DISSERTATION

A HYBRID MODEL CHECKING APPROACH TO ANALYSING RULE CONFORMANCE APPLIED

TO HIPAA PRIVACY RULES

Submitted by
Phillipa Bennett

Department of Computer Science

In partial fulfillment of the requirements
For the Degree of Doctor of Philosophy
Colorado State University
Fort Collins, Colorado

Summer 2017

Doctoral Committee:

Advisor: James Bieman
Co-Advisor: Geri Georg

Sudipto Ghosh
Daniel Turk

Copyright by Phillipa Bennett 2017

All Rights Reserved

ABSTRACT

A HYBRID MODEL CHECKING APPROACH TO ANALYSING RULE CONFORMANCE APPLIED

TO HIPAA PRIVACY RULES

Many of today’s computing systems must show evidence of conformance to rules. The rules may come from
business protocol choices or from multi-jurisdictional sources. Some examples are the rules that come from
the regulations in the Health Insurance Portability and Accountability Act (HIPAA) protecting the privacy
of patient information and the Family Educational Rights and Privacy Act (FERPA) protecting the privacy
of student education records. The rules impose additional requirements on already complex systems, and
rigorous analysis is needed to show that any system implementing the rules exhibit conformance. If the
analysis finds that a rule is not satisfied, we adjudge that the system fails conformance analysis and that it
contains a fault, and this fault must be located in the system and fixed.

The exhaustive analysis performed by Model Checking makes it suitable for showing that systems satisfy
conformance rules. Conformance rules may be viewed in two, sometimes overlapping, categories: process-
aware conformance rules that dictate process sequencing, and data-aware conformance rules that dictate
acceptable system states. Where conformance rules relate to privacy, the analysis performed in model check-
ing requires the examination of fine-grained structural details in the system state for showing conformance to
data-aware conformance rules. The analysis of these rules may cause model checking to be intractable due to
a state space explosion when there are too many system states or too many details in a system state. To over-
come this intractable complexity, various abstraction techniques have been proposed that achieve a smaller
abstracted system state model that is more amenable to model checking. These abstraction techniques
are not useful when the abstractions hide the details necessary to verify conformance. If non-conformance
occurs, the abstraction may not allow isolation of the fault. In this dissertation, we introduce a Hybrid
Model Checking Approach (HMCA) to analyse a system for both process- and data-aware conformance rules

without abstracting the details from a system’s detailed process- and data models.

ii

Model Checking requires an analysable model of the system under analysis called a program graph and a
representation of the rules that can be checked on the program graph. In our approach, we use connections
between a process-oriented (e.g. a Unified Modelling Language (UML) activity model) and a data-oriented
(e.g. UML class model) to create a unified paths-and-state system model. We represent this unified model
as a UML state machine. The rule-relevant part of the state machine along with a graph-oriented formalism
of the rules are the inputs to HMCA. The model checker uses an exhaustive unfolding of the program graph
to produce a transition system showing all the program graph’s reachable paths and states. Intractable
complexity during model checking is encountered when trying to create the transition system. In HMCA,
we use a divide and conquer approach that applies a slicing technique on the program graph to semi-
automatically produce the transition system by analysing each slice individually, and composing its result
with the results from other slices. Our ability to construct the transition system from the slices relieves a
traditional model checker of that step. We then return to use model checking techniques to verify whether
the transition system satisfies the rules. Since the analysis involves examining system states, if any of the
rules are not satisfied, we can isolate the specific location of the fault from the details contained in the slices.

We demonstrate our technique on an instance of a medical research system whose requirements include
the privacy rules mandated by HIPAA. Our technique found seeded faults for common mistakes in logic that

led to non-conformance and underspecification leading to conflicts of interests in personnel relationships.

iii

ACKNOWLEDGEMENTS

I remember when I was in high school, in sixth form as it is in the Caribbean, I decided that I would
pursue getting a Ph.D. As I write this acknowledgement, on the verge of defending this dissertation, I am
thankful for the fulfilment of this dream. Of course, I had a lot of inspiration along the way. For theis

inspiration, I would like to say to:

My mother Viviene Bennett, thank you for your inspiration and unswerving devotion. You are my

greatest cheerleader.

e My high school math teacher, Ms. Allen who taught me from first through fifth form, thank you for

teaching math in such a way that I loved it.

e My high school sixth form geography teacher (whose name I have now forgotten) who inspired me to

dream this dream.

e Dr. Ezra Mugisa, affectionately known as Doc, at the University of the West Indies, Mona, where I

obtained my undergraduate and masters degrees, thank you for your continued mentorship.

e My previous advisor here at Colorado State University, Dr. Robert France who passed away during

my studies, I am forever indebted to you for your patience and mentoring.

e My current advisors Prof. James Bieman and Dr. Geri Georg, you both have encouraged me in more

ways than in dissertation writing. I have many life lessons from relating with you.

I appreciate you all.

DEDICATION

To Moms, who stayed with her children in spite of the lure to greener pastures.

TABLE OF CONTENTS

ABSTRACT . . . o ii
ACKNOWLEDGEMENTS e e s e e e e s iv
DEDICATION o e e v
LIST OF TABLES e e s s xiv
LIST OF FIGURES e e e e e e s XV
LIST OF ALGORITHMS e e e e e e e e e s xxi
LIST OF LISTINGS o e e e e s s s xxii
1 Imtroduction L e e e 1
1.1 Conformance Analysis in Practice. L oo 1

1.2 Challenges in Conformance Analysis 2
1.3 Hybrid Model Checking Approach (HMCA) to Conformance Analysis 4
1.3.1 Model Rule Conformance in terms of Model Checking 5

1.3.1.1 Construct Program graph 0. 5

1.3.1.2 Construct Conformance Rule Representation 6

1.3.2 Conformance Analysis e 6

1.3.3 Provide Feedback e 7

1.3.4 Addressing Challenges and HMCA Contributions 7

1.4 Evaluation L 8

1.5 Document Organisation e 9

2 Related Work o L e e 11
2.1 RCA Approaches e 11
2.1.1 General Complexity Handlingin RCA 11

vi

2.1.1.1 Odessa e 11

2.1.1.2 System Logs and Petri Net Decomposition 12

2.1.2 Bottlenecks in Weak and Strong Conformance 12
2.1.3 Compliance Monitoring and Conformance Checking 12

2.2 Process and Data-aware rules Lo 13
2.3 Conformance Rules e 15
2.3.1 Checklists in Rule Conformance 15
2.3.2 Generalised Rule Specifications Lo o 15
2.3.2.1 Dwyer’s Patterns. 15

2.3.2.2 Reference Architectures as Rules 16

2.3.3 Formal Languages to Encode Legal Requirements. 16

2.4 Summary and Open Problems L e 17
Background e e 21
31 Alloy . . . o 21
3.2 Model Checking e 22
3.3 Slicing o e 23
34 NJH Systemo e 23
3.4.1 System Components of Interest oo 24
Motivating HMCA: Naive RCA e 26
4.1 Evaluation Design L 26
4.1.1 Questions e 26
4.1.2 NJH System Operations and Data of Interest 26
4.1.3 Rules o 27

4.2 Rule Conformance Analysis (RCA) using the Alloy Analyzer 27
4.2.1 Overview of Alloy L 27
4.2.2 Alloy Specifications L e 29

vii

4.2.3 Model Execution Results in the Alloy Analyzer 29

4.3 RCA using Promela/Spin 31

4.3.1 Overview of Spin/Promela. Lo L 31

4.3.2 National Jewish Health (NJH) Promela Specifications 32

4.3.3 Promela Model Verification Results in Spin 33

4.3.3.1 Evaluating Promela/Spin on a Small Model 33

4.3.3.2 NJHModel e 38

4.4 Discussion of Results and Summary L Lo 40

5 HMCA and NJH 42

5.1 Phase 1: Model Construction 42

5.1.1 Construct Activity Model and Class Model 42

5.1.2 Construct Entity Views 43

5.1.2.1 Individual Entity Views Lo 43

5.1.2.2 Composing Entity Views L oo 45

5.1.3 Modelling Conformance Rules 45

5.1.4 Map Rule Specific Entity Views to System Models 47

5.1.4.1 Map Operations to Activities in the Activity Model 47

5.1.4.2 Map Atomic Propositions to Concrete Class Model Elements 47

5.1.5 Annotate Activity Diagram with Details from the Class Model 49
5.1.6 Create Concrete Rule Specific State Machine from Annotated Activity Diagram and

Entity Views e 49

5.2 Phase 2: Model Analysis 51

5.2.1 Identifying the Slice of Interest 52

5.2.2 Adding Operation Specification 52

5.2.3 Probing the Illegal State. L 53

5.2.4 Determining Operation States. 54

5.3 Phase 3: Results and Feedback 55

viii

6 HMCA OVerview e e 60

6.1 HMCA Generalisation 60
6.2 Construct 62
6.3 Analyse 64
6.4 Provide Feedback 66
7 Non-Conformance Feedback 68
7.1 Updating NJH Models e 68
7.1.1 Entity Views oL 68
7.1.1.1 Individual Entity Views L o 68

7.1.1.2 Rule Specific Entity View o 69

7.1.2 HIPAA Conformance Rules 70
7.1.2.1 De-identified Conformance Rule 70

7.1.2.2 Identified Conformance Rules. 72

7.1.3 Class Models and Activity Model Annotations 72
7.1.3.1 Class Model e 72

7.1.3.2 Activity Model Annotations oL 72

714 Analysis 76
7141 Slicing o oo 76

7.1.4.2 Transition Systems oL o 7

7.1.4.3 Understanding Non-Conformance 7

7.2 Feedback Context and Overview e 80
7.3 USE Tool Object Model Generator 89
7.3.1 Object Model Generation Commands 90

7.4 USE Specifications e e 91
7.5 Detailed Algorithms: How to Construct the Object Model for the Feedback 92
7.5.1 Represent Alloy Slice as a UML USE Object Model 92
7.5.2 Generate Feedback as a Complete Object Model 92

7.6 Examining Object Models e 95

T7 SUIMIATY .« . o o o v v et e e e e e e e e e e 106

8 Validating HMCA L e 107
8.1 Introduction e 107
8.2 Adding a New Parts to HIPAA Conformance Rule: Exposing Faulty Logic 107
8.2.1 Updating Conformance Rule for the Identified Access Ticket 107

8.2.2 Alloy Specifications 111

8.2.3 Examining Feedback Object Models 113

8.2.4 Understanding Why Non-Conformance Occurs 113

8.3 Adding a New NJH Conformance Rule: Identifying Conflict of Interest Situations. 118
8.3.1 DC Conflict of Interest Case 1 e 120

8.3.2 DC Conflict of Interest Case 2 122

8.3.3 DC Conflict of Interest Case 3 122

8.3.4 DC Conflict of Interest Case 4« . . e 122

8.3.5 Eliminate DC Conflicts of Interest 130

8.4 SUMIMATY . . .« . . o e 130

9 Children Special Population 135
9.1 Imtroduction e 135
9.2 Requirements for Protecting Children in the HIPAA Regulations 135
9.2.1 Approving Access Tickets to Use Children Protected Populations 136

9.2.2 Executing Queries With Access Tickets Approved for Children Protected Populations 139

9.2.2.1 Potential Conflict of Interests Not Considered under HIPAA 148

0.3 SUMINATY . . .« o v ottt e e e e 148

10 How to Apply HMCA o e 157
10.1 Introduction L e 157
10.2 Overall Prerequisites for Applying HMCA, 158

10.3 Construction Phase e 158

10.3.1 Prerequisites e e 158
10.3.2 Steps . . o o o e 159
10.3.2.1 Step 1: Construct UML Activity Model 159
10.3.2.2 Step 2: Construct UML Class Model 159
10.3.2.3 Step 3: Construct Individual Entity Views 160
10.3.2.4 Step 4: Construct Non-deterministic Finite Automata (NFA) Rules 161
10.3.2.5 Step 5: Generate RSEV and MRSEV 161

10.3.3 Automation and Tool Support 162
10.4 Analysis Phase 163
10.4.1 Prerequisites e 163
10.4.2 Steps e e 163
10.4.2.1 Step 1: Model Slicing L 163
10.4.2.2 Step 2: Alloy Specification and Analysis 164
10.4.2.3 Step 3: Generating the TS o o 165
10.4.2.4 Step 4: Check Conformance Rule 165

10.4.3 Automation and Tool Support 165
10.4.3.1 Manual Tasks 166
10.4.3.2 Automated Tasks L 166

10.5 Feedback Phase L 167
10.5.1 Prerequisites e 167
10.5.2 SEEPS .« o v o o e 167
10.5.2.1 Step 1: Extract Alloy Counterexample 167
10.5.2.2 Step 2: Generate UML Object Models 167
10.5.2.3 Step 3: On-Demand Feedback 168
10.5.2.4 Step 4: Update Models (and Re-Analyse) 168

10.5.3 Automation and Tool Support 169

xi

10.5.3.1 Automated Taskso

10.5.3.2 Manual Tasks

11 Insights e
11.1 Impact of New Information on Previously Defined Rules
11.2 Managing Specification Size Complexity
11.3 Understanding Tool Nuances: Translating Alloy Specifications into OCL Specifications

11.3.1 Reasoning About Closures e
11.3.2 Imtra Association Constraints
11.3.2.1 Why ¢35 is Difficult to Specify. oo oL
11.3.2.2 Making c3 Specifiable in OCL
11.3.2.3 Semantics and Scoping Constraints that Affected ecs
11.3.3 Ternary Relations and Multiplicities

11.4 Summary o e e e e e

12 Conclusions and Future Directions L
12.1 HMCA Contribution Conclusions
12.2 Limitations of HMCA e
12.3 Future directions L e

12.3.1 Analysing Changed and Conflicting Rules
12.3.2 Hidden path analysis
12.3.3 Alternate Rule Representations oL

12.3.4 How much Feedback to Show

13 BIBLIOGRAPHY e

Appendix A Motivating HMCA: NJH Specification Models
A.1 Promela Model e

A2 Alloy Models e e

xii

Appendix B Initial Specifications 245

B.1 Alloy Model Slice for the Query Operation 245
B.2 Important Model Checks e 256
Appendix C Feedback Specifications L 258
C.1 Counterexample in the CheckConformance Operation 258
C.1.1 Slice 5: Alloy Specifications 258

C.1.2 Slice 5: Alloy Counterexample XML representation 259

C.1.3 Slice 5: Alloy Counterexample USE representation (see Figure 7.17 for a graphical

representation of the object model) Lo Lo oo L 265

C.2 USE Commands for Generating On-Demand Object Models in the NJH System 266
C.2.1 USE Class Models o e 266
C.2.2 OCLConstraints e 274
C.2.3 ASSL Procedures L 280
C.2.4 SOIL Commands vttt e e 292
C.2.5 USE Commands to Generate On-Demand Feedback 295
Appendix D Validating Specifications L 298
D.1 Updated Alloy Specifications L e 298
D.1.1 Alloy Specifications for Slice 3 to Approve Access Ticket 298
D.1.2 Alloy Specifications for Slice 5 to Check Conformance 314

D.2 Updated UML Specification Environment (USE) Class Model Specifications and Constraints

for Slice 3 to ApproveAccessTicket Operation 330

Appendix E Children Protected Population Specifications 335
E.1 Updated USE Class Model Specifications and Constraints for Slice 3 to ApproveAccessTicket

Operation e 335

xiii

2.1

2.2

4.1

4.2

4.3

4.4

4.5

4.6

B.1

LIST OF TABLES

Dwyer’s Patterns [32, 33| for Specifying Conformance Rules, adapted. 16
Related Work Summary Lo e 18
Verification Details for Alloy Predicates and Assertions in Table Notes 30
Computer Specifications for Verification L oL 33
Verification Itl1 in t1 for M =3 o 36
Verification of Itl1 in ¢t for M =4 e 37
Verification of {tl1 in t1 for M =5 39
Verification Details for Spin Model without Analysing Process-Aware Rule or Never-Claim . . . 40
Important Model Checks for the runQuery method 257

Xiv

4.1

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6.1

6.2

6.3

6.4

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

LIST OF FIGURES

Class Model for the NJH system supporting the operations in Section 4.1.2 28
Researcher/Project Entity View e 44
Patient Health Information Entity View for De-identified Access 45
De-identified Rule Specific Entity View 46
Graph Formalism for the HIPAA De-identified Rule 47
AD Segment for De-identified Health Information Access 48
System State of Interest to De-identified Query, View, and Download Actions 50
Transition System Indicating Conformance to the De-identified Rule 55
Transition System Indicating Non-Conformance to the De-identified Rule 56
Non-Conformance: Query2 returns Identified Data 58
Generalised HMCA e e 61
Constructing in HMCA 63
Analysing in HMCA e 65
Feedback in HMCA e 67
Researcher Entity View (Updated from Figure 5.1), 69
Patient Health Information Entity View (Updated from Figure 5.2) 69
Identified and DelDed Rules Specific Entity View 70
Conformance Rules as NFA for the Identified and DelDed access tickets 71

NJH Unsliced Class Model: Includes all AccessRules and DecisionRules and Children as Protected

Population e 73
Conformance Rules as Graph Formalisms for the Identified and DelDed access tickets 78
Illegal states for the DelDed access ticket 79
Illegal states for the Identified access ticket with a TotallyIDed data transformation 81

XV

7.9 NJH Class Model: Capturing Model Elements for Qualifier Researcher to Checking Access Ticket

Conformance on Query Results 82
7.10 Slice 1 (S1) - Qualifier Researcher Slice L 84
7.11 Slice 2 (S2) - Approve Researcher Licence Slice, . 85
7.12 Slice 3 (S3) - Approve Project Access Ticket Slice 86
7.13 Slice 4 (S4) (excludes shaded areas) - Data Collector, PI, or Researcher Runs Query Slice 87
7.14 Slice 5 (S5) - Check Conformance Slice 88
7.15 Alloy Analyzer Conformance Counterexample in Slice 5 96
7.16 Class Model for Slice 5 e 97
7.17 Non-Conformance Object Model for Slice 5 98
7.18 Class Model for Slice 4 Outlining Overlapping Model Elements in Slices 5and 4 100
7.19 Class Model for Slice 3 Outlining Overlapping Model Elements in Slices 4 and 3 102

7.20 Non-Conformance Object Model for Slice 4 Identifying Failure and the Fault. (overlapping objects

with Slice 5 are highlighted) 103
7.21 Object Model for Slice 3 (overlapping objects with Slice 4 are highlighted) 104
7.22 Merged Object Model for Slices 3, 4, and 5. Slice 3 is outlined by the purple dashed line, Slice 4

is outlined by the blue dashed line, Slice 5 is outlined by the green dashed line, and the Failure

is outlined by the yellow dashed line. 105

8.1 Updated Class Model for Slice 3 Outlining ProjectDataTransformRequired Association Now Re-
quired in Slice 5 L e 109
8.2 Updated Class Model for Slice 5 with the Now Required ProjectDataTransformRequired Associ-
ation Required to Check Conformance i 110
8.3 Non-Conformance in Slice 5 when an Identified Access Ticket is used and a TotallyIDed Data
Transform is Required e 114
8.4 Conformance in Slice 5 when an DelDed Access Ticket is used and a TotallyIDeDed Data Trans-

form is Required 115

xvi

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

8.15

8.16

Conformance in Slice 5 when an Identified Access Ticket is used and an AllowIDed Data Transform
is Required 116
Partial Class Diagram Slice extracted from Slice 3 Showing Personnel Relationships influencing
Access Ticket Approval e e 119
DC' Conflict of Interest Project’s PI supervises Project’s DC' : Project2’s PI Personnel5 directly
supervises its DC' Personnell. e 121
DC Conflict of Interest Project’s PI indirectly supervises Project’s DC' : Project1’s PI Personnell
indirectly supervises its DC Personnel(. 123
DC Conflict of Interest, Supervision of Project’s Direct Source’s DC' by Project’s PI: Project2
has Source Project0, and Project2’s PI, Personnell, supervises Project0’s DC, Personnel3.. . . . 124
DC Conflict of Interest, Supervision of Project’s Indirect Source’s DC' by Project’s PI: Project3
has indirect Source Projectl and Project3’s PI Personnel3 directly supervises Projectl’s DC
Personnel(. e e e 125
DC Conflict of Interest, Indirect Supervision of Project’s Indirect Source’s DC by Project’s
PI: Project3 has indirect Source Projectl and Project3’s PI Personnell indirectly supervises
Project1’s DC Personnel2. e e e 126
DC Conflict of Interest, Project’s Direct Source’s DC' is the same as the Project’s PI: Project2
has a Source Project0, and Project2’s PI Project0’s DC are the same, Personnel2. 127
DC Conflict of Interest, Project’s Indirect Source’s DC' is the same as the Project’s PI: Project3
has indirect data source Projectl, yet Project3’s PI is the same as Projectl’s DC Personnell. . . 128
DC Conflict of Interest, Project’s PI is the same as the DC' for one of it Direct Sources: Project2
has a Source Project0 and one of Project2’s PMs Project(’s data collector are the same, Personnel2.129
DC Conflict of Interest, Project’s PI is the same as the DC for one of it Indirect Sources: Project3
has indirect Source Projectl, and one of Project3’s PMs is the same as Projectl’s DC' Personnel2.131
Updated Slice 3 with DecisionRules for Conflict Of Interest Situations Outlined by the Red

Dotted Lline 132

xvii

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

Updated Class Model for Slice 3 Supporting Children as a Protected Population (new class model
elements outlined by the dashed red lines) Lo oL
Slice 3 Object Model for approved Identified access ticket for Project-1 using all DecisionRules
(see annotation 5). Also to use the data for the children protected population, each child and
parent/guardian/ward organisation of the cild must give explicit assent and consent respectively
(see annotation numbered 6). Numbered annotations correspond to associations so numbered in
Figure 9.1 and explained in Section 9.2.1. L o
Slice 3 Object Model for Unapproved, i.e., cannot be approved, Identified access ticket for
Project_1 using new DecisionRules because the IRB has determined that RiskNotAllowed. Num-
bered annotations correspond to associations so numbered in Figure 9.1 and explained in Section
0.2.1. e
Slice 3 Object Model for unapproved, i.e., cannot be approved, Identified access ticket for Project_1
using new DecisionRules because of a conflict of interest: Personnell is an IRBMember and
the ProjectDataDollector for Project_1. Numbered annotations correspond to associations so
numbered in Figure 9.1 and explained in Section 9.2.1.
Slice 3 Object Model for Unapproved, i.e., cannot be approved, DelDed Access Ticket for Project_1
using New DecisionRules because a DelDed access ticket cannot be used to access protected
populations. Numbered annotations correspond to associations so numbered in Figure 9.1 and
explained in Section 9.2.1.
Class Model Elements from Slice 3 Overlapping in Slice 4 (outlined by the dashed red line)
Updated Class Model for Slice 4 Supporting Children as Protected Population: new elements
outlined by the dashed red line
Object Model For Slice 4 showing that Query_0 correctly accesses and returns QryData2, the
data for Patient2 identified as a HIPAAChild, because no AccessRule prohibits access (focus is on
relationships in the area highlighted in yellow). Numbered annotations correspond to associations

so numbered in Figure 9.7 and explained in Section 9.2.2.

xviii

142

143

. 144

9.9

9.10

9.11

9.12

Access Denial Scenario 1: (Partial) Object Model for Slice 4 showing that Query_0 must be
denied access to Dataltem2 belonging to Patient2 (focus is on relationships in the area high-
lighted in yellow). This is because the ChildAssentAndResponsibilityConsent AccessRule and the
ProjectConsentAssentReq (see line annotated with 6) require that Patient2 give Allow assent to
participate in the research - yet the ChildParticipationAssent association link to Patient2 (see
association annotated with 8) shows DisAllow. Numbered annotations correspond to associations
so numbered in Figure 9.7 and explained in Section 9.2.2.
Access Denial Scenario 2: (Partial) Object Model for Slice 4 showing that Query_0 must be denied
access to Dataltem2 belonging to Patient2 (focus is on relationships in the area highlighted in
yellow). This is because the ChildAdvocateFor WardOfState AccessRule requires that Patient2,
a ward of WardOrgl, be associated with an advocate through the ChildAdvocate, yet this link
is missing. Numbered annotations correspond to associations so numbered in Figure 9.7 and
explained in Section 9.2.2. L
Access Denial Scenario 3: (Partial) Object Model for Slice 4 showing that Query-0 must be denied
access to Dataltem2 belonging to Patient2 (focus is on relationships in the area highlighted in
yellow). This is because the ChildAdvocateNotAssoc WithResearchOrWardOrg AccessRule does
not allow Patient2’s Advocate Personnell (see line annotated with 11), to be associated with the
institution that has responsibility for Patient2 (see line annotated with 12 from Personnell and
ChildParticipationPerm annotated with 7). Numbered annotations correspond to associations so
numbered in Figure 9.7 and explained in Section 9.2.2. oL oL
Access Denial Scenario 4: (Partial) Object Model for Slice 4 showing that Query_0 must be de-
nied access to Dataltem2 belonging to Patient2 (focus is on relationships in the area highlighted
in yellow). This is because the HideSpecialPopulation AccessRule does not allow a DelDed ac-
cess ticket (see line annotated with 5) to access protected populations. Numbered annotations

correspond to associations so numbered in Figure 9.7 and explained in Section 9.2.2.

Xix

151

152

153

9.13 Potential Conflict of Interest: (Partial) Object Model for Slice 4 showing that the parent of
Patient2, Personnel2 (see association annotated with 7) is an IRBMember (see line annotated

with 3). Focus is on relationships in the area highlighted in yellow. Numbered annotations

correspond to associations so numbered in Figure 9.7 and explained in Section 9.2.2. 154
11.1 Class Model for discussing tool nuances i 173
11.2 Supervisors Association in S3 L 175
11.3 Slice: Partial slice of S4 highlighting the RDType Association. 182

XX

LIST OF ALGORITHMS

Generate On-Demand Feedback Object Model Sequence Construction 92
Convert Alloy Instance to USE UML Object Model 93
Extract Overlapping Objects 93
Complete Feedback o 93
Create Potential Objects e 94
Create Potential Associations 94
Cleanup Object Model - Delete Unused Potential Objects 94

xxi

LIST OF LISTINGS

4.1 t;, a Promela Example: non-deterministic add and remove 3 known values from a channel 34
5.1 Alloy Signatures e e e e 52
5.2 Alloy Relationships o o 52
5.3 Probing runQuery Model for the Identified State 53
5.4 Executing AlwaysDelDedConformance 53
5.5 Testing runQuery Model for the De-identified State 54
5.6 Probing for Conformance when Data is Properly Categorised 55
5.7 Probing for a Non-Conformance Instance when a Data Item is Improperly Categorised 57
8.1 HIPAA Conformance Specifications: VDAllowed isset 111
8.2 Helper Predicates used to Check Conformance 112
11.1 Defining DataAccessAgreement in Alloy o 172
11.2 Defining DataAccessAgreement in the USE for OCL 172
11.3 Defining Constraint for DataAccessAgreement in Alloy 174
11.4 Defining Irreflexive Binary Relations in Alloy 174
11.5 Defining Constraint for DataAccessAgreement in OCL 174
11.6 Defining QryReturns and QryWorksOn in Alloy 177
11.7 Defining Constraint for Relationship between QryReturns and QryWorksOn in Alloy 177
11.8 Definition of Associations for QryReturns, QryWorksOn and RDType in USE 178
11.9 Incorrect Definition of Constraint between QryReturns RDType in OCL 179
11.10 Definition of Constraint between QryReturns RDType in OCL 180
11.11 Definition of Constraint between QryReturns RDType in USE 180
11.12 Definition of Constraint between QryReturns RDType in OCL 180

A.1 NJH Promela model for approving an access ticket using the NoSupsInPlandDC decision rule . . 202
A.2 Full NJH structural model, i.e., without additional constraints, operation specifications, or con-

formance rules. These are added in Listing A.3 through Listing A.8 209

xxii

A.3 Full NJH structural model: adding constraints. Imports Listing A.2 on line 24.
A4 Full NJH structural model: adding operation specifications. Imports Listing A.3 on line 9.
A.5 Full NJH structural model: adding LTL rules. imports Listing A.4 on line 11.
B.1 Slice 4: runQueryAlloy Specifications
C.1 Slice 5: CheckConformance XML Counterexample
C.2 Slice 5: CheckConformance USE Counterexample
C.3 USFE Class Model for Slice 5 to Check Conformance
C.4 USE Class Model for Slice 4 to Execute Query v i
C.5 USFE Class Model for Slice 8 to Approve Access Ticket
C.6 USE Constraints applicable only to Slices 2, and 3 to Approve Researcher’s Licence and Approve
Access Ticket respectively - filename reference for listings in Section C.2.5 is slice_23g.cnsts . . .
C.7 USE Constraints applicable only to Slices 2, 3, and 4 to Approve Researcher’s Licence, Approve
Access Ticket, and Execute Query respectively - filename reference for listings in Section C.2.5 is
Slice_234g.cnstso e e e e
C.8 USFE Constraints applicable only to Slices 8 and 4 to Approve Access Ticket and Ezecute Query
respectively - filename reference for listings in Section C.2.5 is slice_34g.cnsts
C.9 USE Constraints applicable only to Slices 3, 4 and 5 to Approve Researcher’s Licence, Approve
Access Ticket, and Execute Query respectively - filename reference for listings in Section C.2.5 is
slice_345g.cnsts oL L e e e
C.10 USE Constraints applicable only to Slices 4 and 5 to Fxecute Query and Check Conformance
respectively - filename reference for listings in Section C.2.5 is slice_{5g.cnsts
C.11 USE Constraints applicable only to Slice 5 to Check Conformance, filename reference for listings
in Section C.2.5 is slice_5g_1.cnsts e
C.12 USE Constraints applicable only to Slice 5 to Check Conformance, filename reference for listings
in Section C.2.5 is slice_5g_2.cnsts e e
C.13 USE Constraints applicable only to Slice 4 to Fxecute Query - filename reference for listings in

Section C.2.5 is slice_fg.cnsts e

xxiii

274

C.14 OCL Constraints applicable only to Slice 8 to Approve Access Ticket - filename reference for

listings in Section C.2.5 is slice_8g.cmsts 278
C.15 ASSL Procedures for Slice 4 to Execute Query o v v i it i 280
C.16 ASSL Procedures for Slice 8 to Approve Access ticket 288

C.17 SOIL Commands used to re-create objects from slice 5 needed in other slices - filename reference

for listings in Section C.2.5 is slice_5_overlap\ overlapping_objects_1.soil 292
C.18 SOIL Commands used to re-create objects from slice 5 needed in other slices - filename reference

for listings in Section C.2.5 is slice_5_overlap\ overlapping_objects_2.soil 292
C.19 SOIL Commands used to re-create objects from slice 5 needed in other slices - filename reference

for listings in Section C.2.5 is slice_5_overlap\ overlapping_objects_3.soil 292
C.20 SOIL Commands used to re-create objects from slice 5 needed in other slices - filename reference

for listings in Section C.2.5 is slice_5_overlap\ overlapping_objects_4.soil 292
C.21 SOIL Commands used to re-create objects from slice 5 needed in other slices - filename reference

for listings in Section C.2.5 is slice_5_overlap\ overlapping_objects_5.soil 292
C.22 SOIL Commands used to re-create objects from slice 4 meeded in slice 3 - filename reference for

listings in Section C.2.5 is slice_{_overlap\overlapping_objects_1.soil 293
C.23 SOIL Commands used to re-create objects from slice 4 meeded in slice 8 - filename reference for

listings in Section C.2.5 is slice_4_overlap\ overlapping_objects_2.soil 293

C.24 SOIL Commands used to re-create objects from slice 4 needed in slice 8 - filename reference for

listings in Section C.2.5 is slice__overlap\ overlapping_objects_3.soil 293
C.25 USE Commands to Generate Object Model for Slice 4 to Execute Query 295
C.26 USE Commands to Generate Object Model for Slice 3 to Approve Access Ticket 297
D.1 Updated Alloy Specifications for Slice 8 to Approve Access Ticket 298
D.2 Updated Alloy Specifications for Slice 5 to CheckConformance 314
D.3 USE Class Model for Slice 3 to Approve Access Ticket 330
D.4 USE Class Model for Slice 5 to Check Conformance 332

XXiv

D.5

E.l

E.2

E3

Additional USE Constraints applicable only to Slices 3 and 5 to Approve Access Ticket and Check

Conformance respectively e 334
USE Class Model for Slice 3 to Approve Access Ticket 335
USE Class Model for Slice 4 to Execute Query i 339
Full USE Class Model for the NJH sysyem v i i i .. 344

XXV

1. INTRODUCTION

Conformance analysis in systems can be non-trivial because of system size and of the complex interplay of
conformance requirements from different sources. The requirements are imposed through rules that stem from
business protocol choices or from legal and standards regulations. Examples of standards and regulations
include the Health Insurance Portability and Accountability Act (HIPAA) [2, 3] and the Gramm-Leach-
Bliley Act (GLBA) [77] that apply to the privacy of non-public health information and financial information
respectively. A system that is governed either by HIPAA or by GLBA must not only show conformance to the
format of information shared with others, but also to the processes accessing and updating the information.

For example, the HIPAA regulations tells us:

1. that totally de-identified patient health information may be shared with researchers;

2. that total de-identification means that the patient’s health information does not contain any data that

can be used to identify or link to other data sets to identify the patient; and

3. which pieces of data can identify a patient.

These ensure that the patient’s privacy is protected, while still allowing researchers access to medical records

for conducting research.

1.1 Conformance Analysis in Practice

The main approach to conformance analysis has been to use model checking [17, 27, 33, 32, 52, 60, 62,
58, 59, 71]. Model checking is an exhaustive model-based verification technique [14] that relies on having
an abstraction of a system represented as a program graph that is a unified representation for both order of
process execution on paths and system structural (hereafter referred to as state) changes along the paths.
The model checker uses an exhaustive unfolding of the program graph to produce a transition system showing
all the program graph’s reachable paths and states. Properties that depend on the sequencing or occurrence
of system processes on paths and/or states are then verified on the transition system. The model checker
can tell us whether 1) a property is satisfied, 2) it is not satisfied by producing a counterexample from the

transition system, and 3) in some cases that it is neither possible to prove nor disprove a property. For the

last situation, a model checker may not be able to give a definite answer due to space and time complexities
or insufficient detail in the model. While the latter situation will not be examined as a part of this research,

we note that:

1. if the model checker is not able to give an answer due to space and time complexities, it may mean the
program graph need to be represented more abstractly (and details needed to show conformance may

be los)t;

2. if there is insufficient detail in the model, it may mean that the property cannot be verified using the

abstractions in the model and both the program graph and/or the property may need revisions; and

3. after the revisions the property may need to be reanalysed.

1.2 Challenges in Conformance Analysis

In order to use model checking in conformance analysis, we identify six challenges below.

1. Rule Representation. The rules are often published informally or in legal terms and are not under-
standable by automated systems [27, 30, 40]. Any effort to show conformance to these rules requires a
language for representing the rules to be used as input for conformance analysis. In addition, since it is
the actions executed and the corresponding system state changes that are analysed to determine rule
conformance, we must be able to define the rules based on the observable actions and states shown in

the transition system.

2. Changing Rules. Changed rules [61] represent changed contexts in which to show conformance. For
example, data mining techniques may be used to search for new relationships or linkages in data. If
the newly revealed relationships can be used to make inferences and potentially identify subjects [12],
then, especially where conformance rules address privacy concerns, rule in the system must be changed.
To address this challenge, changes made to conformance rules must be re-verified on a system that
previously passed conformance. In addition, applying versioning to a rule base may be important in

identifying the version of a rule to which a system conforms.

3. Rule Types. Conformance rules may be process-aware [21, 58, 61] and/or data-aware [27, 52]. Process-
aware rules are defined using regular patterns on the sequencing of processes, while data-aware rules
are defined using system states to say what conformance means. Conformance analysis for each type
of rule has different requirements. For example, in model checking showing conformance to data-
aware rules may require additional computations and sophisticated techniques than those required for
checking process-aware rules to handle large state spaces. This is because the number of processes may
be considerably smaller than the size of the state space in a concrete system representation, so process-
aware rules may have far less computational requirements or require less sophisticated techniques. To
demonstrate conformance therefore, a requirement in this challenge is to be able to show conformance

to data-aware rules without the need to use abstractions of details.

4. System Complezity. For conformance analysis, the complexity of a system may depend on whether
the system enforces a large set of rules that may have interdependencies and conflicts, and/or a large
amount of data with complex relationships. Where rules conflict, we may need additional mechanisms
to prioritise conformance rule satisfaction. Such prioritisation may also be used to provide metrics that
measure system conformance levels [61]. In addition, different system abstractions (representations)
may hide the system complexity. For example, showing conformance on implementations reveals an
aspect of complexity - unbounded and/or unanticipated executions paths and system state. These
aspects may not be encountered when showing conformance on system design specifications because
designs may not fully capture all of the ways software will be used. In addition, showing system
conformance a priori by examining requirements, designs or at run-time, or a posteriori by examining
audit logs of system executions against a model of what is expected, may all be important in system

conformance analysis.

5. Hidden Paths. Conformance analysis failure, i.e., non-conformance to rules, due to privacy leaks occur
because of the presence of hidden paths in the system. Hidden paths may exist when a system is
used in non-standard ways because loopholes exist in the system, or when rules that should change
in response to new and/or changed functionalities in the system are not changed. The fifth challenge

therefore is to be able to identify such potential and preventable rule violations [62].

6. Model Granularity and Analysis Results. We need to present meaningful analysis results so that rule
conformance failure can be properly linked to specific system actions and states [13, 52, 61]. For this,
we need a system representation with enough granularity to find and isolate the fault causing the

failure.

Showing conformance to process-aware rules is one of the strengths of model checking [58, 61, 85, 86]
because large, i.e. high-level, abstractions can be applied to the states resulting in smaller computation
and memory requirements. On the other hand, showing conformance to data-aware rules may cause the
model checker to hang because of a state space explosion when there are too many states or details of
states to consider. Conformance analysis has been successfully demonstrated for process-aware rules [61].
Approaches for showing conformance to data-aware rules may be less successful since they also employ large
abstractions for the system states to overcome the intractable complexities [27, 52]. In situations where
showing satisfaction to data-aware rules require analysing detailed and/or concrete system states, applying
abstractions is not a feasible solution in conformance analysis because the abstractions hide the very details
needed to check conformance. In order to handle the analysis of detailed system states when verifying
data-aware rules this dissertation proposes and outlines a hybrid model checking approach (HMCA) for rule

conformance analysis (RCA).

1.3 Hybrid Model Checking Approach (HMCA) to Conformance Analysis

HMCA is proposed for use in RCA to overcome the intractable analysis of current model checking tools

when checking data-aware rules. We propose HMCA as a hybrid approach because it:
1. offers exhaustive analysis within a certain scope; and

2. does not use current model checking tools, but proposes the use of other modeling and analysis tools.

As with model checking, RCA using HMCA consists of constructing models, including conformance rule
representations, then analysing the models, and finally providing feedback for conformance rule violations.
We discuss an overview of our model construction in Section 1.3.1, analysis in Section 1.3.2, and providing
feedback in Section 1.3.3. In Section 1.3.4 we outline the contributions HMCA makes in reference to the

challenges discussed in Section 1.2.

1.3.1 MobDEL RULE CONFORMANCE IN TERMS OF MODEL CHECKING

In order to use model checking in RCA, we need to construct an analysable system program graph and

conformance rule representation.

1.8.1.1 Construct Program graph

For constructing our analysable system program graph, we start with both a UML activity model as a
representation of (the human system interactions) as paths in the system, and a UML design class model
where the operations have pre- and post conditions as a representation of the overall system state. Both
these models are constructed using details provided by a domain expert for the system under analysis and
by an analyst with expertise in constructing the models.

We propose a technique to add details to the the activity diagram by associating it with details from
the class diagram to produce an annotated activity model. We then transform the annotated activity model
to a UML system state machine model as the latter closely represents the semantics of transition systems
[10, 9, 31, 35, 37, 42, 43, 73]. However, depending on the size of the initial activity model, its transformation
may produce a complex state machine. We observe that in many cases, showing that the system conforms
to a rule only requires detailed examination of some of the operations in the system state machine. In this
case we may decompose the transformed system state machine to produce smaller state machine views that
are rule-specific. Since rules always examine a target, i.e., states of objects of interest, we must first identify
that target. These objects of interest are the focus of the decomposed state machine views, hereafter called
the entity views. These entity views include operations that are extracted from the system state machine
and states that are abstract descriptions of the system state from the class model related to the object of
interest.

Each rule may reference the operations and states in more than one entity views, so our interest will
be to analyse the entity views applicable to the rule. We therefore create a rule-specific entity view that
is a single entity view, or the composition of more than one individual entity views that represents the set
of all the operations and parts of the system state required to show conformance to the rule. We use each

rule-specific entity view as a program graph for HMCA to analyse.

1.8.1.2 Construct Conformance Rule Representation

We use a graph formalism, a non-deterministic finite automaton (NFA) [14, see Chapter 4], to define
conformance rules based on the elements in each rule-specific entity view, i.e., the sequencing or occurrence

of operations and states to define process- and data-aware rules respectively.

1.3.2 CONFORMANCE ANALYSIS

We analyse each rule-specific entity view to determine rule conformance to it applicable rule. However,
our analysis of data-aware rules means that we are likely to encounter intractable complexity because we
will not apply abstractions to the state beyond those used in the class diagram. We therefore construct a

transition system using the following steps.

1. Model reduction. Recall that intractable complexity is usually encountered when the state space being
analysed is too large. Model reduction techniques, such as model slicing [81, 82] for UML class and
object models has been shown to reduce space and time complexities in model analysis for structural
and operational constraints. Therefore, we adapt this technique to slice our class diagram according
to operations, i.e., we create smaller class models, each containing the class model elements referenced
in each operation in the rule-specific entity view. Each small class model is called a slice. This allows

us to produce smaller state analysis sub-problems.

2. Local analysis, i.e., slice analysis. We use each slice as an intermediate model that we analyse in a
semi-automated way. We transform each slice to an equivalent Alloy language specification [1, 47, 49].
We then use the Alloy Analyser, whose strength is in analysing structural models within a certain

scope to determine potential final states.

3. Construct Transition System. We use the states from each slice to construct the transition system.

4. Ewaluate Property on the Transition System. We check whether the NFA rule representation is satisfied

in the transition system using model checking techniques.

1.3.3 PROVIDE FEEDBACK

If the transition system shows a rule violation, then this represents a failure in the system. In this case,
we identify the slice of the class model in which the non-conformance occurs, and extract from it the evidence

of a fault in the system. We pinpoint the location of the fault to aid in fixing the fault.

1.3.4 ADDRESSING CHALLENGES AND HMCA CONTRIBUTIONS

HMCA makes the following contributions by addressing the challenges in Section 1.2; each numbered

item corresponds to the same numbered challenge:

1. Construct rule representation from details in entity views - we construct conformance rule represen-
tations so that they can be checked on our system program graph. The emphasis here is that we can
represent the conformance rules using elements from our system models. The details are in sections

5.1.3, 6.2, and 7.1.2.

2. Analyse changed rules - HMCA can be used in the analysis of changed rules and for metrics to judge
the level of system conformance. However we relegate specific techniques to streamline analysis of

changed rules to future work.

3. Analyse and get results for rule types - the focus is on being able to analyse data-aware rules at the
level of detail required where current model checking tools fail. We analyse data-aware rules using
slicing techniques on the program graph to create the transition system. The details are in in sections

5.2, 6.3, and 7.1.4.

4. No need to apply large abstractions to handle system complezity - we handle a large amount of data
in the state by using entity view as decompositions of the system state machine. The details are in

sections 5.1.2, 6.2, and 7.1.1

5. Finding hidden paths - HMCA can provide hidden path analysis by examining how:

(a) the results from slices may be recombined to create paths not documented in the system activity

diagram; and

(b) the segments or elements of the class model that are not used in the analysis of any rule and
whether these segments can lead to rule violations because they create a way to traverse a path

not checked by the rules under analysis.

However we relegate specific techniques to to find hidden paths to future work.

6. Model Granularity and Analysis Results - We provide meaningful and useful feedback on faults that
cause rule conformance failures by using connections between activity and class models. The details

are in sections 5.3, 6.4, and 7.2 through 7.6.

1.4 Evaluation

Our evaluation of HMCA involves examining a real world system possessing all the challenges outlined in
Section 1.2. For this, we use the National Jewish Health (NJH) medical research system (see Section 3.4 for
more details) where conformance rules come from the Health Insurance and Portability Act 1996 (HIPAA).
It is important that systems like those at the NJH undergo conformance analysis because the penalties for
non-conformance are severe, and the public’s perception of the trustworthiness of the organisations involved
in a rule violation can decline.

HIPAA rules include both process- and data-aware rules. For example, HIPAA mandates that to control
privacy leaks, health information maintained and stored by an organisation should only be shared with
(trusted) associates. In the NJH’s system, this is enforced as a process-aware rule to verify that researchers
are qualified, or have been approved through a qualification process, before they are allowed to apply for
specific permissions for accessing patient health information. In work prior [23] to this dissertation, we
examined how a system-wide state machine view of the NJH system can allow us to verify conformance to
process-aware rules. This view required using large abstractions to represent the system state, and could
become complex without abstractions when verifying data-aware rules.

Since HIPAA rules also mandate the formats of patient health information that is shared, the NJH
system must enforce them using data-aware rules. We will examine two of these rules. The first requires

that shared patient health information has all identifying data removed, i.e., data is de-identified using the

HIPAA deidentified conformance rule'. The second requires that that shared patient health information
has no identifying data remowved, i.e., data is identified. For these, HIPAA outlines the specific data about
a patient that can be used to identify a patient. Within the scope of both these conformance rules, we
must consider the ways that data for special populations, i.e., pregnant women and neonates, prisoners, and
children, may be shared. This is because these special patient populations that have additional rules that
further protect their privacy. In our evaluation we included the children protected population.

Firstly, we provide an initial demonstration of HMCA by constructing, analysing, and providing feedback
on conformance rule violations related to HIPAA de-identified conformance rule. The details are in Chapter
5 and Sections 7.2 through 7.6.

Secondly, we include the HIPAA identified conformance rule and evaluate how well HMCA is able to find

faults:

1. through fault seeding - first by inserting a logic error in a rule and second by adding a transition to

the system state machine that is not considered in the rule; and

2. highlight that these seeded faults correspond to real-world problems - the logic fault causes non-
conformance to the previously verified HIPAA de-identified conformance rule and the second fault

causes conflicts of interest.

The details of this validation is in Chapter 8.
Finally, we model the rules governing access to data for children as this is important to the NJH and we
argue that doing so will work as a proof of concept for the other protected populations. The details are in

Chapter 9.

1.5 Document Organisation

We describe related work in Chapter 2, and background tools and techniques, and give more details on
the NJH system in Chapter 3. In Chapter 4 we provide motivation for HMCA by examining RCA in specific
model checking tools to show how intractable complexity results when using design class models. In addition

to the specifics of HMCA already highlighted in sections 1.3.4 and 1.4, we describe how HMCA is applied

1Since the focus of this dissertation is not on HIPAA regulations, we used simplifications of them in order to demonstrate
HMCA.

to the NJH system in Chapter 5, we describe HMCA in Chapter 6, an expansion of the feedback stage of
HMCA in Chapter 7, and the analysis for the children protected population in Chapter 9. In Chapter 10
we describe how HMCA can be applied in other domains requiring RCA. We follow with some insights that
may be helpful when applying HMCA in Chapter 11. Our final chapter, Chapter 12, gives our conclusions

and future directions.

10

2. RELATED WORK

In this chapter, we summarise related work in rule conformance analysis (RCA). The key areas of dis-
cussion are (1) the approaches to RCA in Section 2.1, (2) the types of conformance rules in Section 2.2 ,
and (3) how conformance rules are specified in Section 2.3. We give a summary and some open problems in
Section 2.4.

In our discussion compliance and conformance are interchangeable concepts, and each is used based on

their use by the authors. However, in the rest of the dissertation we will use conformance.

2.1 RCA Approaches
2.1.1 GENERAL COMPLEXITY HANDLING IN RCA

In this section we describe approaches to RCA that uses decomposition and/or distributed processing to

handle the complexity in RCA.

2.1.1.1 Odessa

Montanari et al. [67] developed the Odessa environment that uses network distribution in RCA. The
rules being analysed are specified in a security policy and the data needed for each rule may be distributed
on different servers to the network. The observation in Odessa is that rule parts may be analysed at the
server where the data they need are located. For example, given a rule

rulel: r1 —r2
where — means implies, then if 7/ can be checked on server S1 and r2 on server S2, then we can assign r1
to S1 and send r1’s results to S2; S2 then evaluates 72 and rulel. Since S1 and S2 evaluate parts of rulel,
they are assigned to a group called a predicate group. In addition, there may also be replication of data on
separate servers, so for resilience rule! may also be evaluated in another predicate group. The distribution

of the rule parts to different servers and rules to different groups enables evaluation of large-scale policies.

11

2.1.1.2 System Logs and Petri Net Decomposition

Broucke et al. [85] describe an approach to RCA that compares event logs that are replayed as streams
against a system expected behaviour that is modelled as a Petri Net. To address scalability, the Petri Net
is decomposed into subprocesses. Each log is then replayed and matched to subprocess(es) that are enabled
by events in the Petri Net. An event that cannot be executed on the sub-model may identify an illegal or

missing process.

2.1.2 BOTTLENECKS IN WEAK AND STRONG CONFORMANCE

In addition to their specification language (see Section 2.3.3), Chowdhury et al. [27] provide a demon-
stration that system actions show weak or strong conformance to the encoded rules. Their notions of weak
conformance and strong conformance are redefinitions of those originally proposed by Barth et al.[17]. When
applied to system actions, a contemplated action shows weak conformance to a policy if it does not violate
the present requirements and can be checked on finite traces of past events. These requirements are spec-
ified using conjunctions and disjunctions and no future operators. An action shows strong conformance to
a policy if its obligatory requirement is consistent with the current requirements and can be checked by
concatenating a finite trace that fulfils weak conformance with an infinite trace satisfying the obligation.
These requirements are specified using implications and future temporal operators. Strong conformance
also means that the contemplated action neither prevents obligations nor causes unsatisfiable obligations.
During analysis, the authors found that the policy became a bottleneck, so they propose slicing (see Section
3.3) based on obligations. However their slicing technique only reduces the bottlenecks if obligations do not

depend on each other.

2.1.3 COMPLIANCE MONITORING AND CONFORMANCE CHECKING

In order to analyse rules, another approach is to use a priori conformance monitoring [5, 13, 19, 18,
24, 26, 62, 63, 66, 71, 86] or a posteriori conformance checking [46, 76, 84, 85, 86]. Conformance rule
monitoring (CRM) requires continuous polling in systems to detect where rules are satisfied, violated, or

violable so that measures could be taken to disallow rule violation [62] during execution. CRM also applies to

12

checking designs for conformance rule violations [21]. Conformance rule checking (CRC) requires verifying
that process logs conform to process models and rules, and includes having models of fitness to measure
levels of conformance.

CRM approaches may be further identified as 1) automaton based monitoring, 2) logic based monitoring,
or 3) violation pattern based monitoring according to the formalism used to specify the rules. Automaton
based monitoring [63, 71] uses linear temporal logic (LTL) that is transformed to an automaton. In this
approach patterns [32, 33] may be used to hide the complexity of LTL. Logic based monitoring [5, 66, 71]
makes use of logic formalisms. Violation pattern based monitoring is used to query design models [21] and
partial execution traces for rule violation patterns [13, 24, 50, 86].

Both CRM and CRC require exhaustive exploration using model checking to extract conformance evi-
dence from the paths, states, events, or system logs (as seen in Section 2.1.1.1). While model checking has
been the main method used in RCA, Petri Nets [72, 71, 85] have also been used. Petri Nets is a mathemat-
ical modelling language used to describe distributed systems and therefore can be used to easily model and
analyse concurrent systems. Model checking on the other hand must use interleaving semantics to reason
about concurrent systems executions. Model checking has good tool support, so petri-net practitioners have

been using model checking techniques to analyse systems modelled as Petri Nets [53, 54, 55].

2.2 Process and Data-aware rules

RCA separates process-aware from data-aware conformance rules because of the different memory re-
quirements for each type of rule. Knuplesch et al. [52] describe an approach to 1) identify and monitor
individual activations of a conformance rule, 2) proactively prevent rule violations by using techniques that
are able to identify rules that could be violated in the future, and 3) provide root cause identification in case
of rule violations. A rule is modelled as a compliance rule graph and is instantiated each time a rule is to be
checked. Monitoring is accomplished by using pattern matching of events in the compliance rule graph. In
addition, events trigger an instance of compliance rule graphs for each applicable data item. Rule matching
uses antecedents that wait for consequents: if consequents are observed then the rule is satisfied but the rule

can also be violable if the consequent has an event that must not occur (checked on future events). The

13

intervention to prevent violations is semi-automatic such that it can enable (and force execution of) events
that should be observed or disable events that should not be observed before the process preceding the event
ends. Since event observation is per rule activation, and rule activation is per applicable data item, rule
enabling or disabling is used to provide feedback when violations occur.

While model checking is used in their RCA, Knuplesch et al. also identify that data-aware rules may

cause a state-space explosion in a large domain. The authors propose to minimise the state explosion by:

1. applying an automatic pre-processing step that reduces concrete data values to abstraction classes
based on the data values that appear in the rules - this step produces an abstract process model and

abstract data-aware compliance rules;

2. using the abstract process model and the abstract data-aware compliance rules to perform conformance

analysis and produce a conformance report; and

3. applying an automatic post-processing step that converts the abstract process model back to a concrete
model - this only occurs where conformance rules have not been satisfied in order to provide user

feedback.

The authors demonstrate this automatic pre- and post-processing for numerical data.

Ly et al. [59, 60, 62] propose the use of patterns as a compliance rule graph for specifying path rules based
on activity occurrences and sequences using first-order logic. The patterns use precedence and antecedent
activities that must happen, cannot happen, etc. This is in effect a language for specifying rules that is a
simplification for the non-technical user, yet has formal semantics that can be analysed, similar to Dwyer’s
temporal patterns discussed in Section 2.3.2.1.

As an extension of Ly et al.[60], Ly et al. [58, 61] describe specifying and analysing both process-aware and
data-aware conformance rules by supporting loop-free process models, using abstractions of data conditions
from Knuplesch et al. [52]. They further state that data-aware rules include those where 1) process-aware
rules include examining data, 2) rules imply that a data condition needs to be checked, and 3) data conditions

are included directly in the rules.

14

2.3 Conformance Rules

This section describes approaches to specifying and/or analysing conformance rules.

2.3.1 CHECKLISTS IN RULE CONFORMANCE

Checklists can show conformance to the Standards for Safequarding Customer Information (Safeguards
Rule) [36] and the Volcker Rule [34] for financial transactions as mandated by the Federal Trade Commission.
The Safeguards Rule checklist allows companies to assess and address operational risks related to customer
information. The Volcker Rule is an improvement to the Gramm-Leach-Bliley Act in relation to covered
funds, investment activity and affiliated transactions.

