278 /* application of the ProjectMembersDefined Decision Rule
279 > 1 team members */
280 #team > 0and
281 /* application of the PIDefined Decision Rule
282 has a pi */
283 #pi> 0 }
284

285 and
286

287 /* application of the NoSupsInPIandDC Decision Rule
288 neither the pi nor the da supervise each other
289 directly or indirectly */
290 let
291 sup = p.(njh.projectPI) -> p.(njh.projectDataCollector) | {
292 no (sup + ~sup) & ^(njh.supervisors) }
293

294 and
295

296 /* application of the SomePurposeNotDirectTreatment Decision Rule
297 project purpose is not for direct treatment */
298 p.(njh.projectPurpose) != DirectTreatment
299

300 and
301

302 /* application of the SomeQueriesDefined Decision Rule
303 at least one project query */
304 some p.(njh.projectQueries)
305

306 and
307

218

308 /* application of the SomeSourcesDefined Decision Rule
309 at least one project source */
310 some p.(njh.projectSources)) }
311

312 private pred invProjectDataCollector(njh: NJH) {
313 all
314 p: njh.projects |
315 // ClinicalDB iff DataCollector
316 (some p->ClinicalDB & njh.projectSources) implies
317 (some p.(njh.projectDataCollector)) }
318

319 private pred invProjectSources1 (njh: NJH) {
320 // no self datasource for projects, directly or indirectly
321 irreflexive[^(njh.projectSources :> njh.projects)] }
322

323 private pred invProjectSources2 (njh: NJH) {
324 all
325 p: njh.projects |
326 some p.(njh.projectAT) implies
327 /* all data sources for a project that are projects themselves
328 should be (already) approved when the project gets it’s
329 access ticket */
330 all
331 ps: (p.(njh.projectSources) & Project) |
332 some ps.(njh.projectAT) }
333

334 private pred invProjectSources (njh: NJH) {
335 invProjectSources1[njh] and
336 invProjectSources2[njh] }
337

338 private pred invQryReturns1 (njh: NJH) {
339 all
340 q: njh.queries |
341 some q.(njh.qryReturns) implies
342 ran[q.(njh.qryReturns)] in q.(njh.qryWorksOn) }
343

344 private pred invQryReturns2 (njh: NJH) {
345 all
346 q: njh.queries |
347 some q.(njh.qryReturns) implies
348 some njh.projectQueries.q.(njh.projectAT) }
349

350 private pred invQryReturns (njh: NJH) {
351 invQryReturns1[njh] and
352 invQryReturns2[njh] }
353

354 private pred invQryWorksOn (njh: NJH) {
355 all
356 q: njh.queries,
357 qi: njh.qryItems |
358 let
359 qSources = (njh.projectQueries).q.(njh.projectSources) |
360 // constraints on what can be in QryWorksOn for a query
361 some q -> qi & njh.qryWorksOn implies
362 (qi in (njh.DISource).qSources and
363 no qi -> Disallow & select23[njh.patientData]) }
364

365 private pred invRDType (njh: NJH) {
366 all
367 q: njh.queries,
368 r: njh.retItems |
369 let

219

370 qrq = (r.(q.(njh.qryReturns))) {
371 // these are the entries
372 select12[njh.RDType] = select12[njh.qryReturns]
373

374 // individual type
375 some q -> r -> Individual & njh.RDType iff
376 #qrq = 1
377

378 // group type
379 some q -> r -> Group & njh.RDType iff
380 #qrq > 1 } }
381

382 private pred invResearcherL (njh: NJH) {
383 // ********** for approve researcher licence
384 all
385 res: njh.researchers |
386 some res.(njh.researcherL) implies
387 // researcher is qualified
388 some res.(njh.resQualifier) and
389 // the licence granted required qualification
390 (res.(njh.researcherL)).(njh.permRules) =
391 QualifierPresent }
392

393 private pred invResQualifier (njh: NJH) {
394 // ********** for qualify researcher this should always be true
395 no iden & ^(njh.resQualifier) }
396

397 private pred invSupervisors (njh: NJH) {
398 // no cycles in supervisor relations,
399 irreflexive[^(njh.supervisors)]
400 // all personnel are either supervisor or supervised
401 all
402 p: njh.personnel | {
403 p in (dom[njh.supervisors] + ran[njh.supervisors])} and
404 /* supervisor relation is a single tree, i.e. not a forest
405 this means that one personel has no supervisor */
406 one
407 sup: njh.personnel |
408 no (njh.supervisors).sup }
409

410 // this checks only for DeIDed access ticket
411 private pred invVDAllowedDeIDed(
412 njh: NJH,
413 qry: Query) {
414 let
415 at = (njh.projectQueries).qry.(njh.projectAT) |
416

417 some at & DeIDed iff
418 all
419 d: ((Date & dom[qry.(njh.qryReturns)].(njh.dataValues)) +
420 dom[qry.(njh.qryReturns)].(njh.enteredOn)) |
421 not identifiedDate[d] }
422

423 // this checks only for Identified access ticket
424 private pred invVDAllowedIdentified(
425 njh: NJH,
426 qry: Query) {
427 let
428 at = (njh.projectQueries).qry.(njh.projectAT) |
429

430 some at & Identified iff
431 all

220

432 d: ((Date & dom[qry.(njh.qryReturns)].(njh.dataValues)) +
433 dom[qry.(njh.qryReturns)].(njh.enteredOn)) |
434 identifiedDate[d] }
435

436 pred invVDAllowed1 (
437 njh: NJH,
438 q: Query) {
439

440 (invVDAllowedDeIDed[njh, q] and
441 invVDAllowedIdentified[njh, q]) }
442

443 private pred invVDAllowed (njh: NJH) {
444 all
445 q: njh.queries | {
446 // if a query has a a VD status then it has some return data
447 some q.(njh.VDAllowed) implies
448 some q.(njh.qryReturns)
449

450 some q -> DownloadAllowed & njh.VDAllowed implies
451 invVDAllowed1[njh, q]
452

453 some q -> DownloadDisabled & njh.VDAllowed implies
454 not invVDAllowed1[njh, q] }}
455

456 private pred setPredefinedConfigurations (njh: NJH) {
457 // for sets
458 njh.accessRules = // 5
459 DeIDedTransformHDate +
460 IdentifiedDoesNotTransformHDate +
461 PatientConsent and
462 //ProtectedChild +
463 //ProtectedPregnantWomen and
464

465 njh.decisionRules = //13
466 CanUseTotallyDeIDed +
467 DataAccessAgreementPresent +
468 DataSourcePriorityOK +
469 LicenedTeamAndPI +
470 NoOverlapPITeamDC +
471 NoSupsInPIandDC +
472 PIDefined +
473 ProjectMembersDefined +
474 SomePurposeNotDirectTreatment +
475 QualifierPresent +
476 SomeQueriesDefined +
477 SomeSourcesDefined and
478

479 // access tickets (2)
480 njh.accessTickets =
481 DeIDed +
482 Identified and
483

484 // licences (1)
485 njh.licences = Fishing and
486

487 // statuses (2)
488 njh.statuses =
489 DownloadAllowed +
490 DownloadDisabled and
491

492 // transforms (2)
493 njh.transforms =

221

494 TotallyDeIDed +
495 NotTotallyDeIDed and
496

497 //sources (at least 1)
498 some ClinicalDB & njh.sources and
499

500 // types
501 njh.types = ran[njh.ARAppliesTo] and
502

503 // for relations
504 // access ticket priority (1)
505 njh.ATPriority = Identified -> DeIDed and
506

507 //ARAppliesTo: accessRules -> some types (3)
508 njh.ARAppliesTo =
509 DeIDedTransformHDate -> Individual +
510 IdentifiedDoesNotTransformHDate -> Individual +
511 PatientConsent -> Individual and
512

513 //ARTransforms: accessRules -> some hCats (2)
514 njh.ARTransforms =
515 DeIDedTransformHDate -> HDate +
516 IdentifiedDoesNotTransformHDate -> HDate and
517

518 //ARHides: accessRules -> some hCats (1)
519 njh.ARHides =
520 PatientConsent -> Disallow and
521

522 //permRules: permissions -> some rules (26)
523 njh.permRules =
524 // access rules for DeIDed access ticket (2)
525 DeIDed -> DeIDedTransformHDate +
526 DeIDed -> PatientConsent +
527

528 // access rules for Identified access ticket (2)
529 Identified ->IdentifiedDoesNotTransformHDate +
530 Identified -> PatientConsent +
531

532 // decision rules for fishing licence (1)
533 Fishing -> QualifierPresent +
534

535 // decision rules for DeIDed access ticket (11)
536 DeIDed -> CanUseTotallyDeIDed +
537 DeIDed -> DataAccessAgreementPresent+
538 DeIDed -> DataSourcePriorityOK +
539 DeIDed -> LicenedTeamAndPI +
540 DeIDed -> NoOverlapPITeamDC +
541 DeIDed -> NoSupsInPIandDC +
542 DeIDed -> PIDefined +
543 DeIDed -> ProjectMembersDefined +
544 DeIDed -> SomePurposeNotDirectTreatment +
545 DeIDed -> SomeQueriesDefined +
546 DeIDed -> SomeSourcesDefined +
547

548 // decision rules for Identified access ticket (10)
549 Identified -> DataAccessAgreementPresent+
550 Identified -> DataSourcePriorityOK +
551 Identified -> LicenedTeamAndPI +
552 Identified -> NoOverlapPITeamDC +
553 Identified -> NoSupsInPIandDC +
554 Identified -> PIDefined +
555 Identified -> ProjectMembersDefined +

222

556 Identified -> SomePurposeNotDirectTreatment +
557 Identified -> SomeQueriesDefined +
558 Identified -> SomeSourcesDefined and
559

560 /* Important to add these so that Alloy does not use a
561 subset of the configuration!!!
562 This is important when setting object configurations too */
563 #njh.accessRules = 3and
564 #njh.decisionRules = 12and
565 #njh.accessTickets = 2and
566 #njh.licences = 1and
567 #njh.statuses = 2and
568 #njh.sources > 0and
569 #njh.transforms = 2and
570 #njh.types = #ran[njh.ARAppliesTo] and
571 #njh.ATPriority = 1and
572 #njh.ARAppliesTo = 3and
573 #njh.ARTransforms = 2and
574 #njh.ARHides = 1and
575 #njh.permRules = 26}
576

577 /********** ********** ********** ********** ********** ********** **********
578 End Structural Model, NJHg
579 /********** ********** ********** ********** ********** ********** **********/
580

581

582 /********** ********** ********** ********** ********** ********** **********
583 These are not a part of the model. The provide sanity
584 checks before going on to write the operation specifications
585 /********** ********** ********** ********** ********** ********** **********/
586

587 /********** ********** ********** ********** **********
588 any instance of the model
589 ********** ********** ********** ********** **********/
590 private pred show (njh: NJH) {}
591 run show for 7but 1NJH expect 1
592

593 /********** ********** ********** ********** **********
594 We can get an instance of the model for all
595 the relations?
596 ********** **sets******* ********** ********** **********/
597 private pred someOfAllSets(njh: NJH) {
598 some njh.accessRules and
599 some njh.accessTickets and
600 some consents and
601 some njh.dataItems and
602 some njh.dates and
603 some njh.decisionRules and
604 some njh.hCats and
605 some njh.licences and
606 some njh.patients and
607 some njh.permissions and
608 some njh.personnel and
609 some njh.projects and
610 some njh.purposes and
611 some njh.qryItems and
612 some njh.qualifiers and
613 some njh.queries and
614 some njh.researchers and
615 some njh.retItems and
616 some rules and
617 some njh.sources and

223

618 some njh.statuses and
619 some njh.transforms and
620 some njh.types and
621 some njh.values }
622 run someOfAllSets for 7but 1NJH expect 1
623

624 /********** ********** ********** ********** **********
625 We can get an instance of the model for all
626 the relations?
627 ********** ********** ********** ********** **********/
628 private pred someOfAllRelations(njh: NJH) {
629 some njh.ARAppliesTo and
630 some njh.ARHides and
631 some njh.ARTransforms and
632 some njh.ATPriority and
633 some njh.dataAccessAgreement and
634 some njh.dataValues and
635 some njh.enteredOn and
636 some njh.DICat and
637 some njh.DISource and
638 some njh.patientData and
639 some njh.permRules and
640 some njh.projectAT and
641 some njh.projectDataCollector and
642 some njh.projectDataTransformRequired and
643 some njh.projectPurpose and
644 some njh.projectSources and
645 some njh.projectPI and
646 some njh.projectMembers and
647 some njh.projectQueries and
648 some njh.qryReturns and
649 some njh.qryWorksOn and
650 some njh.RDType and
651 some njh.resQualifier and
652 some njh.researcherL and
653 some njh.supervisors and
654 some VDAllowed }
655 run someOfAllRelations for 7but 1NJH expect 1
656

657 /********** ********** ********** ********** **********
658 We can get an instance of the model for all
659 the relations that satisfy generator[]?
660 ********** ********** ********** ********** **********/
661 private pred someOfAllRelationsSatisfyingGenerator (
662 njh: NJH) {
663 someOfAllRelations[njh] and generator[njh] }
664 run someOfAllRelationsSatisfyingGenerator for 7
665 but 15Rule, 1NJH expect 1
666

667 /********** ********** ********** ********** **********
668 We can get an instance of the model for all
669 the relations that satisfy generator[] and a
670 project has an Identified access Ticket?
671 ********** ********** ********** ********** **********/
672 private pred someOfAllRelationsSatisfyingGeneratorForIdentifiedAT(
673 njh: NJH, at: Identified) {
674 some njh.projectAT.at and
675 someOfAllRelations[njh] and generator[njh] }
676 run someOfAllRelationsSatisfyingGeneratorForIdentifiedAT
677 for 7 but 15Rule, 1NJH expect 1
678

679 /********** ********** ********** ********** **********

224

680 We can get an instance of the model for all
681 the relations that satisfy generator[] and a
682 project has a DeIDed access Ticket?
683 ********** ********** ********** ********** **********/
684 private pred someOfAllRelationsSatisfyingGeneratorForDeIDedAT (
685 njh: NJH, at: DeIDed) {
686 some njh.projectAT.at and
687 someOfAllRelations[njh] and generator[njh] }
688 run someOfAllRelationsSatisfyingGeneratorForDeIDedAT
689 for 7 but 15Rule, 1NJH expect 1
690

691 /********** ********** ********** ********** **********
692 all sets that are defined are used!
693 using IFF instead of IMPLIES is not applicable
694 because lone on some sides of the relations.
695 ********** ********** ********** ********** **********/
696 assert TestIfAllSetsAreApplicableToTheModel {
697 all
698 njh: NJH |
699 someOfAllRelationsSatisfyingGenerator[njh] implies
700 someOfAllSets[njh] }
701 check TestIfAllSetsAreApplicableToTheModel for 7
702 but 15Rule, 1NJH expect 0

225

Listing A.4: Full NJH structural model: adding operation specifications. Imports Listing A.3 on line 9.

1 /********** ********** ********** ********** ********** ********** **********
2 Begin Process Model, NJHgPM
3 /********** ********** ********** ********** ********** ********** **********/
4 module NJHgPM
5

6 /********** ********** ********** ********** **********
7 IMPORTS
8 ********** ********** ********** ********** **********/
9 open NJHg

10 open util/ordering[NJH] as ord
11

12 /********** ********** ********** ********** **********
13 SOME NOTES ON OPERATION TRACES
14

15 Since inv is not a fact, every instance on NJH
16 will not satisfy the invariants, just the ones
17 that have an operation applied on them.
18 This means that saying:
19

20 all nhj: NHJ | inv[njh]
21

22 in an assertion will always return a
23 counterexample.
24

25 However we know that:
26

27 all
28 njh, njh’: NJH |
29 (inv[njh] and op[njh, njh’])
30 implies inv[njh’]
31

32 should not return counterexamples.
33

34 The fact called traces enforces this -
35 the initial state satisfies inv[] and all next
36 states should satisfy inv[] as well.
37

38 ********** ********** ********** ********** **********/
39

40 // used in Traces for the first state in ord
41 private pred init (
42 njh: NJH) {
43 // operations work on these so initial none of them
44

45 // for sets
46 // NONE
47

48 // for relations
49 no njh.resQualifier and
50 no njh.researcherL and
51 no njh.projectAT and
52 no njh.qryReturns and
53 no njh.qryWorksOn and
54 no njh.RDType and
55 no njh.VDAllowed}
56 run init for 7but 15Rule, 1NJH expect 1
57

58 fact Traces {
59 // get the initial state, i.e. the first state in sequence ord

226

60 init[ord/first]
61 // the first state fulfils the generator constraints
62 generator[ord/first]
63 all
64 /* since last does not have a next state, do not use it here.
65 used later in njh.next */
66 njh: NJH - ord/last |
67 some
68 res: Researcher,
69 per: Personnel,
70 lic: Licence,
71 proj: Project,
72 at: AccessTicket,
73 qry: Query |
74 let
75 /* set the next state */
76 njh’ = njh.next |
77 /* possible operations on the state */
78 qualifyResearcher[njh, njh’, res, per] or
79 approveResearcherL[njh, njh’, res, lic] or
80 approveProjectAT[njh, njh’, proj, at] or
81 runQuery[njh, njh’, res, proj, qry, at] or
82 updateConformance[njh, njh’, qry] or
83 skip[njh, njh’] }
84

85 /********** ********** ********** ********** **********
86 REUSE - predicates and functions
87 ********** ********** ********** ********** **********/
88 // the sets do not change
89 private pred noChangeSets (njh, njh’: NJH) {
90 njh.accessRules = njh’.accessRules and
91 njh.accessTickets = njh’.accessTickets and
92 njh.categories = njh’.categories and
93 njh.consents = njh’.consents and
94 njh.dataItems = njh’.dataItems and
95 njh.dates = njh’.dates and
96 njh.decisionRules = njh’.decisionRules and
97 njh.hCats = njh’.hCats and
98 njh.licences = njh’.licences and
99 njh.patients = njh’.patients and

100 njh.permissions = njh’.permissions and
101 njh.personnel = njh’.personnel and
102 njh.projects = njh’.projects and
103 njh.purposes = njh’.purposes and
104 njh.qryItems = njh’.qryItems and
105 njh.qualifiers = njh’.qualifiers and
106 njh.queries = njh’.queries and
107 njh.researchers = njh’.researchers and
108 njh.retItems = njh’.retItems and
109 njh.rules = njh’.rules and
110 njh.sources = njh’.sources and
111 njh.statuses = njh’.statuses and
112 njh.transforms = njh’.transforms and
113 njh.types = njh’.types and
114 njh.values = njh’.values }
115

116 // the relations do not change
117 private pred noChangeRelations (njh, njh’: NJH) {
118 njh.ARAppliesTo = njh’.ARAppliesTo and
119 njh.ARHides = njh’.ARHides and
120 njh.ARTransforms = njh’.ARTransforms and
121 njh.ATPriority = njh’.ATPriority and

227

122 njh.dataAccessAgreement = njh’.dataAccessAgreement and
123 njh.dataValues = njh’.dataValues and
124 njh.enteredOn = njh’.enteredOn and
125 njh.DICat= njh’.DICat and
126 njh.DISource = njh’.DISource and
127 njh.patientData = njh’.patientData and
128 njh.permRules = njh’.permRules and
129 njh.projectAT = njh’.projectAT and
130 njh.projectDataCollector = njh’.projectDataCollector and
131 njh.projectDataTransformRequired = njh’.projectDataTransformRequired and
132 njh.projectPurpose = njh’.projectPurpose and
133 njh.projectSources = njh’.projectSources and
134 njh.projectPI = njh’.projectPI and
135 njh.projectMembers = njh’.projectMembers and
136 njh.projectQueries = njh’.projectQueries and
137 njh.qryReturns = njh’.qryReturns and
138 njh.qryWorksOn = njh’.qryWorksOn and
139 njh.RDType = njh’.RDType and
140 njh.resQualifier = njh’.resQualifier and
141 njh.researcherL = njh’.researcherL and
142 njh.supervisors = njh’.supervisors and
143 njh.VDAllowed = njh’.VDAllowed }
144

145 private pred applyDecisionRules (
146 njh: NJH,
147 perm: Permission,
148 rp: (Researcher + Project)) {
149

150 let
151 team = rp.(njh.projectMembers),
152 pi = rp.(njh.projectPI),
153 dc = rp.(njh.projectDataCollector) ,
154 sup = pi-> dc,
155 dr = perm.(njh.permRules) & njh.decisionRules,
156 pss = rp.(njh.projectSources) & Project |
157

158 // 0. CanUseTotallyDeIDed decision rule is applicable
159 (some dr & CanUseTotallyDeIDed implies (
160 (some perm & DeIDed implies
161 rp.(njh.projectDataTransformRequired) = TotallyDeIDed)
162 and
163 (some perm & Identified implies
164 rp.(njh.projectDataTransformRequired) = NotTotallyDeIDed)))
165

166 and
167

168 // 1. DataAccessAgreementPresent decision rule is applicable
169 (some dr & DataAccessAgreementPresent implies
170 /* p1->p2 in njh.dataAccessAgreement means
171 p1 gives p2 access to data produced by p1
172 all the project’s sources that are projects have a
173 corresponding data agreement */
174 all
175 ps: pss | {
176 // data access agreement is in place
177 some ps -> rp & njh.dataAccessAgreement })
178

179 and
180

181 // 2. DataSourcePriorityOK decision rule is applicable
182 (some dr & DataSourcePriorityOK implies
183 all

228

184 ps: pss |
185 /* all the project’s sources that are projects themselves
186 each have an approved access ticket */
187 some ps.(njh.projectAT) and
188 /* if access ticket being considered has priority over
189 the access tickets of any of its project sources
190 (i.e. other projects) }then we cannot approve the
191 project because the data returned would not be at
192 the level required */
193 no perm -> ps.(njh.projectAT) & njh.ATPriority)
194

195 and
196

197 // 3. NoSupsInPIandDC decision rule is applicable
198 (some dr & NoSupsInPIandDC implies
199 /* neither the pi nor the da supervise each other
200 directly or indirectly */
201 no (sup + ~sup) & ^(njh.supervisors))
202

203 and
204

205 // 4. PIDefined decision rule is applicable
206 (some dr & PIDefined implies #pi > 0)
207

208 and
209

210 // 5. ProjectMembersDefined decision rule is applicable
211 (some dr & ProjectMembersDefined implies #team > 0)
212

213 and
214

215 // 6. LicenedTeamAndPI decision rule is applicable
216 (some dr & LicenedTeamAndPI implies (
217 // each team member and pi has a Licence
218 all
219 r: (team + pi) | {
220 some r.(njh.researcherL) }))
221

222 and
223

224 // 7. NoOverlapPITeamDC decision rule is applicable
225 (some dr & NoOverlapPITeamDC implies (
226 // neither pi nor dc are a part of project team
227 no (pi + dc) & team and
228

229 // pi and da are not the same
230 no pi & dc))
231

232 and
233

234 // 8. SomePurposeNotDirectTreatment decision rule is applicable
235 (some dr & SomePurposeNotDirectTreatment implies (
236

237 // purpose defined for project
238 some rp.(njh.projectPurpose) and
239

240 // purpose is not direct treatment
241 rp.(njh.projectPurpose) != DirectTreatment))
242

243 and
244

245 // 9. QualifierPresent decision rule is applicable

229

246 (some dr & QualifierPresent implies
247 some rp.(njh.resQualifier))
248

249 and
250

251 // 10. SomeQueriesDefined decision rule is applicable
252 (some dr & SomeQueriesDefined implies
253 some rp.(njh.projectQueries))
254

255 and
256

257 // 11. SomeSourcesDefined decision rule is applicable
258 (some dr & SomeSourcesDefined implies
259 some rp.(njh.projectSources)) }
260

261 /********** ********** ********** ********** **********
262 OPERATION - skip
263 ********** ********** ********** ********** **********/
264 pred skip (
265 njh, njh’: NJH) {
266

267 noChangeSets[njh, njh’] and
268 noChangeRelations[njh, njh’] }
269 run skip for 7but 15Rule, 1NJH expect 1
270

271 /********** ********** ********** ********** **********
272 OPERATION - qualifyResearcher
273 ********** ********** ********** ********** **********/
274 pred qualifyResearcher (
275 njh, njh’: NJH,
276 res: Researcher,
277 per: Personnel) {
278

279 // preconditions */
280 res in njh.researchers and
281 per in njh.qualifiers and
282 no res->per & njh.resQualifier and
283 // adding this mapping does not make resQualifier reflexive
284 irreflexive[^(res->per + njh.resQualifier)] and
285

286 // set the qualifier for the reaearcher, postcondition */
287 njh’.resQualifier = njh.resQualifier + res->per and
288

289 // these do not change */
290 noChangeSets[njh, njh’] and
291

292 njh.ARAppliesTo = njh’.ARAppliesTo and
293 njh.ARHides = njh’.ARHides and
294 njh.ARTransforms = njh’.ARTransforms and
295 njh.ATPriority = njh’.ATPriority and
296 njh.dataAccessAgreement = njh’.dataAccessAgreement and
297 njh.dataValues = njh’.dataValues and
298 njh.enteredOn = njh’.enteredOn and
299 njh.DICat= njh’.DICat and
300 njh.DISource = njh’.DISource and
301 njh.patientData = njh’.patientData and
302 njh.permRules = njh’.permRules and
303 njh.projectAT = njh’.projectAT and
304 njh.projectDataCollector = njh’.projectDataCollector and
305 njh.projectDataTransformRequired =
306 njh’.projectDataTransformRequired and
307 njh.projectPurpose = njh’.projectPurpose and

230

308 njh.projectSources = njh’.projectSources and
309 njh.projectPI = njh’.projectPI and
310 njh.projectMembers = njh’.projectMembers and
311 njh.projectQueries = njh’.projectQueries and
312 njh.qryReturns = njh’.qryReturns and
313 njh.qryWorksOn = njh’.qryWorksOn and
314 njh.RDType = njh’.RDType and
315 njh.researcherL = njh’.researcherL and
316 njh.supervisors = njh’.supervisors and
317 njh.VDAllowed = njh’.VDAllowed}
318 run qualifyResearcher for 7but 15Rule, 2NJH expect 1
319 run qualifyResearcher for 7but 15Rule, 1NJH expect 0
320

321 /********** ********** ********** ********** **********
322 OPERATION - Approve Researcher’s Licence
323 ********** ********** ********** ********** **********/
324 pred approveResearcherL (
325 njh, njh’: NJH,
326 res: Researcher,
327 lic: Licence) {
328

329 // preconditions
330 res in njh.researchers and
331 lic in njh.permissions and
332 res->lic not in njh.researcherL and
333 applyDecisionRules[njh, lic, res] and
334

335 // set the access ticket for the reaearcher, postcondition
336 njh’.researcherL = njh.researcherL + res->lic and
337

338 //these do not change
339 njh.ARAppliesTo = njh’.ARAppliesTo and
340 njh.ARHides = njh’.ARHides and
341 njh.ARTransforms = njh’.ARTransforms and
342 njh.ATPriority = njh’.ATPriority and
343 njh.dataAccessAgreement = njh’.dataAccessAgreement and
344 njh.dataValues = njh’.dataValues and
345 njh.enteredOn = njh’.enteredOn and
346 njh.DICat= njh’.DICat and
347 njh.DISource = njh’.DISource and
348 njh.patientData = njh’.patientData and
349 njh.permRules = njh’.permRules and
350 njh.projectAT = njh’.projectAT and
351 njh.projectDataCollector = njh’.projectDataCollector and
352 njh.projectDataTransformRequired =
353 njh’.projectDataTransformRequired and
354 njh.projectPurpose = njh’.projectPurpose and
355 njh.projectSources = njh’.projectSources and
356 njh.projectPI = njh’.projectPI and
357 njh.projectMembers = njh’.projectMembers and
358 njh.projectQueries = njh’.projectQueries and
359 njh.qryReturns = njh’.qryReturns and
360 njh.qryWorksOn = njh’.qryWorksOn and
361 njh.RDType = njh’.RDType and
362 njh.resQualifier = njh’.resQualifier and
363 njh.supervisors = njh’.supervisors and
364 njh.VDAllowed = njh’.VDAllowed }
365 run approveResearcherL for 7but 15Rule, 3NJH expect 1
366 run approveResearcherL for 7but 15Rule, 2NJH expect 0
367

368 /********** ********** ********** ********** **********
369 OPERATION - approve project’s AT

231

370 ********** ********** ********** ********** **********/
371 pred approveProjectAT(
372 njh, njh’: NJH,
373 proj: Project, at: AccessTicket) {
374

375 // preconditions
376 proj in njh.projects and
377 at in njh.permissions and
378 no proj.(njh.projectAT) and
379

380 applyDecisionRules[njh, at, proj] and
381

382 // set the access ticket for the project
383 njh’.projectAT = njh.projectAT + proj -> at and
384

385 //these do not change
386 noChangeSets[njh, njh’] and
387

388 njh.ARAppliesTo = njh’.ARAppliesTo and
389 njh.ARHides = njh’.ARHides and
390 njh.ARTransforms = njh’.ARTransforms and
391 njh.ATPriority = njh’.ATPriority and
392 njh.dataAccessAgreement = njh’.dataAccessAgreement and
393 njh.dataValues = njh’.dataValues and
394 njh.enteredOn = njh’.enteredOn and
395 njh.DICat= njh’.DICat and
396 njh.DISource = njh’.DISource and
397 njh.patientData = njh’.patientData and
398 njh.permRules = njh’.permRules and
399 njh.projectDataCollector = njh’.projectDataCollector and
400 njh.projectDataTransformRequired =
401 njh’.projectDataTransformRequired and
402 njh.projectPurpose = njh’.projectPurpose and
403 njh.projectSources = njh’.projectSources and
404 njh.projectPI = njh’.projectPI and
405 njh.projectMembers = njh’.projectMembers and
406 njh.projectQueries = njh’.projectQueries and
407 njh.qryReturns = njh’.qryReturns and
408 njh.qryWorksOn = njh’.qryWorksOn and
409 njh.RDType = njh’.RDType and
410 njh.resQualifier = njh’.resQualifier and
411 njh.researcherL = njh’.researcherL and
412 njh.supervisors = njh’.supervisors and
413 njh.VDAllowed = njh’.VDAllowed }
414 /* since a project needs at least two researchers, i.e. PI and
415 at one team member we need at least 5previous states
416 to qualify the researchers and to approve their
417 licences */
418 run approveProjectAT for 7but 15Rule, 6NJH expect 1
419 run approveProjectAT for 7but 15Rule, 5NJH expect 0
420

421 /********** ********** ********** ********** **********
422 OPERATION - runQuery,
423 researcher executes query
424 ********** ********** ********** ********** **********/
425 private pred researcherAuthorisedForProject
426 (njh: NJH, res: Researcher, p: Project) {
427 // researcher is in the projectMembers, or is project’s PI
428 some (p.(njh.projectMembers) + p.(njh.projectPI)) & res }
429

430 private pred runQueryPre[
431 njh: NJH, r: Researcher,

232

432 p: Project, q: Query,
433 at: AccessTicket] {
434

435 // query is a part of the project’s queries for the project
436 q in p.(njh.projectQueries) and
437

438 // at is the access ticket for the project
439 some at & p.(njh.projectAT) and
440

441 // researcher is authorised for the project
442 researcherAuthorisedForProject[njh, r, p] and
443

444 // since (we assume) Query has not yet been run
445 no q.(njh.qryWorksOn) }
446

447 // Frame Conditions are post conditions
448 private pred runQueryPost[njh, njh’:NJH, q: Query] {
449

450 // operation does not change these sets
451 njh.accessRules = njh’.accessRules and
452 njh.accessTickets = njh’.accessTickets and
453 njh.categories = njh’.categories and
454 njh.consents = njh’.consents and
455 njh.decisionRules = njh’.decisionRules and
456 njh.hCats = njh’.hCats and
457 njh.licences = njh’.licences and
458 njh.patients = njh’.patients and
459 njh.permissions = njh’.permissions and
460 njh.personnel = njh’.personnel and
461 njh.projects = njh’.projects and
462 njh.purposes = njh’.purposes and
463 njh.qualifiers = njh’.qualifiers and
464 njh.queries = njh’.queries and
465 njh.researchers = njh’.researchers and
466 njh.rules = njh’.rules and
467 njh.sources = njh’.sources and
468 njh.statuses = njh’.statuses and
469 njh.transforms = njh’.transforms and
470 njh.types = njh’.types
471 and
472 // these relations do not change
473 njh.ARAppliesTo = njh’.ARAppliesTo and
474 njh.ARHides = njh’.ARHides and
475 njh.ARTransforms = njh’.ARTransforms and
476 njh.ATPriority = njh’.ATPriority and
477 njh.dataAccessAgreement = njh’.dataAccessAgreement and
478 njh.DICat= njh’.DICat and
479 njh.DISource = njh’.DISource and
480 njh.patientData = njh’.patientData and
481 njh.permRules = njh’.permRules and
482 njh.projectAT = njh’.projectAT and
483 njh.projectDataCollector = njh’.projectDataCollector and
484 njh.projectDataTransformRequired =
485 njh’.projectDataTransformRequired and
486 njh.projectPurpose = njh’.projectPurpose and
487 njh.projectSources = njh’.projectSources and
488 njh.projectPI = njh’.projectPI and
489 njh.projectMembers = njh’.projectMembers and
490 njh.projectQueries = njh’.projectQueries and
491 njh.resQualifier = njh’.resQualifier and
492 njh.researcherL = njh’.researcherL and
493 njh.supervisors = njh’.supervisors and