Rashidi-Tabrizi et al. [74] describes a framework for expressing legal requirements for compliance as
goals that includes decomposing, attaching importance, conditions and exceptions. The framework uses
the Goal-oriented Requirement Language (GRL) to formalise legal text in order to make it amenable to
conformance analysis. This formalisation yields a goal model. The framework can be used as an analysis
tool when auditing a system for compliance based on answering questions. Conformance is given a 100 value
if compliant, and otherwise a value of 0-99 that indicates the level of compliance. The framework is not
mapped to a system implementation so it is in effect a checklist.

Though checklists are important, they do not enable us to extract evidence of conformance from comput-
erised systems that support an organisation’s operations. However they may be more understandable than
their corresponding laws and regulations and may be useful as requirements for specifying more formalised

conformance rules.

2.3.2 GENERALISED RULE SPECIFICATIONS

2.3.2.1 Dwyer’s Patterns

Conformance rules based on actions or a sequence of actions may be specified using first order logic
(FOL) and first order temporal logic (FOTL) based on Dwyer’s patterns [32, 33]. Dwyer identifies that
the main hindrance to specifying and using tools that analyse a system of paths may be unfamiliarity with

specifications, specification notations, and specification strategies. Dwyer proposes eight common patterns

15

based on temporal logic. We summarise them in Table 2.1. For example, in a system that uses permissions
to restrict access to sensitive data, an applicable rule is that permissions must be granted prior to access.
In this case, we use the Precedence pattern in the Order pattern group to specify that permission approval
must always precede the access. Every path in the system that accesses data must be shown to satisfy this
rule in order for the system to show conformance to the rule. While the example given uses actions, the

patterns may also be used with states and events.

Table 2.1: Dwyer’s Patterns [32, 33] for Specifying Conformance Rules, adapted.

Pattern Pattern Name Pattern Description
Group
Absence A given system state/action/event does not occur within a scope.
Existence A given system state/action/event must occur within a scope.
Occurrence - - - - :
Universality A given system state/action/event must exist throughout a scope.
Bounded Existence | A given system state/action/event must occur k times within a scope.
A system state/action/event P must always be preceded by another system
Precedence . -
state/action/event Q within a scope.
Order A system state/action/event P must always be followed by another system
Response) i1
state/action/event QQ within a scope.
Chain Precedence A sequence of system states/actions/events P1, ..., Pn must always be
preceded by a sequence of system states/actions/events Q1,,...,Qn.
. A sequence of system states/actions/events Py, ..., P, must always be
Chain Response followed by a sequence of system states/actions/events Q1,...,Qn.

2.3.2.2 Reference Architectures as Rules

Buchgeher and WeinReich [26] propose focusing on the reuse of reference architectures in conformance
analysis. A reference architecture is a set of rules that consist of roles together with the constraints on
the roles and role relationships for a particular domain. RCA is made possible when a system realises the
reference architecture and inherits its rules. The realisation involves making bindings from the architecture

to specific roles in the actual implementation. This allows evaluation of the reference architecture rules.

2.3.3 FORMAL LANGUAGES TO ENCODE LEGAL REQUIREMENTS.
The following are examples of formal languages to encode rules from laws and regulations:

1. May et al. [65] present a formalism, called Privacy APIs, to encode HIPAA 2000 and 2003 consent rules
which relate to when health care providers must obtain patient consent before performing treatment,
payment, and other activities related to health care operations. HIPAA 2003 consent rules are a

simplification of the HIPAA 2000 consent rules. After encoding the rules, May et al. convert their

16

2.4

formalism into the specification language of the SPIN model checker and check whether the formalism

satisfies desired invariants as well as to explore the differences between the two versions of the rules.

Barth et al. [17] propose C1, a language for specifying policies based on a fixed set of predefined

predicates using propositional linear temporal logic (pLTL).

Basin et al. [18, 19] use metric first-order temporal logic to specify rules, and they also developed a

monitoring algorithm for the rules.

DeYoung et al. [30] develop an improvement to C1, a policy language called PrivacyLFP as a specifi-

cation language for HIPAA and GLBA.

Garg et al. [38] propose a first-order logic-based privacy policy specification language that can encode
HIPAA policies. They present an auditing algorithm that incrementally inspects the system log against

a policy and detects violations.

Chowdhury et al. [27] propose a policy (rule) specification language based on first-order temporal logic

as an improvement over C1 that they use to encode all 84 disclosure-related clauses of HIPAA.

Becker et al. [20, 21, 22, 29, 80] describe a business process graph-based query language and matching
algorithm. The query language is pattern based and can be used to specify infringement patterns, legal
requirement identification patterns, risk management patterns, and change management patterns. The
checking algorithm is able to analyse for conformance rule violations for all these patterns. The query
language is applicable to arbitrary graph-based modelling languages for both simple and complex

conformance rules.

Summary and Open Problems

The results of our related work are summarised as a matrix in Table 2.2.

RCA uses either a conformance rule monitoring approach or a conformance rule checking approach.

Each RCA approach considers process-aware rules and/or data-aware rules with only two of the approaches

considering data-aware rules. This is due to the additional considerations required to minimise intractable

17

81

(98] "Te 30 yoIPIop

>~

[g8] ‘Te 30 aonoig

>

[12] 381V 10p UBA 23 OIS0

(L9] ‘Te 18 LreuRjUOIN

(9] e 10 Aoy

[£9] ‘Te 30 1S8Ry

[29 ‘19 ‘09 ‘65] Te 30 A7

> (>

>~

(8] T2 30 A7 ‘[gg] Te 19 yosednuy

> [|

bl el el tal Pl bel

[og] ‘Te 10 uesqooer

alie

[¥8] T 10 1s[ey 10p weA ‘[9)] “Te 90 yeurzoy ‘[9y] o 23 YuANy

>

>

[8¢] T8 % St

[pL] Te 9 zuqer-prysey ‘[9¢] DLA ‘[pg] Sunox 23 yseurey

[ee ‘zel TR 10 1AM

log] Te 10 Sunoxeg

bl il i I P

[22] Te 1o Amypmoyp

[9z] yoteautep) 29 19YaSYONG

> >

[12] ‘e 10 10%p0g

[61 ‘ST] ‘& 30 uiseq

Eal il ol B Pl g

A

[21] "Te 10 yireg

A

[pe] e 90 nosnug ‘[gT]evsopm 73 pesy

A

eall el ol B Pell Fol Pl gl

[99] ‘e 30 ejuOy ‘[¢] ‘Te 30 1Ieqry

Nd | OIN

weljed

o107

uojewoIny

ava yvd 04D INYD

POY3IOIN

payroadg seiny Mol

wisI[ewIo a[ny yoeoaddy

90U9I9JOY

Arewrung YIOA\ PaYe[oy :g°C

‘ou sueew A1juse [[00 A)duwie ue ‘sek surowr X - SOLIJUL [[9))
1N M19d - Nd

o[y aremy ssed01d - YVd

Supppay) [PPOIN - DIN

oIy aremy ejed - VA

SULIO)TUOTA] S[N'Y 9OUBRULIOJUO)) - IN'HD

Suoey) o[y 9OURULIOJUO)) - DY)

SHLON dTdVL

SR,

complexity when the state explosion problem occurs for data-aware rules. While different specification for-
malisms exist for specifying rules, all the formalisms outlined are useful in both conformance rule monitoring
and conformance rule checking. More approaches use model checking than Petri Nets for RCA.

Conformance reflects that a system adheres to governing rules. The rules are requirements that may be
available before a system is developed and can be incorporated into the development process. A conformance
rule monitoring approach may be used and instituted at design-time or at run-time. In contrast, conformance
rule checking on system process logs allows one to check conformance in existing systems, or when rules are
not available or included in the development process.

Conformance rules are based on laws and regulations and are usually not in a form that is analysable in
computerised systems. Most of these rules are formalised using automata, logic, or patterns. Rules based
on patterns may be the easiest for non-technical analysts to use. However, pattern-based rules may not
be as expressive as the policies specified using automata and logic because automata and logic allow more
fine-grained specifications. Further, rules specified using patterns must be transformed into more formal
representations before analysis.

Both model checking and Petri Nets allow us to represent systems under conformance test and to perform
exhaustive analysis to show rule satisfaction. Process-aware rules are easier to test because they often do
not encounter the state explosion problem since process representations can be largely abstracted without
loss of generality. However, where the details for showing conformance lie in examining detailed system
structure, the analysis of data-aware rules using the large abstractions proposed are insufficient. We have
seen that decomposition and/or network distribution have been used as a scalability technique in RCA.
These techniques are also useful in minimising the state explosion problem.

One of the areas not examined in RCA is where hidden paths cause RCA to fail. Hidden paths may exist
because path possibilities are not well understood or constrained. Representations may focus on the paths
that are allowed and on restricting path possibilities that should not be allowed, however hidden paths in
either of these categories may exist. While normal operations may not execute actions that constitute hidden

paths, they may be started through other channels such as a backdoor into the system. Hidden path analysis

19

is very important in evaluating systems for security leaks, particularly for network security algorithms that
could violate privacy.

Another area of RCA not examined is rule interactions. There is often overlap in the elements of a system
that analysis for each rule examines. In addition, concurrent activation of rules may mean that the same
element instantiation is shared among rules, and sequencing of analysis may be important. In this case the
approaches based on Petri Nets hold great promise for tractable and scalable analysis for rule interactions

because we can adopt and adapt the techniques used to prove properties about interacting processes.

20

3. BACKGROUND

In this chapter, we give the background required to understand HMCA. We use both Alloy and model
checking to specify and verify conformance to rules. Model slicing reduces the size of the models to be

checked. Our evaluation applies HMCA to validate the NJH Research System against HIPAA rules.

3.1 Alloy

Alloy [1, 47, 49] is a formal specifications language that is described as a relational logic because it
combines the quantifiers of first-order logic and the operators of relational calculus. In Alloy, a specification is
made up of elements that are atoms and relations. Atoms are a modelling abstraction used to define entities
and are indivisible, immutable, and uninterpreted. Relations, also called fields, define the relationships
between two or more atoms. Both atoms and relations are viewed as, or a part of, signatures in the Alloy
language. Constraints are included in the model as facts. Predicates are parameterised constraints that can
be used to simulate instances of the model or as a part of other facts or other predicates. Though strictly
not a part of the model, assertions may be used to define constraints that should follow from the facts.

Alloy is well supported by the Alloy Analyzer that has an embedded SAT-solver used to evaluate Alloy
expressions. The Alloy Analyzer is able to simulate model examples of predicates or find counter-examples
of assertions using user-defined scopes that are upper bounds on the number of each element.

Both predicates and assertions may be used to check invariants of UML class models [64, 81]. To do this,
we use Alloy to specify an equivalent representation of the class diagram using atoms and relations. Any
additional invariants from the class diagram that use Object Constraint Language (OCL) may be specified
using facts, and object models may be specified using predicates. The Alloy Analyzer is able to check
that a predicate is consistent with an Alloy model by generating an instance of the model according to the
constraints in the predicate. In the case where we want to check that certain instances of a model are never
possible, we use assertions. When simulating predicates, if an instance cannot be generated then we know

that the object model defined by the predicate is inconsistent with the model. When checking assertions, if

21

an instance, i.e. a counter-example, is found then we know that the object model defined by the assertion is
inconsistent with the model.

Unlike model checking (see Section 3.2), the Alloy Analyzer is in the class of model finder tools because
of its use of simulation to experiment with a restrictive set of scenarios compared to model checking that uses
exhaustive exploration to verify properties. However, the Alloy Analyzer is still able to produce good results
due to its reliance on the small scope hypothesis that justifies testing models with small scopes because a
high proportion of faults may be uncovered when testing a program for all test inputs using small scopes

8, 48).

3.2 Model Checking

Model checking is a model-based verification technique [14] that performs an exhaustive brute-force
exploration of system models to show that a property is satisfied. The system model describes how the
system behaves, while the property specifies what the system should or should not do. The exploration
performed in model checking examines all the possible states of a system in a systematic way to truly show
that the properties are satisfied.

Both the system model of possible behaviours and the property of interest must be defined in a math-
ematically precise and unambiguous manner. The system model is often expressed as a Transition System
(TS) model or as models whose executions may be transformed to TSs. For example, UML activity diagrams
have semantics that are closely represented in transition system models [9, 35, 37, 42, 73, 31]. The properties
of interest in this research are in the class of safety properties because they represent invariants in the system.
These invariants may be described using a linear temporal property represented as a non-deterministic finite
automaton (NFA) to be checked on the system model. We provide examples and further explanations of
both the TS and the NFA in Chapter 5.

Model checking can have any of three outcomes: the property is valid in the model, the property is not
valid in the model, or the memory required to enumerate the states in the model is larger that the physical
limits of the computer’s memory. If a state is encountered that violates a property, model checking uses

simulation to replay the violation as a counter-example that shows how the behaviour is reachable in the

22

system model. The simulation may also contain useful state information from the model that can be used
to debug or adapt the model or property in order to reverify the property.

The outcome that exceeds the physical limits of the computer’s memory requires that we revisit the model
and apply abstraction techniques to reduce the state-space required. These abstractions must preserve the
validity or non-validity of the properties. Alternatively, the abstractions may reduce the precision in the

model and in the case of a property violation critical state information may be lost.

3.3 Slicing

Model Slicing [11, 25, 56, 57, 78, 79], analogous to program slicing [87], is a technique for decomposing
models as a way to handle complexity in model analysis. The observation is that not all elements of a model
are required for the analysis of each property (e.g. constraint). Therefore, we can create slices of a model
that contain only those elements required for a local analysis. Slicing requires defining slicing criteria in
order to perform the decomposition.

Our interest in slicing is specifically with the technique to slice UML class models and object models
as described in Sun et al. [81, 82] as a way to promote scalable and rigorous analysis. In their work, a
system represented using a class diagram is sliced by OCL invariants, or operation contracts written using
the Object Constraint Language (OCL) [68].

The slicing allows each invariant and operation contract to be checked individually for scopes (using the
Alloy Analyzer) well beyond those that would be allowed if the model were not sliced. Sun et al. also describe
a technique to sequence slices for operations to check that invariants are not violated when operations are
executed. In addition to the smaller memory requirement for analysing each slice, the authors also show that
the technique significantly reduces analysis time and preserves analysis results such that the sliced models

showed the same results as the unsliced model.

3.4 NJH System

NJH has a system, here after refered to as the NJH system, for sharing patient health information with
researchers. This research system implements rules to maintain privacy of patient health information that

stem from HIPAA regulations. In order to have access to patient health information from the NJH data

23

sources, individual researchers or projects must first apply for, and have approved permission. Each approval
defines pre-approved queries, and rules that dictate the format of the query results and whether the query
results may only be viewed or if they can also be downloaded. The process of applying for a permission,
setting up rules for each permission, querying the data sources using an approved permission, and delivering
the query results according to a permission’s predetermined format is used by NJH to help determine that
it is conforming to the rules from HIPAA regulations. However, NJH currently does not verify HIPAA rules
in their system, but assumes that their process is sufficient to satisfy them. In addition, their system uses
a combination of manual and automatic steps in this process, so that automatically showing conformance
to rules is not always possible. In order to automatically show conformance we need to describe the NJH

system using formal techniques that create analysable models.

3.4.1 SYSTEM COMPONENTS OF INTEREST

Structurally, the NJH system may be viewed in terms of the access control system that it implements, the
patient information that it creates and manages, and the conformance rules it verifies. Specifically relating
to HIPAA, the access control scheme assigns the following permissions to researchers and projects to access

patient health information:

1. Fishing License: allows access to only counts of requested data.

2. Prep License: requested data is viewable and not downloadable.

3. Access ticket: data is downloadable according to any the following formats:

(a) totally De-identified where
i. columns having one of the 18 types of HIPA A-defined identifiers such as patient names are
removed;
ii. date columns are modified to show year only;
iii. ages of 90 years or older are grouped into a single value;

iv. geographic locations shown are only states or larger geographic subdivisions; and

24

v. geographic codes are modified to show only leftmost three digits of zip codes where the total

population of those zip codes is > 20,000 or else display zip code 000.
The De-identified access ticket will hereafter be referred to as the DelDed access ticket.

(b) coded or linked [70] where personal identifiers are substituted with codes so as to make them
indirectly identifiable. This is different from anonymous, anonymised, or de-identified such that

the link between the code and the personal identifier is maintained but not known to the researcher.
(¢) a limited data set (LDS) where the following are removed from the query result

i. columns having one of the 15 types of HIPAA LDS identifiers, and

ii. any geographic locations smaller than town or city or zipcode.

(d) identified where the results are displayed without alteration.

Conformance rules include process-aware rules that specify that sequential processes are followed, e.g.,
application and approval before querying, and data-aware rules, e.g., patient health information in a query’s

result does not violate the kind of permission issued and used to execute the query.

25

4. MOTIVATING HMCA: NAiVE RCA

Since HMCA proposes to handle complexity using model slicing to decompose the analysis tasks, we
will evaluate conformance analysis on unsliced models in order to highlight the limitations of current model
checking/finding tools. Specifically, we will use the Spin model checking tool and the Alloy Analyzer model
finding tool. We conducted analysis on process models of the NJH system using the UPPAAL [4] model
checking tool [23]. However, this analysis was preliminary in a bid to understand process sequencing and
interleaving for process-aware rules. We were able to verify the process models to be free of deadlock and not
to violate any of the process-aware rules. We identified that RCA requires us to produce a more complete
state model beyond the use of numeric symbolic representations in UPPAAL. The analysis we perform here
will cover both data- and process-aware rules in a single model using the NJH system.

We discuss the design in Section 4.1 and the verification for the Alloy Analyzer and Spin in sections 4.2

and 4.3 respectively. We end this chapter with a discussion of the results and summary in Section 4.4.

4.1 Evaluation Design
4.1.1 (QUESTIONS

From our evaluations of the tools, we wish to answer the following questions:

Question 1: What kinds of rules are best suited for each tool?

Question 2: What are the space and time measures when using the tools and how can we use these

measures to motivate HMCA?

4.1.2 NJH SYSTEM OPERATIONS AND DATA OF INTEREST

For our analysis we will highlight operations where:

1. a researcher may:

(a) apply to be qualified;

(b) apply for a fishing licence; and

26

(c) execute queries using a fishing licence.

An approved Item 1la is the prerequisite for Item 1b, and an approved Item 1b is the prerequisite for

Item 1c.

2. a project may:

(a) apply for an access ticket; and

(b) execute queries using an access ticket.

In order to have an approved Item 2a, one of the requirements is that all the researchers assigned to

the project must have an approved Item 1b, and an approved Item 2a is the prerequisite for Item 2b.
3. process-aware rules and data-aware rules are checked (see Section 4.1.3 below).
The UML class model supporting these operations is shown in Figure 4.1. It shows 61 classes, 26 associations,
and 7 operations.
4.1.3 RULES
The rules of interest are to:

1. enforce operation sequencing for all the operation sequences implied in Section 4.1.2, e.g. a researcher

has to be qualified before they can have a fishing licence approved;

2. check whether a query’s result conforms to the required transformations, e.g. that the results are

de-identified in accordance with the Del Ded access ticket annotated with G in Figure 4.1; and

3. check whether a query’s result conforms to additional rules, i.e., inclusion/exclusion based on patient

consent.

The first is a process-aware rule rule and the others data-aware rules.

4.2 RCA using the Alloy Analyzer
4.2.1 OVERVIEW OFALLOY
Refer to Section 3.1 for a description of the Alloy Analyzer.

27

8¢

¢’ 1'% uonoeg ut suorjeiodo o) Surproddns weisAs N o9 I0J [OPOIN SSe[)) ' oIn3L

pauljegsiaquaioalold _ _ U8s814.31)I[BND _ _ =

1198J1Qi10Nasodingawog

pauljadid
OQpue|du|sdnSoN

Y .

paulBgsalanDawos

©

0Qwea ||ddelilaA0oN

@ Al

Pau1a(Se0IN0SaWos

8|NyuoIsIvag

IdPuywes |pauad

NOoAuougaoinogeieq

_ U858 JIL

= e n__ ()eainyAjdde

8leQHWI0JSUBS LJONSB0QPaYIUSP] |

.

L s8inyuiad

®

8y

Nﬂ pag|agAileloLasnued
ISsiwiad

Tieyoseasay

paijnuap|

(18yoseasay : sai)ieyoseasayAjenD

J81jI1BND

siaquapialoig

1dwalod

Lywsloid

19%911 $5800Y

1./

|auuosIag

siosiuedng

O

. ,_Suo__ooSmnzua_o._n@

. asodindioaloid

Awiondly .
UaSUODIUBIE, . .
! Diusned B|NYSS300Y 0] s8l|ddyyy pPamo||ypeojuMOQ S— .
4 -
_mau.w _A|_a Bubddi e Jo_ waloid
slegHw.ojsues 1 pag|aqg F.._..u_ . !
b PaMOIIYAA " Omom Juswasibyssadoyeieq
dA, I 0
SO - . ~Opeowuwop
adA1ay (108l01d : foid ‘1oydseasay : sai)Aianpun.
Aieanp
. uosHiomAn
v weqiey | sumayghip BeghiD
plzelle]
SWIOJSUBILHY 1EOVVdIH X
. A

[otowo K

S8pIHYY

(193011 55820V : 1B ‘108l01d : l0id)18%01| SS820V108l01danoiddy
(80u80r : | ‘J8yYdIeasay : Sa81)8ousdiiaydieasayanoiddy

Buiis : [eAs
ues|00g : ()paliuapIONS! 1sa
ueajoog : (Jpayiuapist B BlEQIUSIEd
186y : seak L B Bumg : sweu |+ b
sabaju| : yiuow BI®d [senepeiEq wayelEq
1abayju| : Aep _
. - (]
B
iea 170 uQpaIaul .. | ®nosia

80In0SEIEQ |4

$821n0510810.

Jusuieal 1198110

yolessay _|_V_ asoding _F..o

palinbayuw.ojsuel | BleQ108l01d

wiojsues|eleq

paqiaqAiieioL

paqglAlieiol

4.2.2 ALLOY SPECIFICATIONS

We have created Alloy specifications to:

1. represent all the structural details in Figure 4.1;

2. include operation specifications for each of the operations in Section 4.1.2;

3. include assertions for process-aware ruless using Dwyer’s chain precedence pattern to specify:

(a) if the operation to approve a researcher’s licence application is successful in the current state, then
it must be that the operation to qualify the same researcher was successful prior to the operation

to approve the licence;

(b) if the operation to approve a project’s access ticket application is successful in the current state,

then it must be that all of its associated researchers have prior approved licences;

(c) if the operation to execute any of a project’s queries is successful in the current state, then it
must be that the operation to approve the (same) project’s access ticket was successful prior to

the execution of the query; and

(d) if the operation to check whether a query’s return data conforms its associated project’s access
ticket is successful in the current state, then we know that the operations to execute the query

was successful prior to the conformance check;

4. include as an assertion a data-aware rule using Dwyer’s absence pattern to specify that no data that
a query returns is identified when a DelDed access ticket is used, and the converse, that if the data

returned is de-identified then a DelDed access ticket was used is also true.

The full Alloy model is in Appendix A.2.

4.2.3 MobDEL EXECUTION RESULTS IN THE ALLOY ANALYZER

The Alloy Analyzer is limited to use 4GB of memory for analysis. This will have an impact on the scope

for analysis and the time taken to perform the analysis. We show the analysis results in Table 4.1. The

29

0¢

9FT°G0:00:0 | (s'ssiwury) aurt], SUIA[og 30T, GO L0:FGICT | Sosne[d pur SO[RLIBA 0)RISUSS 0} oW} [BIO],
¥19°90:00:0 81°00:00:0 punoj ddurexarojunod oN 965°90:00:0 L£2078 £90ST 8L06.LE LT
8V 87:L¥:9 969°00:00:0 punoj sdurexerojunod oN CSeLYLY9 00090¢¢ 6E0GT 896LSTT 91
TGS ¥C'8G:9 7€9°€0:00:0 punoj ddurexarojunod oN L16°02:8S:9 960TES6T 6E0ST 960526 ST
¢S.°04:¢0:0 9¢¥°00:00:0 punoj adurexe1ojunod oN 92¢°04:20:0 CCIvS0e 6E0GT 606STVT jd!
918°C0:S0:0 ¢.£°00:00:0 punoj o[durexarojunod oN ¥¥¥°20:G0:0 200180¢ 6E0GT 60TSCV T [
(s*ss:wau:y)
(s'ss:wuwn:y) sesne)
oalos pue (s'ss:uru:y) nso ue sa[qerie sosne SeIqelIEA so[qerae,
syetouss 09 owry SurA[og sy P [qerreA 10 Arewrag 1qerreA aIl
9jetousar) o} dwlL],
owilg, [e3oL

QOURTLIOJUO)) |
Lron{yunyreyyyeouewiojuo)orepd i o;

Tos01ddy 900011093V AN UnY 4] ¢
Tor01ddyeouadI T Jpuy ures], 103y yor01ddy100lo1 14 ;¢
sogAJiTent) 103y yeoued soyosorddy T[4 ¢

SU019.4955D /529001pa.d 2y fif1guapr 07 2)qDY Y3 UL Pasn U ST buwnojjof ayJ,

SHLON HTVL

SOJ0N O8], Ul SUOILIISSY PUR S9edIpalJ AO[[Y IO S[1e}o(] UOIIBOYLIDA T} 9[qe,

I These assertions were executed with a scope of 8 but

table notes show the names of the Alloy assertions.
15 Rule, i.e., use a maximum of 8 instances for all the signatures but use 15 for the rules. The names and
numbers in the table notes are matched with the table entries, i.e., ID’s in the table. The items in the table
with:

1. IDs 13-16, are process-aware rules used to verify that the sequences of operations as defined in Section

4.1.2 are never violated; and

2. ID 17 is a data-aware rule that verifies that query results conform to access tickets used to execute the

query.

These results show that assertions with IDs 15 and 16 that we have also highlighted in the table have

the longest running times, almost 7 hours each.

4.3 RCA using Promela/Spin
4.3.1 OVERVIEW OF SPIN/PROMELA

The model checking tool Spin, uses the Promela language to specify models [45]. Each Promela model
may be verified according to assertions, Linear Temporal Logic (LTL) formula, or never claims, i.e., violation
of correct behaviour, in the model. If an error is found then the verification steps leading to the error (saved
as a trail) may be replayed in simulation mode to show the violation. In theory, Spin can be configured to
use as much memory and processors as available on a computer or a number of accessible computers.

For the verification, Spin offers 5 different storage/search modes: 1) ezhaustive, 2) exhaustive plus min-
imised automata (MA), 3) ezhaustive plus collapse compression (Collapse), 4) hash-compact (HC), and
5) Bitstate. Some of the modes may be combined, e.g., MA+Collapse and HC+ Collapse. When an exhaus-
tive analysis can be completed we are assured that if Spin reported that no errors were found, that it is
indeed so. HC' and bitstate perform approximate searches but give good results where exhaustive searches
are not possible. An exhaustive analysis is usually more space intensive than the other modes for the same

computer resource allocation.

IThe names are descriptive enough to identify which operations are involved.

31

Spin has been developed as a tool to verify process models, and so, does not include constructs for
specifying structural constraints beyond those that may be represented with numerical (integer) data types.
Additionally, Spin is not suited for the complex computations in data. The power of Spin as a model checking
tool lies in the fact that it can be used to exhaustively analyse all interleaving of process statements in a
non-deterministic way. From this interleaving, we know that if there is an error within the bounds of memory
assigned to the analysis, it will be found.

Even though each piece of numeric data requires a small amount of memory, the exhaustive combination
of process variables cause a state space explosion that can quickly reach the assigned memory bounds.
This means that abstraction techniques are required by the modeller. In addition, Spin employs memory
minimisation techniques to further reduce a state space explosion. However each application of abstraction
or memory minimisation may cause loss of details or precision respectively.

Regardless of these limitations and constraints, our aim is to test the memory limits for RCA using Spin,
especially for the operations highlighted in Section 4.1.2 and their associated structural details in Figure

4.1.

4.3.2 NJH PROMELA SPECIFICATIONS

Since we are aware of the limitations of Spin to handle (low-level abstractions in) data, we decided
to develop a Promela spec for the NJH system incrementally to tests its limits. We decided to focus on
operations where an access ticket is applied for, approved, or declined. The model in Figure 4.1 captures
the DecisionRules used to approve an access ticket (see annotation E and H in the figure). Except for the
QualifierPresent decision rule, all the other decision rules are used when approving a project’s access ticket
application. We decided to start with the NoSupsinPlandDC' decision rule.

The NoSupsInPlandDC rule declines a project’s access ticket if the project’s principal investigator and
data collector are in a supervisory relationship. These can be determined using the elements at annotations

A, B and C in Figure 4.1. In the Promela model, we use:

1. the init process to initialise a random configuration of personnel in the supervisor association and for

a project’s principal investigator and data collector;

32

Table 4.2: Computer Specifications for Verification

[Name | Type | Processors | Memory [Operating System
C1 HP-Z800-XeonE5645-SAS 12x2.4Gh 96Gb Linux(Fedora)
Ca HP-Z440-XeonE5-1650v3 6x3.5Gh 32Gb Linux(Fedora)
C3 HP-Z440-XeonE5-1650v3 6x3.5Gh 32Gb Linux(Fedora)

2. a process to approve a project’s access ticket application;

3. a process to decline a project’s access ticket application;

4. an LTL formula to verify that the NoSupsinPlandDC' rule is never violated; and

5. a never claim to ensure that a project’s access ticket cannot be approved and declined at the same

time.

It is important to add the never claim because 1) Spin’s analysis examines all interleaving of the processes,
2) we use different variables to indicate approved or declined access ticket application, and 3) we want to

ensure that race conditions will not set both variables. The Promela model is shown in Appendix A.1.

4.3.3 PROMELA MODEL VERIFICATION RESULTS IN SPIN

After analysing the Promela model of the NJH system using many different configurations for memory,
storage/search modes, and number of processors to the limits of those available for the computers in Table
4.2, we were unable to determine its maximum depth, search space, or number of transitions. Therefore, we
decided to explore a (different) smaller Promela model to try to understand why we were not able to achieve
full exploration of the NJH model. We describe the smaller model in Section 4.3.3.1 and the best results we

have achieved for the NJH Promela model in Section 4.3.3.2.

4.8.3.1 FEwvaluating Promela/Spin on a Small Model

The smaller model, hereafter called t1, is shown in Listing 4.1. It defines:

1. a message channel, sChan, whose size is determined by the value stored in the variable M (see lines 1,

2, and 5 of the listing);

33

Listing 4.1: t;, a Promela Example: non-deterministic add and remove 8 known values from a channel

o

w N o

10

11

13

14

16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34

#ifndef M
#define M 3
#endif

chan send_chan = [(M*M)-1] of {byte }// a message channel of (M#M)-1 slots

[k koo ok stk ok stk sk ok stk s ok sk kb stk sk stk stk sk ok stk sk kst sk ok sk s ksl skl stk stk stk sk ok stk sk sk ok
* LTL
stk ok sk ok skok kol sk skl stk sk ok stk stk ok stk sk ok sk s ksl kol sk stk stk sk stk sk ok stk sk ok stk sk ok sk ok skok ok ok sk o /
/* ensures that we have some nondeterminism in the approve and decline of
projects
*/
1t1 1t11 {
/* infinitely executing the statement in init with label end implies
(ensures) we infinitely execute the statement labeled end_again in get() */
[J<>send@end_send -> []<>get@end_get }

init {assert(17>M);}

active proctype send() {
end_send: do
// send value 50to the channel
send_chan!50

// send value 198to the channel
send_chan!198

// send num to the channel
send_chan!M
od}

active proctype get() {
byte num;

end_get:

send_chan?num;
goto end_get }

34

2. an initialisation process init that ensures that sChan cannot have more than the 255 slots that Spin

allows?;

3. a process, send() that loops forever to non-deterministically to put any of 3 values on the channel;

4. a process get() that removes a value from the channel; and

5. an LTL formula, [tl1 that ensures fairness between the two processes.

Executing the model in verification mode works to :

1. verify that [tl1 is not violated; and

2. enumerate all the possible ways the three values can be placed in and removed from the channel.

4.8.8.1.1 Simpler verification for of t1 for M = 3 and M = 4. Some results for verifying ¢; under all
the different storage/search modes for M = 3 and M = 4 are shown in Tables 4.3 and 4.4 respectively.
The verification was conducted on computer Cs (see more details for this computer in Table 4.2) and each
verification used a single processor.

While many of the storage modes explored all of the search space, the least memory requirement is for a
storage mode using MA, and this row is highlighted in grey. Compared to all the executions where a single

mode is used, the MA mode requires the most time to complete.

4.8.8.1.2 Verification of t1 for M = 5. For t;, M = 5 makes a channel of size 24 slots. Within an
84GB memory allotment to the verification from computer C; listed in Table 4.2, we have not been able to
determine the limits for M = 5. We show verification results for some of the storage modes for M = 5 in
Table 4.5.

The question mark in the Percent of Total States FExplored column indicates that the search space was
not completely explored so we cannot say what percentage of the states were explored.

Specifically, in the case of:

1. the Ezhaustive storage mode, the memory bound was reached without exploring all the state space;

2We can pass to the model from the command line a different value of M than its value of 2 defined in the model.

35

9¢€

N9V €S = YIS S 10§ Posy) ATouLIN ‘GINSF0G = Pousissy LIomwoy ‘0000001 = pousissy soedg 1presg

200 | 61LLL 629'L 91 26T | %00°001 | €228L | OW06S | €8961 | 690ST S | oressng
.| 6L9'8L0T . . .) asderfop
20°0 201 9%GC 06 98T 20o'T | %00001 | €eLsL | ovoes | €8961 | 690eT 8 o
| aszsLor ‘ ‘ . .
200 201 %PT9 160 967°T | %E966 | <epsL | vesss | TT96T | €86FT 8 POH
. asderro
go | TBEBLOT 201 %OT LL 6ST'T 20T | %00°00T | €.8L | OV06S | €8961 | 690<T 8 . @m
| azesior T
20°0 7201 9%GC06 96T 20T | %00000T | €z.8L | OW06S | €896T | 690<T g | esderop
120 | 76669 0 UTCH 8190 20T | %00000T | €cl8L | 0v06G | €3961 | 690Gt 8 VIN
IAT
200 | 8¥'8L0T 20T %95 LL coT'T 20T | %00000T | €z.8L | OFO6S | €896T | 690<T 8 -%Exm
an)
. (an) ((am)
L9 @0 peng | (@) | (o | IS | s sopeyg | PO omg
e, pesn 10§ UOIS 10§ so1elg suor} | peyoyeIN po1031g | peyorey] OpOIN
uey) | yoess | olqel 10§ 08es() uey)s
ow], | Arowepy e ; co -soxdwo)) oges) Souo [e3oL, jo | -isueay, sojelg EELLHTS ypdeq o8e103g
renjoy P nd SeH Atowoy | Alowoy N JuadI9 g
201g JuereAInby
renjoy

€ = JU/ 10} 12 UL []}] UOLIRDYLIDA :¢'F O[qRL

LE

N £2T'209T = YP®IS SIQ 10§ Pos() ATowoy ‘N g616 = PRUSISSY AI0WdN ‘0000000¢ = Pousissy oordg yoreag

319 99€°606¢ |1C'8G0T |6£6'CIL 91 $29'7208 %8076 80+HTI'T |80+HTT'T |LVEVFI6E |69T6ELLT o1 oreysyIg
: : : : asdefo
79 L06°€9cS $20T %GLTL ¥L¢'8¢9¢ 6Z9'219¢ | %00°001 S80+HCL T [80+H6C T [TCLIVOEY [19%7LT8C a1 L m_om
T2 9€0°980% $20T %407 T ¥G6°6ST1T ZrhITEe 048768 80+HVS' T [8O+HIT'T |LLEIITRE (TFES0V0T a1 YOI
: : : : asderro
FO-FOPT T LIT'€68€E $20T 0480°CE Vev L9a1 6Z9°219¢ | %00°001 S0-+HCL T [SO+H6T T [ICLIVOEY |T9VTLT8T a1 L @q\w
698 L06°€92S $20T %GLTL ¥L¢'829¢ GZ9TI9E | %00°001 80+HTL' T |80+H6T'T |TTLIVOEY (T9FVLTST o1 osderion
Zsp GGT'CELT 0 9%09°€ COT 08T 69°T19¢ | %00°001 R0-+HCL T [SO+H6C T [ICLIVOEY |T9VTLTST a1 VIN
. . . . onl
¢eg 8L6°49c6T $20T 9%89°€9 ¥19°00€¢ 6Z9°T19e | %00°001 80+HTL'T [S8O+H6C T [ITLIVOEY |T9¥FLT8T o1 -wsd:xm
(am)
ss°'S (&) Amm\é (%) sovess oIS mmmﬂ\@ vﬁ.ﬂm oz1
(ss°5) pesn Pess (&) (&) 10J uoTS 10§ OIS d suor) | paypjeN paI101g | payoeey 'S apoIN
uaye], uey)) yoelg o[qr], I0j o3es() sojelq ueyDS
AIOWdIA -soxduwo)) a8es) -ISuely, soje1g sojelg rdeq o8eI109g
owlT, pue ng yseyq < £ Arows]N | 1907, JO
ey 201 TOWEIN oW Juereamb JUODID,
d ey [eAby d

= JU 10§ 17 UL []3] JO UOLYRIYLIDA F'f O[YL

2. MA storage mode, the maximum search depth assigned to the verification was reached at time =
1.15e + 04 seconds (3 hours) when only 5.68¢ + 08 states and 1.19¢ 4 09 transitions were explored; the

values shown in Table 4.5 are for when we interrupted the search after 22 hours; and

3. Bitstate storage mode, the search completed without reaching the memory bounds or search depth of

either of the Exhaustive or the MA storage modes.

4.3.8.2 NJH Model

We instantiated the model with 8 projects, 8 personnel having supervisors® defined from which we
randomly chose both the principal investigator and the data collector. We executed the verification with up
to 24GB of memory. Table 4.6 shows results for some of the storage modes. These results show us that the

verification was able to:

1. reach a search depth of 7,876,539 as shown for the exhaustive mode;

2. store 8.49e+10 states as shown for the MA mode; and

3. explore 9.34e+11 transitions as shown for the MA mode.

However, we neither know if the search depth reached nor the transitions explored are the complete state
space. Of the four rows in the table, the row highlighted in grey, gave the best result; the best result is

determined as the verification that explored the most states. For this row, the verification:

1. was assigned all the processors on computer Co described in Table 4.2, 24GB of memory, and a MA

storage/search mode;

2. reached only 13% of the depth of the exhaustive mode;

3. explored more than 2000 times the transitions of the exhaustive mode;

4. was (manually) terminated after 10 days, 23 hours, 36 minutes, and 40 seconds with the knowledge

that the full state space for the model has not been explored; and

3The Supervisor association is a tree.

38

6€

dIN9OVES = ¥O®IS SA(10] Pas() A1owsN ‘INSY0Z = PouSissy £10WLN ‘0000000001 = pouSissy s0edg yoresg ‘Ig = ozIg ueyps

: : : S : S) : are)s
cce T68°€5G799 |689°66€S |SG6€°6C9L 91 9267839 ; 80+9¥8T067S"S | 80+9G0268CL Y 9660028 L7€0898¢C1T Wﬁum
€C°CI86L |€90°CS18S %80'T 8C9 LY.LV |VIV'8SSTVY ; OT+HOETLY8ET G |OT+RLILTISL T |60+97S66008Y |666666666 VI
QATY
: :) :) :) : :
906 0€6°G1098 870z | %1629 8€¥'¢940¢ 0£8°200ST i 60+96918L20°T |80+°2965929¢€°G |80+98605GT6'F |SG9SETI898 -sney
X
| potord
) (am) -
(@ | G0 @) | S sopeg 801815 xm
(ss's) spPeYg (gm) 10J UuOIS soye)s
pesn alq 10] | 10§ 98es() payPYRIN paypeay 9poIN
uaye], uery)) oe)g -soxd e, SUOT)ISURI], paI01g sojels
I A10W_DIA pue na -eJ, -wop a8es) A1owa\ 10 sogelg yadeq | oSeiolg
: ren1oy : yseH Arowra Jusy
201d A10 enyo —eamb U0
“woTy [v mby -10g

G = JJ 103 T2 UL]3] JO UOLYEIPLIDA G'F O[qRL

Table 4.6: Verification Details for Spin Model without Analysing Process-Aware Rule or Never-Claim

Denth Memory
p States Stored Transitions Used Time (s.ss) Storage Mode
CPUs | Reached
(MB)
[1 [7876539 | 3.4e+07 [4.61e+08 [6637351 | 656 [Exhaustive]
6 1000039 8.49e+10 9.34e+11 - AT (U5 (e MA
11 days)
6 610204 7.770891e+10 8.4079559e+11 17715.799 ggliij)o‘l (approx. Bitstate
12 627994 3.891082e+10 4.2225942¢+11 9979.258 f;iij)m (approx. Bitstate

5. did not use all of the 24GB assigned to it: since we terminated the execution we were unable to

determine the amount of memory used.

In comparison to the test program, this model has a larger number of states, and it is possible that while

the MA storage mode could explore them, it takes too much time.

4.4 Discussion of Results and Summary

Our first evaluation question asked:
What kinds of rules are best suited for each tool?
and our second evaluation question asked:
What are the space and time measures when using the tools and how can we use these measures
to motivate HMCA?

The results in tables 4.3 through 4.6 confirm that Promela/Spin is not designed for data intensive pro-
cessing. However, even the large abstractions we applied to model and check the NoSupsInPlandDC' rule
contained too many states because our verification was not able to explore all its states. Therefore, while
Promela/Spin is suited for checking properties for process interleaving, even using large abstractions of data
cause a large explosion of the state space. We note that even with a small configuration of projects and
researchers all the possible execution states could not be explored.

Therefore, for the first question from Section 4.1.1, we conclude that Spin, like UPPAAL, is most suited
for analysing process-aware rules using very large abstractions. This is supported from the analysis results.
The analysis results also answer the second question such that we know that Spin is not suitable for RCA

when we need to use the details in a data model to show rule conformance.

40

On the other hand, the results in Table 4.1 show that the Alloy Analyzer was able to handle the analysis
of complex data relationships in data-aware rules. However, it showed much longer execution times when
we combined both process-aware rules and data-aware rules in a single model. Since the Alloy Analyzer is
able to return results for data-aware rules, we know that applying slicing, as discussed by Sun et. al, will
yield better results, i.e., shorter execution times.

Therefore, for the first question from Section 4.1.1, we conclude that the Alloy Analyzer with slicing is

best suited for data-aware rules. This shows that the Alloy Analyzer may be useful in HMCA.

41

5. HMCA AND NJH

HMCA follows three phases in conformance analysis: model construction, model analysis, and providing
feedback. The aim in the construction phase is to have formally analysable system models and a represen-
tation of the rules that can be checked on the system models. In the analysis phase we show the application
of a divide and conquer strategy to construct the transition system. For the final phase we provide feedback
to the user especially where conformance rules have not been satisfied. While our proposal for analysing
rule conformance is generalisable, it is most easily explained when applied to an example. For this, we will
use the NJH research system whose conformance rules come from HIPAA regulations. We will show how to
1) construct models, 2) analyse them for conformance to HIPAA de-identification (a DelDed access ticket
in the NJH System); we will hereafter refer to this as the HIPAA de-identified rule, and 3) provide feedback
in the case of non-conformance. In addition, for the purposes of explaining conformance to the de-identified
rule, we simplified its definition to only cover de-identification of dates, i.e., dates contain only a year value.

The rest of this chapter explains HMCA using the NJH system. We return to a generalisation of HMCA

in Chapter 6.

5.1 Phase 1: Model Construction
5.1.1 CoNSTRUCT AcCTIVITY MODEL AND CLASS MODEL

In previous work [23, 39] we constructed a path representation of the system as a UML activity diagram,
and a system structure representation as a UML class diagram.

The input for the activity diagram was from the Map of Integrated Bioinformation and Specimen Centre
Research Support flowchart [44] that shows the process used by researchers to apply for licenses and access
tickets and to access data. Flowchart constructs, e.g., sequential flows, choice, and loops, have equivalent
representations in UML activity diagrams, so our aim was to transform the flowchart to a more formal
activity diagram. However, the flowchart had non-standard flowchart representations, e.g., more than a
single flow out of, and into action nodes, so we applied normalisations, e.g., inserting decision and merge

points so we could distinguish the flows in and out of action nodes. These normalisations ensured that the

42

flowchart was well-formed. In preparation for transforming the flowchart to an activity diagram, we also
distinguished whether the paths out of decision nodes should be concurrent flows or not so we could know
where to apply an activity diagram fork and join transformation versus an if-then-else transformation. In
order to have all possible paths represented we ensured that all possible values for a decision were included.
The transformation rules we applied to the flowchart to produce the activity diagram were mainly from our
experience with flowcharts and our observation of how to represent them, together with the added formalisms
of activity diagrams.

The design-level class diagram was constructed through our understanding of the structural elements and

relationships required to support the activities in the activity diagram in Sections 5.1.5 and 5.1.6.

5.1.2 CoNsTRUCT ENTITY VIEWS

Activity diagrams have semantics that make them amenable to state machines and transition systems
[9, 10, 31, 35, 37, 42, 73], so we applied transformations to the system activity diagram to create a system-
wide state machine in [23, 39]. However, the state machine produced is still quite complex and does not
allow us to isolate the parts of it that relate to showing conformance to specific rules. In order to handle
complexity in the NJH system, we identify and model different aspects of the NJH system as separate state
machine entity views, hereafter referred to as entity views.

The entities may be understood as objects in the system that either perform operations that change their
own states, or are states of interest to rule conformance, e.g., researchers and patient health information.
The focus of constructing entity views is to bring understanding to the individual states of entities and how

the composition of these individual entity states influence the complete system state.

5.1.2.1 Individual Entity Views

We construct an entity view by extracting operations performed by the entity on other entities in the
system, e.g., researcher queries patient health information. Each constructed entity view is a representation
of abstract operations and state pertaining to that entity.

For the DelDed access ticket, the entities of interest are the researcher and the patient’s health information

that will be accessed by the researcher. We show in Figure 5.1 the researcher’s entity view in the NJH system.

43

R Download:---sesemeeeeeees
Apply
Applying). Approve- Querying e Query-- Downloading g
Download
Query
\"_/iew
N Viewing).

Figure 5.1: Researcher/Project Entity View

The nodes in Figure 5.1 use atomic propositions to show what the researcher is doing e.g., Applying for an
access ticket, and the edges show the operations, e.g., from the Applying state an Approve operation takes
the researcher to the Querying state. While the researcher does not carry out the Approve operation it is
important to include it in the researcher’s entity view as it affects the reachability of other states. This
entity view contains non-determinism as we have not shown the additional conditions that differentiate the
enabling of any of the edges exiting the states. This entity view also reflects the operations and states for a
project. One of the aspects of the DelDed rule is whether the Query operation result contains any patient’s
identifying information.

The entity view shown in Figure 5.2 is a view of the patient’s health information for de-identified access:
we specifically use atomic propositions to model that the health information can be Identified or De-identified
when either of the View or Download operations are performed; the use of the {} on the self loop from the
Identified state means that any operation is allowed, e.g. a researcher could be viewing or downloading
Identified patient health information. This view also contains non-determinism as we have not shown the
additional conditions from the system state that differentiate the enabling of either of the edges exiting the

Identified state.

44

e Identified ~-\liew or Download - De_identified

g

Figure 5.2: Patient Health Information Entity View for De-identified Access

5.1.2.2 Composing Entity Views

When a researcher obtains a DelDed access ticket, we are then interested in both the researcher and the
patient health information entity views. In order to understand the system in terms of what the researcher
is doing and the state of the health information, we compose the views. We show the composition of the
entity views in Figure 5.3. The process of composing the views relies on the handshaking [14, see section
2.2.3] of operations, such that when identical operations occur on the label of an edge, their next states are
combined into one state. The composition of the entity views produces a rule specific entity view, that now
labels a state with a 2-tuple atomic proposition; the first element identifies the state of the researcher, and
the second element is the state of the patient health information.

In any real system implementing querying operations, the results are immediately accessible, i.e., querying
and viewing will appear to a researcher to be an atomic operation, so showing that the state changes in the
patient health information occurs after the View or Download operations is an acceptable representation.

Again, this rule specific entity view contains non-determinism, e.g., the Download operation is a label on
edges from the < Querying, Identified> state to both the <Downloading, Identified> and the <Downloading,
De-identified> states. This non-determinism identifies that these possibilities exist in the system at this

level of abstraction.

5.1.3 MODELLING CONFORMANCE RULES

The rule specific entity view in Figure 5.3 contains some states that show non-conformance to the de-
identified rule, i.e., the states identified by <Downloading, Identified> and < Viewing, Identified> are illegal
and we must be able to probe a transition system for their occurrence. A transition system produced by a

model checker may be viewed as sequences of states, or traces.

45

A
>(/<Downloading, De-ident'rfied>\)<

v Download

Dowﬁload
Apply, ;) \
N S Query-, |y Quew |
v — T
- . Lo -~ ~ . . . ~
<Querying, Identified> € QU < <Viewing,De-identified>)

\/<Applying,ldentified>\ - Approve b

: View
e Expire or Withdraw:-- -
View" ;
H Query . s
e Query / <Downloading, Identlfled>\.._k
'\/<Viewing, Identified>\.. Download A

Figure 5.3: De-identified Rule Specific Entity View

An example of a partial trace for Figure 5.3 is
<Applying, Identified>< Querying, Identified>< Viewing, Identified>...
and the model checker must identify that this transition system shows non-conformance because an illegal
state is present in the trace when a DelDed access ticket is used.

In order to find this non-conformance, we specify a property using a graph formalism, called a non-
deterministic finite automata, NFA [14, see Chapter 4], that checks the transition system for illegal states.
Figure 5.4 shows the formalism for the de-identified rule specified using the atomic propositions in Figure
5.3. It shows that the system is in state Conforms when View or Download is executed with a DelDed
access ticket. An NFA processes each item (e.g., <Applying, Identified>) in the trace and if the final state,
shown by the node with two elipses, can be reached then the system does not satisfy the property.

We add that the system may still be adjudged to be conforming to the HIPAA de-identified rule even if
the Query operation gives Identified results since the non-conformance happens when Identified results are
viewed or downloaded. The use of the Not < Viewing, Identified> or Not <Downloading, Identified> label
on the self loop into the Conforms state ensures that neither < Viewing, Identified> nor < ViewDownloading,

Identified> are true for the system to be adjudged to be in conformance to the rule.

46

Y

y \ p—— —
> Conforms) <Viewing, Identified> or <Downloading, Identified> > Does_not_conform

Not <Viewing, Identified > or
Not <Downloading, Identified>

Figure 5.4: Graph Formalism for the HIPAA De-identified Rule

5.1.4 MaP RULE SPECIFIC ENTITY VIEWS TO SYSTEM MODELS
5.1.4.1 Map Operations to Activities in the Activity Model

The operations in a rule specific entity view (e.g. Figure 5.3) are abstractions of actual activities in the
activity diagram discussed in Section 5.1.1, and we may map these abstractions to their refinement in the
activity diagram. It is important to have such a mapping in order to identify actual system processes that
will be examined when analysing for rule conformance. In Figure 5.5, we show a portion of the activity
diagram of the NJH system for obtaining a DelDed access ticket and the subsequent querying using the
same access ticket.

With reference to the labeled activities in the activity diagram, we know that:

1. Al (Decide if research can use de-id’d data) through A5 (Apply for DelDed access ticket) maps to the

Apply operation in Figure 5.3;
2. A1l (Grant DelDed access ticket) maps to the Approve operation;
3. A13 and A18 together with A25 each maps to the Query operation; and

4. A26 maps to the View (or Download) operation.

5.1.4.2 Map Atomic Propositions to Concrete Class Model Elements

The atomic propositions used to identify states in a rule specific entity view represent abstractions of
actual system states and we can map these abstractions to the concrete representation of the states in the
class diagram. In order to distinguish patient health information as Identified or De-identified we will need
to provide tests. We will return to how we define these tests in Sections 5.2.3 and 5.2.4 in the analysis

phase.

47

an3

O ON _A.S.umu__%m
Jo yed -t
lesodoud Un_\‘

an3

épayjenb
©‘||1Aun_ SaUILINDP
SaH

81V

sy

8

§5900Y UOTYRULIOJU] [}[e0]] POYIIUAPI-o(] I0] yuowSog (I :G'G 931

b

A

—<

>

¢8Qy ul ereq

a4l 0}
ON |j0d030.4d

AN nwans

<

SgH 01 spuas pue
e1ep s1oe4X3 Oa

11 SISAI|9p pue eirep

19213 ssad0e
@aglaqg el

€1ep payiuap!
-ap 40} 9@y Asenp

Soljljuapl-ap SgH

919|dwod Yieasay @

apou agia

yoJeasal
ul exeq asn

v

€TV

9Tv

éssed $329y2, és1elgns
PayaLe et 4 LV|V©
SIA N apuapo S3A Noyspuy g’ ON

N

19213 ssaxe
@2aiaq 404 Aiddy

svY

|esodoud 10329||10D)
ejeQ 91ea.i)

144

109foud
Joj j02030.d 23E3ID

v

payizuspt

gyl 01 j0d030.4d 31wgns ieep v
ON -3p 3sn

elep paljiuspl-ap asn

ued Yo1easal Ji apag

5.1.5 ANNOTATE ACTIVITY DIAGRAM WITH DETAILS FROM THE CLASS MODEL

The details of the system state that allows a researcher to execute a query and view (or download) its
result are of interest. We show in Figure 5.6 the class diagram segment of the system state that these
operations access when using a DelDed access ticket.!

The runQuery method in the Query class in Figure 5.6 is mapped to the activities in the activity diagram
corresponding to querying (e.g., A13 in Figure 5.5) referred to as the activity diagram query segment below.

We add annotations to the activity diagram query segment with pre-, and postconditions specified in the

class diagram. The activity diagram query segment is annotated with the runQuery specification:

Input: Researcher, Query, and associated Project (which allows us to obtain the project’s access ticket

from ProjAT);

Precondition: Researcher requesting access is authorised (as indicated by the access ticket);

PostCondition: output is Identified or De-identified; and

Output: QryReturns Association.

5.1.6 CREATE CONCRETE RULE SPECIFIC STATE MACHINE FROM ANNOTATED ACTIVITY DIAGRAM

AND ENTITY VIEWS

A de-identified rule-specific entity view state machine is shown in the composed entity views of the
researcher and patient health information in Figure 5.3. We must map details of the annotated activity and
the class diagram to this state machine. The mapping tell us which of the system activities and states are
of interest to analysing conformance to the HIPAA de-identified rule. For simplicity we do not show the
mapped region of this diagram (but these are discussed in more detail in Section 7.1).

This mapped rule-specific entity view is a more concrete representation of the (abstract) rule-specific

entity view such that for each:

e operation in the entity views there is traceability to:

— its corresponding method in the class model,

IThe class diagram segment represents changes that are improvements to the class diagram initially developed in [23].