233

494 njh.VDAllowed = njh’.VDAllowed
495 and
496

497 /* operation changes these sets and relations
498 these changes relate to changes in qryItems, and retItems
499 and all that relate to them */
500

501 let
502 qItems = q.(njh’.qryWorksOn),
503 qRetItems = dom[q.(njh’.qryReturns)],
504 qDataItems = qRetItems+ qItems,
505 qValues = qDataItems.(njh’.dataValues),
506 qDates = Date & qDataItems.(njh’.dataValues) |
507

508 // ********** for sets **********
509 /* since we could be reusing dataitems in qDataItems using addition
510 to specify the constraintis correct, njh’ (post state) on the LHS */
511 njh’.dataItems = njh.dataItems + qDataItems and
512 njh’.qryItems = njh.qryItems + qItems and
513 njh’.retItems = njh.retItems + qRetItems and
514 njh’.dates = njh.dates + qDates and
515 njh’.values = njh.values + qValues and
516

517 // ********** for relations **********
518 /* since qDataItems mappings to qry are new, using subtraction
519 to specify the constraintis correct, njh’ (post state) on the RHS */
520 njh.qryReturns = njh’.qryReturns - q <: (njh’.qryReturns) and
521 njh.qryWorksOn = njh’.qryWorksOn - q <: (njh’.qryWorksOn) and
522

523 /* these could be reused from njh (pre state), so using addition
524 to specify the constraint is correct, njh’ (post state) on the LHS */
525 njh’.dataValues = njh.dataValues + qDataItems <: njh’.dataValues and
526 njh’.enteredOn = njh.enteredOn + qDataItems <: (njh’.enteredOn) and
527 njh’.RDType = njh.RDType + q <: njh’.RDType }
528

529 private pred applyHidesAccessRules (
530 njh: NJH, q: Query, qItems: set QryData,
531 p: Project, at: AccessTicket, rules: set Rule) {
532

533 // apply PatientConsent Rule
534 (some PatientConsent & rules implies
535 qItems in (
536 // dataitems from projectsources
537 (njh.DISource).((njh.projectQueries.q).(njh.projectSources)) -
538 // excluding dataItems where patients do not give consent
539 dom[select23[njh.patientData] :>
540 PatientConsent.(njh.ARHides)])
541 else
542 qItems in
543 // dataitems from projectsources
544 (njh.DISource).((njh.projectQueries.q).(njh.projectSources))) }
545

546 private pred applyTransformAccessRules (
547 njh: NJH, q: Query, qItems: set QryData,
548 p: Project, at: AccessTicket, rules: set Rule) {
549

550 let
551 rItems = q.(njh.qryReturns).qItems |
552

553 // apply DeIDedTransformHDate Rule
554 (some rules & DeIDedTransformHDate implies (
555 all

234

556 ri: rItems | {
557 let
558 qis = ri.(q.(njh.qryReturns)) | {
559 all
560 qi: qis | {
561 (some qi.(njh.DICat) & HDate implies
562 (ri.(njh.dataValues) = DeIDedDateTransform[qi.(njh.dataValues)] and
563 ri.(njh.enteredOn) = DeIDedDateTransform[qi.(njh.enteredOn)])
564 else
565 // ri is not a date but the enteredOn needs de-identifying
566 (ri.(njh.dataValues) = qi.(njh.dataValues) and
567 ri.(njh.enteredOn) = DeIDedDateTransform[qi.(njh.enteredOn)]))
568 and
569 (#qis = 0iff no ri.(q.(njh.RDType)))
570 and
571 (#qis = 1iff ri.(q.(njh.RDType)) = Individual)
572 and
573 (#qis = 1iff ri.(q.(njh.RDType)) = Group) }}}
574))
575

576 and
577

578 // apply IdentifiedDoesNotTransformHDate Rule
579 (some rules & IdentifiedDoesNotTransformHDate implies (
580 all
581 ri: rItems | {
582 let
583 qis = ri.(q.(njh.qryReturns)) | {
584 all
585 qi: qis | {
586 (ri.(njh.dataValues) = qi.(njh.dataValues) and
587 ri.(njh.enteredOn) = qi.(njh.enteredOn))
588 and
589 (#qis = 0iff no ri.(q.(njh.RDType)))
590 and
591 (#qis = 1iff ri.(q.(njh.RDType)) = Individual)
592 and
593 (#qis > 1iff ri.(q.(njh.RDType)) = Group) }}}
594)) }
595

596 private pred applyAccessRules (
597 njh:NJH, p:Project,
598 q: Query, at: AccessTicket) {
599 let
600 qItems = q.(njh.qryWorksOn),
601 rules = at.(njh.permRules) & njh.accessRules |
602

603 applyHidesAccessRules[njh, q, qItems, p, at, rules] and
604 applyTransformAccessRules[njh, q, qItems, p, at, rules] }
605

606 pred runQuery(
607 njh, njh’:NJH,
608 r: Researcher, p: Project,
609 q: Query, at: AccessTicket) {
610

611 // preconditions
612 runQueryPre[njh, r, p, q, at] and
613 // postconditions
614 runQueryPost[njh, njh’, q] and
615 // how changes are done, i.e. construct the return data
616 applyAccessRules[njh’, p, q, at] }
617 run runQuery for 7but 15Rule expect 1

235

618 run runQuery for 7but 15Rule, 6NJH expect 1// when qry works on no data
619 run runQuery for 7but 15Rule, 5NJH expect 0
620

621 private pred runQueryWithReturnData (
622 njh, njh’:NJH,
623 r: Researcher, p: Project,
624 q: Query, at: AccessTicket) {
625

626 runQuery[njh, njh’, r, p, q, at] and
627 some q.(njh’.qryReturns) }
628 run runQueryWithReturnData for 7but 15Rule, 7NJH expect 1
629

630

631 /********** ********** ********** ********** **********
632 UpdateConformance
633 ********** ********** ********** ********** **********/
634 pred updateConformance [
635 njh, njh’: NJH,
636 qry: Query] {
637

638 // preconditions
639 no qry.(njh.VDAllowed) and
640 qry in njh.queries and
641

642 // sequencing condition
643 some qry.(njh.qryReturns) and
644

645 // VDAllowed changes
646 (invVDAllowed1[njh, qry] iff
647 njh.VDAllowed = njh’.VDAllowed - qry -> DownloadAllowed) and
648 (not invVDAllowed1[njh, qry] iff
649 njh.VDAllowed = njh’.VDAllowed - qry -> DownloadDisabled)
650

651 and
652

653 noChangeSets[njh, njh’] and
654

655 njh.ARAppliesTo = njh’.ARAppliesTo and
656 njh.ARHides = njh’.ARHides and
657 njh.ARTransforms = njh’.ARTransforms and
658 njh.ATPriority = njh’.ATPriority and
659 njh.dataAccessAgreement = njh’.dataAccessAgreement and
660 njh.dataValues = njh’.dataValues and
661 njh.enteredOn = njh’.enteredOn and
662 njh.DICat= njh’.DICat and
663 njh.DISource = njh’.DISource and
664 njh.patientData = njh’.patientData and
665 njh.permRules = njh’.permRules and
666 njh.projectAT = njh’.projectAT and
667 njh.projectDataCollector = njh’.projectDataCollector and
668 njh.projectDataTransformRequired =
669 njh’.projectDataTransformRequired and
670 njh.projectPurpose = njh’.projectPurpose and
671 njh.projectSources = njh’.projectSources and
672 njh.projectPI = njh’.projectPI and
673 njh.projectMembers = njh’.projectMembers and
674 njh.projectQueries = njh’.projectQueries and
675 njh.qryReturns = njh’.qryReturns and
676 njh.qryWorksOn = njh’.qryWorksOn and
677 njh.RDType = njh’.RDType and
678 njh.resQualifier = njh’.resQualifier and
679 njh.researcherL = njh’.researcherL and

236

680 njh.supervisors = njh’.supervisors }
681 run updateConformance for 8but 15Rule expect 1
682 run updateConformance for 8but 15Rule, 7NJH expect 0

237

Listing A.5: Full NJH structural model: adding LTL rules. imports Listing A.4 on line 11.

1 /********** ********** ********** ********** ********** ********** **********
2 Sone note and to dos:
3 1.
4 ********** ********** ********** ********** ********** ********** **********/
5 module NJHgLTL
6

7 /********** ********** ********** ********** ********** ********** **********
8 IMPORTS
9 /********** ********** ********** ********** ********** ********** **********/

10 open util/ordering[NJH] as ord
11 open NJHgPM
12

13 /********** ********** ********** ********** ********** ********** **********
14 Simulating LTL and never claims -
15 These should follow from the model
16 /********** ********** ********** ********** ********** ********** **********/
17

18 /********** ********** ********** ********** **********
19 Check that we can both qualify and approve a
20 licence for a researcher
21

22 Verify that a Researcher always is qualified
23 before licence is approved
24 ********** ********** ********** ********** **********/
25 private pred
26 ltl_ApproveResLicenceAfterQualifyRes_ViableOnDifferentStates (
27 njh, njh’, njh’’, njh’’’: NJH,
28 res: Researcher,
29 lic: Licence, per: Personnel) {
30 let
31 first = ord/first |
32 some res & first.researchers and
33 some lic & first.permissions and
34 some per & first.personnel and
35 qualifyResearcher[njh, njh’, res, per] and
36 approveResearcherL[njh’’, njh’’’, res, lic] and
37 inv[njh] and
38 inv[njh’] and
39 inv[njh’’] and
40 inv[njh’’’] }
41

42 /* Is this the correct formulation for writing the LTL? */
43 assert ltl_ApproveResLicenceAfterQualifyRes {
44 some
45 njh, njh’, njh’’, njh’’’: NJH,
46 res: Researcher,
47 lic: Licence, per: Personnel |
48 (qualifyResearcher[njh, njh’, res, per] and
49 approveResearcherL[njh’’, njh’’’, res, lic]) implies
50 ((njh + njh’) in njh’’’.prevs and
51 inv[njh] and
52 inv[njh’] and
53 inv[njh’’] and
54 inv[njh’’’]) }
55

56 /********** ********** ********** ********** **********
57 Check that we can qualify a researcher,
58 approve a researcher’s licence, approve
59 an access ticket for a project, and query that

238

60 project
61

62 Verify that if approving project access ticket
63 and project members licence are successful,
64 project members and pi licence are approved
65 before the project’s accessticket is approved.
66 ********** ********** ********** ********** **********/
67 private pred
68 ltl_ProjectApproveAfterTeamAndPILicenceApprove_viableOnDiffNJHStates (
69 njh, njh’, njh’’, njh’’’, njh’’’’, njh’’’’’: NJH,
70 res: Researcher, lic: Licence, per: Personnel,
71 proj: Project, at: AccessTicket) {
72 let
73 first = ord/first |
74 some res & first.researchers and
75 some lic & first.permissions and
76 some per & first.personnel and
77 some proj & first.projects and
78 some at & first.permissions and
79

80 qualifyResearcher[njh, njh’, res, per] and
81 approveResearcherL[njh’’, njh’’’, res, lic] and
82 approveProjectAT[njh’’’’, njh’’’’’, proj, at] and
83 inv[njh] and
84 inv[njh’] and
85 inv[njh’’] and
86 inv[njh’’’] and
87 inv[njh’’’’] and
88 inv[njh’’’’’] }
89

90 /* If both approveResearchL() for any researcher + PI and
91 ApproveProjectAT() suceed for the same project we know that
92 approveResearchL() suceeded in states previous to the final
93 state for ApproveProjectAT(). */
94 assert ltl_ProjectApproveAfterTeamAndPILicenceApprove1 {
95 some
96 njh, njh’, njh’’, njh’’’: NJH,
97 res: Researcher, lic: Licence,
98 proj: Project, at: AccessTicket |
99 (res in (proj.(njh’’.projectMembers) +

100 proj.(njh’’.projectPI)) and
101 approveResearcherL[njh, njh’, res, lic] and
102 approveProjectAT[njh’’, njh’’’, proj, at]) implies
103 ((njh + njh’) in prevs[njh’’’] and
104 inv[njh] and
105 inv[njh’] and
106 inv[njh’’] and
107 inv[njh’’’]) }
108

109 /********** ********** ********** ********** **********
110 Check that we can qualify a researcher,
111 approve a researcher’s licence, approve
112 an access ticket for a project, and execute a
113 query from the approved project.
114

115 Verify that if qunning a query is successful
116 then project’s access ticket was approved in a
117 state before the query was executable.
118 ********** ********** ********** ********** **********/
119 private pred
120 ltl_RunQueryWithOutQryReturnsAfterProjectApprove_viableOnDiffNJHStates (
121 njh, njh’, njh’’, njh’’’, njh’’’’, njh’’’’’, njh6, njh7: NJH,

239

122 res: Researcher, lic: Licence, per: Personnel,
123 proj: Project, at: AccessTicket,
124 qry: Query) {
125 let
126 first = ord/first |
127 some res & first.researchers and
128 some lic & first.permissions and
129 some per & first.personnel and
130 some proj & first.projects and
131 some at & first.permissions and
132 some qry & first.queries and
133

134 qualifyResearcher[njh, njh’, res, per] and
135 approveResearcherL[njh’’, njh’’’, res, lic] and
136 approveProjectAT[njh’’’’, njh’’’’’, proj, at] and
137 runQuery[njh6, njh7, res, proj, qry, at] and
138 inv[njh] and
139 inv[njh’] and
140 inv[njh’’] and
141 inv[njh’’’] and
142 inv[njh’’’’] and
143 inv[njh’’’’’] and
144 inv[njh6] and
145 inv[njh7] }
146

147 private pred
148 ltl_RunQueryWithQryReturnsAfterProjectApprove_viableOnDiffNJHStates (
149 njh, njh’, njh’’, njh’’’, njh’’’’, njh’’’’’, njh6, njh7: NJH,
150 res: Researcher, lic: Licence, per: Personnel,
151 proj: Project, at: AccessTicket,
152 qry: Query) {
153 let
154 first = ord/first |
155 some res & first.researchers and
156 some lic & first.permissions and
157 some per & first.personnel and
158 some proj & first.projects and
159 some at & first.permissions and
160 some qry & first.queries and
161

162 // execute operations
163 qualifyResearcher[njh, njh’, res, per] and
164 approveResearcherL[njh’’, njh’’’, res, lic] and
165 approveProjectAT[njh’’’’, njh’’’’’, proj, at] and
166 runQuery[njh6, njh7, res, proj, qry, at] and
167

168 // we have some return data
169 some qry.(njh7.qryReturns) and
170 inv[njh] and
171 inv[njh’] and
172 inv[njh’’] and
173 inv[njh’’’] and
174 inv[njh’’’’] and
175 inv[njh’’’’’] and
176 inv[njh6] and
177 inv[njh7] }
178

179 /* If both ApproveProjectAT() and RunQuery() succeed for the same
180 project we know that ApproveProjectAT() suceeded in states
181 previous to the final state for RunQuery(). */
182 assert ltl_RunQueryAfterProjectApprove1 {
183 some

240

184 njh, njh’, njh’’, njh’’’: NJH,
185 res: Researcher, qry: Query,
186 proj: Project, at: AccessTicket |
187 (res in (proj.(njh’’.projectMembers) +
188 proj.(njh’’.projectPI)) and
189 qry in proj.(njh’’’.projectQueries) and
190 approveProjectAT[njh, njh’, proj, at] and
191 runQuery[njh’’, njh’’’, res, proj, qry, at]) implies
192 ((njh + njh’) in prevs[njh’’’] and
193 inv[njh] and
194 inv[njh’] and
195 inv[njh’’] and
196 inv[njh’’’]) }
197

198

199 /********** ********** ********** ********** **********
200 Check that we can qualify a researcher,
201 approve a researcher’s licence, approve
202 an access ticket for a project, execute a
203 query from the approved project, and update
204 the query conformance.
205

206 Verify that if updating a query conformance
207 is successful then the corresponding running
208 of the query to get the results was successful
209 in a state before the update was executable.
210 ********** ********** ********** ********** **********/
211 private pred
212 ltl_UpdateConformanceAfterRunQuery_viableOnDiffNJHStates (
213 njh, njh’, njh’’, njh’’’, njh’’’’, njh’’’’’, njh6, njh7, njh8, njh9: NJH,
214 res: Researcher, lic: Licence, per: Personnel,
215 proj: Project, at: AccessTicket,
216 qry: Query) {
217 let
218 first = ord/first |
219 some res & first.researchers and
220 some lic & first.permissions and
221 some per & first.personnel and
222 some proj & first.projects and
223 some at & first.permissions and
224 some qry & first.queries and
225

226 qualifyResearcher[njh, njh’, res, per] and
227 approveResearcherL[njh’’, njh’’’, res, lic] and
228 approveProjectAT[njh’’’’, njh’’’’’, proj, at] and
229 runQuery[njh6, njh7, res, proj, qry, at] and
230 updateConformance[njh8, njh9, qry] and
231 inv[njh] and
232 inv[njh’] and
233 inv[njh’’] and
234 inv[njh’’’] and
235 inv[njh’’’’] and
236 inv[njh’’’’’] and
237 inv[njh6] and
238 inv[njh7] and
239 inv[njh8] and
240 inv[njh9] }
241

242 assert ltl_UpdateConformanceAfterRunQuery {
243 some
244 njh, njh’, njh’’, njh’’’: NJH,
245 res: Researcher, qry: Query,

241

246 proj: Project, at: AccessTicket |
247 (res in (proj.(njh’’.projectMembers) +
248 proj.(njh’’.projectPI)) and
249 qry in proj.(njh’’’.projectQueries) and
250 runQuery[njh’’, njh’’’, res, proj, qry, at] and
251 updateConformance[njh’’, njh’’’, qry]) implies
252 ((njh + njh’) in prevs[njh’’’] and
253 inv[njh] and
254 inv[njh’] and
255 inv[njh’’] and
256 inv[njh’’’]) }
257

258

259 /********** ********** ********** ********** **********
260 INV - predicates and functions
261 ********** ********** ********** ********** **********/
262 // eventually will rename generator to inv
263 pred inv (njh: NJH) {
264 // original generator predicate is true
265 generator[njh] }
266

267 /********** ********** ********** ********** ********** ********** **********
268 Checks to prove that each operation preserves the invariants
269 /********** ********** ********** ********** ********** ********** **********/
270 assert qualifyResearcherPreservesInv {
271 all
272 njh, njh’: NJH,
273 res: Researcher, per: Personnel |
274 (inv[njh] and qualifyResearcher [njh, njh’, res, per]) implies inv[njh’] }
275

276 assert approveResearcherLPreservesInv {
277 all
278 njh, njh’: NJH ,
279 res: Researcher, lic: Licence |
280 (inv[njh] and approveResearcherL [njh, njh’, res, lic]) implies inv[njh’] }
281

282 assert approveprojectATPreservesInv {
283 all
284 njh, njh’: NJH,
285 p: Project, at: AccessTicket |
286 (inv[njh] and approveProjectAT [njh, njh’, p, at]) implies inv[njh’] }
287

288 assert runQueryPreservesInv {
289 all
290 njh, njh’: NJH,
291 r: Researcher, q: Query, p: Project, at: AccessTicket |
292 (inv[njh] and runQuery [njh, njh’, r, p, q, at]) implies inv[njh’] }
293

294 assert skipPreservesInv {
295 all
296 njh, njh’: NJH |
297 (inv[njh] and skip [njh, njh’]) implies inv[njh’] }
298

299 assert updateConformancePreservesInv {
300 all
301 njh, njh’: NJH,
302 q: Query |
303 (inv[njh] and updateConformance [njh, njh’, q]) implies inv[njh’] }
304

305

306 /********** ********** ********** ********** ********** ********** **********
307 Conformance

242

308 /********** ********** ********** ********** ********** ********** **********/
309 /* an error occurs on this one, the problem may be because of the
310 DStr data type dataitem */
311 assert Conformance {
312 all
313 njh: NJH,
314 qry: Query,
315 d: (Date & dom[qry.(njh.qryReturns)].(njh.dataValues)) +
316 dom[qry.(njh.qryReturns)].(njh.enteredOn) |
317 let
318 at = (njh.projectQueries).qry.(njh.projectAT) |
319

320 ((some qry -> DownloadAllowed & njh.VDAllowed and
321 some qry.(njh.qryReturns) and
322 some at & DeIDed) iff not identifiedDate[d])
323 or
324

325 ((some qry -> DownloadAllowed & njh.VDAllowed and
326 some qry.(njh.qryReturns) and
327 some at & Identified) iff identifiedDate[d]) }
328

329 /********** ********** ********** ********** ********** ********** **********
330 Executing the Predicates and Assertions
331 /********** ********** ********** ********** ********** ********** **********/
332

333 run
334 ltl_ApproveResLicenceAfterQualifyRes_ViableOnDifferentStates
335 for 8 but 15Rule, 3NJH expect 1
336 //should not be viable on < 3instances,
337 // i.e. need three distinct instances for both operations to succeed.
338 run
339 ltl_ApproveResLicenceAfterQualifyRes_ViableOnDifferentStates
340 for 8 but 15Rule, 2NJH expect 0
341

342 run
343 ltl_ProjectApproveAfterTeamAndPILicenceApprove_viableOnDiffNJHStates
344 for 8 but 15Rule, 6NJH expect 1
345 // not viable on < 4instances,
346 // i.e. need four distinct instances for both operations to succeed.
347 run
348 ltl_ProjectApproveAfterTeamAndPILicenceApprove_viableOnDiffNJHStates
349 for 8 but 15Rule, 5NJH expect 0
350

351 // viable on four (4) states because query could return no results
352 run
353 ltl_RunQueryWithOutQryReturnsAfterProjectApprove_viableOnDiffNJHStates
354 for 8 but 15Rule, 7NJH expect 1
355 // not viable on < 4instances,
356 // i.e. need three distince instances for both operations to succeed.
357 run
358 ltl_RunQueryWithOutQryReturnsAfterProjectApprove_viableOnDiffNJHStates
359 for 8 but 15Rule, 6NJH expect 1
360 run
361 ltl_RunQueryWithOutQryReturnsAfterProjectApprove_viableOnDiffNJHStates
362 for 8 but 15Rule, 5NJH expect 0
363 run
364 ltl_RunQueryWithQryReturnsAfterProjectApprove_viableOnDiffNJHStates
365 for 8 but 15Rule expect 1
366 run
367 ltl_RunQueryWithQryReturnsAfterProjectApprove_viableOnDiffNJHStates
368 for 8 but 15Rule, 7NJH expect 1
369 // not viable on < 4instances,

243

370 // i.e. need three distinct instances for both operations to succeed.
371 run
372 ltl_RunQueryWithQryReturnsAfterProjectApprove_viableOnDiffNJHStates
373 for 8 but 15Rule, 6NJH expect 0
374

375 run
376 ltl_UpdateConformanceAfterRunQuery_viableOnDiffNJHStates
377 for 8 but 15Rule expect 1
378 run
379 ltl_UpdateConformanceAfterRunQuery_viableOnDiffNJHStates
380 for 8 but 15Rule, 7NJH expect 0
381

382 check ltl_ApproveResLicenceAfterQualifyRes for 8but 15Rule expect 0
383 check ltl_ProjectApproveAfterTeamAndPILicenceApprove1 for 8but 15Rule expect 0
384 check ltl_RunQueryAfterProjectApprove1 for 8but 15Rule expect 0
385 check ltl_UpdateConformanceAfterRunQuery for 8but 15Rule expect 0
386

387 //check qualifyResearcherPreservesInv for 8but 15Rule expect 0
388 //check approveResearcherLPreservesInv for 8but 15Rule expect 0
389 //check approveprojectATPreservesInv for 8but 15Rule expect 0
390 //check runQueryPreservesInv for 8but 15Rule expect 0
391 check skipPreservesInv for 8but 15Rule expect 0
392 //check updateConformancePreservesInv for 8but 15Rule expect 0
393

394 check Conformance for 8but 15Rule expect 0

244

APPENDIX B. INITIAL REPRESENTATION OF THE NJH SYSTEM IN CHAPTER 5

B.1 Alloy Model Slice for the Query Operation

Listing B.1: Slice 4: runQueryAlloy Specifications

1 module NJH
2

3 /*
4 ALLOY RELATION MODELLING REMINDER:
5 the relation,
6 AC: A some -> lone C
7 means that in AC
8 each A is linked to at most 1(lone) C, and
9 each C is linked to at least one (some) A

10

11 IMPORTANT Assumptions:
12 1. access ticket for a project has already been granted;
13 2. system ONLY issues DeIDed accesst tickets;
14 3. we enforce in the CD and the Alloy model that a project has only can have
15 one access ticket
16

17 INDICATON of additional constraints:
18 we use "// **" to identify constraints added to or removed from the Alloy
19 model that are not currently in the CD.
20

21 INTERPRETATION of the main assertions:
22 OpPreserves and AlwaysDeIDedConformance
23 A result of no counterexample found for OpPreserves and
24 AlwaysDeIDedConformance is the result we require. However a no
25 counterexample for both do not tell us the same things.
26 OpPreserves tells us that operations pre- and post condition do not
27 violate any of the constraints set.
28 AlwaysDeIDedConformance tells us that the system constraints ensure
29 conformance to the rules.
30 So, the results could show that OpPreserves has no counterexample but
31 AlwaysDeIDedConformance has a counterexample. This can be observed
32 when AllDatesCorrectlyCategorised[...] is disabled in the inv[...] predicate.
33 */
34

35 open util/relation
36 open util/ordering[NJH] as ord
37

38 sig DataSource, Day, Month, Name, Patient, Project, Query, Researcher, Year {}
39

40 abstract sig Type {}
41 lone sig Individual extends Type {}
42 // include when checking TransFormHDateAppliesToIndividual[njh]
43 //lone sig Group extends Type {}
44

45 abstract sig AccessTicket {}
46 lone sig DeIDed extends AccessTicket{}
47 // include when checking TransformHDateIsDeIDedRule[njh]
48 //lone sig LDS extends AccessTicket{}
49

50 sig DataItem {name: Name}
51 sig QryData, RetData extends DataItem {}

245

52

53 abstract sig Data{}
54 sig Date extends Data {
55 day: lone Day,
56 month: lone Month,
57 year: Year
58 } {
59 // day iff month also exists
60 some day implies some month
61 some month implies some day }
62

63 abstract sig Rule {}
64 abstract sig AccessRule extends Rule {}
65 lone sig DeIDedTransformHDate extends AccessRule {}
66

67 abstract sig HIPAACat {}
68 lone sig HDate extends HIPAACat {}
69

70 sig NJH {
71 // style is to alphabetise for easy finding :)
72

73 // sets, creating a closed system
74 accessRules: set AccessRule,
75 accessTickets: set AccessTicket,
76 dataItems: set DataItem,
77 values: set Data,
78 dates: set Date,
79 hCats: set HIPAACat,
80 patients: set Patient,
81 projects: set Project,
82 qryItems: set QryData,
83 queries: set Query,
84 researchers: set Researcher,
85 retItems: set RetData,
86 sources: set DataSource,
87 types: set Type,
88

89 // relations
90 ARAppliesTo: accessRules -> some types,
91 ARTransforms: accessRules -> some hCats,
92 ATRules: accessTickets -> some accessRules,
93 DataValues: dataItems -> one values,
94 DICat: dataItems -> hCats,
95 // ** no direct link between retItems and sources,
96 // data sources of retItems are found through the RDFromQD relation
97 DISource: (dataItems - retItems) -> one sources,
98 EnteredOn: dataItems -> lone dates,
99 // ** no direct link between retItems and patients,

100 // patients associated with retItems are found through the RDFromQD relation
101 PatientData: patients one -> some (dataItems - retItems),
102 ProjAT: projects -> one accessTickets,
103 ProjMembers: projects -> some researchers,
104 ProjQueries: projects some -> some queries,
105 ProjSources: projects -> some sources,
106 // RunQuery specs require that a query have neither RetData nor QryData
107 // before exexution, so we relax the multiplicity on the queries side
108 QryReturns: queries -> retItems,
109 QryWorksOn: queries -> qryItems,
110 RDFromQD: retItems -> some qryItems,
111 RDType: retItems -> one types
112 } {
113 // CONSTRAINTS, comment out to check operation specifications

246

114 // when commented out, it is enforced in the traces fact
115 //inv[this]
116 }
117

118

119 //
120 // INSTANCES
121 //
122

123 //
124 // - These predicates are not a part of the model and may be removed
125 // //////////
126

127 //
128 // This predicate is a part of the model, used in init[...] to initialise the
129 // system
130 // //////////
131 private pred ShowSomeOfEverything[njh: NJH] {
132 some accessRules and
133 some accessTickets and
134 some dataItems and
135 some values and
136 some dates and
137 some hCats and
138 some patients and
139 some projects and
140 some qryItems and
141 some queries and
142 some researchers and
143 some retItems and
144 some sources and
145 some types }
146 // important to run this with exactly 1NJH because the relations have the NJH
147 // instance as their first element
148 //run ShowSomeOfEverything for 3but exactly 1NJH expect 1
149

150 //
151 // CONSTRAINTS as predicates
152 // //////////
153 private fun DeIDedDateTransform(d: Date): Date {
154 {ri: Date |
155 no ri.day and
156 no ri.month and
157 ri.year = d.year }}
158

159 private pred QryRetDataDeIDed[njh: NJH, q: Query] {
160 all qi: q.(njh.QryWorksOn) |
161 some qi.(njh.DICat) & HDate
162 implies (// imp4
163 // RetData
164 (njh.RDFromQD).qi.(njh.DataValues) =
165 DeIDedDateTransform[qi.(njh.DataValues)] and
166 // if RetData EnteredOn exists
167 (some (njh.RDFromQD).qi.(njh.EnteredOn)
168 implies (// imp5
169 njh.RDFromQD).qi.(njh.EnteredOn) =
170 DeIDedDateTransform[qi.(njh.EnteredOn)]
171) //imp5
172) // imp4
173 }
174

175 private pred DeIDedTransformHDatelndividual[njh: NJH, p: Project, q: Query] {

247

176 // When a Query has RetData, this is how we construct it’s return data and
177 // its EntereOn Value
178 (some q.(njh.QryReturns) and
179 // query is a part of project
180 some p.(njh.ProjQueries) & q and
181 // uses the DeIDed access ticket
182 some p.(njh.ProjAT) & DeIDed and
183 // DeIDed access ticket is associated with the TransformHDate rule
184 TransformHDateIsDeIDedRule[njh] and
185 // TransformHDate should be applied to individuals
186 TransFormHDateAppliesToIndividual[njh])
187 implies (QryRetDataDeIDed[njh, q])}
188

189

190 pred DeIDedTransformHDatelndividual[njh: NJH] {
191 // When a Query has RetData, this is how we construct it’s return data and
192 // its EntereOn Value
193 // this formulation works ONLY because the DeIDed is the ONLY access ticket
194 // in the system.
195 all q: njh.queries |
196 // if query returns values
197 (some q.(njh.QryReturns) and
198 // uses the DeIDed access ticket
199 some njh.ProjQueries.q.(njh.ProjAT) & DeIDed and
200 // DeIDed access ticket is associated with the TransformHDate rule
201 TransformHDateIsDeIDedRule[njh] and
202 // TransformHDate should be applied to individuals
203 TransFormHDateAppliesToIndividual[njh])
204 implies (QryRetDataDeIDed[njh, q])}
205

206 private pred AllDatesCorrectlyCategorised [njh: NJH] {
207 // correct formulation,
208 // all dataItems in PatientData that are dates are identified as a HIPAACat
209 all di: ran[njh.PatientData] |
210 some di.(njh.DataValues) & Date implies some di.(njh.DICat) & HDate }
211

212 private pred TransformHDateIsDeIDedRule[njh: NJH] {
213 some njh.ATRules & DeIDed -> DeIDedTransformHDate }
214

215 private pred TransFormHDateAppliesToIndividual[njh: NJH] {
216 some njh.ARAppliesTo & DeIDedTransformHDate-> Individual }
217