49

0§

SUOIYOY PDOJUMO(T Pue ‘mai) ‘fiuand PaYIIuapI-o(] O} }SOIAUT JO 93e1S WYSAS :9°G oINS

laydieasay

b

oaa

siaquaploid

S9Ny LY . I Lyloid
19)91] SS90y
«
SWJOJSUBI | HY « | Quuojsuen : 3 .
A_|_ ajeQHwJojsuel] pagleq
INyss8Y sauanplold L
’ waloid |*
o] salddyyy W -y
E (108lo01d : foid “sayoseasay : sai)lianpuni
fianp M
suineglip uosy{omAin

*

. gowoidgy . F| &eahio

*

elegiay

saoinogloid

pelle]

Jabayu) : Jeak

. Buig : sweu m
J8bau| : yuow :
o % | senepereq R wenereq T elequened T uened

Jabaju) : Aep

aleq . .

10 82Inog|a
170

UOPEIRIU e0InogeIRq [T

— the part of the class model that corresponds to its signature, i.e., input, and

— its pre- and postconditions based on the class model.

e state, its abstract atomic proposition can be traced to its concrete state as represented in the class

model.

We use the mapped rule specific entity view as the program graph that we will use to extract evidence
of conformance to our simplified de-identified rule. In the analysis phase we will discuss the specific class

diagram methods linked to the operations in the mapped rule specific entity view.

5.2 Phase 2: Model Analysis

The analysis result needed to show conformance to the HIPAA de-identified rule is a transition system
that does not contain either the < Viewing, Identified> or the <Downloading, Identified> states for the
DelDed access ticket. In order to achieve tractable analysis results when producing the transition system
from the mapped de-identified rule-specific entity view created in Section 5.1.6, we create the transition
system semi-automatically by individually analysing the state produced by each operation. The slicing
technique extracts (copies) the class model elements required for each method into a smaller class model.
The class model slice is transformed into an equivalent Alloy model and we use the Alloy Analyzer to probe
the model for its resulting state when the associated operation is performed.

The Alloy language allows us to define predicates and functions whose return values may later be used
as other constraints in the model or used to generate instances of the model. In addition, we may use the
predicates and functions in assertions to verify that all instances of a model possess certain properties or
are in a particular state. The order of operations defined in the de-identified rule-specific entity view state
machine tells us how to insert each mapped method’s state into the transition system. The final step will
be to verify that the transition system does not violate our simplified statement of the HIPAA de-identified

rule.

o1

5.2.1 IDENTIFYING THE SLICE OF INTEREST

From our discussion in Section 5.1.2.2, since the Query and View operations together may be viewed as
a single atomic operation, we may assign the job of de-identifying the data to any of their mapped methods.
In our model, we assign the job of de-identifying the data to the runQuery method and our analysis will be
to determine whether its result could cause the View (or Download) method to produce in an illegal state.?
In an Alloy model, classes are represented using signatures. For example, using the sig keyword we define
the Individual and Type classes from Figure 5.6 and make the Individual class inherit from Type class using

the code in Listing 5.1.

Listing 5.1: Alloy Signatures

abstract sig Type {}
sig Individual extends Type {}

Associations between classes are represented using relationships between signatures. For example, Listing
5.2 shows the Alloy representation for the DataValues association from Figure 5.6 where each Dataltem is

associated with exactly one DataValue.

Listing 5.2: Alloy Relationships

HDataValues: Dataltem -> one DataValue

5.2.2 ADDING OPERATION SPECIFICATION

The Alloy model that contains the equivalent representation for classes and associations must be extended
to add specifications for pre- and postconditions of the runQuery operation. The precondition includes:
1) the researcher is authorised to execute the query and 2) the results before the query executes are not
(yet) known. The postcondition defines the query result. In general, operation specifications declare that
when an operation’s precondition is satisfied, then the operation’s result expressed in the postcondition is
also satisfied. We enforce this operation’s specification by constraining the model to only change in response

to the runQuery method executing. For runQuery’s full Alloy operation specifications see Appendix B.1.

2 As a reminder, even if the result the runQuery method makes available to the View method is Identified, we cannot
adjudge that the system is in an illegal state until the View method terminates.

52

5.2.3 PROBING THE ILLEGAL STATE.

Our specific interest is to determine the state of the query result after any execution of the runQuery
method. Assertions are used to examine whether all possible configurations of signatures and relationships

3

in our system always adhere to our expectation of the system. The AlwaysDelDedConformance® assertion

in Listing 5.3 models our main expectation of the results of operations.

Listing 5.3: Probing runQuery Model for the Identified State

assert AlwaysDeIDedConformance{
all njh: NJH, q: njh.queries |
all qi: q.(njh.QryWorksOn), ri: q.(njh.QryReturns) |
ConformanceDeIDed[njh, q, gi, ri] }

njh is an instance of the system. AlwaysDelDedConformance is an assertion that looks at every possible
instantiation of the Alloy model and checks whether all its queries using a DelDed access ticket return de-
identified data. We use the predicate ConformanceDelDed to check that each piece of return data in each
query’s result is de-identified when a de-identified access ticket is used to run the query. We test this assertion
using the statement in Listing 5.4 that uses a scope of 3, i.e., generates a maximum of three (3) instances
for each signature, and executes this check; further, we expect the system not to find counterexamples, i.e.,

expect 0.

Listing 5.4: Executing AlwaysDelDedConformance

H check AlwaysDeIDedConformance for 3expect O

If no counterexamples are found we know that when the DelDed access ticket is used, each piece of data
in the query’s result is always de-identified within the scope defined. While we may use larger scopes, the
Alloy Analyzer justifies testing models with small scopes because a high proportion of bugs may be uncovered
when testing a program for all test inputs using small scopes (see Section 3.1). If AlwaysDelDedConformance
returns a counterexample, we know that some query using the DelDed access ticket terminated in an illegal

state.

3We use a concatenation of words in the names of the assertions, predicates and functions as an easy way to identify their
purpose.

53

5.2.4 DETERMINING OPERATION STATES.

In our model, we not only want to determine if an illegal state could be reached, but also that the
legal state is possible. While AlwaysDelDedConformance returning counterexamples tells us about the pres-
ence of illegal states, if it does not return counterexamples we still require a further sanity check because
it may be that the model produces no instances and therefore no counterexamples could be returned. In
terms of Figure 5.3 we must also determine if the < Viewing, De-identified> state is reachable. The pred-
icate CanGetConformanceDelDed in Listing 5.5 produces an instance of the system where a query’s result
is de-identified. BasicDeldentifiedDate Conditions is a predicate that sets up conditions such that a sys-
tem instance njh contains a query ¢ry that extracts some data ¢i and has associated return data ri. not
IdentifiedDate[ri. (njh. Data Values)] ensures that ri is de-identified according to our simplified definition of

de-identified data (i.e. dates are returned as years).

Listing 5.5: Testing runQuery Model for the De-identified State

pred CanGetConformanceDeIDed
[njh: NJH, qry: Query, qi: QryData, ri: RetData] {
BasicDeIdentifiedDateConditions[njh, qry, qi, ril
and not IdentifiedDate[ri.(njh.DataValues)] }
run CanGetConformanceDeIDed for 3but INJH expect 1

We expect that CanGetConformanceDelDed will produce an instance. We use as evidence that the
< Viewing, De-identified> and the < Viewing, Identified> states are reachable when CanGetConformanceDel-
Ded gives an instance and AlwaysDelDedConformance gives counterexamples respectively. We note how-
ever, that we do not have enough evidence to show that the < Viewing, Identified> state is reachable when
CanGetConformanceDelDed finds no instance, or that the < Viewing, De-Identified> state is reachable when
AlwaysDelDedConformance find no counterexamples.

We use the evidence of the reachability of the states when constructing our transition system. While a
program graph, such as the one represented in the mapped rule-specific entity view state machine described in
Section 5.1.6, represents the possible states and operations in the system, the transition system is a concrete
representation of the actual reachable states (or operations) in the execution of the program graph. For
example, if CanGetConformanceDelDed returns instances and AlwaysDelDedConformance does not return

counterexamples, we expect the that the analysis of the mapped rule specific state machine to produce

54

»(<Downloading, De-identfied> Yo

<Applying, |dentified> <Querying, Identified> <Viewing, De-dentified>

Figure 5.7: Transition System Indicating Conformance to the De-identified Rule

the states in the transition system shown in Figure 5.7. However, if CanGetConformanceDelDed returns
instances and AlwaysDelDedConformance returns counterexamples, then we know that the transition system
shown in Figure 5.8 containing the illegal states will be constructed from the analysis results. This is because

a counterexample from the AlwaysDelDedConformance means that there is non-conformance.

5.3 Phase 3: Results and Feedback

The presence of counterexamples for the AlwaysDelDedConformance assertion represents an illegal state
in the system. When an illegal state is encountered, we may use other assertions and predicates to further
probe the specifications to find the conditions under which unexpected results were returned. If identified
data is returned from a query using a DelDed access ticket, we must be able to generate a detailed system
instance that pinpoints the specific project, query, data the query worked on, and the corresponding data
returned by the query that produced the illegal state, i.e., object instances of the classes in Figure 5.6.

In our model, all the data that require a de-identifying date transformation are marked using the DICat
association in Figure 5.6. Therefore, our first check is to ensure that our Query operation specification
correctly de-identifies marked data. We use the assertion in Listing 5.6 to make this check. If we find
counterexamples then we know that our operation specifications are incorrect. ConformanceDelDedHDateSet
is a predicate that returns true if all the data extracted by a query that is marked as requiring de-identification

has been de-identified in the query’s result.

55

»(<Downloading, De-identified>

<Applying, ldentified> <Querying, dentified> <Viewing, De-dentified>

<Download, Identified>

<Viewing, Identified>

Figure 5.8: Transition System Indicating Non-Conformance to the De-identified Rule

Listing 5.6: Probing for Conformance when Data is Properly Categorised

assert AlwaysDeIDedConformanceWhenHDateSet {
all njh: NJH, q: njh.queries |
all qi: q.(njh.QryWorksOn), ri: q.(njh.QryReturns) |
ConformanceDeIDedHDateSet [njh, q, qi, ril }
check AlwaysDeIDedConformanceWhenHDateSet for 3expect 0

However, if this assertion finds no counterexamples, then our probing must continue as the reason for
the non-conformance is elsewhere in the model. For the de-identifying transformation to work properly, our

model relies on human intervention to link the following:

1. date data items with their appropriate HIPAA category using the DICat association in Figure 5.6,

2. transformation rules with the HIPAA categories associated with data they need to transform, using

the ATTransforms association in Figure 5.6,

3. access rules to the return data types that they should transform using the ARAppliesTo association in

Figure 5.6, and

4. the access tickets to the appropriate transformation rules, using the ATRules association in Figure 5.6.

56

Our next logical step is to use other assertions to probe the model to verify that these links have been
properly created. We have created an example to demonstrate what occurs if data items have not been
properly marked for a de-identifying transformation. The predicate in Listing 5.7 may be used to generate an
instance where a query gry terminates in an illegal state because some data item that the query extracted from
the data sources ¢i, and transformed 7i, were not properly marked as requiring a de-identifying transformation
by creating a DICat association. NonConformanceDelDedFullDateHDateUnSet is the predicate used to find

where this occurs.

Listing 5.7: Probing for a Non-Conformance Instance when a Data Item is Improperly Categorised

pred DelIDedNonConformanceFullDateWhenHDateUnSet
[njh: NJH, qry: Query, qi: QryData, ri: RetData] {
NonConformanceDeIDedFullDateHDateUnSet [njh, qry, qi, ril}

While the instance produced by the Alloy Analyzer may be viewed graphically, it may not be ideal
for giving feedback to the non-technical user. The Alloy Analyser allows the instance to be exported to
the Extensible Markup Language (XML) format that we may parse for the query, data items and their
associations that resulted in the illegal state. A graphical example of the feedback relevant to this problem
is shown in Figure 5.9, where the elements determined to be involved are labeled with the variables used to
run the predicate. For example, when giving the feedback, the main variables of interest from the call to
the NonConformanceDelDedFullDateHDateUnSet predicate are qry, ¢i, and ri. These variables are used as
additional labels for Query2, QryDatal and RetData respectively in Figure 5.9; QryDatal is the data item
extracted by Query2 and RetData is the result that is in an illegal state because QryDatal was not properly
linked to HDate to indicate that it should be de-identified.

The counterexample gives us an indication of what needs to be corrected in the model. For this example,
we may add corrections to the runQuery post condition to ensure that it recognises data values that are
dates and de-identifies them, or add a constraint that all DataValue classes that are dates are linked to the
HDate HIPAA category. We applied the correction as a constraint to associate all date DataValue classes
with the HDate HIPAA category in the model. This constraint added in the Alloy model must be propagated
to the corresponding class diagram. Through the mapping to the mapped rule-specific entity view described

in Section 5.1.6, we know what states in that view are affected. We must also reflect the new constraint in

57

89

RIR([P ipuapy SWINISI Zhiiond) ©OUWRULIOJUO)-UON :6'G oINSI]

(saeDy)
aaeaH

sanjeaAeIed.

sanjeaeieg

(sw=qjAub “1b)
T=1egiiD

Jeqgiuaned

(swi=13a ‘1)
2 i-{ar)]

UOSHIOMAID (swuaned)

usned
sSuIMayAID
(s3a1a3anb ‘Aub) (s3a1a3anb) (s31a3anb ‘b)
ZAia3anD 0Al3ND TAI3ND

saanDloud sajsanDloud
sah@enDloud

(s1>afoud)
1afoud

the part of the annotated activity diagram in Section 5.1.5 dealing with Data Value objects, and from there
changes may need to be made to the portions of the work flow initially linked to this part of the activity
diagram. If, however, the correction was applied in the postcondition, since the Query operation in the rule
specific entity view has annotations from the class diagram, the post condition change to the class diagram’s
run@Query method can be propagated through this mapping.

Appendices B.1 and B.2 give details on the important predicates and assertions for the runQuery oper-

ation.

59

6. HMCA OVERVIEW

6.1 HMCA Generalisation

The process used and the models created for verifying system conformance to our simplified de-identification
HIPAA rule may be generalised for verifying other rules. We use Figure 6.1 to represent the main activities
of HMCA, and with each activity show its inputs and outputs as models/artefacts’. We will refer to this
view of HMCA as an external view because we highlight the major activities and the models/artefacts that
are used across these activities. In this external view of HMCA we use the numbers 1 through 6 to highlight
the steps.

At step 1 we take as input conformance Rule Requirements, e.g. HIPAA regulations, that we use to drive

the construction of the models needed for the analysis phase. We highlight that we need more formal:

1. data-oriented system models and for this we construct a UML Class Diagram that give us the additional

details needed to identify specific places in the system where the rules are not satisfied;

2. process-oriented system models, and for each rule we construct an Annotated Rule-Specific Entity View

(ARSEV) as a state machine and will use it to test conformance for each rule; and

3. rule representation, and for this we construct a Rule NFA for each rule using the atomic propositions
labelling the system states in the ARSEV to define conformance rules by defining illegal states e.g.,

the simplified HIPAA de-identified rule in Figure 5.4.

Each constructed model requires verification from the respective domain experts to verify that they are
correct. We also show the links between models/artefacts that are important to maintain by using traceability
links. In the construction phase, we link each conformance Rule Requirement to its representation as a Rule
NFA, each Rule NFA to its corresponding ARSEV, and since the ARSEV’s annotations also come from the
Class Diagram (see Section 5.1.6) we also provide traceability links between them.

In the analysis phase we produce a Transition System from each ARSEV and use it to check whether

the corresponding conformance rule has been satisfied. In order to determine system state and to avoid in-

IThe diagrams in this section are best view in colour to differentiate the purpose of each coloured line.

60

19

VOINH PosieIsusr) :1°9 oInSLq

- S192)91E/SPPOW ==
ay3 usamiag syuy ANl
Kungesoen ssynuapl

S9A

——

oeqpasy
apinold

9|dwexaJa3uno)

10eJ31Y/|9poIN
SINY SOUSRES SL moy4 anduj
Ajigesoes)
moy} Inding
MO|} [013U0) e
Lo |
salepdn
(s1) warshs PEN_lsaoys Ayipon
uolysues|
: 10} AISYV asAjeuy EICR)
3upis
= (@2) wesgeiq
sse)D
8ul|s
wop9
Ayjigesoes) i
N~

(AISHY) MaIA Aug oiypads-ajny pareouuy
» Avjiqeasel)

SISPON
a|qesAjeuy
12n415U0)

Avjiqeases)

Y

V4N 3|ny

rb___o_mmumﬁl sjuswalinbay ajny

tractable analysis results when using a model checker, we construct the transition system semi-automatically
by slicing to produce smaller models. Though we do not separate the slicing of the models from the analysis
phase, we include it as a separate step in our external view because we later allow the slices to be modified
and re-analysed, and slicing the models takes place only once?. Slicing requires as input the Class Diagram,
Slicing Criteria i.e. each method in the class diagram or each operation in the ARSEV that may correspond
to a sequence of several methods in the class diagram, and the ARSEV from the construction phase. The
analysis performed at step 3 produces the transition system.

If the conformance rule is satisfied in the transition system, the Yes branch at step 4 is taken and our
process ends. However, the No branch at step 4 becomes important when the conformance rule being checked
is not satisfied. This No branch at step 4 allows us to provide counterexamples at step 5, to modify the
Alloy slices at step 6, and to re-analyse for rule conformance at step 3.

This external view of HMCA hides many internal sub-activities that produce intermediate models/arte-

facts so we provide decompositions of each phase as HMCA internal views in Subsections 6.2 to 6.4 below.

6.2 Construct

Using the same conventions in the key from Figure 6.1, we show a more detailed view of the construction
phase in Figure 6.2 by giving a step-wise decomposition as internal sub-activities and include additional
models/artefacts used and produced. We use the numbers 1 through 8 to highlight the steps. Some of the

highlights are that:

e we show the specific sub-activities that use and produce models/artefacts, e.g. Rule Requirements is

used at step 4 and the Rule NFA is constructed at step 5;

e we include additional internal models/artefacts, produced at steps 1, 3, 4, and 6;

e we include internal traceability links for the models/artefacts, e.g., the ARSEV now has traceability
with the Annotated Activity Diagram (AAD) because we link its operations with the actions in the

AAD;

b

2However,if changes are made to the operation specifications in the system class model, the slicing must be re-done.

62

€9

VOINH Ul SUonIjsuo)) :g'9 2Insig

Avjiqeade. .

(A3S¥V) A3SYH parerouuy

A

Avngesses)

Aupge

A V4N 3Ny

jigease.],

oed]

8
Q/m_mx pajejouuy uuzbmcouu

V4N
3|ny 3onJ3su0)

AungeadelL———p (735y) main A1pu3 o1ypads-ajny

ANIGESC L (573) sMaIA A1IU3

Avjigeade.]

Amu3zonynads-any

P sjuswauinbay ajny

v
(avy) weieig Auninoy paiejouuy <@——ANlIqe0RI;

jiqesded].

av paiejouuy

19nI5U0) (av) weudeig Auaroy

MIIA

(@d)
weJgelq sse|d

<

19N135U0)

Sunl
‘weudelq sse|) ‘wesdelq
ANy 10n135U0D

BlIa1ID
S@p1oap pue

SMIIA
Au3 10n13suo)

e we have organised some of the internal activities using two parallel paths identified by steps 2-6-7 and

2-3-4-5-T because the models/artefacts used and produced along these paths do not overlap; and

e at step 8, we require the two parallel paths 2-6-7 and 2-3-4-5-7 to complete in order to construct the

ARSEV that depends on the models/artefacts previously produced on the identified paths.

We note that although our explanations in Section 5.1.1 started with a flowchart and its conversion to
an activity diagram, HMCA assumes that we will have an activity diagram representation of the system’s

actions.

6.3 Analyse

Using the same conventions in the key from Figure 6.1, we show a more detailed view of the analysis phase
in Figure 6.3 by giving a step-wise decomposition of the internal sub-activities and and include additional
models/artefacts used and produced. We use numbers, 1 through 5, to highlight the sub-activities.

The highlights in this phase are that though sub-activities 2 through 4 are not observable externally, they
add the models from which we extract the states to use in constructing the Transition System. Slicing in
sub-activity 1 partitions the class diagram using the Slicing Criteria; currently we use the operations in the
ARSEYV as the slicing criteria. We transform each class diagram slice to an equivalent Alloy model. While
the class diagram may contain constraints specified using the Object Constraint Language (OCL) [68], these
are not automatically transformed in the Alloy model because many of the concepts in OCL are not directly
representable in the Alloy language. Thus, adding of the constraints is a manual activity. In addition to
the constraints, we add Alloy predicates and assertions to extract state information from the models. The
alloy specifications are included in the Constrained Alloy Slices (CAS). This equivalent representation of the
class diagrams slices as Alloy models help us to undertake detailed analysis to check that operations do not
terminate in illegal states, or if they do, to pinpoint where problems in the system specification exist. We
then use the states indicated from the execution of the assertions and predicates to construct the transition

system in sub-activity 5.

64

A 4

Perform Slicing:
Slice CD (Slicing)

1

Perform Slicing:
Transform CD Slice
to Alloy Model

Analyse: Add
constraints and

state specifications
to slices

Analyse: Extract States
from Slices and
Construct Transition

System

4

A 4

Analyse: Check if Rule
Satisfied on TS

Annotated RSEV (ARSEV)

D g—
Traceability

D SIicesﬁ

<

Traceability,

Traceability

Basic Alloy Slices

Rule NFA

Traceability

Constrained Alloy Slices (CASs)

Trace

B

Traceability

Transition
System (TS)

ability

J

65

Figure 6.3: Analysing in HMCA

6.4 Provide Feedback

We also show a more detailed view of the feedback phase in Figure 6.4 by giving a step-wise decomposition
of the internal sub-activities and include additional models/artefacts used and produced.

We use numbers 1 through 6 to highlight the important steps. We repeat sub-activity 5 from Figure
6.3 as step 1 because its results determines the flow and may be re-used in the feedback phase. Step 2
shows branching flows based on the results in step 1. When a conformance rule is not satisfied, step 3 is
taken, otherwise we go to step 5. In step 3, we extract a counterexample from the transition system. The
counterexample will indicate structural conditions under which a rule fails and we can use this to modify
the constraints in the Alloy model in step 4, and re-analyse the conformance rule in step 1. In step 5, if any
of the CASs have been modified, we must reconcile their modifications with the ARSEV, which produces
a modified ARSEV. Since each CAS has indirect traceability to the class digram slices, the reconciliation
applies to the class diagram as well.

Currently, analysis in HMCA considers each rule individually, so the steps must be followed for each rule.

We consider that HMCA is complete on the No branch of step 5, or after step 6 completes for all the rules.

66

19

VOINH Ul 2RqPa9] 9 931 g

| G

a|dw exa23un0) m 3|dwexaia1uno) 10e41x3 Peqpas4 v

A

oN
oN
A

NIGeSOeIL ¢payip

SOA—— P> S

$921S
¢3Iny sajsies S1

C

AISYVY
Yum $221|S PaLjIpoN
3|PU0IY HPpeqpas

v

(SL) waisAs uonisuesy

90UBW.IO0JU0I JNI
10j A3SYY dsAjeuy

EERIT
AJPO ¥pegpaD

;)

Aupgesdey -
// SSVD PRLIPON
10
N SSYD
V4N 3|ny
H___%m_stpl\k = Aungeoel
Ayjiqeasesy ; a
A3SHV P2JIPON
N——p o saiepdn

(A3SYV) A3SY parerouuy -
h|3__5m8m¢|v ad PaUIPOA 10 d)

7. NON-CONFORMANCE FEEDBACK

In this chapter we provide additional and updated models for the NJH system to complement the models
in Chapter 5, and discuss the feedback phase of HMCA in more details. The models presented will provide
the background for sections 7.2 through 9.3. The additional models are in Section 7.1 and the details of the

feedback phase are in sections 7.2 through 7.6. We give a summary of the feedback phase in Section 7.7.

7.1 Updating NJH Models

We discuss updates to and include new 1) entity views, 2) HIPAA conformance rules as NFAs for the
DelDed and the Identified access tickets, 3) class model, 4) annotated activity model, and 5) transition

systems and non-conforming states in analysis. These were previously discussed in sections 5.1 and 5.2.

7.1.1 ENTITY VIEWS

Recall that an entity may be understood as an object in the system that either perform operations that
change its own states, or is a state of interest to rule conformance. Therefore, entity views are needed to
bring understanding to the individual states of entities and how the composition of these individual entity
states influence the complete system state. We discussed the entity views and rule specific entity views for
the DelDed access ticket in section 5.1.2. However, since we only considered cases where the data used
start out in an Identified state, our models must be updated to include where the data can start out in a
De-identified state, i.e., since a project may use data from different sources and some of them may have data

that is in an Identified or' De-identified state.

7.1.1.1 Individual Entity Views

Both individual entity views, i.e., the Patient Health Information Entity View and the Researcher Entity
View require updating as we now include new operations and states for the former and new transitions for
the latter. We show in Figure 7.1 the updated Researcher Entity View. We compare this with Figure 5.1

where we now have a new state for when a researcher is being qualified.

IThis is to be interpreted as the inclusive-OR

68

~--Request Qualify

Qualifying “,Query" ” Dounlond

Approve and Apply

Download

.m_/iew

Figure 7.1: Researcher Entity View (Updated from Figure 5.1)

Identified or
De-identified

{} 77777777777777777777777777

Figure 7.2: Patient Health Information Entity View (Updated from Figure 5.2)

We show in Figure 7.2 the updated Patient Health Information Entity View. We compare this to Figure
5.2 where we no longer have a separate De-identified state as this is included in the state labelled Identified or
De-identified. Since the or is the inclusive-OR the data may be in three distinct states: only Identified, only
De-identified or both Identified and De-identified. As with the previous data entity view in Figure 5.2, this
view also contains non-determinism as we have not shown the additional conditions from the system state
that differentiate the enabling of either of the edges exiting the Identified or De-identified state. Though
this entity view updates the model for the DelDed access ticket, we note that it also applies to the Identified

access ticket.

7.1.1.2 Rule Specific Entity View

The changes in the individual entity views must be propagated to the rule specific entity views. Recall

that the latter is constructed based on the handshaking [14, see section 2.2.3] of operations in the former,

69

~~Request Qualify

/<Qua|ifying, Identified >
_orDe-identified> /™

~<Downloading, Identified or\

Approve énd Apply e Query
; /_\
/%Ppplying, Identified or™ ~ <Querying, dentified or > /<Viewing, Identified or\
\ De-identified>) Approve De-identified>)% Query (w)

View

Figure 7.3: Identified and DelDed Rules Specific Entity View

such that when identical operations occur on the label of an edge, their next states are combined into one
state. We show in Figure 7.3 the composition of the views in figures 7.1 and 7.2. Since both the Identified
and the De-identified states may occur together in the rule specific entity view, the composition gives an
entity view for both the Identified and the DelDed access tickets.

Again, this rule specific entity view contains non-determinism. For example, though there is a single edge
from the <Querying, Identified or De-identified> state to the <Downloading, Identified or De-Identified>
state, this (edge) is an abstraction for three edges because of the three different ways the Identified or
De-identified clause in the states may be assessed to be true. This non-determinism identifies that these

possibilities exist in the system at this level of abstraction.

7.1.2 HIPAA CONFORMANCE RULES

HIPAA conformance rules specify how the system will be adjudged to be conforming to HIPAA regula-
tions. We previously discussed these in Section 5.1.3 and we now return to updating and adding new ones

based on the new rule specific entity view in Figure 7.3.

7.1.2.1 De-identified Conformance Rule

Figure 7.4a is the same as Figure 5.4. It shows the conformance rule for the DelDed access ticket and is

specified using the atomic propositions in Figure 7.3. We repeat it here because it will be useful in identifying

70

e <\jewing, Identified> or <Downloading, Identifieds>-

Does_not_conform

Not <Viewing, Identified >or
Not <Downloading, Identified>

(a) Rule NFA for the DelDed access ticket (Same as Figure 5.4)

Does_not_conform

not <Viewing, De-identified > or

not <Downloading, De-identified>

(b) Rule NFA for the Identified access ticket with a TotallyIDeD data transformation

[Conforms false

Does_not_conform

<Viewing, De-identified>
or T
<Viewing, Identified>
or
<Downloading, De-identified>
or
<Downloading, Identified>

(¢) Rule NFA for the Identified access ticket with an AllowDelDed data transformation

Figure 7.4: Conformance Rules as NFA for the Identified and DelDed access tickets

71

non-confining states for the models in the analysis phase as discussed later in Section 7.1.4. It shows that

the system is in state Conforms when View or Download is used to access De-identified health information.

7.1.2.2 Identified Conformance Rules

Figure 7.4b shows the conformance rule for an Identified access ticket requiring a TotallyIDed data
transformation. It is specified using the atomic propositions in Figure 7.3. It shows that the system is in
state Conforms when View or Download is used to access identified health information.

Figure 7.4c shows the conformance rule for an Identified access ticket requiring an AllowDelDed data
transformation. It is also specified using the atomic propositions in Figure 7.3. It shows that the system
is in state Conforms when View or Download is used to access either identified or de-identified health
information. We note that, since the AllowDelDed data transformation permits that both the Identified and
the De-identified data states specified in our system to show conformance, there is no case where there can
be non-conformance, i.e., the label on the edge into the Does_not_conforms state is false. This means that
all the modelled states of health information will conform to this rule. We also note that when other data
transformations are included, e.g., for those allowed by the Coded access ticket (see Section 3.4), all the rule
formalisms must be updated or else the system will be underspecified due to data states being excluded from

the rules and this may result in non-conformance.

7.1.3 CLASS MODELS AND ACTIVITY MODEL ANNOTATIONS

7.1.3.1 Class Model

The unsliced class model for the NJH system is shown in Figure 7.5. It includes all the model elements

as discussed up to and including Chapter 9.

7.1.3.2 Activity Model Annotations

As we did in Section 5.1.4 to Map Rule Specific Entity Views to System Models, where we showed the
annotations for the query operation, we now update and add the annotations for all the operations. In

particular, we show the annotations for operations that allow the advancing to the different states in Figure

7.3.

72

€L

uoryendog pajoejold e ULIP[IY)) PUR S9N uUoIs1oa PUe Sa)nyssaddy [[e Sopnyou] :[9POJN SSB[D PodIsu HN :G'J 9IS

JUaW}eal [19211J1ON3S0dINgaWoS

panoiddyyosessayjeloads

ajngu

80

8HI0qwes]|ddeiaA0oN \,\ $

paq|eafieloLasnuey

10}08]|00BIBQSPOANEQIROIUID

(JoinyAdde

[1dpuywes pevear | ['yofyon

|y

| Bropemioy

I
IsU0dSaHpUYUBSSYPIIYD __r
\VA

[penaitypeojunog | [paigesigpeoiumnog

3

alngsseooy [*

0, s8)ddyHy

EEY

SJeQHWI0JSUBI|

SIBISIOP/BMI081EI0ADYPIIYD

SWIojSuel Y

N

SOPIHEY

\

ueajoog : ()paljnuaplIoNs!
ues|oog : ()palynuapjs!

0 PaMOIIYaA

(1oyoueasay : sau)ioyoieasayAyeny lualjedefoadg
f | Jaljlfen; SIaquIBNgHI +0! 10
Buysiy [END @
Joenpioyosessay |+ 0
Ji0yoIeasey LSRN
@007 [0 Huesu —_—
pagieq 13yoIeasay V s
I < |10 . bayjuassyjuasuogjoaloid
V |auuosisd Jaleq
E A slaquiajy1osloid 0
. Y dieloig siosinadng
- 10
901 $890:
»1 o seingwied y v_u__ N 10}08]|09BIRQI8I0Id
Roud1y
1y108loid _Emémm:.ﬁm__o _l—v_ asoding _A_I_ yoIeasay _
saanploslold | I)
_ . asodingjoalolg paqifiieioL
i : _uwo_wn; BJ0L _l—v_ wiojsuel] ejeq _A_._En__wn_go \'s
. 10
(Jpeojumop _ + painbaywiojsuel [ejeioslosd
(10801 : lod ‘sayoseasay : sai)kianpuni Rajold
T .- oleasay[e1adgioslold
Kionp A *
3 v verq
uosHomkin
N : wiaduonedionedpiiyy 1
Bleqiey suinayhi * N
eleghip o
1800ADYPIIY R
= 0 d

[enoiddyyoieasayeroadgioalod

>

_ UOIYeIAR)|uUOUBABIJBUIPUE}SIApUNIBLLINS _

sabay Bupg : oweu
J8681u] : yuow wayerq Y
Jabaju) : fep || N uesu0)] Juessyuoledionedpiy)
ajeq uopasalu3 201n0g|q 0 .]
10
1
N \ R
80In0geleq |« eeqiuane $30In0g103[01d uaned .

leusgioalig _|_v_ YSIHYoIeasayusIp|IyD _l_v_ ysiqyolessay

[io

7.1.8.2.1 Approve RequestQualify for Researcher.

Input: Researcher r, Qualifier ¢;

Precondition:

1. Personnel that is passed in as Qualifier is Authorised to perform this function; and

2. there is no link in the ResearcherQualifier association between r and ¢

PostCondition: Link in the ResearcherQualifier association between r and ¢; and

Output: Success.

7.1.3.2.2 Approve a Researcher’s Licence Application.

Input: Researcher r, and Licence f;

Precondition:

1. r qualified; and

2. there is no link in the ResearcherL association between r and f

e PostCondition: Link in the ResearcherL association between r and f; and

Output: Success.

7.1.3.2.8 Approve a Project’s Application for an access ticket.
e Input: Project p, AccessTicket at;
e Precondition:

1. All DecisionRules for at return true; and

2. there is no link in the ProjectAT association between p and at (see footrnote?)

2This second condition is sufficient because any p can only have a single access ticket

74

e PostCondition:

1. Link in ProjectAT association between p and at; and
2. for each SpecialSubject linked to p in the ProjectSpecialResearch association, there is a link in the

ProjectConsentAssentReq association

e QOutput: Success.

7.1.8.2.4 Ezecute a Query.

e Input: Query qry, Researcher r;

e Precondition: r is authorised to execute qry;

o PostCondition: each

1. QryData linked to gry in the QryWorksOn association, all applicable AccessRules for qry’s access

ticket returns true; and
2. RetData, rd, in the QryReturns association is:
(a) is transformed according to the DataTransform linked to gry in the ProjectDataTransform-
Required association through its associated project;
(b) linked to some QryData, qd, in QryWorksOn for gry;
(c) linked to some Type in RDType such that
if rd is linked to 1 gd in QryWorksOn then
Type = Individual
else
Type = Group

(d) is Identified or De-identified.

e Output: Success

75

7.1.8.2.5 Check Conformance.

e Input: Query qry;

e Precondition: qry has RetData in the QryReturns association;

e PostCondition: for the applicable conformance rule, each RetData linked to gry through the QryRe-

turns association does not return the Does_not_conform state3; and

e QOutput: conformance rule state.

7.1.3.2.6 View (or Download) query’s results.

Input: Researcher r, Query qry;

Precondition:

1. gry has RetData in the QryReturns association; and

2. r is authorised to view (or download as applicable) ¢gry’s RetData in QryReturns.

PostCondition: true; and

Output: Success.

7.1.4 ANALYSIS

This section completes the models for the Analysis phase as previously discussed in Section 5.1.6.

7.1.4.1 Slicing

Recall that we use Slicing to partition the class model in Figure 7.5 in order for HMCA to produce
tractable analysis. We use the operations discussed in Section 7.1.3.2 as the slicing criteria to produce 5

slices as follows to:

1. qualify a researcher in slice 1 that is produced using the annotations in Section 7.1.3.2.1. This slice is

shown later in Figure 7.10.

3 We are able to determine the applicable conformance rule (as specified in Figure 7.4) indicated by the access ticket and
DataTransform linked to ¢ry through its associated project in the ProjectAT and ProjectDataTransformRequired associations
respectively.

76

2. approve a researcher’s application for fishing licence in slice 2 that is produced using the annotations

in Section 7.1.3.2.2. This slice is shown later in Figure 7.11.

3. approve a project’s access ticket in slice 3 that is produced using the annotations in Section 7.1.3.2.3.

This slice is shown later in Figure 9.1.

4. execute a query in slice 4 that is produced using the annotations in Section 7.1.3.2.4. This slice is
shown later in Figure 9.7. With reference to Figure 7.1, the View and Download operations also occur

in slice 4.

5. check conformance to the HIPAA regulations in slice 5 that is produced using the annotations in Section

7.1.3.2.5. This slice is shown later in Figure 8.2.

7.1.4.2 Transition Systems

Recall that the rule specific entity view in Figure 7.3 is a program graph that represents the possible
states and operations in the system. Recall also that a transition system (TS) is a concrete representation
of the actual reachable states or operations in the execution of the program graph.

Through a process of unfolding a TS is constructed from Figure 7.3 to produce Figure 7.6. Note that we
show the TS as 3 separate subfigures to represent the different starting concrete values in the data states.
Figure 7.6a shows the T'S where the data starts in a De-identified state, Figure 7.6b shows the TS where the
data starts in a Identified state, and Figure 7.6¢c shows the T'S where the data starts both in the Identified

and the De-identified state.

7.1.4.8 Understanding Non-Conformance

Using the rules in Figure 7.4 we determine which states in each of the TSs in Figure 7.6 indicate non-

conformance to the rules.

7.1.4.3.1 DelDed access ticket. For the DelDed access ticket with a TotallyDelIDed data transformation,
the states highlighted in red in the subfigures of Figure 7.7 will cause the de-identified conformance rule in

Figure 7.4a to enter the Does_not_conform state. For example, Figure 7.7a shows that if the data starts out

7

—Request Qualify.

<Downloading, De-identified>

<Qualifying, De-identified>

Download

Approve and Apply

Query

Que

<Querying, De-identified>

<Viewing, De-identified>

<Downloading, De-identified>

Download

<Downloading, Identified>

<Viewing, De-identified>

Download

(b) TS where data begins in the Identified state

——Request Qualify

<Downloading, De-identified>

Approve and Apply

Download

<Applying, Identified
and De-identified>

Approve

<Querying, Identified an <Downloading, Identified>

De-identified> A

Query

load
Download

Query

Download <Downloading, Identified and De-identified>

<Viewing, Identified and De-identified>

(¢) TS where data begins in the both the Identified and De-identified states

Figure 7.6: Conformance Rules as Graph Formalisms for the Identified and DelDed access tickets

78

~———Request Quali <Downloading, De-identified>

<Qualifying, Identified>

Approve and Apply’

<Applying, Identified>

Download

Download

(a) Illegal states for the DelDed access ticket with a TotallyDeIDed data transformation for the TS where data begins
in the Identified state

—Request Qualif <Qualifying, Identified and De-identified>
Query <Downloading, De-identified>

Approve and Apply Query.

Download

Approve
<Querying, Identified an

o Query
De-identified> A

load
Download

Query
Download

Query

Vi
View

<Viewing, De-identified>

(b) Illegal states for the DelDed access ticket with a TotallyDeIDed data transformation for theTS where data begins
in the both the Identified and De-identified states

Figure 7.7: Illegal states for the DelDed access ticket

79

in the Identified state we know that Viewing or Downloading a query’s result that is still in the Identified
state is non-conformance. An example of finding this non-conformance is shown in Figure 7.15 where we
showed non-conformance using a counterexample generated using the Alloy Analyzer and an equivalent
representation in Figure 7.17 using a UML object model (in Chapter 7). We note that the TS in Figure 7.6a

has no illegal states for the DelDed access ticket since all its states are De-identified.

7.1.4.8.2 ldentified access ticket with a TotallyIDed data transform. For the Identified access ticket with
a TotallyIDed data transformation, the states highlighted in red in the subfigures of Figure 7.8 will cause
the rule in Figure 7.4b to enter the Does_not_conform state. For example, Figure 7.8a shows that if the
data starts out in the De-identified state, we know that Viewing or Downloading a query’s result will show
non-conformance because it is impossible to re-identify Deidentified data. In addition, Figure 7.8b shows
that if the data starts out in the Identified state, we know that Viewing or Downloading in a De-identified
state is evidence of non-conformance. An example of finding this non-conformance is shown in Figure 8.3

(in Chapter 8).

7.1.4.3.83 ldentified access ticket with a AllowDelDed data transform. For the Identified access ticket with
a AllowDelIDed data transformation, none of the data states in the T'Ss as shown in Figure 7.6 will indicate
non-conformance. This is because this access ticket an its accompanying data transformation permits both

the Identified and De-identified data states.

7.2 Feedback Context and Overview

In HMCA we use the Alloy Analyzer to generate a counterexample when a rule is not satisfied. We wish
to show the feedback in a format that is easier to understand so we will convert the Alloy counterexample
to an equivalent UML object model. However the object model created from the Alloy counterexample may
not have enough information in it to understand why non-conformance occurs because the counterexample
is an instance of the slice in which the checking of the rule occurred. For example, we show the current UML
class model to support operations of interest for the NJH system in Figure 7.9 and in Figures 7.10 through

7.14 the objects and associations from Figure 7.9 that are in each slice.

80

—Request Qualify.
<Qualifying, De-identified>
Download
Approve and Apply

Query
<Applying, De-identified>

(a) Illegal states for the Identified access ticket with a TotallyIDed data transformation for the TS where data begins
in the De-identified state

Download

<Downloading, |dentified>

<Viewing, Identified>

Download

(b) Illegal states for the Identified access ticket with a TotallyIDed data transformation for the T'S where data begins
in the Identified state

——Request Qualify <Qualifying, Identified and De-identified>
Query.

Approve and Apply

Download

<Querying, Identified an Query <Downloading, Identified>
De-identified> o

D load
Download

<Applying, Identified
and De-identified>

View Query
<Viewing, Identified> Query View »>

(c) Illegal states for the Identified access ticket with a TotallyIDed data transformation for theTS where data begins
in the both the Identified and De-identified states

Approve

Query

Download >

Figure 7.8: Illegal states for the Identified access ticket with a TotallyIDed data transformation

81

4

SYNsoY AISNY) UO 9OUBRULIOJUO)) J3DL], $S900Y SUINIS) 0} ISUDIRsy ISYI[eNn() I0] sjuawely [opojN Surmiyde)) POy sse[) HN :62 2SI

pauyagsiequiapioalold |

Juasaldialyiiend _ _

1102J1010N8s0dInd3Wwos _

Y

JEUTLELTYENCILELEN

pauyaaid A paulagseLenDawos
A qisyoseasay Lo
18yoseasay : sai)iayoseasayhjien
0Qwea ||ddean0oN PaUA(QSa2IN0gaWOoS {18y Y : sai)iey; YANEND
8|nyuoisiag J8ylenp
IdPuywes |pauadi N
pagiagAleio esnue) paninusp|
MOAWIoLg82IN0SEIEQ E] . Lo ¢
. siaquaioalolg
_ 1uasaIdIuawWwaaibyssasoyeleq _ N
= .
ajegHwiIojsuel | paglaqg (sinyAidde — . . Lvio8loid |dwsloid |suuosiad
ainy «"'L ss;nyguuad 19301155000y |+ 0 _ R 10
\/ » siosinadng
Awoud1y ..
juasuoguaned aInyssao0y |* 0] saddyyy Pamo|¥PEOIUMOQ soponDIel0Id .
N \V/ . 10108]|00BIRQI08I01g
F i f | = . asodingioaloid
m.:w—w _AI pajqesigpeojumog 108l0id
Lo
JUswasibyssadoyeieq
b PaMollVaA . (man Juswieal 1108110
adA 1 Op o
L I adk1qy *| (108loid : foid ‘1ayosessay : sai)hianpun | * —
Aianp yosessay asodind |10
N uosRioMAID
_ UBWIOpMIUBUBSI4Pa19810IdH _ .
PIIYOPa19810idH paJinbayw.ojsuel | Bleqioafold
eeqiey | swnaylip =eahio
©2Ia
SWIOJSUBI | HY
. X
sepiHgy | A1oBeted [
Buuis : [BAS PaqIsgAlleloLioN | | PaqIsaAlleioL
uea|o0g : ()PaliluaPIONS! nsa
uesjoog : ()paynuap|s! - BlRQIUBNEd
sabayu : Jeak 1 . Bumg : sweu |+ +
s8b8ju| : Yyuow BIed [T sanepBieg wayeeq
1abaju| : Aep _
* . L|o
sieq ™o NOPOIoNS o s0unog|q
I.cc__aa

(18%011 55820y : 1B ‘108l0id : [01d)19%91 | S5800V108[014an0iddy
(aouaon : | ‘Jayoseasay : sa1)aouadiaydieasayanciddy

adl

aaqreaud

8dJnogeieq |«

$801n0510801d

If the following sequence of operations occurred:
personnel per; qualifies researcher r (slice 1, Sy, in Figure 7.10)
— approve researcher r for fishing licence f (slice 2, Sy, in Figure 7.11)
— approve project p; to use d, ¢; is a part of p;’s queries, researcher r
is a project member in p; (slice 3, S5, in Figure 7.12)
— researcher r runs query ¢; using d (slice 4, Sy, in Figure 7.13)
— check conformance to de-identified access ticket d, for the
results from query, ¢; (slice 5, S5, in Figure 7.14)
and, if conformance failed in slice 5, the counterexample only contains instances of elements in that slice.
However, the user may need an object model of the full system model to determine the reason for non-
conformance.

In order to give the user enough information to determine the reason for non-conformance, we will
show the feedback as a UML object model. To do this, we augment the object model generated from the
counterexample with additional objects and links in such a way that is consistent with the constraints of the
system class model. The USE tool provides capabilities to create object models and check that they satisfy
the constraints in the associated class model. In addition, we can supply the tool with a partial object model
and use its generation capabilities to add objects and links to have a valid instance of the associated class
model. In order to accomplish this with the USE tool, we must include all the Alloy model constraints that
have been created to run the analysis as OCL constraints.

In order to reduce the cognitive overload of showing the object model of the full system all at once,
we will sequence the feedback as instances of the slices in figures 7.10 to 7.14. The general procedure is
to construct the feedback as an on-demand (user-driven) sequence of object models, starting in the slice
that the non-conformance is observed and generating the object model for the previous slices as needed. In
each subsequent object model, we will highlight the overlapping objects and links with each previous object
model. For instance, in our running example where conformance failed, the first object model in the sequence
is the counterexample from slice 5, the second an object model from slice 4, etc. The user will be shown the

first object model in the sequence and can request the second, and so on.

83

901[g IoTIeasay Ioyrent) - (Lg) T 991G

78

pauljags.aquaivalold | | wesaigia)

11981010N8s0dIngawos

pauyaqid

Paul3gsaLaNDAWoS

‘0T, o3y

PaUla(QSa0IN0SaWOS

oqwes] |ddeianQoN

ajnyuoisag

|dPUYWES | pausd

MOAwougaainogeieq

PaQIsq paynuap|

paq|agAieioLasnue)

Juasa.

()anyAjdde

sjegHwiojsueI paglag

jussuogiuaned 0] salddyyy

|ENPIAIPU|

Pamo||ypeOjuMO]

T 9221IS
— T T T
Pz - J8ENDIBYIBESAY — — -
Jbuoseasay ~
(1suoreasey : sel)euoIeasegApEnp | \
\ J8llend d
| = |
/ - ~ _._..O Aw \
sisqwanIoaloid :
— 1 . _
roofoig ™~ |auuosiad -

Lywaloig Id

any L seinguiad

191155800y |+ 0

Awioudiy

sauanpioslold

[smeis K—{peiqesiapeoiumog

L0 .

POMOTVAA . A
()peojumop

10103]|0Q®BIEQI08(01d
asodingioaloig

.

aloig

JUBWa8IBYssavoyERq

L

adf1ay

.

*| (10aloid : fosd ‘1ayoseasay : sas)lianpuns

Kianp

. uosHoMAID

SWIOjSUBI L HY

A
otores 1<

BlEQISY suimayghip

eleghip

S8pIHYY
Buns : [BAS
ues|oog : ()payliuspioNs! asa
ues|o0g : ()payiuapis g BlRQIUSnEY
sebaju) : Jeak 1 . Buing : sweu
s8baju) : yuow ®Ied [sanepBIieq weyeleq
186ayu) : Aep
1= Y uopasaIu3 .. | @nosia
L waned

(19%01155900Y : 1B 108[014 : [01d)19%01) SS820V108[01dan0iddy
(80u82r7 : | Y - I Y v

dd'

Mmojy

Mmojjesiq

1uBWEa1 1308110

yoseasay ssodingd |10

pasinbaywiojsuel | elegioalold

paqieafilelolioN | | PaqIaaAllEIoL

80inogeleq |«

580JN05198/01d

g8

901[§ 90UADIT I97DIeasdY aa01ddy - (2g) g 901§ 11", oINS

—
—

—
~
~
—

— z ad1Is

/ - [pouegsiequisioaiosd | | wssaigsieno | _ 110811Q10N250dINgawos
AN Ssuoimese] T — —

_ pauyadid M /X paulegseLaNDaWOS —— ——seEnDIeyIEssaY — —
Teyosessey

’ DQWEa1|ddBHEAOON Paul2gseaIN0gaWos

8|nyuoisaqg Ve -
/ |dPuUyWes | pauadl]
~ _ paqgiagAleioasnuen \ Padiea
~| MOAwoLgsanosereq 1ed
-~

A

Lo
. myEoEoo_oi *
~
N\ [wesesan By veieq | e /) ~ .
51EgHWI0jSUBI[PeQIad gl A } Lvoolory | 1ostoia| ™ JauuosIag /
8Ny P mc_zmc.:c&\ 18501155800y L0 4 ~ - 0
- — 7
— . siosinadng
- Auoudly L.
jussuoDuaned A
sauanpioaloly 3
R 10108]j00BIEQI08I0Id
. . asodindjoaloid
[smers _Aium_nmm_ouao_._;on Tool0ia
— L0 - . - [-
|enpIAIpu| Juswaaibyssadoyeeq
PaMOIVAA . (Jmen Juswieal 30811
adk1ay (108lo1d : foud ‘18yoseasay : sai)hianpuni | *
fianp yoressay asoding |10
M uosHIoMmAID
_ uewopueubaIgpa18i0idH _ .
PIYOP310310IdH pasinbaywiojsuel | BleQIoalold
eeqiey | suimayAip *| BieQhiD
SWIOJSUBI | HY

sopigy | 410091 |
Buuis : [eAS pagieakiieionioN | [PealeaAiiEioL
uea|oog : ()paljiuaplIoNs! 4sa
ueajoog : ()paynuapist BlEQIUBNEY
Jabaju) : Jeah 1 - Buing : sweu
18baju) : yuow BIBd [seneARiEQ wayeleg
1abaju) : Aep
sjeQ ™5 Topaiana o 80in05|Q .
waned | [moyy Moiseia
(19391155800 : 1B ‘108l01d : [01d)18%01] SS809V108l014an0iddy A
(souson 1 - Y : r Hanoiddy gareaunn
ad 80inogeeq |«

58510510810

d

98

901[G 1931], 85900y 109(01g aro1ddy - (£9) ¢ 901§ gL 2SI

- pauyagsiaquapoalold _ _ Ju8saIdI8lIeND _

_ JuaWieal 10811QI0N8sodindawos

7

/ paulyeqd />

Y

paulaQsaLaNDaWoS
\/

~ —

€ 9IS

—

_

PBUIB(QS82IN0SBWOS

/ 0Qwes | |ddessr0oN

8|nyuoIsioaq

jussuoQjuaned

NRREE 2/ \

.L sanguuag

1901155800y

N Aoudly
N seuenpwaloig

\

[smmis _Al_uo_ﬁm_ouao_:;om P

g

Pamo|lyaA

) _
(main

siaquapiosfoid |
Lvsloid 1dwaloig [ossosiod] “
. L0
siosiedng \
_ : \
N 10193)|0081B103l01d ‘
. asodingiosloig
108l0id

Juswieal 13193110

\. ()peojumop

adA1ay

_ | (18loid : foid ‘ayosessay : sal)hianpun. |
ISELLY

PIYOP3IBI0IdH

uBWIOMIUBUBBIJPEI08I0IdH

: @ |
_SomMD \

yoseasay _|_V_ asoding L0

; \

painbaywiojsuel] BleQio8loid

. —>

BlEQieY swnayhip

eleglID /

|
|
|
| |
|
|
|
|
|

Buns @ [BAS

Bug : sweu

wejeleq

/

\ -

s04n0gIQ

(183011 55820y : 1B ‘Joaloid : [01d)18%01] SS800y)08l01dan0iddy
(souson @) : ddy

adl

uea|oog : ()palIuapPlIONS! Asa
ueajoog : ()palynusp|s!
18baju) : Jeak 1 o
18baju) : yuow BIed ["sanepeieq
1868y : Aep
SHO [} upopalaug

- — —F0= — — _ juaned Mol

Mojesig ~
[roweea] , P

<

|ainogeieq |«

18

901G ATon{) suny Iaypreasay] I0 ‘IJ ‘10999[[0)) IR - (Seare pepeys sepnoxa) (7g) § 901G :g1°L 9MSI1q

paulegsIaquaioalold _ _Eono_n_.o:__a_._c_ _EmE.uo._._..uo.._QQZomoS:moEow — ¥ 991IS
pauljeald M A [Sewiegsononbeucs] sayeNDIBYDIBASY -
A \Vi Tusyoseasay o T —

womssonno] |

0uaaN g e 3
J811end

pauljagsadInogawos

Qe ||dde|iarQoN |

a|nyuoisag

1dPUYWEa | pauaar] [\
—_———— |peaiea| [peunuap | | /
MOAIoLgeaInogeeq Jad ; 10 AV
. siaquapioaloig \
-~ -~ =
..Bnn.(v Vel u N . \
7 slRQHWIOjSUBILPeQIed |~ — —— —— —— — OonyAidde . oo giooloig JouuosIag
/ \|V ang |- b seingwsed ronissesoy |+ 0 Lviwaloid i o |
/l -
/ TB=== Lapojidiy / . |
— jussuoDjuaned BINysseady |* 0] saiddyyy ~ .
sauanpaloig ™ L _
S 10108 f
_ . N Walj00rIeqioslold
. — asodingioaloid
\ 198l0id —
_ |enpiaipu| L - upujadibyyseadoyereq \]
Iy : (Jmain / \ JuBwWieal 1308110
N =S Opeoumop — -
~ ~ (108014 : fosd ‘18yoseasay : sai)kianpuny | * \
1> esoding 10
N fienp d
// . uosHIoMAID \
_ PauInbayuojsuBI LBIRQIv3I01d
, weqey | sumayhiD *| meaho
\ SWIO0JSUBI | HY SR _
\ =—A _
/ sepiHgy | A106aie0 K] |
/ Bumis : 1eAS {peaieaimionion | [PeaieaAiieioL
UE8|00g : ()PaNIUBPIONS! 1sa Y
\ ues|oog : ()paynuap|s . /
18baju) : Jeah 1 . Buing : sweu
\ 18601 : Yiuow BIBA [~ saneARiEq elTg /
18b8yu| : Aep _
— sied ™0 ToPeIaa o 8010810 \
——— [wowea] [monv] [morea] \
-
(19%011 55800y : 1B ‘108014 : [01d)18%01 SS800y198[0.48A0iddy ~
(souaon : | ‘Jayoseasay : Y ddy / A _
adl AN 80InogElRq |+ $801n0g198l01d J
N — = — _

- - — — e

88

9DT[§ 9DURTLIOJIO)) DA

pauljags.aquaivelold | | wesaiguayienD | _

1198J1010N8s0dIngawos

paulsgsauanpawosg

- (99) g o018 T L omSI1y

S IS

JENTEL S EMILEEET)

pauyaqid A
— Tayoseasay 1o
0Qwes|ddellsAQoN PaUN8(SeIN0gaWog 80usdN [y (18yoseasay : sa1)i8yoseasayAEND
a|nyuoisivag J811end
|dPUYWes | pausdi] .
- 3 paq|agA|eioLasnue) \
YOAI0LgaaIN0gEIRg 0 AT
1U8S3IAIL 6 .
e i h . - \ Lvioelog |dwaloig [exiosied
any L seinyguwiad 19501155800y 10 f " o
: e e e siosinadng
N |
~ ~
jussuogiuaied BINysSe00Y |* 0] saljddyyy _— — — — ,>._ﬁm._.<’ _ |/\ . | . ~
sauanposloid 1 /
o . dho_oo__ooﬂmoao_o._m
= . asodingioaloig
f _m.zu- _A|_ w_nam_aumo_czoo_ s oo
—1 Lo . / .
enpIAIpY|
1BNPIAIP! PaMOIVOA A ﬁnEoE <mmcu/u<m@
T o~— — ()peojumop ~ N
adA1ay _ *| (waloid : foid ‘Jayosessey : sas)Aianpuni | * AN
Kianp /
B uosHIoMAID /
| vewomiueUBaIdPaI0BI0IGH | .
PIIYOPaI0810IdH / i painbaywiojsuel | BIEQI93I0IG
BEeqey | SumaYAID *[=eakio |
SWIOJSUBI | HY \
sop| | foBereg K] \ - T __
B e — -
e Buis : |BAS ~— / PaqiegAilEIoLioN | | paaiegAiieioL
\ ues|o0g : ()PayIuaPIONS! 1nsa
ues|00g : (Jpayiuap|s
y JELETIRNLETS L . SumsEowsal =+
/ sebaju : yluow BB [~ saneaRieqg TG
/ 18bayu) : Aep _
Si5d ™0 —-e040S1—
uopaiauz - —
>~ — —_—— — - _ <0 waned Mol MojjesIq
(18011 55800y : 18 ‘108l0id : foid 1 19801 ddy —_— — A
(sousor : | Y : . Hanoiddy SamoNND
a4l a0Inogeleq |« 5801n0519801d

Depending on the size and complexity of the class model and constraints, constructing the feedback
in this way may save computations. In the next section we discuss the specific commands that the USE
tool provides for generating object models. Section 7.4 discusses the USE specifications and we return to a
detailed examination of generating the feedback in Section 7.5. We show in Section 7.6 how the generated
object models may be used to analyse and understand why conformance failed. Section 7.7 ends this chapter

with some conclusions and future directions.

7.3 USE Tool Object Model Generator

The USE tool can generate object models that conform to a class model with OCL constraints. To ac-
complish this, it employs A Snapshot Sequence Language (ASSL) [41]. ASSL provides additional commands
to the OCL and Simple OCL-based Imperative Language (SOIL) languages already included in USE.

SOIL provides commands to create, delete, and insert objects and links among objects, but does not
ensure that the objects and links satisfy constraints in the corresponding class model; so using these com-
mands may produce an ill-formed object model. Using the SOIL language to produce object models produces
deterministic models, i.e., the same object model each time the commands are executed.

ASSL commands include equivalent commands provided by SOIL and additional ones that can perform
guided searches in the space of objects and insert links among them that satisfy the constraints in the class
model. The commands will only report success, i.e., objects and links created will persist, if the object model
created satisfy all the constraints, otherwise a rollback occurs and the object model is returned to the state
it was before the commands were executed. In this way, we are assured that the object model returned is
well-formed. While the SOIL commands may be issued directly in the USE tool, the ASSL commands must
be packaged in a procedure and the procedure executed using other special USE commands.

The guided searches of some of the ASSL commands mean that we do not have a deterministic object
model, in the same way as using SOIL commands, even if the same ASSL commands are re-executed. In order
to produce deterministic object models from ASSL, we can take advantage of how the USE tools logs when
an ASSL procedure reports success and generates equivalent SOIL commands to recreate the exact object

model that is returned. In addition, the searching for valid states means that executing ASSL procedures

89

may be computationally intensive. Both having the SOIL commands available and not having to re-execute
a computationally intensive procedure are important when generating the sequence of object models with
overlapping objects and links. For example, when generating the object model for slice 4 the same instances
of the overlapping objects and links from slice 5 must be used.

Having the SOIL commands used to create the object model for slice 5 presents an opportunity for reuse
because we can extract the commands for the overlapping object and use them as the starting point for
generating slice 4.

7.3.1 OBJECT MODEL GENERATION COMMANDS

ASSL commands include those to:

1. Create objects, e.g.,

(a) Create(Personnel) to create and return a single Personnel object; and

(b) CreateN(Personnel,b) to create and return 5 Personnel objects as a sequence of objects.

Create gives the objects created arbitrary identifiers.

2. Delete objects and associations, e.g.,

(a) Delete(Personnely) to delete the object identified by Personnel;; and

(b) Delete(Personnel— > allInstances()— > asSequence()) to delete all objects of type Personnel.

3. Insert links between objects to form associations; e.g., Insert(ResearcherQualifier,p1,r) to add a

link between p; and r in the ResearcherQualifier association;

4. Randomly generate objects, values, or associations links:

(a) Any(seq : Sequence(T)), to make and return a random selection from a sequence objects or values

of type T and use or assign it to a variable of the same type

(b) Try(seq : Sequence(T')) also works like the Any() command,;

90

(¢) Try(a: Association,
seqy : Sequence(Ty), seqa : Sequence(Ts)], ..., seq, : Sequence(Ty,)]*)

to generate random association links among objects from the sequences given.

While we noted that both the Any(seq : Sequence(T)) and the Try(seq : Sequence(T)) commands
produce the same results, they are semantically different because the latter also checks whether the
assignments satisfy the constraints in the class model before returning the object/association. As
discussed before, if any of the commands in an ASSL procedure causes the object model to be in an

inconsistent state, the procedure will not succeed.

7.4 USE Specifications

The slicing of the class model in the construction phase of HMCA described in Section 6.2 allows us
to not only produce the Alloy slices, but to also produce equivalent class model slices. Since we are using
the USE tool, the class model slices must be represented in the USE language. This representation may be
achieved by employing an algorithm similar to Algorithm 2 that transforms the Alloy counterexample into a
USE object model. The constraints that ensured well-formed slices were included in the Alloy specifications.
In order for our generation program to work correctly and produce well-formed object models, we must now
add the equivalent Alloy constraints to the sliced USE class models using OCL constraints.

Alloy and OCL have many similarities as specification languages and in their associated tools, i.e., the
Alloy Analyzer and USE. However one of their main difference is in their support for sets and collections.
In OCL sets and other collections are one-dimensional, but in Alloy everything is a set [15]. For this and
other differences, it is not always possible to automatically transform Alloy to OCL because several Alloy
expressions do not have a one-to-one equivalent in UML or OCL [28]. Since overcoming these challenges are
not the focus of this research, the reader may examine the papers for translating Alloy to UML annotated
with OCL in [6, 7] and the examination of translation back to Alloy in [28].

We transformed the constraints in the Alloy specifications to OCL manually. Refer to Appendix C for
the detailed UML and OCL constraints for each slice. Our manual transformations provided many insights

that may be useful not only for the automatic translation of Alloy to OCL, but also for insights on how the

91

difference in their support for sets and collections may produce slightly different associations/relationships
and constraints among classes/signatures. We will return to discussing this in Chapter 11 where we give

insights into the details of applying HMCA.

7.5 Detailed Algorithms: How to Construct the Object Model for the Feedback

Algorithm 1 outlines the high-level steps we will take to generate and request on-demand object models.
It makes reference to Algorithm 2 to convert an Alloy instance to a USE object model, Algorithm 3 to extract
overlapping objects from object models, and Algorithm 4 to complete an object model so that it satisfies the
constraints in the class model. The first is outlined in Section 7.5.1, the second and third in Section 7.5.2.
The ASSL procedures and USE commands that implement the algorithms for the NJH system are listed in

Appendix C.

Algorithm 1 Generate On-Demand Feedback Object Model Sequence Construction

1: procedure ONDEMANDFEEDBACK (¢myse : USEClassModel,
CMseq : Sequence < USEClassModel >, instqq : AlloyInstance)
2: current <— cMgeq. first()
omyse ConvertAlloyInstanceToOM (instqq)
> See Algorithm 2 in Section 7.5.1
4: Show(omyse)
> displays object model
5: getNext < UserRequestsNext()
> UserRequestsNext() is a Boolean value
6: while getNext A cmgeq.-hasNext() do

7: current <— current U cmgeq.getNext()
8: 0Myse +— ExtractOverlappingObjects(current, omyse)

> See Algorithm 3 in Section 7.5.2
9: omyse Complete Feedback(current, omys.)

> See Algorithm 4 in Section 7.5.2
10: Show(omyse)
11: getNext <— UserRequestsNext()

7.5.1 REPRESENT ALLOY SLICE AS A UML USE OBJECT MODEL

Algorithm 2 outlines the steps to convert an Alloy instance to an object model.

7.5.2 GENERATE FEEDBACK AS A COMPLETE OBJECT MODEL

Algorithm 3 to Algorithm 7 gives the steps to generate a complete an object model with the objects and

associations to satisfy a given class model.

92

Algorithm 2 Convert Alloy Instance to USE UML Object Model

1: function CONVERTALLOYINSTANCETOOM/(aa : AlloyInstance)

2:
3:
4:

10:

init(om) > om initialised to type USEObject M odel
for sigs € aa.getSignaturelnstances() do
om + om U new(s.getSigType(), s.getSigName())
> Inew() translates to the Soil command: new Class(object identi fier)

for rels € aa.getRelations() do

instsigs < rel.get RelationSignaturelnstances() > returns ordered signature instances
if instsigs € sigs then

error
om < om U Insert(rel.get Name(), instsigs[1], instsigs[2][, ..., instsigs[n]]*)

> See Section 7.3 for notes on Insert()

return om

Algorithm 3 Extract Overlapping Objects

1:
2
3
4:
5
6

function EXTRACTOVERLAPPINGOBJECTS(cmyse : USEClassModel, omyse : USEObjectModel)

init(ompartial)
assocs < {a : Association | a € cmyse.getAssociations()}
for a € assocs do

OMpartial — OMpartial U Omuse~getMappingS(a)

return ompartial

Algorithm 4 Complete Feedback

1: function COMPLETEFEEDBACK (¢myse : USEClassModel, omyse : USEObject M odel)

2:

© % NPT Rw

10:

11:
12:
13:
14:

if cmyge-unconstrained() = omyse then
> ensures that all objects and associations in om,. have corresponding definitions in ¢m.,qe
error
agisf < {a: Association | a € cmyse.getAssociations() A instance(a) ¢ omyse }
obj, + CreatePotentialObjects(0muyse, Gdift) > See Algorithm 5
OMyse < 0Myse U 0bj,
OMe 4 OMyse

repeat
for a € agiry do
om. <+ CreatePotential Associations(om.,a)} > See Algorithm 6
until cmy,ge.constrained() = om,
om, < Cleanup(ome, objy,) > See Algorithm 7
AcceptObjectModel(om,) > makes objects and associations added permanent

return om,

93

Algorithm 5 Create Potential Objects

1
2
3:
4
5

10:
11:

12:
13:
14:

15:

: function CREATEPOTENTIALOBJECTS(assocs : Set < Association >)

init(cqfy) > cqiffis initialised to Map < Class, Value < Integer, Integer >>
for c: assocs.getAssociationEnds().getClasses() do
caiff-put(c,0,0)
for a : assocs do
> iterates through the multiplicities of the association ends to compute the min and max instances
required
for < ae : a.getAssociationEnds() > do
¢ < cmm.get(ae.getClass())
cvalue. first += ae.minMultiplicity()
c.value.second += +ae.maxMultiplicity() > if multiplicity is * then 0 is returned
objp < {}
for < entry : cqif f > do
> the following if statements updates first and second values to ensure that we create at least

1 of

each missing object
if entry.value. first = 0 then entry.value. first < 1

if entry.value.second = 0 then entry.value.second < entry.value. first

obj, < obj, U Create(entry.key, Any([Sequence{c.value. first()..c.value.second())}])
> See Section 7.3 for notes on Create() and Any()

return obj,

Algorithm 6 Create Potential Associations

: function CREATEPOTENTIALASSOCIATIONS(om: ObjectModel, assoc : Association)

init(seq) > seq is initialised to Sequence < Sequence < Object >>
11
for ¢ : Class € assoc.getClasses() do

seq[i] < om.getObjects(c).asSequence()

i4+=1
Try(assoc, seq[1], .., seq[n]) > 1’s based indexing assumed
return om

Algorithm 7 Cleanup Object Model - Delete Unused Potential Objects

1: function CLEANUP(om : USEObjectModel, o, : Set < Object >)

2:

3:

om < Delete(o, — om.get Associations().get AssociationEnds.getObjects()))
> See Section 7.3 for notes on Delete()
return om

94

7.6 Examining Object Models

Suppose, in our analysis of the Alloy model, conformance fails and gives us the counterexample in
Figure 7.15. We see that while the Query$0 was executed with a DelDed access ticket, we are barred
from downloading its result, i.e., the VDAllowed relation links Query$0 with DownloadDisabled$0. Further

examination of the counterexample shows that:

1. downloading the query’s results is disabled because Dataltem$3, whose DataValue is Date$1, has not

been (properly) de-identified, this is highlighted using the blus dashed line;

2. Dataltem$3 was derived from Dataltem$5, i.e., the edge from Query$0 to Dataltem$5 shows that the

gryReturns relations links these instances with Dataltemn$3) ; and

3. other return data (Dataltem$0, Dataltem$1, and Dataltem$2) have been derived from Dataltem$/,

i.e., shown on the edges from Query$0 to Dataltem$/, but these have been properly de-identified.

While the user executing the query may be disappointed /inconvenienced that the results of the query are
not available, the system owners/administrators will be relieved that conformance according to the DelDed
access ticket has been demonstrated (verified). However, the system administrator will be concerned that
this scenario occurred and should investigate. HMCA’s next step will allow the administrator to examine
object models along the path to the non-conformance to try to determine the reason that Dataltem_3’s
DataValue is returned identified.

Recall that we identified an equivalent class model for the counterexample as slice 5 (S5) in Figure 7.14;
we now show this slice as a separate class model in Figure 7.16. While only the object model is shown to
the user, we include the class model as a reference and note that this too may be included in the on-demand
feedback to give a further context for each object model. Following Algorithm 2, Convert Alloy Instance to
USE UML Object Model, we construct its equivalent object model in Figure 7.17.

This object model contains all the instances of the signatures and relations in the Alloy counterexample.
The failure is circled by a blue dashed line. Beyond showing that conformance was violated, this object model
is not helpful in identifying why conformance fails. Therefore, we ask the system to give us the previous slice

in which the query was executed. The slice in which the query was executed was identified as slice 4 (Sy) in

95

96

G 901G UI o]dUIexaI9unoy) 9oURULIOJUO)) IozZATeuy AO[[y :GT') oIndig

ainjie4
_— T — —— - - /
~ \
/ \
N _
- \ ’ /
\ /
R~ >4 \ eak\uow/ -

05 P3|qesIapEoUMOQ

[TswaEEQg) sumayAb .

05P2qI2Q

sauanDIdafoud 1vefoid

(@)
1503f0ug

ues|0og : ()PelIIUBP[IONS!
uesjoog : ()payiuap|s!

Jabayu| : Jeah
Jabalu| : yuow
J8bayu| : Aep

L6

G 9O1[S 10] TPPOIN SSBTD (91", SINTL]

pajgesigpeojumoq

snjels

psaied

pajjiiusp|

X

L0

pemo||ypeojumoq

1viosloid

Bulns : [eas

1sa

v

uolssiwiag A
19)01] SS920y
10 x ()main
pPamojIvdAa ()peojumop®
Aanp
suinieyAip

sallanplosfoid

Eleqiey

*

ereqhip

N

aleq

v eled F

sanjepeieq

Bunls : sweu

wayereq

=

uQpaJaul

108loid

ainjie4

e
/

G 991[S 10J PPOIN 199[qQO

_—— —

I

(e T oreq |

Le6 =128k \
g=yjuow \

86

QOURULIOJUO)-UON :)T°) 9INJIq

J8y10,=8weu

6=Aep

\
sanjeAeeq \

|

J3y10,=8wWweu |

’ senjeAeieq

!

~

—/

—_——— —

[ETeqien:0 weiered |

,8by,=aweu

suinaylin

Le6L=1eak
0=yiuow
0=Aep

[o1Eq:0 o |

\Qg

sonjeapeieq

eleqieg: | Waleeq

,8by,=aweu

swneylip

,0by,=eweu

suwineyAip

,8by,=aweu

senjeAeleq

suineyAid

[PoIqeSIaPEIIMOG:0 POMAESIGPE0Iumog |

PamojiyaA

sauanploeloid

Figure 7.13; we show it as a separate class model in Figure 7.18 and outline the class model elements that
overlap with the class model for slice 5 (in Figure 7.16). We use Algorithm 3, Eztract Overlapping Objects,
to extract the overlapping objects and links from Figure 7.17, i.e., the objects and links that are instances
of the overlap of the slices highlighted in Figure 7.18. We then pass the class model in Figure 7.18 and the
object model returned from Algorithm 3 to Algorithm 4, Complete Feedback, to generate an object model
satisfying Figure 7.18. Note that for representing the Alloy counterexample as an object model we made a
change to how dates are presented.

In Alloy a de-identified date is one that has a value for year, but does not have a value for neither day
nor month. In OCL we modelled a de-identified date as having a non-zero year, day = 0 and month = 0.
We then add the required instances of the other model elements to satisfy the constraints of slice 4. We
show this object model in Figure 7.20 and use a grey shading to highlight the objects and links that overlap
with the objects and links in the object model for slice 5. We also outline and label the failure using a blue
dashed line/ font and that show the data that have been correctly de-identified using a red dashed line/font.

We identified in the previous slice (slice 5) that the return data derived from Dataltem_4 were properly
de-identified. We can therefore use this as the starting point to try to account for why this de-identification
was successful. We see that the setup of links ensures that Dataltem_4 will be transformed by the DelDed_0

access ticket, i.e., from Dataltem_j we navigate:

1. the DICat link to the HDatel category that shows that Dataltem_j is correctly categorised;

2. the ARTransforms link from HDatel to the TransformsHDatel access rule that shows that the correct

transformation rule is linked;

3. the ARAppliesTo link from TransformsHDatel to the Individuall type that shows that individual

HDate instances, i.e. HDatel, are designated to be transformed; and

4. the PermRules link from TransformsHDatel to the DelDed_0 access ticket to ensure that the project’s

access ticket applies the TransformsHDatel access rule.

Since the links we have seen are consistent with what we expect for de-identification, the user will (now)

check if these corresponding links also exist for Dataltem_5 (as a way to possibly understand why data

99

00T

¥ pue ¢ o1 ul sjuewoy [PpoN Surdderrea() SuraipinQ j 901§ I0J [OPOIN SSe[)) 81", oInSI]

Sjuawa|3
Suiddejsang ¢ pue s 32y =TT
—— I \ Jayoeasay _—..Q —
Y - [Peaieq [Pousuepr| | N 1o
T 018QHWIOSUR, | / 4 _% N - Ialoid
wosio0uoRRd | o) < swwoa_| —L
j/ (JeinwAidde |, | 4 — 10 — E
———— X" ony Sangwiag ' | UOISsILed 10%011 66000y . o~ N
0|NKSE000Y - OLsoIdavEY / $0L0NDI0I0IY - /. TRl
— 100/0id
e - _
pd
s i g
el |., K - .
= 0p
1 P /
LT " . : foud “sayoseasay : sas)lsanpun | *
| dnoio | v_ 70 on (190fo1d : fo. \
Aenp
. uOSHCMAID \
== \ . \
) \
\V, \ | Tewaws | SwnoHAID eakio _
010\
ULV 1B0YVdIH / \
Swiojsu
~
, == —
, 7
SOPIHEY — .
lllllll — -~ —_ — — \ _
ueajoog : ()panuaploNs! - — _ _ L IV S
ues|oog - (peynuspIst - . 0 —
19603 : JBOA s . Buig : aweu ;) < g
sebeju| - yiuow v_ ©iea “ san[eAeIzQ wayeeg | 7a
3 . . — 1o
1abaju) : Aep D mpp— —
aeq |31 uQpessiug . — 10 e
T [8areouo | > —
eanogeleq |.

derived from it were not properly de-identified). Our object model shows that it has not be categorised as an
HDate and observe that all the other data items whose data values are dates have been correctly categorised.
This is definitely an explanation for the non-conformance. The missing link that shows the fault is drawn
into Figure 7.20 using a green dashed line and labeled with the same colour font.

At this point we may request the system to show us the previous slice so we may investigate other reasons
for the non-conformance. An object model for slice 3, where the DelDed_0 access ticket was approved for
Project_1, is shown next. It is constructed in a similar way as was described for constructing the object
model for slice 4. We show it in Figure 7.21 also highlighting in grey the overlapping object model elements
with slice 4 (the extracted class model is shown in Figure 7.19).

We do not identify any problems with the objects and links in this object model that could cause the
non-conformance shown in Figure 7.17. However, yet another step may be that the user requests to see an
object model with all the slices merged. We show this in Figure 7.22. In it there is further confirmation
that there is nothing in the overlaps of slice 3, 4, and 5 that could cause the non-conformance. Therefore,
we return to the previous object model for slice 4 to devise our next steps. These steps include examining
the OCL constraints to identify why Dataltem_5 was not also categorised as an HDate.

Our specification shows that no constraint enforces that every Dataltem that is a Date to be categorised
as an HDate, i.e., this system model leaves such categorisation to the discretion of the system administrator
even though HIPAA mandates it. To ensure that we can always pass the conformance checks, we add a
constraint to the OCL system model specification to ensure that all dates are categorised as HDate. The
constraints providing the fix must be added to both the USE and the Alloy specifications. Re-executing the
conformance check in the Alloy Specifications should now show no counterexamples. However, if we have a
counterexample, the previous investigation we performed on the object models gives us assurance that the
problem may be in the actual de-identification of the data and not in the system configuration represented

by the class model and constraints.

101

¢0T

€ pu® § Se0I[g Ul sjuawe[y [opoy Surddefioa() SuruiinQ ¢ 991G I0J [OPOIN SSe[) :6T°L 2Insdig

[pouyegsioquopoalord | | wasaidiaiEnp | [11190)|Q10N950dINgouos | Bugeia

.szS.._uon
__%:sio:!.sa_
E_Szashﬁaﬁo /E
ey = veia | Domukidde
L uo_zm:toa a
_Hustogavooznn_ﬂ_c._o_ S = .oxu_._wg
||||||| - — — B)
(o Aondly
\ 0 |
_ (waloig : foid Jayoseasay : sas)lianpuni sal;anp)oaloid
Kianp
-
N —— -
PER - \ewseByEssIVERd
yum suawa|3 Suiddejsang L, T T T — = -
98Q|9QA|IeI0LION /
\ [aaeemio _|.v

—_— aonogeleq |, $e2n0gidoig

—_ _—

—_———

—o.o_oOE_!e._. w _ ot Jvo paJinbayw.iojsuel | BleQ08l0sd

€01

(PeBIYSIY a1k ¢ 901§ M spoalqo Surddelieao) “ymeq o) pue anfre SUIAJIIUap] § 9d1[§ 10] [9POIN 199[q() @durULIOJUO)-UON (gL 2IN31]

sainywiad
| eN0SIQ

ey TSSO TOORCTISTY | [aGresD Teaeeon]

paQIag'0 2eqleq T e} WI0}SUEIL; OWIojSUe; Ty

T~
. \ SSMIEASIZ0_|_| uoposows3 \
- 1864 =1m0k | \
lllllll = g=yuow |
senjeARIiEQ 6=Aep [seneleieg "
N =7 LRkl o s s . — — — __ __ __ __ __ \ _[swoTewg / _ TP’GH
uaaqg aney z g ‘T ‘Oswaljeleq paynuapl-ap Jou si anjeAeleq € waljeleq :aJnjiej ——— . pue g wajjeleq
~. - .7 usamiaqyun
. —

1eD1@ BuIssiy :3ney

¥0T1

(PeSBIYSIY a1 § 901G Yim sp0alqo Surdderiano) ¢ 901]§ 10] [9POIN 190[qQ) :1g"L @IS g

fuoudLy

G0T

“OUI[POYSBD MO[[9A oY) AQ POUI[INO ST SIN[IR]) PUR ‘QUI] POYSED WIS o) A PaUI[INO ST G
9O1[S ‘OUIT PAYSsEp dN[] O} A PIUIINO ST § 901[G ‘oul] poysep o[dind oY) Aq PaUIINO ST ¢ NS ' PUR F ‘g SIS 10§ PPOIN 329[q(O) PISISIN :gg'L 9L]

—
/ /
Nopeia3 ~ = —_—
k — e \ T _E3Is
—_— — — —
/ —_— e — /
%es_at/ \ E — N
Jeyiozewey| —
: TTEd T oepid NN N
n ROV TR0 ToIaSag JRNIeaY
\ \omx_ozac eleqIuaned \ SIaquaoafold /
T0Ie650g [(oTEasen
—_— — “eyoIeasay
\ Sen[eABIEQ \oe.aw_n asodingidploid _— e /
f f _acmsﬁqs_d:aﬂqﬁcd.a_ﬂu:c_
\ }=_u>sua \ TOUPTESSSH el Joyoreasoy ——=t| songuiag |
u — 9be,=aueu / 2010810 T esﬁ%_oi ’
\ e/ i — — |
‘ wgﬁss UOSHIOMAID \ \ sanguied —
\ - T8YOTESSaY 1 J8Y0Iess3Y g
\ T ~lowsjogereqieloid » sonywad seingused _
// / saanpoaloid — _
/ / sanywiad uqaaaﬂ_d__
/ sa|nyuwiag
/ / / pouinbaywiojsuey{ eleqioaloid J Sangwied _
ainyey nieglio sainkuiag
_ wmayki sumayhio — - 1yalosd P seinyuLad ‘
suiaykiD i - se|nywiag
_ aby,=aweu \ / _%g% ; T \
— \ O — =
\ Jauj0=a - it $8|NYULIS \
' ity sonyWIag sanywiag Inguied
Vﬁ - L L SIE(JHWIOISUBI [PaQI[3(1 aTeIHWIOISUBI [Pa([a(\ / —
_oa_noEu___ SOMENElEa T S8nywied PaulaqIg IpPaueQld
H = se|nywiad
s \ seg)=1eak \ _ ,
\ 8By =aweu e 0=yjuow SoINYWIR -
: SONEAEIEq 0=kep \1 — /
\ _ [T oreq| soinywiad \ AwoudLy

//V.\\\I/I
/ \\

7.7 Summary

Non-conformance represents the failure of the system in the verification of rules and the validation of user
and external agency expectations. We have demonstrated that when non-conformance occurs, the object
models can be useful to a domain expert as a starting point into their investigation of the error state that
led to the failure. We have previously discussed in Chapter 1 how enforcing rules requires us to examine the
details of our system. Thus, the modelling and analysis at the granularity of the class and object models on
data fields is crucial.

While the object models are useful, in system like the NJH system it is not unrealistic for a query to
examine 10 million fields and to return results from 10 thousand of them. Further still, we know from a
human computer interface point of view, it is not feasible to show an object model with all 10 thousand
fields! Therefore, future research may include examining the scale of such object models and identifying
some semantics for what the feedback shown to the user should contain to make it usable, i.e., slicing the
feedback. For example, while we examined date fields to demonstrate non-conformance on individual fields,
there are other rule-parts regarding de-identification as discussed in Section 3.4.

One way to slice the feedback may be to first identify which parts of the rule were not satisfied leading
to the non-conformance and then to show only those objects and links relating to those rule parts. We may
further slice the object models by each (non-satisfying) rule part, and if the object model it still too large,
return a sample of the fields exhibiting the non-conformance. This proposed slicing of the object model
can be used to reduce the cognitive overload to the user and make the feedback more usable. In addition
to slicing, any request for previous slices must also use the rule part of predecessor slice so that the object
and links generated have the appropriate context and overlap. We will discuss additional verification and

validation of HMCA in Chapter 8.

106

8. VALIDATING HMCA

8.1 Introduction

In general, HMCA is designed to encode and analyse rules to tell us when non-conformance occurs. One
way to apply HMCA is to follow a step-wise process, i.e., for each rule 1) construct models of the system and
the rule, 2) analyse rule, 3) examine the feedback where non-conformance occurs, and 4) fix the system. So
far, we have used this step-wise process to analyse conformance of our example system, NJH, to the HIPAA
de-identified access rule, i.e., when a DelDed access ticket is used the results of a query are de-identified. In

this chapter, we demonstrate:

1. additional validation through error seeding - first through a logic error in a rule and second through

incomplete analysis of indirect relationships; and

2. that these seeded errors correspond to real-world problems - the logic error causes non-conformance to

the previously verified HIPAA de-identified access rule and the second causes conflicts of interest.

For seeding the errors, we analyse two new scenarios not yet explained in our discourse. First we add
querying using the Identified access ticket, and show that even though we have not changed our specifications
for the DelDed access ticket, non-conformance is detected. Second, we revisit conflicts of interest by adding
new information on how data collectors may conflict with researchers and show that non-conformance is also
detected due to underspecification in our system.

We discuss the identified access ticket to the HIPAA conformance rule in Section 8.2, the conflicts of
interest as both a decision rule for all access tickets and as a NJH conformance rule in Section 8.3, and end

this chapter with a summary in Section 8.4.

8.2 Adding a New Parts to HIPAA Conformance Rule: Exposing Faulty Logic

8.2.1 UPDATING CONFORMANCE RULE FOR THE Identified ACCESS TICKET

One of the decision rules used for granting a DelDed access ticket is that the researchers indicate that

only totally de-identified data can be used. In this case we say that the access rule implies that the data

107

requires a TotallyDelDed data transform. For an Identified access ticket, the researchers are required to

indicate whether they:
1. must have all of their data identified, which requires a TotallyIDed data transform; or

2. can use de-identified data, which allows the data to be either identified or de-identified. Here we say

that a AllowDelDed data transform is required.

In the case of the AllowDelDed the project’s data source, e.g., a previous project, may already or only
contain de-identified data, and rather than exclude it in the query result, the researchers are willing to use
it.

With the inclusion of the Identified access ticket, showing conformance to the HIPAA regulations now

has three required parts based on the access ticket type and the required data transformation such that:

1. (DelDed A TotallyDelDed) — no date returned is identified’;
2. (IDed A Totallyl Ded) — no date returned is de-identified; and

3. (IDed N AllowDelDed) — any date returned is identified or de-identified.

To show conformance for the DelDed access ticket we did not require using TotallyDelDed as a part of the
rule, because a well formed model meant that only the DelDed access ticket had this condition. Therefore
it was sufficient to use

DelDed — no date returned is identified
in the conformance rule. This meant that the projectDataTransformRequired association outlined by the
red dashed line in Figure 8.1 was not required in slice 5 (See Figure 7.16) to show conformance for the
DelDed access ticket. (Note that the subtypes of DataTransform have been updated from the subtypes
shown in figures 7.9 through 7.14 and Figure 7.19 where we replace NotTotallyDelDed with AllowDelDed
and add TotallyIDed to have the meanings as discussed above.) However, because the Identified access
ticket has two alternatives for the data transform, showing conformance requires that we now include the
projectData TransformRequired association in slice 5. We show an updated slice 5 in Figure 8.2 to include

the projectDataTransformRequired association outlined by the red dashed line.

1Recall that an identified date means that in addition to a value for the year, the date has a value for the day or month
and de-identified means that it only has a value for the year.

108

601

G 9OI[G UL PaInbay MON UOIIRIIOSSY PaLinbodfullofsun.s]nin[1oolosd SUTUIINO ¢ 901[S I10J [OPOIN Sse[) pojepd :1°Q oInSrq

_ e _ _ IIRNO _ 1W9UNBOI | 1001010N0SOdIN4OWoS —_—
i/> M AT POUIOQSBHENDOWOS

‘ 1
DQWEALIIRIAAOCN PaULO(800IN0SOWOS { 9ouea 775 7 T T
Jaynend
IdPUywWea | pauasn \/ »; i
[PolInuop | "I
HOAuouges.nogeIeq - — mv
4 $16QUIBNIO0ICI
= GomiAidds .
ong |~} Ssonguwed _H. T M) 1vicelold .
AysoudLy T.
Omein 7
{peojumop [* / .
(100loid : fo:d *1ayoieasay : sai)kianpuns sauenposloly _
fiang

0TI

9OURUILIOJUO)) I9Y) 0} POIMDaY UOIYRIDOSSY PaLtnbayulLofSUDL], DD (T199L04J POIMbaY MON 9} UM G OIS I0J [9POIN SSe[) poyepd :g'§ oInSiq

pediea painuep|

Y

10 1vweloid

uoISSIWIS
e 19011 SS820Y

pa|ges|gpeojumoqg

$ \ T - —

. ~
o L0 * ()maiA \ .)
MeIS ["pemo)ivan ()peOjUMOpP seuenpaloid. ysloid |

AV Kienp \ . |

. e —_ _/
pamo||ypeojumoq (palinbayw.o)Suei] eleqlosloid |
suimeyAip =" T /\ _
170
Buis : [eAs . N~ ewotin J _
egie

uea|oog : ()Peliluap|IONS! 4sa o —_— - wiojsuesjereq | |
ues|00g : ()payuapis! Av (AN _
1ebaju| : Jeak L . Bums T ewsu| \ peqglegAjeioL *

JeBeyui : ywow ea senfeAeieq waleleq \ _

1eBeyu : Aep I N paqlA|ieioL paglaamolly |

eeag ™0 uopeie3 S~ _ /

Listing 8.1: HIPAA Conformance Specifications: VDAllowed is set

all
njh: NJH, q: njh.queries |
let
p = njh.projectQueries.q,
pdtr = p.(njh.projectDataTransformRequired),
a = some pdtr & TotallyIDed implies totallyIDedTransform[njh, ql,
b = some pdtr & TotallyIDed implies not totallyIDedTransform[njh, ql,
c = some pdtr & AllowDeIDed iff allowDeIDedTransform[njh, ql,
d = some pdtr & TotallyDeIDed implies totallyDeIDedTransform[njh, q] ,
e = some pdtr & TotallyDeIDed implies not totallyDeIDedTransform[njh, q] | {

/** Query results are downloadable */
some q->DownloadAllowed & njh.VDAllowed implies
((a and not b) or (d and not e) or c)

/** Query results are not downloadable */
some gq->DownloadDisabled & njh.VDAllowed implies
((not a and b) or (not d and e)

)}

8.2.2 ALLOY SPECIFICATIONS

Suppose? we use the Alloy predicate in Listing 8.1 to update the conformance status of a query, i.e., the

query status in VDAllowed3. We ensure that the query status is correctly set to DownloadAllowed using

some q->DownloadAllowed & njh.VDAllowed implies

((a and not b)or (d and not e)or c)

to mean that a query has a DownloadAllowed status in VDAllowed if it is true that:

1. its associated project requires a TotallyIDed data transform and all the dates returned are identified,

i.e., a and not b; or

2. its associated project requires a TotallyDelDed data transform and all the dates returned are de-

identified, i.e., d and not e; or

3. its associated project requires a AllowDelDed data transform and the dates returned are either iden-

tified or de-identified, i.e., c.

2By “suppose” we mean a fault is seeded here.
3The ”VD” in VDAllowed is for Viewing or Download of query results.

111

Listing 8.2: Helper Predicates used to Check Conformance

private fun applicableDates(njh: NJH, q: Query): set Date {
{ Date &
dom[q. (njh.qryReturns)]. (njh.dataValues) +
dom[q. (njh.qryReturns)] . (njh.enteredOn) }}

private pred totallyIDedTransform (njh: NJH, q: Query) {
all d: applicableDates[njh, q] | identifiedDatel[d]}

private pred totallyDeIDedTransform (njh: NJH, q: Query) {
all d: applicableDates[njh, q] | not identifiedDatel[d]}

private pred allowDeIDedTransform (njh: NJH, q:Query) {
all d: applicableDates[njh, q] | identifiedDate[d] or not identifiedDatel[d]}

We also ensure that the query status is correctly set to DownloadDisabled using:
some q->DownloadDisabled & njh.VDAllowed implies
((not a and b)or (not d and e))
that sets up an XOR situation for a query status. This formulation means that a query has a DownloadDis-

abled status in VDAllowed if it is true that:

1. its associated project requires a TotallyIDed data transform and some date is returned that is de-

identified, i.e., not a and b; or

2. its associated project requires a TotallyDelDed data transform and some date is returned that is

identified, i.e., not d and e.

Listing 8.1 makes reference to other predicates, i.e., totallyIDedTransform[njh, ql, allowDeIDedTransform[njh,
ql] and totallyDeIDedTransform[njh, q], and we include them in Listing 8.2.

In order to check that we have not over constrained the model we (use predicates to) generate instances
of the model for all 5 conditions, i.e., a to e, in Listing 8.1 where we ensure that the query has the expected
status in VDAllowed. For example when both clauses of a are true the query has a DownloadAllowed status
and when both clauses of b are true the query has a DownloadDisabled status. We generate instances and
this gives us assurance that we have done it right.

The next step is to check conformance. For example, to ensure that a query that should not have a

DownloadAllowed status, indeed cannot, we use the Alloy snippet below:

112

some p.(njh.projectDataTransformRequired)& TotallyIDed and
some g->DownloadAllowed & njh.VDAllowed and (
some p.(njh.projectDataTransformRequired)& TotallyIDed implies
all r: applicableDates[njh, gq] | identifiedDate[r])
in an assertion to check that a query ¢ whose associated project p requires a TotallylDed data transform
does not have de-identified dates in its result. HMCA detects non-conformance because the assertion finds

a counterexample.

8.2.3 EXAMINING FEEDBACK OBJECT MODELS

We request feedback and we are shown the object model in Figure 8.3 where we see that Dataltem._0,
Dataltem_1 and Dataltem_2 show a conformance failure for the Identified access ticket requiring a Total-
lyIDed data transform because their associated dates are de-identified. When a similar assertion is executed
for the DelDed access ticket, it also returns a counterexample. The feedback from this is shown in Figure
8.4 where we see that Dataltem_3, shows a conformance failure for the DelDed access ticket requiring a
TotallyDelDed data transform because its associated date is identified.

While not necessarily a part of feedback because there is no conformance failure, we include Figure 8.5,
when there is an Identified access ticket and the data transform required is AllowDelDed. We note that the
figures 8.3, 8.4 and 8.5 use the same set of Dataltems yet it is the access ticket and the data transforms that
tells us whether conformance rules have been violated or not.

Since the DelDed access ticket also shows non-conformance and we know that in Section 7.6 we verified
that the status in VDAllowed was being set correctly for the DelDed access ticket, it must be that there is

a fault in the way we set the status for each query in Listing 8.1.

8.2.4 UNDERSTANDING WHY NON-CONFORMANCE OCCURS

Inspection of the predicate reveals that the statement
c = some pdtr & AllowDeIDed implies allowDeIDedTransform[njh, ql
in Listing 8.1 is causing the conformance failures. The fault is now obvious, i.e., the use of implies in the

statement is the faulty connector.

113

V1T

paamboey] ST wriojsuel], vye(] Po(7Ifijv10] ® PUe Pasil SI JoNOL], SS900Y Palijuap] Ue UYM G 9OI[S Ul OURULIOJUO)-UON :€'] 9IMSI]

Le6L=1e0h
g=yjuow Jayj0,=aweu
p=ivp seneAsieq [CTEQAIDT WoIENed |
s1eq T ereq |
senjeaeleq
N SSO=euNy sunjaylip _.3
Blep palyiuapl-ap :ainjied ——
— — — -
—— aby,=aweu ™ £
—) = suIN}ayAID
bie et pomeltvan
\ = \Q&\ d
Le6 =180k
|eABleq
_ on.::»oE ,8b6y,=aweu _‘ sumgEkio
\ ORASD saneABleQ !
R R /
// 9By, =aweu / syfeulio
~ __ _ i / sauanpoaloid
_— - s _ - _— _
- ~—
‘aby,=oweu - _ : _ RN
sonEAZIEG - - 1v10aloig AN
N\
[PSQTATETO L0 PoaIATTETOL | \
I\ | peJinbeywiojsues | eleqioelold J
~ — -
pauJnial aq p|noys ejep T—_—_ e —_——_—-—_- - — — — — -

paiynuapi Aj[e303 Ajuo :uoj3ipuo) duBwWIOjUC)

q1I1

paimbaey] ST wriojsuel], Bye(] Po(7a(7[A]IP10 © PUR PIsn ST 193IL], SS90y Po(J[o(] UR USYM G 9OI[S Ul 9OUBULIOJUO)) :§,'Q SINSI

pauin}al sl elep palyjuapl :ainjied

/T~
N

_ LeL=1eak| \

| g=yjuow \

| 6=Aep ' sanepeleq
o1eq T oreq | |

/ ,

/ senjeAeleq \

Jeyi0,=eweu

\ suimeyAiD
Joyi0,=8weu ’ _ POMO[[YPEO[UMOQJ-0 PIMO[[YPEO[UMOQ _

\ p]
// \\\\\ —
,8by,=aweu suimayAip
Pamo|lvYaA

[ETeqien 0 walereq

1e6L=1eak \33 — sumgdhio

0=yiuow
o0=Aep

senjeAeleq v
B0 orq |
s CISLSTe)
,8by,=aweu
Bjegisy e wayereqg sauanpioaloid
—_—— - T —~
o - — ——
,8by,=aweu - - T T —
sanfeAeieq s _ —~ - 1vioaloid \
- |;wmmwmwammmmwwmmﬂmwammmu \
\ . | pesinbeyuiiojsuel] eregIoefoid _
pau.n3ai aq pinoys eep

~

payuapl-ap Ajje303 AjUo :uoI3IpuUO) IDUBWIOUOD)

911

poambaey] ST ULIOjsuRI], BIR(] PA(JJMO)]} e PUR Pasn ST 19)OL], SS900Y poy1juap] Ue USM G 901[S Ul 9OURULIOJUO)) :G'Q INSI]

Le6l=1e8k
0=yjuow

\a%

0=Aep
]

sanjeaeleq

sanjepeeq

-9p PUB PalRU3P! Y10] :UOIIPUOD FDUBLIIOJUC)

Le6L=1e8h
g=yjuow JaylQ,=sweu
6=Aep sanjeAeleq EeqAIn G Woyeeq |
[oreq:T oreq |
senjeAeleQ
Jeui0,=ewsu suimeyAio [PomOTVPEOIuMOG:0 PONOIVPEOIUROa |
Eleqiogc walereq
«eBv,=eweu suineyAID POMO|IVAA
[BTeqieg 0 wajrereq |
06y, =oweu supHAD
suRtdeyAID
8By, ,=aweu
seuenpoalold
—— T T T = — —_
- — -
- [PommGepTO pommEeDT| T~
= \ .
vl Ve 1vioalold ~ ~
s ~
- ~
d AN
\. [PearEamanv-0 peaeaoTy | (o T oo
pPauJn}aJ 3q UEd B1ep PaLIuAP! pasinbayuwiojsuel | ejeqioaloid)
~ . = -~
-~ e — T T T T T — e . —

—_—

—_——— — T

The use of implies is appropriate for both DelDed with a TotallyDelDed data transform and Identified

with a TotallyIDed data transform, i.e.,

a = some pdtr & TotallyIDed implies totallyIDedTransform[njh, ql
and
d = some pdtr & TotallyDeIDed implies totallyDeIDedTransform[njh, ql

respectively, because these were not the only access tickets that allowed de-identified or identified dates.

We note that we could also use iff as the connector for the clauses in ¢ and d, i.e., using

a = some pdtr & TotallyIDed iff totallyIDedTransform[njh, ql
and
d = some pdtr & TotallyDeIDed iff totallyDeIDedTransform[njh, gl

yet this neither cause changes in the instances we expected for the TotallyIDed and the TotallyDelDed data
transformations nor HMCA finding non-conformance when their associated access tickets are used.

However, further analysis shows that it is indeed correct to use implies because using iff excludes the
AllowDelDed transform from having dates that only contain all identified dates or all de-identified dates.
Therefore the AllowDelDed transform would only contain a mixture of identified and de-identified dates to
get a DownloadAllowed status because the iff mandates that only the TotallyIDed data transform to contain
identified dates and the TotallyDelDed data transform to contain de-identified dates.

In the case of Identified with an AllowDelDed data transform, this was the only access ticket that allowed
both de-identified or identified dates to co-exist in the data it returns and still show conformance. Also,
using implies as the connector means that we have no specification about (the converse of) what status a
query should have if it has both identified and de-identified dates.

Therefore, for the clauses in ¢, iff is the required connector. We show the correct formulation below:

c = some pdtr & AllowDeIDed iff allowDeIDedTransform[njh, q]

This correction still allows us to generate instances for a to e in Listing 8.1 and yet produce no counterex-
amples for the conformance checks. The complete Alloy specification, including the correction of the fault,

is in Appendix D.1.2.

117

8.3 Adding a New NJH Conformance Rule: Identifying Conflict of Interest Situations

For our discussion in this section, we will make reference to these specific instances of the classes from

Figure 8.6:

1. DC, the person collecting the data from a ClinicalDB to be returned in a project query, is the Personnel

we reach by navigating the ProjectDataCollector association from the Project class;

2. PI, the principal investigator for a project, is the Researcher we reach by navigating the ProjectPI

association from the Project class;

3. PMs, the researchers for a project, are the Researchers we reach by navigating the ProjectMembers

association from the Project class;

4. Sup, the supervisor of another person, is the Personnel we reach by navigating the Supervisors asso-

ciation from the Personnel class; and

5. Sources are the DataSources we reach by navigating the ProjectSources association from the Project
class. Sources can be the ClinicalDB (the NJH’s DB) or other projects. In the case of the latter, we
assume that the project has made queries of its own and augmented the NJH with additional data, so

both the original data and the additional data are considered as the “sources”.

When a project requires data from a ClinicalDB, a DC must be assigned to the project to extract the
data from the database on behalf of the project. Since the DC, PI and PM’s for a project are all drawn from
the same pool of Personnel and to prevent conflict of interest situations, there are some basic conditions
that must be true to get a project’s application for an access ticket approved. For a project (with respect to

Personnel) there should be:
1. no overlap in Pl and PM; and
2. no overlap in DC and (PI + PM).
These conditions have already been incorporated into slice 3 (see Figure 7.19) as the NoOQverlapPITeamDC

DecisionRule for approving access tickets and to ensure that there are no violations. However, an examination

118

61T

reaoxddy 9oso1], $5900y Surouenpur sdiysuolye[@y [PuuosIsg SUIMOYS ¢ 991§ WO} PJOeIIXd I[G WeISel(] SSe)) [e1He :9°'] 9IMSI

Buiysi4

TJ4eyolessay

CRITECTR T wree

layoleasay

uoissiwliad
0

slaquwanloalold

|dioofoid |auuos.iod

. o9lol
1801 SS90y L0 Lviceiold * L0

siosinjadng

10108[|0D®BIEQI08[0.Id

100l01d

1uswealbyssaooyeleq

A_‘

9oInoseleq |, ss8ainoglosloid

aqaleawnd W

of the instances where an access ticket has been approved shows some other kinds of conflict of interest
situations with respect to the DC, PI, and PMs for a project. We use HMCA to detect these situations by
including a conformance rule that they should not exist.

Instead of using object diagrams to show instances of the situations, we will use the instances given by the
Alloy Analyzer because they show the direction of the relationships where the former does not. For example,
both the DataAccessAgreement and the ProjectSources in Figure 8.6 involve self relationships on the Project
class. In an object diagram, unless we show the role names at each association end, we cannot know how
to understand the links between objects. Showing the role names in addition to association names on the
object diagrams causes too much clutter for the size of the object diagrams required. Instead, the Alloy
Analyzer provides a better visualisation by showing the domain and range of a relationship? (association)

by using directed edges. We will see these instances in figures 8.7 to 8.15. Note that the:

1. Alloy Analyzer instances shown will be partial instances of Slice 3 as depicted in Figure 8.6 where we

remove the elements not applicable to checking and showing the conflicts of interest; and

2. black dashed lines with labeled annotations in these instances were not generated by the Alloy Analyzer,
but were added manually to aid the reader in finding the example being described, e.g., the line labeled

“Project” on the upper right of Figure 8.7

In the following subsections we discuss 4 conflict of interest situations. The first involve supervisory

relationships and the others arise because a project can use another project as one of its Sources.

8.3.1 DC CoONFLICT OF INTEREST CASE 1

The first situation is where the project’s PI is the Sup for the project’s DC. Using the Alloy partial
instance in Figure 8.7 as an example, we see that Project2 has an approved access ticket, shown by the
projectAT: Identified label inside the project’s ellipse, yet the PI, Personnel5, supervises its DC, Personnel0.
We note that this supervisory relationship does not have to be a direct one, i.e., the supervisory relationship

between the PI and the DC may be deeply nested.

4Since we already use Sources to describe the data source for a project, we wish to avoid confusion by saying source and
destination of a relationship (association), so we use the language of relations/functions, i.e., substitute domain for source and
range for destination.

120

1T

‘01PUU0SLdJ (T SH SOSIATOdNS A[IO0IID GPRUUOSLIT [S.5199004d = (T S.¥99l01 sosiazedns [§,399[01J 180109U] JO PIFUOD) D (T :1’'8 9INJT

Bulysi4 Taaydseasal

-4 — Josinzedng — —

si1aquiapyydafosd Bulysi4 TaydIeasal

§Jauuosiad

Zq10af
10323]|07BIWIdafoad gareomD

Jopa3joyeleq .
sadJnosydafosd |1d3¥d3foad

— — —aloud — —

In general, detecting these deeply nested relationships requires the use of closure operations. An example
of the indirect supervisory relationship is shown in Figure 8.8, where Projectl’s PI Personnell supervises

its DC Personnel0.

8.3.2 DC CONFLICT OF INTEREST CASE 2

The second situation is where the project’s PI is the Sup for the DC's on any of the project Sources.
Using the Alloy Analyzer partial instance in Figure 8.9 as an example, we see that Project2 has an approved
access ticket, yet its PI, Personnell, supervises the DC, Personnel3 for Project0, a Source for Project2. The
conflict of interest still exists if the supervisory relationship is indirect or if the Source is indirect. We show
examples of these indirect cases with the Alloy Analyzer partial instances in Figure 8.10 and Figure 8.11.
In the former figure we see that Project3 has an approved access ticket, yet its PI, Personnel3, supervises
Personnel0, the DC for Projectl, an indirect Source, through Project0, for Project3. In the latter figure we
see that Project3 has an approved access ticket, yet its PI, Personnell, indirectly supervises Personnel2, the

DC for Projectl, an indirect Source, also through Project0, for Project3.

8.3.3 DC CONFLICT OF INTEREST CASE 3

The third conflict of interest situation arises when a project’s PI is the DC for any of the project Sources.
Using the Alloy partial instance in Figure 8.12 as an example, we see that Project2 has an approved access
ticket, yet its PI Personnel2 is the same as the DC for Project0, a Source for Project2. The conflict of
interest still exists if the supervisory relationship is indirect or if the Source was indirect. We show an
example of this with the Alloy Analyzer partial instance in Figure 8.13 where we see that Projectd has an
approved access ticket, yet its PI Personnell is the same as the DC for Projectl, an indirect Source for

Project3.

8.3.4 DC CONFLICT OF INTEREST CASE 4

The final conflict of interest situation arises because the project’s PMs overlap with the DC for one of
the project’s Sources. Using the Alloy partial instance in Figure 8.14 as an example, we see that Project2

has an approved access ticket, yet one of it its PM’s Personnel2 is the same as the DC' for Project(, a Source

122

€cl

"012UU0S43J (T SH sostazadns A[)0dIIPUT [JoUU0SLIJ [S, [199L04g = (T S,399[01J sostazodns A[)odIIpul [S,399[01J 1S0199U] JO 1OTHUO) H(T 8’ 2INSI

-«— — — Josiaadng pdIIpUl— — — —

Bujysi4 s14aydaeasal

— -10}29]|0) eleq— Z|3uuosiad

sfosiniadns \e— —Jlosialadng pag- — —

Buiysiy 1143ydJeasal
T|3Uu0siad aaledud

J0)233||0DrIe@idafoid
Jo323||0JpIeQIdpload

s921n0S5323foid

— — —pofoid — —

Vel

©1UU0SLIT ‘(T S 0192l04g sesiaTedns ‘[1ouUU0SLd T
‘Id s.g1olosg pue ‘poolosg 2024mn0g sey groalosd [S.399[01d Aq (T S,00IN0G 39911 S,300[01J Jo uOoIsiaATodng ‘3soI09u] JO JOTFUO)) H(7 :6'] 9INSIq

Buysi4 43ydieasal
0]3uu0s.iad

siosinadns

Buysi4 743ydieasal E
Z|3uuosiad

— — Josiazadng — <— —I0pIjj0) eleq- — —

J3foud
|d329: siosinzadns

19033 |0DBIeQ

Buiysly T4aydJeasal
T|3uUu0siad aqajeaid

siosiazedns

s1aquidpyidafoad

siaquiapyidafosd
siaquiapyidafoad

— 224no§ —

3Waaibyssaddyeiep
$321n05323[0.N

—afoid — — — p

gcl

‘012UU0S4dg (] S, [199L04g sosiazodns A[}00IIp §Jouuostd [d S, 5199004
pue [305l04J 204n0G YDIPUL SeY £199L04J [J S.499[01d Aq (T $,92In0G 109I1pu] S,399(01J Jo uorsiazedng ‘4seI0yuf Jo OIJUO)) H(7 :0T'8 2INSIq

[m=] [w=]

-«— — —JosinJRdNg— —

10SIAJ3dNS

. — — —J0)29||0) kleQ- —
Bujysiy T14aYdJeasal
£]3UL0SIad

sigsiARdns

103233 |0DeIRgIdafoid Id32afoad Bulysi4 m4ayd1eas.