218 // ** Defines additional constraints not in the UML CD
219 pred inv [njh: NJH] {
220 // all dataItems are mapped
221 njh.dataItems =
222 ran[njh.QryWorksOn] + ran[njh.QryReturns] + ran[njh.PatientData]
223

224 // closed system constraint - any date is a part of the set of dates
225 (njh.values & Date + ran[njh.EnteredOn]) = njh.dates
226

227 // dataItems in Patient data
228 all di: ran[njh.PatientData] | {
229 // each has a date entered, we don’t care if retItems are not in EnteredOn
230 some di.(njh.EnteredOn)
231

232 // each EnteredOn data has a day and month (constraint in Date signature
233 // ensures that month is non-empty iff day is non-empty)
234 some di.(njh.EnteredOn.day)
235

236 // each dataItem in PateintData has at most one HIPAACat
237 #(di.(njh.DICat)) < 2}

248

238

239 // queryData is patient data
240 njh.qryItems & ran[njh.PatientData] = njh.qryItems
241

242 // construct RDFromQD
243 (~(njh.QryReturns)).(njh.QryWorksOn) = njh.RDFromQD
244

245 all ri: dom[njh.RDFromQD] |
246 // return data linked to the Individual type is only linked to one query data
247 // in RDFromQD
248 (some Individual & ri.(njh.RDType)) implies
249 #(ri.(njh.RDFromQD)) = 1
250

251 // a query’s data source is contained in its project’s sources
252 all p: njh.projects, q: njh.queries | q in p.(njh.ProjQueries) implies
253 q.(njh.QryWorksOn).(njh.DISource) in p.(njh.ProjSources)
254

255 // Areas to seed for non-conformance
256 // 1. TransformHDate rule for Individual Type,
257 // this is important when there are other access tickets other than DeIDed
258 // in the system
259 TransformHDateIsDeIDedRule[njh]
260

261 // 2. DeIDed access ticket has associated TransformHDate rule for Individuals,
262 // this is important when there are other types other than Individual in
263 // the system
264 TransFormHDateAppliesToIndividual[njh]
265

266 // 3. Ensure that all dataItems in PatientData that are dates are identified
267 // as a HIPAACat in DICat
268 AllDatesCorrectlyCategorised[njh]
269 }
270

271

272 //
273 // INSTANCES
274 //
275

276 //
277 // - These predicates are not a part of the model and may be removed
278 // //////////
279 private pred ShowAny [njh: NJH]{
280 inv[njh]}
281 //run ShowAny for 3expect 1
282

283 private pred ShowProjQueryWithData [njh: NJH, q: Query]{
284 inv[njh] and
285 q in njh.queries and
286 some q.(njh.QryWorksOn)}
287 //run ShowProjQueryWithData for 3but 1NJH expect 1
288

289 private pred ShowCheckingMultiplicities [njh: NJH, ar: AccessRule]{
290 inv[njh] and
291 ar in njh.accessRules and no ar.(njh.ARAppliesTo)}
292 //run ShowCheckingMultiplicities for 3but 1NJH expect 0
293

294 private pred ShowSomeOfEverythingWithHDateUnsetAndInv[njh: NJH, q: Query, qi: QryData] {
295 q in njh.queries and
296 qi in q.(njh.QryWorksOn) and
297 no qi.(njh.DICat) and
298 ShowSomeOfEverything[njh]
299 and inv[njh] }

249

300 // gives an instance only when
301 // AllDatesCorrectlyCategorised[...] is disabled in inv[...]
302 //run ShowSomeOfEverythingWithHDateUnsetAndInv for 3but exactly 1NJH expect 0
303

304 private pred ShowSomeOfEverythingWithInv[njh: NJH] {
305 ShowSomeOfEverything[njh] and inv[njh] }
306 //run ShowSomeOfEverythingWithInv for 3but exactly 1NJH expect 1
307

308 //
309 // QUERY OPERATION SPECIFICATION
310 //
311

312 //
313 // HELPER/USEFUL Predicates and Functions
314 // //////////
315 // not checking this predicate is a hidden path into executing RunQuery
316 private pred ResearcherAuthorisedToRunQuery
317 [njh: NJH, res: Researcher, p: Project, qry: Query] {
318 // query is associated with a project that the researcher is a member of
319 some p.(njh.ProjMembers) & res and some p.(njh.ProjQueries) & qry }
320

321 // Helps the model to progress in traces
322 private pred NoChangeOp [njh, njh’: NJH] {
323 njh = njh’
324 or (//they both have the same sets and relations
325 njh.accessRules = njh’.accessRules and
326 njh.accessTickets = njh’.accessTickets and
327 njh.dataItems = njh’.dataItems and
328 njh.values = njh’.values and
329 njh.dates = njh’.dates and
330 njh.hCats = njh’.hCats and
331 njh.patients = njh’.patients and
332 njh.projects = njh’.projects and
333 njh.qryItems = njh’.qryItems and
334 njh.queries = njh’.queries and
335 njh.researchers = njh’.researchers and
336 njh.retItems = njh’.retItems and
337 njh.sources = njh’.sources and
338 njh.types = njh’.types and
339

340 // relations
341 njh.ARAppliesTo = njh’.ARAppliesTo and
342 njh.ARTransforms = njh’.ARTransforms and
343 njh.ATRules = njh’.ATRules and
344 njh.DataValues = njh’.DataValues and
345 njh.EnteredOn = njh’.EnteredOn and
346 njh.DICat = njh’.DICat and
347 njh.DISource = njh’.DISource and
348 njh.PatientData = njh’.PatientData and
349 njh.ProjAT =njh’.ProjAT and
350 njh.ProjSources = njh’.ProjSources and
351 njh.ProjMembers = njh’.ProjMembers and
352 njh.ProjQueries = njh’.ProjQueries and
353 njh.QryReturns = njh’.QryReturns and
354 njh.QryWorksOn = njh’.QryWorksOn and
355 njh.RDFromQD = njh’.RDFromQD and
356 njh.RDType = njh’.RDType) }
357

358 private pred RunQueryPre[njh: NJH, r: Researcher, p: Project, q: Query] {
359 // in sets
360 q in njh.queries and
361 r in njh.researchers and

250

362

363 // in relations
364 ResearcherAuthorisedToRunQuery[njh, r, p, q] and
365 // since (we assume) Query has not yet been run
366 no q.(njh.QryWorksOn) }
367

368 private pred RunQueryPost[njh, njh’:NJH, q: Query] {
369 // Frame Conditions are post conditions
370 // frame conditions - no change
371 {
372 // sets
373 njh.accessRules = njh’.accessRules and
374 njh.accessTickets = njh’.accessTickets and
375 njh.hCats = njh’.hCats and
376 njh.patients = njh’.patients and
377 njh.projects = njh’.projects and
378 njh.queries = njh’.queries and
379 njh.researchers = njh’.researchers and
380 njh.sources = njh’.sources and
381 njh.types = njh’.types and
382

383 // relations
384 njh.ARAppliesTo = njh’.ARAppliesTo and
385 njh.ARTransforms = njh’.ARTransforms and
386 njh.ATRules = njh’.ATRules and
387 njh.DICat = njh’.DICat and
388 njh.DISource = njh’.DISource and
389 njh.PatientData = njh’.PatientData and
390 njh.ProjAT =njh’.ProjAT and
391 njh.ProjSources = njh’.ProjSources and
392 njh.ProjMembers = njh’.ProjMembers and
393 njh.ProjQueries = njh’.ProjQueries }
394

395 and
396

397 // frame conditions - changes
398 {
399 // to sets
400 njh.dataItems = njh’.dataItems - q.(njh’.QryReturns) and
401 njh.values in njh’.values
402 njh.dates in njh’.dates and
403 njh.qryItems in njh’.qryItems and
404 njh.retItems = njh’.retItems and
405

406 // to relations
407 // these changes relate to changes in qryItems, and retItems
408 njh.DataValues = njh’.DataValues - q.(njh’.QryReturns) <: njh’.DataValues //and
409 njh.EnteredOn = njh’.EnteredOn - q.(njh’.QryReturns) <: (njh’.EnteredOn) and
410 njh.QryReturns = njh’.QryReturns - q <: (njh’.QryReturns) and
411 njh.QryWorksOn = njh’.QryWorksOn - q <: (njh’.QryWorksOn) and
412 njh.RDFromQD in njh’.RDFromQD and
413 njh.RDType = njh’.RDType - q.(njh’.QryReturns) <: njh’.RDType}
414 }
415

416 private pred RunQueryOutput[njh, njh’:NJH, p:Project, q: Query] {
417 // frame postconditions
418 RunQueryPost[njh, njh’, q] and
419 // currently these are a part of the invariants
420 // (see call to ConstructDeIDedReturnData[...] in inv[...])
421 //- enforced in the traces fact but could be extracted to here
422 DeIDedTransformHDatelndividual[njh’, p, q] }
423

251

424 // formulation is where a query has one access ticket through the project and
425 // project has exactly one access ticket
426 // preconditions and (All?) frame conditions can be automatically generated!
427 private pred runQuery[njh, njh’:NJH, r: Researcher, p: Project, q: Query] {
428 // preconditions
429 RunQueryPre[njh, r, p, q] and
430 // how changes are done, i.e. construct the return data
431 RunQueryOutput[njh, njh’, p, q] }
432

433 //
434 // Operation Specifications
435 // Operation specifications does not ensure Conformance!!!
436 // //////////
437

438 // this is how we initialise the system
439 pred init[njh: NJH] {
440 some q: Query |
441 q in njh.queries and
442 // all the sets except qryItems and retItems are are non-empty
443 ShowSomeOfEverything[njh] and
444 // instance does not violate constraints
445 inv[njh] and
446 //the query in question is the one we want to check the operation specifications

for
447 no q.(njh.QryWorksOn)}
448 //run init for 3but exactly 1NJH expect 1
449

450 // this is how we move from instance to instance
451 fact traces {
452 init[ord/first]
453 all njh: NJH - ord/last, r: Researcher, q: Query, p: Project |
454 let njh’ = njh.next |
455 runQuery[njh, njh’, r, p, q] or NoChangeOp[njh, njh’] }
456

457

458 // END OF THE MODEL and RunQuery specification
459 //-
460

461 //-
462 // SOME OPERATION SPECIFICATIONS CHECKS
463 // //////////
464 // verify that operations preserve the invariants
465 // also a way for possible hidden paths to exist
466 assert OpPreserves {
467 all njh, njh’: NJH |
468 all r: Researcher, q: Query, p: Project |
469 (inv[njh] and runQuery [njh, njh’, r, p, q]) implies inv[njh’] }
470 // after a scope of 4, the checking takes too long, i.e. > 170secs
471 check OpPreserves for 4expect 0
472

473 // run only when opPreserves returns a counterexample
474 pred OpDoesNotPreserve[njh, njh’: NJH, r: Researcher, p: Project, q: Query]{
475 inv[njh] and runQuery[njh, njh’, r,p, q] and not inv[njh’] }
476 run OpDoesNotPreserve for 3but exactly 2NJH expect 0
477

478

479 //
480 // CHECKING THE MODEL FOR CONFORMANCE
481 //
482

483 //
484 // HELPER/USEFUL Predicates and Functions to check conformance

252

485 // these are not used in the model
486 // //////////
487 private pred ConformanceDeIDedHDateUnSet
488 [njh: NJH, qry: Query, qi: QryData, ri: RetData] {
489 BasicDeIdentifiedDateConditions[njh, qry, qi, ri] and
490 not HDateSet[njh, qi] and
491 not IdentifiedDate[ri.(njh.DataValues)] }
492

493 private pred ConformanceDeIDedHDateUnSetFullDate
494 [njh: NJH, qry: Query, qi: QryData, ri: RetData] {
495 BasicDeIdentifiedDateConditions[njh, qry, qi, ri] and
496 FullDateConditions[njh, qi] and
497 not HDateSet[njh, qi] and
498 not IdentifiedDate[ri.(njh.DataValues)] }
499

500 // since there should be no instance where qi’s datavalue that is a date is not
501 // marked as a HDate, we expect to see no instances from running these
502 // two predicates when there is system conformance
503 //run ConformanceDeIDedHDateUnSet for 3but 1NJH expect 0
504 //run ConformanceDeIDedHDateUnSetFullDate for 3but 1NJH expect 0
505

506 // useful to check if Data Deided properly
507 private pred NonConformanceDeIDedFullDateHDateSet
508 [njh: NJH, qry: Query, qi: QryData, ri: RetData] {
509 BasicDeIdentifiedDateConditions[njh, qry, qi, ri] and
510 FullDateConditions[njh, qi] and
511 HDateSet[njh, qi] and
512 IdentifiedDate[ri.(njh.DataValues)] }
513

514 // expect no instances from this predicate when there is system conformance
515 //run NonConformanceDeIDedFullDateHDateSet for 3but 1NJH expect 0
516

517 //
518 // HELPER/USEFUL Predicates and Functions to check conformance
519 // these are needed in the model
520 // //////////
521

522 // these predicates help to check conformance
523 // //////////
524 private pred IdentifiedDate[d: Date] {some d.day }
525

526 private pred BasicDeIdentifiedDateConditions
527 [njh: NJH, qry: Query, qi: QryData, ri: RetData] {
528 // constraints hold
529 inv[njh] and
530

531 // qry is in the NJH system of interest
532 qry in njh.queries and
533

534 // query has DeIDed access as a part of a project
535 some (njh.ProjQueries).qry.(njh.ProjAT) & DeIDed and
536

537 // query has some data
538 qi in qry.(njh.QryWorksOn) and
539

540 // QryData qi is a Date
541 some qi.(njh.DataValues) & Date and
542

543 // query returns some Data
544 ri in qry.(njh.QryReturns) and
545

546 // Date data for QryWorksOn is identified data

253

547 IdentifiedDate[qi.(njh.DataValues)] and
548

549 // the RetDdata we are interested in is for the QryData qi
550 ri = njh.RDFromQD.qi and
551

552 // When a Query has RetData, this is how we construct it’s return data for
553 // the DeIDed access ticket for the individual category
554 DeIDedTransformHDatelndividual[njh]
555 }
556

557 private pred FullDateConditions [njh: NJH, qi: QryData] {
558 some qi.(njh.DataValues).day }
559

560 private pred HDateSet[njh: NJH, qi: QryData] {some qi.(njh.DICat) & HDate }
561

562 // these predicates check conformance under certain conditions
563 // //////////
564

565 pred CanGetConformanceDeIDed
566 [njh: NJH, qry: Query, qi: QryData, ri: RetData] {
567 BasicDeIdentifiedDateConditions[njh, qry, qi, ri]
568 and not IdentifiedDate[ri.(njh.DataValues)] }
569 // give me a system where some return data is de-identified
570 run CanGetConformanceDeIDed for 3but 1NJH expect 1
571

572 private pred ConformanceDeIDed
573 [njh: NJH, qry: Query, qi: QryData, ri: RetData] {
574 BasicDeIdentifiedDateConditions[njh, qry, qi, ri]
575 implies not IdentifiedDate[ri.(njh.DataValues)] }
576 // give me a system where all the return data is de-identified
577 //run ConformanceDeIDed for 3but 1NJH expect 1
578

579 private pred ConformanceDeIDedHDateSet
580 [njh: NJH, qry: Query, qi: QryData, ri: RetData] {
581 (BasicDeIdentifiedDateConditions[njh, qry, qi, ri] and
582 HDateSet[njh, qi])
583 implies not IdentifiedDate[ri.(njh.DataValues)] }
584

585 private pred ConformanceDeIDedHDateSetFullDate
586 [njh: NJH, qry: Query, qi: QryData, ri: RetData] {
587 BasicDeIdentifiedDateConditions[njh, qry, qi, ri] and
588 FullDateConditions[njh, qi] and
589 HDateSet[njh, qi] and
590 not IdentifiedDate[ri.(njh.DataValues)] }
591

592 // We can get instances from this predicate even when there is non-conformance
593 //run ConformanceDeIDedHDateSet for 3but 1NJH expect 1
594 //run ConformanceDeIDedHDateSetFullDate for 3but 1NJH expect 1
595

596 private pred NonConformanceDeIDedFullDateHDateUnSet
597 [njh: NJH, qry: Query, qi: QryData, ri: RetData] {
598 BasicDeIdentifiedDateConditions[njh, qry, qi, ri] and
599 FullDateConditions[njh, qi] and
600 not HDateSet[njh, qi] and
601 IdentifiedDate[ri.(njh.DataValues)] }
602

603 // expect no instances from this predicate when there is system conformance
604 // NonConformanceDeIDedFullDateHDateUnSet[..] gives an instance only when
605 // AllDatesCorrectlyCategorised[...] is disabled in inv[...]
606 //run NonConformanceDeIDedFullDateHDateUnSet for 3but 1NJH expect 0
607

608 //

254

609 // ACTUAL CONformance verification, predicate here is public,
610 // run predicate DeIDedNonConformanceFullDateWhenHDateUnSet only
611 // when AlwaysDeIDedConformanceWhenHDateUnSet[..] returns a
612 // counterexample
613 // //////////
614

615 // Verifies that in all instances the return data is always de-identified
616 // a counterexample may mean partial conformance
617 assert AlwaysDeIDedConformance{
618 all njh: NJH, q: njh.queries |
619 all qi: q.(njh.QryWorksOn), ri: q.(njh.QryReturns) |
620 ConformanceDeIDed[njh, q, qi, ri] }
621 check AlwaysDeIDedConformance for 3expect 0
622

623 // if all a system’s return data is not de-identified, we check the reason,
624 // Reason: HDate is set fo ra dataitem that is a date so it means the Date
625 // was not deidentified properly
626 // a counterexample may mean partial conformance
627 assert AlwaysDeIDedConformanceWhenHDateSet {
628 all njh: NJH, q: njh.queries |
629 all qi: q.(njh.QryWorksOn), ri: q.(njh.QryReturns) |
630 ConformanceDeIDedHDateSet[njh, q, qi, ri] }
631 check AlwaysDeIDedConformanceWhenHDateSet for 3expect 0
632

633 // if all a system’s return data is not de-identified, we check the reason,
634 // Reason: a dataitem that is a date was not categorised as a HDate
635 // a counterexample may mean partial conformance
636 assert AlwaysDeIDedConformanceWhenHDateUnSet{
637 all njh: NJH, q: njh.queries |
638 all qi: q.(njh.QryWorksOn), ri: q.(njh.QryReturns) |
639 not NonConformanceDeIDedFullDateHDateUnSet[njh, q, qi, ri] }
640 check AlwaysDeIDedConformanceWhenHDateUnSet for 3expect 0
641

642 // show example where a system return data is not de-identified because a
643 // dataitem that is a date id not categorised as a HDate
644 // an instance means this could be one of the reasons for the non-conformance
645 pred DeIDedNonConformanceFullDateWhenHDateUnSet
646 [njh: NJH, qry: Query, qi: QryData, ri: RetData] {
647 NonConformanceDeIDedFullDateHDateUnSet [njh, qry, qi, ri]}
648 run DeIDedNonConformanceFullDateWhenHDateUnSet for 3but 1NJH expect 0

255

B.2 Important Model Checks

Table B.1 describes the predicates and assertions we added to the runQuery Alloy model to extract model

properties of interest. The most important results come from OpPreserves, CanGetConformanceDeIDed

and AlwaysDeIDedConformance. A point worth mentioning is that CanGetConformanceDeIDed can give

instances whether or not OpPreserves or AlwaysDeIDedConformance find counterexamples. We include both

the OpDoesNotPreserve and DeIDedNonConformanceFullDateWhenHDateUnSet predicates as alternates to

finding instances where the main assertions find counterexamples, because the assertions have much longer

running times that probing the model for an instance when the assertions already produced counterexamples.

256

2
5
7

T
ab

le
B
.1
:
Im

p
o
rt
a
n
t
M
o
d
el

C
h
ec
k
s
fo
r
th
e
ru
n
Q
u
er
y
m
et
h
o
d

N
am

e
T
y
p
e

E
x
p
la
n
at
io
n

R
es
u
lt

S
ta
te

O
p
P
re
se
rv
es

A
ss
er
-

ti
on

A
ss
er
ts

th
at

th
e
Q
u
er
y
op

er
at
io
n
sp

ec
ifi
ca
ti
on

s
n
ev
er

ca
u
se

th
e
co
n
st
ra
in
ts

w
e
se
t
u
p
in

in
v[
..
.]

p
re
d
ic
at
e
to

b
e
v
io
la
te
d

N
o

co
u
n
te
re
x
am

p
le

ex
p
ec
te
d

N
/A

O
p
D
o
es
N
ot
P
re
se
rv
e

P
re
d
i-

ca
te

G
iv
es

an
in
st
an

ce
u
n
d
er

w
h
ic
h
th
e
ru
n
Q
u
er
y

op
er
at
io
n
v
io
la
te
s
th
e
co
n
st
ra
in
ts

N
o
in
st
an

ce
ex
p
ec
te
d
w
h
en

O
p
P
re
se
rv
es

gi
ve
s
n
o
co
u
n
-

te
re
x
am

p
le
s

N
/A

C
an

G
et
C
on

fo
rm

an
ce
D
eI
D
ed

P
re
d
i-

ca
te

G
iv
es

an
in
st
an

ce
to

sh
ow

th
at

w
e
ca
n
ge
n
er
at
e

an
in
st
an

ce
in

w
h
ic
h
d
at
a
re
tu
rn
ed

b
y
a
q
u
er
y

is
d
e-
id
en

ti
fi
ed

as
ex

p
ec
te
d

A
n
in
st
an

ce
is

ex
p
ec
te
d

in
st
an

ce
m
ea
n
s

D
e-
id
en

ti
fi
ed

st
at
e
p
re
se
n
t

A
lw
ay

sD
eI
D
ed

C
on

fo
rm

an
ce

A
ss
er
-

ti
on

A
ss
er
ts

th
at

u
n
d
er

al
l
ci
rc
u
m
st
an

ce
s,

al
l
q
u
er
y

re
su
lt
s
u
si
n
g
a
d
e-
id
en

ti
fi
ed

ac
ce
ss

ti
ck
et

ar
e

al
w
ay

s
d
e-
id
en
ti
fi
ed

N
o

co
u
n
te
re
x
am

p
le

ex
p
ec
te
d

co
u
n
te
re
x
am

p
le

m
ea
n
s
Id
en

ti
fi
ed

st
at
e
p
re
se
n
t

A
lw
ay

sD
eI
D
ed

C
on

fo
rm

an
ce
W

h
en

H
D
at
eS

et
A
ss
er
-

ti
on

A
ss
er
ts

th
at

w
h
en

w
e
id
en

ti
fy

p
at
ie
n
t
d
at
a
w
it
h

a
H
IP
A
A

d
at
e
ca
te
go

ry
q
u
er
y
re
su
lt
s
u
si
n
g
a

d
e-
id
en
ti
fi
ed

ac
ce
ss

ti
ck
et

ar
e
n
ev
er

id
en

ti
fi
ed

.
U
se
d
to

fu
rt
h
er

p
ro
b
e
th
e
m
o
d
el

w
h
en

A
lw
a
ys
D
eI
D
ed
C
o
n
fo
rm

a
n
ce

gi
ve
s
a

co
u
n
te
re
x
am

p
le
.

N
o

co
u
n
te
re
x
am

p
le

ex
p
ec
te
d

co
u
n
te
re
x
am

p
le

m
ea
n
s
Id
en

ti
fi
ed

st
at
e
p
re
se
n
t

A
lw
ay

sD
eI
D
ed

C
on

fo
rm

an
ce
W

h
en

H
D
at
eU

n
S
et

A
ss
er
-

ti
on

A
ss
er
ts

th
at

w
h
en

w
e
d
o
n
ot

id
en
ti
fy

p
at
ie
n
t

d
at
a
w
it
h
a
H
IP
A
A

d
at
e
ca
te
go

ry
q
u
er
y
re
su
lt
s

u
si
n
g
a
d
e-
id
en
ti
fi
ed

ac
ce
ss

ti
ck
et

ar
e
n
ev
er

id
en
ti
fi
ed

.
U
se
d
to

fu
rt
h
er

p
ro
b
e
th
e
m
o
d
el

w
h
en

A
lw
a
ys
D
eI
D
ed
C
o
n
fo
rm

a
n
ce

gi
ve
s
a

co
u
n
te
re
x
am

p
le
.

N
o

co
u
n
te
re
x
am

p
le

ex
p
ec
te
d

co
u
n
te
re
x
am

p
le

m
ea
n
s
Id
en

ti
fi
ed

st
at
e
p
re
se
n
t

D
eI
D
ed

N
on

C
on

fo
rm

an
ce
F
u
ll
D
at
eW

h
en

H
D
at
eU

n
S
et

P
re
d
i-

ca
te

G
iv
es

an
d
in
st
an

ce
w
h
er
e
q
u
er
y
re
su
lt
s
u
si
n
g
a

d
e-
id
en
ti
fi
ed

ac
ce
ss

ti
ck
et

ar
e
id
en

ti
fi
ed

on
p
at
ie
n
t
d
at
a
w
it
h
th
e
H
IP
A
A

d
at
e
ca
te
go

ry
n
ot

se
t
b
u
t
sh
ou

ld
h
av
e
b
ee
n
se
t

N
o
in
st
an

ce
ex
p
ec
te
d
;
n
o

in
st
an

ce
if
st
at
e

is
aw

ay
s

D
e-
id
en

ti
fi
ed

in
st
an

ce
m
ea
n
s

Id
en

ti
fi
ed

st
at
e

p
re
se
n
t

APPENDIX C. SPECIFICATIONS FOR CREATING DETAILED FEEDBACK IN CHAPTER 7

C.1 Counterexample in the CheckConformance Operation

C.1.1 Slice 5: Alloy Specifications

The specifications are included in Section D.1.2.

258

C.1.2 Slice 5: Alloy Counterexample XML representation

See Figure 7.15 for a graphical representation of the Alloy Analyzer counterexample. Source in xml file

removed as Alloy model is given in another appendix.

Listing C.1: Slice 5: CheckConformance XML Counterexample

1 <alloy builddate="2014-05-16 16:44 EDT">
2

3 <instance bitwidth="0" maxseq="0" command="Run showDeIDedDD for 7but 1NJH expect 1"
filename="slice_5_g_inst.als">

4

5 <sig label="seq/Int" ID="0" parentID="1" builtin="yes">
6 </sig>
7

8 <sig label="Int" ID="1" parentID="2" builtin="yes">
9 </sig>

10

11 <sig label="String" ID="3" parentID="2" builtin="yes">
12 </sig>
13

14 <sig label="this/Date" ID="4" parentID="5">
15 <atom label="Date$0"/>
16 <atom label="Date$1"/>
17 </sig>
18

19 <field label="day" ID="6" parentID="4">
20 <tuple> <atom label="Date$1"/> <atom label="Day$2"/> </tuple>
21 <types> <type ID="5"/> <type ID="7"/> </types>
22 </field>
23

24 <field label="month" ID="8" parentID="4">
25 <tuple> <atom label="Date$1"/> <atom label="Month$0"/> </tuple>
26 <types> <type ID="5"/> <type ID="9"/> </types>
27 </field>
28

29 <field label="year" ID="10" parentID="4">
30 <tuple> <atom label="Date$0"/> <atom label="Year$0"/> </tuple>
31 <tuple> <atom label="Date$1"/> <atom label="Year$0"/> </tuple>
32 <types> <type ID="5"/> <type ID="11"/> </types>
33 </field>
34

35 <sig label="this/Data" ID="5" parentID="2" abstract="yes">
36 </sig>
37

38 <sig label="this/Project" ID="12" parentID="13">
39 <atom label="Project$0"/>
40 </sig>
41

42 <sig label="this/DataSource" ID="13" parentID="2" abstract="yes">
43 </sig>
44

45 <sig label="this/AllowDeIDed" ID="14" parentID="15" one="yes">
46 <atom label="AllowDeIDed$0"/>
47 </sig>
48

49 <sig label="this/TotallyDeIDed" ID="16" parentID="15" one="yes">
50 <atom label="TotallyDeIDed$0"/>

259

51 </sig>
52

53 <sig label="this/TotallyIDed" ID="17" parentID="15" one="yes">
54 <atom label="TotallyIDed$0"/>
55 </sig>
56

57 <sig label="this/DataTransform" ID="15" parentID="2" abstract="yes">
58 </sig>
59

60 <sig label="this/Age" ID="18" parentID="19">
61 <atom label="Age$0"/>
62 </sig>
63

64 <sig label="this/Other" ID="20" parentID="19">
65 <atom label="Other$0"/>
66 </sig>
67

68 <sig label="this/Name" ID="19" parentID="2" abstract="yes">
69 </sig>
70

71 <sig label="this/DeIDed" ID="21" parentID="22" lone="yes">
72 <atom label="DeIDed$0"/>
73 </sig>
74

75 <sig label="this/Identified" ID="23" parentID="22" lone="yes">
76 <atom label="Identified$0"/>
77 </sig>
78

79 <sig label="this/AccessTicket" ID="22" parentID="24" abstract="yes">
80 </sig>
81

82 <sig label="this/Permission" ID="24" parentID="2" abstract="yes">
83 </sig>
84

85 <sig label="this/DownloadAllowed" ID="25" parentID="26" lone="yes">
86 <atom label="DownloadAllowed$0"/>
87 </sig>
88

89 <sig label="this/DownloadDisabled" ID="27" parentID="26" lone="yes">
90 <atom label="DownloadDisabled$0"/>
91 </sig>
92

93 <sig label="this/Status" ID="26" parentID="2" abstract="yes">
94 </sig>
95

96 <sig label="this/Day" ID="7" parentID="2">
97 <atom label="Day$0"/>
98 <atom label="Day$1"/>
99 <atom label="Day$2"/>

100 </sig>
101

102 <sig label="this/Month" ID="9" parentID="2">
103 <atom label="Month$0"/>
104 </sig>
105

106 <sig label="this/Query" ID="28" parentID="2">
107 <atom label="Query$0"/>
108 <atom label="Query$1"/>
109 <atom label="Query$2"/>
110 </sig>
111

112 <sig label="this/Year" ID="11" parentID="2">

260

113 <atom label="Year$0"/>
114 </sig>
115

116 <sig label="this/DataItem" ID="29" parentID="2">
117 <atom label="DataItem$0"/>
118 <atom label="DataItem$1"/>
119 <atom label="DataItem$2"/>
120 <atom label="DataItem$3"/>
121 <atom label="DataItem$4"/>
122 <atom label="DataItem$5"/>
123 <atom label="DataItem$6"/>
124 </sig>
125

126 <field label="name" ID="30" parentID="29">
127 <tuple> <atom label="DataItem$0"/> <atom label="Other$0"/> </tuple>
128 <tuple> <atom label="DataItem$1"/> <atom label="Age$0"/> </tuple>
129 <tuple> <atom label="DataItem$2"/> <atom label="Other$0"/> </tuple>
130 <tuple> <atom label="DataItem$3"/> <atom label="Age$0"/> </tuple>
131 <tuple> <atom label="DataItem$4"/> <atom label="Age$0"/> </tuple>
132 <tuple> <atom label="DataItem$5"/> <atom label="Age$0"/> </tuple>
133 <tuple> <atom label="DataItem$6"/> <atom label="Other$0"/> </tuple>
134 <types> <type ID="29"/> <type ID="19"/> </types>
135 </field>
136

137 <sig label="this/NJH" ID="31" parentID="2">
138 <atom label="NJH$0"/>
139 </sig>
140

141 <field label="accessTickets" ID="32" parentID="31">
142 <tuple> <atom label="NJH$0"/> <atom label="Identified$0"/> </tuple>
143 <tuple> <atom label="NJH$0"/> <atom label="DeIDed$0"/> </tuple>
144 <types> <type ID="31"/> <type ID="24"/> </types>
145 </field>
146

147 <field label="dataItems" ID="33" parentID="31">
148 <tuple> <atom label="NJH$0"/> <atom label="DataItem$0"/> </tuple>
149 <tuple> <atom label="NJH$0"/> <atom label="DataItem$1"/> </tuple>
150 <tuple> <atom label="NJH$0"/> <atom label="DataItem$2"/> </tuple>
151 <tuple> <atom label="NJH$0"/> <atom label="DataItem$3"/> </tuple>
152 <tuple> <atom label="NJH$0"/> <atom label="DataItem$4"/> </tuple>
153 <tuple> <atom label="NJH$0"/> <atom label="DataItem$5"/> </tuple>
154 <types> <type ID="31"/> <type ID="29"/> </types>
155 </field>
156

157 <field label="dates" ID="34" parentID="31">
158 <tuple> <atom label="NJH$0"/> <atom label="Date$0"/> </tuple>
159 <tuple> <atom label="NJH$0"/> <atom label="Date$1"/> </tuple>
160 <types> <type ID="31"/> <type ID="5"/> </types>
161 </field>
162