10323)|0)e3eqIdaf0d Z|3uuos.iad

aajeauip

1d323foud
siggwapyidafoad di>afoud sadunosidafosd

siaquiggyidafoad

— — —3Mnos-—

sadunosidafoid

1URWAI6Y S Sa3DVRIER) mEmw‘_m<mmmuu<ﬁm.

mw&:omuuwﬁo\ly_:o ___m-

23foid— — — — — — 32IN0S }234IpuU|—

9¢l

"G1PUU0SIDT D (T S, J199L04d sostaTodns A[J00IIPUL [JoUUO0SLIJ [S, §192l04 pue
[192L04J 20410G 1021IPUL SRY £19200.4 [S,399[01g Aq (7 S,80IM0G 90011pu] 30001 JO UOISIAIANG 1001IPUT ‘4S0I09U] JO WIPUO)) H (] :T1°8 9IS

— — —aosiuadng PAUPU— — — —
sjofiniadns ! S 341pu|

Buiysi4 :143ydaeasal
0]3uu0siad

— — — —aosiaJadng PaIIQ— — — — —
s osinRdns
— — -0339||0) ejeq— — — N

10323|f0)eIR@Id3(0.d Bulysi4 4aydieasal

T|3uuosiad aaieap

dquuapyidalodd

Jo323||0DeIe@idafoud |d3>afoud

10323 |00eIRQI23(02d sadinosydafosd

|1d323foad

_ —a32In0§ I3IPU] — — —
19load
G /) == — —3dJnog paig- — — — —

21

‘G1PUU0SII ‘duTes 9} dxe) (T S,0192L04d [d
s, g1oalos pue ‘p1o9losg 24nog e sey g19losJ Jd S,399(01J oY) se auwres oY) ST)(] S,224n0G 19211(] S,399[01g ‘4s0I0MUT JO 1OIJU0) H(] :¢T'8 2SI

Bulysi4 714aydJeasal
ZI3uuosiad

Bulysi4 4aydieasal
0]3uu0sJad

dosinuadns

Bulysi4 4aydieasas
T|3uu0s.iad

aajeaun

siaquiapyidalosd
Jua a6y ssaddyeIep

— —9fou1g4- —»

8¢l

‘T1ouuosud g (I S, [199Losg se oures oy} SI [J S, 5192004
19K ‘1999004 92INOS BYEP 109IIPUL SBY 192004 [S,399[0IJ 93 se aures oy} ST)(T S,2241n0G 109IIpu] §,3099[01J “380I109u] JO JOTFUO)) (T :£1'] 2SI

Buiysi4 .._._a:uhmoma._ m:_._..._"_ T43Yd.1easal
0]3uu0siad T|3uuosJad
—_— S — — — — — = 4 - — — — — -
sio§insadns siosinsadns Sorus sstoT = — — — —0Ijo) Bjeq—- — — —
1d3>afoid mc_:mm ..:a.__u._aum.& si13quiapyydafoud

Z|auuosIad aaieauip

si1aquiapyidafoud 1d30adug sa21nosydafoid

hoc“__ouﬁmccw.aa‘ Joyds|edereqidafoid
3j|0 Sm._nﬂ'
s324nos3dafosd

aonog paig — — — — —

—pafoud — —

6¢1

"G1oUUOSLI J ‘OUTeS Y[} dI€ I0II[0D BIEP S, ()192L04 SN S.&192L04T
JO 9UO pue ()399L04J 994M0G ® SeY F199L04J 1§994M0G 19T I JO SUO I0J /)(J dY) Se oaures oy} SI [J $,399[01J ‘3s0I199u] JO JOTFUO)) (] :FT°'S 2ImSIq

Bujysiy T14aydJeasal
T|3uu0siad

Josinzadns

Buiysy T14aydseasal
ZI3uuosiad

- — — —i0paj0)eeq— — — — —

siaquiapyidafoia
S

4
Q.

sinadns

Byegidafoad Buiysi4 :143ydseasal
0/3uu0siad

aaieauip

JPquiapy
y9foid -

— sadosydafosd

siaquiapidafoad

JUSWRAIBYSSaddyeIEp

-«— — — Pdfoud— — — —

for Project2. The conflict of interest still exists if the supervisory relationship is indirect or if the Source was
indirect. We show an example of this with the Alloy Analyzer partial instance in Figure 8.15 where we see
that Project3 has an approved access ticket, yet its one of it PM’s, Personnel2 is the same as the DC for

Project1, an indirect Source for Project3.

8.3.5 ELIMINATE DC CONFLICTS OF INTEREST

In order to eliminate these conflict of interest situations from the system, we must:

1. update the NoOQuverlapPITeamDC' DecisionRule in Figure 8.16 with the third and fourth situations so

that there is never an overlap among the PI, DC, and PMs;

2. add a new DecisionRule NoSupsInPlandDC in Figure 8.16 for the first and second situations so that
a PI never supervises the DC for any of its Sources and include this rule in the approval for an access

ticket; and

3. update the conformance rule in the Alloy specifications with these four additional situations to the to

ensure that there are no violations.

Figure 8.16 shows the new and updated DecisionRules highlighted using the red dashed line. The com-
plete Alloy specifications for slice 3, including the new and updated the decision rules, and NJH conformance

rule, is in Appendix D.1.1.

8.4 Summary

We have shown two ways faults are commonly introduced into specifications and that HMCA uncovers
the faults by showing conformance failures.

The first fault covers errors in logic that may arise because some specific logic connectors, i.e., implies
and its stronger form iff, are not well understood. This fault is interesting because, while we showed that
our specifications were correct with respect to the DelDed access ticket in Chapter 7, when we extended
our analysis to include the Identified access ticket and its two associated data transformations, there was
non-conformance for the DelDed access ticket. This non-conformance existed even though the specifications

pertaining to the DelDed access ticket remained the same.

130

1€T

"G1PUU0SIdg (] S, J199L04 Se aures o) SI S S,§199L044 JO dUO
pue ‘1209(04 224m0G YORITPUL SBY 199L04] :$204n0& 192IIPUT 1 JO 9UO 10J /) (T 913 Sk aures oy} SI [$,499[01J ‘1s9I109U] JO IOIJU0D) (] :GT'] 9INSIq

Buiysi4 11aydaeasal
Z|auuos.iad

510sIAIdNS

— J3quwidN 3fold — —

Buysi4 T113ydJeasal
T|3uu0sJad

aaieaip

Id32=f0ad

03173]|0D'IegIdafoid

sipquiapydafoid

sadinos)dafoid

siaquiapyidafoad

sJosiaRdns opy32aload

J0}23||0Deled

nogidafo

I1d32>=loud

a\

sadinosydafoid

Buiysi4 1a3ydseasal
0]3uu0siad

-y — — — —
awaaJbyssaddyelep
sadunosydafoid

—92J4nos paJig- —

Z_ < — -921n0S PRIIPU| - — —
—0foid —

49!

ouT[Po3jo(] POY] o1 £q POUIINQ) SUOTYRNYIG ISOIOIU JO JTPUOD) I0f SN U0IsIoa(q s ¢ 991§ porepd) :91'g omS1g

[peuiegsiequepiosioid | | wasaidayieno |

1198.1010N©500.ndewos |

Y

\ POUIJOQS01,aNDIWI0S

_oo:ou..__—)

_ pagleq _ uoc_.:%_

_ ald N
_ 2QPUE|JUISENSON
F 2Qwea] |gdeuaa0oN eocacnoeeaomesom
e — 9|NKLOISRag
_EES..SG!B: AN
paglagfiielol asnuen -
NOAjougenoseeq g
_ Wosaidi - veieg _ (JainuAdde
einy 'L oseInguaed
| soway0gERaspsangamow) |

(weloud : loud syaueesey : ses)lienpuns

Omeorn
(Opeol

YL

s1aquap1oalolg

1vpalord

_H 1930185690y |- 0

Awoud Ly

PoaisgmoIy

[——]
| PagIegAiRIoL _|V_

salanpiealoly

Aionp . Tooloid
Eesi!gmo
| Poaifieiol | —_—
CEETEY)
v, asanogeieq |, sednogiosioid
ILEIEA [0 posInboyuwiojsuRs | BIRQIoRl0id

An insight for this logic fault is that when more than one access tickets require the same data trans-
formation, there needs to be a careful and intentional examination of whether the relationship between the

access ticket together with the required data transformation and the format of the resulting data is a:

1. one-way relationship and in such a case implies is applicable, i.e., the former requires the latter, but

the latter does not require the former; or

2. two-way relationship and in such a case iff is applicable, i.e., the former requires the latter, and the

latter also requires the former.

In the NJH System this consideration is not only applicable to the DelDed and the Identified access
tickets, but it is applicable to other access tickets since some require similar transformations to those already
discussed. For example, the Coded access ticket (see Section 3.4 for an explanation) mandates that some data
that is returned by queries be Totallyldentified and others, under a new data transformation, be indirectly
identifiable. In this case the (new) Coded access ticket allows an Identified data transformation and we must
evaluate whether the parts of the conformance rule in Listing 8.1 still holds when we add clauses for the new
access ticket.

The second fault we discovered concerns a common way that specifications are incomplete: indirect
relationships among objects are missed. Essentially, these missed relationships are transitions in the NFA
rule representation (see sections 6.2 and 5.1.3) that should lead to an accepting state (non-conformance),
yet are not specified to do so in the Alloy specifications. These indirect relationships can only be uncovered
by computing all the ways objects can be related, i.e., computing relationship closures.

We note that we may refine these conflict of interest situations caused by indirect relationships further.
For example, an organisation like the NJH may run into problems because satisfying conflict of interest
conformance rules may require an increase in the number of personnel when the number of approved projects
is increased. For example, a DC on one project can only take on the role of a researcher for another non-
conflict of interest (directly and indirectly) project. If the DC has a conflict of interest with all the current
projects, then other new personnel are required for this DC to take on the role of, say, a PI on a new
project. However, acquiring new personnel may not be possible because of budgetary or other constraints.

One solution for this is to include in the specifications the idea of project lifetimes, and specify conflicts of

133

interest where project lifetimes overlap. Here, the work of [16, 83] that formalises overlapping lifetimes in
whole-part relationships would be pertinent in understanding the ways projects lifetimes may overlap.
Validating HMCA is as important step is showing that conformance failures can be detected for some
common types of faults. The addition of the Identified access ticket required that we add to the specifications
model elements for data transformations and associate them with the appropriate access tickets. This increase
of model elements did not significantly affect the conformance analysis. Another way to validate HMCA is to
evaluate larger model slices due to, not just an increase in associations among current model elements, but
an increase due to adding new classes and associations among new and older model elements. For this we will
augment the NJH system with rules for protected populations, specifically children protected populations,

in Chapter 9.

134

9. APPLYING HMCA TO CHILDREN AS PROTECTED POPULATIONS IN THE NJH

9.1 Introduction

HIPAA regulations mandate that sharing information on protected populations, such as children, preg-
nant women, foetuses and neonates, and prisoners must include additional protections over the kinds of
protections allowed by a given access ticket. In this chapter we expand our model of the NJH system to

include the HIPAA regulations as rules for the protection of children. The specific changes include:

1. an organisation’s Institutional Review Board (IRB) is required to also consider rules that govern the

use of children in research when approving access tickets; and

2. where approval has been given, additional rules give the conditions under which such data may be

accessed.

We have chosen to model the rules governing access to data for children as this is important to the NJH due
to the sensitive nature of accessing data for children. We discuss the HIPA A regulations concerning children
and how they are realised in our model in Section 9.2 and a summary that includes a discussion on why our
specification of the children protected population helps us to be able to extend the specification for other

protected populations in Section 9.3.

9.2 Requirements for Protecting Children in the HIPAA Regulations

The HIPAA regulations for protected populations in [69] stipulate that when an IRB approves proposals

for research, they must implement these additional protections for children included in research:

1. quantify the risk to the children such that if the risk is too great then no approval is issued to conduct

the research; and

2. when approval is given:

(a) to specify required additional assent from each child and consent from the parent, guardian, or

the ward organisation responsible for the child; and

135

(b) to require that children who are wards be assigned an advocate who is not connected in any way

to the research or the ward organisation.

We have updated the overall class model to include new model elements to capture the requirements for the
children protected population. Recall that in chapters 7 and 8 we discussed that an access ticket is approved
in slice 3 and queries are executed in slice 4. We have therefore re-sliced the overall model and will discuss

Item 1 as it applies to slice 3 in Section 9.2.1 and Item 2 as it applies to slice 4 in Section 9.2.2.

9.2.1 APPROVING ACCESS TICKETS TO USE CHILDREN PROTECTED POPULATIONS

Figure 9.1 shows the new slice 3 that now supports approving access tickets requiring the use of children.
The additional elements are enclosed using red dashed lines and annotated using grey shaded circles numbered

1 through 6. The following list of numbered items correspond to the numbered circles:

1. the ProjectSpecialResearch association is used by the project to indicate that the project application
for an access ticket includes access to the protected populations indicated. Currently, only the Children
protected population is supported, however, the model is set up to allow extending the SpecialSubject

class with other populations.

2. the ProjectSpecialResearchApproval association records the IRB’s decision on whether to grant the
project approval to use the special populations requested by the project. We use the Allow class to
indicate that approval has been given and the DisAllow class to indicate the approval has not been
given. Each decision must be accompanied by an indication of the risk exposure represented by the
ResearchRisk class: an approval is indicated by any of the ChildrenResearchRisk subclasses except the

RiskNotAllowed that is reserved for decisions that are not approved.

3. the IRBMembers association indicates the members of the IRB. It is important to include this associ-

ation in our model because the applying DecisionRule in Item 4b below requires it.

4. the PermRules association includes a new and an updated DecisionRule for issuing an access ticket:

(a) the SpecialResearchApproved is a new DecisionRule that checks that all special populations indi-

cated in Item 1 have approval in Item 2 before a project’s access ticket can be approved; and

136

LET

(soury
Pa1 paysep a1} £ PAUIINO SIUSWIS[S [9POW Sse[d Mau) uoljeindoJ Pajodjord e se ueIp[ry)) Surpioddng ¢ 901G 103 [OpOIN sse[) pajrepdn :1°6 omSig

_ooucm_mc_m%wozm _ucc_so_n__ —_— —

pauljeqsiaquapioelold E] /
/ _ UOIjBIAB||YUONUBABIJBUIpUBISIBpUNIBYLINS _ /

1%, | Wesaigialeno \ I) . .
[! ASIH[BWIUIN 8|qesi|eiauaniljauegioallq
|dpuYWea | pausory » Dy\AEEEOES__..._SZomoeioEom_ = - _ /_./ _ YA _ _
— f] f : f]
yORougeoIogeleq > < e RIS [pemolvioNysiH _lv_ JSIHYoIeESBHUBIPIIYD _A_l_ Ijouegioellq __
I] </ . B —
T = Jayoieasay [
_ < v ;«maﬂ\/m 8nyuoIsIoaq — E \
f N . +0 Jouuosiad
_hoso__oouﬁowuowzg_s o_ Q g \
_ panoiddyyoseasayeioads _ \ siosiniadng —
paqlagAieloLesnue) p— \
iy — |diosloid
uope|ndod paravlold se uoissiwiag \
uaJpjI Buisn Yaueasay : (ool ssecoy [N P00I%0 |
1oddng 03 sajny uoisiaag] VoneAidde e — —— -~ N
ang |~ b seinduwied 1U8SU0J [77p
pajepdn pue maN Ind v Aioud Ly // . 7 lopsjjoereqioelold o Wi, _
. -~ | YUoIeasay|elo8agiosiold
§ wwslo| . [4 \
salenpoalold B
\ . 1 UorEasagERadSaid /
f b ‘t— — —— ___bayassssyjuasuogioaloid . giogineied ’
W 108/01d A asodingoalold N - / 9
(Jpeojumop —] = - _
(10801 : loid “ayoseasay : sas)kianpuni Wewsaibysseooyeleq
Kianp 170 I o . _
ToqIEIol _oEm_oess _I_V_o_oma_ Isuodsay _ ‘
— asoding N A
paqglagmolly galeaud \ \
s0Inogeleq |, seaInogosfolg / ?o__suomyoz Iusscom E
_voo_oa__so._.TV_EQEEES" - _|__§u8om lusuee/ L poaia - _—— — E \
[170 paiinbayw.ojsuel) elegioaloid :o.am_saon_ pardRj0Id se —~ - \

uaJpjiy) Moddng 03 SuoIIEPOSSY pue sassep) MaN

(b) NoOwerlapPITeamDCIRB is an updated DecisionRule (previously NoOQuverlapPITeamDC') to now

include that no IRB member is allowed to be a part of the project team®.

5. if no applicable DecisionRule is violated, the project may be approved its access ticket application -
a link between a project and an access ticket in the ProjectAT association records this. For example,
the following set of object models for Figure 9.1 highlight important scenarios when we may approve

or not approve an access ticket for a project:

(a) Figure 9.2 is an object model that shows that Project_1’s access ticket is approved as no Decision-
Rule is violated (see annotation numbered 5). In this example, we note that the IRB has indicated
that there is a DirectBenefit to the children and has therefore approved the request for Project_1
to use children in their research (see numbered association 3). In addition, no IRBMember has
a conflict of interest with the project, i.e., the personnel in association numbered 3 have no links

with any of the personnel associated with the project.

(b) Figure 9.3 is an object model that shows that Project_1’s access ticket cannot be approved because

the IRB indicated that the risk was too great (see annotations numbered 2 and 5);

(¢) Figure 9.4 is an object model that shows that Project_1’s access ticket cannot be approved because
the IRBMember, Personnell is the project’s DataCollector (follow annotation numbered 3 from

Personnell along the ProjectDataCollector association link to Project_1); and

(d) Figure 9.5 is an object model that shows that Project_1’s access ticket cannot be approved because
the IRB indicated that the risk was too great because the access ticket applied for is the DelDed

access ticket (see annotations numbered 3 and 5).

6. the ProjectConsentAssentReq association is required for all approved decisions in the ProjectSpecial-
ResearchApproval association. The IRB uses this association to indicate whether each child and/or
parent/guardian/ward organisation are required to give assent or consent respectively for the child’s

data to be used by the project. We see an example of this in Figure 9.2 where the IRB has indicated

LAs with checking the conflict of interests for the old NoOwerlapPITeamDC' rule explained in sections 8.3.2, 8.3.3, and
8.3.4, the updated rule must check for direct and indirect linkages of an ITRBMember through the closure of the ProjectSources
associations.

138

that Project-1 must get explicit assent and consent from the child and the parent/guardian/ward or-
ganisation of the child respectively as a precondition for including the child’s data in their research

(see annotations numbered 6).

9.2.2 EXECUTING QUERIES WITH ACCESS TICKETS APPROVED FOR CHILDREN PROTECTED POPULA-

TIONS

In order to execute queries where a project uses protected populations, elements of the class model
for approving an access ticket for children must be used. Specifically, we need to include the associations
numbered 1, 3, and 6 from Figure 9.1. We show in Figure 9.6 the class model elements from slice 3 that
overlap in slice where we execute a query for a project requiring the use of children.

Figure 9.7 shows the re-sliced slice 4 that now supports executing queries with access ticket for projects
requiring the use of children. The additional elements are enclosed in the shaded region outlined by the red
dashed line and grey shaded circles numbered 1 and 3 through 13. Note that the numbered annotations 1
and 3 through 6 are the same associations from slice 3 in Figure 9.1. The following list of numbered items

correspond to the numbered circles:

1. We have already given an explanation for the ProjectSpecialResearch association in Section 9.2.1, Item
1. This association is needed so that we know when a project is allowed to access specific protected

populations.

2. This association and corresponding annotation are not required in slice 4.

3. We have already given an explanation for the IRBMembers association in Section 9.2.1, Item 3. Though
this association is not explicitly required in slice 4, we include it because of potential conflict of interest

situations that can arise. We will return to this discussion in Section 9.2.2.1.

4. Instead of DecisionRules as discussed in Section 9.2.1, Item 4, the PermRules association now links to
AccessRules. Here, we include four new access rules to support the children protected population. In
order to explain the rules, we use object models that are instances of Figure 9.7 in figures 9.8 through

9.12 to highlight examples where children data may be accessed because no AccessRule is violated

139

4!

"1°¢°6 U01300g Ul paure[dxo pue [°G 9INSI{ Ul PAIOQUINT OS SUOIJRID0SSE 0} PU0dsolI0d SUOIpejoule PaIOqUINN (9 PIIOQUINU UOIFRIOUUR 99S)
A7oA1900ds01 JUOSUOD puUR Jusse I01[dXo 9AIS Jsnu P[Id oY} Jo uorjestuesIo prem /uerprensd/juored pue priyo yoro ‘uorjendod pogosjolrd ULIP[IYD o1} 10]
rIRD OYY) 9SN 0} OS]y (G UOoIyRIOUUR 99S) $INYU0ISIII(T [[® SUISH [102[044 I0] 10321} sseooe porfiquap] posoidde 10J [OPOIN 100(qQ) ¢ 901§ :Z'6 2ISIg

TJ8yosessay

bayjuessssyiuasuoDoalold é
’ bayjuessssyiuasuo)ioaloid z
leroiddyyoseasay|eioadgiosiold
9 9 ——————
N [T <> Y
[oreesag Toreeseg, presafedgioco [
asodingjoaloid £
slequsNgY| P—————————
[t il F]
$80IMogia8loId BTy
salanp}oaloid
10)08]|00BIRE}9910Id (IPUB[JUISUNSON: 1) (IPUB[JUISUNGSON Songuag
e sa|ngiad I SOfRH A seived
paJinbaywiojsueseieqgiosloid sopfiuey senyweg . o
[FETTATEIO T TPGIATErOL | Lvioelold
S9|NKWHed JHINAWes [[JdeJaA00N: TeHDQWes [[JUe[I8A00N Htad
So|nywIdg 14 n [ELEGEE
PaUNa(SIaqUaNI0a101d: [Paula(SIaqUBo8I0]g “rd - .
sa|nywIad L AINLUHET
somguRg — ¥ _g%%%ﬂ e
(9501 JJUaWa3IDySSa00yeIe(]: [JUaSaIglUaWaaIDySSa00VeIe(]
se|nywiad L so|NyuMEd
sanyw.iad
S9|NYWIa
sa|nyuiad | AOMHONJ80IMOSEEd- IIOAONJS0INOSETEd
SeIngwiag paulEqId-Tpauledid e
sa|nyUITag uswijes olI(JIONS50UINJaW0g: [TUSWIED olI(JIONS50UINJawo sa|nygwiad

Aioud 1y

jig!

TJayoseasay

UO0I109G Ul poure[dxo pue ['G oINS Ul POISCUINU OS SUOIIRIDOSSE 01 PUOSOIIOd SUOI)RIOUUR POISQUINN "PIMO]]20NYSIY 1e() POUTULISIop Sey gy o)
OSNRID(§INYUOLSIIA(] MOU SUISNL [709[04 IOJ 1931} $s000R parfipuapy ‘pasoidde oq jouued o1 ‘pasoiddeun) I10J [oPOJN 390[q(O) € 901[S €6 2SI

176

sauanpiosloig

10}08]|00E foid
TooIeesey; [104oIeesey

palinbaywiojsues eieqioaloid

so|n,

19d

v_vcE._on_ sa|ny

- - et sa|nyyad
PaURSS8dIN0S8WOS [Paul8(sadINnoSalos jnguus
s GHIDQWES LIgUeloA00N: [gaI0qUes I 1JdeioAO0N oNHUHAd
—_ Sonuwiad 550700 PaaRa
se|nyuwiad - b :
So|nguwiag
sa|nyuuad
- sa|nywiad it
T Pafoid sy3 sa|nyuiigd
10} paMO||AONYSIY PRUIWIDIBP T B a e TTC
sey gyl 3y} asnedaq mojysig so|ngwiad | S 2
s1 [pnoadd vy 2unasay|ppadsalold pauneqgrd-ipsunealid
asnp2aq yulf 1y13(04d BuIsSIN Seingu.od Sanguliad
so|nYWITEg Usumes 9II(JION3S00INgaWo Usuwles 9JIJJON3S0UINgaWoO so|nyuLad
Aoud 1y

41!

"1°¢°6 UO01900G Ul poure[dxo pur ['G oINS[{ Ul PoIoqUINU

0S SUOIJRID0SSE 01 PUOASIIIOd SUOIYRIOUUR PAISUINYN [19904 I0J 40799]]0(IDID([192L0.4J 9UY} PUR JQUIPTT YT TR ST []oUUO0SLIJ }SOIOJUL JO IDIJUOD ®
JO 9SNRID(§INYUOLSII(] MU SUISN [10204 I0J 10)d1) $s900r patfiguapy ‘pasoidde aq jouurd o1 ‘parorddeun 10j [PPOIN 299[q(O) ¢ 901§ :F'¢ IS

salanpIoaloid

P

palinbayguwiiojsuesereqioaloid

T paloid 10} 10123]]0)DIQ BY3 S| [J2UUOSIad
13quiaNgy| asnedaq elep ualpjiyd Jo asn
3y} smoj||ysiq [pnosddyy2ipasaypadsiralold
uaymjul| L y3foid SuissIN

1 Yoiessay|e0adsidploid

sa|n

[FONVSITTIRONGSIA | o

|eaosddyyoseasay|eroadgioalold

>

e siaquIeNgH|
EEREEN (DR
€
JOUJIesSay gIoydiessay
siaqua108idid JiSlpseasey siaquagH|
[oUUOSIad [[uuosIiad
[FPUUTEIRd HBUUOSTBd [oyiooereqioeloig
JoU0Iessay gIsydIeassy oy ¥
- Bury
H2810.d
—————— oydJjeasay
JoyoIeasayr1sal
siaquiapy109loid [HEL]
JPUE JUISONSON T PUE JUTSANSON ST

[PeUPaATETOI5SNUEs TPEUTSGATEOIoSNES |

19d

sa|nyuyed

sa|ny

Sa|nyuHed
——— senhuwied —— ¥ Diwnww——
sa|nywiag AInLuHeg
So|ngwiad 14
sa|nguuad L
sajnguuad
S9|NHWIg4
sa|nywiad 1 FONHOAJSIINO Q- OAII0ga0IN0SereQ
sa|nywiad SSGuIey
sa|nyWIag uaue (JTON3950dINgdawo BETID C(JTON2500INgawo se|nguuad

Roud1y

134!

"1°%°6 UOI108g ul peure[dxe pue

1'6 9IN31, Ul PoIoqUINU OS SUOIPRIN0SSe 01 puodseliod suoljejoute patoquuny ‘suolpendod pojoojoid ss000e 0) Pasn ¢ JOUURD IO} SSIOR PA(TT(T
® 9SNRII($INYUO0LSIII(] MAN SUISNL [202[04J 10J 13DL], $S900Y pa(7[o(] ‘Posordde aq jouurd ‘o1 ‘posorddeupn 10j (9poyy 199(q() ¢ 901G :G'6 2INSIg

TJayoseasay

sauanpioaloid

10}03||0]E: foid
JayoIessay [Jayoiessay

paJinbaywiejsues] eyeqioaloid

19)PLL SSIY pagiaa
1oy s1 uonedyddy asnesaq mojjv'sia
S| |pAodd vy 2103 say|p1ads13[01d
asnedaqjul| L yPafod Suissin

sa|nyyed

sa|nyuuad

se|nyuwiad

sangwiag

se|ngwiad

Aoudly

(our] pa1 paysep o) Aq paul[Ino) § 901G ur Sutdde[Ioa() ¢ 90I[G WOIJ SJUSWA[H [9POIA SSBL)) :

[oupuelgusdnson | [peuseaid |

gHI0qwea L |ddejisrQoN

JussaidIalyient)

dpuYLEa | pausdr

MOAioLgeainogeleq

47!

96 om31g

seale papeys sapn|oxa ‘aul|
paysep pa4 Aq pasojaua ¢ pue ¢ sadl|s 40} sjuswal3 Suiddepang

Juawjeal | 10811gIoN8sodingawog _

paulya(salaNYaWOg

_ Juasaldluawaaibyssacoyeieq TM

8|nyuoIsioaq

PauIasa0IN0gawWos _

Teyoreasey |+ _

punJayLng _

Tm_m_ms_c__z _.

m 9|qesi|elauaniijauegioaliq m

7\

/"

—_— — — —

18yoIeasay

(QamolviossIH 1] ¥SIHUoIasaHUIRIU K—{wevegweig

|

_
,
,
|

f)/ . Vol |ouuosIag
[10waii00ereaspeaNgarEaID | " 10
_ uo>o_&<coa3°m_m_oo%_ / siosiiiadng
paq|agAiieloLasnue) diosloig < -
usipiiyd
Sossug v =\
uosie
. * | Jo%011 55800y pedieg !
()ainyAdde w . 0 . . _ - /
" 108[gngjelo8dg
ony |7H sejngwiad / /o .
\ b@W.E\ . * JojoaljoQeIeqioafoig [eroiddyyoseasayjelvadgioalolrd |+ /
Lywafoig X —_ D
U saLenp108log .
) (oIEasayenadgoaloly
\ . — 2/0HU0SIa
\ 4) —_— bayjuessssyjuasuogialold L2 d
Qe _/ __ 18/01d . 250dind108[01d /
()peojumop / } .. /
_ (108lo1d : oid “soyoseasay : sai)Aisnpuni JudlupsibysseogyelEq /
— ——
Kienp / 170 ; N .
~ 4 / [awsiopiem |1 slouaisuodsey |
\ — U / asoding PN
o s AR\
pagiagmolly
\ v B0IN0GEIEQ |, S90IN0GI08[01d ’ “ . .\ [ponbogon weipienp | \
. A _|VA wiojsues] eleq m Loy | [uarieoenia _/ E
paqieqaAleioL

[

/_

~ —

"0

paJinbayw.ojsuel | eje108(oid \

——— T — — e —— — ——— —

—

~—

/

—_—

14!

ouI[PaI Paysep oY} £ pouIINo sjuswoe Mou :uorendog pojoajold se uaIpry) Surproddng f 901S 10§ [OPOIN Sse[) parepd() :)°6 @InSig

uone|ndod paiaio.id se uaipiy) ¥oddns 0} SUOIIBIDOSSY pue Sasse|) MIN

S — —

pagiagmoly

610PIEMIOUD.BaSHUIMIOSSYIONSIEO0APYPIIND /

Lo palinbayuwiojsues | ejeqioalold

PagiagAieloL |

[seisiopremio wPIO |

pagifjieioL

(ainghidde |-y

/“V_ ang _ p sengwRg
J

JuasuoDIUaNEY

adALay

/ . 1®2I10 eBlEQiey

_ 81egHWI0jSUBI|
N -
_ -

— uesjoog : (JpayNUBPjlONSt| — — — —
uesjoog : ()paynusp|s!

10 S 1vwelog | _|
19391155800y _ . ™
- \ bayjuassssyiuasuoDiosiosd
panuap| /
sauanpioslolg Eedivg ho sloid
_ N
(Jmain ~
()peojumop upsyiomAID
| (waloig : foid “sayosessay : sas)lianpuns [JowsliogeIeqiosiold
fianp \ v
. ‘ — g o | sloguosied |
siaquangd|
/ € a
B suneyAID eRgAID
~ .1 seleloossypiEM

uosiag
L0

\ﬁ

eleqiuaied

1363y : Jeak

\ 31B20APYPIIYO

wened

13
senjeAeeQ

18b3ju] : yuow vE wajeieq

Bumns : sweu | * \

L0

1abaju : Aep
|1eg .ﬁd|_=0um YETE] sa1n0g1a /

g 1UsSSYUONRdONIEGPIUD

wiaduonedioniedpiiy:

"o

V0 @

582105103019 +| s2inoseieq

juasuod
/\ P ! —:l W = be
Q! _A | 6iopem |
[mollv |

_ — — —

€T

and where children data may not be accessed because at least one AccessRule is violated. We list the

examples here:

(a)

No violation of access rules: we show in Figure 9.8 where Query_0 successfully accesses the data
for Patient?2 because none of the access rules have been violated. Since we have not yet discussed
the AccessRules, our intention is presenting this first is for comparison with the violations of

access rules explained in items 4b through 4e and depicted in figures 9.9 to 9.12 below.

Violation scenario 1: the ChildAssentAndResponsibilityConsent rule only allows access to a child’s
data if the assent/consent as required in the ProjectConsentAssentReq association is present in
the associations numbered 7 and 8 (see items 7 and 8 below for a description of these associations).
For example, Figure 9.9 shows that Query_0 should never have access to Patient2’s data because

this patient is a child and has not given assent.

Violation scenario 2: the ChildAdvocateFor WardOfState rule requires that a child who is the ward
of any institution have an advocate. For example, Figure 9.10 shows that Query_0 should never
have access to Patient2’s data because though they are a ward of WardOrgl there is no person

assigned as an advocate for them.

Violation scenario 3: the ChildAdvocateNotAssoc WithResearchOrWardOrg rule expresses that
there should not be a conflict of interest between the person acting as the advocate for a child and
those associated with the WardOrg to which the child belongs or with those conducting the re-
search. For example, Figure 9.11 shows that Query_0 should never have access to Patient2’s data,
a ward of WardOrgl, because while they have an advocate (so rule ChildAdvocateFor WardOfState
is not violated), this advocate, Personnell, is an associate of WardOrgl. Note that there is no
conflict of interest with an advocate also serving as an IRBMember as shown for Personnell (see
annotations numbered 11 and 3).

Violation scenario 4: the HideSpecialPopn rule ensures that for the DelDed access ticket, all
protected population should be inaccessible. For example, Figure 9.12 shows that Query-0 should
never have access to Patient2’s data because the access ticket for Project_1, under which Query_0

executes, is DelDed.

146

10.

11.

We have already given an explanation for the ProjectAT association in Section 9.2.1, Item 5. It is

required in slice 4 to know the access ticket for a project.

We have already given an explanation for the ProjectConsentAssentReq association in Section 9.2.1
Item, 6. It is required in slice 4 to check the ChildAssentAndResponsibilityConsent AccessRule. An

example of violating this rule has already been discussed in Item 4b above.

The ChildParticipationPerm indicates whether the child’s parent/guardian/ward organisation has
given consent for the child’s data to be used in research. This consent is given if the Consent value is
Allow and explicitly refused if the value is DisAllow. The CannotGive consent value is not applicable

to this association.

The ChildParticipationAssent indicates whether the child has given assent to be used in research.
This assent is given if the Consent value is Allow, explicitly refused if the value is DisAllow, and in
cases where the child cannot explicitly agree to or refuse to participate in the research, the value is
CannotGive (see Item 13 below for an expansion of this Consent value). In the case of the latter,
the child’s data can also be used in the research if the parent/guardian/ward organisation gives Allow

consent.

We include special HIPAA categories for special populations that are used (e.g., HDate) to indicate
that special rules apply to data associated with such categories. Here we include HIPAAChild to
support identifying data that belongs to children. This class is a specialisation of SpecialPopn so that

the model can be extended to support other protected populations.

Each patient that is included in a special population is indicated using the SpecialPatient association.
For example, figures 9.8 through 9.9 show that Patient2 is a child (see annotation numbered 10 in the

figures).

The ChildAdvocate association is used to link a child to an advocate. This association is important
in the checking of the ChildAdvocateFor WardOfState and the ChildAdvocateNotAssoc WithResearchOr-

WardOrg access rules as discussed in items 4c and 4d above respectively.

147

12. The WardAssociates association is used to link persons to a ward organisation. This is association
is important in the checking of the ChildAdvocateNotAssocWithResearchOrWardOrg access rule as

discussed Item 4d above.

13. We have included another subclass of Consent because the HIPAA regulations stipulate that while
the child’s assent should be sought, there may be cases when it cannot be given because the child is
incapable of doing so. Therefore, the CannotGive subclass records this and is interpreted as allowing

access to the child’s data.

9.2.2.1 Potential Conflict of Interests Not Considered under HIPAA

While the NoOwerlapPITeamDCIRB DecisionRule and the ChildAdvocateNotAssoc WithResearchOrWar-
dOrg AccessRule cover specific conflicts of interest among personnel involved in a project and persons as-
sociated with patients in special populations, an examination of the models seen so far shows the potential
for additional situations not explicitly covered under the HIPAA regulations. For example, Figure 9.13
shows that TRBMember, Personnel2, is the parent for Patient2 (see annotations numbered 3 and 7). In this
situation, a potential conflict of interest arises because of the objectivity required by IRBMembers when
approving access tickets for a project. As an extension of this idea, consider the situation where Personnel2
is the PI, DataCollector, or ProjectMember for Project_1. Should Query_0 be allowed to access the data for
Patient2? While our method does not make a decision to restrict access in these scenarios, the exercise of
modelling shows that we can potentially explore these relationships and uncover links not pre-determined to

be problematic. This ability can help organisations avoid conflicts of interest.

9.3 Summary

We have shown how our model supports children as a protected population by extending the overall model
and re-slicing to get new sliced models for slice 3 and slice 4. Additionally, we have discussed situations
under which an access ticket should not be issued and when data should not be accessible even if an access

ticket has been issued under the new rules for these populations. We also showed some areas where HIPAA is

148

6¥1

‘27’6 uoI30eg ur paure[dxe pue)'g oINSI Ul poIoquInu Os

SUOTIRID0SSE 01 PUOdsaIIod suorjejoutre paroquiny (MofA ur payySi STy vare o) ul sdISUOIJR[oI WO ST SNI0J) $$920% SYIQIYOId 2N ssa00) OU 9SNRII(
PIYDV VJITH & S POYIYUSPI giuatynJ 103 Byep oY) ‘guin(Tfii() SUINIDI PUE S9Ss9008 A[}091100 () fiuand) yey) SUIMoys 991§ 10, [PPOIN 129(q(:8°'6 2InSI1q

& —— € —
m siequepngy| LoartEdl | BECENT]

SWIojSUBI | HY

o1selddyyy
se|nyuuad
ojsenddyyy b
BIOPIE IO UDIEaSoH U NO0SSYIONSTE30APY IS T BIOPTEMIOT HUTVO0SSVIONGTE00ADY I s] bagiuessssyjussuogioelold
o] selddyyy mm_sz._w(slequeyioaloXy
T6SU0 5 ATIaISU0GSauPUyIUGSSyPITUD. [JUSSU0 qISU00SEPUIUGSSYPIT
o] selddyyy sahyuad v | HIESHIEeEoN
SIETSIOPIEMIOJOTE00APYPITUD: T BTEISIOPIEMIOIBTEI0ADVPIUO v lowailogRIegioslold
oL sajadyyy s8|Ngwued
ToUOIeasay eIeyoIeasay
v [PIPTESSOY ERWESH |-
Y
EMPIATPUT- FTENPIAIPUL oy senddyyy | . <1 <
1sel|ddyyyY seingulisd Lvieloig bey)uessssyiuesuoiosloig
uosHoOMAID \ -

KIenD:0 Adenp | Seuenplosloid

siequappdaloid

wiaduonedioiedp|iyd

8

Juessyuonedioniedp

adA1ay

yL6L=10k
8=yiuow
I L=Aep
B1eq: oreq

BlEQIUSlEd eleqQIUlEd

R E— S10z=1e0k

Tusnedriusned 9=yjuow

UQSHIOMAID

,abe,=aweu J
eTe %o LoedH 15T

pellel

senjeAeleq

uQpesaug

1=Aep
Bleq:coreq
uQpaseug

>

aoinog|q

,0be,=aweu

ot L00z=1e0k
9=yiuow

senjepBieq 1=Aep senjeARieq
areqg-zeredg

eoinog|q | seaur foid

suinjeyAip

0ST

"¢’¢’6 UOI309g ul paure[dxo pue)G 9IN3I] Ul PAIOqUINU OS SUOI}RIIOSSE
0} puodsalliod SUOIyRjOUUR PaISQUINN ‘MOJ]YSYJ SMOUS (8 [HIM PIjelouUR UOIIRIDOSSR 99S) FIUaDJ 0} NUI[UOIJRIDOSSe JUISS [U0YDdId1IDJPIY,)
o) 104 - TpIeasol oY) ul ojedmwiyred o) juesse Moy OAIS FIuaupg ey} oIMbal (9 UM PIjejouurR OUI[99S) baypuassyiuasuo)oalosg o) pue
2INYI$$200Y JUASU0,) f19171q15U0dSIY PUT IUISSPJIY,) O dsnedaq ST SIYT, (MO[[oA ul pojy3Iysny eore oY) ul sdIysUOIje[ol UO ST SNOOJ) ZIUdYDJ 03
SuIsuo[Pq FwaPIn(J 03 SSedoR PolUuep oq Isnwt (fiuond) eyl SuImoys § 901§ 10 [PPOJA 190[q(([erdIed) :] OLIRUSDG [RTUS(] SS90y :6'G oINS

[[PUUOSTS: HRUUos 3|

sisquisNgy|
yoseasay|eoadgioaloid

sauanpoaloid

Lwwelold 8 T

QIATETOL TP3aT H_ paJinbaywiojsuel | ejeqioslold

ejeqiuaied ————
y261=1e0k bayjuassssyjuaguodioaloid
L wisaguonedidniedpiiyd g=yjuow ,0be,=oweu
areq-rereq
uQpaiaug
§102=1e9h
9=yjuow
L=Aep
leqiusiied areq-eeteq
LD uQpaisug
9=yruow ,0be,=oweu
|=Aep seneAeleq (Wal[eteq gwalereq
T e 80In0g|Q
201n0S|Q $90In0S108l01d

16T

"%’'7’6 uoI309g ur paure[dxa pue ‘g 9INSI{ Ul PAIdqUINU OS SUOIJRId0SSE 0
puodsaiiod sUOT)RIOUTR PaIdqUUINY ‘SUISSIW ST SUI ST} 194 ‘9000apy Py, oY) YSNOIY) 9)8I0APE Ue [IIM PIRI0OsSse o] ‘Thi)piv JO plem © ‘Zruayng
1o} SoImbol 9JnYyssa00Y 2IDIGLOPLD M LOJIDI00PT/PIY) Y dSNeIA(ST ST, “(MO[[oA Ul PoyYSIYSIY eoIe 1) Ul sAISUOIIR[OI UO ST SNI0J) FrUIUDJ
0} SuIduOoPq FWaPID(] 0} SS900R PATUSpP o Jsnul ()~ fiuand® Jel} SULMOYS J 901[G 10] [OPOIN 290[qQ ([R1MIR]) :g OLIRUADG [RTUS(] SS900Y :(OT'6G oINS

S8JRI00SSYPIBM

o]

siaquaNgH|

yoseasay|eioadsioaloid

|

|d1oalorg

siaquoayl € E
Lvoeloid §
_ QIATEToL a H_ paJinbayuwuojsues | ejeqiosloid

ejeqiuaiied

S9)eI00SSYPIBM
y.61=1eak
g=yjuow ,ebe,=aweu bayjuassssyiuasuonioalold
wia duonedioniedp|iy) E sanjeABleq wajereq: fwaiereq
L B1eq: rereq
| juessyugnedioniedpliyo uopaisug
§L0g=1eah
jusnedienads 0T 9=yjuow
L=Aep
ZIua130d WOl e
—_ — uonpeposse . — — — — eleqiuaied srea-esed
230200pYPIYD L002=1e0A uQpaisjuz
oN g=yjuow ,0be,=sweu
}=Aep [‘seniepereq BRI AL
ereqg-gered 20In0S|a

201n0S|a $901n0g108/01d

44!

"%°C’6 UO01)00G Ul poure[dxe pur)G oINS Ul PoIoquINu
0S STUOTJRID0SSE 0) PUOdSaIIOd SuoIjejouTR PorqUINN (/L YILM PIJRIOUTR WD JUOYDAIDNIDIP)Y,) PUR []oUUO0SLIJ TWOI g IM PIJRIOUTR SUI 99S)
F1ua1ng 10J Ay[iqisuodsal set] Jel[) WOTINITISUT) [IIM PIJeId0sse aq 07 ‘(T [IM PIJRIOUUR SUI[99S) [JoUUO0SLIJ 2IDI0APY S, FIUdYDJ MO[[R J0U S90P
2INI$$2I0Y Bu)PAD M LOYILDISIY YN AN 20SS 72O NT9DI0APT P DY 9sNeIDQ ST SIYT, *(MO[[oA Ul PaySIySHy eore o) ul sdISUOIIR[I UO ST SND0J) ZIUd1DJ
0} SUIsuOPq FWarPID(J 0} SS90OR PATUSpP oq Isnul ()~ fiuand®) Jel} SULMOYS F 991[G 10] [OPOIN 290[qQ ([R1MIR) i€ OLIRUADG [RTUS(] SSO00Y :IT'6G oINS

11 9Je20APYPIIYD

$9]eI00SSYPIBM z

[eUUOSIag: [[oUU0SIag
SiaquisNgy|

yoJeasay|efoadgioaloid

sauanpoaloid

TeUUOSIad g[euuosiad
[PUUOSTRdreRUIOSTd | oo e

€

9]BI00SSYPIBM 1vioeloig
i I pasinbeywiojsuel] ejeqiosioid

a eleqiuaned 9

bayjuassssyjudsuoioaloid

TUOSI5g: [U0SIog
= bayjuassssyjuasuo)ioalold
v.61=1e0k
2 Wieduonedionied @ 1oosvuRdRRdRio g=yjuow \ebe,=aweu
LL=A®P ["Senjepeieq [Wonereq TWoERD
sreq-rared
uQpaiaug
jusnedeoads g S10z=199k
ejeqgiuaiied 9=yjuow
1=Aep
seq-eerea
100g=180A uQpalajug
g=yjuow ,0be =aweu
1% [aneeieg TGz
sreqggared 22in0s|a

8dinosia se0inogjosloid

€41

‘3’7’6 uo130ag ur paure[dxa pue)G
2IMSI Ul PaloquINU OS SUOIIRIDOSSe 01 puodsaliod suorjejouue patequmy ‘suorerndod pejoejord sseoor 03 (G)M POJRIOUUR UL 93S) J93II) SSAI0®
PA(II2(] ® MO[[R J0U SOOP 2N S50 UOUDINAOJ)D12dGoOPLE 1) 9STRII(ST ST, *(MO[[oA UT PoIYSIYSIY eoIe o1} Ul sdIYSUOIJR[OI UO SI SND0J) FLUUDJ
0} SUIduOPq FWaPID(] 0} SS9OR PATUSpP o IsNU () fiuand® Jel) SUIMOYS J 901[G 10] [OPOIN 290[q(([R1IIR]) :f OLIRUEDG [RTUS(] SSO00Y :gI'6 oINS

(g Towoena]

siequeNgH|

saianploslold

[FPaParERTTReGEaREL] R o asieaioolosd
eleqiuaned

¥©ol1a

vL61=1e0k [
wiaduonedoiedpliyd g=yjuow \obe,=oweu 1010
m: STed HieTEd H=ABP [~ o neneieq ToNeeq: [WaNereq
aeq: 1eredq
uQpaiaug
GlLog=J1eah
9=yjuow
PIYOVVJIH TPIYOVVdIH L=Aep
. - . _ |
wised[eloads eleqiuaied seqgreseq
L002=1e8A uppaIsug
g=yjuow ,0be,=aweu
1=A®P ['senjepeieq WBIeTeq gWoNeed
areqggsred _ 20in0g|a
aoinog|q | sa0inogo8loid

24!

"Z°C°6 uoIp0ag ul paure[dxe pue g oIS Ul PAISCUINU OS SUOIRIDOSSE 0} puodsaliod

SUOI)RIOUUR PAIOQUINN “MO[[PA Ul PoySIYSIY ©oIe o) Ul sdIySUuoIje[ol UO ST SN0 (g YIM POYRIOUUR SUI[99S) LIQUIDTFY] e ST (), [IM pajejoute
UOIRIDOSS® 99S) Zoulos.tod ‘gruanng jo juored oy Jer) SUIMOYS § 901§ 10J [OPOJN 190[q() ([e1pIed) :1s0I0ju] JO IOTJUO)) [eJualod :ET'¢ oINS

[euuosIad g[auuosiad

SlequisNgH|

[1PUUOSI3d {BUUOSI3 |

yoseasay|eloadgioalold

sioquangdl |

Lviweloid S

- | paJinbayuwiojsuel | ejegiosloid
ejeqiusiied

L2
vL61=1e0k
wiaguonedionedpiu CFLIEE ;S5 zeuisy beruabegsviuesuogielold
=Aep [“oonepeieg |DOTEEGTT@ETEEG .
sreq-roreq
uQpaiajug
GLog=1eak
ejeqiuened G=CECEL
1=Aep
|reqg-esed
L00g=1B8A uQpaessug
9=yjuow ,0be,=aweu
L=Aep seneABeq ‘walereq-ecwalereq
- | _ 224nog|a
adinog|a s80.nogjoaloid

silent and yet our method revealed potential conflicts of interests, as we saw when a parent is an IRBMember.
These may present areas for HIPAA to examine and improve the regulations.

We note that other conflicts of interest such as for the NoOverlapPITeamDCIRB DecisionRule may be
refined. For example, it is usually the case when a conflict of interest arises, the IRBMember may abstain
from contributing to a decision. In this case the system may record which IRBMembers contributed to the
decision for the access ticket and use the NoOwverlapPITeamDCIRB DecisionRule to ensure that there is no
conflict with those contributing to a decision.

We modelled the rules only for children as a protected population, yet, as we have discussed in the
sections 9.2.1 and 9.2.2 the model has been carefully presented to allow for extending it to other protected
populations.

In the first instance in Section 9.2.1, we identified that, in general, model elements to support the granting

of access ticket for any protected population are required for:

1. a project to indicate which special populations they require access to;

2. which decision rules applied to which special populations;

3. the IRB’s decision;

4. whether an approval for the project’s request for access to the special populations is required to approve

the access ticket; and

5. when the IRB approves the project’s request to use a specific protected population, whether the project
needs to have the consent of each person in to the protected population for their data to be included

in their research.

In the second instance in Section 9.2.2, we identified that, in general, model elements to support access

to any protected population are required for:

1. identifying those in protected populations;

2. capturing the individual consent of those in protected populations; and

3. access rules that apply to any or specific protected populations.

155

Special relationships may exist for specific protected populations, e.g., children that are wards, that are not
generalisable. Therefore, for each special population there may be specific model elements needed to support
access to that population and these may be added to the model when such are encountered.

We noted in Chapter 8 that increasing the number of rules is another way to validate HMCA. For
example, the increase of model elements for children protected population, specifically the associations
among the Person class, may require a larger scope when analysing the current model slices (see Section 3.1
for our discussion on scope in the Alloy Analyzer) to avoid the conflicts of interest. Since analysis time may
degrade for larger scopes, applying HMCA to the NJH System may use another level of slicing, i.e., slice per
decision rule in order to avoid intractability. Specifying slicing criteria in different ways is already a feature

of HMCA and a natural extension for dealing with intractability issues.

156

10. HOW TO APPLY HMCA

10.1 Introduction

HMCA is a method to analyse systems for conformance to laws and regulations, i.e., rule conformance
analysis (RCA), where the details required to perform such analysis may make using current model checking
tools intractable. In this dissertation we showed that analysing for conformance is possible without using
large abstractions of data that would hide the details in system data models on which conformance is tested.

Applying HMCA in any domain requires that we first construct models of the system that may start out
as informal models that guide the user to create more precise models of the process and data models that
represent a more mature understanding of the domain. Using these models together with the requirements
of the governing laws and regulations, we construct conformance rules that are used to both test and
extract evidence of conformance adherence or conformance violation. After the construction, HMCA checks
conformance to the rules using slicing of the models to ensure tractable analysis.

The slicing is driven by observing that:

1. separating the data for each process on a path in the process model gives better results in space and

time than handling elements in memory for all the processes along a path; and

2. chaining the results from each process can be used to analyse rules that apply to the path.

Finally, when a path or data is shown to not satisfy a rule, we may highlight the entire path or isolate the
process or data elements that caused the non-conformance.

This approach identifies the three phases of HMCA: 1) construct precise models for process, data, and
conformance rules, 2) analyse conformance rules by slicing to decompose the analysis steps, re-composing
the results in a form required by a model checker, and checking the result for conformance to the rules, and
3) providing feedback where rules cannot be satisfied.

Except for slicing that has been automated, our application of HMCA to the NJH system has been a
manual process. The purpose of this chapter is to describe how a user may go about applying HMCA. We

start by looking at HMCA in general by outlining its prerequisites in Section 10.2. Next, we outline for each

157

phase 1) the prerequisites, 2) the steps to follow, 3) a discussion highlighting where the effort may be purely
manual or can be automated, and 4) any requirements for tool support or applicable tools. We outline these
in sections 10.3 through 10.5.

We note that this chapter is not meant to explain our theoretical proposal for HMCA. Such treatment

may be found in Chapter 6 and should be used either as a prerequisite or co-requisite to this chapter.

10.2 Overall Prerequisites for Applying HMCA

The prerequisite for the general application of HMCA is a good understanding of model checking tech-

niques especially as explained in the first four chapters of Baier and Katoen[14]. The focus should be on:

1. understanding why model checking may give intractable results - this will help the user to determine

whether HMCA is a solution for RCA in their application domain; and

2. how to use and interpret:

(a) a program graph (PG) as a model of the operations and data under analysis;
(b) non-deterministic finite automata (NFA) as representations of rules to be analysed; and

(¢) a transition-system (TS) as evidence of actual operations and data states in the PG.

Each phase will have additional pre-requisites, and we outline them in the applicable subsections.

10.3 Construction Phase

The models in the construction phase may be categorised into 3 categories: process models, data model,
and rule representation. The process models are activity models and entity views. The data model is the

class model. The rule representation uses non-deterministic finite automata (NFA).

10.3.1 PREREQUISITES

The prerequisites for the construction phase of HMCA include a good understanding of:

1. UML models, specifically activity, class, and state machine models.

158

2. how to use OCL specifications to augment a class model with additional constraints, operation speci-

fications, and queries;

3. how the semantics of a state machine may allow it to be linked to an activity model, i.e., how each

operation in the former may be linked to a segment of the latter;

4. how the semantics of a state machine may allow it to be linked to a class model, i.e., how each abstract

state in the former may be mapped to a concrete state that is a segment of the latter; and

5. NFAs, specifically how to identify and use accepting states as evidence of non-conformance.

10.3.2 STEPS

10.8.2.1 Step 1: Construct UML Activity Model

A UML activity model is the beginning process model used in HMCA. From it we gain understanding of
the activities that are important in the domain and how each activity impacts other activities. Of note in
creating the activity model is that we must ensure that all possible values for decision nodes are modelled.
This allows us to gain full understanding of all the possible paths in the system, we call this a completeness
requirement.

We also note that an activity model may be large and complex, so we may construct it at a high level of
abstraction and allow for activities to have nested activity models of the details of its internal flows. This
analysis may continue for many levels of nesting. Whether or not this nesting is used, all the activity models

and their associated elements have visibility within HMCA and can be linked to other models.

10.3.2.2 Step 2: Construct UML Class Model

A UML class model is the data model used in HMCA. In it we provide abstractions for the data that is
required to understand the domain. In addition to classes, associations among classes, and the multiplicity
constraints on the associations, we use OCL to add additional constraints not specifiable using the associa-
tions alone. The level of detail required in the class model is that of a design-level class model that includes
operations with their pre-and post conditions specified using OCL. Constructing the class model may be

iterative, i.e., we may return to update the class model after or during any of the steps in the construction

159

phase, as we consider the details needed to support the activities and decisions in the activity and other

models.

10.3.2.8 Step 3: Construct Individual Entity Views

We use UML state machine models to construct the entity views. Recall that an entity view represents
how an entity interacts with the system and does so using a subset of the activities in the activity model.

We therefore construct the state machine for an entity by identifying its:

1. abstract states and operations;

2. start and final states; and

3. adding edges among the states that are labelled with guards and operations that support advancing

to the next state.