163 <field label="permissions" ID="35" parentID="31">
164 <tuple> <atom label="NJH$0"/> <atom label="Identified$0"/> </tuple>
165 <tuple> <atom label="NJH$0"/> <atom label="DeIDed$0"/> </tuple>
166 <types> <type ID="31"/> <type ID="24"/> </types>
167 </field>
168

169 <field label="projects" ID="36" parentID="31">
170 <tuple> <atom label="NJH$0"/> <atom label="Project$0"/> </tuple>
171 <types> <type ID="31"/> <type ID="13"/> </types>
172 </field>
173

174 <field label="qryItems" ID="37" parentID="31">

261

175 <tuple> <atom label="NJH$0"/> <atom label="DataItem$1"/> </tuple>
176 <tuple> <atom label="NJH$0"/> <atom label="DataItem$2"/> </tuple>
177 <types> <type ID="31"/> <type ID="29"/> </types>
178 </field>
179

180 <field label="queries" ID="38" parentID="31">
181 <tuple> <atom label="NJH$0"/> <atom label="Query$0"/> </tuple>
182 <tuple> <atom label="NJH$0"/> <atom label="Query$1"/> </tuple>
183 <tuple> <atom label="NJH$0"/> <atom label="Query$2"/> </tuple>
184 <types> <type ID="31"/> <type ID="28"/> </types>
185 </field>
186

187 <field label="retItems" ID="39" parentID="31">
188 <tuple> <atom label="NJH$0"/> <atom label="DataItem$0"/> </tuple>
189 <tuple> <atom label="NJH$0"/> <atom label="DataItem$3"/> </tuple>
190 <tuple> <atom label="NJH$0"/> <atom label="DataItem$4"/> </tuple>
191 <tuple> <atom label="NJH$0"/> <atom label="DataItem$5"/> </tuple>
192 <types> <type ID="31"/> <type ID="29"/> </types>
193 </field>
194

195 <field label="statuses" ID="40" parentID="31">
196 <tuple> <atom label="NJH$0"/> <atom label="DownloadDisabled$0"/> </tuple>
197 <tuple> <atom label="NJH$0"/> <atom label="DownloadAllowed$0"/> </tuple>
198 <types> <type ID="31"/> <type ID="26"/> </types>
199 </field>
200

201 <field label="transforms" ID="41" parentID="31">
202 <tuple> <atom label="NJH$0"/> <atom label="AllowDeIDed$0"/> </tuple>
203 <tuple> <atom label="NJH$0"/> <atom label="TotallyDeIDed$0"/> </tuple>
204 <tuple> <atom label="NJH$0"/> <atom label="TotallyIDed$0"/> </tuple>
205 <types> <type ID="31"/> <type ID="15"/> </types>
206 </field>
207

208 <field label="values" ID="42" parentID="31">
209 <tuple> <atom label="NJH$0"/> <atom label="Date$0"/> </tuple>
210 <tuple> <atom label="NJH$0"/> <atom label="Date$1"/> </tuple>
211 <types> <type ID="31"/> <type ID="5"/> </types>
212 </field>
213

214 <field label="dataValues" ID="43" parentID="31">
215 <tuple> <atom label="NJH$0"/> <atom label="DataItem$0"/> <atom label="Date$0"/> </tuple>
216 <tuple> <atom label="NJH$0"/> <atom label="DataItem$1"/> <atom label="Date$1"/> </tuple>
217 <tuple> <atom label="NJH$0"/> <atom label="DataItem$2"/> <atom label="Date$1"/> </tuple>
218 <tuple> <atom label="NJH$0"/> <atom label="DataItem$3"/> <atom label="Date$1"/> </tuple>
219 <tuple> <atom label="NJH$0"/> <atom label="DataItem$4"/> <atom label="Date$1"/> </tuple>
220 <tuple> <atom label="NJH$0"/> <atom label="DataItem$5"/> <atom label="Date$1"/> </tuple>
221 <types> <type ID="31"/> <type ID="29"/> <type ID="5"/> </types>
222 </field>
223

224 <field label="enteredOn" ID="44" parentID="31">
225 <tuple> <atom label="NJH$0"/> <atom label="DataItem$3"/> <atom label="Date$0"/> </tuple>
226 <tuple> <atom label="NJH$0"/> <atom label="DataItem$4"/> <atom label="Date$0"/> </tuple>
227 <types> <type ID="31"/> <type ID="29"/> <type ID="5"/> </types>
228 </field>
229

230 <field label="projectAT" ID="45" parentID="31">
231 <tuple> <atom label="NJH$0"/> <atom label="Project$0"/> <atom label="DeIDed$0"/> </tuple>
232 <types> <type ID="31"/> <type ID="13"/> <type ID="24"/> </types>
233 </field>
234

235 <field label="projectDataTransformRequired" ID="46" parentID="31">

262

236 <tuple> <atom label="NJH$0"/> <atom label="Project$0"/> <atom label="TotallyDeIDed$0"/>
</tuple>

237 <types> <type ID="31"/> <type ID="13"/> <type ID="15"/> </types>
238 </field>
239

240 <field label="projectQueries" ID="47" parentID="31">
241 <tuple> <atom label="NJH$0"/> <atom label="Project$0"/> <atom label="Query$0"/> </tuple>
242 <tuple> <atom label="NJH$0"/> <atom label="Project$0"/> <atom label="Query$1"/> </tuple>
243 <tuple> <atom label="NJH$0"/> <atom label="Project$0"/> <atom label="Query$2"/> </tuple>
244 <types> <type ID="31"/> <type ID="13"/> <type ID="28"/> </types>
245 </field>
246

247 <field label="qryReturns" ID="48" parentID="31">
248 <tuple> <atom label="NJH$0"/> <atom label="Query$0"/> <atom label="DataItem$0"/> <atom

label="DataItem$2"/> </tuple>
249 <tuple> <atom label="NJH$0"/> <atom label="Query$0"/> <atom label="DataItem$3"/> <atom

label="DataItem$1"/> </tuple>
250 <tuple> <atom label="NJH$0"/> <atom label="Query$1"/> <atom label="DataItem$4"/> <atom

label="DataItem$1"/> </tuple>
251 <tuple> <atom label="NJH$0"/> <atom label="Query$2"/> <atom label="DataItem$5"/> <atom

label="DataItem$1"/> </tuple>
252 <types> <type ID="31"/> <type ID="28"/> <type ID="29"/> <type ID="29"/> </types>
253 </field>
254

255 <field label="VDAllowed" ID="49" parentID="31">
256 <tuple> <atom label="NJH$0"/> <atom label="Query$0"/> <atom label="DownloadDisabled$0"/>

</tuple>
257 <tuple> <atom label="NJH$0"/> <atom label="Query$2"/> <atom label="DownloadDisabled$0"/>

</tuple>
258 <types> <type ID="31"/> <type ID="28"/> <type ID="26"/> </types>
259 </field>
260

261 <sig label="ord/Ord" ID="50" parentID="2" one="yes" private="yes">
262 <atom label="ord/Ord$0"/>
263 </sig>
264

265 <field label="First" ID="51" parentID="50" private="yes">
266 <tuple> <atom label="ord/Ord$0"/> <atom label="NJH$0"/> </tuple>
267 <types> <type ID="50"/> <type ID="31"/> </types>
268 </field>
269

270 <field label="Next" ID="52" parentID="50" private="yes">
271 <types> <type ID="50"/> <type ID="31"/> <type ID="31"/> </types>
272 </field>
273

274 <sig label="univ" ID="2" builtin="yes">
275 </sig>
276

277 <sig label="this/QryData" ID="53">
278 <atom label="DataItem$1"/>
279 <atom label="DataItem$2"/>
280 <atom label="DataItem$3"/>
281 <atom label="DataItem$4"/>
282 <atom label="DataItem$5"/>
283 <atom label="DataItem$6"/>
284 <type ID="29"/>
285 </sig>
286

287 <sig label="this/RetData" ID="54">
288 <atom label="DataItem$0"/>
289 <atom label="DataItem$3"/>
290 <atom label="DataItem$4"/>

263

291 <atom label="DataItem$5"/>
292 <atom label="DataItem$6"/>
293 <type ID="29"/>
294 </sig>
295

296 <skolem label="$init_q" ID="55">
297 <tuple> <atom label="Query$1"/> </tuple>
298 <types> <type ID="28"/> </types>
299 </skolem>
300

301 <skolem label="$showDeIDedDD_njh" ID="56">
302 <tuple> <atom label="NJH$0"/> </tuple>
303 <types> <type ID="31"/> </types>
304 </skolem>
305

306 <skolem label="$showDeIDedDD_p" ID="57">
307 <tuple> <atom label="Project$0"/> </tuple>
308 <types> <type ID="13"/> </types>
309 </skolem>
310

311 <skolem label="$showDeIDedDD_q" ID="58">
312 <tuple> <atom label="Query$2"/> </tuple>
313 <types> <type ID="28"/> </types>
314 </skolem>
315

316 <skolem label="$common_inst_p" ID="59">
317 <tuple> <atom label="Project$0"/> </tuple>
318 <types> <type ID="13"/> </types>
319 </skolem>
320

321 <skolem label="$common_inst_q" ID="60">
322 <tuple> <atom label="Query$2"/> </tuple>
323 <types> <type ID="28"/> </types>
324 </skolem>
325

326 <skolem label="$totallyDeIDedTransform_d" ID="61">
327 <tuple> <atom label="Date$1"/> </tuple>
328 <types> <type ID="5"/> </types>
329 </skolem>
330

331 </instance>
332

333 </alloy>

264

C.1.3 Slice 5: Alloy Counterexample USE representation (see Figure 7.17 for a graphical

representation of the object model)

Listing C.2: Slice 5: CheckConformance USE Counterexample

1 -- Script generated by USE 4.2.0
2

3 !new DownloadDisabled(’DownloadDisabled_0’)
4 !new DeIDed(’DeIDed_0’)
5

6 !new QryData(’DataItem_4’)
7 !new QryData(’DataItem_5’)
8

9 !DataItem_4.name := ’Age’
10 !DataItem_5.name := ’Other’
11

12 !new Date(’Date_1’)
13 !Date_1.day := 9
14 !Date_1.month := 8
15 !Date_1.year := 1931
16

17 !insert (DataItem_5,Date_1) into DataValues
18 !insert (DataItem_4,Date_1) into DataValues
19

20 !new Project(’Project_1’)
21 !new Query(’Query_0’)
22 !insert (Project_1,DeIDed_0) into ProjectAT
23 !insert (Project_1,Query_0) into ProjectQueries
24

25 !new RetData(’DataItem_0’)
26 !new RetData(’DataItem_1’)
27 !new RetData(’DataItem_2’)
28 !new RetData(’DataItem_3’)
29

30 !new Date(’Date_0’)
31 !Date_0.day := 0
32 !Date_0.month := 0
33 !Date_0.year := 1931
34

35 !DataItem_0.name := ’Age’
36 !insert (Query_0,DataItem_0,DataItem_4) into QryReturns
37 !insert (DataItem_0,Date_0) into DataValues
38

39 !DataItem_3.name := ’Other’
40 !insert (Query_0,DataItem_3,DataItem_5) into QryReturns
41 !insert (DataItem_3,Date_1) into DataValues
42

43 !DataItem_2.name := ’Age’
44 !insert (Query_0,DataItem_2,DataItem_4) into QryReturns
45 !insert (DataItem_2,Date_0) into DataValues
46

47 !DataItem_1.name := ’Age’
48 !insert (Query_0,DataItem_1,DataItem_4) into QryReturns
49 !insert (DataItem_1,Date_0) into DataValues
50

51 !insert (Query_0,DownloadDisabled_0) into VDAllowed

265

C.2 USE Commands for Generating On-Demand Object Models in the NJH System

The listings in sections C.2.1 through C.2.4 are used in the listings in Section C.2.5.

C.2.1 USE Class Models

Listing C.3: USE Class Model for Slice 5 to Check Conformance

1 /*
2 Model slice for NJH to
3 5. Check Conformance
4

5 Written by Phillipa Bennett
6 Date Sept 20, 2016
7 Version 4
8 */
9

10 model NJHg_slice_5
11

12 /* Abstract CLASSES */
13

14 abstract class Data end
15 abstract class Permission end
16

17 /* Extended abstract classes */
18 abstract class AccessTicket < Permission end
19

20 /* Unextended concrete classes */
21 class DataItem
22 attributes
23 name: String
24 end
25

26 class Query
27 attributes
28 operations
29 download()
30 view()
31 end
32

33 abstract class Status end
34

35 /* Extended concrete classes */
36

37 class Date < Data
38 attributes
39 day: Integer
40 month: Integer
41 year: Integer
42 operations
43 isIdentified(): Boolean
44 isNotIdentified(): Boolean
45 end
46

47 class DStr < Data
48 attributes
49 sVal: String
50 end

266

51

52 class Project end
53

54 class QryData < DataItem end
55 class RetData < DataItem end
56

57 class DeIDed < AccessTicket end
58 class Identified < AccessTicket end
59

60 class DownloadDisabled < Status end
61 class DownloadAllowed < Status end
62

63 /* ASSOCIATIONS */
64 association DataValues between
65 DataItem[*]
66 Data[1]
67 end
68

69 association EnteredOn between
70 DataItem[*] role item
71 Date[0..1] role date
72 end
73

74 association ProjectAT between
75 Project[*]
76 AccessTicket[0..1]
77 end
78

79 association ProjectQueries between
80 Project[*] /* relax from 1to * to allow generation program to work, enforced as 1in a

constraint */
81 Query[*]
82 end
83

84 association QryReturns between
85 Query[*] role qry
86 RetData[*] role rData
87 QryData[*] role qData
88 end
89

90 association VDAllowed between
91 Query[*]
92 Status[0..1]
93 end

267

Listing C.4: USE Class Model for Slice 4 to Execute Query

1 /*
2 Model slice for NJH to
3 4. execute query
4

5 Written by Phillipa Bennett
6 Date Sept 1, 2016
7 Version 4
8 */
9

10 model NJHg_slice_4
11

12 /* Abstract CLASSES */
13 abstract class Category end
14 abstract class Data end
15 abstract class DataSource end
16 abstract class Permission end
17 abstract class Rule
18 attributes
19 operations
20 applyRule()
21 end
22

23 /* Extended abstract classes */
24 abstract class AccessTicket < Permission end
25 abstract class AccessRule < Rule end
26

27 abstract class HIPAACat < Category end
28 abstract class Consent < Category end
29

30 abstract class Type end
31

32 /* Unextended concrete classes */
33 class DataItem
34 attributes
35 name: String
36 end
37

38 class Patient end
39 class Personnel end
40 class Query
41 attributes
42 operations
43 runQuery(res: Researcher, proj: Project)
44 download()
45 view()
46 end
47

48 /* Extended concrete classes */
49 class Allow < Consent end
50 class Disallow < Consent end
51

52 class Date < Data
53 attributes
54 day: Integer
55 month: Integer
56 year: Integer
57 operations
58 isIdentified(): Boolean
59 isNotIdentified(): Boolean

268

60 end
61

62 /*class DStr < Data
63 attributes
64 sVal: String
65 end */
66 class HDate < HIPAACat end
67

68 class Project < DataSource end
69 class ClinicalDB < DataSource end
70

71 class Researcher < Personnel end
72 class Qualifier < Personnel end
73

74 class QryData < DataItem end
75 class RetData < DataItem end
76

77 class Individual < Type end
78 class Group < Type end
79

80 class DeIDed < AccessTicket end
81 class Identified < AccessTicket end
82

83 class TransformHDate < AccessRule end
84 class PatientConsent < AccessRule end
85

86 /* ASSOCIATIONS */
87 association ARAppliesTo between
88 AccessRule[*] role accessrule
89 Type[1..*] role type
90 end
91 association ARHides between
92 AccessRule[*]
93 Category[*]
94 end
95

96 association ARTransforms between
97 AccessRule[*] role hAccessRules
98 HIPAACat[*]
99 end

100

101 association DataValues between
102 DataItem[*]
103 Data[1]
104 end
105

106 association DICat between
107 DataItem[*]
108 HIPAACat[*]
109 end
110

111 association DISource between
112 DataSource[0..1]
113 DataItem[*]
114 end
115

116 association EnteredOn between
117 DataItem[*] role item
118 Date[0..1] role date
119 end
120

121 association PatientData between

269

122 Patient[0..1]
123 DataItem[*]
124 Consent[0..1]
125 end
126

127 association PermRules between
128 Permission[*]
129 Rule[1..*]
130 end
131

132 association ProjectAT between
133 Project[*]
134 AccessTicket[0..1]
135 end
136

137 association ProjectDataCollector between
138 Project[*]
139 Personnel[0..1] role dc
140 end
141

142 association ProjectMembers between
143 Project[*] role proj
144 Researcher[*] role members
145 end
146

147 association ProjectPI between
148 Project[*] role pi_proj
149 Researcher[0..1] role pi
150 end
151

152 association ProjectQueries between
153 Project[*] /* relax from 1to * to allow generation program to work, enforced as 1in a

constraint */
154 Query[*]
155 end
156

157 association ProjectSources between
158 Project [*]
159 DataSource[*]
160 end
161

162 association QryWorksOn between
163 Query[*]
164 QryData[*]
165 end
166

167 association QryReturns between
168 Query[*] role qry
169 RetData[*] role rData
170 QryData[*] role qData
171 end
172

173 association RDType between
174 Query[*] role rd_qry
175 RetData[*] role rd_data
176 Type[0..1]
177 end

270

Listing C.5: USE Class Model for Slice 3 to Approve Access Ticket

1 /*
2 Model slice for NJH to
3 3. approve project access ticket,
4

5 Written by Phillipa Bennett
6 Date August 18, 2016
7 Version 4
8 */
9

10 model NJHg_slice_1
11

12 /* Abstract CLASSES */
13 abstract class DataSource end
14 abstract class DataTransform end
15 abstract class Permission end
16 abstract class Rule
17 attributes
18 operations
19 applyRule()
20 end
21 abstract class Purpose end
22

23 /* Extended abstract classes */
24 abstract class AccessTicket < Permission end
25

26 class TotallyDeIDed < DataTransform end
27 class NotTotallyDeIDed < DataTransform end
28

29 abstract class Licence < Permission end
30 abstract class DecisionRule < Rule end
31

32 /* Unextended concrete classes */
33 class Personnel end
34 class Query
35 attributes
36 operations
37 runQuery(res: Researcher, proj: Project)
38 download()
39 view()
40 end
41

42

43 /* Extended concrete classes */
44 class Project < DataSource end
45 class ClinicalDB < DataSource end
46

47

48 class Fishing < Licence end
49

50 class DeIDed < AccessTicket end
51 class Identified < AccessTicket end
52

53 class CanUseTotallyDeIDed < DecisionRule end
54 class ClinicalDBNeedsDataCollector < DecisionRule end
55 class DataAccessAgreementPresent < DecisionRule end
56 class DataSourcePriorityOK < DecisionRule end
57 class LicenedTeamAndPI < DecisionRule end
58 class NoOverlapPITeamDC < DecisionRule end
59 class NoSupsInPIandDC < DecisionRule end

271

60 class PIDefined < DecisionRule end
61 class ProjectMembersDefined < DecisionRule end
62 class QualifierPresent < DecisionRule end
63 class SomePurposeNotDirectTreatment < DecisionRule end
64 class SomeQueriesDefined < DecisionRule end
65 class SomeSourcesDefined < DecisionRule end
66

67 class DirectTreatment < Purpose end
68 class Research < Purpose end
69

70 /* These classes are defined using the ’in’ keyword in the Alloy model.
71 How will we achieve this in OCL? */
72 class Qualifier < Personnel
73 attributes
74 operations
75 QualifyResearcher(res: Researcher)
76 end
77 class Researcher < Personnel end
78

79

80 /* ASSOCIATIONS */
81

82 association ATPriority between
83 AccessTicket[*] role ant
84 AccessTicket[*] role desc
85 end
86

87 association DataAccessAgreement between
88 Project[*] role owner
89 Project[*] role user
90 end
91

92 association PermRules between
93 Permission[*]
94 Rule[1..*]
95 end
96

97 association ProjectAT between
98 Project[*]
99 AccessTicket[0..1]

100 end
101

102 association ProjectDataCollector between
103 Project[*]
104 Personnel[0..1] role dc
105 end
106

107 association ProjectDataTransformRequired between
108 Project[*]
109 DataTransform[0..1]
110 end
111

112 association ProjectMembers between
113 Project[*] role proj
114 Researcher[*] role members
115 end
116

117 association ProjectPI between
118 Project[*] role pi_proj
119 Researcher[0..1] role pi
120 end
121

272

122 association ProjectPurpose between
123 Project[*]
124 Purpose[0..1]
125 end
126

127 association ProjectQueries between
128 Project[*] /* relax from 1to * to allow generation */
129 Query[*]
130 end
131

132 association ProjectSources between
133 Project [*]
134 DataSource[*]
135 end
136

137 association ResearcherL between
138 Researcher[*]
139 Licence[0..1]
140 end
141

142 association Supervisors between
143 Personnel[*] role supervisor
144 Personnel[*] role supervised
145 end

273

C.2.2 OCLConstraints

Listing C.6: USE Constraints applicable only to Slices 2, and 3 to Approve Researcher’s Licence and Approve

Access Ticket respectively - filename reference for listings in Section C.2.5 is slice 23g.cnsts

1 context Fishing
2

3 inv singletonFishing:
4 Fishing.allInstances->size()<=1
5

6 inv FishingDesicionRules:
7 rule->forAll(r | r.oclIsTypeOf(QualifierPresent)=true)
8

9 context QualifierPresent
10

11 inv QualifierPresentOnlyForFishing:
12 permission->forAll(p | p.oclIsTypeOf(Fishing)=true)
13

14 context DecisionRule
15

16 inv singletonEachDecisionRule:
17 DecisionRule.allInstances.select(
18 oclIsTypeOf(CanUseTotallyDeIDed)=true)->size<=1
19 and
20 DecisionRule.allInstances.select(
21 oclIsTypeOf(DataSourcePriorityOK)=true)->size<=1
22 and
23 DecisionRule.allInstances.select(
24 oclIsTypeOf(LicenedTeamAndPI)=true)->size<=1
25 and
26 DecisionRule.allInstances.select(
27 oclIsTypeOf(NoOverlapPITeamDC)=true)->size<=1
28 and
29 DecisionRule.allInstances.select(
30 oclIsTypeOf(NoSupsInPIandDC)=true)->size<=1
31 and
32 DecisionRule.allInstances.select(
33 oclIsTypeOf(PIDefined)=true)->size<=1
34 and
35 DecisionRule.allInstances.select(
36 oclIsTypeOf(ProjectMembersDefined)=true)->size<=1
37 and
38 DecisionRule.allInstances.select(
39 oclIsTypeOf(QualifierPresent)=true)->size<=1
40 and
41 DecisionRule.allInstances.select(
42 oclIsTypeOf(SomePurposeNotDirectTreatment)=true)->size<=1
43 and
44 DecisionRule.allInstances.select(
45 oclIsTypeOf(SomeQueriesDefined)=true)->size<=1
46 and
47 DecisionRule.allInstances.select(
48 oclIsTypeOf(SomeSourcesDefined)=true)->size<=1
49 and
50 DecisionRule.allInstances.select(
51 oclIsTypeOf(DataAccessAgreementPresent)=true)->size<=1

274

Listing C.7: USE Constraints applicable only to Slices 2, 3, and 4 to Approve Researcher’s Licence, Ap-

prove Access Ticket, and Execute Query respectively - filename reference for listings in Section C.2.5 is

slice 234g.cnsts

1

2 /* This was weakened in the CD for slice 5and 4,
3 so we add it as a constraint here */
4 context Permission
5 inv invEachPermHasAtLeastOneRule:
6 rule->size()>=1

Listing C.8: USE Constraints applicable only to Slices 3 and 4 to Approve Access Ticket and Execute Query

respectively - filename reference for listings in Section C.2.5 is slice 34g.cnsts

1 context AccessTicket
2

3 inv singletonEachAT:
4 AccessTicket.allInstances.select(
5 oclIsTypeOf(Identified)=true)->size()<=1
6 and
7 AccessTicket.allInstances.select(
8 oclIsTypeOf(DeIDed)=true)->size()<=1
9

10 context ClinicalDB
11 inv singletonClinicalDB:
12 ClinicalDB.allInstances.select(oclIsTypeOf(ClinicalDB)=true)->size()<=1
13

14 context Project
15 inv invProjectNeedsDataCollectorForClinicalDB:
16 dataSource->select(oclIsTypeOf(ClinicalDB)=true)->size()=1 implies
17 dc->size()=1
18 /* this not really required because executing the query should check it */
19 inv invProjectSources2:
20 dataSource->select(oclIsTypeOf(Project)=true)->forAll(
21 p | p.oclAsType(Project).accessTicket->size()=1)
22

23 context DataSource
24 inv invProjectSources1: /* easier to write this in the contex of DataSource */
25 project.closure(project)->excludes(self)

Listing C.9: USE Constraints applicable only to Slices 3, 4 and 5 to Approve Researcher’s Licence, Ap-

prove Access Ticket, and Execute Query respectively - filename reference for listings in Section C.2.5 is

slice 345g.cnsts

1 context Query
2

3 inv invEachQueryAssociatedWithOnlyOneProject:
4 project->size()=1

275

Listing C.10: USE Constraints applicable only to Slices 4 and 5 to Execute Query and Check Conformance

respectively - filename reference for listings in Section C.2.5 is slice 45g.cnsts

1 context Date
2 inv attValues1:
3 day >= 0and day <= 31
4 and
5 month >= 0and month <=12
6 and
7 year >= 1900
8

9 inv attValues2:
10 day>29 implies
11 Sequence{1,3..12}->includes(month)
12

13 inv attValues3:
14 (month=2 and day=29) implies
15 year.mod(4)=0
16

17 inv attValues4:
18 (month=2 and day=29 and year.mod(100)=0) implies
19 year.mod(400)=0
20

21 context Type
22 inv singletonEachType:
23 Type.allInstances.select(
24 oclIsTypeOf(Group)=true)->size<=1
25 and
26 Type.allInstances.select(
27 oclIsTypeOf(Individual)=true)->size<=1
28

29 context RetData
30 inv retDataInOneQuery:
31 qry->size()<=1 /* should be =1? */
32

33 inv retDataType:
34 type->size()=1
35

36 context Query
37 inv invRDType:
38 rData->forAll(
39 (qData->size()=1 implies
40 type->select(oclIsTypeOf(Individual)=true)->size=1)
41 and
42 (qData->size()>1 implies
43 type->select(oclIsTypeOf(Group)=true)->size=1)
44)
45

46

47 inv invQryReturns1:
48 qryData->includesAll(qData)
49

50 inv invQryReturns2:
51 qData->size()>0 implies project.accessTicket->size()=1

Listing C.11: USE Constraints applicable only to Slice 5 to Check Conformance, filename reference for

listings in Section C.2.5 is slice 5g 1.cnsts

276

1 context Status
2 inv singletonEachStatus:
3 Status.allInstances.select(
4 oclIsTypeOf(DownloadDisabled)=true)->size<=1
5 and
6 Status.allInstances.select(
7 oclIsTypeOf(DownloadAllowed)=true)->size<=1

Listing C.12: USE Constraints applicable only to Slice 5 to Check Conformance, filename reference for

listings in Section C.2.5 is slice 5g 2.cnsts

1 context Query
2 inv invVDAllowed:
3 let
4 cond1: Boolean =
5 rData->size()>0,
6 cond2: Boolean =
7 status->size()=1
8 in
9 cond1 implies cond2

10 and
11 cond2 implies cond1
12

13 inv invDownloadAllowedDeIDed:
14 let
15 cond1: Boolean =
16 project.accessTicket->select(oclIsTypeOf(DeIDed)=true)->size()=1,
17 cond2: Boolean = rData.data->select(
18 oclIsTypeOf(Date)=true)->forAll(d |d.oclAsType(Date).day=0),
19 cond3: Boolean =
20 status.oclIsTypeOf(DownloadAllowed)=true
21 in
22 cond1 implies (
23 (cond2 implies cond3)
24 and
25 (cond3 implies cond2))
26

27 inv invDownloadDisabledDeIDed:
28 let
29 cond1: Boolean =
30 project.accessTicket->select(oclIsTypeOf(DeIDed)=true)->size()=1,
31 cond2: Boolean =
32 rData.data->select(
33 oclIsTypeOf(Date)=true)->exists(d |d.oclAsType(Date).day<>0),
34 cond3: Boolean =
35 status.oclIsTypeOf(DownloadDisabled)=true
36 in
37 cond1 implies (
38 (cond2 implies cond3)
39 and
40 (cond3 implies cond2))

Listing C.13: USE Constraints applicable only to Slice 4 to Execute Query - filename reference for listings

in Section C.2.5 is slice 4g.cnsts

1 context AccessRule

277

2 inv invARHides:
3 category->excludesAll(hIPAACat) and
4 hIPAACat->excludesAll(category)
5

6 inv singletonEachAccessRule:
7 AccessRule.allInstances.select(
8 oclIsTypeOf(TransformHDate)=true)->size<=1
9 and

10 AccessRule.allInstances.select(
11 oclIsTypeOf(PatientConsent)=true)->size<=1
12

13 context Category
14 inv singletonEachCategory:
15 Category.allInstances.select(
16 oclIsTypeOf(HDate)=true)->size<=1
17 and
18 Category.allInstances.select(
19 oclIsTypeOf(Allow)=true)->size<=1
20 and
21 Category.allInstances.select(
22 oclIsTypeOf(Disallow)=true)->size<=1
23

24 context DataItem
25 inv invDISourceAndEnteredOn:
26 dataSource.oclIsTypeOf(ClinicalDB)=true implies
27 (date->size()=1 and
28 date.day >=1 and date.month >=1)
29

30 /* Correctly categoriises ClinicalCB dates as HDate
31 this relaxed for non-conformance */
32 /*inv invPatientDataAndDICat:
33 (data.oclIsTypeOf(Date)=true and
34 self.oclIsTypeOf(RetData)=false)
35 implies
36 hIPAACat->select(oclIsTypeOf(HDate)=true)->size()=1 */
37

38 inv invEnteredOn:
39 patient->size()>0 implies (date->size()=1 and date.day>=1)
40

41 context DataSource
42 inv invDISource1:
43 if oclIsTypeOf(Project)=true then
44 self.dataItem->forAll(oclIsTypeOf(RetData)=true)
45 else
46 self.dataItem->forAll(oclIsTypeOf(RetData)=false)
47 endif
48

49 context Query
50 inv invDISource2:
51 rData.qData->forAll(qd | qd.dataSource.oclIsTypeOf(ClinicalDB)=true)

Listing C.14: OCL Constraints applicable only to Slice 3 to Approve Access Ticket - filename reference for

listings in Section C.2.5 is slice 3g.cnsts

1 /*
2 Constraints for approve project licence
3

4 Written by Phillipa Bennett
5 Date August 18, 2016

278

6 Version 4
7 */
8

9 context AccessTicket
10

11 inv invATPriority: /* no cycles */
12 desc.closure(desc)->excludes(self) or
13 ant.closure(ant)->excludes(self)
14

15 inv QualifierPresentNotAnATDecisionRule:
16 rule.select(
17 oclIsTypeOf(QualifierPresent)=true)->size()=0
18

19 context DataTransform
20

21 inv singletonEachDT:
22 DataTransform.allInstances.select(
23 oclIsTypeOf(TotallyDeIDed)=true)->size()<=1
24 and
25 DataTransform.allInstances.select(
26 oclIsTypeOf(NotTotallyDeIDed)=true)->size()<=1
27

28 context Purpose
29

30 inv singletonEachPurpose:
31 Purpose.allInstances.select(
32 oclIsTypeOf(DirectTreatment)=true)->size()<=1
33 and
34 Purpose.allInstances.select(
35 oclIsTypeOf(Research)=true)->size()<=1
36

37 context Project
38 inv invDataAccessAggreement1: /* no cycles */
39 owner->closure(owner)->excludes(self) or
40 user->closure(user)->excludes(self)
41

42 /* inv invDataAccessAggreement2: - see invDataAccessAgreementPresent below */
43

44 context Personnel
45 inv invSupervisors: /* no cycles */
46 supervised->closure(supervised)->excludes(self) or
47 supervisor->closure(supervisor)->excludes(self)

279

C.2.3 ASSL Procedures

Listing C.15: ASSL Procedures for Slice 4 to Execute Query

1 /* ********** ********** ********** ********** ********** ********** **********
2 PROCEDURE
3 * ********** ********** ********** ********** ********** ********** **********/
4 procedure add_4g_singleton_objects(
5 max: Integer)
6 var
7 /* misc */
8 n: Integer;
9

10 begin
11 /* a. create singleton objects */
12 Create(ClinicalDB);
13 Create(HDate);
14 Create(Allow);
15 Create(Disallow);
16 Create(Group);
17 Create(Individual);
18

19 /* Personnel, choose da, pi, and team pool */
20 //n := Any([Sequence{1..max}]);
21 CreateN(Personnel, [2]); /* if n>2 generation fails */
22

23 //n := Any([Sequence{1..max}]);
24 CreateN(Qualifier, [2]); /* if n>2 generation fails */
25

26 n := Any([Sequence{3..max}]);
27 CreateN(Researcher, [n]);
28 end;
29

30 /* ********** ********** ********** ********** ********** ********** **********
31 PROCEDURE
32 * ********** ********** ********** ********** ********** ********** **********/
33 procedure configure_AT_AccessRules()
34 var
35 /* Permissions */
36 iat: Identified,
37 dat: DeIDed,
38 g: Group,
39 i: Individual,
40

41 /* Hippa categories */
42 hipaad: HDate,
43

44 /* abstract DecisionRule object */
45 ar: AccessRule;
46

47 begin
48 dat := Any([DeIDed.allInstances->asSequence()]);
49 iat := Any([Identified.allInstances->asSequence()]);
50 g := Any([Group.allInstances->asSequence()]);
51 i := Any([Individual.allInstances->asSequence()]);
52 hipaad := Any([HDate.allInstances->asSequence()]);
53

54 /* Access ticket AccessRules,
55 Create PermRules and ARAppliesTo associations */
56 ar := Create(TransformHDate);

280

57 Insert(PermRules, [dat], [ar]);
58 /* Insert(ARAppliesTo, [ar], [g]); */
59 Insert(ARAppliesTo, [ar], [i]);
60 Insert(ARTransforms, [ar], [hipaad]);
61

62 ar := Create(PatientConsent);
63 Insert(PermRules, [dat], [ar]);
64 Insert(PermRules, [iat], [ar]);
65 Insert(ARAppliesTo, [ar], [g]);
66 Insert(ARAppliesTo, [ar], [i]);
67 end;
68

69 /* ********** ********** ********** ********** ********** ********** **********
70 PROCEDURE
71 * ********** ********** ********** ********** ********** ********** **********/
72 procedure generate_patient_data(
73 max: Integer,
74 maxMonth: Integer,
75 currentYear: Integer)
76 var
77 di: Sequence(DataItem),
78 di_5: Sequence(DataItem),
79 pdi: Sequence(DataItem),
80

81 da: Sequence(Date),
82 nda: Sequence(Date),
83

84 patients: Sequence(Patient),
85 cnsts: Sequence(Consent),
86

87 cDB: ClinicalDB,
88 date: Date,
89 cnst: Consent,
90 hipaad: HDate,
91

92 allow: Boolean,
93 first: Boolean,
94 maxYears: Integer,
95 m: Integer,
96 nbr: Integer,
97 n: Integer;
98

99 begin
100 allow := [false];
101 nbr := [1];
102 maxYears :=[95];
103

104 /* Categories */
105 cnsts := [Consent.allInstances->asSequence()];
106 hipaad := Any([HDate.allInstances->asSequence()]);
107

108 /* DataSources */
109 cDB := Any([ClinicalDB.allInstances->asSequence()]);
110

111 /* Patients */
112 n := Any([Sequence{1..max}]);
113 patients := CreateN(Patient, [n]);
114

115 /* DataItems */
116 di_5 := [DataItem.allInstances()->asSequence()];
117 di := CreateN(DataItem, [nbr*n]); /* nbr DataItem for each patient */
118 di := [DataItem.allInstances()->asSequence()]; /* includes dataitems created in slice 5*/

281

119

120 /* Date Data */
121 da := CreateN(Date, [di->size()]);
122 for d: Date in [da] begin
123 // day
124 [d].day := Any([Sequence{1..31}]);
125

126 // month
127 if [d.day>28] then begin
128 m:= Any([Sequence{1, 3..12}]);
129 end
130 else begin
131 m:= Any([Sequence{1..12}]); //leave out month=2 & day=29 for now
132 end;
133 [d].month := [m];
134

135 // year
136 if [d.month>maxMonth] then begin
137 m:= Any([Sequence{currentYear-maxYears..currentYear-1}]);
138 end
139 else begin
140 m:= Any([Sequence{currentYear-maxYears..currentYear}]);
141 end;
142 [d].year := [m];
143 end;
144 da := [Date.allInstances()->
145 select(d | d.day<>0)->asSequence()]; /* includes identified dataitems created in slice

5*/
146

147 /* Association Links */
148 Try(DataValues, [di], [da]);
149

150 /* PatientData */
151 for p: Patient in [patients] begin
152 first := [false];
153 n := Any([Sequence{1..nbr}]);
154 pdi := Sub([di->select(patient->size()=0)->asSequence()], [n]);
155 for d: DataItem in [di_5] begin
156 /*if [first=false] then begin
157 [d].name := Any([Sequence{’Age’}]);
158 first := [true];
159 end; */
160 /* ensure at lease one DataItem has Allow in PatientData */
161 if [allow=false] then begin
162 cnst := Any([cnsts->select(oclIsTypeOf(Allow)=true)]);
163 allow := [true];
164 end;
165 /* else begin
166 cnst := Any([cnsts]);
167 end; */
168 Insert(PatientData, [p], [d], [cnst]);
169 end;
170 end;
171

172 /* Delete DataItems not assigned to patient */
173 for d: DataItem in [di->select(patient->size()=0)->asSequence()] begin
174 Delete([d]);
175 end;
176

177 /* do we need to update di? */
178 di := [DataItem.allInstances->asSequence()];
179

282

180 /* DISource for data linked to a patient */
181 for d: DataItem in [di] begin
182 date := Any([da]);
183 Insert(EnteredOn, [d], [date]);
184 Insert(DISource, [cDB], [d]);
185 end;
186

187 /* Delete Date not assigned to DataItem in DataValues or EnteredOn */
188 for d: Date in [
189 da->select(dataItem->size()=0)->asSequence()] begin
190 if [d.item->size()=0] then begin Delete([d]); end;
191 end;
192 /* do we need to update da? */
193 da := [Date.allInstances->asSequence()];
194

195 /* Set HDate for Dates */
196 for d: DataItem in [di] begin
197 if [d.data.oclIsTypeOf(Date)=true] then begin
198 //date := [d.data.oclAsType(Date)];
199 if [d.name=’Age’] then begin
200 Insert(DICat, [d], [hipaad]);
201 end;
202 end;
203 end;
204 end;
205

206 /* ********** ********** ********** ********** ********** ********** **********
207 PROCEDURE
208 * ********** ********** ********** ********** ********** ********** **********/
209 procedure setup_project(
210 proj: Project,
211 qry: Query,
212 at: AccessTicket,
213 pdss: Sequence(Project),
214 max: Integer)
215

216 var
217 /* for objects already created */
218 cDB: ClinicalDB,
219

220 projs: Sequence(Project),
221

222 pers: Sequence(Personnel),
223 res: Sequence(Researcher),
224

225 /* for setting up links */
226 rs: Sequence(Researcher),
227 pss: Sequence(Project),
228 da: Personnel,
229 pi: Researcher,
230 team: Sequence(Researcher),
231

232 /* misc */
233 m: Integer,
234 n: Integer;
235

236 begin
237 cDB := Any([ClinicalDB.allInstances->asSequence()]);
238

239 /* Personnel, Researchers */
240 pers := [Personnel.allInstances->asSequence()];
241 res := [Researcher.allInstances->asSequence()];

283

242

243 /* choose da */
244 da := Any([pers]);
245

246 /* set pi and update team */
247 if [da.oclIsTypeOf(Researcher)] then begin
248 pi := Any([res->excluding(da.oclAsType(Researcher))]);
249 team := [res->excluding(da.oclAsType(Researcher))->excluding(pi)];
250 end
251 else begin
252 pi := Any([res]);
253 team := [res->excluding(pi)];
254 end;
255

256 /* Projects, put proj in projs */
257 projs := [Project.allInstances->excluding(proj)->asSequence()];
258

259 /* Generate applicable association links */
260

261 /* SomeSourcesDefined, Clinical DB ProjectSource for proj */
262 Insert(ProjectSources, [proj], [cDB]);
263

264 /* Since pi, team and da do not overlap, NoOverlapPITeamDC=true
265 Insert datacollector is applicable */
266 if [proj.dataSource->select(oclIsTypeOf(ClinicalDB)=true)->size=1]
267 then begin
268 Insert(ProjectDataCollector, [proj], [da]);
269 end;
270

271 /* Add other ProjectSources */
272 for p:Project in [pdss] begin
273 if [p.accessTicket->size()>0] then begin
274 Insert(ProjectSources, [proj], [p]);
275 end;
276 end;
277

278 /* Insert Project PI */
279 Insert(ProjectPI, [proj], [pi]);
280

281 /* Insert Project Members */
282 m := [team->size()];
283 n := Any([Sequence{1..m}]);
284 rs := Sub([team], [n]);
285 for r: Researcher in [rs] begin
286 Insert(ProjectMembers, [proj], [r]);
287 end;
288

289 /* Insert Link between proj and qry in ProjectQueries */
290 Insert(ProjectQueries, [proj], [qry]);
291

292 /* Insert link between proj and at */
293 Insert(ProjectAT, [proj], [at]);
294 end;
295

296 /* ********** ********** ********** ********** ********** ********** **********
297 PROCEDURE
298 * ********** ********** ********** ********** ********** ********** **********/
299 procedure add_query_works_on(
300 proj: Project,
301 qry: Query,
302 res: Researcher,
303 at: AccessTicket,

284

304

305 max: Integer)
306 var
307 qd: Sequence(QryData),
308 qd2: Sequence(QryData),
309 di: Sequence(DataItem),
310

311 p: Patient,
312 c: Consent,
313 d: DataItem,
314

315 n: Integer;
316

317 begin
318

319 /* check prerequisites */
320 if [proj.query->includes(qry) and
321 proj.pi->union(proj.members)->includes(res) and
322 proj.accessTicket->size() = 1] then begin
323

324 /* Apply Patient Consent AccessRule */
325 if [at.rule->select(oclIsTypeOf(PatientConsent)=true)->size()=1]
326 then begin
327 di := [Allow.allInstances.dataItem->asSequence()];
328 end
329 else begin
330 di := [DataItem.allInstances->asSequence()];
331 end;
332

333 /* add qd as a subset of di and set up related associations*/
334 n := Any([Sequence{1..di->size()}]);
335 qd2 := [QryData.allInstances()->asSequence()]; /* set before qd */
336 qd := CreateN(QryData, [n]);
337 n := [1];
338

339 for q: QryData in [qd] begin
340 d := [di->at(n)];
341 [q].name := [d.name];
342

343 Insert(DataValues, [q], [d.data]);
344 end;
345

346 for q: QryData in [qd->union(qd2)] begin
347 /*for h: HIPAACat in [d.hIPAACat->asSequence()] begin
348 if [q.name=’Age’] then begin Insert(DICat, [q], [h]); end;
349 end;
350

351 Insert(DISource, [d.dataSource], [q]);
352

353 p:= Any([d.patient->asSequence]);
354 c:= Any([d.consent->asSequence]);
355 Insert(PatientData, [p], [q], [c]);
356

357 Insert(EnteredOn, [q], [d.date]); */
358 Insert(QryWorksOn, [qry], [q]);
359

360 n := [n + 1];
361 end; /* end for qryData, qd and qd2 */
362

363 end; /* end prerequisites */
364 /* else do nothing */
365 end;

285

366

367 /* ********** ********** ********** ********** ********** ********** **********
368 PROCEDURE
369 * ********** ********** ********** ********** ********** ********** **********/
370 procedure add_query_returns(
371 qry: Query,
372 at: AccessTicket
373)
374 var
375 qd: Sequence(QryData),
376 rd: Sequence(RetData),
377 rd2: Sequence(RetData),
378 di: Sequence(DataItem),
379

380 ind: Individual,
381 grp: Group,
382 da: Data,
383 p: Patient,
384 c: Consent,
385 d: DataItem,
386

387 n: Integer;
388

389 begin
390 qd := [qry.qryData->asSequence()];
391 ind := Any([Individual.allInstances->asSequence()]);
392 grp := Any([Group.allInstances->asSequence()]);
393

394 /* add RetData based on access ticket */
395 n := Any([Sequence{1..qd->size()}]);
396 rd2 := [RetData.allInstances()->asSequence()]; /* set before rd */
397 rd := CreateN(RetData, [n]);
398 n:= [1];
399 for r: RetData in [rd2] begin
400 d := [qd->at(n)];
401 [r].name := [d.name];
402 Insert(QryReturns, [qry], [r], [d.oclAsType(QryData)]);
403

404 /* Apply TransformHDate AccessRule */
405 if [at.rule->select(oclIsTypeOf(TransformHDate)=true)->size()=1 and
406 at.rule->select(
407 oclIsTypeOf(TransformHDate)=true).oclAsType(AccessRule).type->
408 select(oclIsTypeOf(Individual)=true)->size()=1 and
409 at.rule->select(oclIsTypeOf(TransformHDate)=true).oclAsType(
410 AccessRule).hIPAACat.dataItem->includes(d)
411]
412 then begin
413 da := Create(Date);
414 [da.oclAsType(Date)].day := [0];
415 [da.oclAsType(Date)].month := [0];
416 [da.oclAsType(Date)].year := [d.data.oclAsType(Date).year];
417 Insert(DataValues, [r], [da]);
418 end
419 else begin
420 Insert(DataValues, [r], [d.data]);
421 end; /* end Apply TransformHDate AccessRule */
422

423 /* setup RDType */
424 if [r.qData->size()=1] then begin
425 Insert(RDType, [qry], [r], [ind]);
426 end
427 else begin

286

428 Insert(RDType, [qry], [r], [grp]);
429 end;
430 end; /* end for each RetData */
431 end;
432

433 procedure complete_query_returns(
434 qry: Query,
435 at: AccessTicket
436)
437 var
438

439 rd: Sequence(RetData),
440 ind: Individual,
441 grp: Group;
442

443 begin
444 ind := Any([Individual.allInstances->asSequence()]);
445 grp := Any([Group.allInstances->asSequence()]);
446

447 rd := [RetData.allInstances()->asSequence()];
448

449 for r: RetData in [rd] begin
450 /* setup RDType */
451 if [r.qData->size()=1] then begin
452 Insert(RDType, [qry], [r], [ind]);
453 end
454 else begin
455 Insert(RDType, [qry], [r], [grp]);
456 end;
457 end; /* end for each RetData */
458 end;

287

Listing C.16: ASSL Procedures for Slice 3 to Approve Access ticket

1 procedure generate_objects(
2 max: Integer)
3 var
4 /* misc */
5 n: Integer;
6

7 begin
8 /* a. create singleton objects */
9 Create(DirectTreatment);

10 Create(Research);
11 Create(TotallyDeIDed);
12 Create(NotTotallyDeIDed);
13

14 /* Personnel, choose da, pi, and team pool */
15 n := Any([Sequence{1..max}]);
16 CreateN(Personnel, [2]); /* if n>2 generation fails */
17

18 n := Any([Sequence{1..max}]);
19 CreateN(Qualifier, [1]); /* if n>2 generation fails */
20

21 //n := Any([Sequence{2..max}]);
22 //CreateN(Researcher, [n]);
23 end;
24

25 procedure configure_PermRules_and_ATPriority()
26 var
27 /* Permissions */
28 fl: Fishing,
29 iat: Identified,
30 dat: DeIDed,
31

32 /* abstract DecisionRule object */
33 dr: DecisionRule;
34

35 begin
36 fl := Any([Fishing.allInstances->asSequence()]);
37 dat := Any([DeIDed.allInstances->asSequence()]);
38 iat := Any([Identified.allInstances->asSequence()]);
39

40 /* ATPriority */
41 Insert(ATPriority, [iat], [dat]);
42

43 /* Access ticket DecisionRules and Create PermRules Associations */
44 dr := Create(CanUseTotallyDeIDed);
45 Insert(PermRules, [dat], [dr]);
46

47 dr := Create(ClinicalDBNeedsDataCollector);
48 Insert(PermRules, [dat], [dr]);
49 Insert(PermRules, [iat], [dr]);
50

51 dr := Create(DataAccessAgreementPresent);
52 Insert(PermRules, [dat], [dr]);
53 Insert(PermRules, [iat], [dr]);
54

55 dr := Create(DataSourcePriorityOK);
56 Insert(PermRules, [dat], [dr]);
57 Insert(PermRules, [iat], [dr]);
58

59 dr := Create(LicenedTeamAndPI);

288

60 Insert(PermRules, [dat], [dr]);
61 Insert(PermRules, [iat], [dr]);
62

63 dr := Create(NoOverlapPITeamDC);
64 Insert(PermRules, [dat], [dr]);
65 Insert(PermRules, [iat], [dr]);
66

67 /*dr := Create(NoSupsInPIandDC);
68 Insert(PermRules, [dat], [dr]);
69 Insert(PermRules, [iat], [dr]); */
70

71 dr := Create(PIDefined);
72 Insert(PermRules, [dat], [dr]);
73 Insert(PermRules, [iat], [dr]);
74

75 dr := Create(ProjectMembersDefined);
76 Insert(PermRules, [dat], [dr]);
77 Insert(PermRules, [iat], [dr]);
78

79 dr := Create(SomePurposeNotDirectTreatment);
80 Insert(PermRules, [dat], [dr]);
81 Insert(PermRules, [iat], [dr]);
82

83 dr := Create(SomeQueriesDefined);
84 Insert(PermRules, [dat], [dr]);
85 Insert(PermRules, [iat], [dr]);
86

87 dr := Create(SomeSourcesDefined);
88 Insert(PermRules, [dat], [dr]);
89 Insert(PermRules, [iat], [dr]);
90

91 dr := Create(QualifierPresent);
92 Insert(PermRules, [fl], [dr]);
93 end;
94

95

96 procedure generate_approved_project(
97 proj: Project,
98 at: AccessTicket,
99 max: Integer)

100 var
101 /* for objects already created */
102 td: TotallyDeIDed,
103 ntd: NotTotallyDeIDed,
104 research: Research,
105 fl: Fishing,
106 cDB: ClinicalDB,
107

108 projs: Sequence(Project),
109 ps: Sequence(Project),
110

111 pers: Sequence(Personnel),
112 res: Sequence(Researcher),
113

114 //qrys: Sequence(Query),
115

116 /* for setting up links */
117 rs: Sequence(Researcher),
118 qs: Sequence(Query),
119 pss: Sequence(Project),
120 da: Personnel,
121 pi: Researcher,

289

122 //team: Sequence(Researcher),
123

124 /* misc */
125 m: Integer,
126 n: Integer;
127

128 begin
129 td := Any([TotallyDeIDed.allInstances->asSequence()]);
130 ntd := Any([NotTotallyDeIDed.allInstances->asSequence()]);
131

132 research := Any([Research.allInstances->asSequence()]);
133 fl := Any([Fishing.allInstances->asSequence()]);
134 cDB := Any([ClinicalDB.allInstances->asSequence()]);
135

136 /* Personnel, Researchers */
137 pers := [Personnel.allInstances->asSequence()];
138 res := [Researcher.allInstances->asSequence()];
139

140 da := [proj.dc];
141 pi := [proj.pi];
142 //team := [proj.members->asSequence()];
143

144 /* Projects, put proj in projs */
145 projs := [Project.allInstances->excluding(proj)->asSequence()];
146 ps := [Sequence{proj}];
147

148 /* Queries */
149 n := Any([Sequence{1..max}]);
150 //qrys := CreateN(Query, [n]);
151

152 /* Generate association links to fulfil each rule */
153

154 /* 1. CanUseTotallyDeIdentified */
155 if [at.oclIsTypeOf(DeIDed)=true]
156 then begin
157 Insert(ProjectDataTransformRequired, [proj], [td]);
158 end
159 else begin
160 Insert(ProjectDataTransformRequired, [proj], [ntd]);
161 end;
162

163 /* 13. SomeSourcesDefined, Clinical DB ProjectSource for proj
164 - from slice 4*/
165

166 /* 2. 6. ClinicalDBNeedsDataCollector,
167 Since pi, team and da do not overlap, NoOverlapPITeamDC=true
168 get from slice 4*/
169

170

171 /* 3. 4. DataAccessAgreementPresent, DataDourcePriorityOK */
172 m := [projs->size()];
173 if [m>0] then begin
174 n := Any([Sequence{1..m}]);
175 pss := Sub([projs], [n]);
176 for p:Project in [pss] begin
177 if [p.accessTicket->size()>0] then begin
178 if [p.accessTicket=at or at.ant->includes(p.accessTicket)]
179 then begin
180 Insert(ProjectSources, [proj], [p]);
181 Insert(DataAccessAgreement, [p], [proj]);
182 end;
183 end;

290

184 end;
185 end;
186

187 /* 4. See 3above */
188

189 /* 5. See after 8. and 9. below (as 5depends on 8& 9)*/
190

191 /* 6. See 2. above */
192

193 /* 7. NoSupsInPIandDC */
194 /*Try(Supervisors, [pers], [pers]); */
195

196 /* 8. PIDefined - get from slice 4*/
197

198 /* 9. ProjectMembersDefined and LicencedTeamAndPI - from slice 4*/
199

200 /* 5. LicencedTeamAndPI */
201 if [at.rule.select(oclIsTypeOf(LicenedTeamAndPI)=true)->size()=1]
202 then begin
203 rs := [proj.members->including(proj.pi)->asSequence()];
204 for r: Researcher in [rs] begin
205 if [r.licence->size()=0] then begin
206 Insert(ResearcherL, [r], [fl]);
207 end;
208 end;
209 end;
210

211 /* 10. QualifierPresent does not apply to access tickets */
212

213 /* 11. SomePurposeNotDirectTreatment */
214 if [at.rule.select(
215 oclIsTypeOf(SomePurposeNotDirectTreatment)=true)->size()=1]
216 then begin
217 Insert(ProjectPurpose, [proj], [research]);
218 end;
219

220 /* 12. /* Some Queries Defined from slice 4*/
221

222 /* 13. SomeSourcesDefined. inserted before 2(as 2depends on it) */
223

224 /* Finally insert link between proj and at - from slice 4*/
225

226 end;

291

C.2.4 SOIL Commands

Listing C.17: SOIL Commands used to re-create objects from slice 5 needed in other slices - filename reference

for listings in Section C.2.5 is slice 5 overlap\overlapping objects 1.soil

1 !create iat: Identified
2 !new DeIDed(’DeIDed_0’)

Listing C.18: SOIL Commands used to re-create objects from slice 5 needed in other slices - filename reference

for listings in Section C.2.5 is slice 5 overlap\overlapping objects 2.soil

1 -- Script generated by USE 4.2.0
2 !new QryData(’DataItem_4’)
3 !new QryData(’DataItem_5’)
4

5 !DataItem_4.name := ’Age’
6 !DataItem_5.name := ’Other’
7

8 !new Date(’Date_1’)
9 !Date_1.day := 9

10 !Date_1.month := 8
11 !Date_1.year := 1931
12

13 !insert (DataItem_5,Date_1) into DataValues
14 !insert (DataItem_4,Date_1) into DataValues

Listing C.19: SOIL Commands used to re-create objects from slice 5 needed in other slices - filename reference

for listings in Section C.2.5 is slice 5 overlap\overlapping objects 3.soil

1 !new Project(’Project_1’)
2 !new Query(’Query_0’)

Listing C.20: SOIL Commands used to re-create objects from slice 5 needed in other slices - filename reference

for listings in Section C.2.5 is slice 5 overlap\overlapping objects 4.soil

1 -- Script generated by USE 4.2.0
2 !new Project(’Project_1’)
3 !new Query(’Query_0’)
4 !insert (Project_1,DeIDed_0) into ProjectAT
5 !insert (Project_1,Query_0) into ProjectQueries

Listing C.21: SOIL Commands used to re-create objects from slice 5 needed in other slices - filename reference

for listings in Section C.2.5 is slice 5 overlap\overlapping objects 5.soil

1 -- Script generated by USE 4.2.0
2 !new RetData(’DataItem_0’)
3 !new RetData(’DataItem_1’)
4 !new RetData(’DataItem_2’)

292

5 !new RetData(’DataItem_3’)
6

7 !new Date(’Date_0’)
8 !Date_0.day := 0
9 !Date_0.month := 0

10 !Date_0.year := 1931
11

12 !DataItem_0.name := ’Age’
13 !insert (Query_0,DataItem_0,DataItem_4) into QryReturns
14 !insert (DataItem_0,Date_0) into DataValues
15

16 !DataItem_3.name := ’Other’
17 !insert (Query_0,DataItem_3,DataItem_5) into QryReturns
18 !insert (DataItem_3,Date_1) into DataValues
19

20 !DataItem_2.name := ’Age’
21 !insert (Query_0,DataItem_2,DataItem_4) into QryReturns
22 !insert (DataItem_2,Date_0) into DataValues
23

24 !DataItem_1.name := ’Age’
25 !insert (Query_0,DataItem_1,DataItem_4) into QryReturns
26 !insert (DataItem_1,Date_0) into DataValues
27

28 !insert (Query_0,DownloadDisabled_0) into VDAllowed

Listing C.22: SOIL Commands used to re-create objects from slice 4 needed in slice 3 - filename reference

for listings in Section C.2.5 is slice 4 overlap\overlapping objects 1.soil

1 -- Script generated by USE 4.2.0
2

3 !new DeIDed(’DeIDed_0’)
4 !new ClinicalDB(’ClinicalDB1’)

Listing C.23: SOIL Commands used to re-create objects from slice 4 needed in slice 3 - filename reference

for listings in Section C.2.5 is slice 4 overlap\overlapping objects 2.soil

1 -- Script generated by USE 4.2.0
2

3 !new Project(’Project_0’)

Listing C.24: SOIL Commands used to re-create objects from slice 4 needed in slice 3 - filename reference

for listings in Section C.2.5 is slice 4 overlap\overlapping objects 3.soil

1 -- Script generated by USE 4.2.0
2

3 !new Researcher(’Researcher1’)
4 !new Researcher(’Researcher2’)
5 !new Researcher(’Researcher3’)
6 !new Researcher(’res1’)
7 !new Project(’Project_1’)
8 !new Query(’Query_0’)
9 !insert (Project_1,ClinicalDB1) into ProjectSources

10 !insert (Project_1,Researcher1) into ProjectDataCollector

293

11 !insert (Project_1,Researcher2) into ProjectMembers
12 !insert (Project_1,res1) into ProjectMembers
13 !insert (Project_1,Researcher3) into ProjectPI
14 !insert (Project_1,Query_0) into ProjectQueries
15 !insert (Project_1,DeIDed_0) into ProjectAT

294

C.2.5 USE Commands to Generate On-Demand Feedback

Listing C.25: USE Commands to Generate Object Model for Slice 4 to Execute Query

1 /* 1. Initialisation - remove all the elements in the object diagram */
2 reset
3

4 /* 2. unload constraints */
5 constraints -unload
6

7 /* 3. Load the class diagram specification */
8 open /Users/Philly/Desktop/slice_seq_nc/slice_4/slice_4g.use
9

10 /* 4. Load some of the invariants */
11 constraints -load /Users/Philly/Desktop/overlap/slice_345g.cnsts
12

13 /* 5. load flags, -d enables invariants, -n does not negate the invariants */
14 constraints -flags -d -n
15

16 /* 6. Generate an object model that satisfies invariants in the class diagram
17 /* a. generate singleton objects */
18 gen start -b -d /Users/Philly/Desktop/slice_seq_nc/slice_4/slice_4g.assl

add_4g_singleton_objects(3)
19 gen result accept
20

21 /* b. Also, since I want to pass in an access ticket explicitly,
22 I create them here */
23 open /Users/Philly/Desktop/slice_seq_nc/slice_5_overlap/overlapping_objects_1.soil
24

25 /* c. generate PermRules and ATPriority links, load appropriate constraints
26 here as well */
27 constraints -load /Users/Philly/Desktop/overlap/slice_234g.cnsts
28 gen start -b -d /Users/Philly/Desktop/slice_seq_nc/slice_4/slice_4g.assl

configure_AT_AccessRules()
29 gen result accept
30

31 /* d. generate Data for project sources */
32 open /Users/Philly/Desktop/slice_seq_nc/slice_5_overlap/overlapping_objects_2.soil
33 gen start /Users/Philly/Desktop/slice_seq_nc/slice_4/slice_4g.assl generate_patient_data(1, 8

, 2016)
34 gen result accept
35

36 /* e. since I want to pass in the project and query explicitly,
37 I create them here */
38 open /Users/Philly/Desktop/slice_seq_nc/slice_5_overlap/overlapping_objects_3.soil
39

40 /* f. Load the rest of the invariants */
41 constraints -load /Users/Philly/Desktop/overlap/slice_45g.cnsts
42 constraints -load /Users/Philly/Desktop/slice_seq_nc/slice_4/slice_4g.cnsts
43

44 /* g. setup project links */
45 gen start -b -d /Users/Philly/Desktop/slice_seq_nc/slice_4/slice_4g.assl

setup_project(Project_1, Query_0, DeIDed_0, Sequence{}, 3)
46 gen result accept
47

48 /* h. since I want to pass in the researcher who is running the query,
49 I create it here, I also explicity ass the researcher as a ProjectMember for
50 the project that the query belongs to, to ensure successful query execution */
51 !create res1: Researcher
52 !insert (Project_1, res1) into ProjectMembers

295

53

54 /* i. generate query works on data */
55 open /Users/Philly/Desktop/slice_seq_nc/slice_5_overlap/overlapping_objects_4.soil
56 gen start -b -d /Users/Philly/Desktop/slice_seq_nc/slice_4/slice_4g.assl

add_query_works_on(Project_1, Query_0, res1, DeIDed_0, 3)
57 gen result accept
58

59 /* j. generate query returns data */
60 open /Users/Philly/Desktop/slice_seq_nc/slice_5_overlap/overlapping_objects_5.soil
61 gen start -b -d /Users/Philly/Desktop/slice_seq_nc/slice_4/slice_4g.assl

complete_query_returns(Query_0, DeIDed_0)
62 gen result accept
63

64 /* 7. Check */
65 check

296

Listing C.26: USE Commands to Generate Object Model for Slice 3 to Approve Access Ticket

1 /* 1. remove all the elements in the object diagram */
2 reset
3

4 /* 2. unload constraints */
5 constraints -unload
6

7 /* 3. Load the class diagram specification */
8 open /Users/Philly/Desktop/slice_seq_nc/slice_3/slice_3g.use
9

10 /* 4a. Load some of the invariants and flags */
11 constraints -load /Users/Philly/Desktop/overlap/slice_23g.cnsts
12 constraints -load /Users/Philly/Desktop/overlap/slice_34g.cnsts
13

14 /* load flags, -d enables invariants, -n does not negate the invariants */
15 constraints -flags -d -n
16

17 /* 5. generate an object diagram that satisfys the class diagram
18

19 /* a. generate objects */
20 gen start -b -d /Users/Philly/Desktop/slice_seq_nc/slice_3/slice_3g.assl generate_objects(3)
21 gen result accept
22

23 !create fl: Fishing
24 !create iat: Identified
25 open /Users/Philly/Desktop/slice_seq_nc/slice_4_overlap/overlapping_objects_1.soil
26

27 /* b. generate PermRules and ATPriority links */
28 gen start -b -d /Users/Philly/Desktop/slice_seq_nc/slice_3/slice_3g.assl

configure_PermRules_and_ATPriority()
29 gen result accept
30

31 /* c. Load some more of the invariants */
32 constraints -load /Users/Philly/Desktop/overlap/slice_345g.cnsts
33

34 /* d. generate projects that are approved */
35 open /Users/Philly/Desktop/slice_seq_nc/slice_4_overlap/overlapping_objects_2.soil
36 open /Users/Philly/Desktop/slice_seq_nc/slice_4_overlap/overlapping_objects_3.soil
37 gen start -b -d /Users/Philly/Desktop/slice_seq_nc/slice_3/slice_3g.assl

generate_approved_project(Project_1, DeIDed_0, 2)
38 gen result accept
39

40 /* f. Load the rest of the invariants */
41 constraints -load /Users/Philly/Desktop/slice_seq_nc/slice_3/slice_3g.cnsts
42 constraints -load /Users/Philly/Desktop/slice_seq_nc/slice_3/slice_3g_at.cnsts
43

44 /* 6. check that none of the invariants have been violated */
45 check

297

APPENDIX D. SPECIFICATIONS FOR VALIDATING HMCA IN CHAPTER 8

D.1 Updated Alloy Specifications

D.1.1 Alloy Specifications for Slice 3 to Approve Access Ticket

Listing D.1: Updated Alloy Specifications for Slice 3 to Approve Access Ticket

1 /********** ********** ********** ********** ********** ********** **********
2 Begin Structural Model, NJH, slice 3
3