The completeness requirement mentioned for activity models in Section 10.3.2.1 also applies to state ma-
chines. Completeness ensures that an entity can move to the final state in a state machine without being
permanently held up in an intermediate state. Alternatively, fulfilling the completeness requirement may
mean we denote states as a final state where the values for variables in the guards exiting the state do not
contain all the possible values that may be encountered. At this stage we have an unlinked individual entity
view.

Since the operations and states we mention here are abstractions for segments in the activity and class
models, constructing the entity views also involves providing traceability between the entity views and these

models such that:

1. each operation, op;, is linked to:

(a) an activity model segment, am,,, which represents the concrete part of the system that implements
it; and

(b) a class model segment, cm,,, which contains the elements included in its pre- and post conditions.

2. states are linked to:

160

(a) a class model segment, cmg; and

(b) activity model segments ams where it is used or decided;

3. variables used in the guards are linked to a concrete representation, cm,,, which is a segment of the

class model; in addition, we specify how to extract the value of the variables from the c¢m,,.

The same name for an operation, state, or variable and its associated values used in more than one entity
view represents the same element, therefore, once we link an item in one entity view, it is also linked to the
other entity views in which it is mentioned. We call the entity view that now has traceability to the activity

and data models a linked individual entity view.

10.3.2.4 Step 4: Construct NFA Rules

Each conformance rule is represented as a NFA. The NFA uses the operations and states from the
individual entity views created in Section 10.3.2.3 to specify conditions for advancing through the states.

The careful construction of the rule means that we must:
1. identify accepting states; and

2. ensure that the condition, constructed using operations and states from the individual entity views
leading to the accepting state, cannot also lead to non-accepting states.
10.3.2.5 Step 5: Generate RSEV and MRSEV

The final step in the construction phase is to create rule-specific entity views. We will create both a
simple (more abstract) rule specific entity view (RSEV) and mapped (more concrete) rule-specific entity

view, (MRSEV) for each rule.. They are generated by:

1. identifying the individual entity views created Section 10.3.2.3 that are required to check each rule;

and

2. composing these entity views into a single rule-specific entity view.

From Chapter 6, recall that this composing relies on the individual entity views having common edges, i.e.,

when edges are labelled with the same operation, we may separately combine all the guards and next states

161

using the logical or operator to create a single guard and a single state. The RSEV is created from the
unlinked individual entity views, and the MRSEV is created from the linked individual entity views.

This makes the RSEV a more abstract representation that may be useful for sharing information with
non-technical users. In model checking terms, the MSREV is the program graph we will use in analysis. We
create traceability between the rules and their associated individual entity views, RSEV, and MRSEV by
creating links among them. We note that a rule-specific entity view may be linked to more than one rule.
Of course, the linking of the individual entity views to the activity and class model segments also achieves

the linking of the the rule-specific entity views to these models as well.

10.3.3 AUTOMATION AND T'OOL SUPPORT

The construction phase is mostly manual, yet we require a workbench where all the models can be
supported in the same tool. While tools exists to create one or more of the UML models used in HMCA (by
the same tool), no such tool exists that support our procedure to augment the activity and state machine
models to maintain traceability among the models. We have therefore identified the requirements for tool

support in the construction phase of HMCA below:

1. graphing functionality: since the models used are essentially graphs, we need functionality such as

those provided by the Eclipse Modelling Framework to create and maintain these graphs;

2. OCL language support: we may use the functionality provided by the USE tool or an alternate way to

include OCL specifications in the class model;

3. extracting linked model segments: while linking the models as described in the steps of the construction
phase in Section 10.3.2 is a manual process, the extraction of the applicable model segment may be

automated.

162

10.4 Analysis Phase
10.4.1 PREREQUISITES

The prerequisites for the analysis phase of HMCA include a good understanding of:

1. slicing as a technique to decompose specifications into smaller pieces in a bid to speed-up analysis; in

the context of HMCA the benefit of slicing is to eliminate intractable analysis in model checking;

2. the similarities in the semantics of UML class models and Alloy models that allow the former to be

represented as the latter;
3. the Alloy language and the Alloy Analyzer for writing and executing queries on specifications; and

4. model checking: specifically program graphs, using NFAs, know how program graphs are unfolded into
a transition system, and how to check the satisfaction of an NFA on a transition system.
10.4.2 STEPS
10.4.2.1 Step 1: Model Slicing

The first step in the analysis phase is to perform slicing. Recall from Section 6.3 that slicing is used
to obtain tractable analysis in HMCA. A slice is created based on operations. Slicing is performed on the
class model. Therefore, the slicing criteria involves copying all the elements from the class model that an
operation needs into a new class model slice. For HMCA the elements, ¢m;, needed for each op; are those

in:

1. cmyp, for its pre- and post conditions as discussed in Section 10.3.2.3;

2. all the ¢m,,’s, for all the variables included in an operation’s guards on all the edges where the operation

is used as discussed in Section 10.3.2.3; and
3. all the ¢my’s, for all next states that can be entered as discussed in Section 10.3.2.3.

Each ¢m; is a class model segment that is transformed into an equivalent Alloy model, aa;. This equivalence

excludes the additional constraints imposed by all the OCL constraints and/or some multiplicity constraints

163

such as those with specific numerical bounds beyond using 0..1, 1, %, or 1..x. These additional constraints
must be added manually to the Alloy model, and this is done in the next step. We also create links among

each operation, cm;, and aa;.

10.4.2.2 Step 2: Alloy Specification and Analysis

We add to the aa;:

1. constraints to generate well-formed instances;

2. operation pre- and postconditions (for the operation that the slice represents); and

3. queries that extract the final states of an operation when the operation specification executes.

While we may not need to say much about the first two items, it is important to elaborate more on Item 3.
In order to determine the possible and actual final states of an operation we must add Alloy predicates and
assertions to the Alloy model. We are trying to determine which next states of an operation are possible,
and we must do this for both those that would cause any applicable conformance rule to enter accepting and
non-accepting states. Applicable rules are those rule NFAs that use this operation.

Predicates may be used to query for non-accepting states, i.e., an instance returned shows that the state
can be reached. We must do this for all the ways an accepting state is possible. For example if the clause

aV (bAc)
is the condition for a non-accepting state, then we must ensure that we can generate an instance for each
way that the clause can return true.

While we may also use predicates to query for accepting states, it is best to use an assertion. Assertions
are used to tell us whether certain conditions are ever possible, i.e., Alloy produces a counterexample if the
conditions are possible, and no counterexample if they are not. In terms of the above clause, Alloy returns
a counterexample if it is possible to for the clause to return false.

Alloy generated instances from predicates, and counterexamples from assertions, serve as the evidence of
states occurring. Therefore we must link a state to a predicate or assertion with the understanding that an

instance from the predicate indicates that it is possible, and no counterexample from the assertion indicates

164

it is not possible. In this way we are able to extract from the Alloy specification the final states for an

operation.

10.4.2.3 Step 3: Generating the TS

Since we now know the final states for an operation, we may use these final states to unfold the MSREV
into a transition system. This unfolding is a model checking algorithm that gives the concrete execution
of the MSREV (the program graph). It therefore contains only the reachable states for the possibilities
presented in the MSREV. We link the transition system created to its MSREV. We note the final states for
an operation may apply to more than one MSREVs, and it is possible in HMCA to have partial unfolding
of these until each operation is analysed. In this way, we may analyse only the operations contained in a

single MSREV, and show conformance to its associated rules in a stepwise or iterative manner.

10.4.2.4 Step 4: Check Conformance Rule

An NFA captures the conformance rule in such a way that it is used to detect if any of its accepting states
are present in the transition system. Essentially, it specifies a pattern that is matched against a transition
system. The pattern matching algorithm starts at the first state in the transition system and checks if the
pattern presented in the NFA is able to reach its accepting state. This is how HMCA checks for conformance.
We are guaranteed that if the transition system shows a path to the accepting state it will be found. If any
such path exists, the conformance check returns that the transition system shows rule non-conformance,
otherwise rule conformance is confirmed. Checking conformance is halted when the first accepting state is

encountered and HMCA moves to its feedback stage.

10.4.3 AUTOMATION AND TOOL SUPPORT

Most of the complexity in HMCA is in the processing required in the analysis phase. While we have
done the analysis manually, we can achieve automation for the tasks that, given certain inputs, can execute

without additional intervention from the user.

165

10.4.3.1 Manual Tasks

The manual tasks in this phase are to provide:

1. slicing criteria;

2. additional formal specifications in the Alloy model; and

3. linking of predicates from the Alloy model to non-accepting states in applicable rules, and assertions

to accepting states.

10.4.3.2 Automated Tasks

Automation can be realised in:

1. slicing to:

(a) extract a class model slice, ¢m;, for each operation, op;, in accordance to the slicing criteria
determined in Section 10.4.3.1;

(b) link the each cm; with its associated op;;

(¢) transform each em; into an equivalent Alloy specification, aa;.

2. analyse each aa; to extract its final states:

(a) use the Alloy Analyzer to determine the final states possible in each slice; and

(b) since the Alloy Analyzer is a separate tool, we must be able to import the final states of each
operation back into a workbench such as one discussed in Section 10.3.3 in order to construct the

transition system.

3. construct the transition system: organise the final states into a transition system; and

4. check the conformance rule: determine whether the accepting states of the NFA are present in the

transition system or not.

166

Our contributions are slicing and extracting the final states. We note that:

1. our implementation for slicing using operations as the slicing criteria has been developed for HMCA

in the Fclipse environment;
2. the writing and executing of Alloy specifications is also supported in the Eclipse environment;

3. the algorithms of the other tasks, i.e., constructing the transition system and checking conformance,
may also be developed in the Eclipse environment either as a new implementation or relying on libraries
from known model checking tools.

10.5 Feedback Phase
10.5.1 PREREQUISITES

The prerequisites for the feedback phase of HMCA include a good understanding of:

1. the similarities of the semantics between UML class models and Alloy models that allow an instance
(or counterexample) in the latter to be represented as an object model that is an instance of the former;

and
2. the USE tool with its associated SOIL and ASSL languages for specifying class models and generating
object models respectively.
10.5.2 STEPS
10.5.2.1 Step 1: Extract Alloy Counterexample

Since we know the point in the transition system where the non-conformance occurs and the aa; where
non-conformance occurs, we may extract the counterexample, aac;. We save the aac; to an XML represen-
tation using the functionality provided in the Alloy Analyzer.
10.5.2.2 Step 2: Generate UML Object Models

Recall that in the analysis phase we generated an aa; from each c¢m;. We use this ¢m; to guide the

creation of an UML object model, omc;, from the aac;. This creation relies on the correspondence between

167

the semantics of Alloy and class models that allows an instance in the former to be transformed into an
object model of the latter, and vice versa. We note that we will have a one-to-one mapping for the elements
in the aac; to the elements in its corresponding omc; for both the identifier, attribute values, and type. Since
we have not offered a proof that the aa; is equivalent to its associated cm;, it is important to have an extra
step to ensure that the omc; satisfies its associated c¢m;. If the ome; cannot satisfy the ¢m;, we know that
either the elements and/or constraints in the aa; or the ¢m; are incorrect and this must be addressed before

continuing.

10.5.2.83 Step 3: On-Demand Feedback

We implemented HMCA to provide feedback to the user in an on-demand fashion. The user may request
to see a progression of omc;s that led to the non-conformance. For example, if the non-conformance occurred
in slice ¢my;, from the MSREV we can know the trace of its previous class model slices that led to the non-
conformance observed in ¢m;. This (reverse) trace is the sequence:

< ey M9, CM 1, €T >
where each class model previous to cm; is called a cm;. We generate an object model, omc;, that satisfies
each cmj, starting from j — 1, in the trace as the user requests. Each omc; must contain the overlapping

elements from its (immediate) next omc;41 in the above trace.

10.5.2.4 Step 4: Update Models (and Re-Analyse)

A counterexample occurring in a particular state in the transitions system may be a symptom of a fault
that occurs in and is carried over from a previous state. Viewing the object models helps the user to identify
where the fault lies: by identifying a problem in an omc;, the links maintained in HMCA give the associated
aa;, cmy;, op;, GMgyp, and entity views (since we know the rule being analysed). Understanding what changes
are required in the models to show conformance to a rule is the job of the user/domain expert. If any changes

are made, HMCA should be used to re-analyse the conformance rule.

168

10.5.3 AUTOMATION AND TOOL SUPPORT

10.5.3.1 Automated Tasks

Automation supports the following tasks to:

1. extract the counter-example into an XML representation;

2. transform the aac; to an object model, omc;: we use the ASSL and SOIL languages provided in the
USE tool to drive the construction of the object models (see Section 10.5.3.2 for more details) and

once these are created they may be reused; and

3. generate additional object models: we also use the languages in the USE tool to construct these
additional object models (see Section 10.5.3.2 for more details) and once these are created they may

be reused.

While we have used manual steps to convert the aac; to the omc;, we have implemented procedures to
generate additional object models using the languages mentionned. We note that the Eclipse environment
provides integration of the functionality from both the Alloy Analyzer and the USE tools to accomplish

these tasks.

10.5.3.2 Manual Tasks

In addition to updating models as discussed in Section 10.5.2.4, the major manual task is the implemen-
tation of the algorithm to generate each omc;. We outlined the algorithms for generating the feedback in
Section 7.5.

An important guideline for generating each omec; is to ensure that the constraints in its corresponding
cm; are satisfiable and do not disallow the adding of object and/or links. The algorithms may need extra
tweaking that may not be generalisable, but instead depend on the elements and multiplicity constraints in
each c¢m;. One strategy is to add elements and the constraints that restrict those elements incrementally to
the omc;, checking satisfiability of its associated c¢m; with each addition.

For example, using the ASSL language provided in the USE tool to generate the omc;, constraints

imposed by multiplicities must be satisfied for adding objects and links among them; if constraints are not

169

satisfied, adding these elements is disallowed. This is because ASSL commands search for a configuration of
objects and links to create that satisfy the constraints. In contrast, using the SOIL language (also provided
for generating object models in the USE tool) does not disallow objects and links that do not satisfy the
multiplicity constraints, but this may result in an omc; that does not satisfy its corresponding cm; because
multiplicity constraints are violated. However, using SOIL is ideal when converting the initial aac; to an
omc; because of the one-to-one correspondence between the elements in the models.

In some cases, it may be that the constraints imposed by the multiplicities do not allow for any algorithm
to generate an omc; that satisfies its corresponding c¢m;. If this occurs, the only solution is to relax the
multiplicity on the association end in the system class model (constructed in Section 10.3.2.2) such that
we use the most generous multiplicity constraint, i.e., *, and write OCL constraints to enforce the desired
multiplicity. In any of these scenarios, the USE tool allows scrips that can load class models, call ASSL

procedures, execute SOIL commands, load/unload constraints, and check constraints as the user desires.

170

11. INSIGHTS FROM APPLYING HMCA IN THE NJH SYSTEM

In this chapter we offer a review of insights that may be helpful when applying HMCA to other application

domains, tools, and complexity management.

11.1 Impact of New Information on Previously Defined Rules

When we add new operations and states to our models, it is important to know whether these new
elements can impact previously defined rules. For example, when we included information about the Identified
access ticket with its two types of required data transformation in Section 8.2, the rule for the DelDed access
ticket was impacted and this required that we update all the models to account for this new information.
The lesson here is that our specifications may be weakened if we do not consider how new information affects

what we have previously shown to be correct.

11.2 Managing Specification Size Complexity

Our experience has shown that managing the Alloy specifications for each slice and maintaining con-
sistency across specifications is challenging because the specifications themselves may be many pages long
and contain many overlapping elements. For the latter, many mistakes may be introduced because of the
need to repeat certain model elements in different slices. Therefore, we suggest a continuous refactoring
of the specifications to use the capabilities of both the Alloy Analyzer and the USE tools to first define
specifications incrementally and then to include/import/add them to the specifications for the current slice.
For example, in the Alloy Analyzer, when two slices overlap, we may extract the overlapping elements into a
separate file and use the open command to add them to the specifications for each slice. This functionality
offers a kind of encapsulation to manage the complexity of specifications. The open command as described

is also included in the USE tool.

11.3 Understanding Tool Nuances: Translating Alloy Specifications into OCL Specifications

The analyst must be aware of the different semantics of each language. These semantics guide what

abstractions are made and how to understand them in the chosen languages. We discuss three such areas

171

Listing 11.1: Defining DataAccessAgreement in Alloy

abstract sig DataSource{}
sig Project extends DataSource{}
sig NJH {

projects: set Project,

/* pl->p2 means pl gives p2 access to data produced by pl */
dataAccessAgreement: projects -> projects,

-

Listing 11.2: Defining DataAccessAgreement in the USE for OCL

abstract class DataSource end
class Project < DataSource end
association DataAccessAgreement between
Project[*] role owner
Project[*] role user
end

for understanding: 1) closures, 2) intra-associations, and 3) multiplicities on ternary relations for the speci-
fication languages used in HMCA In our discussions we will use Figure 11.1, a previous (and now outdated)

class model for the NJH system.

11.3.1 REASONING ABOUT CLOSURES

Associations where both the source and the destination are the same class, require that we compute the
association closure to reason about how a class instance relates to itself and to other instances of that class.
For example, let’s take the DataAccessAgreement annotated with A in Figure 11.1. In Alloy this association
is defined as a binary relation and we show this in Listing 11.1. In OCL this is similarly defined in Listing
11.2 using the syntax of the UML Specification Environment (USE) tool. So far we have not encountered
much difference in the specification languages.

Since we know that no project requires a data access agreement with itself, we add a constraint to ensure
that a well-formed model does not contain these self relationships in the DataAccessAgreement association.
In Alloy, this is defined in Listing 11.3 to say that when we compute the closure of the relation, it is irreflexive.

The irreflexive definition is shown in Listing 11.4 and is a part of modules supplied with the Alloy Analyzer.

172

€LT

SeoURNU [00) SUISSNOSIP 0] [OPOJN SSB[) :T'TT 2mS31g

paulagsiaquapvaiosd _ _Eommis __w_._c_ _

1192.1Q10N3s0dingawos |

=, \

pauleQse1aNDaWos

Tsyosessay

J8lIENDIBYDIBASAY

(1ayoseasay : sai)ieyoseasayhyiend

OQwes | |ddeisAQoN PauI8(JSa0IN0gaWoS
ajny Jaylend
|dPuywes | pausaal
pag|agAeio asnued paynuap|
WOA0Lga2IN0SEIRQ . Lo Av
siaquaiosloid
= >
___snn_,. v v u_ T e .
alegHW.ojsuBl | paqgleaq IngAl . . Lvioloig |gwslorg |auuosIag
ainy «"'} ssinguusd 19301155000y |+ 0 _ . 10
. siosinuadng
Awoud 1y ..
ssuoDuaned oInt . o] salddyyy =
sauanpioalold 3
T N 10109]j00EBIEQI08l01d
. . asodingioaloig
_m.:m_w _Aium_num_ouao_czoo Yoaloig
Lo . N . N
|enpiApu| Juswasbyssadoyeieq
PaMOIIVAA . ()main @ JUBWIEa) 1195110
0
+ adh1ay *| (1sloid : foid ‘Jayoseasay : sas)hianpuns | *
@ Aianp yoreasay _|_V_ asoding _—..o

SWIojSUBI | HY

.

[otero K]

BleQiaY

uosHoMAID

| mieghip

EjeQiuaned

Llo

S8pIHYY
Buing : [eAS
ues|00g : ()PalIIUBPIIONS! Asa
ueajoog : ()paynuapis! s

18bayu) : Jeak 1 - Buing : sweu |+

18bau] : yluow BI®0 [TsaneARIEq wayjeleq
1ebaju : Aep

eleQ ™o GopeieTa o 201081

(193011 55820y : B ‘108l01d : [01d)19%01) SS820V103l01danoiddy
(sousor q 2

. dd
1l - S81) I v

aned

Moy

aarednud

80In0gEIEQ N

paiinbayw.ojsuel | leQ1oalold

pagieailelolioN | | PaqIagAiiEioL

$82Jn05}08/0.

d

Listing 11.3: Defining Constraint for DataAccessAgreement in Alloy
sig NJH{...} {

/* no project has a data access agreement with itself */
irreflexive[“dataAccessAgreement] }

Listing 11.4: Defining Irreflexive Binary Relations in Alloy

/** r is irreflexive */
pred irreflexive [r: univ -> univ] {
YELS
iden contains all reflexive binary associations for the signatures in the model
& is set intersection */
no iden & r }

In USE, the definition of this constraint is defined differently, since we must navigate the relationship to
define its closure. Recall that the roles, i.e., each association end, in the DataAccessAgreement were named
in the OCL definition in Listing 11.2. So, we start at the owner association-end, calculate its closure with
(and by) navigating to the user association-end, and specify that this closure does not contain the owner,
i.e., no self associations. We show this definition in OCL in Listing 11.5.

A comparison with defining the constraint first in Alloy and then in OCL using USE is that:

1. in Alloy we do not need to use navigation to reason about the contents of the association as Alloy
treats the association as a set of 2-tuples and can apply set/relational/functional algebra to reason

about it; this is called set semantics; and

2. translating this constraint to OCL was not as straightforward due to OCL semantics requiring navi-

gation to compute the contents of the association; this is called navigation semantics.

This difference posed a greater challenge when dealing with constraints among associations, discussed below.

Listing 11.5: Defining Constraint for DataAccessAgreement in OCL

context Project
inv invDataAccessAggreement:
owner->closure (user)->excludesAll (owner)

174

supervised

I

Personnel

* .
supervisor

T

Qualifier

Researcher

*
researcher

QualifyResearcher(res : Researcher)

Figure 11.2: Supervisors Association in Ss

Without sufficient documentation it’s hard to determine the correct usage for a predefined operation. The
OCL operator closure computes the transitive closure of a binary association. To understand the challenge,
consider the Supervisor association shown in Figure 11.2. In order to say that this association should be
acyclic, a common mistake is to say (in OCL) that:

supervised.closure(supervisor)— > excludes(sel f)
However, on closer inspection, this is incorrect because it does allow loops. In fact, the statement can never
be true because the closure (always) include self because the navigation to check the property starts and ends
at the same place. This mistake may be made because the modeler thinks that both ends of the association
need to be traversed and hence include, both association ends when writing the invariant.
As a (more concrete) example, consider:

Personnel = {p1,p2, ps3},
and

Supervisors = {(p1, p2), (p2,03)}
then while both p; and ps have the supervisor role and both py and ps have the supervised role, consideration
should be given to whether ps that has both roles, could have a cycle. In order to get to ps we must navigate
to the supervised association end and check if py could supervise themselves through the transitive closure
of other supervised traversable from ps.

The corrected invariant is:

supervised.closure(supervised)— > excludes(sel f)

175

Alternatively, using an equivalent argument as given above for traversing the supervised association end, the
invariant may be expressed using the supervisor association end:

supervisor.closure(supervisor)— > excludes(sel f)
Both forms are equivalent. Therefore, the closure must traverse along the same association end to correctly

specify the acyclic invariant.

11.3.2 INTRA ASSOCIATION CONSTRAINTS

Typically, when classes are involved in more than one association, there are constraints that affect how
an instance of the class in one association relates to the same instance of the class in another association.
For example, let’s examine the QryWorksOn (B), QryReturns, and RDType associations identified by B,
C, and D respectively in Figure 11.1. QryWorksOn is needed to identify which Dataltems are used in a
Query. Since not all instances of Dataltem that a query works on are returned, QryReturns (C) shows
which Dataltem instances from a Query are actually used to derive data returned by the query. Further,
QryReturns is used to show that some Dataltem objects returned may be transformed, i.e. QryData and
RetData are different with respect to their associated Data. In order to show conformance later on, it is
important to link in QryReturns each RetData (r;) in a Query (g) with the set of QryData (qd;’s) from
which it was derived. RDType (D) is needed to state whether each RetData returned by a query is computed
from an Individual Dataltem or a from Group of Dataltem because different conformance rules may apply
to each type. Implicit in the multiplicities in QryReturns and RDType is that both QryData and RetData
instances could be associated with more than one query.

Here, three constraints are important:

1. (¢,qd;, 1) € QryReturns — (q,qd;) € QryWorksOn;

2. every (g,r1) pair found in QryReturns is also in RDType; and

3. if r1 is linked to several gd;’s for the same ¢ in QryReturns then
(¢,m1, Group) € RDType
else

(g, 71, Individual) € RDType

176

Listing 11.6: Defining QryReturns and QryWorksOn in Alloy

sig NJH {
dataltems: set Dataltem,
queries: set Query,
types: set Type,

/* a query can work on any kind of data item */
gryReturns: queries -> dataltems -> dataltems,

/* return data type, has Oor 1type */
RDType: queries -> retItems -> lone types,

-}

Listing 11.7: Defining Constraint for Relationship between QryReturns and QryWorksOn in Alloy

sig NJH{...} {
all
q: queries,
r: retItems |
let
/* QryData linked to r */
grq = (r.(q.(qryReturns))) {

/* individual type */
some q -> r —> Individual & njh.RDType iff
#qrq = 1

/* group type */
some q -> r -> Group & njh.RDType iff
#qrq > 1} } }

The first two constraints are relatively easy to write for both Alloy and OCL. Therefore, our focus is on
the third constraint. We’ll hereafter refer to this constraint as c3. For Alloy we show the definition of the
associations in Listing 11.6 and cs in Listing 11.7. In Listing 11.7 ¢rq is computed for each (g,r) pair. We
ensure that if #qrq = 1 then the correct Type corresponding to the (g,) pair in RDType is Individual and
if #qrq > 1 then the correct Type for the pair is Group.

In OCL defining c3 is not as straightforward as in Alloy. For example, given:

1. the definition of the associations in Listing 11.8;

2. with respect to r1, @QryReturns contains

{(q1,qd1,71), (g2, qd1,71), (g2, 9d2,71), (g3, gd3, 1) }; and

177

Listing 11.8: Definition of Associations for QryReturns, QryWorksOn and RDType in USE

association QryReturns between
Query[*] role gry
RetDatal[*] role rData
QryData[*] role gData

end

association QryWorksOn between
Query[*] role query
QryData[*] role gryData
end

association RDType between
Query[*] role rd_qry
RetData[*] role rd_data
Typel[1] role type

end

3. QryWorksOn = {(q1, qd1), (q1,qd2), (g2, 9d1), (g2, qd2), (g3, qd3) }

c3 should ensure that for 1, RDType contains :
{(q1, 71, Individual), (g2, 71, Group), (g3, r1, Individual) }
However it is impossible to specify c3 without adding another constraint to the model to specify that each
r; is returned by only one query. We give an explanation in Section 11.3.2.1 and the reworked specification

for ¢z in Section 11.3.2.2.

11.8.2.1 Why c3 is Difficult to Specify.

Let’s propose that the constraint in Listing 11.9 correctly specifies c3. We note that navigation semantics
required us to navigate through both the QryReturns association to get the set of RetData to constrain and
the RD Type association to constrain the same set of RetData’s corresponding Type. If instead, we navigated
to the Type class by going through the rData association-end and then to the type association-end, we get
a Bag of Type instead of a single Type. This is because each instance of RetData may be returned by more
than one query, and though the same, may be computed differently.

The next step is to use the intersection of both the gData and the gryData to get to the set QryData
that RetData derives from. However, with the assignments given to QryReturns and QryWorksOn above,

this specification for cs computes that for ¢;, the ¢d;’s that the r; is derived from is the set {qd;,gd2} and

178

Listing 11.9: Incorrect Definition of Constraint between QryReturns RDType in OCL

context Query
inv invRDType:
rd_data = rData and
rData->forAll(r |
/* since no iff we have to write both ways */
((r.gData->intersection(qryData)->size()=1 implies
self.type->select(
0clIsTypeOf (Individual)=true) .rd_data->includes(r))
and
(self.type->select(
oclIsTypeOf (Individual)=true) .rd_data->includes(r) implies
r.qData->intersection(qryData)->size()=1))
and
/* again, since no iff we have to write both ways */
((r.gData->intersection(qryData)->size()>1 implies
self .type->select (
oclIsTypeOf (Group)=true) .rd_data->includes(r))
and
(self.type->select(
oclIsTypeOf (Group)=true) .rd_data->includes(r) implies
r.gData->intersection(qryData)->size()>1))

would incorrectly enforce (g1,71, Group) in RDType! However this is different from what QryReturns tells
us, i.e., the singleton instance qd;. If the specification is rewritten to use the set of @QryData that g; used to
derive all its 7;’s by using

sel f.qData(intersection(qryData))
where self refers to Query, the problem still exists if (¢1,gds,r2) was included in QryReturns. We have a

delima!

11.8.2.2 Making c3 Specifiable in OCL

After the detailed examination of how to specify that for q,, r1 is derived only from qd;, the only solution
is to add that each r; can only be returned by one q;. We add this constraint in Listing 11.10. Further,
RDType can be simplified to the specification in Listing 11.11. Finally, we restate cs:

if r1 is linked to several qd;’s in QryReturns
then

(r1, Group) € RDType

179

Listing 11.10: Definition of Constraint between QryReturns RDType in OCL

context RetData
inv retDatalnOneQuery:
qry->size()<=1

Listing 11.11: Definition of Constraint between QryReturns RDType in USE

association RDType between
RetData[*] role rd_data
Typel[1] role type

end

else
(r1, Individual) € RDType
We show the OCL specification for the restated cg in Listing 11.12. The lesson when dealing with intra-
associations constraints is that the comparison between Alloy and OCL requires the analyst to keep in mind
that in OCL navigating through more than one association may produce a Bag or Set rather than a single

instance.

11.3.2.8 Semantics and Scoping Constraints that Affected cs3

The way the association is written in Alloy helps us to use a smaller scope because each RetData may
be assigned to more than one query. However, this way to model @QryReturns made it difficult to specify
the original c¢3 in OCL. The Alloy Analyzer uses optimisation when generating instances to try to generate

the minimal set possible to satisfy all the constraints specified in the model. In USE, an object model may

Listing 11.12: Definition of Constraint between QryReturns RD Type in OCL

context Query
inv invRDType:
rData->forAll(
if gData->size()=1 then
type->select (oclIsTypeOf (Individual)=true)->size=1
else
type->select (oclIsTypeOf (Group)=true)->size=1
endif

180

also be optimised in this way. However, as we have shown, additional thought is required to correctly model
the same association or relationship in Alloy and class models respectively because of the semantics of each

specification language.

11.3.3 TERNARY RELATIONS AND MULTIPLICITIES

During the translation of Alloy to OCL, we discovered that the multiplicities in a ternary relationship
in Alloy are semantically different from the interpretation in the USE tool. For example, the RD_Type
association, shown in Figure 11.3a, has a multiplicity at the Type end of 1. In Alloy, this association is
modelled as:

RDType: queries -> retlItems -> one types
and may be interpreted as:
each Query and RetData pair is linked to exactly 1 Type, i.e., either a Group or and Individual.

This interpretation of the association is consistent in USE except where Type has subclasses. When
subclasses of Type exists, this invariant on the multiplicity becomes, each Query and RetData pair has
exactly 1 of each of the subclasses of Type (and Type if it is not abstract). In order to specify the originally
intent, the multiplicity at the Type end had to be relaxed as shown in Figure 11.3b. In addition, since we
intended that each RetData requires a Type, this was included as an invariant.

Analysis of the original specification in the USE tool showed the nuance in USE. This means that one

has to be careful when specifying the multiplicity for associations involving more than two classes.

11.4 Summary

In this chapter we recapped some insights from applying HMCA for RCA in the NJH system. While
understanding the impact of new information on previously defined rules and managing the complexities of
specification size are important, the major impact was with working through the nuances of the formal spec-
ification languages. While the Alloy language and class models with OCL constraints have many similarities
as specification languages and in their associated tools, their semantic differences influence how we should

approach modelling activities. More information on these differences may be explored in [15].

181

¢8I

"UOTYRIDOSSY adfif(TY o3 SUNYSIYSIY G JO 901[S [eldred 901§ ¢ TT 9In3Iq

vg wt adfi, gy poyepdn (q)

IenpiAipu|
-t ()main
()peojumop
dnou |_V adA "
> = — omn; 1ay *| (y08loid : oud ‘18yosessay : sai)lianpunu | *
Aienp
* uosYIoOMAID
areaH .
| eeawey | suineyAip *| ereahio

1enia _ _
VS ut adfif~(qy TewsuQ (®)

170 * _
|eNpIAIpU| Juswaalbyss
L Pamo|lyaA * ()mon
dnoign |V adAL 1 " (Jpeojumop
adA1ay (108l0id : loud “soyoseasay : sas)Aienpunu | *
Aand
* uoSHOMAID
uewoppueubaIdpajoaloidH .

pIIYOP810810IdH areaH

ejeqiey suineyAID *| eleghio

mAA T I

12. CONCLUSIONS AND FUTURE DIRECTIONS

Model checking is used for RCA because it allows the exhaustive examination of system models to show
conformance to rules. While the current model checking tools allow us to easily analyse process-aware rules,
they have challenges when analysing data-aware rules because of a state-space explosion that may cause the
analysis to be incomplete. For data-aware rules, using large abstractions ensure that the model checking tools
complete their analysis. However, using large abstractions may hide the details needed to check conformance
to the data-aware rules. In addition to the explosion of the state space, the current model checking tools are

not suited for analysing complex data relationships. We proposed HMCA to overcome these challenges.

12.1 HMCA Contribution Conclusions

Model checking is used for RCA because it allows the exhaustive examination of system models to show
conformance to rules. While the current model checking tools allow us to easily analyse process-aware rules,
they have challenges when analysing data-aware rules because of a state-space explosion that may cause the
analysis to be incomplete. For data-aware rules, using large abstractions ensure that the model checking tools
complete their analysis. However, using large abstractions may hide the details needed to check conformance
to the data-aware rules. In addition to the explosion of the state space, the current model checking tools are
not suited for analysing complex data relationships. We proposed HMCA to overcome these challenges.

In response to the state-space explosion, the main contribution of HMCA is to analyse data-aware rules
where current model checking tools fail. For HMCA, we show how to get results, i.e., analysis of rules can be
completed when using model checking techniques to analyse data-aware rules without hiding the details in
system models. Before this research, such analysis of data-aware rules was impossible at the level of details
used in HMCA, yet this was important because the details are needed to show conformance to rules such
as those extracted from the privacy requirements in the HIPAA regulations. We describe HMCA as hybrid

because it allows exhaustive model-based verification/analysis within a certain scope.

183

Since HMCA has its underpinnings in model checking techniques, we show how HMCA:

1. constructs design-level abstractions of the system under analysis and how to map conformance rules

to these abstractions ;

2. decomposes the analysis when checking each conformance rule by applying model slicing to produce

slices of the system state that avoids encountering a state-space explosion;

3. uses the Alloy Analyzer to provide an exhaustive and scoped analysis of each slice; and

4. provides on-demand and detailed feedback from the slices where the system shows non-conformance to

a rule.

In addition to providing a demonstration HMCA in the NJH system, we provided evaluations of HMCA

by using the NJH system:

1. to show how HMCA can be used to detect:

(a) common logic flaws in new conformance rules that result in non-conformance; and

(b) underspecification of conditions in the pre- or post conditions of an operations that uncovers ways

certain states are incorrectly allowed in the transition system.

2. for incorporating additional conditions that must be checked for conformance by including the privacy

requirements for the children protected population.

Evaluating HMCA in these ways shows another contribution as it helps to validate that non-conformance
can be found even when complex data relationships exist in the models under analysis.

We also provided a description of the steps that other users may follow to implement HMCA in other
domains. Finally, we gave insights gained from our practical application of HMCA in the NJH that may be
helpful, especially to draw awareness to situations where similar but differing semantics in formal specifica-
tions languages may impact specification in ways that are unexpected. Our description of steps and insights

is important for HMCA to be a next step in developing tools based on model checking for RCA.

184

12.2 Limitations of HMCA

Factors that limit HMCA’s ability to produce correct results include:

1. Having correct models that are a true reflection of the system under analysis and includes asking how

do we know that they satisfy the specifications?

2. Accurately interpreting of requlations, such as those in HIPAA, and translating them into conformance

rules.

3. Providing the required elements in a slice. While slicing gives us a smaller sized model and allows us to
avoid a state-space explosion that does not allow analysis to complete for data-aware rules, a limiting
factor for slicing is providing the correct slicing criteria. Currently we an operation’s guard together
with it’s pre- and post conditions for this criteria. However if they are not specified correctly we may
be performing analysis on a slice that has too little or too much details. In the case of the latter, we

may not be analysing the correct state or have hidden paths (see Section 12.3.2).

4. The abstractions, memory, and scope required to perform the analysis using the Alloy Analyzer. The
Alloy Analyzer become a limiting factor when the time needed to analyse each slice increases to the
due to the size of the slice or the memory bounds are reached without completing the analysis because
of the scope required. One of the ways to reduce the limits is to recognise that more complex rules
may require the use of finer grained slices and this is translates into specifying the entity views using

operations that will result in small slices

For the first two limitations, we must rely on the domain experts to confirm correct interpretation of the

models.

12.3 Future directions

We outline some areas where HMCA can benefit from additional research. The areas discussed in sections
12.3.1 to 12.3.3 were first outlined as challenges to RCA in Section 1.2 and should be referenced for additional

details.

185

12.3.1 ANALYSING CHANGED AND CONFLICTING RULES

Changed rules can be addressed by using HMCA to re-analyse the rules. One of the ways HMCA can
be used is to track the changes in rules, system conformance to the rules, and to include ways to judge the
level of conformance of the system to the rules. We noted in our related work how metrics such as weak
and strong conformance (see Section 2.1.2) are used judge the level of conformance in systems. These and
other metrics may be used or developed in areas where conformance may be measured on different levels or
systems in a particular domain are being compared.

When rules conflict, one of the ways HMCA may be used is in detecting such conflicts by identifying the
conditions that make satisfying them mutually exclusive. This would be a further way to validate HMCA
to be able to uncover these situations that have impossible system states. These conflicts may be deemed

as an over-specification of the model.

12.3.2 HIDDEN PATH ANALYSIS

Hidden paths may exist when path possibilities are not well understood or constrained by what is specified
in the process-aware rules and data-aware rules. The rules may focus on the allowed paths and how changes
in the systems state are effected along the paths. In addition, the rules may restrict those path possibilities
that should not be allowed. However, hidden paths in either of these categories may exist. We may discover
hidden paths where the results from local analyses may be recombined to create paths not documented in
the system activity diagram. Finding hidden paths are important and may be of high value because they

may cause rules to be violated, or reveal that other rules are needed.

12.3.3 ALTERNATE RULE REPRESENTATIONS

In addition to showing how to represent rules from laws and regulations in [17, 27, 30, 65], other ap-
proaches, specifically using 1) automaton [63, 71], 2) logic [5, 66], and 3) patterns [13, 50, 86] have been
used to represent conformance rules. Patterns are useful as abstractions of rule specifications. They also can
be used as rule specification notations, and finally they can provide guidance to the modeller as to which

elements need to be included in the specifications (i.e. specification strategies).

186

While we used both LTL and Dwyer’s patterns (see Section 2.3.2.1) when evaluating the model checking
tools and the Alloy Analyzer in Chapter 4, HMCA uses NFA to specify the rules. Dwyer’s Patterns provide
an alternative way to represent the conformance rules. For example, to define the DelDed conformance rule
we may use the Absence pattern to specify that the < Viewing, Identified> state should never be observed
when a de-identified access ticket is used to view a query’s results.

Since Dwyer’s patterns have underpinnings in temporal logic, we may:

1. transform the pattern rule representations to linear temporal logic, and then to NFA, or

2. independent of patterns, use linear temporal logic to specify the rules, and then transform them to

NFAs.

A next logical step is to prove equivalence for the (same) rule in each of the representations. This requires

the use of other model checking techniques (e.g. Bisimulation [51]).

12.3.4 How MUCH FEEDBACK TO SHOW

In the summary of Chapter 7 we discussed that we may identify semantics for what the feedback shown
to the user should contain (see Section 7.7 for the details). Such semantics can help in designing suitable
user interfaces. It requires continuous evaluation and may be specific to each domain in which HMCA is

used.

187

[1]

13. BIBLIOGRAPHY

(2015, October) The Alloy Model Analyzer, http://alloy.mit.edu/alloy/. [Online]. Available:

http://alloy.mit.edu/alloy/

(2015, July) HIPAA Administrative Simplification Statute and Rules. [Online]. Available:

http://www.hhs.gov/ocr/privacy /hipaa/administrative/

(2015, July) HIPAA Violations and Enforcement. [Online]. Available: http://www.ama-assn.
org/ama/pub/physician-resources/solutions-managing-your-practice/coding-billing-insurance/

hipaahealth-insurance-portability-accountability-act /hipaa-violations-enforcement.page?

(2015, June) UPPAALL. [Online]. Available: http://www.uppaal.org

M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, M. Montali, and P. Torroni,
“Expressing and verifying business contracts with abductive logic programming,” in Normative
Multi-agent Systems, 18.03. - 23.03.2007, ser. Dagstuhl Seminar Proceedings, G. Boella,
L. W. N. van der Torre, and H. Verhagen, Eds., vol. 07122. Internationales Begegnungs- und
Forschungszentrum fiir Informatik (IBFI), Schloss Dagstuhl, Germany, 2007. [Ounline]. Available:

http://drops.dagstuhl.de/opus/volltexte/2007/901

K. Anastasakis, “A model driven approach for the automated analysis of uml class diagrams.” Ph.D.

dissertation, University of Birmingham, Birmingham, 2009.

K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, “On challenges of model transformation from
UML to Alloy,” Software & Systems Modeling, vol. 9, no. 1, p. 69, 2008. [Online]. Available:

http://dx.doi.org/10.1007 /s10270-008-0110-3

A. Andoni, D. Daniliuc, and S. Khurshid, “Evaluating the ”small scope hypothesis”,” MIT Laboratory
for Computer Science, 200 Technology Square, Cambridge, MA 02139, Tech. Rep., 2003. [Online].

Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.7702&rep=rep1&type=pdf

188

[9]

[12]

E. André, C. Choppy, and T. Noulamo, “Modelling timed concurrent systems using activity diagram
patterns,” in Knowledge and Systems Engineering - Proceedings of the Sizth International Conference
KSE 2014, Hanoi, Vietnam, 9-11 October 2014, ser. Advances in Intelligent Systems and Computing,
V. Nguyen, A. Le, and V. Huynh, Eds., vol. 326. Springer, 2014, pp. 339-351. [Online]. Available:

http://dx.doi.org/10.1007,/978-3-319-11680-8_27

E. André, C. Choppy, and G. Reggio, “Activity diagrams patterns for modeling business
processes,” in Software Engineering Research, Management and Applications [selected papers
from the 11th International Conference on Software FEngineering Research, Management and
Applications, SERA 2013, Prague, Czech Republic, August 7-9, 2013]., ser. Studies in Computational
Intelligence, R. Y. Lee, Ed., vol. 496. Springer, 2013, pp. 197-213. [Online]. Available:

http://dx.doi.org/10.1007/978-3-319-00948-3_13

K. Androutsopoulos, D. Binkley, D. Clark, N. Gold, M. Harman, K. Lano, and Z. Li, “Model
projection: simplifying models in response to restricting the environment,” in Proceedings of the 33rd
International Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May
21-28, 2011, R. N. Taylor, H. C. Gall, and N. Medvidovic, Eds. ACM, 2011, pp. 291-300. [Online].

Available: http://doi.acm.org/10.1145/1985793.1985834

O. Angiuli, J. Blitzstein, and J. Waldo, “How to de-identify your data,” Communications of the ACM,

vol. 58, no. 12, pp. 48-55, Nov. 2015. [Online]. Available: http://doi.acm.org/10.1145/2814340

2

A. Awad and M. Weske, “Visualization of compliance violation in business process models,” in Business
Process Management Workshops, BPM 2009 International Workshops, Ulm, Germany, September
7, 2009. Revised Papers, ser. Lecture Notes in Business Information Processing, S. Rinderle-Ma,

S. W. Sadiq, and F. Leymann, Eds., vol. 43. Springer, 2009, pp. 182-193. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-12186-9_17

C. Baier and J.-P. Katoen, Principles of Model Checking (Representation and Mind Series). The MIT

Press, 2008.

189

[15]

[16]

[17]

[18]

[20]

M. Balaban, P. Bennett, K. H. Doan, G. Georg, M. Gogolla, I. Khitron, and M. Kifer, “A comparison
of textual modeling languages: OCL, Alloy, FOML,” in OCL@MoDELS, 2016. [Online]. Available:

http://oclworkshop.github.io/2016 /papers/OCL16_paper_3.pdf

F. Barbier, B. Henderson-Sellers, A. L. Parc-Lacayrelle, and J. M. Bruel, “Formalization of the whole-
part relationship in the unified modeling language,” IEEE Transactions on Software Engineering, vol. 29,

no. 5, pp. 459-470, May 2003.

A. Barth, A. Datta, J. C. Mitchell, and H. Nissenbaum, “Privacy and contextual integrity: Framework
and applications,” in 2006 IEEE Symposium on Security and Privacy (S&P 2006), 21-24 May
2006, Berkeley, California, USA. IEEE Computer Society, 2006, pp. 184-198. [Online]. Available:

http://dx.doi.org/10.1109/SP.2006.32

D. A. Basin, F. Klaedtke, S. Marinovic, and E. Zalinescu, “Monitoring compliance policies over
incomplete and disagreeing logs,” in Runtime Verification, Third International Conference, RV 2012,
Istanbul, Turkey, September 25-28, 2012, Revised Selected Papers, ser. Lecture Notes in Computer
Science, S. Qadeer and S. Tasiran, Eds., vol. 7687. Springer, 2012, pp. 151-167. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-35632-2_17

D. A. Basin, F. Klaedtke, and S. Miiller, “Monitoring security policies with metric first-order
temporal logic,” in SACMAT 2010, 15th ACM Symposium on Access Control Models and Technologies,
Pittsburgh, Pennsylvania, USA, June 9-11, 2010, Proceedings, J. B. D. Joshi and B. Carminati, Eds.

ACM, 2010, pp. 23-34. [Online]. Available: http://doi.acm.org/10.1145/1809842.1809849

J. Becker, P. Bergener, P. Delfmann, and B. Weif}, “Modeling and checking business process
compliance rules in the financial sector,” in Proceedings of the International Conference on
Information Systems, ICIS 2011, Shanghai, China, December 4-7, 2011, D. F. Galletta
and T. Liang, Eds. Association for Information Systems, 2011. [Online]. Available: http:

//aisel.aisnet.org/icis2011/proceedings/projmanagement /12

190

[21]

[22]

J. Becker, P. Delfmann, H.-A. Dietrich, M. Steinhorst, and M. Eggert, “Business process compliance
checking — applying and evaluating a generic pattern matching approach for conceptual models
in the financial sector,” Information Systems Frontiers, pp. 1-47, 2014. [Online]. Available:

http://dx.doi.org/10.1007/s10796-014-9529-y

J. Becker, P. Delfmann, S. Herwig, and L. Lis, “A generic set theory-based pattern matching
approach for the analysis of conceptual models,” in Conceptual Modeling - ER 2009, 28th
International Conference on Conceptual Modeling, Gramado, Brazil, November 9-12, 2009. Proceedings,
ser. Lecture Notes in Computer Science, A. H. F. Laender, S. Castano, U. Dayal, F. Casati,
and J. P. M. de Oliveira, Eds., vol. 5829. Springer, 2009, pp. 41-54. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-04840-1_6

P. Bennett, W. Sun, W. Ted, G. Georg, I. Ray, and M. G. Kahn, “Analyzing regulatory conformance in
medical research systems using multi-paradigm modeling,” in Joint Proceedings of the 3rd International
Workshop on the Globalization Of Modeling Languages and the 9th International Workshop on
Multi-Paradigm Modeling co-located with ACM/IEEFE 18th International Conference on Model Driven
Engineering Languages and Systems, GEMOC+MPM@MoDELS 2015, Ottawa, Canada, September 28,
2015., ser. CEUR Workshop Proceedings, B. Combemale, J. DeAntoni, J. Gray, D. Balasubramanian,
B. Barroca, S. Kokaly, G. Mezei, and P. V. Gorp, Eds., vol. 1511. CEUR-WS.org, 2015, pp. 22-31.

[Online]. Available: http://ceur-ws.org/Vol-1511/paper-MPMO1.pdf

A. Birukou, V. D’Andrea, F. Leymann, J. Serafinski, P. Silveira, S. Strauch, and M. Tluczek, “An
integrated solution for runtime compliance governance in SOA,” in Service-Oriented Computing - 8th
International Conference, ICSOC 2010, San Francisco, CA, USA, December 7-10, 2010. Proceedings,
ser. Lecture Notes in Computer Science, P. P. Maglio, M. Weske, J. Yang, and M. Fantinato, Eds., vol.

6470, 2010, pp. 122-136. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-17358-5_9

191

[25]

[29]

[30]

A. Blouin, B. Combemale, B. Baudry, and O. Beaudoux, “Modeling model slicers,” in Model Driven
Engineering Languages and Systems, 14th International Conference, MODELS 2011, Wellington, New
Zealand, October 16-21, 2011. Proceedings, ser. Lecture Notes in Computer Science, J. Whittle,
T. Clark, and T. Kiihne, Eds., vol. 6981. Springer, 2011, pp. 62-76. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-24485-8_6

G. Buchgeher and R. Weinreich, “Towards continuous reference architecture conformance analysis,” in
Software Architecture - 7th European Conference, ECSA 2013, Montpellier, France, July 1-5, 2013.
Proceedings, ser. Lecture Notes in Computer Science, K. Drira, Ed., vol. 7957. Springer, 2013, pp.

332-335. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-39031-9_32

O. Chowdhury, A. Gampe, J. Niu, J. von Ronne, J. Bennatt, A. Datta, L. Jia, and W. H.
Winsborough, “Privacy promises that can be kept: a policy analysis method with application to the
HIPAA privacy rule,” in 18th ACM Symposium on Access Control Models and Technologies, SACMAT
18, Amsterdam, The Netherlands, June 12-14, 2013, M. Conti, J. Vaidya, and A. Schaad, Eds. ACM,

2013, pp. 3-14. [Online]. Available: http://doi.acm.org/10.1145/2462410.2462423

A. Cunha, A. Garis, and D. Riesco, “Translating between alloy specifications and UML class diagrams
annotated with OCL,” Software & Systems Modeling, vol. 14, no. 1, pp. 5-25, 2015. [Online]. Available:

http://dx.doi.org/10.1007/s10270-013-0353-5

P. Delfmann, M. Steinhorst, H. Dietrich, and J. Becker, “The generic model query language GMQL
- conceptual specification, implementation, and runtime evaluation,” Inf. Syst., vol. 47, pp. 129-177,

2015. [Online]. Available: http://dx.doi.org/10.1016/j.is.2014.06.003

H. DeYoung, D. Garg, L. Jia, D. K. Kaynar, and A. Datta, “Experiences in the logical specification of
the HIPAA and GLBA privacy laws,” in Proceedings of the 2010 ACM Workshop on Privacy in the
Electronic Society, WPES 2010, Chicago, Illinois, USA, October 4, 2010, E. Al-Shaer and K. B. Frikken,

Eds. ACM, 2010, pp. 73-82. [Online]. Available: http://doi.acm.org/10.1145/1866919.1866930

192

[31]

[34]

[35]

L. B. R. dos Santos, V. A. de Santiago Junior, and N. L. Vijaykumar, “Transformation of UML
behavioral diagrams to support software model checking,” in Proceedings 11th International Workshop
on Formal Engineering approaches to Software Components and Architectures, FESCA 2014, Grenoble,
France, 12th April 201/., ser. EPTCS, B. Buhnova, L. Happe, and J. Kofron, Eds., vol. 147, 2014, pp.

133-142. [Online]. Available: http://dx.doi.org/10.4204/EPTCS.147.10

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Property specification patterns for finite-state
verification,” in Proceedings of the Second Workshop on Formal Methods in Software Practice, March
4-5, 1998, Clearwater Beach, Florida, USA, M. A. Ardis and J. M. Atlee, Eds. ACM, 1998, pp. 7-15.

[Online]. Available: http://doi.acm.org/10.1145/298595.298598

——, “Patterns in property specifications for finite-state verification,” in Proceedings of the 1999
International Conference on Software Engineering, ICSE’ 99, Los Angeles, CA, USA, May 16-22,
1999., B. W. Boehm, D. Garlan, and J. Kramer, Eds. ACM, 1999, pp. 411-420. [Online|. Available:

http://portal.acm.org/citation.cfm?id=302405.302672

Earnest and Young. (2015, November) The Volcker Rule: Covered funds, investment activity
and affiliated transactions. [Online]. Available: http://www.ey.com/Publication/vwLUAssets/

EY-4_steps-to-Volcker-Rule-compliance /$FILE /ey-4-steps-to- Volcker- Rule-compliance.pdf

R. Eshuis, “Symbolic model checking of UML activity diagrams,” ACM Trans. Softw. Eng. Methodol.,

vol. 15, no. 1, pp. 1-38, January 2006.

Federal Trade Commission. (2015, November) Financial institutions and customer information:
Complying with the safeguards rule. [Online]. Available: https://www.ftc.gov/tips-advice/

business-center /guidance/financial-institutions-customer-information-complying

F. Fernandes and M. Song, “UML-Checker: An approach for verifying UML behavioral diagrams,” JSW,

vol. 9, no. 5, pp. 1229-1236, 2014. [Online]. Available: http://dx.doi.org/10.4304/jsw.9.5.1229-1236

193

[38]

[39]

[40]

[42]

[43]

[44]

[45]

D. Garg, L. Jia, and A. Datta, “Policy auditing over incomplete logs: theory, implementation and
applications,” in Proceedings of the 18th ACM Conference on Computer and Communications Security,
CCS 2011, Chicago, Illinois, USA, October 17-21, 2011, Y. Chen, G. Danezis, and V. Shmatikov, Eds.

ACM, 2011, pp. 151-162. [Online|. Available: http://doi.acm.org/10.1145/2046707.2046726

G. Georg, P. Bennett, and W. Sun, “Example for MODELS MPM workshop paper,” June 2015, internal

document.

C. Giblin, S. Miiller, and B. Pfitzmann, “From Regulatory Policies to Event Monitoring Rules: Towards
Model-Driven Compliance Automation,” IBM Research GmbH. Zurich Research Laboratory, Tech. Rep.,

2006.

M. Gogolla, J. Bohling, and M. Richters, “Validating UML and OCL models in USE by automatic
snapshot generation,” Software € Systems Modeling, vol. 4, no. 4, pp. 386-398, 2005. [Online].

Available: http://dx.doi.org/10.1007/s10270-005-0089-y

H. Gronniger, D. Reiss, and B. Rumpe, “Towards a semantics of activity diagrams with semantic
variation points,” in Model Driven Engineering Languages and Systems - 13th International Conference,
MODELS 2010, Oslo, Norway, October 3-8, 2010, Proceedings, Part I, ser. Lecture Notes in Computer
Science, D. C. Petriu, N. Rouquette, and). Haugen, Eds., vol. 6394. Springer, 2010, pp. 331-345.

[Online]. Available: http://dx.doi.org/10.1007/978-3-642-16145-2_23

0. M. Group, “OMG unified modeling language specification,” Standard Released by the OMG Group,

Tech. Rep., September 2013. [Online]. Available: http://www.omg.org/spec/UML/2.5/Beta2/PDF/

N. J. Health, “Map of integrated bioinformation and specimen centre research support,” Internal NJH

Document.

G. J. Holzmann, The SPIN Model Checker - Primer and Reference Manual. Addison-Wesley, 2004.

194

[46]

[50]

[51]

V. H. Huynh and A. N. T. Le, “Process mining and security: Visualization in database intrusion
detection,” in Intelligence and Security Informatics - Pacific Asia Workshop, PAISI 2012, Kuala
Lumpur, Malaysia, May 29, 2012. Proceedings, ser. Lecture Notes in Computer Science, M. Chau,
G. A. Wang, W. T. Yue, and H. Chen, Eds., vol. 7299. Springer, 2012, pp. 81-95. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-30428-6_7

D. Jackson, “Alloy: A lightweight object modelling notation,” ACM Trans. Softw. Eng. Methodol.,

vol. 11, no. 2, pp. 256-290, 2002. [Online]. Available: http://doi.acm.org/10.1145/505145.505149

——, Software Abstractions: Logic, Language, and Analysis. The MIT Press, 2012.

D. Jackson, I. Schechter, and I. Shlyakhter, “Alcoa: the alloy constraint analyzer,” in Proceedings of
the 22nd International Conference on on Software Engineering, ICSE 2000, Limerick Ireland, June
4-11, 2000., C. Ghezzi, M. Jazayeri, and A. L. Wolf, Eds. ACM, 2000, pp. 730-733. [Online].

Available: http://doi.acm.org/10.1145/337180.337616

H. Jacobsen, V. Muthusamy, and G. Li, “The PADRES event processing network: Uniform querying
of past and future events (das PADRES ereignisverarbeitungsnetzwerk: FEinheitliche anfragen auf
ereignisse der vergangenheit und zukunft),” it - Information Technology, vol. 51, no. 5, pp. 250-261,

2009. [Online]. Available: http://dx.doi.org/10.1524/itit.2009.0549

P. Jancar, “Bisimulation equivalence of first-order grammars is Ackermann-hard,” CoRR, vol.

abs/1312.3910, 2013. [Online]. Available: http://arxiv.org/abs/1312.3910

D. Knuplesch, L. T. Ly, S. Rinderle-Ma, H. Pfeifer, and P. Dadam, “On enabling data-aware compliance
checking of business process models,” in Conceptual Modeling - ER 2010, 29th International Conference
on Conceptual Modeling, Vancouver, BC, Canada, November 1-4, 2010. Proceedings, ser. Lecture Notes
in Computer Science, J. Parsons, M. Saeki, P. Shoval, C. C. Woo, and Y. Wand, Eds., vol. 6412.

Springer, 2010, pp. 332-346. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-16373-9_24

195

[53]

[54]

[55]

[56]

[58]

F. Kordon, A. Linard, M. Beccuti, D. Buchs, L. Fronc, L. Hillah, F. Hulin-Hubard, F. Legond-Aubry,
N. Lohmann, A. Marechal, E. Paviot-Adet, F. Pommereau, C. Rodriguez, C. Rohr, Y. Thierry-Mieg,
H. Wimmel, and K. Wolf, “Model checking contest at Petri Nets, report on the 2013 edition,” CoRR,

vol. abs/1309.2485, 2013. [Online]. Available: http://arxiv.org/abs/1309.2485

F. Kordon, A. Linard, D. Buchs, M. Colange, S. Evangelista, L. Fronc, L. Hillah, N. Lohmann,
E. Paviot-Adet, F. Pommereau, C. Rohr, Y. Thierry-Mieg, H. Wimmel, and K. Wolf, “Raw report on
the model checking contest at Petri Nets 2012,” CoRR, vol. abs/1209.2382, 2012. [Online|. Available:

http://arxiv.org/abs/1209.2382

F. Kordon, A. Linard, D. Buchs, M. Colange, S. Evangelista, K. Lampka, N. Lohmann, E. Paviot-Adet,
Y. Thierry-Mieg, and H. Wimmel, “Report on the model checking contest at Petri Nets 2011,”
Transactions on Petri Nets and Other Models of Concurrency, vol. 6, pp. 169-196, 2012. [Online].

Available: http://dx.doi.org/10.1007/978-3-642-35179-2_8

K. Lano and S. K. Rahimi, “Slicing of UML models using model transformations,” in Model Driven
Engineering Languages and Systems - 13th International Conference, MODELS 2010, Oslo, Norway,
October 3-8, 2010, Proceedings, Part II, ser. Lecture Notes in Computer Science, D. C. Petriu,
N. Rouquette, and ©. Haugen, Eds., vol. 6395. Springer, 2010, pp. 228-242. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-16129-2_17

——, “Slicing techniques for UML models,” Journal of Object Technology, vol. 10, pp. 11: 1-49, 2011.

[Online]. Available: http://dx.doi.org/10.5381/jot.2011.10.1.a11

L. T. Ly, D. Knuplesch, S. Rinderle-Ma, K. Goser, H. Pfeifer, M. Reichert, and P. Dadam, “Seaflows
toolset - compliance verification made easy for process-aware information systems,” in Information
Systems FEvolution - CAiSE Forum 2010, Hammamet, Tunisia, June 7-9, 2010, Selected FExtended
Papers, ser. Lecture Notes in Business Information Processing, P. Soffer and E. Proper, Eds., vol. 72.

Springer, 2010, pp. 76-91. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-17722-4_6

196

[59]

[62]

L. T. Ly, S. Rinderle, and P. Dadam, “Semantic correctness in adaptive process management
systems,” in Business Process Management, 4th International Conference, BPM 2006, Vienna,
Austria, September 5-7, 20006, Proceedings, ser. Lecture Notes in Computer Science, S. Dustdar,
J. L. Fiadeiro, and A. P. Sheth, Eds., vol. 4102. Springer, 2006, pp. 193-208. [Online]. Available:

http://dx.doi.org/10.1007/11841760_14

L. T. Ly, S. Rinderle-Ma, P. Dadam, and B. Pernici, “Design and verification of instantiable compli-
ance rule graphs in process-aware information systems,” in Advanced Information Systems Engineering,
Proceedings, vol. 6051. Heidelberger Platz 3, D-14197 Berlin, Germany: Springer-Verlag Berlin, 2010,

pp- 9-23.

L. T. Ly, S. Rinderle-Ma, K. Goser, and P. Dadam, “On enabling integrated process
compliance with semantic constraints in process management systems - requirements, challenges,
solutions,” Information Systems Frontiers, vol. 14, no. 2, pp. 195-219, 2012. [Online]. Available:

http://dx.doi.org/10.1007/s10796-009-9185-9

L. T. Ly, S. Rinderle-Ma, D. Knuplesch, and P. Dadam, “Monitoring business process compliance using
compliance rule graphs,” in On the Move to Meaningful Internet Systems: OTM 2011 - Confederated
International Conferences: CooplS, DOA-SVI, and ODBASE 2011, Hersonissos, Crete, Greece,
October 17-21, 2011, Proceedings, Part I, ser. Lecture Notes in Computer Science, R. Meersman, T. S.
Dillon, P. Herrero, A. Kumar, M. Reichert, L. Qing, B. C. Ooi, E. Damiani, D. C. Schmidt, J. White,
M. Hauswirth, P. Hitzler, and M. K. Mohania, Eds., vol. 7044. Springer, 2011, pp. 82-99. [Online].

Available: http://dx.doi.org/10.1007/978-3-642-25109-2_7

F. M. Maggi, M. Montali, M. Westergaard, and W. M. P. van der Aalst, “Monitoring business
constraints with linear temporal logic: An approach based on colored automata,” in Business
Process Management - 9th International Conference, BPM 2011, Clermont-Ferrand, France, August
30 - September 2, 2011. Proceedings, ser. Lecture Notes in Computer Science, S. Rinderle-Ma,
F. Toumani, and K. Wolf, Eds., vol. 6896. Springer, 2011, pp. 132-147. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-23059-2_13

197

[64]

[66]

[69]

[70]

S. Maoz, J. O. Ringert, and B. Rumpe, “Semantically configurable consistency analysis for class and

object diagrams,” CoRR, vol. abs/1409.2313, 2014. [Online]. Available: http://arxiv.org/abs/1409.2313

M. J. May, C. A. Gunter, and I. Lee, “Privacy APIs: Access control techniques to analyze and
verify legal privacy policies,” in 19th IEEE Computer Security Foundations Workshop, (CSFW-19
2006), 5-7 July 2006, Venice, Italy. TEEE Computer Society, 2006, pp. 85-97. [Online]. Available:

http://doi.ieeeccomputersociety.org/10.1109/CSFW.2006.24

M. Montali, F. M. Maggi, F. Chesani, P. Mello, and W. M. P. van der Aalst, “Monitoring business
constraints with the event calculus,” ACM TIST, vol. 5, no. 1, p. 17, 2013. [Online]. Available:

http://doi.acm.org/10.1145/2542182.2542199

M. Montanari, E. Chan, K. Larson, W. Yoo, R. H. Campbell, J. Camenisch, S. FischerHubner, Y. Mu-
rayama, A. Portmann, and C. Rieder, “Distributed security policy conformance,” in Future Challenges
In Security and Privacy For Academia and Industry, vol. 354. Heidelberger Platz 3, D-14197 Berlin,

Germany: Springer-Verlag Berlin, 2011, pp. 210-222.

Object Management Group. (2015, December) Object Constraint Language (OCL). [Online]. Available:

http://www.omg.org/spec/OCL/

U. D. of Health and H. Services, “Code of Federal Regulations, Title 45, public wel-
fare, department of health and human services, part 46, protection of human subjects,”
https://www.hhs.gov/ohrp/regulations-and-policy /regulations/45-cfr-46 /index.html, July 2009. [On-

line]. Available: https://www.hhs.gov/ohrp/regulations-and-policy /regulations/45-cfr-46/index.html

Office of Ethics and Compliance: Human Research Protection Program, University of California, San
Francosco. (2015, April) The Human Research Protection Program, Definitions. [Online]. Available:

http://irb.ucsf.edu/definitions

198

[71]

M. Pesic and W. van der Aalst, “A declarative approach for flexible business processes management,”
in Business Process Management Workshops, ser. Lecture Notes in Computer Science, J. Eder and
S. Dustdar, Eds. Springer Berlin Heidelberg, 2006, vol. 4103, pp. 169-180. [Online]. Available:

http://dx.doi.org/10.1007/11837862_18

C. A. Petri, “Communication with automata,” Ph.D. dissertation, Universitdt Hamburg, 1966.

A. Raschke, “Translation of UML 2 activity diagrams into finite state machines for model checking,” in
35th Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2009, Patras,
Greece, August 27-29, 2009, Proceedings. IEEE Computer Society, 2009, pp. 149-154. [Online].

Available: http://doi.ieeecomputersociety.org/10.1109/SEAA.2009.60

R. Rashidi-Tabrizi, G. Mussbacher, and D. Amyot, “Legal requirements analysis and modeling with
the measured compliance profile for the goal-oriented requirement language,” in Sixth International
Workshop on Requirements Engineering and Law, RELAW 2018, 16 July, 2018, Rio de Janeiro, Brasil,
D. Amyot, A. I. Antén, T. D. Breaux, A. K. Massey, and P. P. Swire, Eds. IEEE Computer Society,

2013, pp. 53-56. [Online]. Available: http://dx.doi.org/10.1109/RELAW.2013.6671346

S. Rinderle-Ma, F. Toumani, and K. Wolf, Eds., Business Process Management - 9th International
Conference, BPM 2011, Clermont-Ferrand, France, August 30 - September 2, 2011. Proceedings,
ser. Lecture Notes in Computer Science, vol. 6896. Springer, 2011. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-23059-2

A. Rozinat and W. M. P. van der Aalst, “Conformance checking of processes based on
monitoring real behavior,” Inf. Syst., vol. 33, mno. 1, pp. 64-95, 2008. [Online]. Available:

http://dx.doi.org/10.1016/j.is.2007.07.001

Senate Banking Committee, “Gramm-Leach-Bliley Act - disclosure of nonpublic personal information,”
1999. [Online]. Available: https://www.ftc.gov/tips-advice/business-center/privacy-and-security/

gramm-leach-bliley-act

199

[78]

[79]

[81]

[83]

A. Shaikh, R. Claris6, U. K. Wiil, and N. Memon, “Verification-driven slicing of UML/OCL models,”
in ASE 2010, 25th IEEE/ACM International Conference on Automated Software Engineering, Antwerp,
Belgium, September 20-24, 2010, C. Pecheur, J. Andrews, and E. D. Nitto, Eds. ACM, 2010, pp.

185-194. [Online]. Available: http://doi.acm.org/10.1145/1858996.1859038

A. Shaikh, U. K. Wiil, and N. Memon, “Evaluation of tools and slicing techniques for
efficient verification of UML/OCL class diagrams,” Adv. Software Engineering, vol. 2011, pp.

370198:1-370 198:18, 2011. [Online]. Available: http://dx.doi.org/10.1155/2011/370198

M. Steinhorst, P. Delfmann, and J. Becker, “vGMQL - Introducing a visual notation for the generic
model query language GMQL,” in Short Paper Proceedings of the 6th IFIP WG 8.1 Working Conference
on the Practice of Enterprise Modeling (PoEM 2013), Riga, Latvia, November 6-7, 2013., ser.
CEUR Workshop Proceedings, J. Grabis, M. Kirikova, J. Zdravkovic, and J. Stirna, Eds., vol. 1023.

CEUR-WS.org, 2013, pp. 146-155. [Online]. Available: http://ceur-ws.org/Vol-1023 /paper14.pdf

W. Sun, “Using slicing techniques to support scalable rigorous analysis of class models,” Ph.D. disser-

tation, Colorado State University, 2015.

W. Sun, R. B. France, and I. Ray, “Contract-aware slicing of UML class models,” in Model-Driven
Engineering Languages and Systems - 16th International Conference, MODELS 2013, Miami, FL,
USA, September 29 - October 4, 2013. Proceedings, ser. Lecture Notes in Computer Science, A. Moreira,
B. Schétz, J. Gray, A. Vallecillo, and P. J. Clarke, Eds., vol. 8107. Springer, 2013, pp. 724-739.

[Online]. Available: http://dx.doi.org/10.1007/978-3-642-41533-3_44

H. B. K. Tan, L. Hao, and Y. Yang, “On formalization of the whole-part relationship in the unified
modeling language,” IEEE Transactions on Software Engineering, vol. 29, no. 11, pp. 1054-1055, Nov

2003.

200

[84]

[36]

W. M. P. van der Aalst, B. F. van Dongen, C. W. Giinther, R. S. Mans, A. K. A. de Medeiros,
A. Rozinat, V. Rubin, M. Song, H. M. W. E. Verbeek, and A. J. M. M. Weijters, “ProM 4.0:
Comprehensive support for Real process analysis,” in Petri Nets and Other Models of Concurrency -
ICATPN 2007, 28th International Conference on Applications and Theory of Petri Nets and Other
Models of Concurrency, ICATPN 2007, Siedice, Poland, June 25-29, 2007, Proceedings, ser. Lecture
Notes in Computer Science, J. Kleijn and A. Yakovlev, Eds., vol. 4546. Springer, 2007, pp. 484-494.

[Online]. Available: http://dx.doi.org/10.1007/978-3-540-73094-1_28

S. K. L. M. vanden Broucke, J. Munoz-Gama, J. Carmona, B. Baesens, J. Vanthienen, R. Meersman,
H. Panetto, T. Dillon, M. Missikoff, L. Liu, O. Pastor, A. Cuzzocrea, and T. Sellis, “Event-based real-
time decomposed conformance analysis,” in On the Move To Meaningful Internet Systems: Otm 201
Conferences, vol. 8841. Heidelberger Platz 3, D-14197 Berlin, Germany: Springer-Verlag Berlin, 2014,

pp. 345-363.

M. Weidlich, H. Ziekow, J. Mendling, O. Giinther, M. Weske, and N. Desai, “Event-based monitoring
of process execution violations,” in Business Process Management - 9th International Conference, BPM
2011, Clermont-Ferrand, France, August 30 - September 2, 2011. Proceedings, ser. Lecture Notes in
Computer Science, S. Rinderle-Ma, F. Toumani, and K. Wolf, Eds., vol. 6896. Springer, 2011, pp.

182-198. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-23059-2_16

M. Weiser, “Program slicing,” in Proceedings of the 5th International Conference on Software
Engineering, ser. ICSE ’81. Piscataway, NJ, USA: IEEE Press, 1981, pp. 439-449. [Online]. Available:

http://dLacm.org/citation.cfm?id=800078.802557

201

APPENDIX A. MOTIVATING HMCA: NJH SPECIFICATION MODELS

A.1 Promela Model

Listing A.1: NJH Promela model for approving an access ticket using the NoSupsInPlandDC' decision rule

1 || /3K skokok sk sk sk sk sk sk sk sk ok ok ok sk sk ok ok ok Kk ok ok ok K K 3 ok ok K K 3 ok ok ok K ok ok ok K K ok ok ok K K 3k ok oK K K 3 ok ok K K 3 ok ok ok K ok ok ok Kk ok ok ok Kk K ok oK

2 || * Purpose: NJH RCA Analysis

3

4 Author: Phillipa Bennett

6 Answering the question :

7 1. Can we use Spin to answer - what is Tractable RCA?

8 2. How can we use spin for for process order mutations?

©

10 Date created: March 15, 2016
11
12 Version: 1
13
14 Parameters: updated March 23, 2016
Safety: safety, +invalid endstates violation, +assertion violations
Storage mode: exhaustive, +collapse compression
Search mode: depth first + partial order reduction, iterative, unreachable
Advanced parameters

Extra compile options: -02 -DVECTORSZ=3072 -DMA=2000

Physical memory available: 7000

Estimates state search space: 1000

Maximum search depth: 100000000

Extra runtime options:

16
17
18
19
20
21
22
23
24
TBD -

1. Find a way to specify alternate end states - low priority

25
26
27

¥R K X X K K X K X X K X X K X X X ¥ X ¥ X X * ¥ *

28 Need to write about -

29 1. idea of how spin can be used for process order mutations.

30 || soksksrooskokskokoskoksk sk ok ok stk sk sk sk ke sk sk ks sk stk sk ok sk sk sk ok stk sk sk sk ok sk sk sk sk ok sk sk sk sk ok stk ok sk sk ok ok skok sk sk sk ok ok /
31
32 ||/ sksksksokoksrokokoksksk ok ok stk ok sk sk sk skl sk sk s ok stk e ok sk sk ke ok sk ke sksk sk ke sk sk sk sk s ok sk s ok sk sk sk sk sk sk sk sk ke sk sk sk sk sk sk ok sk sk ok
33 * Define

34 || sokskorokokokskokok ok sk sk ke ok sk ke sk sk sk ok sk sk sk sk s ok stk e ok sk sk ke ok sk sk sk sk sk sk sk sk sk ok sk s sk sk sk ok sksk ok sk sk ke ok skok sk sk sk ok k ok /
35
36 || #define PROC_BITS 3 // number of bits needed to represent process

37 || #define PROCS 7 // this will depend on final Activity diagram used

38

10 || #define PROJ_BITS 2// number of bits required to access project in projects
41 || #define PROJS 4 // spin’s current max is an unsigned n-bit where n = 8

42
43 || #define SUPERS_BIT 5 // number of bits required to access supervisors
44 || #define SUPERS 32 // number of persons needing supervisors

46 /**

a7 * Declarations
48 ||| ks ks sk sk ok ok ok ok sk ok ok sk sk sk sk sk sk sk K oK K K K K K K Kk o o o ok ok ok ok ok ok ok ok ok ok sk ok sk K K K K K K K K K Kk ko sk ok ok ok ok ok ok ok ok ok ok ok k ok /

50 || mtype {deidentified, identified, none} // permission types

202

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

102
103
104
105
106
107
108
109
110

typedef Proc_Run{
bool executed[PROCS];} /+* helps to check process pre-requisites,
* except for apply */

typedef Supervisor {
unsigned s_id : SUPERS_BIT;}

typedef Project {
mtype access_ticket;
bool data_collector_present = false;
unsigned
pi: SUPERS_BIT,
data_collector : SUPERS_BIT;
bool submit = 0; // prerequisite for apply process
Proc_Run runs;}

Project projects[PR0OJS];
bool approve_and_decline = false;

Supervisor sups[SUPERS]; /* e.g. sups[12] = 56means supervisor of researcher
* with r_id 12is researcher with r_id 56%/
unsigned sup_root : SUPERS_BIT; /* this is the root of the sups tree */

/* In order to get an array of unsigned, I needed this workaround */
typedef Unsigned {unsigned id: SUPERS_BIT;}

bool init_complete = false;

[/ skskokskskok ok stk ok sk sk ok stk ok sk ok sk ks stk sk sk sk stk sk ok sk sk ok stk sk sksk sk sk ks ok sksksk sk ok stk sk ok sk sk ok ok
* LTL
stk kst sk ok stk ok sk sk sk ok stk ok sk ok sk ki ks ks sk stk s ok sk sk ok stk ok sk ok sk s sksksk sk sk ke sksk sk ok sksk sk ok sk sk ok /
/* ensures that we have some nondeterminism in the approve and decline of
projects
*/
1tl 1tl1 {
/* infinitely executing the statement in approve with label app
implies (ensures) we infinitely execute the statement labeled dec
in approve(), implies (ensures) we infinitely execute the statement
labeled dec in decline() */
[I<>approve@app ->
([1<>approve@dec && []<>decline@dec)

}

/**

* NEVER claims
ok ok K K o oK oK oK K oK oK oK K oK oK oK K oK oK oK 3 K ok oK oK 3K K K oK ok K K o ok ok oK K ok ok oK K ok ok ok 3 K ok oK oK K K K ok ok K K ok sk ok K ok sk ok kK ok ok ok ko /

/% kkskokskokokkokok
A project must not be both approved and declined over this
simulation/verification */
never noApproveDeclineOnSameProject{
true;
do
approve_and_decline -> break;
else -> skip;
od;

}

/3K 3Kk sk ok ok sk ok o ok ok ok K 3 ok ok ok 3 ok ok ok 3 K ok ok ok 3K 3 3 ok ok K K 3 oK ok ok K 3 ok ok ok 3 3 ok ok ok 3k 3 oK ok ok 3k 3 3 ok ok K K 3 ok ok sk K ok ok ok 3k ok ok ok koK
* Inline
ok ok K K o oK oK oK K oK oK oK K ok oK ok 3K oK oK ok 3 K oK oK oK 3K K 3 oK ok K K 3 oK ok ok K ok ok ok K 3 ok ok ok 3 K oK oK ok 3 K K ok ok K K ok ok ok ok ok ok ok ok ok ko /

203

115
116

117

119

120

122
123

124

127

162
163
164
165
166
167
168
169

170

/% kkokokokkkkkk /

inline add_supervisors_3bit() {
//numbers generated from https://www.random.org/sequences/
// root is 1
sup_root = 1;

sups[1].s_id = 1; sups[6].s_id = 1;
sups[2].s_id = 6; sups[0].s_id = 6;
sups[4].s_id = 2;
sups[5].s_id = 0;
sups[3].s_id = 4; sups[7].s_id = 4;

}

/% wkckokkkokkokk /
inline add_supervisors_5bit() {
//numbers generated from https://www.random.org/sequences/
// root is 1
sup_root = 1;
sups[1].s_id = 1; sups[14].s_id = 1;

sups[11].s_id = 14; sups[20].s_id = 14;

sups[17].s_id = 11; sups[b].s_id = 11; sups[15].s_id = 11;
sups[29] .s_id = 11; sups[9].s_id 11;

sups[2] .s_id = 20;

sups[22] .s_id = 17;

sups[4].s_id = 5; sups[31].s_id = 5;

sups[23].s_id = 15; sups[24].s_id = 15;
sups[10] .s_id = 29; sups[21].s_id = 29;
sups[28].s_id = 9; sups[8].s_id = 9;
sups[26].s_id = 2; sups[25].s_id = 2;
sups[13].s_id = 22; sups([3].s_id = 22;

sups[6].s_id = 4;

sups[27] .s_id = 31; sups[18].s_id = 31; sups[16].s_id = 31;
sups[12] .s_id 31;

sups[19] .s_id 23; sups[7].s_id = 23; sups[30].s_id = 23;

sups [0] .s_id = 24;

}

inline check_supervisor_assignments() {

for (m: 0..(SUPERS-1)) {

if
:: m == sup_root ->
assert(sups[m].s_id == m);
:: else —>
assert(sups[m].s_id !=m);
fi;

204

178
179
180
181

182

184

185

189
190
191
192
193
194
195
196
197
198
199

200

228
229
230
231
232
233
234
235
236
237

/% kkokokokkkkkk /
inline set_process_bit() {
d_step{
// update the process bit
projects[project] .runs.executed[id] = 1;
// assert
assert(projects[project] .runs.executed[id] == 1&&
projects[project] .runs.executed[dependsOn] == 1);

}

inline check_approve_conditions () {
approve_project =
projects[project].access_ticket != none &&
(!projects[project].data_collector_present == true ||
¢

// common supervisor
(sups [projects[project].data_collector].s_id ==
sups [projects[project] .pil .s_id)

// data collector supervisor is project’s pi
|| (sups[projects[project].data_collector].s_id ==
projects[project] .pi)

// pi supervisor is project’s data collector
|| (sups[projects[project].pil.s_id ==
projects[project] .data_collector)
)
)
}

/] 3K 3k sk sk ke ok ok sk sk ok ok ok K ok ok ok 3 ok ok ok 3 3 3k ok ok 3K 3 3 ok ok 3k 3 3 ok ok ok 3 3 ok ok ok 3 3 ok ok ok 3k 3 3k ok oK 3k 3 3 oK ok K 3 3 ok ok ok 3 3 ok ok ok 3k ok ok ok 3k K
* Processes
ok ok K K 3 oK oK oK K 3 ok ok ok K 3 ok ok ok 3K ok oK ok 3 K ok ok ok 3K K 3 oK ok K K o ok ok ok K 3 ok ok ok 3 3 ok ok ok 3k 3 ok ok ok 3k K K ok ok K K ok ok ok ok ok ok ok ok ok k ok /

/**************************************/
active proctype apply () {
unsigned
dependsOn : PROC_BITS = O,
id : PROC_BITS = 0,
project : PROJ_BITS;

//init_complete == true;
/* end: */
again:
select(project: 0..3);
if
: projects[project] .runs.executed[id] == 0&&
projects[project].submit == 1->

/* progress: */ set_process_bit();
else -> skip;
fi
goto again;

[Fskok sk sk ok ok ok sk ok sk ok sk ok sk ok sk ok sk sk ok sk sk sk sk ok sk ok ok ok /
active proctype approve () {
// process changes these values
unsigned project : PROJ_BITS;
bool approve_project;

// process does not change these values

205

238 unsigned

239 dependsOn : PROC_BITS = O,

240 id : PROC_BITS = 1;

241

242 //init_complete == true;

243 /* end: x/

244 again:

245 approve_project = true;

246 select(project: 0..3);

247 if

248 :: projects[project] .runs.executed[dependsOn] == 1&&
249 projects[project] .runs.executed[id] == 0->
250

251 check_approve_conditions();

252 if

253 :: approve_project == true ->

254 app: /* progress: */ {set_process_bit();}
255 11 else —>

256 dec: {projects[project].access_ticket = none;}
257 fi;

258 :: else -> skip;

259 fi;

260 goto again;

261

262

263 || /HKKkokokokkkkok Kok ko Kok koK KKK Kook KKK KKKk K
264 || active proctype decline () {

265 // process does not change these values

266 unsigned

267 dependsOn : PROC_BITS = O,

268 id : PROC_BITS = 2;

269

270 // process changes this value

271 unsigned project: PROJ_BITS

272 bool approve_project;

273

274 //init_complete == true;

275 /* end: */

276 again:

277 approve_project = true;

278 select(project: 0..3);

279 if

280 :: (projects[project].runs.executed[dependsOn] == 1&&
281 projects[project] .runs.executed[id] == 0) ->
282 check_approve_conditions();

283 if

284 :: approve_project == true ->

285 dec: /* progress: */ {set_process_bit();}
286 11 else -> skip;

287 fi;

288 :: else -> skip;

289 fi;

290 goto again

291

292

203 || /%kkskokskokokokokokok sk ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok /

204 || proctype proc (byte id, dependsOn) {

205 //(unsigned dependsOn: PROC_BITS, id: PROC_BITS) {
296 unsigned project : PROJ_BITS;

297

298 //init_complete == true;

299 /* end: */

206

300 again:

301 select(project: 0..3);

302 if

303 :: projects[project].runs.executed[id] == 0&&

304 projects[project] .runs.executed[dependsOn] == 1->
305 /* progress: */ set_process_bit();

306 :: else -> skip;

307 fi

308 goto again;

309 }

BLL || /%skskskokokokokokkokok ok ok ok ok ok ok ok ok ok ok ok ook ok ook ok ok ok ok ok /
312 || active proctype check_approve_and_decline() {

313 // process changes this values

314 unsigned project : PROJ_BITS;

315

316 //init_complete == true;

317 /* end: x/

318 again:

319 select(project: 0..3);

320 assert(projects[project] .submit == 1);

321 if

322 :: projects[project] .runs.executed[1] == 1&&
323 projects[project] .runs.executed[2] == 1->
324 approve_and_decline = 1;

325 //assert(false);

326 :: else -> skip;

327 fi;

328 goto again;

330 }

332 || /% kkskokokokok sk ok ok sk okokok ok ok ok sk ok sk okok ok ko koK ok okokok ok ok /
333 init{

334 unsigned

335 // for choosing values non-deterministicly
336 n : SUPERS_BIT = O;

337 // for counters, cannot use unsigned type vor variables used in for loops?
338 byte 1, m;

339

340 add_supervisors_5bit();

341 check_supervisor_assignments();

342 m = 0;

343

344 for (1: 0..(PR0OJS-1)) {

345

346 for (m: 0..(PROCS-1)) {

347 projects[1] .runs.executed[m] = false;

348

349

350 if

351 :: projects[l] .access_ticket = deidentified;
352 :: projects[l].access_ticket = identified;
353 fi

354

355 // choose project’s pi

356 select(n: 0..31);

357 projects[1l].pi = n;

358

359 // choose whether project has data collector
360 if

361 :: projects[l] .data_collector_present = false

207

362 :: projects[l].data_collector_present = true
363

364 fi

365

366 if

367 N projects[l] .data_collector_present == true ->
368 // ensure data collector chosen will not overlap with pi
369 choose_n_again: {

370 select(n: 0..31);

371 if

372 :: projects[l].pi == n ->

373 goto choose_n_again;

374 :: else -> skip;

375 fi;

376 }

377

378 // assign data collector

379 projects[1] .data_collector = n;

380 assert(projects[1l].pi != projects[l].data_collector);
381 :: else -> skip;

382 fi

383 projects[1] .submit = 1;

384

385

386 init_complete = true;

387

388 // query

389 run proc (3, 1);

390

391 // transform

392 run proc (4, 3);

393

394 // view

395 run proc (5, 4);

396

397 // download

398 run proc(6, 4);

399 }

208

A.2 Alloy Models

The model for the full NJH system used in the motivation is presented in four parts, Listing A.2 through

Listing A.5.

Listing A.2: Full NJH structural model, i.e., without additional constraints, operation specifications, or

conformance rules. These are added in Listing A.3 through Listing A.3

1 || /xkkokkkskkokk skokokokokkokokokk K RRKKKKRKK FKKKAAKKKK KKK AKRKKK KKK AAKKKAK Kok ok ok Kk K

2 Begin Structural Model, NJH
3 || /kkskokakokokokok skokskokokoskokokokok skokokokskokskokokok skokokskokskokokokok kokskokskokokokokok skokokskokokokokokok skokskskoksk ook kok /

4 ||{module NJH

/********** kokokokokokkkokok kokkokokokokkkk kokckkkkokdkkk kkokkkkkkkk

6

7 base abstract signatures
8 || dokkskokokokskokok skokokskoskokokokokok skokokokskokokokskok skokokokakokokokokok skkokokokskokkokok /
9o || abstract sig

10 Category,

11 Data,

12 DataSource,

13 DataTransform,

14 Permission,

15 Purpose,

16 Rule,

17 Status,

18 Type {}
19
20 || /Fkkskoksokkokok skokskokskokokskokok skokokskokokskokokok skokskokokskokokokok Kok skokskoksk sk okok
21 extended abstract signatures

22 || doksksrskokokarskok okokokskokokokokok skskokokokskokokokskkokskokokokskokokokkokskokokokkoskokok /
23 || abstract sig

24 AccessTicket,

25 Licence

26 || extends Permission{}

27
28 || abstract sig

29 AccessRule,
30 DecisionRule
31 || extends Rule {}

33 || abstract sig HIPAACat extends Category{}
34 || abstract sig Consent extends Category{}

35
36 || /HFkRdrrakkk dkokokkkokkk Kok RkkRok kR kKK Kk

37 unextended concrete signatures

38 || kokkkkkokkokk skokkokkokkkkk kokkkokokkkkok kkkkokkkkdok Kok dokkkkkokk /
39 || sig Day,

40 Month,

11 Name,

12 Patient,

43 Personnel, // this cannot be abstract

14 Query,

45 Year {}

46
a7 || sig Dataltem {
18 name: Name}

49

209

77

78

79

80

81

82

83

84

85

90

91

92

93

94

96

97

98

99

100

101

102

103

109

/xsckokskskokokskok skskokokokskokokoksk skokskokokokskokokok okskokokokskokokok skokoksksk ok sk ok ok
extended concrete signatures
skokskokokskokokokok sokskokokokskokokok skokskskokokskskokokkokokskokokokskokok skokokksksk ok sk ok /
one sig
DeIDedTransformHDate,
IdentifiedDoesNotTransformHDate,
PatientConsent
//ProtectedChild,
//ProtectedPregnantWomen
extends AccessRule {}

one sig
CanUseTotallyDelIDed,
DataAccessAgreementPresent,
DataSourcePriorityOK,
LicenedTeamAndPI,
NoOverlapPITeamDC,
NoSupsInPIandDC,
PIDefined,
ProjectMembersDefined,
QualifierPresent,
SomePurposeNotDirectTreatment,
SomeQueriesDefined,
SomeSourcesDefined

extends DecisionRule {}

one sig

Allow,

Disallow
extends Consent {}

one sig
TotallyDelIDed,
NotTotallyDelIDed
extends DataTransform {}

sig Project extends DataSource{}
one sig ClinicalDB extends DataSource{}

one sig
HDate,
HProtectedChild,
HProtectedPregnantWoman
extends HIPAACat {}

one sig Fishing extends Licence {}

one sig DelDed,
Identified
extends AccessTicket {}

one sig
DirectTreatment,
Research

extends Purpose{}

one sig
DownloadAllowed,
DownloadDisabled

extends Status {}

one sig

210

113
114
115
116
117
118
119
120
121

122

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

160
161
162
163
164
165
166
167
168
169
170
171
172

173

Group,
Individual
extends Type {}

sig Date extends Data {
day: lone Day,
month: lone Month,
year: Year }{
// day iff month also exists
some day iff some month }
sig dStr extends Data {}
[dwsksrskorckkoksk soksokskoRskokskok skokskskskokakokakok kokokskokskokskoksk kokokskokkoksk ook
subset concrete signatures
sokokoskokskokokokok kokokskokskokskokok skokskokskskokakokok stokskokskokskokokok skokskkskkokokokok /
sig
Qualifier,
Researcher
in Personnel{}

//changed extends to in, due to identified access ticket
sig

QryData,

RetData
in Dataltem {}

[Rxkkkokkkkk kokokdokkkkdok kkkokokkkkkok kokdokkkokdokk kkokokkkkokkk
NJH Closed System
Fok ook kR ok ok ok ok kKKK KKK KKK KRRk okok KoKk KoKk kK KKKk kK k /
sig NJH {
accessRules: set AccessRule,
accessTickets: set AccessTicket,
categories: set Category,
consents: set Consent,
dataltems: set Dataltem,
dates: set Date,
decisionRules: set DecisionRule,
hCats: set HIPAACat,
licences: set Licence,
patients: set Patient,
permissions: set Permission,
personnel: set Personnel,
projects: set Project,
purposes: set Purpose,
qryltems: set QryData,
qualifiers: set Qualifier,
queries: set Query,
researchers : set Researcher,
retItems: set RetData,
rules: set Rule,
sources: set DataSource,
statuses: set Status,
transforms: set DataTransform,
types: set Type,
values: set Data,

/* access rules applies to these types. */
ARAppliesTo: accessRules -> some types,

/* access rule transforms data linked to this hipaa category */
ARTransforms: accessRules -> hCats,

// access rule hides these categories if they are disallowed by Consent

211

174 ARHides: accessRules -> categories,

175

176 /* helps to determine

177 1. if data from a project can be used as a data source */

178 ATPriority : accessTickets -> accessTickets,

179

180 // pl->p2 means pl gives p2 access to data produced by pl

181 dataAccessAgreement: projects —> projects,

182

183 /* data items must a value or not. */

184 dataValues: dataltems -> one values,

185

186 /* each data item is linked to a perticular hipaa category. we do not need to
187 link the retitems because we know the DICat of retItems through the
188 RDFromQD relation */

189 DICat: (dataltems - retItems) -> hCats,

190

191 /* not neccessary to have a direct (i.e. one-to-one) link between retItems
192 and sources becaues retItems may be grouped. Data sources of retItems
193 are found through the RDFromQD relation */

194 DISource: dataltems -> one sources,

195

196 enteredOn: dataltems -> lone dates,

197

198 /* not neccessary to have a direct (i.e. one-to-one) link between retItems
199 and patients becaues retItems may be grouped. Patients associated
200 with retItems are found through the RDFromQD relation */

201 patientData: patients one -> some gryltems -> one consents,

202

203 /* permission has applicable decision and access rules that must be
204 applied to approve the licence or to access the data. */

205 permRules: permissions -> some rules,

206

207 /* project access tickets, each one has at most one */

208 projectAT: projects -> lone accessTickets,

209

210 /* project data collector, each project has at most one */

211 projectDataCollector: projects -> lone personnel,

212

213 projectDataTransformRequired: projects -> one transforms,

214

215 /* project team members */

216 projectMembers: projects -> researchers,

217

218 /* project principal investigator */

219 projectPI: projects -> lone researchers,

220

221 /* project purpose */

222 projectPurpose: projects -> lone purposes,

223

224 /* project queries */

225 projectQueries: projects one -> queries,

226

227 /* project sources, could be other projects too */

228 projectSources: projects -> sources,

229

230 // a query can work on any kind of data item

231 gryReturns: queries -> dataltems -> dataltems,

232

233 // a query can return any kind of data item

234 qryWorksOn: queries -> dataltems,

235

212

236
237
238
239
240
241
242
243
244
245
246
247
248

261

/* returned data from query data, each piece of retdata is derived from
at most lgryitem because we are only working on the Individual Type

right now.

Hoewever because we are using different access tickets, qryltems
may be linked to more than one return types. The max is 2because

we have two fifferent Transform rules*/
//RDFromQD: retItems -> one qryltems,

/* return data type, has Oor 1ltype */
RDType: queries -> retlItems -> lone types,

/* researcher licence */
researcherLl: researchers -> lone licences,

/* researcher qualifier, at most one qualifier */
resQualifier: researchers -> lone qualifiers,

/* supervisors, each personnel has at most one supervisor */
supervisors: personnel lone -> personnel,

/* determines is query results meets conformance and the next
operation, i.e. view/download is allowed */
VDAllowed: queries -> lone statuses }

[RKEAKKKKAK KKAFKKKAFK KA FKKKKF KK KA KKK A RRK HAORK KA FKK K Fokok KK Fok kKK

End Structural Model, NJHg
[kkskokskokokokok skokskokskoskokskokok skskokokskokskokokok skokokskokskokokokok kokskokokoskokokokok sk okoksk sk ok sk sk ok

[Fkokokdokkokok skokokokskokkokokok kokokskokokokokskok skokskokokokokkokokkokokokokokkokokok kokokskok ok okokok
These are not a part of the model. The provide sanity
checks before going on to write the operation specifications
[3krskoksokkokok skokskokskokokskokok skskokskokokskokokok skokakokokskokokokokkokoskokskokokokokok skokokokok sk ok ok
[Fksokokkokok ok kokokokokokskokokok kokokokokskokokokok kokskokokokokokokok kol kok o okok ok
any instance of the model
sokoksokokokokakok kokskokokokokskokokkokokokokokskokokok skokokakokkokokokok kokokokkok o okok ok /
private pred show (njh: NJH) {}
run show for 7but exactly 15Rule, 1NJH expect 1

213

ok KK KoKk KK K

ok ok Kk ok Kk k ok /

ok KK K Kok KK K

skok ok ok kok ok k ok /

o

w N o

10

11

13

14

16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34

39
40
41
42
43

44

Listing A.3: Full NJH structural model: adding constraints. Imports Listing A.2 on line 24.

[3krskoksokkokok skokskokskokokskokok skskokskokokskokokok skokskokokskokakokokkokskokskokokokokok skokokskokokskokokok skokskok ok sk ok ok ok
Begin Structural Model With (Generator) Invariants, NJHg

Executing any of the predicates or assertions requires a
minimum of 13rules

To do:
17/04/2016
To add invariants for
1. how an AT is obtained - done 25/04/2016
2. for how runQuery changes
qryWorksOn,
qryReturns,
RDType,
enteredOn
3. How Update Conformance works with gryReturns

[3krskoksokkokok skokskokskokkokokk kskokskokokskoRakok skokskokokskokakokokkokokokskokokokokok skokokskokokokokokok skokskokok sk okok ok /
module NJHg

[Kskokkokkok ok KRR KKK KRR kKooK KRk oKkok koK Kok oK
imports

[kskokskokkokokok KRR KooK KKK KRR KRRk koK sk ok ok Kok

open NJH

open util/relation

open util/ternary

/sckokskskokokakok skokoskokokskokokokok skokskokokokokokokok okskokokokskokokok skokok sk ok ok ok ok
INVARIANTS
separating the invariants for each set,
relation, or related sets and relations
allows for easier decomposition later on
when doing slicing
skokokokokkokskoksk okokockkskskskokokck kkokskokokokokkk kokskokokkkkkk **********/
// this signature is exported from the model, it is used in inv[]
pred generator (njh: NJH) {

all
njh: NJH |
//for sets

invCategory[njh] and
invDatItems[njh] and
invDates[njh] and
invPermissions[njh] and
invPersonnel [njh] and
invRules[njh]l and
invSources[njh] and

// for relations
invARAppliesTo[njh] and
invATPriority[njh] and
invARHides [njh] and
invARTransforms [njh] and
invDataAccessAggreement [njh] and
invDISource[njh] and
invEnteredOn[njh] and
invPatientDataAndDICat [njh] and
invPermRules[njh] and
//invProjectAT and

214

60 invProjectDataCollector [njh] and

61 invProjectSources[njh] and
62 invQryReturns[njh] and

63 invQryWorksOn[njh]l and

64 invRDType [njh] and

65 invResearcherL[njh] and

66 invResQualifier[njh] and
67 invSupervisors[njh] and

68 invVDAllowed[njh] and

69 setPredefinedConfigurations[njh] }
70
71 || /Rkskskokskskokk skokokokskokokokok KRRk R skakokskoRR Rk Kk koK kK kK
72 Some Functions and Predicates to be reused

73 || Rkksskkoksokok kskskokokokRoRR kKRR koK KR KRk kKR ok ok [
74
75 || fun DeIDedDateTransform (d: Date): Date {

76 {ri: Date |

77 no ri.day and

78 no ri.month and

79 ri.year = d.year }}

80
s1 || fun IdentifiedDateTransform (d: Date): Date {
82 {ri: Date | ri = d }}

83
s1 || pred identifiedDate (d: Date) {
85 some d.day }

86
87 || /HFkrskrkrkkk kAR A AAKAAKAKKK KKK KAKKAKKK KA KA KK KKK
88 Set Invariants,

89 ordered alphabetically as best as possible

00 || kkskokskokskokokok skokskokskokskokskoKk KRk KokokskKskoKkoKkK KKKk Kok Kok [
91
92 || private pred invCategory (njh: NJH) {
93 njh.categories =

94 njh.consents + njh.hCats }

95
96 || private pred invDatItems (njh: NJH) {

97 (njh.qryItems + njh.retItems) in njh.dataltems}
98

99 || private pred invDates (njh: NJH) {

100 // closed system constraint - any date is a part of the set of dates
101 njh.dates = (njh.values & Date) + ran[njh.enteredOn]

102

103 all

104 d: Date |

105 (d in njh.dates and identifiedDate[d]) implies

106 DeIDedDateTransform[d] in njh.dates}

107

10s || private pred invPermissions (njh: NJH) {

109 njh.permissions = njh.accessTickets + njh.licences }

110
111 || private pred invPersonnel (njh: NJH) {
112 (njh.researchers + njh.qualifiers) in njh.personnel}

114 || private pred invRules (njh: NJH) {
115 njh.rules = njh.accessRules + njh.decisionRules }

117 || private pred invSources (njh: NJH) {
118 njh.projects in njh.sources }

119
120 /********** skokokokokoskokkoksk skokokokkkokskskk okokckkskckskokokk kkokskokokokokkk

121 Relation Invariants,

215

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

142

162
163
164
165
166
167
168
169

170

172
173
174
175

176

178
179
180
181
182

183

ordered alphabetically as best as possible
skokokokokkokskoksk okokkkskskskokokk kkokskokokokokkk skokskokokkkkkk **********/

// replaces TransFormHDateAppliesToIndividual in old specifications
private pred invARAppliesTo [njh: NJH] {
some njh.ARAppliesTo &
DelIDedTransformHDate-> Individual }

private pred invATPriority (njh: NJH) {
irreflexive[~(njh.ATPriority)] }

private pred invARHides (njh: NJH) {
no njh.ARHides & njh.ARTransforms }

// DelDedTransformHDate applies to HDate HIPAACat
private pred invARTransforms (njh: NJH) {
some njh.ARTransforms & DeIDedTransformHDate -> HDate }

//pl->p2 means pl gives p2 access to data produced by p1l
private pred invDataAccessAggreement (njh: NJH) {
// no project has a data access agreement with itself
irreflexive[~(njh.dataAccessAgreement)]

/* a project with a data access agreement with another
proj g
project has that project as a data source */
“(njh.dataAccessAgreement) in njh.projectSources }

private pred invDISourcel (njh: NJH) {
all
s: njh.sources |
some s & Project
// project can only have retItems as data items
implies
njh.DISource.s in njh.retItems
// otherwise no retitems as data items
else
njh.DISource.s in (njh.dataltems - njh.retItems) }

/* we can trace every ri back to some (set of) patientData qi (qgis)

and if any of the qi’s is linked to HDate, and the access ticket used

to create the ri is DelDed, the ri must also be de-identified. */
private pred invDISource2 (njh: NJH) {

all

da: (njh.DISource).(njh.projects) |
some njh.qryReturns.da implies
some da -> ClinicalDB & njh.DISource.(njh.projectSources) }

private pred invDISourceAndEnteredOn (njh: NJH) {
all
di: njh.dataltems |
some di.(njh.DISource) & ClinicalDB implies
identifiedDate[di. (njh.enteredOn)] }

private pred invDISource (njh: NJH) {
invDISourcel[njh] and
invDISource2[njh] and
invDISourceAndEnteredOn[njh]}

private pred invEnteredOn (njh: NJH) {
// dataltems in Patient data
all
di: mid[njh.patientDatal | {

216

184 // each has a date entered, we don’t care if retItems are not in enteredOn?
185 some di.(njh.enteredOn) and

186 // each enteredOn data has a day and month (constraint in Date signature
187 // ensures that month is non-empty iff day is non-empty)
188 some di.(njh.enteredOn.day) }}

189

190 // replaces AllDatesCorrectlyCategorised in old specifications
191 || private pred invPatientDataAndDICat[njh: NJH] {

192 /* All dates in patient data are correctly categorised

193 as HDate HIPAACat */

194 all

195 di: mid[njh.patientData] |

196 some di.(njh.dataValues) & Date implies

197 some di.(njh.DICat) & HDate }

198

190 || // replaces TransformHDateIsDeIDedRule in old specifications
200 || private pred invPermRules (njh: NJH) {

201 // DelDedTransformHDate is linked with DeIDed access ticket
202 some njh.permRules &

203 DeIDed -> DeIDedTransformHDate and

204 // (so far) only the DelDed access ticket has the DeIDedTransformHDate rule
205 njh.permRules.DeIDedTransformHDate = DeIDed }

206

207 || private pred invProjectAT (njh: NJH) {

208 // **¥xkx*xxx*x for approve project access ticket

209 all

210 p: njh.projects |

211 let

212 dr =

213 CanUseTotallyDeIDed +

214 DataAccessAgreementPresent+

215 DataSourcePriorityOK +

216 LicenedTeamAndPI +

217 NoOverlapPITeamDC +

218 NoSupsInPIandDC +

219 PIDefined +

220 ProjectMembersDefined +

221 SomePurposeNotDirectTreatment +

222 SomeQueriesDefined +

223 SomeSourcesDefined,

224 di = dr - CanUseTotallyDeIDed,

225 d = DelDed,

226 i = Identified,

227 pat = njh.projectAT |

228

229 some p.pat implies (

230

231 // specific for DelDed access tickets

232 some p -> d & pat implies (

233 // kind of Transformation access ticket allows

234 some p->TotallyDeIDed & njh.projectDataTransformRequired and
235 // rules that apply to the DeIDed access ticket

236 d.(njh.permRules) & njh.decisionRules = dr)

237

238 and

239

240 // specific for Identified access tickets

241 some p -> i & pat implies (

242 // kind of Transformation access ticket allows

243 some p -> NotTotallyDeIDed & njh.projectDataTransformRequired and
244 // rules that apply to the DeIDed access ticket

245 d.(njh.permRules) & njh.decisionRules = di)

217

246

247 and

248

249 all

250 ps: p.(njh.projectSources) & njh.projects | {

251 // application of the DataAccessAgreementPresent Decision Rule
252 some ps -> p & njh.dataAccessAgreement and

253 /* application of the DataSourcePriority0OK Decision Rule
254

255 if access ticket being considered has priority over
256 the access tickets of any of its project sources
257 (i.e. other projects) }then we cannot approve the
258 project because the data returned would not be at
259 the level required */

260 no (d+i) -> ps.(njh.projectAT) & njh.ATPriority }

261 and

262

263 let

264 team = p.(njh.projectMembers),

265 pi = p.(njh.projectPI),

266 dc = p.(njh.projectDataCollector) | {

267

268 all

269 r: (team + pi) | {

270 /* application of the LicenedTeamAndPI Decision Rule

271 each pi and team member has a licence */

272 some r.(njh.researcherl) }and

273 /* application of the NoOverlapPITeamDC Decision Rule
274 1. neither pi nor dc are a part of project team */
275 no (pi + dc) & team and

276 // 2. pi and da are not the same

277 no pi & dc and

278 /* application of the ProjectMembersDefined Decision Rule
279 > 1 team members */

280 #team > Oand

281 /* application of the PIDefined Decision Rule

282 has a pi */

283 #pi> 0}

284

285 and

286

287 /* application of the NoSupsInPIandDC Decision Rule

288 neither the pi nor the da supervise each other

289 directly or indirectly */

290 let

201 sup = p.(njh.projectPI) -> p.(njh.projectDataCollector) | {
292 no (sup + “sup) & ~(njh.supervisors) }

293

204 and

295

296 /* application of the SomePurposeNotDirectTreatment Decision Rule
297 project purpose is not for direct treatment */

208 p- (njh.projectPurpose) != DirectTreatment

299

300 and

301

302 /* application of the SomeQueriesDefined Decision Rule
303 at least one project query */

304 some p.(njh.projectQueries)

305

306 and

307

218

308
309
310
311
312
313
314
315
316
317
318
319

320

322
323
324
325

326

360
361
362
363
364
365
366
367
368

369

/* application of the SomeSourcesDefined Decision Rule
at least one project source */
some p.(njh.projectSources)) }

private pred invProjectDataCollector(njh: NJH) {
all
p: njh.projects |
// ClinicalDB iff DataCollector
(some p->ClinicalDB & njh.projectSources) implies
(some p.(njh.projectDataCollector)) }

private pred invProjectSourcesl (njh: NJH) {
// no self datasource for projects, directly or indirectly
irreflexive[~ (njh.projectSources :> njh.projects)] }

private pred invProjectSources2 (njh: NJH) {
all
p: njh.projects |
some p.(njh.projectAT) implies
/* all data sources for a project that are projects themselves
should be (already) approved when the project gets it’s
access ticket */
all
ps: (p.(njh.projectSources) & Project) |
some ps.(njh.projectAT) }

private pred invProjectSources (njh: NJH) {
invProjectSourcesl[njh] and
invProjectSources2[njh] }

private pred invQryReturnsl (njh: NJH) {
all
q: njh.queries |
some q.(njh.qryReturns) implies
ran[q. (njh.qryReturns)] in q.(njh.qryWorksOn) }

private pred invQryReturns2 (njh: NJH) {
all
q: njh.queries |
some q.(njh.qryReturns) implies
some njh.projectQueries.q.(njh.projectAT) }

private pred invQryReturns (njh: NJH) {
invQryReturnsi[njh] and
invQryReturns2[njh] }

private pred invQryWorksOn (njh: NJH) {
all
q: njh.queries,
qi: njh.qryItems |
let
gSources = (njh.projectQueries).q.(njh.projectSources) |
// constraints on what can be in QryWorksOn for a query
some q -> qi & njh.qryWorksOn implies
(qi in (njh.DISource).qgSources and
no qi -> Disallow & select23[njh.patientDatal]) }

private pred invRDType (njh: NJH) {
all
q: njh.queries,
r: njh.retItems |
let

219

370 grq = (r.(q.(njh.qryReturns))) {

371 // these are the entries

372 select12[njh.RDType] = selectl2[njh.qryReturns]
373

374 // individual type

375 some q -> r —-> Individual & njh.RDType iff
376 #qrq = 1

377

378 // group type

379 some q -> r —> Group & njh.RDType iff

380 #qrq > 1 } }

381

ss2 || private pred invResearcherL (njh: NJH) {

383 // *xkxkxxxkx for approve researcher licence
384 all

385 res: njh.researchers |

386 some res.(njh.researcherL) implies

387 // researcher is qualified

388 some res.(njh.resQualifier) and

389 // the licence granted required qualification
390 (res. (njh.researcherl)) . (njh.permRules) =
391 QualifierPresent }

303 || private pred invResQualifier (njh: NJH) {
304 // x*¥xkx*xxx* for qualify researcher this should always be true
395 no iden & ~“(njh.resQualifier) }

397 || private pred invSupervisors (njh: NJH) {

398 // no cycles in supervisor relations,

399 irreflexive[” (njh.supervisors)]