4 Written By: Phillipa Bennett
5 Version 5
6 Date: Version 5completed Nov 28, 2016
7

8 Notes:
9 Predicates and Assertions are executed with

10 exactly 11Rule
11 when the NSIPIDC Rule is excluded from the model.
12

13 Places in the specification that are impacted by excluding of the
14 NSIPIDC Rule are labeled with
15 *** DA_COI ***
16 either just before or at the end of the line.
17

18 Also other notes throughout the specification.
19

20 /********** ********** ********** ********** ********** ********** **********/
21 module slice_3_g_inst
22

23 /********** ********** ********** ********** **********
24 imports
25 /********** ********** ********** ********** **********/
26 open util/relation
27 open util/ternary
28 open util/ordering[NJH] as ord
29

30 /********** ********** ********** ********** **********
31 base abstract signatures
32 ********** ********** ********** ********** **********/
33 abstract sig
34 DataSource,
35 DataTransform,
36 Permission,
37 Purpose,
38 Rule{}
39

40 /********** ********** ********** ********** **********
41 extended abstract signatures
42 ********** ********** ********** ********** **********/
43 abstract sig
44 AccessTicket,
45 Licence
46 extends Permission{}
47

48 abstract sig
49 DecisionRule

298

50 extends Rule {}
51

52 /********** ********** ********** ********** **********
53 unextended concrete signatures
54 ********** ********** ********** ********** **********/
55 sig
56 /* Personnel cannot be abstract,
57 because of supervisors and data collectors */
58 Personnel,
59 Query {}
60

61 /********** ********** ********** ********** **********
62 extended concrete signatures
63 ********** ********** ********** ********** **********/
64 one sig
65 CUTD, /* CanUseTotallyDeIDed */
66 DAAP, /* DataAccessAgreementPresent */
67 DSPOK, /* DataSourcePriorityOK */
68 LTAPI, /* LicenedTeamAndPI */
69 NOPITDC, /* NoOverlapPITeamDC */
70 NSIPIDC, /* NoSupsInPIandDC */ /*** DA_COI ***/
71 PID, /* PIDefined */
72 PMD, /* ProjectMembersDefined */
73 QP, /* QualifierPresent */
74 SPNDT, /* SomePurposeNotDirectTreatment */
75 SQD, /* SomeQueriesDefined */
76 SSD /* SomeSourcesDefined */
77 extends DecisionRule {}
78

79 one sig
80 AllowDeIDed,
81 TotallyDeIDed,
82 TotallyIDed
83 extends DataTransform {}
84

85 sig Project extends DataSource{}
86 one sig ClinicalDB extends DataSource{}
87

88 one sig Fishing extends Licence {}
89

90 one sig DeIDed,
91 Identified
92 extends AccessTicket {}
93

94 one sig
95 DirectTreatment,
96 Research
97 extends Purpose{}
98

99 /********** ********** ********** ********** **********
100 subset concrete signatures
101 ********** ********** ********** ********** **********/
102 sig
103 Researcher
104 in Personnel{}
105

106 /********** ********** ********** ********** **********
107 NJH Closed System
108 ********** ********** ********** ********** **********/
109 sig NJH {
110 accessTickets: set AccessTicket,
111 decisionRules: set DecisionRule,

299

112 licences: set Licence,
113 permissions: set Permission,
114 personnel: set Personnel,
115 projects: set Project,
116 purposes: set Purpose,
117 queries: set Query,
118 researchers : set Researcher,
119 rules: set Rule,
120 sources: set DataSource,
121 transforms: set DataTransform,
122

123 /* helps to determine
124 1. if data from a project can be used as a data source */
125 ATPriority : accessTickets -> accessTickets,
126

127 // p1->p2 means p1 gives p2 access to data produced by p1
128 dataAccessAgreement: projects -> projects,
129

130 /* permission has applicable decision and access rules that must be
131 applied to approve the licence or to access the data. */
132 permRules: permissions -> some rules,
133

134 /* project access tickets, each one has at most one */
135 projectAT: projects -> lone accessTickets,
136

137 /* project data collector, each project has at most one */
138 projectDataCollector: projects -> lone personnel,
139

140 projectDataTransformRequired: projects -> one transforms,
141

142 /* project team members */
143 projectMembers: projects -> researchers,
144

145 /* project principal investigator */
146 projectPI: projects -> lone researchers,
147

148 /* project purpose */
149 projectPurpose: projects -> lone purposes,
150

151 /* project queries */
152 projectQueries: projects one -> queries,
153

154 /* project sources, could be other projects too */
155 projectSources: projects -> sources,
156

157 /* researcher licence */
158 researcherL: researchers -> lone licences,
159

160 /* supervisors, each personnel has at most one supervisor */
161 supervisors: personnel lone -> personnel }
162

163 /********** ********** ********** ********** ********** ********** **********
164 End Structural Model, NJHg
165 /********** ********** ********** ********** ********** ********** **********/
166

167

168

169

170 /********** ********** ********** ********** ********** ********** **********
171 Begin INVARIANTS
172 /********** ********** ********** ********** ********** ********** **********/
173

300

174 /********** ********** ********** ********** **********
175 INVARIANTS
176 separating the invariants for each set, relation,
177 or related sets and relations allows for
178 easier decomposition later on when slicing
179 ********** ********** ********** ********** **********/
180 /* this predicate is exported from the model, to be used in inv[] */
181 pred inv (njh: NJH) {
182 all
183 njh: NJH |
184

185 /** for sets */
186 invPermissions[njh] and
187 invPersonnel[njh] and
188 invRules[njh] and
189 invSources[njh] and
190

191 /** for relations */
192 invATRules[njh] and
193 invATPriority[njh] and
194 invDataAccessAggreement[njh] and
195 invProjectAT[njh] and
196 invProjectDataCollector[njh] and
197 invProjectSources[njh] and
198 invSupervisors[njh] }
199

200 /********** ********** ********** ********** **********
201 Set invariants, ordered alphabetically by
202 name of set used, as best as possible
203 ********** ********** ********** ********** **********/
204

205 private pred invPermissions (njh: NJH) {
206 njh.permissions = njh.accessTickets + njh.licences }
207

208 private pred invPersonnel (njh: NJH) {
209 njh.researchers in njh.personnel}
210

211 private pred invRules (njh: NJH) {
212 njh.rules = njh.decisionRules }
213

214 private pred invSources (njh: NJH) {
215 njh.projects in njh.sources }
216

217 /********** ********** ********** ********** **********
218 Relation invariants, ordered alphabetically by
219 name of main relation used as best as
220 possible
221 ********** ********** ********** ********** **********/
222 private pred invATPriority (njh: NJH) {
223 irreflexive[^(njh.ATPriority)] }
224

225 /* p1->p2 means p1 gives p2 access to data produced by p1 */
226 private pred invDataAccessAggreement (njh: NJH) {
227 /* no project has a data access agreement with itself */
228 irreflexive[^(njh.dataAccessAgreement)]
229

230 /* a project with a data access agreement with another
231 project has that project as a data source */
232 ~(njh.dataAccessAgreement) in njh.projectSources }
233

234 private pred invATRules (njh: NJH) {
235 /* for approving of project access ticket */

301

236 let
237 dr =
238 CUTD +
239 DAAP+
240 DSPOK +
241 LTAPI +
242 NOPITDC +
243 NSIPIDC + /*** DA_COI ***/
244 PID +
245 PMD +
246 SPNDT +
247 SQD +
248 SSD,
249 di = dr - CUTD,
250 d = DeIDed,
251 i = Identified |
252

253 /* specific for DeIDed access tickets */
254 d.(njh.permRules) & njh.decisionRules = dr
255 and
256 /* specific for Identified access tickets */
257 i.(njh.permRules) & njh.decisionRules = di }
258

259 private pred invCUTD(njh: NJH, p: Project, at: AccessTicket) {
260 some at->CUTD & njh.permRules implies (
261 (some at & Identified iff
262 /* kind of Transformation access ticket allows,
263 mixed, AllowDeIDed
264 or
265 TotallyIDed, no deidentification allowed */
266 some p.(njh.projectDataTransformRequired) & (TotallyIDed + AllowDeIDed)) or
267 (some at & DeIDed iff
268 // kind of Transformation access ticket allows, totally deidentified
269 some p.(njh.projectDataTransformRequired) & TotallyDeIDed)) }
270

271 private pred inv_DAAP_DSPO(njh:NJH, p: Project, at: AccessTicket) {
272 all
273 ps: p.(njh.projectSources) & njh.projects | {
274 (some at->DAAP & njh.permRules and some ps) implies
275 some ps -> p & njh.dataAccessAgreement
276

277 /* if access ticket being considered has priority over
278 the access tickets of any of its project sources
279 (i.e. other projects) }then we cannot approve the
280 project because the data returned would not be at the level required */
281 (some at->DSPOK & njh.permRules and some ps) implies
282 some ps.(njh.projectAT) and
283 no at-> ps.(njh.projectAT) & njh.ATPriority }}
284

285 private pred inv_LTAPI_NOPITDC_PMD_PID(njh: NJH, p:Project, at: AccessTicket) {
286 let
287 team = p.(njh.projectMembers),
288 pi = p.(njh.projectPI),
289 dc = p.(njh.projectDataCollector) | {
290

291 all
292 r: (team + pi) | {
293 /* application of the LTAPI Decision Rule
294 each pi and team member has a licence */
295 some at->LTAPI & njh.permRules implies
296 some r.(njh.researcherL) }
297

302

298 /* application of the NOPITDC Decision Rule */
299 some at -> NOPITDC & njh.permRules implies (
300 /* 1. neither pi nor dc are a part of project team */
301 (no (pi + dc) & team and
302 // 2. pi and da are not the same
303 no pi & dc) and (/*** DA_COI ***/
304 let
305 ps = p.(^(njh.projectSources)) & Project |
306 no pi & ps.(njh.projectDataCollector) and
307 no team & ps.(njh.projectDataCollector))
308)
309

310 /* application of the PMD Decision Rule
311 > 1 team members */
312 some at -> PMD & njh.permRules implies #team > 0
313

314 /* application of the PID Decision Rule has a pi */
315 some at -> PID & njh.permRules implies #pi> 0}}
316

317 /*** DA_COI ***/
318 /* application of the NSIPIDC Decision Rule
319 the pi does not supervise the dc directly or indirectly */
320 private pred invNSIPIDC (njh: NJH, p: Project, at: AccessTicket) {
321 let
322 ps = p.(^(njh.projectSources)) & Project |
323 some at -> NSIPIDC & njh.permRules implies (
324 no p.(njh.projectPI) -> p.(njh.projectDataCollector) &
325 ^(njh.supervisors) and (
326 some ps implies
327 no p.(njh.projectPI) -> (p+ps).(njh.projectDataCollector) &
328 ^(njh.supervisors))
329) }
330

331 private pred invSPNDT (njh: NJH, p: Project, at: AccessTicket) {
332 /* application of the SPNDT Decision Rule
333 project purpose is not for direct treatment */
334 some at -> SPNDT & njh.permRules implies
335 p.(njh.projectPurpose) != DirectTreatment }
336

337 private pred invSQD (njh: NJH, p: Project, at: AccessTicket) {
338 /* application of the SQD Decision Rule
339 at least one project query */
340 some at -> SQD & njh.permRules implies
341 some p.(njh.projectQueries) }
342

343 private pred invSSD (njh: NJH, p: Project, at: AccessTicket) {
344 /* application of the SSD Decision Rule
345 at least one project source */
346 some at -> SSD & njh.permRules implies
347 some p.(njh.projectSources) }
348

349 private pred invProjectAT (njh: NJH) {
350 all
351 p: njh.projects |
352 let
353 pat = njh.projectAT,
354 at = p.pat |
355

356 some p.pat implies (
357 invCUTD[njh, p, at] and
358 inv_DAAP_DSPO[njh, p, at] and
359 inv_LTAPI_NOPITDC_PMD_PID[njh, p, at] and

303

360 invNSIPIDC[njh, p, at] and /*** DA_COI ***/
361 invSPNDT[njh, p, at] and
362 invSQD[njh, p, at] and
363 invSSD[njh, p, at]) }
364

365 private pred invProjectDataCollector(njh: NJH) {
366 all
367 p: njh.projects |
368 /* ClinicalDB iff DataCollector */
369 (some p->ClinicalDB & njh.projectSources) iff
370 (some p.(njh.projectDataCollector)) }
371

372 private pred invProjectSources1 (njh: NJH) {
373 // no self datasource for projects, directly or indirectly
374 irreflexive[^(njh.projectSources :> njh.projects)] }
375

376 private pred invProjectSources2 (njh: NJH) {
377 all
378 p: njh.projects |
379 some p.(njh.projectAT) implies (
380 /* all data sources for a project that are projects themselves
381 should be (already) approved when the project gets it’s
382 access ticket */
383 some (p.(njh.projectSources) & Project) implies
384 all
385 ps: (p.(njh.projectSources) & Project) |
386 some ps.(njh.projectAT)
387) }
388

389 private pred invProjectSources (njh: NJH) {
390 invProjectSources1[njh] and
391 invProjectSources2[njh] }
392

393 private pred invSupervisors (njh: NJH) {
394 /* no cycles in supervisor relations, */
395 irreflexive[^(njh.supervisors)]
396 /* all personnel are either supervisor or supervised */
397 all
398 p: njh.personnel | {
399 p in (dom[njh.supervisors] + ran[njh.supervisors])} and
400 /* supervisor relation is a single tree, i.e. not a forest
401 this means that one personel has no supervisor */
402 one
403 sup: njh.personnel |
404 no (njh.supervisors).sup }
405

406 /********** ********** ********** ********** ********** ********** **********
407 End INVARIANTS
408 /********** ********** ********** ********** ********** ********** **********/
409

410

411

412

413 /********** ********** ********** ********** ********** ********** **********
414 Partial instance CONFIGURATION,
415 these will be instantiated in every instance
416 ********** ********** ********** ********** ********** ********** **********/
417 pred setPartialInstanceConfiguration (njh: NJH) {
418

419 /*********** for sets */
420 njh.decisionRules = /* (12) */
421 CUTD +

304

422 DAAP +
423 DSPOK +
424 LTAPI +
425 NOPITDC +
426 NSIPIDC + /*** DA_COI ***/
427 PID +
428 PMD +
429 SPNDT +
430 QP +
431 SQD +
432 SSD and
433

434 /* access tickets (2) */
435 njh.accessTickets =
436 DeIDed +
437 Identified and
438

439 /* licences (1) */
440 njh.licences = Fishing and
441

442 /* transforms (3) */
443 njh.transforms =
444 AllowDeIDed +
445 TotallyDeIDed +
446 TotallyIDed and
447

448 /* sources (at least 1) */
449 some ClinicalDB & njh.sources and
450

451 /*********** for relations */
452 /* access ticket priority (1) */
453 njh.ATPriority = Identified -> DeIDed and
454

455 /* permRules: permissions -> some rules (22) */
456 njh.permRules =
457 /* decision rules for fishing licence (1) */
458 Fishing -> QP +
459

460 /* decision rules for DeIDed access ticket (11) */
461 DeIDed -> CUTD +
462 DeIDed -> DAAP+
463 DeIDed -> DSPOK +
464 DeIDed -> LTAPI +
465 DeIDed -> NOPITDC +
466 DeIDed -> NSIPIDC + /*** DA_COI ***/
467 DeIDed -> PID +
468 DeIDed -> PMD +
469 DeIDed -> SPNDT +
470 DeIDed -> SQD +
471 DeIDed -> SSD +
472

473 /* decision rules for Identified access ticket (10) */
474 Identified -> DAAP+
475 Identified -> DSPOK +
476 Identified -> LTAPI +
477 Identified -> NOPITDC +
478 Identified -> NSIPIDC + /*** DA_COI ***/
479 Identified -> PID +
480 Identified -> PMD +
481 Identified -> SPNDT +
482 Identified -> SQD +
483 Identified -> SSD and

305

484

485 /** Important to add these so that Alloy does not use a
486 subset of the configuration !!!
487 In general this is important when using Alloy to set
488 object configurations */
489 //#njh.decisionRules = 11and /*** DA_COI ***/
490 #njh.decisionRules = 12and
491 #njh.accessTickets = 2and
492 #njh.licences = 1and
493 #njh.sources > 0and
494 #njh.transforms = 3and
495 #njh.ATPriority = 1//and
496 //eq[#njh.permRules, 22] /* This produces an error ! */
497 }
498

499 /********** ********** ********** ********** ********** ********** **********
500 end partial instance configuration,
501 ********** ********** ********** ********** ********** ********** **********/
502

503 /********** ********** ********** ********** ********** ********** **********
504 MODEL Instances - These are required in the op specifications
505 someOfAllRelationsSatisfyingInvAndConfiguration is used in init
506 ********** ********** ********** ********** ********** ********** **********/
507

508 /********** ********** ********** ********** **********
509 Can we get an instance of the model for all
510 the sets?
511 ********** **sets******* ********** ********** **********/
512 private pred someOfAllSets(njh: NJH) {
513 some njh.accessTickets and
514 some njh.decisionRules and
515 some njh.licences and
516 some njh.permissions and
517 some njh.personnel and
518 some njh.projects and
519 some njh.purposes and
520 some njh.queries and
521 some njh.researchers and
522 some rules and
523 some njh.sources and
524 some njh.transforms }
525 //run someOfAllSets for 7but 1NJH expect 1
526

527 /********** ********** ********** ********** **********
528 Can we get an instance of the model for all
529 the relations?
530 ********** ********** ********** ********** **********/
531 private pred someOfAllRelations(njh: NJH) {
532 some njh.ATPriority and
533 some njh.dataAccessAgreement and
534 some njh.permRules and
535 some njh.projectAT and
536 some njh.projectDataCollector and
537 some njh.projectDataTransformRequired and
538 some njh.projectMembers and
539 some njh.projectPI and
540 some njh.projectPurpose and
541 some njh.projectQueries and
542 some njh.projectSources and
543 some njh.researcherL and
544 some njh.supervisors }
545 //run someOfAllRelations for 7but 1NJH expect 1

306

546

547 /********** ********** ********** ********** **********
548 Can we get an instance of the model for all
549 the relations that satisfy generator[]?
550 ********** ********** ********** ********** **********/
551 private pred someOfAllRelationsSatisfyingInvAndConfig (njh: NJH) {
552 someOfAllRelations[njh] and
553 someOfAllSets[njh] and
554 inv[njh] and
555 setPartialInstanceConfiguration[njh] }
556 run someOfAllRelationsSatisfyingInvAndConfig
557 //for 7but exactly 11Rule, 1NJH expect 1/*** DA_COI ***/
558 for 7 but exactly 12Rule, 1NJH expect 1
559

560 /********** ********** ********** ********** ********** ********** **********
561 End MODEL Instances
562 ********** ********** ********** ********** ********** ********** **********/
563

564

565

566

567 /********** ********** ********** ********** ********** ********** **********
568 OPERATION Specs
569 ********** ********** ********** ********** ********** ********** **********/
570 private pred noChangeSets (njh, njh’: NJH) {
571 njh.accessTickets = njh’.accessTickets and
572 njh.decisionRules = njh’.decisionRules and
573 njh.licences = njh’.licences and
574 njh.permissions = njh’.permissions and
575 njh.personnel = njh’.personnel and
576 njh.projects = njh’.projects and
577 njh.purposes = njh’.purposes and
578 njh.queries = njh’.queries and
579 njh.researchers = njh’.researchers and
580 njh.rules = njh’.rules and
581 njh.sources = njh’.sources and
582 njh.transforms = njh’.transforms }
583

584 private pred noChangeRelations(njh, njh’: NJH) {
585 njh.ATPriority = njh’.ATPriority and
586 njh.dataAccessAgreement = njh’.dataAccessAgreement and
587 njh.permRules = njh’.permRules and
588 njh.projectAT = njh’.projectAT and
589 njh.projectDataCollector = njh’.projectDataCollector and
590 njh.projectDataTransformRequired = njh’.projectDataTransformRequired and
591 njh.projectMembers = njh’.projectMembers and
592 njh.projectPI = njh’.projectPI and
593 njh.projectPurpose = njh’.projectPurpose and
594 njh.projectQueries = njh’.projectQueries and
595 njh.projectSources = njh’.projectSources and
596 njh.researcherL = njh’.researcherL and
597 njh.supervisors = njh’.supervisors }
598

599 private pred skip(njh, njh’: NJH){
600 /** Sets */
601 noChangeSets[njh, njh’] and
602

603 /** Relations */
604 noChangeRelations[njh, njh’] }
605

606 pred approveProjectAT (njh, njh’: NJH, p: Project, at: AccessTicket) {
607 /** Pre-conditions */

307

608 p in njh.projects and
609 at in njh.accessTickets and
610 no p->at & njh.projectAT and
611

612 /** Post-conditions */
613

614 /* Applying Decision Rules */
615 inv_DAAP_DSPO[njh, p, at] and
616 inv_LTAPI_NOPITDC_PMD_PID[njh, p, at] and
617 invNSIPIDC[njh, p, at] and /*** DA_COI ***/
618 invSPNDT[njh, p, at] and
619 invSQD[njh, p, at] and
620 invSSD[njh, p, at] and
621

622 /* No change to sets */
623 noChangeSets[njh, njh’] and
624

625 /* These relations do not change */
626 njh.ATPriority = njh’.ATPriority and
627 njh.dataAccessAgreement = njh’.dataAccessAgreement and
628 njh.permRules = njh’.permRules and
629 njh.projectDataCollector = njh’.projectDataCollector and
630 njh.projectMembers = njh’.projectMembers and
631 njh.projectPI = njh’.projectPI and
632 njh.projectPurpose = njh’.projectPurpose and
633 njh.projectQueries = njh’.projectQueries and
634 njh.projectSources = njh’.projectSources and
635 njh.researcherL = njh’.researcherL and
636 njh.supervisors = njh’.supervisors and
637

638 /* These relations change */
639 njh’.projectAT = njh.projectAT + p->at and
640

641 /* Changes ensures the correct Data Transform exists */
642 (some at & DeIDed iff
643 njh’.projectDataTransformRequired =
644 njh.projectDataTransformRequired + p->TotallyDeIDed) and
645

646 (some at & Identified iff
647 (njh’.projectDataTransformRequired =
648 njh.projectDataTransformRequired + p->TotallyIDed or
649 njh’.projectDataTransformRequired =
650 njh.projectDataTransformRequired + p-> AllowDeIDed)
651) }
652

653 private pred ProjectApprovePossible(
654 njh, njh’: NJH,
655 proj: Project,
656 at: AccessTicket) {
657 let
658 first = ord/first |
659 someOfAllRelationsSatisfyingInvAndConfig[njh] and
660 some proj & first.projects and
661 some at & first.permissions and
662 approveProjectAT[njh, njh’, proj, at] and
663 inv[njh] and
664 inv[njh’] }
665 run ProjectApprovePossible
666 //for 7but exactly 11Rule, 2 NJH expect 1/*** DA_COI ***/
667 for 7 but exactly 12Rule, 2 NJH expect 1
668

669 // this is how we initialise the system

308

670 pred init(njh: NJH) {
671 some p: Project |
672 p in njh.projects and
673 someOfAllRelationsSatisfyingInvAndConfig[njh] and
674 no p.(njh.projectAT) }
675 run init
676 //for 7but exactly 11Rule, 1NJH expect 1/*** DA_COI ***/
677 for 7 but exactly 12Rule, 1NJH expect 1
678

679 /** this is how we move from instance to instance */
680 fact traces {
681 init[ord/first]
682 all
683 njh: NJH - ord/last |
684 some
685 p: Project,
686 at: AccessTicket |
687 let
688 njh’ = njh.next |
689 approveProjectAT[njh, njh’, p, at] or
690 skip[njh, njh’] }
691

692 assert OpPreserves {
693 all njh, njh’: NJH |
694 all p: Project, at: AccessTicket |
695 (inv[njh] and approveProjectAT [njh, njh’, p, at]) implies inv[njh’] }
696 check OpPreserves
697 //for 7but exactly 11Rule expect 0/*** DA_COI ***/
698 for 7 but exactly 12Rule expect 0
699

700 /** run only when opPreserves returns a counterexample */
701 pred OpDoesNotPreserve[njh, njh’: NJH, r: Researcher, p: Project, at: AccessTicket]{
702 inv[njh] and approveProjectAT[njh, njh’, p, at] and not inv[njh’] }
703 run OpDoesNotPreserve
704 //for 7but exactly 2NJH, 11Rule expect 0/*** DA_COI ***/
705 for 7 but exactly 2NJH, 12Rule expect 0
706

707 /********** ********** ********** ********** ********** ********** **********
708 END OPERATION Specs
709 ********** ********** ********** ********** ********** ********** **********/
710

711

712

713

714 /********** ********** ********** ********** ********** ********** **********
715 Internal NJH Conformance Rules
716 ********** ********** ********** ********** ********** ********** **********/
717 /** This predicates, generator1 and generator2 are used in this section */
718 private pred generator1 (njh: NJH, p: Project) {
719 some p.(njh.projectAT) and
720 inv[njh] }
721

722 private pred generator2 (njh: NJH, p: Project) {
723 generator1[njh, p] and
724 someOfAllRelations[njh] and
725 setPartialInstanceConfiguration[njh] }
726

727 assert NoInProjectNSIPIDC_Sups{
728 all
729 njh: NJH, p: Project |
730 generator1[njh, p] implies
731 no p.(njh.projectPI) -> p.(njh.projectDataCollector) &

309

732 ^(njh.supervisors) }
733 check NoInProjectNSIPIDC_Sups
734 //for 7but exactly 11Rule expect 1/*** DA_COI ***/
735 for 7 but exactly 12Rule expect 0
736

737 assert NoInSourcesNSIPIDC_Sups{
738 all
739 njh: NJH, p: Project |
740 let
741 ps = p.(^(njh.projectSources)) & Project |
742 (generator1[njh, p] and some ps) implies
743 no p.(njh.projectPI) -> (p+ps).(njh.projectDataCollector) &
744 ^(njh.supervisors) }
745 check NoInSourcesNSIPIDC_Sups
746 //for 7but exactly 11Rule expect 1/*** DA_COI ***/
747 for 7 but exactly 12Rule expect 0
748

749 assert NoInSourcesNSIPIDC_PIandDC{
750 all
751 njh: NJH, p: Project |
752 let
753 ps = p.(^(njh.projectSources)) & Project |
754 (generator1[njh, p] and some ps) implies
755 no p.(njh.projectPI) & ps.(njh.projectDataCollector) }
756 check NoInSourcesNSIPIDC_PIandDC
757 //for 7but exactly 11Rule expect 1/*** DA_COI ***/
758 for 7 but exactly 12Rule expect 0
759

760 assert NoInSourcesNSIPIDC_MEMSandDC{
761 all
762 njh: NJH, p: Project |
763 let
764 ps = p.(^(njh.projectSources)) & Project |
765 (generator1[njh, p] and some ps) implies
766 no p.(njh.projectMembers) & ps.(njh.projectDataCollector) }
767 check NoInSourcesNSIPIDC_MEMSandDC
768 //for 7but exactly 11Rule expect 1/*** DA_COI ***/
769 for 7 but exactly 12Rule expect 0
770

771 /********** ********** ********** ********** **********
772 Can we get an instance of the model for all
773 the relations that satisfy inv[] and a
774 project has a DeIDed access Ticket
775 and a project where there is some suspicious
776 relationship with the dataColector?
777 ********** ********** ********** ********** **********/
778

779 /** 1. PI directly supervises DataCollector */
780 private pred DataCollectorICOI11(njh: NJH, p: Project){
781 generator2[njh, p] and
782 some p.(njh.projectAT) and
783 some p.(njh.projectPI) -> p.(njh.projectDataCollector) &
784 (njh.supervisors) }
785 run DataCollectorICOI11 for 7
786 //but exactly 11Rule, 3Project, 1NJH expect 1/*** DA_COI ***/
787 /** use only when the applicable part of rule NSIPIDC rule is commented */
788 //but exactly 12Rule, 4Project, 1NJH expect 1/*** DA_COI ***/
789 but exactly 12Rule, 1NJH expect 0
790

791 /** 1. PI indirectly supervises DataCollector */
792 private pred DataCollectorICOI12(njh: NJH, p: Project){
793 generator2[njh, p] and

310

794 some p.(njh.projectAT) and
795 some p.(njh.projectPI) -> p.(njh.projectDataCollector) &
796 ^(njh.supervisors) and
797 no p.(njh.projectPI) -> p.(njh.projectDataCollector) &
798 (njh.supervisors)}
799 run DataCollectorICOI12 for 7
800 //but exactly 11Rule, 3Project, 1NJH expect 1/*** DA_COI ***/
801 /** use only when the applicable part of rule NSIPIDC rule is commented */
802 but exactly 12Rule, 4Project, 1NJH expect 1/*** DA_COI ***/
803 //but exactly 12Rule, 1NJH expect 0
804

805 /** 2. PI supervises DataCollector on direct ProjectSource */
806 private pred DataCollectorCOI21(njh: NJH, p: Project){
807 let
808 ps = p.(^(njh.projectSources)) & Project |
809 some ps and
810 generator2[njh, p] and
811 some p.(njh.projectAT) and
812 some p.(njh.projectPI) -> (p+ps).(njh.projectDataCollector) &
813 ^(njh.supervisors)}
814 run DataCollectorCOI21 for 7
815 //but exactly 11Rule, 3Project, 1NJH expect 1/*** DA_COI ***/
816 /** use only when the applicable part of rule NSIPIDC rule is commented */
817 but exactly 12Rule, 4Project, 1NJH expect 1/*** DA_COI ***/
818 //but exactly 12Rule, 1NJH expect 0
819

820 /** 3. PI directly supervises DataCollector on indirect ProjectSource */
821 private pred DataCollectorCOI22Indirect(njh: NJH, p: Project){
822 let
823 ps = ((p.(njh.projectSources) & Project).(njh.projectSources)) & Project |
824 some ps and
825 generator2[njh, p] and
826 some p.(njh.projectAT) and
827 some p.(njh.projectPI) -> ps.(njh.projectDataCollector) &
828 (njh.supervisors)}
829 run DataCollectorCOI22Indirect for 7
830 //but exactly 11Rule, 3Project, 1NJH expect 1/*** DA_COI ***/
831 /** use only when the applicable part of rule NSIPIDC rule is commented */
832 //but exactly 12Rule, 4Project, 1NJH expect 1/*** DA_COI ***/
833 but exactly 12Rule, 1NJH expect 0
834

835 /** 3. PI indirectly supervises DataCollector on indirect ProjectSource */
836 private pred DataCollectorCOI23Indirect(njh: NJH, p: Project){
837 let
838 ps = ((p.(njh.projectSources) & Project).(njh.projectSources)) & Project |
839 some ps and
840 generator2[njh, p] and
841 some p.(njh.projectAT) and
842 some p.(njh.projectPI) -> ps.(njh.projectDataCollector) &
843 ^(njh.supervisors) and
844 no p.(njh.projectPI) -> ps.(njh.projectDataCollector) &
845 (njh.supervisors) }
846 run DataCollectorCOI23Indirect for 7
847 //but exactly 11Rule, 3Project, 1NJH expect 1/*** DA_COI ***/
848 /** use only when the applicable part of rule NSIPIDC rule is commented */
849 //but exactly 12Rule, 4Project, 1NJH expect 1/*** DA_COI ***/
850 but exactly 12Rule, 1NJH expect 0
851

852

853 /**4. PI is Data Collector on ProjectSource */
854 private pred DataCollectorICOI31(njh: NJH, p: Project){
855 let

311

856 ps = p.(^(njh.projectSources)) & Project |
857 some ps and
858 generator2[njh, p] and
859 some p.(njh.projectAT) and
860 some p.(njh.projectPI) & ps.(njh.projectDataCollector) }
861 run DataCollectorICOI31 for 7
862 //but exactly 11Rule, 3Project, 1NJH expect 1/*** DA_COI ***/
863 /** use only when the applicable part of rule NOPITDC rule is commented */
864 //but exactly 12Rule, 4 Project, 1NJH expect 1/*** DA_COI ***/
865 but exactly 12Rule, 1NJH expect 0
866

867 /**5. PI is Data Collector on ProjectSource */
868 private pred DataCollectorICOI32Indirect(njh: NJH, p: Project){
869 let
870 ps = ((p.(njh.projectSources) & Project).(njh.projectSources)) & Project |
871 some ps and
872 generator2[njh, p] and
873 some p.(njh.projectAT) and
874 some p.(njh.projectPI) & ps.(njh.projectDataCollector) }
875 run DataCollectorICOI32Indirect for 7
876 //but exactly 11Rule, 3Project, 1NJH expect 1/*** DA_COI ***/
877 /** use only when the applicable part of rule NOPITDC rule is commented */
878 //but exactly 12Rule, 4 Project, 1NJH expect 1 /*** DA_COI ***/
879 but exactly 12Rule, 1NJH expect 0
880

881

882 /** 6. ProjectMember is Data Collector on ProjectSource */
883 private pred DataCollectorCOI41(njh: NJH, p: Project){
884 let
885 ps = p.(^(njh.projectSources)) & Project |
886 some ps and
887 generator2[njh, p] and
888 some p.(njh.projectAT) and
889 some p.(njh.projectMembers) & ps.(njh.projectDataCollector) }
890 run DataCollectorCOI41 for 7
891 //but exactly 11Rule, 3Project, 1NJH expect 1/*** DA_COI ***/
892 /** use only when the applicable part of rule NOPITDC rule is commented */
893 //but exactly 12Rule, 4Project, 1NJH expect 1/*** DA_COI ***/
894 but exactly 12Rule, 1NJH expect 0
895

896 /** 7. ProjectMember is Data Collector on ProjectSource */
897 private pred DataCollectorCOI42Indirect(njh: NJH, p: Project){
898 let
899 ps = ((p.(njh.projectSources) & Project).(njh.projectSources)) & Project |
900 some ps and
901 generator2[njh, p] and
902 some p.(njh.projectAT) and
903 some p.(njh.projectMembers) & ps.(njh.projectDataCollector) }
904 run DataCollectorCOI42Indirect for 7
905 //but exactly 11Rule, 3Project, 1NJH expect 1/*** DA_COI ***/
906 /** use only when the applicable part of rule NOPITDC rule is commented */
907 //but exactly 12Rule, 4 Project, 1NJH expect 1/*** DA_COI ***/
908 but exactly 12Rule, 1NJH expect 0
909

910

911 /********** ********** ********** ********** ********** ********** **********
912 End Internal NJH Conformance Rules
913 ********** ********** ********** ********** ********** ********** **********/
914

915

916

917

312

918 /********** ********** ********** ********** ********** ********** **********
919 These are not a part of the object configuration.
920 They provide sanity checks
921 ********** ********** ********** ********** ********** ********** **********/
922

923 /********** ********** ********** ********** **********
924 any instance of the model
925 ********** ********** ********** ********** **********/
926 private pred showg (njh: NJH) {}
927 //run showg
928 //for 7but exactly 11Rule, 1NJH expect 1/*** DA_COI ***/
929 //for 7but exactly 12Rule, 1NJH expect 1
930

931 /********** ********** ********** ********** **********
932 Can we get an instance of the model for all
933 the relations that satisfy generator[] and a
934 project has an Identified access Ticket?
935 ********** ********** ********** ********** **********/
936 private pred someOfAllRelationsSatisfyingInvForIdentifiedAT(
937 njh: NJH, at: Identified) {
938 some njh.projectAT.at and
939 someOfAllRelations[njh] and
940 inv[njh] and
941 setPartialInstanceConfiguration[njh] }
942 run someOfAllRelationsSatisfyingInvForIdentifiedAT
943 //for 7but exactly 11Rule, 1NJH expect 1/*** DA_COI ***/
944 for 7 but exactly 12Rule, 1NJH expect 1
945

946 /********** ********** ********** ********** **********
947 Can we get an instance of the model for all
948 the relations that satisfy generator[] and a
949 project has a DeIDed access Ticket?
950 ********** ********** ********** ********** **********/
951 private pred someOfAllRelationsSatisfyingInvForDeIDedAT (
952 njh: NJH, at: DeIDed) {
953 some njh.projectAT.at and
954 someOfAllRelations[njh] and
955 inv[njh] and
956 setPartialInstanceConfiguration[njh]}
957 run someOfAllRelationsSatisfyingInvForDeIDedAT
958 //for 7but exactly 11Rule, 1NJH expect 1/*** DA_COI ***/
959 for 7 but exactly 12Rule, 1NJH expect 1
960

961 /********** ********** ********** ********** **********
962 all sets that are defined are used!
963 using IFF instead of IMPLIES is not applicable
964 because lone on some sides of the relations.
965 ********** ********** ********** ********** **********/
966 assert TestIfAllSetsAreApplicableToTheModel {
967 all
968 njh: NJH |
969 someOfAllRelationsSatisfyingInvAndConfig[njh] implies
970 someOfAllSets[njh] }
971 check TestIfAllSetsAreApplicableToTheModel
972 //for 7but exactly 11Rule, 1NJH expect 0/*** DA_COI ***/
973 for 7 but exactly 12Rule, 1NJH expect 0

313

D.1.2 Alloy Specifications for Slice 5 to Check Conformance

Listing D.2: Updated Alloy Specifications for Slice 5 to CheckConformance

1 /********** ********** ********** ********** ********** ********** **********
2 Begin Structural Model, NJH slice 5
3

4 Written By: Phillipa Bennett
5 Version 5
6 Date: Version 5completed Nov 28, 2016
7

8 Notes:
9 A lot of notes through out the specification!

10

11 /********** ********** ********** ********** ********** ********** **********/
12 module slice_5
13

14 /********** ********** ********** ********** **********
15 imports
16 /********** ********** ********** ********** **********/
17 open util/relation
18 open util/ternary
19 open util/ordering[NJH] as ord
20

21 /********** ********** ********** ********** **********
22 base abstract signatures
23 ********** ********** ********** ********** **********/
24 abstract sig
25 Data,
26 DataSource,
27 DataTransform,
28 Name,
29 Permission,
30 Status {}
31

32 /********** ********** ********** ********** **********
33 extended abstract signatures
34 ********** ********** ********** ********** **********/
35 abstract sig
36 AccessTicket
37 extends Permission {}
38

39 /********** ********** ********** ********** **********
40 unextended concrete signatures
41 ********** ********** ********** ********** **********/
42 sig Day,
43 Month,
44 Query,
45 Year {}
46

47 sig DataItem {
48 name: Name}
49

50 /********** ********** ********** ********** **********
51 extended concrete signatures
52 ********** ********** ********** ********** **********/
53 sig Age, Other extends Name {}
54

55 sig Project extends DataSource{}
56

314

57 lone sig DeIDed,
58 Identified
59 extends AccessTicket {}
60

61 lone sig
62 DownloadAllowed,
63 DownloadDisabled
64 extends Status {}
65

66 sig Date extends Data {
67 day: lone Day,
68 month: lone Month,
69 year: Year }{
70 /* day iff month also exists */
71 some day iff some month }
72

73 one sig
74 AllowDeIDed,
75 TotallyDeIDed,
76 TotallyIDed
77 extends DataTransform {}
78

79 /********** ********** ********** ********** **********
80 subset concrete signatures
81 ********** ********** ********** ********** **********/
82 sig
83 QryData,
84 RetData
85 in DataItem {}
86

87 /********** ********** ********** ********** **********
88 NJH Closed System
89 ********** ********** ********** ********** **********/
90 sig NJH {
91 accessTickets: set AccessTicket,
92 dataItems: set DataItem,
93 dates: set Date,
94 permissions: set Permission,
95 projects: set Project,
96 qryItems: set QryData,
97 queries: set Query,
98 retItems: set RetData,
99 statuses: set Status,

100 transforms: set DataTransform,
101 values: set Data,
102

103 /* data items must a value or not. */
104 dataValues: dataItems -> one values,
105

106 enteredOn: dataItems -> lone dates,
107

108 /* project access tickets, each one has at most one */
109 projectAT: projects -> lone accessTickets,
110

111 // Transformation of the data required
112 projectDataTransformRequired: projects -> lone transforms,
113

114 /* project queries */
115 projectQueries: projects one -> queries,
116

117 /* a query can work on any kind of data item
118 retData is in position 2*/

315

119 qryReturns: queries -> retItems -> dataItems,
120

121 /* determines is query results meets conformance and the next
122 operation, i.e. view/download is allowed */
123 VDAllowed: queries -> lone statuses }
124

125 /********** ********** ********** ********** ********** ********** **********
126 End Structural Model, NJHg_slice_5
127 /********** ********** ********** ********** ********** ********** **********/
128

129 /********** ********** ********** ********** ********** ********** **********
130 INVARIANTS
131 separating the invariants for each set, relation,
132 or related sets and relations allows for
133 easier decomposition later on when slicing
134 /********** ********** ********** ********** ********** ********** **********/
135

136 /********** ********** ********** ********** **********
137 Some Functions and Predicates to be reused
138 when writing invariants and generating
139 instances/counterexamples
140 ********** ********** ********** ********** **********/
141 private fun applicableDates(njh: NJH, q: Query): set Date {
142 { Date &
143 dom[q.(njh.qryReturns)].(njh.dataValues) +
144 dom[q.(njh.qryReturns)].(njh.enteredOn) }}
145

146 private fun DeIDedDateTransform (d: Date): Date {
147 {ri: Date |
148 no ri.day and
149 no ri.month and
150 ri.year = d.year }}
151

152 private pred identifiedDate (d: Date) {
153 some d.day }
154

155 private pred totallyIDedTransform (njh: NJH, q: Query) {
156 all
157 d: applicableDates[njh, q] |
158 identifiedDate[d] }
159

160 private pred totallyDeIDedTransform (njh: NJH, q: Query) {
161 all
162 d: applicableDates[njh, q] |
163 not identifiedDate[d] }
164

165 private pred allowDeIDedTransform (njh: NJH, q:Query) {
166 all
167 d: applicableDates[njh, q] |
168 identifiedDate[d] or not identifiedDate[d]}
169

170 /********** ********** ********** ********** **********
171 Set invariants, ordered alphabetically by
172 name of set used, as best as possible
173 ********** ********** ********** ********** **********/
174 private pred invDataItems (njh: NJH) {
175 /* set up dataItems, keep out of inv because it is always true */
176 (qryItems + retItems) = dataItems }
177

178 /* closed system constraint - any date is a part of the set of dates */
179 private pred invDates (njh: NJH) {
180 njh.dates = (njh.values & Date) + ran[njh.enteredOn]

316

181 all
182 d: Date |
183 (d in njh.dates and identifiedDate[d]) implies
184 DeIDedDateTransform[d] in njh.dates}
185

186 private pred invPermissions (njh: NJH) {
187 njh.permissions = njh.accessTickets }
188

189 /********** ********** ********** ********** **********
190 Relation invariants, ordered alphabetically by
191 name of main relation used as best as possible
192 ********** ********** ********** ********** **********/
193 /** extracted from invCUTD in slice 3*/
194 private pred invProjectATDataTransform(njh: NJH) {
195 all
196 p: njh.projects |
197 (some p.(njh.projectAT) & Identified iff
198 /* kind of Transformation access ticket allows,
199 mixed - AllowDeIDed or TotallyIDed */
200 some p.(njh.projectDataTransformRequired) &
201 (TotallyIDed + AllowDeIDed))
202 and
203 (some p.(njh.projectAT) & DeIDed iff
204 /*kind of Transformation access ticket allows,
205 totally deidentified */
206 some p.(njh.projectDataTransformRequired) &
207 TotallyDeIDed) }
208

209 private pred invQryReturnsAT (njh: NJH) {
210 all
211 q: njh.queries |
212 some q.(njh.qryReturns) implies
213 some njh.projectQueries.q.(njh.projectAT) }
214

215 /* if a query has a a VD status then it has some return data */
216 private pred invVDAllowedWithQueryResults (njh: NJH, q: Query) {
217 (some q.(njh.VDAllowed) implies
218 some q.(njh.qryReturns)) }
219

220 /* project with AllowDeIDed can never have a DownloadDisables
221 status */
222 private pred invVDAllowedWithAllowDeIDed (
223 njh: NJH, p: Project, q: Query) {
224 some p.(njh.projectDataTransformRequired) & AllowDeIDed implies
225 no q->DownloadDisabled & njh.VDAllowed }
226

227 /**********
228 TotallyIDED
229 **********/
230 /** using iff does not matter, i.e., all predicated/assertions
231 give the expected results. */
232 private pred invDownloadAllowedTotallyIDed(
233 njh: NJH, p: Project, q: Query) {
234 some p.(njh.projectDataTransformRequired) & TotallyIDed implies
235 totallyIDedTransform[njh, q] }
236

237 /** iff causes counterexample for HIPAADateConformanceDeIDed */
238 private pred invDownloadDisabledTotallyIDed(
239 njh: NJH, p: Project, q: Query) {
240 some p.(njh.projectDataTransformRequired) & TotallyIDed implies
241 not totallyIDedTransform[njh, q] }
242

317

243 /**********
244 AllowDeIDED
245 **********/
246 /** Introducing a fault in invDownloadAllowedAllowIDed,
247 We introcuce a fault in the connector for these clauses that
248 allows the Identified access ticket with a TotallyIDeD transform
249 to give de-identified data.
250

251 This fault causes the:
252 1. showDeIDedNCDA, showIdentifiedNCTotallyIDedDA, and
253 HIPAADateNonConformanceIdentified predicates to give
254 instances, and
255 2. HIPAADateConformanceIdentified and
256 HIPAADateConformanceDeIDed assertions to produce
257 counterexamples
258 for the Identified access ticket. */
259

260 /** for fault use implies instead of iff */
261

262 private pred invDownloadAllowedAllowIDed(
263 njh: NJH, p: Project, q: Query) {
264 some p.(njh.projectDataTransformRequired) & AllowDeIDed implies
265 allowDeIDedTransform[njh, q] }
266

267 /**********
268 TotallyDeIDED
269 **********/
270 /** using iff does not matter, i.e., all predicated/assertions
271 give the expected results. */
272 private pred invDownloadAllowedTotallyDeIDed(
273 njh: NJH, p: Project, q: Query) {
274 some p.(njh.projectDataTransformRequired) & TotallyDeIDed implies
275 totallyDeIDedTransform[njh, q] }
276

277 /** iff gives instances for
278 showIdentifiedNCTotallyIDedDA and
279 HIPAADateNonConformanceIdentified
280 and counterexamples for
281 HIPAADateConformanceIdentified
282 all contrary to expectation*/
283 private pred invDownloadDisabledTotallyDeIDed(
284 njh: NJH, p: Project, q: Query) {
285 some p.(njh.projectDataTransformRequired) & TotallyDeIDed implies
286 not totallyDeIDedTransform[njh, q] }
287

288 private pred invVDAllowedCondAllowed(
289 njh: NJH, p: Project, q: Query) {
290 let
291 a = invDownloadAllowedTotallyIDed[njh, p, q],
292 b = invDownloadDisabledTotallyIDed[njh, p, q],
293 c = invDownloadAllowedAllowIDed[njh, p, q],
294 d = invDownloadAllowedTotallyDeIDed[njh, p, q],
295 e = invDownloadDisabledTotallyDeIDed[njh, p, q] | {
296

297 some q->DownloadAllowed & njh.VDAllowed implies
298 ((a and not b) or (d and not e) or c) }}
299

300 private pred invVDAllowedCondDisabled(
301 njh: NJH, p: Project, q: Query) {
302 let
303 a = invDownloadAllowedTotallyIDed[njh, p, q],
304 b = invDownloadDisabledTotallyIDed[njh, p, q],

318

305 d = invDownloadAllowedTotallyDeIDed[njh, p, q],
306 e = invDownloadDisabledTotallyDeIDed[njh, p, q] | {
307

308 some q->DownloadDisabled & njh.VDAllowed implies
309 ((not a and b) or (not d and e)) }}
310

311 /**********
312 VDAllowed for all queries
313 **********/
314 /* this is how VDAllowed is well formed for all queries */
315 private pred invVDAllowed (njh: NJH) {
316 all
317 q: njh.queries |
318 let
319 p = njh.projectQueries.q | {
320

321 invVDAllowedWithQueryResults[njh, q]
322

323 invVDAllowedWithAllowDeIDed[njh, p, q]
324

325 no q.(njh.VDAllowed) or {
326 invVDAllowedCondAllowed[njh, p, q]
327 invVDAllowedCondDisabled[njh, p, q] }}}
328

329 /********** ********** ********** ********** **********
330 the FACTS
331 ********** ********** ********** ********** **********/
332 private pred inv (njh: NJH) {
333 all
334 njh: NJH |
335

336 /** for sets */
337 invDataItems[njh] and
338 invDates[njh] and
339 invPermissions[njh] and
340

341 /** for relations */
342 invProjectATDataTransform[njh] and
343 invQryReturnsAT[njh] and
344 invVDAllowed[njh] }
345 //run inv for 7expect 1
346

347 /*fact {all njh: NJH | inv[njh] }*/
348

349 /********** ********** ********** ********** ********** ********** **********
350 End of INVARIANTS
351 /********** ********** ********** ********** ********** ********** **********/
352

353

354

355 /********** ********** ********** ********** ********** ********** **********
356 Start of Predicates for MODEL Instances that are a part of the
357 operation specifications
358 ********** ********** ********** ********** ********** ********** **********/
359

360 /********** ********** ********** ********** **********
361 Can we get an instance of the model for all
362 the relations?
363 ********** ********** ********** ********** **********/
364 private pred someOfAllRelations(njh: NJH) {
365 some njh.dataValues and
366 some njh.enteredOn and

319

367 some njh.projectAT and
368 some projectDataTransformRequired and
369 some njh.projectQueries and
370 some njh.qryReturns /*and */
371 /** comment some VDAllowed when using operation specs
372 to allow CheckConformance to get and instance
373 It may break TestIfAllSetsAreApplicableToTheModel
374 assertion, but that’s ok */
375 /*some njh.VDAllowed */ }
376

377 /********** ********** ********** ********** **********
378 Can we get an instance of the model for all
379 the relations that satisfy generator[]?
380 ********** ********** ********** ********** **********/
381 private pred someOfAllRelationsSatisfyingInvAndConfig_DeIDed (
382 njh: NJH) {
383 someOfAllRelations[njh] and
384 inv[njh] and
385 setPartialInstanceConfig_DeIDed[njh] }
386

387 private pred someOfAllRelationsSatisfyingInvAndConfig_Identified (
388 njh: NJH) {
389 someOfAllRelations[njh] and
390 inv[njh] and
391 setPartialInstanceConfig_Identified[njh] }
392

393 private pred someOfAllRelationsSatisfyingInvAndConfig (
394 njh: NJH) {
395 someOfAllRelations[njh] and
396 inv[njh] and
397 setPartialInstanceConfig [njh] }
398

399 /*run someOfAllRelations for
400 7 but 1 NJH expect 1
401 run someOfAllRelationsSatisfyingInvAndConfig_DeIDed for
402 7 but 1 NJH expect 1
403 run someOfAllRelationsSatisfyingInvAndConfig_Identified
404 for 7 but 1 NJH expect 1
405 run someOfAllRelationsSatisfyingInvAndConfig for
406 7 but 1 NJH expect 1*/
407

408 /********** ********** ********** ********** **********
409 Just sanity check. These 2checks can be
410 removed from the model-
411 the TestIfAllSetsAreApplicableToTheModel
412 assertion checks that in all instances where
413 the relations are non-empty, the invariants
414 and the partial configuration ensures that
415 all the sets defined are used!
416

417 using IFF instead of IMPLIES in
418 TestIfAllSetsAreApplicableToTheModel
419 is not applicable because lone on some sides
420 of the relations.
421 ********** ********** ********** ********** **********/
422

423 /********** ********** ********** ********** **********
424 Can we get an instance of the model for all
425 the sets?
426 ********** **sets******* ********** ********** **********/
427 private pred someOfAllSets(njh: NJH) {
428 (some njh.accessTickets or

320

429 some njh.permissions) and
430 (some njh.dataItems or
431 (some njh.qryItems and
432 some njh.retItems)) and
433 some njh.dates and
434 some njh.projects and
435 some njh.queries and
436 some njh.statuses and
437 some transforms and
438 some njh.values }
439

440 assert TestIfAllSetsAreApplicableToTheModel {
441 all
442 njh: NJH |
443 (someOfAllRelationsSatisfyingInvAndConfig[njh] and
444 someOfAllRelations[njh]) implies
445 someOfAllSets[njh] }
446

447 /*run someOfAllSets for 7but 1NJH expect 1
448 check TestIfAllSetsAreApplicableToTheModel for 7expect 0*/
449

450 /********** ********** ********** ********** ********** ********** **********
451 End of Predicates for MODEL Instances that are a part of the
452 operation specifications
453 ********** ********** ********** ********** ********** ********** ***********/
454

455

456

457

458 /********** ********** ********** ********** ********** ********** **********
459 Start of OPERATION Specifications
460 /********** ********** ********** ********** ********** ********** **********/
461 /** this is how we initialise the system */
462 private pred init(njh: NJH) {
463 some
464 q: Query |
465 some q.(njh.qryReturns) and
466 no q.(njh.VDAllowed) and
467 someOfAllRelationsSatisfyingInvAndConfig[njh] }
468

469 private pred noChangeSets(njh, njh’: NJH) {
470 njh.accessTickets = njh’.accessTickets and
471 njh.dataItems = njh’.dataItems and
472 njh.dates = njh’.dates and
473 njh.permissions = njh’.permissions and
474 njh.projects = njh’.projects and
475 njh.qryItems = njh’.qryItems and
476 njh.queries = njh’.queries and
477 njh.retItems = njh’.retItems and
478 njh.statuses = njh’.statuses and
479 njh.transforms = njh’.transforms and
480 njh.values = njh’.values }
481

482 private pred noChangeRelations(njh, njh’: NJH) {
483 njh.dataValues = njh’.dataValues and
484 njh.enteredOn = njh’.enteredOn and
485 njh.projectAT = njh’.projectAT and
486 njh.projectDataTransformRequired =
487 njh’.projectDataTransformRequired and
488 njh.projectQueries = njh’.projectQueries and
489 njh.qryReturns = njh’.qryReturns and
490 njh.VDAllowed = njh’.VDAllowed }

321

491

492 /** i.e., specification of no operation */
493 private pred skip (njh, njh’: NJH) {
494 noChangeSets[njh, njh’] and
495 noChangeRelations[njh, njh’] }
496

497 private pred checkConformance (njh, njh’: NJH, p: Project, q: Query) {
498 /*let
499 at = p.(njh.projectAT) |*/ /** at are implied by the transtorm */
500 /** Pre-conditions */
501 p in njh.projects and
502 q in p.(njh.projectQueries) and
503 no q.(njh.VDAllowed) and
504 some q.(njh.qryReturns) and
505

506 /** Post-conditions - Frame Conditions*/
507 noChangeSets[njh, njh’] and
508

509 njh.dataValues = njh’.dataValues and
510 njh.enteredOn = njh’.enteredOn and
511 njh.projectAT = njh’.projectAT and
512 njh.projectDataTransformRequired =
513 njh’.projectDataTransformRequired and
514 njh.projectQueries = njh’.projectQueries and
515 njh.qryReturns = njh’.qryReturns and
516

517 /** Post-conditions - Changes*/
518 njh.VDAllowed = njh’.VDAllowed - (q->DownloadAllowed +
519 q->DownloadDisabled) and
520 some q.(njh’.VDAllowed) and (
521 let
522 a = invDownloadAllowedTotallyIDed[njh, p, q],
523 b = invDownloadDisabledTotallyIDed[njh, p, q],
524 c = invDownloadAllowedAllowIDed[njh, p, q],
525 d = invDownloadAllowedTotallyDeIDed[njh, p, q],
526 e = invDownloadDisabledTotallyDeIDed[njh, p, q] | {
527

528 some q->DownloadAllowed & njh’.VDAllowed implies
529 ((a and not b) or (d and not e) or c)
530

531 some q->DownloadDisabled & njh’.VDAllowed implies
532 ((not a and b) or (not d and e)) }) }
533

534 private pred CheckConformancePossible(
535 njh, njh’: NJH,
536 p: Project,
537 q: Query) {
538 someOfAllRelationsSatisfyingInvAndConfig[njh] and
539 checkConformance[njh, njh’, p, q] and
540 inv[njh’] }
541

542 /** this is how we move from instance to instance */
543 fact traces {
544 init[ord/first]
545 all
546 njh: NJH - ord/last,
547 p: Project,
548 q: Query |
549 let
550 njh’ = njh.next |
551 skip[njh, njh’] or
552 checkConformance[njh, njh’, p, q] }

322

553

554 assert OpPreserves {
555 all
556 njh, njh’: NJH ,
557 p: Project, q: Query |
558 (inv[njh] and
559 checkConformance [njh, njh’, p, q]) implies
560 inv[njh’] }
561

562 /** run only when opPreserves returns a counterexample */
563 pred OpDoesNotPreserve[njh, njh’: NJH, p: Project, q: Query]{
564 inv[njh] and
565 checkConformance[njh, njh’, p, q] and
566 not inv[njh’] }
567

568 /*run init for 7but 1NJH expect 1
569 run skip for 7but 3NJH expect 1*/
570 run checkConformance for 7but 2NJH expect 1/*
571 run CheckConformancePossible for 7but 2NJH expect 1*/
572 check OpPreserves for 7expect 0
573 run OpDoesNotPreserve for 7expect 0
574

575 /********** ********** ********** ********** ********** ********** **********
576 End Operation Specification
577 ********** ********** ********** ********** ********** ********** **********/
578

579

580

581

582 /********** ********** ********** ********** ********** ********** **********
583 Partial instance CONFIGURATION,
584 these will be instantiated in every instance
585 ********** ********** ********** ********** ********** ********** **********/
586

587 /** We want to generate a small model. It is mportant to add the
588 the size of the set so that Alloy does not use a subset of the
589 configuration. */
590 private pred config_overlap (njh: NJH) {
591 /*********** for sets */
592 njh.dataItems.name =
593 Age + Other and
594

595 /* transforms (3) */
596 njh.transforms =
597 AllowDeIDed +
598 TotallyDeIDed +
599 TotallyIDed and
600

601 /* statuses (2) */
602 njh.statuses =
603 DownloadAllowed +
604 DownloadDisabled and
605

606 /*********** for relations */
607 #dataItems >= 6and
608 #njh.dataItems.name = 2and
609 #njh.transforms = 3and
610 #njh.projects > 0and
611 #qryItems >= 1and
612 #queries > 1and
613 #retItems >= 3and
614 #njh.statuses >1 and

323

615 #njh.transforms = 3and
616

617 /* all projects have an access ticket */
618 all
619 p: njh.projects |{
620 some p.(njh.projectAT)} and
621

622 /* qryItems and retItems are distinct data */
623 no njh.qryItems & njh.retItems and
624

625 /* all qryItems are used to construct the return data */
626 ran[select13[njh.qryReturns]] = njh.qryItems and
627

628 /* all retItems are returned */
629 ran[select12[njh.qryReturns]] = njh.retItems and
630

631 /* all qryItems are identified dates */
632 all
633 q: njh.qryItems | {
634 identifiedDate[q.(njh.dataValues)] }and
635

636 /* there is only one retItem that is de-identified */
637 #{r: njh.retItems | not identifiedDate[r.(njh.dataValues)]}= 1and
638

639 /* the identified retItem and its associated dataItem have
640 name = Age */
641 all
642 r: njh.retItems | {
643 identifiedDate[r.(njh.dataValues)] implies
644 r.name = Age and
645 r.(select23[njh.qryReturns]).name = Age }and
646

647 /* the not identified retItems and their associated dataItem have
648 name = Other */
649 all
650 r: njh.retItems | {
651 not identifiedDate[r.(njh.dataValues)] implies
652 r.name = Other and r.(select23[njh.qryReturns]).name = Other }}
653

654 private pred setPartialInstanceConfig_DeIDed (njh: NJH) {
655 config_overlap[njh] and
656

657 /* access tickets (1) */
658 njh.accessTickets = DeIDed and
659 #njh.accessTickets = 1}
660

661 private pred setPartialInstanceConfig_Identified (njh: NJH) {
662 /* load the overlap */
663 config_overlap[njh] and
664

665 /* access tickets (1) */
666 njh.accessTickets = Identified and
667 #njh.accessTickets = 1}
668

669 private pred setPartialInstanceConfig (njh: NJH) {
670 /* load the overlap */
671 config_overlap[njh] and
672

673 /* access tickets (2) */
674 njh.accessTickets = Identified + DeIDed and
675 #njh.accessTickets = 2}
676

324

677 /*run config_overlap for 7expect 1
678 run setPartialInstanceConfiguration_DeIDed for 7expect 1
679 run setPartialInstanceConfiguration_Identified for 7expect 1
680 run setPartialInstanceConfiguration for 7expect 1*/
681

682 /********** ********** ********** ********** ********** ********** **********
683 End of Partial Configuration
684 /********** ********** ********** ********** ********** ********** **********/
685

686

687

688

689 /********** ********** ********** ********** ********** ********** **********
690 Start of Predicates/Assertions for other MODEL Instances
691 ********** ********** ********** ********** ********** ********** **********/
692 private pred common_inst(
693 njh: NJH, proj: Project, qry: Query, at: AccessTicket) {
694 inv[njh] and
695 some
696 p: njh.projects |
697 p = proj and
698 p in njh.projects and
699 p->at in njh.projectAT and
700 some q: Query |
701 q = qry and
702 some p->q & njh.projectQueries and
703 some q.(njh.qryReturns) }
704

705 /********** ********** ********** ********** **********
706 AT: DeIDED
707 Transform: well formed instances imply it
708 Query Status: DD
709 Conformance: yes
710 ********** ********** ********** ********** **********/
711 private pred showDeIDedDD (
712 njh: NJH, p: Project, q: Query) {
713 setPartialInstanceConfig[njh] and
714 common_inst[njh, p, q, DeIDed] and
715 some q->DownloadDisabled & njh.VDAllowed and
716 not totallyDeIDedTransform[njh, q] }
717

718 /********** ********** ********** ********** **********
719 AT: IDED
720 Transform: TotallyIDed
721 Query Status: DD
722 Conformance: yes
723 ********** ********** ********** ********** **********/
724 private pred showIdentifiedTotallyIDedDD(
725 njh: NJH, p: Project, q: Query) {
726 setPartialInstanceConfig[njh] and
727 common_inst[njh, p, q, Identified] and
728 some p->TotallyIDed &
729 njh.projectDataTransformRequired and
730 some q->DownloadDisabled & njh.VDAllowed and
731 not totallyIDedTransform[njh, q] }
732

733 /********** ********** ********** ********** **********
734 AT: IDED
735 Transform: AllowDeIDed
736 Query Status: DD
737 Conformance: yes
738 ********** ********** ********** ********** **********/

325

739 private pred showIdentifiedAllowDeIDedDD (njh: NJH) {
740 setPartialInstanceConfig[njh] and
741 inv[njh] and
742 some
743 p: njh.projects |
744 p in njh.projects and
745 p->Identified in njh.projectAT and
746 some q: Query |
747 some p->q & njh.projectQueries and
748 some q.(njh.qryReturns) and
749 some q->DownloadDisabled & njh.VDAllowed and
750 some p->AllowDeIDed &
751 njh.projectDataTransformRequired and
752 allowDeIDedTransform[njh, q]}
753

754 /********** ********** ********** ********** **********
755 AT: DeIDED
756 Transform: wel formed instances imply it
757 Query Status: DA
758 Conformance: yes
759 ********** ********** ********** ********** **********/
760 private pred showDeIDedDA(
761 njh: NJH, p: Project, q: Query) {
762 setPartialInstanceConfig[njh] and
763 common_inst[njh, p, q, DeIDed] and
764 some q->DownloadAllowed & njh.VDAllowed and
765 totallyDeIDedTransform[njh, q] }
766

767 /********** ********** ********** ********** **********
768 AT: IDED
769 Transform: TotallyIDed
770 Query Status: DA
771 Conformance: yes
772 ********** ********** ********** ********** **********/
773 private pred showIdentifiedTotallyIDedDA(
774 njh: NJH, p: Project, q: Query) {
775 setPartialInstanceConfig[njh] and
776 common_inst[njh, p, q, Identified] and
777 some p->TotallyIDed &
778 njh.projectDataTransformRequired and
779 some q->DownloadAllowed & njh.VDAllowed and
780 totallyIDedTransform[njh, q] }
781

782 /********** ********** ********** ********** **********
783 AT: IDED
784 Transform: AllowDeIDed
785 Query Status: DA
786 Conformance: yes
787 ********** ********** ********** ********** **********/
788 private pred showIdentifiedAllowDeIDedDA (
789 njh: NJH, p: Project, q: Query) {
790 setPartialInstanceConfig[njh] and
791 common_inst[njh, p, q, Identified] and
792 some p->AllowDeIDed & njh.projectDataTransformRequired and
793 some q->DownloadAllowed & njh.VDAllowed and
794 allowDeIDedTransform[njh, q]}
795

796 /********** ********** ********** ********** **********
797 AT: DeIDED
798 Transform: wel formed instances imply it
799 Query Status: DA
800 Conformance: no

326

801 ********** ********** ********** ********** **********/
802 private pred showDeIDedNCDA (
803 njh: NJH, p: Project, q: Query) {
804 setPartialInstanceConfig[njh] and
805 common_inst[njh, p, q, DeIDed] and
806 some q->DownloadAllowed & njh.VDAllowed and
807 not totallyDeIDedTransform[njh, q] }
808

809 /********** ********** ********** ********** **********
810 AT: DeIDED
811 Transform: wel formed instances imply it
812 Query Status: DA
813 Conformance: no
814 ********** ********** ********** ********** **********/
815 private pred showIdentifiedNCTotallyIDedDA (
816 njh: NJH, p: Project, q: Query) {
817 setPartialInstanceConfig[njh] and
818 common_inst[njh, p, q, Identified] and
819 some p.(njh.projectDataTransformRequired) & TotallyIDed and
820 some q->DownloadAllowed & njh.VDAllowed and
821 not totallyIDedTransform[njh, q] }
822

823 /********** ********** ********** ********** **********
824 Give me any instance of the system
825 ********** ********** ********** ********** **********/
826 private pred show (njh: NJH) {}
827

828 /********** ********** ********** ********** **********
829 Give me an instance of the system where a
830 query has no VDAllowed
831 ********** ********** ********** ********** **********/
832 pred showg(njh: NJH, p: Project, q: Query) {
833 some p & (njh.projects) and
834 some p->q & njh.projectQueries and
835 some p.(njh.projectAT) and
836 no q.(njh.VDAllowed) and
837 some q.(njh.qryReturns) }
838

839 /*
840 run show for 7but 1NJH expect 1
841 run showg for 7expect 1/*
842 run common_inst for 7expect 1*/
843

844 run showDeIDedDD for 7but 1NJH expect 1
845 run showDeIDedDA for 7but 1NJH expect 1
846 run showDeIDedNCDA for 7but 1NJH expect 0
847

848 run showIdentifiedTotallyIDedDD for 7but 1NJH expect 1
849 run showIdentifiedTotallyIDedDA for 7but 1NJH expect 1
850 run showIdentifiedNCTotallyIDedDA for 7but 1NJH expect 0
851

852 run showIdentifiedAllowDeIDedDD for 7but 1NJH expect 0
853 run showIdentifiedAllowDeIDedDA for 7but 1NJH expect 1
854

855 /********** ********** ********** ********** ********** ********** **********
856 End of Predicates/Assertions for other MODEL Instances
857 ********** ********** ********** ********** ********** ********** **********/
858

859

860 /********** ********** ********** ********** ********** ********** **********
861 HIPAA Conformance Checks
862 Asserts MODEL Instances well formed for VD Allowed

327

863 ********** ********** ********** ********** ********** ********** **********/
864 private pred conform_overlap (njh: NJH, q: Query, at: AccessTicket) {
865 someOfAllRelationsSatisfyingInvAndConfig[njh] and
866 some (njh.projectQueries).q.(njh.projectAT) & at }
867

868 pred conformanceQryIdentifiedAllowed (
869 njh: NJH, p: Project , q: Query) {
870 some p.(njh.projectDataTransformRequired) & TotallyIDed implies
871 all
872 r: applicableDates[njh, q] |
873 identifiedDate[r] }
874

875 pred conformanceQryIdentifiedDisabled (njh: NJH, p: Project , q: Query) {
876 (some p.(njh.projectDataTransformRequired) & TotallyIDed implies
877 some
878 r: applicableDates[njh, q] |
879 not identifiedDate[r]) }
880

881 pred conformanceQryDeIDedAllowed (njh: NJH, p: Project , q: Query) {
882 all
883 r: applicableDates[njh, q] |
884 not identifiedDate[r] }
885

886 pred conformanceQryDeIDedDisabled (njh: NJH, p: Project , q: Query) {
887 some
888 r: applicableDates[njh, q] |
889 identifiedDate[r] }
890

891 /** fault in the invDownloadAllowedAllowIDed predicate allows a
892 counterexample here, i.e.,
893 conformanceQryIdentifiedAllowed fails */
894 private pred HIPAADateNonConformanceIdentified
895 (njh: NJH, p: Project, q: Query) {
896 p = (njh.projectQueries).q and
897 conform_overlap[njh, q, Identified] and
898 some p.(njh.projectDataTransformRequired) & TotallyIDed and
899 some q.(njh.VDAllowed) & DownloadAllowed and
900 not conformanceQryIdentifiedAllowed[njh, p, q] }
901 run HIPAADateNonConformanceIdentified for 7expect 0
902

903 /** fault in the invDownloadAllowedAllowIDed predicate allows a
904 counterexample here, i.e.,
905 conformanceQryIdentifiedAllowed fails */
906 assert HIPAADateConformanceIdentified {
907 all
908 njh: NJH,
909 q: njh.queries |
910 let
911 p = (njh.projectQueries).q | {
912

913 (conform_overlap[njh, q, Identified] and
914 some q.(njh.VDAllowed) & DownloadAllowed) implies
915 conformanceQryIdentifiedAllowed[njh, p, q]
916

917 (conform_overlap[njh, q, Identified] and
918 some q.(njh.VDAllowed) & DownloadDisabled) implies
919 conformanceQryIdentifiedDisabled[njh, p, q] }}
920 check HIPAADateConformanceIdentified for 7expect 0
921

922 assert HIPAADateConformanceDeIDed {
923 all
924 njh: NJH,

328

925 q: njh.queries |
926 let
927 p = (njh.projectQueries).q | {
928

929 (conform_overlap[njh, q, DeIDed] and
930 some q.(njh.VDAllowed) & DownloadAllowed) implies
931 conformanceQryDeIDedAllowed[njh, p, q]
932

933 (conform_overlap[njh, q, DeIDed] and
934 some q.(njh.VDAllowed) & DownloadDisabled) implies
935 conformanceQryDeIDedDisabled[njh, p, q] }}
936 check HIPAADateConformanceDeIDed for 7expect 0
937

938 /********** ********** ********** ********** ********** ********** **********
939 End HIPAA Conformance Checks
940 ********** ********** ********** ********** ********** ********** **********/

329

D.2 Updated USE Class Model Specifications and Constraints for Slice 3 to ApproveAcces-

sTicket Operation

Listing D.3: USE Class Model for Slice 3 to Approve Access Ticket

1 /*
2 Model slice for NJH to
3 3. approve project licence,
4

5 Written by Phillipa Bennett
6 Date August 18, 2016
7 Version 4
8 */
9

10 model NJHg_slice_1
11

12 /* Abstract CLASSES */
13 abstract class DataSource end
14 abstract class DataTransform end
15 abstract class Permission end
16 abstract class Rule
17 attributes
18 operations
19 applyRule()
20 end
21 abstract class Purpose end
22

23 /* Extended abstract classes */
24 abstract class AccessTicket < Permission end
25

26 class TotallyDeIDed < DataTransform end
27 class TotallyIDed < DataTransform end
28 class AllowDeIDed < DataTransform end
29

30 abstract class Licence < Permission end
31 abstract class DecisionRule < Rule end
32

33 /* Unextended concrete classes */
34 class Personnel end
35 class Query
36 attributes
37 operations
38 runQuery(res: Researcher, proj: Project)
39 download()
40 view()
41 end
42

43

44 /* Extended concrete classes */
45 class Project < DataSource end
46 class ClinicalDB < DataSource end
47

48

49 class Fishing < Licence end
50

51 class DeIDed < AccessTicket end
52 class Identified < AccessTicket end
53

54 class CanUseTotallyDeIDed < DecisionRule end

330

55 class ClinicalDBNeedsDataCollector < DecisionRule end
56 class DataAccessAgreementPresent < DecisionRule end
57 class DataSourcePriorityOK < DecisionRule end
58 class LicenedTeamAndPI < DecisionRule end
59 class NoOverlapPITeamDC < DecisionRule end
60 class NoSupsInPIandDC < DecisionRule end
61 class PIDefined < DecisionRule end
62 class ProjectMembersDefined < DecisionRule end
63 class QualifierPresent < DecisionRule end
64 class SomePurposeNotDirectTreatment < DecisionRule end
65 class SomeQueriesDefined < DecisionRule end
66 class SomeSourcesDefined < DecisionRule end
67

68 class DirectTreatment < Purpose end
69 class Research < Purpose end
70

71 /* These classes are defined using the ’in’ keyword in the Alloy model.
72 How will we achieve this in OCL? */
73 class Qualifier < Personnel
74 attributes
75 operations
76 QualifyResearcher(res: Researcher)
77 end
78 class Researcher < Personnel end
79

80

81 /* ASSOCIATIONS */
82

83 association ATPriority between
84 AccessTicket[*] role ant
85 AccessTicket[*] role desc
86 end
87

88 association DataAccessAgreement between
89 Project[*] role owner
90 Project[*] role user
91 end
92

93 association PermRules between
94 Permission[*]
95 Rule[1..*]
96 end
97

98 association ProjectAT between
99 Project[*]

100 AccessTicket[0..1]
101 end
102

103 association ProjectDataCollector between
104 Project[*]
105 Personnel[0..1] role dc
106 end
107

108 association ProjectDataTransformRequired between
109 Project[*]
110 DataTransform[0..1]
111 end
112

113 association ProjectMembers between
114 Project[*] role proj
115 Researcher[*] role members
116 end

331

117

118 association ProjectPI between
119 Project[*] role pi_proj
120 Researcher[0..1] role pi
121 end
122

123 association ProjectPurpose between
124 Project[*]
125 Purpose[0..1]
126 end
127

128 association ProjectQueries between
129 Project[*] /* relax from 1to * to allow generation */
130 Query[*]
131 end
132

133 association ProjectSources between
134 Project [*]
135 DataSource[*]
136 end
137

138 association ResearcherL between
139 Researcher[*]
140 Licence[0..1]
141 end
142

143 association Supervisors between
144 Personnel[*] role supervisor
145 Personnel[*] role supervised
146 end

Listing D.4: USE Class Model for Slice 5 to Check Conformance

1 /*
2 Model slice for NJH to
3 4. execute query
4

5 Written by Phillipa Bennett
6 Date Sept 20, 2016
7 Version 4
8 */
9

10 model NJHg_slice_5
11

12 /* Abstract CLASSES */
13

14 abstract class Data end
15 abstract class Permission end
16 abstract class DataTransform end
17

18 /* Extended abstract classes */
19 abstract class AccessTicket < Permission end
20 class TotallyDeIDed < DataTransform end
21 class TotallyIDed < DataTransform end
22 class AllowDeIDed < DataTransform end
23

24 /* Unextended concrete classes */
25 class DataItem
26 attributes
27 name: String

332

28 end
29

30 class Query
31 attributes
32 operations
33 download()
34 view()
35 end
36

37 abstract class Status end
38

39 /* Extended concrete classes */
40

41 class Date < Data
42 attributes
43 day: Integer
44 month: Integer
45 year: Integer
46 operations
47 isIdentified(): Boolean
48 isNotIdentified(): Boolean
49 end
50

51 class DStr < Data
52 attributes
53 sVal: String
54 end
55

56 class Project end
57

58 class QryData < DataItem end
59 class RetData < DataItem end
60

61 class DeIDed < AccessTicket end
62 class Identified < AccessTicket end
63

64 class DownloadDisabled < Status end
65 class DownloadAllowed < Status end
66

67 /* ASSOCIATIONS */
68 association DataValues between
69 DataItem[*]
70 Data[1]
71 end
72

73 association EnteredOn between
74 DataItem[*] role item
75 Date[0..1] role date
76 end
77

78 association ProjectAT between
79 Project[*]
80 AccessTicket[0..1]
81 end
82

83 association ProjectDataTransformRequired between
84 Project[*]
85 DataTransform[0..1]
86 end
87

88 association ProjectQueries between

333

89 Project[*] /* relax from 1to * to allow generation program to work, enforced as 1in a
constraint */

90 Query[*]
91 end
92

93 association QryReturns between
94 Query[*] role qry
95 RetData[*] role rData
96 QryData[*] role qData
97 end
98

99 association VDAllowed between
100 Query[*]
101 Status[0..1]
102 end

Listing D.5: Additional USE Constraints applicable only to Slices 3 and 5 to Approve Access Ticket and

Check Conformance respectively

1 context DataTransform
2 inv singletonEachDT:
3 DataTransform.allInstances.select(
4 oclIsTypeOf(TotallyDeIDed)=true)->size()<=1
5 and
6 DataTransform.allInstances.select(
7 oclIsTypeOf(TotallyIDed)=true)->size()<=1
8 and
9 DataTransform.allInstances.select(

10 oclIsTypeOf(AllowDeIDed)=true)->size()<=1
11

12 context Project
13 inv invProjectATDataTransform1:
14 projectAT.select(
15 oclIsTypeOf(Identified)=true)->size()=1 implies
16 dataTransform.select(oclIsTypeOf(TotallyDeIDed)=true)->size()=0
17

18 inv invProjectATDataTransform2:
19 projectAT.select(
20 oclIsTypeOf(DeIDed)=true)->size()=1 implies (
21 dataTransform.select(oclIsTypeOf(AllowDeIDed)=true)->size()=0 and
22 dataTransform.select(oclIsTypeOf(TotallyIDed)=true)->size()=0)

334

APPENDIX E. SPECIFICATIONS FOR CHILDREN PROTECTED POPULATION IN CHAPTER 9

E.1 Updated USE Class Model Specifications and Constraints for Slice 3 to ApproveAcces-

sTicket Operation

Listing E.1: USE Class Model for Slice 3 to Approve Access Ticket

1 /*
2 Model slice for NJH to
3 3. Approve project licence when rules for Children Protected Populations
4 are to be considered
5

6 Written by Phillipa Bennett
7 Date December 20, 2016
8 Version 5
9

10 Updated Dec 28, 2016
11 with additional requirements
12 for IRB to specify if consent/assent required
13

14 */
15

16 model NJHg_slice_1
17

18 /* Abstract CLASSES */
19 abstract class Consent end
20 abstract class ConsentRequirement end
21 abstract class DataSource end
22 abstract class DataTransform end
23 abstract class Permission end
24 abstract class PersonRole end
25 abstract class ResearchRisk end
26 abstract class Rule
27 attributes
28 operations
29 applyRule()
30 end
31 abstract class Purpose end
32

33 /* Extended abstract classes */
34 abstract class AccessTicket < Permission end
35

36 class ResponsiblityRole < PersonRole end
37 abstract class SpecialSubject < PersonRole end
38

39 abstract class Licence < Permission end
40

41 abstract class ChildrenResearchRisk < ResearchRisk end
42

43 abstract class DecisionRule < Rule end
44

45 /* Unextended concrete classes */
46 class IRB end
47 class Person end
48 class Personnel < Person end
49 class Query

335

50 attributes
51 operations
52 runQuery(res: Researcher, proj: Project)
53 download()
54 view()
55 end
56

57 /* Extended concrete classes */
58 class DeIDed < AccessTicket end
59 class Identified < AccessTicket end
60

61 class RiskNotAllowed < ChildrenResearchRisk end
62 class MinimalRisk < ChildrenResearchRisk end
63 class DirectBenefit < ChildrenResearchRisk end
64 class DirectBenefitGeneralisable < ChildrenResearchRisk end
65 class FurtherUnderstandingPreventionAlleviation < ChildrenResearchRisk end
66

67 class Allow < Consent end
68 class DisAllow < Consent end
69

70 class Required < ConsentRequirement end
71 class NotRequired < ConsentRequirement end
72

73 class Project < DataSource end
74 class ClinicalDB < DataSource end
75

76 class TotallyDeIDed < DataTransform end
77 class TotallyIDed < DataTransform end
78 class AllowDeIDed < DataTransform end
79

80 class CanUseTotallyDeIDed < DecisionRule end
81 class ClinicalDBNeedsDataCollector < DecisionRule end
82 class DataAccessAgreementPresent < DecisionRule end
83 class DataSourcePriorityOK < DecisionRule end
84 class LicenedTeamAndPI < DecisionRule end
85 class NoOverlapPITeamDCIRB < DecisionRule end
86 class NoSupsInPIandDC < DecisionRule end
87 class PIDefined < DecisionRule end
88 class ProjectMembersDefined < DecisionRule end
89 class QualifierPresent < DecisionRule end
90 class SomePurposeNotDirectTreatment < DecisionRule end
91 class SomeQueriesDefined < DecisionRule end
92 class SomeSourcesDefined < DecisionRule end
93 class SpecialResearchApproved < DecisionRule end
94

95 class Fishing < Licence end
96

97 class DirectTreatment < Purpose end
98 class Research < Purpose end
99

100 class Researcher < Personnel end
101

102 class Parent < ResponsiblityRole end
103 class Guardian < ResponsiblityRole end
104 class WardOfState < ResponsiblityRole end
105

106 class Children < SpecialSubject end
107

108 /* ASSOCIATIONS */
109

110 association ATPriority between
111 AccessTicket[*] role ant

336

112 AccessTicket[*] role desc
113 end
114

115 association DataAccessAgreement between
116 Project[*] role owner
117 Project[*] role user
118 end
119

120 association IRBMembers between
121 IRB[0..1] role irb
122 Personnel[2..*]
123 end
124

125 association PermRules between
126 Permission[*]
127 Rule[1..*]
128 end
129

130 association ProjectAT between
131 Project[*]
132 AccessTicket[0..1]
133 end
134

135 association ProjectConsentAssssentReq between
136 Project[*]
137 PersonRole[*]
138 ConsentRequirement[0..1]
139 end
140

141 association ProjectDataCollector between
142 Project[*]
143 Personnel[0..1] role dc
144 end
145

146 association ProjectDataTransformRequired between
147 Project[*]
148 DataTransform[0..1]
149 end
150

151 association ProjectMembers between
152 Project[*] role proj
153 Researcher[*] role members
154 end
155

156 association ProjectPI between
157 Project[*] role pi_proj
158 Researcher[0..1] role pi
159 end
160

161 association ProjectPurpose between
162 Project[*]
163 Purpose[0..1]
164 end
165

166 association ProjectQueries between
167 Project[*] /* relax from 1, to * to allow generation program to work */
168 Query[*]
169 end
170

171 association ProjectSources between
172 Project [*]
173 DataSource[*]

337

174 end
175

176 association ProjectSpecialResearch between
177 Project[*] role ssSubject
178 SpecialSubject[*]
179 end
180

181 association ProjectSpecialResearchApproval between
182 Project[*] role spProject
183 SpecialSubject[*] role spSubject
184 ResearchRisk[0..1]
185 IRB[0..1] role irb
186 Consent[0..1]
187 end
188

189 association ResearcherL between
190 Researcher[*]
191 Licence[0..1]
192 end
193

194 association Supervisors between
195 Personnel[*] role supervisor
196 Personnel[*] role supervised
197 end

338

Listing E.2: USE Class Model for Slice 4 to Execute Query

1 /*
2 Model slice for NJH to
3 4. execute query with Protected Children
4

5 Written by Phillipa Bennett
6 Date December 20, 2016
7 Version 5
8

9 Updated Dec 28, 2016
10 with changed and additional requirements
11 1. advocate can be IRB member; and
12 2. advocate cannot be associated with guardian organisation
13 */
14

15 model NJHgv_pc_slice_4
16

17 /* Abstract CLASSES */
18 abstract class Category end
19 abstract class Consent end
20 abstract class ConsentRequirement end
21 abstract class Data end
22 abstract class DataSource end
23 abstract class DataTransform end
24 abstract class Permission end
25 abstract class PersonRole end
26 abstract class Rule
27 attributes
28 operations
29 applyRule()
30 end
31

32 /* Extended abstract classes */
33 abstract class HIPAACat < Category end
34

35 class TotallyDeIDed < DataTransform end
36 class TotallyIDed < DataTransform end
37 class AllowDeIDed < DataTransform end
38

39 abstract class SpecialPopn < HIPAACat end
40

41 abstract class AccessTicket < Permission end
42

43 class ResponsiblityRole < PersonRole end
44 abstract class SpecialSubject < PersonRole end
45

46 abstract class AccessRule < Rule end
47

48 abstract class Type end
49

50 /* Unextended concrete classes */
51 class DataItem
52 attributes
53 name: String
54 end
55

56 class IRB end
57 class Person end
58

59 /* Extended concrete classes */

339

60 class ChildAdvocateForWardOfState < AccessRule end
61 class ChildAssentAndResponsibilityConsent < AccessRule end
62 class HideSpecialPopn < AccessRule end
63 class ChildAdvocateNotAssocWithResearchOrWardOrg < AccessRule end
64 class PatientConsent < AccessRule end
65 class TransformHDate < AccessRule end
66

67 class DeIDed < AccessTicket end
68 class Identified < AccessTicket end
69

70 class Allow < Consent end
71 class CannotGive < Consent end
72 class DisAllow < Consent end
73

74 class Required < ConsentRequirement end
75 class NotRequired < ConsentRequirement end
76

77 class Date < Data
78 attributes
79 day: Integer
80 month: Integer
81 year: Integer
82 operations
83 isIdentified(): Boolean
84 isNotIdentified(): Boolean
85 end
86

87 class HDate < HIPAACat end
88 class HIPAAChild < SpecialPopn end
89

90 class Project < DataSource end
91 class ClinicalDB < DataSource end
92

93 class Researcher < Personnel end
94

95 class QryData < DataItem end
96 class RetData < DataItem end
97

98 class Patient < Person end
99 class Personnel < Person end

100

101 class Query
102 attributes
103 operations
104 runQuery(res: Researcher, proj: Project)
105 download()
106 view()
107 end
108

109 class Parent < ResponsiblityRole end
110 class Guardian < ResponsiblityRole end
111 class WardOrg < ResponsiblityRole end
112

113 class Children < SpecialSubject end
114

115 class Individual < Type end
116 class Group < Type end
117

118 /* ASSOCIATIONS */
119 association ARAppliesTo between
120 AccessRule[*] role accessrule
121 Type[1..*] role type

340

122 end
123

124 association ARHides between
125 AccessRule[*]
126 Category[*]
127 end
128

129 association ARTransforms between
130 AccessRule[*] role hAccessRules
131 HIPAACat[*]
132 end
133

134 association ChildAdvocate between
135 Patient[*] role advocatePt
136 Person [0..1] role ptAdvocate
137 end
138

139 association ChildParticipationAssent between
140 Patient[*] role spPatient
141 Consent[*] role spPatientAssent
142 end
143

144 association ChildParticipationPerm between
145 ResponsiblityRole[*]
146 Person[*] role spPWPerson
147 Patient[*] role spPWPatient
148 Consent[0..1] role spPatientPerm
149 end
150

151 association DataValues between
152 DataItem[*]
153 Data[1]
154 end
155

156 association DICat between
157 DataItem[*]
158 HIPAACat[*]
159 end
160

161 association DISource between
162 DataSource[0..1]
163 DataItem[*]
164 end
165

166 association EnteredOn between
167 DataItem[*] role item
168 Date[0..1] role date
169 end
170

171 association IRBMembers between
172 IRB[0..1] role irb
173 Personnel[1..*]
174 end
175

176 association PatientData between
177 Patient[0..1]
178 DataItem[*]
179 Consent[0..1]
180 end
181

182 association PermRules between
183 Permission[*]

341

184 Rule[1..*]
185 end
186

187 association ProjectAT between
188 Project[*]
189 AccessTicket[0..1]
190 end
191

192 association ProjectConsentAssssentReq between
193 Project[*]
194 PersonRole[*]
195 ConsentRequirement[0..1]
196 end
197

198 association ProjectDataCollector between
199 Project[*]
200 Personnel[0..1] role dc
201 end
202

203 association ProjectDataTransformRequired between
204 Project[*]
205 DataTransform[0..1]
206 end
207

208 association ProjectMembers between
209 Project[*] role proj
210 Researcher[*] role members
211 end
212

213 association ProjectPI between
214 Project[*] role pi_proj
215 Researcher[0..1] role pi
216 end
217

218 association ProjectQueries between
219 Project[*] /* relax from 1to * to allow generation program to work, enforced as 1in a

constraint */
220 Query[*]
221 end
222

223 association ProjectSources between
224 Project [*]
225 DataSource[*]
226 end
227

228 association ProjectSpecialResearch between
229 Project[*] role ssProject
230 SpecialSubject[*]
231 end
232

233 association QryWorksOn between
234 Query[*]
235 QryData[*]
236 end
237

238 association QryReturns between
239 Query[*] role qry
240 RetData[*] role rData
241 QryData[*] role qData
242 end
243

244 association RDType between

342

245 Query[*] role rd_qry
246 RetData[*] role rd_data
247 Type[0..1]
248 end
249

250 association SpecialPatient between
251 Patient [*]
252 SpecialPopn[*]
253 end
254

255 association WardAssociates between
256 WardOrg [*]
257 Person[1..*]
258 end

343

Listing E.3: Full USE Class Model for the NJH sysyem

1 /*
2 NJH Full
3

4 Written by Phillipa Bennett
5 Updated January 26, 2017
6 Version 5
7 */
8

9 model NJHgv_pc_full
10

11 /* Abstract CLASSES */
12 abstract class Category end
13 abstract class Consent end
14 abstract class ConsentRequirement end
15 abstract class Data end
16 abstract class DataSource end
17 abstract class DataTransform end
18 abstract class Permission end
19 abstract class PersonRole end
20 abstract class Purpose end
21 abstract class ResearchRisk end
22 abstract class Rule
23 attributes
24 operations
25 applyRule()
26 end
27 abstract class Status end
28

29 /* Extended abstract classes */
30 abstract class HIPAACat < Category end
31

32 class TotallyDeIDed < DataTransform end
33 class TotallyIDed < DataTransform end
34 class AllowDeIDed < DataTransform end
35

36 abstract class SpecialPopn < HIPAACat end
37

38 abstract class AccessTicket < Permission end
39 abstract class Licence < Permission end
40

41

42

43 class ResponsiblityRole < PersonRole end
44 abstract class SpecialSubject < PersonRole end
45

46 abstract class ChildrenResearchRisk < ResearchRisk end
47

48 abstract class AccessRule < Rule end
49 abstract class DecisionRule < Rule end
50

51 abstract class Type end
52

53 /* Extended concrete classes */
54 class ChildAdvocateForWardOfState < AccessRule end
55 class ChildAssentAndResponsibilityConsent < AccessRule end
56 class HideSpecialPopn < AccessRule end
57 class ChildAdvocateNotAssocWithResearchOrWardOrg < AccessRule end
58 class PatientConsent < AccessRule end
59 class TransformHDate < AccessRule end

344

60

61 class DeIDed < AccessTicket end
62 class Identified < AccessTicket end
63

64 class RiskNotAllowed < ChildrenResearchRisk end
65 class MinimalRisk < ChildrenResearchRisk end
66 class DirectBenefit < ChildrenResearchRisk end
67 class DirectBenefitGeneralisable < ChildrenResearchRisk end
68 class FurtherUnderstandingPreventionAlleviation < ChildrenResearchRisk end
69

70 class Allow < Consent end
71 class CannotGive < Consent end
72 class DisAllow < Consent end
73

74 class Required < ConsentRequirement end
75 class NotRequired < ConsentRequirement end
76

77 class Date < Data
78 attributes
79 day: Integer
80 month: Integer
81 year: Integer
82 operations
83 isIdentified(): Boolean
84 isNotIdentified(): Boolean
85 end
86

87 class HDate < HIPAACat end
88 class HIPAAChild < SpecialPopn end
89

90 class QryData < DataItem end
91 class RetData < DataItem end
92

93 class Project < DataSource end
94 class ClinicalDB < DataSource end
95

96 class CanUseTotallyDeIDed < DecisionRule end
97 class ClinicalDBNeedsDataCollector < DecisionRule end
98 class DataAccessAgreementPresent < DecisionRule end
99 class DataSourcePriorityOK < DecisionRule end

100 class LicenedTeamAndPI < DecisionRule end
101 class NoOverlapPITeamDCIRB < DecisionRule end
102 class NoSupsInPIandDC < DecisionRule end
103 class PIDefined < DecisionRule end
104 class ProjectMembersDefined < DecisionRule end
105 class QualifierPresent < DecisionRule end
106 class SomePurposeNotDirectTreatment < DecisionRule end
107 class SomeQueriesDefined < DecisionRule end
108 class SomeSourcesDefined < DecisionRule end
109 class SpecialResearchApproved < DecisionRule end
110

111 class Fishing < Licence end
112

113 class Patient < Person end
114 class Personnel < Person end
115 class Researcher < Personnel end
116 class Qualifier < Personnel
117 attributes
118 operations
119 QualifyResearcher(res: Researcher)
120 end
121

345

122 class DirectTreatment < Purpose end
123 class Research < Purpose end
124

125 class DownloadDisabled < Status end
126 class DownloadAllowed < Status end
127

128 class Parent < ResponsiblityRole end
129 class Guardian < ResponsiblityRole end
130 class WardOrg < ResponsiblityRole end
131

132 class Children < SpecialSubject end
133

134 class Individual < Type end
135 class Group < Type end
136

137 /* Unextended concrete classes */
138 class DataItem
139 attributes
140 name: String
141 end
142

143 class IRB end
144 class Person end
145

146 class Query
147 attributes
148 operations
149 runQuery(res: Researcher, proj: Project)
150 download()
151 view()
152 end
153

154

155 /* ASSOCIATIONS */
156 association ARAppliesTo between
157 AccessRule[*] role accessrule
158 Type[1..*] role type
159 end
160

161 association ARHides between
162 AccessRule[*]
163 Category[*]
164 end
165

166 association ARTransforms between
167 AccessRule[*] role hAccessRules
168 HIPAACat[*]
169 end
170

171 association ATPriority between
172 AccessTicket[*] role ant
173 AccessTicket[*] role desc
174 end
175

176 association ChildAdvocate between
177 Patient[*] role advocatePt
178 Person [0..1] role ptAdvocate
179 end
180

181 association ChildParticipationAssent between
182 Patient[*] role spPatient
183 Consent[*] role spPatientAssent

346

184 end
185

186 association ChildParticipationPerm between
187 ResponsiblityRole[*]
188 Person[*] role spPWPerson
189 Patient[*] role spPWPatient
190 Consent[0..1] role spPatientPerm
191 end
192

193 association DataAccessAgreement between
194 Project[*] role owner
195 Project[*] role user
196 end
197

198 association DataValues between
199 DataItem[*]
200 Data[1]
201 end
202

203 association DICat between
204 DataItem[*]
205 HIPAACat[*]
206 end
207

208 association DISource between
209 DataSource[0..1]
210 DataItem[*]
211 end
212

213 association EnteredOn between
214 DataItem[*] role item
215 Date[0..1] role date
216 end
217

218 association IRBMembers between
219 IRB[0..1] role irb
220 Personnel[1..*]
221 end
222

223 association PatientData between
224 Patient[0..1]
225 DataItem[*]
226 Consent[0..1]
227 end
228

229 association PermRules between
230 Permission[*]
231 Rule[1..*]
232 end
233

234 association ProjectAT between
235 Project[*]
236 AccessTicket[0..1]
237 end
238

239 association ProjectConsentAssentReq between
240 Project[*]
241 PersonRole[*]
242 ConsentRequirement[0..1]
243 end
244

245 association ProjectDataCollector between

347

246 Project[*]
247 Personnel[0..1] role dc
248 end
249

250 association ProjectDataTransformRequired between
251 Project[*]
252 DataTransform[0..1]
253 end
254

255 association ProjectMembers between
256 Project[*] role proj
257 Researcher[*] role members
258 end
259

260 association ProjectPI between
261 Project[*] role pi_proj
262 Researcher[0..1] role pi
263 end
264

265 association ProjectPurpose between
266 Project[*]
267 Purpose[0..1]
268 end
269

270 association ProjectQueries between
271 Project[*] /* relax from 1to * to allow generation program to work, enforced as 1in a

constraint */
272 Query[*]
273 end
274

275 association ProjectSources between
276 Project [*]
277 DataSource[*]
278 end
279

280 association ProjectSpecialResearch between
281 Project[*] role ssProject
282 SpecialSubject[*]
283 end
284

285 association ProjectSpecialResearchApproval between
286 Project[*] role spProject
287 SpecialSubject[*] role spSubject
288 ResearchRisk[0..1]
289 IRB[0..1] role irb
290 Consent[0..1]
291 end
292

293 association QryWorksOn between
294 Query[*]
295 QryData[*]
296 end
297

298 association QryReturns between
299 Query[*] role qry
300 RetData[*] role rData
301 QryData[*] role qData
302 end
303

304 association RDType between
305 Query[*] role rd_qry
306 RetData[*] role rd_data

348

307 Type[0..1]
308 end
309

310 association ResearcherL between
311 Researcher[*]
312 Licence[0..1]
313 end
314

315 association ResearcherQualifier between
316 Researcher[*]
317 Qualifier[0..1]
318 end
319

320 association SpecialPatient between
321 Patient [*]
322 SpecialPopn[*]
323 end
324

325 association Supervisors between
326 Personnel[*] role supervisor
327 Personnel[*] role supervised
328 end
329

330 association VDAllowed between
331 Query[*]
332 Status[0..1]
333 end
334

335 association WardAssociates between
336 WardOrg [*]
337 Person[1..*]
338 end

349