400 // all personnel are either supervisor or supervised

401 all

102 p: njh.personnel | {

103 p in (dom[njh.supervisors] + ran[njh.supervisors])} and
404 /* supervisor relation is a single tree, i.e. not a forest
405 this means that one personel has no supervisor */

406 one

107 sup: njh.personnel |

408 no (njh.supervisors).sup }

410 || // this checks only for DelDed access ticket
111 || private pred invVDAllowedDeIDed(

412 njh: NJH,

413 gry: Query) {

414 let

415 at = (njh.projectQueries).qry.(njh.projectAT) |

416

a17 some at & DelDed iff

418 all

419 d: ((Date & dom[qry.(njh.qryReturns)].(njh.dataValues)) +
420 dom[qry. (njh.qryReturns)]. (njh.enteredOn)) |

421 not identifiedDatel[d] }

422
423 || // this checks only for Identified access ticket
424 || private pred invVDAllowedIdentified(

425 njh: NJH,

426 gry: Query) {

427 let

128 at = (njh.projectQueries).qry.(njh.projectAT) |
429

430 some at & Identified iff

431 all

220

432 d: ((Date & dom[qgry.(njh.qryReturns)].(njh.dataValues)) +

433 dom[qry. (njh.qryReturns)]. (njh.enteredOn)) |
434 identifiedDate[d] }
435

136 || pred invVDAllowedl (
437 njh: NJH,

438 q: Query) {

439
140 (invVDAllowedDeIDed[njh, q] and

441 invVDAllowedIdentified[njh, ql) }

413 || private pred invVDAllowed (njh: NJH) {

444 all

415 q: njh.queries | {

446 // if a query has a a VD status then it has some return data
a7 some q.(njh.VDAllowed) implies

148 some q.(njh.qryReturns)

449

450 some q -> DownloadAllowed & njh.VDAllowed implies
451 invVDAllowedl [njh, q]

452

453 some q -> DownloadDisabled & njh.VDAllowed implies
454 not invVDAllowedl([njh, ql }}

455

¢ || private pred setPredefinedConfigurations (njh: NJH) {
457 // for sets

458 njh.accessRules = // 5

459 DeIDedTransformHDate +

460 IdentifiedDoesNotTransformHDate +
461 PatientConsent and

162 //ProtectedChild +

163 //ProtectedPregnantWomen and
464

165 njh.decisionRules = //13

466 CanUseTotallyDeIDed +

467 DataAccessAgreementPresent +
468 DataSourcePriorityOK +

469 LicenedTeamAndPI +

470 NoOverlapPITeamDC +

471 NoSupsInPIandDC +

472 PIDefined +

473 ProjectMembersDefined +

474 SomePurposeNotDirectTreatment +
475 QualifierPresent +

476 SomeQueriesDefined +

477 SomeSourcesDefined and

478

479 // access tickets (2)

480 njh.accessTickets =

481 DelIDed +

482 Identified and

483

484 // licences (1)

485 njh.licences = Fishing and

486

487 // statuses (2)

488 njh.statuses =

489 DownloadAllowed +

490 DownloadDisabled and

491

192 // transforms (2)

493 njh.transforms =

221

494 TotallyDelIDed +

495 NotTotallyDeIDed and

496

197 //sources (at least 1)

498 some ClinicalDB & njh.sources and

499

500 // types

501 njh.types = ran[njh.ARAppliesTo] and

502

503 // for relations

504 // access ticket priority (1)

505 njh.ATPriority = Identified -> DelDed and

506

507 //ARAppliesTo: accessRules -> some types (3)
508 njh.ARAppliesTo =

509 DeIDedTransformHDate -> Individual +

510 IdentifiedDoesNotTransformHDate -> Individual +
511 PatientConsent -> Individual and

512

513 //ARTransforms: accessRules -> some hCats (2)
514 njh.ARTransforms =

515 DeIDedTransformHDate -> HDate +

516 IdentifiedDoesNotTransformHDate -> HDate and
517

518 //ARHides: accessRules -> some hCats (1)

519 njh.ARHides =

520 PatientConsent -> Disallow and

521

522 //permRules: permissions -> some rules (26)

523 njh.permRules =

524 // access rules for DelDed access ticket (2)
525 DeIDed -> DelIDedTransformHDate +

526 DeIDed -> PatientConsent +

527

528 // access rules for Identified access ticket (2)
529 Identified ->IdentifiedDoesNotTransformHDate +
530 Identified -> PatientConsent +

531

532 // decision rules for fishing licence (1)
533 Fishing -> QualifierPresent +

534

535 // decision rules for DeIDed access ticket (11)
536 DeIDed -> CanUseTotallyDelIDed +

537 DeIDed -> DataAccessAgreementPresent+

538 DeIDed -> DataSourcePriorityOK +

539 DeIDed -> LicenedTeamAndPI +

540 DeIDed -> NoOverlapPITeamDC +

541 DeIDed -> NoSupsInPIandDC +

542 DeIDed -> PIDefined +

543 DeIDed -> ProjectMembersDefined +

544 DeIDed -> SomePurposeNotDirectTreatment +
545 DeIDed -> SomeQueriesDefined +

546 DeIDed -> SomeSourcesDefined +

547

548 // decision rules for Identified access ticket (10)
549 Identified -> DataAccessAgreementPresent+
550 Identified -> DataSourcePriorityOK +

551 Identified -> LicenedTeamAndPI +

552 Identified -> NoOverlapPITeamDC +

553 Identified -> NoSupsInPIandDC +

554 Identified -> PIDefined +

555 Identified -> ProjectMembersDefined +

222

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617

Identified -> SomePurposeNotDirectTreatment +
Identified -> SomeQueriesDefined +
Identified -> SomeSourcesDefined and

/* Important to add these so that Alloy does not use a
subset of the configuration!!!
This is important when setting object configurations too */

#njh.accessRules = 3and

#njh.decisionRules = 12and

#njh.accessTickets = 2and

#njh.licences = land

#njh.statuses = 2and

#njh.sources > Oand

#njh.transforms = 2and

#njh.types = #ran[njh.ARAppliesTo] and

#njh.ATPriority = land

#njh.ARAppliesTo = 3and

#njh.ARTransforms = 2and

#njh.ARHides = land

#njh.permRules = 26}

/********** kokokokokokokkokok kokokokokokdkokokk kokokokkokokdkdkk kokokdkckokkkokk kkkokokkkkkk

End Structural Model, NJHg
[xsckokskskokokskok skokskokokskokokoksk skokskokokokskokokok okskokokokskokokokkokokskokokokskokok skokokoksk sk ok sk ok ok

[xsckkksokkokok skskokokokskokokoksk kokskokokoksiokokok skokskolokokskokokok okokskokokokskokok skokkokskok s kokok
These are not a part of the model. The provide sanity

checks before going on to write the operation specifications
[3krskoksokkokok skokskokskokokskokok skskokskokokskokokok skokakokokskokakokokkokskokskokokokokok skokokkok ok sk ko

[3krskoksokkokok skokskokskokokokokok kokokskokokokokskok skokskokokokokskokok kskokok sk ok sk okok
any instance of the model

sokokskokokskokakok kokskoskokskokakokok kokskokskokokokokok skokokskokokokokokok skokskokokskokok sk ok /

private pred show (njh: NJH) {}

run show for 7but 1INJH expect 1

/********** kokokokokokkkokok kokkokokskokdkkk kokckkkkokskdkk kokokkkkkkkk
We can get an instance of the model for all
the relations?

soksokokskskokokk kokgetsiokkokskokok stokokokskokokakokok skokokokskokokokskok kskokkokskokkkok /

private pred some0fAllSets(njh: NJH) {
some njh.accessRules and
some njh.accessTickets and
some consents and
some njh.dataltems and
some njh.dates and
some njh.decisionRules and
some njh.hCats and
some njh.licences and
some njh.patients and
some njh.permissions and
some njh.personnel and
some njh.projects and
some njh.purposes and
some njh.qryItems and
some njh.qualifiers and
some njh.queries and
some njh.researchers and
some njh.retItems and
some rules and
some njh.sources and

223

3k %k %k % 3k 3k %k %k %k Xk

sokokokokokokok ok ok /

ok KK K KoK KK K

skok ok ok kok ok k ok /

618 some njh.statuses and

619 some njh.transforms and
620 some njh.types and
621 some njh.values }

622 || run some0fAllSets for 7but 1INJH expect 1
623
624 || /%kkokskokokokskok skskokokokokokokokok skokokokokskokokokok sokskokokokskokokok kokkskoskok ok ok ok ok
625 We can get an instance of the model for all

626 the relations?

627 || Hrokoksrokokokok skoksiokokakskokokok skokskokokokskskokokkokokskokokokskokok skokokkskok ok skok /
625 || private pred someOfAllRelations(njh: NJH) {

629 some njh.ARAppliesTo and

630 some njh.ARHides and

631 some njh.ARTransforms and

632 some njh.ATPriority and

633 some njh.dataAccessAgreement and
634 some njh.dataValues and

635 some njh.enteredOn and

636 some njh.DICat and

637 some njh.DISource and

638 some njh.patientData and

639 some njh.permRules and

640 some njh.projectAT and

641 some njh.projectDataCollector and
642 some njh.projectDataTransformRequired and
643 some njh.projectPurpose and

644 some njh.projectSources and

645 some njh.projectPI and

646 some njh.projectMembers and

647 some njh.projectQueries and

648 some njh.qryReturns and

649 some njh.qryWorksOn and

650 some njh.RDType and

651 some njh.resQualifier and

652 some njh.researcherL and

653 some njh.supervisors and

654 some VDAllowed }

655 || run someOfAllRelations for 7but INJH expect 1

657 /********** skokokokokokokkoksk skokokokokkokskskk okokckkskskskokokk kkkskokokokkkk
658 We can get an instance of the model for all

659 the relations that satisfy generator[]?

660 || Hkskokokskokokokok sokskokokokskokokok skokskokokokskokokok kokokskokokokskokok skokkkskosk ok skok /
661 || private pred someOfAllRelationsSatisfyingGenerator (

662 njh: NJH) {

663 someOfAllRelations[njh] and generator[njh] }
664 || run someOfAllRelationsSatisfyingGenerator for 7
665 but 15Rule, 1NJH expect 1

666
667 || /FFkkokokokokokk kokskkkkkkkk kokkkokdkokkokok kokokokokokkokkk Kokkkokkok ko

668 We can get an instance of the model for all
669 the relations that satisfy generator[] and a
670 project has an Identified access Ticket?

671 || Fokdkokskokokskokok skskokskokokskokokok skokskskokskokokokok kokskokskokokskokok skoskokskokokskkok ok /
672 || private pred someOfAllRelationsSatisfyingGeneratorForIdentifiedAT(

673 njh: NJH, at: Identified) {

674 some njh.projectAT.at and

675 some0fAllRelations[njh] and generator([njh] }

676 || run someOfAllRelationsSatisfyingGeneratorForIdentifiedAT
677 for 7but 15Rule, 1NJH expect 1

678
679 || /HKkkkkokkokk kokkkkokkkkk KKK FKKKK KK KK FRKKAF KK KKKk kKK kKK

224

680 We can get an instance of the model for all

681 the relations that satisfy generator[] and a

682 project has a DeIDed access Ticket?

683 || Fkdkoksokokokok skoksokokokskokokok skokskokokokskskokk kokokskolokokskokok skokokokskokkokskok /

634 || private pred someOfAllRelationsSatisfyingGeneratorForDeIDedAT (

685 njh: NJH, at: DeIDed) {

686 some njh.projectAT.at and

687 some0fAl1lRelations[njh] and generator([njh] }
6ss || run someOfAllRelationsSatisfyingGeneratorForDeIDedAT
689 for 7but 15Rule, 1NJH expect 1

690
601 || /HKkkkokokkokk koo kokkkkk KKK FKKKA KK KA FKKKAFKK K Fok kKKK kKK

692 all sets that are defined are used!
693 using IFF instead of IMPLIES is not applicable
694 because lone on some sides of the relations.

695 || kkskkskokokokokok skokokskokokokokokok kokskoskokokokokokk kokskokokokokokokok skokokokokokokkok ok /
696 || assert TestIfAllSetsAreApplicableToTheModel {

697 all

698 njh: NJH |

699 someOfAllRelationsSatisfyingGenerator [njh] implies
700 some0fAllSets[njh] }

701 || check TestIfAllSetsAreApplicableToTheModel for 7

702 but 15Rule, 1NJH expect O

225

Listing A.4: Full NJH structural model: adding operation specifications. Imports Listing A.3 on line 9.

o

w N o

10
11
12

13

16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34

36
37

39
40
41
42
43
44
45

[3krskoksokkokok skokskokskokokskokok skskokskokokskokokok skokskokokskokakokokkokskokskokokokokok skokokskokokskokokok skokskok ok sk ok ok ok
Begin Process Model, NJHgPM

[3kkskoksokkokok skokskokskokokskokok kskokskokokskokakok skokskokokskokokokokkokoskokskokokokokok skokokskokokokokskok skokskokoksk ook skok /

module NJHgPM

JHRFAFAAFAKK HFAKFKAKKAK KKAKKAKFAK HKFAAFAKKAK FAKAA KA KKK
IMPORTS

KAAKKAKFAK HAKAKFAKKAK FAKAAKAKKK FAAFAAKAKK KKK A KKK [
open NJHg

open util/ordering[NJH] as ord

/skokskokskokoskokok skokskokskokokokokok skokokokokokokokokok kokokokskokskokokok kokokokokokk ok ok
SOME NOTES ON OPERATION TRACES

Since inv is not a fact, every instance on NJH
will not satisfy the invariants, just the ones
that have an operation applied on them.

This means that saying:

all nhj: NHJ | inv[njh]

in an assertion will always return a
counterexample.

However we know that:

all
njh, njh’: NJH |

(inv[njh] and oplnjh, njh’l)
implies inv[njh’]

should not return counterexamples.

The fact called traces enforces this -
the initial state satisfies inv[] and all next
states should satisfy inv[] as well.

FORK KA KRKKK KKKAFORKKAK KKK FKRKKAK KKK FRKKKFK KkFokkk Kk Fkk /

// used in Traces for the first state in ord
private pred init (
njh: NJH) {
// operations work on these so initial none of them

// for sets
// NONE

// for relations
no njh.resQualifier and
no njh.researcherL and
no njh.projectAT and
no njh.qryReturns and
no njh.qryWorksOn and
no njh.RDType and
no njh.VDAllowed}
run init for 7but 15Rule, 1NJH expect 1

fact Traces {
// get the initial state, i.e. the first state in sequence ord

226

60 init [ord/first]

61 // the first state fulfils the generator constraints
62 generator [ord/first]

63 all

64 /* since last does not have a next state, do not use it here.
65 used later in njh.next */

66 njh: NJH - ord/last |

67 some

68 res: Researcher,

69 per: Personnel,

70 lic: Licence,

71 proj: Project,

72 at: AccessTicket,

73 qry: Query |

74 let

75 /* set the next state */

76 njh’ = njh.next |

77 /* possible operations on the state */

78 qualifyResearcher[njh, njh’, res, per] or
79 approveResearcherL[njh, njh’, res, lic] or
80 approveProjectAT[njh, njh’, proj, at] or
81 runQuery[njh, njh’, res, proj, qry, at] or
82 updateConformance [njh, njh’, qry] or

83 skip[njh, njh’] }

85 || /dkksokokskskokok skokokskokokokskokok skokokokskokokokskok skokokokokoskokokokok skskokokokskok ok ok
86 REUSE - predicates and functions

87 || dokoksrskokokskokok skokokokskokokokskok skskokokokskokokokok skokoskokokskokokokok sokskokokokskok ok /
ss || // the sets do not change

so || private pred noChangeSets (njh, njh’: NJH) {

90 njh.accessRules = njh’.accessRules and

91 njh.accessTickets = njh’.accessTickets and
92 njh.categories = njh’.categories and
93 njh.consents = njh’.consents and

94 njh.dataltems = njh’.dataltems and

95 njh.dates = njh’.dates and

96 njh.decisionRules = njh’.decisionRules and
o7 njh.hCats = njh’.hCats and

98 njh.licences = njh’.licences and

99 njh.patients = njh’.patients and

100 njh.permissions = njh’.permissions and
101 njh.personnel = njh’.personnel and

102 njh.projects = njh’.projects and

103 njh.purposes = njh’.purposes and

104 njh.qryltems = njh’.qryItems and

105 njh.qualifiers = njh’.qualifiers and
106 njh.queries = njh’.queries and

107 njh.researchers = njh’.researchers and
108 njh.retlItems = njh’.retItems and

109 njh.rules = njh’.rules and

110 njh.sources = njh’.sources and

111 njh.statuses = njh’.statuses and

112 njh.transforms = njh’.transforms and
113 njh.types = njh’.types and

114 njh.values = njh’.values }

115
116 || // the relations do not change
117 || private pred noChangeRelations (njh, njh’: NJH) {

118 njh.ARAppliesTo = njh’.ARAppliesTo and
119 njh.ARHides = njh’.ARHides and

120 njh.ARTransforms = njh’.ARTransforms and
121 njh.ATPriority = njh’.ATPriority and

227

122 njh.dataAccessAgreement = njh’.dataAccessAgreement and
123 njh.dataValues = njh’.dataValues and

124 njh.enteredOn = njh’.enteredOn and

125 njh.DICat= njh’.DICat and

126 njh.DISource = njh’.DISource and

127 njh.patientData = njh’.patientData and

128 njh.permRules = njh’.permRules and

129 njh.projectAT = njh’.projectAT and

130 njh.projectDataCollector = njh’.projectDataCollector and
131 njh.projectDataTransformRequired = njh’.projectDataTransformRequired and
132 njh.projectPurpose = njh’.projectPurpose and

133 njh.projectSources = njh’.projectSources and

134 njh.projectPI = njh’.projectPI and

135 njh.projectMembers = njh’.projectMembers and

136 njh.projectQueries = njh’.projectQueries and

137 njh.qryReturns = njh’.qryReturns and

138 njh.qryWorksOn = njh’.qryWorksOn and

139 njh.RDType = njh’ .RDType and

140 njh.resQualifier = njh’.resQualifier and

141 njh.researcherL = njh’.researcherL and

142 njh.supervisors = njh’.supervisors and

143 njh.VDAllowed = njh’.VDAllowed }

144

145 || private pred applyDecisionRules (

146 njh: NJH,

147 perm: Permission,

148 rp: (Researcher + Project)) {

149

150 let

151 team = rp.(njh.projectMembers),

152 pi = rp.(njh.projectPI),

153 dc = rp.(njh.projectDataCollector) ,

154 sup = pi-> dc,

155 dr = perm. (njh.permRules) & njh.decisionRules,

156 pss = rp.(njh.projectSources) & Project |

157

158 // 0. CanUseTotallyDeIDed decision rule is applicable
159 (some dr & CanUseTotallyDeIDed implies (

160 (some perm & DelIDed implies

161 rp. (njh.projectDataTransformRequired) = TotallyDeIDed)
162 and

163 (some perm & Identified implies

164 rp. (njh.projectDataTransformRequired) = NotTotallyDeIDed)))
165

166 and

167

168 // 1. DataAccessAgreementPresent decision rule is applicable
169 (some dr & DataAccessAgreementPresent implies

170 /* pl->p2 in njh.dataAccessAgreement means

171 pl gives p2 access to data produced by pl

172 all the project’s sources that are projects have a
173 corresponding data agreement */

174 all

175 ps: pss | {

176 // data access agreement is in place

177 some ps -> rp & njh.dataAccessAgreement })

178

179 and

180

181 // 2. DataSourcePriorityOK decision rule is applicable
182 (some dr & DataSourcePriorityOK implies

183 all

228

184 ps: pss |

185 /* all the project’s sources that are projects themselves
186 each have an approved access ticket */

187 some ps.(njh.projectAT) and

188 /* if access ticket being considered has priority over
189 the access tickets of any of its project sources
190 (i.e. other projects) }then we cannot approve the
191 project because the data returned would not be at
192 the level required */

193 no perm -> ps.(njh.projectAT) & njh.ATPriority)

194

195 and

196

197 // 3. NoSupsInPIandDC decision rule is applicable
198 (some dr & NoSupsInPIandDC implies

199 /* neither the pi nor the da supervise each other
200 directly or indirectly */

201 no (sup + “sup) & ~“(njh.supervisors))

202

203 and

204

205 // 4. PIDefined decision rule is applicable

206 (some dr & PIDefined implies #pi > 0)

207

208 and

209

210 // 5. ProjectMembersDefined decision rule is applicable
211 (some dr & ProjectMembersDefined implies #team > 0)
212

213 and

214

215 // 6. LicenedTeamAndPI decision rule is applicable
216 (some dr & LicenedTeamAndPI implies (

217 // each team member and pi has a Licence

218 all

219 r: (team + pi) | {

220 some r.(njh.researcherl) }))

221

222 and

223

224 // 7. NoOverlapPITeamDC decision rule is applicable
225 (some dr & NoOverlapPITeamDC implies (

226 // neither pi nor dc are a part of project team
227 no (pi + dc) & team and

228

229 // pi and da are not the same

230 no pi & dc))

231

232 and

233

234 // 8. SomePurposeNotDirectTreatment decision rule is applicable
235 (some dr & SomePurposeNotDirectTreatment implies (
236

237 // purpose defined for project

238 some rp.(njh.projectPurpose) and

239

240 // purpose is not direct treatment

241 rp. (njh.projectPurpose) != DirectTreatment))
242

243 and

244

245 // 9. QualifierPresent decision rule is applicable

229

246 (some dr & QualifierPresent implies

247 some rp.(njh.resQualifier))

248

249 and

250

251 // 10. SomeQueriesDefined decision rule is applicable
252 (some dr & SomeQueriesDefined implies

253 some rp.(njh.projectQueries))

254

255 and

256

257 // 11. SomeSourcesDefined decision rule is applicable
258 (some dr & SomeSourcesDefined implies

259 some rp.(njh.projectSources)) }

261 || /HFkkkkkokkk Fokokkkkokokkk KokKKKKRKKK KoKk kKKK koK ok ok Kk ok

262 OPERATION - skip
263 || KkFokokkkdokk kkokokokkkokokk FkokkkRdokkK Fokokkkdokkkk kokkkkokkkkk /

264 || pred skip (

265 njh, njh’: NJH) {

266

267 noChangeSets[njh, njh’] and

268 noChangeRelations[njh, njh’] }

260 || Tun skip for 7but 15Rule, 1NJH expect 1

a71 || /HFkkkkkokkk dokokkkkokkkk kokkkkkokkkok kokkokdkokkkkok Kok kokkkk Kok

272 OPERATION - qualifyResearcher
273 || Skckokskokokokskok kokokokskokokokskok skskokokokskokokokok skokskokokokskokokok okskoskokokskok ok /

274 || pred qualifyResearcher (

275 njh, njh’: NJH,

276 res: Researcher,

277 per: Personnel) {

278

279 // preconditions */

280 res in njh.researchers and

281 per in njh.qualifiers and

282 no res->per & njh.resQualifier and

283 // adding this mapping does not make resQualifier reflexive
284 irreflexive[”(res->per + njh.resQualifier)] and

285

286 // set the qualifier for the reaearcher, postcondition */
287 njh’.resQualifier = njh.resQualifier + res->per and

288

289 // these do not change */

290 noChangeSets[njh, njh’] and

291

292 njh.ARAppliesTo = njh’.ARAppliesTo and

203 njh.ARHides = njh’.ARHides and

294 njh.ARTransforms = njh’.ARTransforms and

295 njh.ATPriority = njh’.ATPriority and

296 njh.dataAccessAgreement = njh’.dataAccessAgreement and
297 njh.dataValues = njh’.dataValues and

298 njh.enteredOn = njh’.enteredOn and

299 njh.DICat= njh’.DICat and

300 njh.DISource = njh’.DISource and

301 njh.patientData = njh’.patientData and

302 njh.permRules = njh’.permRules and

303 njh.projectAT = njh’.projectAT and

304 njh.projectDataCollector = njh’.projectDataCollector and
305 njh.projectDataTransformRequired =

306 njh’.projectDataTransformRequired and

307 njh.projectPurpose = njh’.projectPurpose and

230

308 njh.projectSources = njh’.projectSources and

309 njh.projectPI = njh’.projectPI and

310 njh.projectMembers = njh’.projectMembers and
311 njh.projectQueries = njh’.projectQueries and
312 njh.qgryReturns = njh’.qryReturns and

313 njh.qryWorksOn = njh’.qryWorksOn and

314 njh.RDType = njh’ .RDType and

315 njh.researcherlL = njh’.researcherL and

316 njh.supervisors = njh’.supervisors and

317 njh.VDAllowed = njh’.VDAllowed}

318 || Tun qualifyResearcher for 7but 15Rule, 2NJH expect 1
319 || run qualifyResearcher for 7but 15Rule, 1NJH expect O
320
321 || /dkksokokoksiokok skokoksksiokokokokok skokokokskokokokskok skskokokokskokokokok kokskokokskskkok ok
322 OPERATION - Approve Researcher’s Licence

323 || skokskstokokoksiok kkokokskskokokokok skskokokokskokokoksk skokskokokokskokokok skokskskokskkoskokok /
324 || pred approveResearcherL (

325 njh, njh’: NJH,

326 res: Researcher,

327 lic: Licence) {

328

320 // preconditions

330 res in njh.researchers and

331 lic in njh.permissions and

332 res->lic not in njh.researcherL and
333 applyDecisionRules[njh, lic, res] and
334

335 // set the access ticket for the reaearcher, postcondition

336 njh’.researcherlL = njh.researcherlL + res->lic and

338 //these do not change

339 njh.ARAppliesTo = njh’.ARAppliesTo and

340 njh.ARHides = njh’.ARHides and

341 njh.ARTransforms = njh’.ARTransforms and

342 njh.ATPriority = njh’.ATPriority and

343 njh.dataAccessAgreement = njh’.dataAccessAgreement and
344 njh.dataValues = njh’.dataValues and

345 njh.enteredOn = njh’.enteredOn and

346 njh.DICat= njh’.DICat and

347 njh.DISource = njh’.DISource and

348 njh.patientData = njh’.patientData and

349 njh.permRules = njh’.permRules and

350 njh.projectAT = njh’.projectAT and

351 njh.projectDataCollector = njh’.projectDataCollector and
352 njh.projectDataTransformRequired =

353 njh’.projectDataTransformRequired and

354 njh.projectPurpose = njh’.projectPurpose and
355 njh.projectSources = njh’.projectSources and
356 njh.projectPI = njh’.projectPI and

357 njh.projectMembers = njh’.projectMembers and
358 njh.projectQueries = njh’.projectQueries and
359 njh.qryReturns = njh’.qryReturns and

360 njh.qryWorksOn = njh’.qryWorksOn and

361 njh.RDType = njh’ .RDType and

362 njh.resQualifier = njh’.resQualifier and

363 njh.supervisors = njh’.supervisors and

364 njh.VDAllowed = njh’.VDAllowed }

365 || rTun approveResearcherl for 7but 15Rule, 3NJH expect 1
366 || Tun approveResearcherL for 7but 15Rule, 2NJH expect O
367
368 /********** skokokokokoskokkoksk skokokokkkokskskk okokckkskckskokokk kkokskokokokokkk
369 OPERATION - approve project’s AT

231

370 || skokksrokokoksiok skokokokskoskokokakok skskokokokskokokoksk skokskokokokskokokok skokskokokokskok ok /
371 || pred approveProjectAT(

372 njh, njh’: NJH,

373 proj: Project, at: AccessTicket) {

374

375 // preconditions

376 proj in njh.projects and

377 at in njh.permissions and

378 no proj.(njh.projectAT) and

379

380 applyDecisionRules[njh, at, proj] and

381

382 // set the access ticket for the project

383 njh’.projectAT = njh.projectAT + proj -> at and

384

385 //these do not change

386 noChangeSets[njh, njh’] and

387

388 njh.ARAppliesTo = njh’.ARAppliesTo and

389 njh.ARHides = njh’.ARHides and

390 njh.ARTransforms = njh’.ARTransforms and

391 njh.ATPriority = njh’.ATPriority and

392 njh.dataAccessAgreement = njh’.dataAccessAgreement and
393 njh.dataValues = njh’.dataValues and

394 njh.enteredOn = njh’.enteredOn and

395 njh.DICat= njh’.DICat and

396 njh.DISource = njh’.DISource and

397 njh.patientData = njh’.patientData and

398 njh.permRules = njh’.permRules and

399 njh.projectDataCollector = njh’.projectDataCollector and
400 njh.projectDataTransformRequired =

401 njh’.projectDataTransformRequired and

402 njh.projectPurpose = njh’.projectPurpose and

403 njh.projectSources = njh’.projectSources and

404 njh.projectPI = njh’.projectPI and

405 njh.projectMembers = njh’.projectMembers and

406 njh.projectQueries = njh’.projectQueries and

407 njh.qgryReturns = njh’.qryReturns and

408 njh.qryWorksOn = njh’.qryWorksOn and

409 njh.RDType = njh’ .RDType and

410 njh.resQualifier = njh’.resQualifier and

411 njh.researcherl = njh’.researcherlL and

412 njh.supervisors = njh’.supervisors and

413 njh.VDAllowed = njh’.VDAllowed }

414 || /* since a project needs at least two researchers, i.e. PI and
415 at one team member we need at least Sprevious states
416 to qualify the researchers and to approve their

a17 licences */

418 || run approveProjectAT for 7but 15Rule, 6NJH expect 1

419 || run approveProjectAT for 7but 15Rule, 5NJH expect 0

420

421 || /3kckoksokokoksrok skskokokokskokokoksk skokskokokskskokokok kokskolokokskokokokkokokoskokkokskok ok
422 OPERATION - runQuery,

423 researcher executes query

424 || Hkkokokskokokokok okskokokakokoskokok skokskokokokskokokokkokokskokokokskokok skokkk sk okokok ok /
425 || private pred researcherAuthorisedForProject

426 (njh: NJH, res: Researcher, p: Project) {

427 // researcher is in the projectMembers, or is project’s PI
128 some (p.(njh.projectMembers) + p.(njh.projectPI)) & res }
429

130 || private pred runQueryPrel[

431 njh: NJH, r: Researcher,

232

432 p: Project, q: Query,

1433 at: AccessTicket] {

434

435 // query is a part of the project’s queries for the project
436 q in p.(njh.projectQueries) and

437

438 // at is the access ticket for the project

439 some at & p.(njh.projectAT) and

440

441 // researcher is authorised for the project

142 researcherAuthorisedForProject[njh, r, p] and
443

444 // since (we assume) Query has not yet been run
445 no q.(njh.qryWorksOn) }

446

447 || // Frame Conditions are post conditions

11s || private pred runQueryPost[njh, njh’:NJH, q: Queryl {
449

1450 // operation does not change these sets

451 njh.accessRules = njh’.accessRules and

452 njh.accessTickets = njh’.accessTickets and
453 njh.categories = njh’.categories and

454 njh.consents = njh’.consents and

455 njh.decisionRules = njh’.decisionRules and
456 njh.hCats = njh’.hCats and

457 njh.licences = njh’.licences and

458 njh.patients = njh’.patients and

459 njh.permissions = njh’.permissions and

460 njh.personnel = njh’.personnel and

461 njh.projects = njh’.projects and

462 njh.purposes = njh’.purposes and

463 njh.qualifiers = njh’.qualifiers and

464 njh.queries = njh’.queries and

465 njh.researchers = njh’.researchers and

466 njh.rules = njh’.rules and

167 njh.sources = njh’.sources and

468 njh.statuses = njh’.statuses and

169 njh.transforms = njh’.transforms and

470 njh.types = njh’.types

471 and

a2 // these relations do not change

473 njh.ARAppliesTo = njh’.ARAppliesTo and

474 njh.ARHides = njh’.ARHides and

475 njh.ARTransforms = njh’.ARTransforms and

476 njh.ATPriority = njh’.ATPriority and

a77 njh.dataAccessAgreement = njh’.dataAccessAgreement and
478 njh.DICat= njh’.DICat and

479 njh.DISource = njh’.DISource and

480 njh.patientData = njh’.patientData and

481 njh.permRules = njh’.permRules and

482 njh.projectAT = njh’.projectAT and

483 njh.projectDataCollector = njh’.projectDataCollector and
484 njh.projectDataTransformRequired =

485 njh’.projectDataTransformRequired and

486 njh.projectPurpose = njh’.projectPurpose and
487 njh.projectSources = njh’.projectSources and
488 njh.projectPI = njh’.projectPI and

489 njh.projectMembers = njh’.projectMembers and
490 njh.projectQueries = njh’.projectQueries and
491 njh.resQualifier = njh’.resQualifier and

492 njh.researcherlL = njh’.researcherlL and

493 njh.supervisors = njh’.supervisors and

233

494 njh.VDAllowed = njh’.VDAllowed

495 and

496

497 /* operation changes these sets and relations

408 these changes relate to changes in qryltems, and retItems

1499 and all that relate to them */

500

501 let

502 qltems = q.(njh’.qryWorksOn),

503 qRetItems = dom[q.(njh’.qryReturns)],

504 gDataltems = qRetItems+ qltems,

505 qValues = gDataltems.(njh’.dataValues),

506 gDates = Date & gDataltems.(njh’.dataValues) |

507

508 // ®kkkxxkkkk for sets xkkkkkkkkk

509 /* since we could be reusing dataitems in gDataltems using addition
510 to specify the constraintis correct, njh’ (post state) on the LHS */
511 njh’.dataltems = njh.dataltems + gDataltems and

512 njh’.qryltems = njh.qryItems + gqltems and

513 njh’.retItems = njh.retItems + gRetItems and

514 njh’.dates = njh.dates + gDates and

515 njh’.values = njh.values + qValues and

516

517 [/ kkkkkkkkkk for relations skkkkkkkkk

518 /* since gDataltems mappings to qry are new, using subtraction

519 to specify the constraintis correct, njh’ (post state) on the RHS */
520 njh.qgryReturns = njh’.qryReturns - q <: (njh’.qryReturns) and

521 njh.qryWorksOn = njh’.qryWorksOn - q <: (njh’.qryWorksOn) and

522

523 /* these could be reused from njh (pre state), so using addition

524 to specify the constraint is correct, njh’ (post state) on the LHS */
525 njh’.dataValues = njh.dataValues + gDataltems <: njh’.dataValues and
526 njh’.enteredOn = njh.enteredOn + gDataltems <: (njh’.enteredOn) and
527 njh’ .RDType = njh.RDType + q <: njh’ .RDType }

520 || private pred applyHidesAccessRules (

530 njh: NJH, q: Query, qltems: set QryData,

531 p: Project, at: AccessTicket, rules: set Rule) {

532

533 // apply PatientConsent Rule

534 (some PatientConsent & rules implies

535 gltems in (

536 // dataitems from projectsources

537 (njh.DISource) . ((njh.projectQueries.q).(njh.projectSources)) -
538 // excluding dataltems where patients do not give consent
539 dom[select23[njh.patientData] :>

540 PatientConsent.(njh.ARHides)])

541 else

542 qltems in

543 // dataitems from projectsources

544 (njh.DISource). ((njh.projectQueries.q) . (njh.projectSources))) }
545

s46 || private pred applyTransformAccessRules (

547 njh: NJH, q: Query, qltems: set QryData,

548 p: Project, at: AccessTicket, rules: set Rule) {

549

550 let

551 rItems = q.(njh.qryReturns).qltems

552

553 // apply DeIDedTransformHDate Rule

554 (some rules & DeIDedTransformHDate implies (

555 all

234

556 ri: rItems | {
55

557 let

558 gis = ri.(q.(njh.qryReturns)) | {

559 all

560 gi: qis | {

561 (some qi.(njh.DICat) & HDate implies

562 (ri.(njh.dataValues) = DelIDedDateTransform[qi.(njh.dataValues)] and
563 ri.(njh.enteredOn) = DeIDedDateTransform[qi.(njh.enteredOn)])
564 else

565 // ri is not a date but the enteredOn needs de-identifying
566 (ri.(njh.dataValues) = qi.(njh.dataValues) and

567 ri.(njh.enteredOn) = DeIDedDateTransform[qi.(njh.enteredOn)]))
568 and

569 (#qis = 0iff no ri.(q.(njh.RDType)))

570 and

571 (#qis = 1iff ri.(q.(njh.RDType)) = Individual)

572 and

573 (#qis = 1iff ri.(q.(njh.RDType)) = Group) }}}

574))

576 and

577

578 // apply IdentifiedDoesNotTransformHDate Rule

579 (some rules & IdentifiedDoesNotTransformHDate implies (
580 all

581 ri: rItems | {

582 let

583 gis = ri.(q.(njh.qryReturns)) | {

584 all

585 gi: qis | {

586 (ri.(njh.dataValues) = qi.(njh.dataValues) and

587 ri.(njh.enteredOn) = qi.(njh.enteredOn))

588 and

589 (#qis = 0iff no ri.(q.(njh.RDType)))

590 and

591 (#qis = 1iff ri.(q.(njh.RDType)) = Individual)

592 and

593 (#qis > 1iff ri.(q.(njh.RDType)) = Group) }}}

594)}

595

596 || private pred applyAccessRules (

597 njh:NJH, p:Project,

598 q: Query, at: AccessTicket) {

599 let

600 qItems = q.(njh.qryWorksOn),

601 rules = at.(njh.permRules) & njh.accessRules |

602

603 applyHidesAccessRules[njh, q, qItems, p, at, rules] and
604 applyTransformAccessRules[njh, q, qItems, p, at, rules] }

606 || pred runQuery(

607 njh, njh’:NJH,

608 r: Researcher, p: Project,

609 q: Query, at: AccessTicket) {
610

611 // preconditions

612 runQueryPre([njh, r, p, q, at] and

613 // postconditions

614 runQueryPost [njh, njh’, q] and

615 // how changes are done, i.e. construct the return data
616 applyAccessRules[njh’, p, q, at] }

617 || run runQuery for 7but 15Rule expect 1

235

618
619
620
621
622
623
624

625

629

662
663
664
665
666
667
668

669

671
672
673
674
675
676
677
678

679

run runQuery for 7but 15Rule, 6NJH expect 1// when qry works on no data
run runQuery for 7but 15Rule, 5NJH expect O

private pred runQueryWithReturnData (
njh, njh’:NJH,
r: Researcher, p: Project,
q: Query, at: AccessTicket) {

runQuery[njh, njh’, r, p, q, at] and
some q.(njh’.qryReturns) }
run runQueryWithReturnData for 7but 15Rule, 7NJH expect 1

/xsckoksksokokskok skskskokskskokokoksk skokskokokokskokokokskokskokokskskokokokkokokskosk ok skok ok
UpdateConformance
sorsiokokskskokokokkokskokokskskokokok skokskskokokokskokok kokokskokokokskoskok skokokksksk ok skok /
pred updateConformance [
njh, njh’: NJH,
gry: Query] {

// preconditions
no qry.(njh.VDAllowed) and
qry in njh.queries and

// sequencing condition
some qry.(njh.qryReturns) and

// VDAllowed changes
(invVDAllowed1[njh, qryl iff

njh.VDAllowed = njh’.VDAllowed - qry -> DownloadAllowed) and
(not invVDAllowedl[njh, qryl] iff

njh.VDAllowed = njh’.VDAllowed - qry -> DownloadDisabled)

and
noChangeSets[njh, njh’] and

njh.ARAppliesTo = njh’.ARAppliesTo and
njh.ARHides = njh’.ARHides and
njh.ARTransforms = njh’.ARTransforms and
njh.ATPriority = njh’.ATPriority and
njh.dataAccessAgreement = njh’.dataAccessAgreement and
njh.dataValues = njh’.dataValues and
njh.enteredOn = njh’.enteredOn and
njh.DICat= njh’.DICat and
njh.DISource = njh’.DISource and
njh.patientData = njh’.patientData and
njh.permRules = njh’.permRules and
njh.projectAT = njh’.projectAT and
njh.projectDataCollector = njh’.projectDataCollector and
njh.projectDataTransformRequired =
njh’.projectDataTransformRequired and
njh.projectPurpose = njh’.projectPurpose and
njh.projectSources = njh’.projectSources and
njh.projectPI = njh’.projectPI and
njh.projectMembers = njh’.projectMembers and
njh.projectQueries = njh’.projectQueries and
njh.qryReturns = njh’.qryReturns and
njh.qryWorksOn = njh’.qryWorksOn and
njh.RDType = njh’ .RDType and
njh.resQualifier = njh’.resQualifier and
njh.researcherlL = njh’.researcherL and

236

680 njh.supervisors = njh’.supervisors }
681 || run updateConformance for 8but 15Rule expect 1
652 || Tun updateConformance for 8but 15Rule, 7NJH expect O

237

10

11

13

14

16
17
18
19
20
21
22
23
24

39
40
41
42
43

44

46
47
48

49

Listing A.5: Full NJH structural model: adding LTL rules. imports Listing A.4 on line 11.

[Rk kokokokokokok KokKKKKKKAK KRR Rokok KKK KKK KKK K KRRk okokokok kKoK oKk Kok KoK KK Kk Kk
Sone note and to dos:

1.
FORK KA FRKKK KKK AFKKKAK KKK K FRKK KK KKAFKKKA AR Kok F KRRk Kk Fokokkkdokok KFokokokkkkokk /
module NJHgLTL

JFFEFFAFAAK AR AR AR KRRk ARk K KRR K kR kKR
IMPORTS

/********** skokokskokskokokokk skokokokskokskokcksk skokckskokskokkskk kckskokskokskskksk skokokskokkskkkk **********/

open util/ordering[NJH] as ord

open NJHgPM

[Fkokkokokokokokok kokokokRRKRRR Rk Rokokokok kokokokokokokKkK K kokkRRRRk Rk kokokokokokokokokok Kok koK Kk Kk kK
Simulating LTL and never claims -
These should follow from the model

[Fkokkokokokokokok Kok KKKKKKK KRR KRk kokoK KK oKKKoKK KKK KKKKK KK Fokokkokokokokokok KoKk ok kk kKK /

/xsckokskskokokskok skokokokokskokokokok skokskokokskoskokokok okskokokokskokokok skokokskskok ok ok sk ok
Check that we can both qualify and approve a
licence for a researcher

Verify that a Researcher always is qualified
before licence is approved
sokskokokskokokokok sokskokokokskokokok kokakokokoRakokokok kokokskokokokskokok skokokkskok ok ok ok /
private pred
1t1l_ApproveResLicenceAfterQualifyRes_ViableOnDifferentStates (
njh, njh’, njh’’, njh’’’: NJH,
res: Researcher,
lic: Licence, per: Personnel) {
let
first = ord/first |
some res & first.researchers and
some lic & first.permissions and
some per & first.personnel and
qualifyResearcher[njh, njh’, res, per] and
approveResearcherL[njh’’, njh’’’, res, lic] and
inv[njh] and
inv[njh’] and
inv[njh’’] and
inv[njh’’’] }

/* Is this the correct formulation for writing the LTL? */
assert 1tl_ApproveResLicenceAfterQualifyRes {
some
njh, njh’, njh’’, njh’’’: NJH,
res: Researcher,
lic: Licence, per: Personnel |
(qualifyResearcher[njh, njh’, res, per] and
approveResearcherL[njh’’, njh’’’, res, lic]) implies
((njh + njh’) in njh’’’.prevs and
inv[njh] and
inv[njh’] and
inv[njh’’] and
inv[njh’’’]1) }

/xsckokskskokokskok skskoskokskskokokoksk skokskokokokskokokok skokskokokokskokokok skokokskosk ok skok ok
Check that we can qualify a researcher,
approve a researcher’s licence, approve
an access ticket for a project, and query that

238

60 project

61

62 Verify that if approving project access ticket
63 and project members licence are successful,
64 project members and pi licence are approved
65 before the project’s accessticket is approved.

66 || Fkkskokskokkok skokskokokskokkokk kokokokskokokokokok kokokskokokokokskok skokskokokokokokkok /
67 || private pred

68 1tl_ProjectApproveAfterTeamAndPILicenceApprove_viableOnDiffNJHStates (
69 njh, njh’, njh’’, njh’’’, njh’’’’, njh’’’’’: NJH,
70 res: Researcher, lic: Licence, per: Personnel,

71 proj: Project, at: AccessTicket) {

72 let

73 first = ord/first |

74 some res & first.researchers and

75 some lic & first.permissions and

76 some per & first.personnel and

77 some proj & first.projects and

78 some at & first.permissions and

79

80 qualifyResearcher[njh, njh’, res, per] and

81 approveResearcherL[njh’’, njh’’’, res, lic] and
82 approveProjectAT[njh’’’’, njh’’’’’, proj, at] and
83 inv[njh] and

84 inv[njh’] and

85 inv[njh’’] and

86 inv[njh’’’] and

87 inv[njh’’’’] and

88 inv[njh’?’’°] }

89
90 || /* If both approveResearchL() for any researcher + PI and

91 ApproveProjectAT() suceed for the same project we know that
92 approveResearchL() suceeded in states previous to the final
93 state for ApproveProjectAT(). */

o4 || assert 1tl_ProjectApproveAfterTeamAndPILicenceApprovel {
95 some

96 njh, njh’, njh’’, njh’’’: NJH,

97 res: Researcher, lic: Licence,

98 proj: Project, at: AccessTicket |

99 (res in (proj.(njh’’.projectMembers) +

100 proj.(njh’’ .projectPI)) and

101 approveResearcherL[njh, njh’, res, lic] and
102 approveProjectAT[njh’’, njh’’’, proj, at]) implies
103 ((njh + njh’) in prevs[njh’’’] and

104 inv[njh] and

105 inv[njh’] and

106 inv[njh’’] and

107 inv[njh’’’1) }

108

100 || /#ksokkorsiokkk skokskokokokskokokk kokokskokokokokokokskokokskokokokokokok skokokokskokokokok ok
110 Check that we can qualify a researcher,

111 approve a researcher’s licence, approve

112 an access ticket for a project, and execute a
113 query from the approved project.

114

115 Verify that if qunning a query is successful
116 then project’s access ticket was approved in a
117 state before the query was executable.

118 || kokskokskokokokoksk skokokkokokkokkk KoKk Rok KRR KK KRR KKK KAKK KKK KKK KK KK [

119 || private pred

120 1t1_RunQueryWithOutQryReturnsAfterProjectApprove_viableOnDiffNJHStates (
121 njh, njh’, njh’’, njh’’’, njh’’’’, njh’’’’’, njh6, njh7: NJH,

239

122 res: Researcher, lic: Licence, per: Personnel,

123 proj: Project, at: AccessTicket,

124 gry: Query) {

125 let

126 first = ord/first |

127 some res & first.researchers and

128 some lic & first.permissions and

129 some per & first.personnel and

130 some proj & first.projects and

131 some at & first.permissions and

132 some qry & first.queries and

133

134 qualifyResearcher[njh, njh’, res, per] and

135 approveResearcherL[njh’’, njh’’’, res, lic] and
136 approveProjectAT[njh’’’’, njh’’’’’, proj, at] and
137 runQuery [njh6, njh7, res, proj, qry, at] and

138 inv[njh] and

139 inv [njh ’] and

140 inv[njh’’] and

141 inv[njh’ ’»] and

142 inv[njh’’’’] and

143 inv[njh’’’’’] and

144 inv[njh6] and

145 inv [njh7] }

146

147 || private pred

148 1t1_RunQueryWithQryReturnsAfterProjectApprove_viableOnDiffNJHStates (
149 njh, njh’, njh’’, njh’’’, njh’’’’, njh’’’’’, njh6, njh7: NJH,
150 res: Researcher, lic: Licence, per: Personnel,
151 proj: Project, at: AccessTicket,

152 gry: Query) {

153 let

154 first = ord/first |

155 some res & first.researchers and

156 some lic & first.permissions and

157 some per & first.personnel and

158 some proj & first.projects and

159 some at & first.permissions and

160 some qry & first.queries and

161

162 // execute operations

163 qualifyResearcher[njh, njh’, res, per] and

164 approveResearcherL[njh’’, njh’’’, res, lic] and
165 approveProjectAT[njh’’’’, njh’’’’’, proj, at] and
166 runQuery [njh6, njh7, res, proj, qry, at] and

167

168 // we have some return data

169 some qry.(njh7.qryReturns) and

170 inv[njh] and

171 inv[njh’] and

172 inv[njh’’] and

173 inv[njh’’’] and

174 inv[njh’’’’] and

175 inv[njh’’’’°] and

176 inv[njh6] and

177 inv[njh7] }

178
179 || /* If both ApproveProjectAT() and RunQuery() succeed for the same

180 project we know that ApproveProjectAT() suceeded in states
181 previous to the final state for RunQuery(). */

152 || assert 1tl_RunQueryAfterProjectApprovel {

183 some

240

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

202

234
235
236
237
238
239

240

242
243

244

njh, njh’, njh’’, njh’’’: NJH,
res: Researcher, qry: Query,
proj: Project, at: AccessTicket |

(res in (proj.(njh’’.projectMembers) +

proj.(njh’’.projectPI)) and

qry in proj.(njh’’’.projectQueries) and

approveProjectAT[njh, njh’, proj, at] and
runQuery[njh’’, njh’’’, res, proj, qry, at]) implies

((njh + njh’) in prevs[njh’’’] and

inv[njh] and

inv[njh’] and

inv[njh’’] and

inv[njh’’°’1) }

[Fkssokokokokokok skokokokokkokokokok kokokokokokakokokok kokokokakokokokokok o okskokokokok ok ok
Check that we can qualify a researcher,
approve a researcher’s licence, approve
an access ticket for a project, execute a
query from the approved project, and update
the query conformance.

Verify that if updating a query conformance
is successful then the corresponding running
of the query to get the results was successful
in a state before the update was executable.
sokskokokokskokokok kokskolokokskokokok kokakoskokokoksiokok okokskolokokskokok skokokokskoskkokskok /
private pred
1t1l_UpdateConformanceAfterRunQuery_viableOnDiffNJHStates (

njh, njh’, njh’’, njh’’’, njh’’’’, njh’’’’’, njh6, njh7, njhs, njh9: NJH,

res: Researcher, lic: Licence, per: Personnel,
proj: Project, at: AccessTicket,
gry: Query) {
let

first = ord/first |
some res & first.researchers and
some lic & first.permissions and
some per & first.personnel and
some proj & first.projects and
some at & first.permissions and
some qry & first.queries and

qualifyResearcher[njh, njh’, res, per] and
approveResearcherL[njh’’, njh’’’, res, lic] and
approveProjectAT[njh’’’’, njh’’’’’, proj, at] and
runQuery [njh6, njh7, res, proj, qry, at] and
updateConformance [njh8, njh9, qry] and

inv[njh] and

inv[njh’] and

inv[njh’’] and

inv[njh’’’] and

inv[njh’’’’] and

inv[njh’’’’’] and

inv[njh6] and

inv[njh7] and

inv[njh8] and

inv[njh9l }

assert 1tl_UpdateConformanceAfterRunQuery {
some
njh, njh’, njh’’, njh’’’: NJH,
res: Researcher, qry: Query,

241

262
263
264
265

266

296
297
298
299
300
301
302
303
304
305
306
307

proj: Project, at: AccessTicket |
(res in (proj.(njh’’.projectMembers) +
proj.(njh’’ .projectPI)) and
qgry in proj.(njh’’’.projectQueries) and
runQuery[njh’’, njh’’’, res, proj, qry, at] and
updateConformance[njh’’, njh’’’, qryl) implies
((njh + njh’) in prevs[njh’’’] and
inv[njh] and
inv[njh’] and
inv[njh’’] and
inv[njh’’’]) }

JHRFFFAAFAKK HFAKKAKKAK KKK KAKKAK HAFAAKAKKAK FAKAA KA KK
INV - predicates and functions

KAFKKAKFAK HKKAKFAKKAK FAKAAKAKFK FAKFAAKAKK KFAKAA KKK [

// eventually will rename generator to inv

pred inv (njh: NJH) {
// original generator predicate is true
generator[njh] }

[xsckokskskokokskok skskokokskskokokoksk skokskokokskokokokok okskokokokskokokok kokakokokokskokokokskokokskokokokskoskok skokoksk sk ok skok ok
Checks to prove that each operation preserves the invariants
[xsckokskskokokskok skskokokokskokokoksk skokskokokokskokokok sokskokokokskokokokkokakskokokokskokok kokokskokokokskokok skokoksksksk ok sk ok /
assert qualifyResearcherPreservesInv {
all
njh, njh’: NJH,
res: Researcher, per: Personnel |
(inv[njh] and qualifyResearcher [njh, njh’, res, per]) implies inv[njh’] }

assert approveResearcherLPreservesInv {
all
njh, njh’: NJH ,
res: Researcher, lic: Licence |
(inv[njh] and approveResearcherL [njh, njh’, res, lic]l) implies inv[njh’] }

assert approveprojectATPreservesInv {
all
njh, njh’: NJH,
p: Project, at: AccessTicket |
(inv[njh] and approveProjectAT [njh, njh’, p, at]) implies inv[njh’] }

assert runQueryPreservesInv {
all
njh, njh’: NJH,
r: Researcher, q: Query, p: Project, at: AccessTicket |
(inv[njh] and runQuery [njh, njh’, r, p, q, at]) implies inv[njh’] }

assert skipPreservesInv {
all
njh, njh’: NJH |
(inv[njh] and skip [njh, njh’]) implies inv[njh’] }

assert updateConformancePreservesInv {

all
njh, njh’: NJH,
q: Query |

(inv[njh] and updateConformance [njh, njh’, ql) implies inv[njh’] }

/R kokkokokokokokok kokkKKKKRRK Rk Rokok kKKK KKK K KRRk ok okokkokakokokokok Kok KK KK KKk
Conformance

242

308
309
310
311
312
313
314
315
316
317
318
319

320

322
323
324
325

326

363

365
366
367
368

369

/xsckokskskokokskok skskokokokskokokoksk skokskokokskskokokok sokskokokokskokokok kokskskokokokskokok kokokskokokokskokok skokokksksk ok skok /
/* an error occurs on this one, the problem may be because of the

DStr data type dataitem */
assert Conformance {

all
njh: NJH,
qry: Query,

d: (Date & dom[qry.(njh.qryReturns)].(njh.dataValues)) +
dom[qry. (njh.qryReturns)]. (njh.enteredOn) |
let
at = (njh.projectQueries).qry.(njh.projectAT) |

((some qry -> DownloadAllowed & njh.VDAllowed and
some qry.(njh.qryReturns) and
some at & DeIDed) iff not identifiedDatel[d])
or

((some qry -> DownloadAllowed & njh.VDAllowed and
some qry.(njh.qryReturns) and
some at & Identified) iff identifiedDatel[d]) }

/********** kokokokokkokkokok kokkokokskskkokk okokckokkkokdkdkk kokokskdkokkkokdk kkkokokdkkokkk kokokkkokdkkkxk

Executing the Predicates and Assertions
[xsckokskskokokskok skskokokokskokokoksk skokskokokokskokokok sokskokokokskokokokkokakskokokokskokok kokokskokokokskokok skokoksksksk ok sk ok /

run
1tl_ApproveResLicenceAfterQualifyRes_ViableOnDifferentStates
for 8but 15Rule, 3NJH expect 1
//should not be viable on < 3instances,
// i.e. need three distinct instances for both operations to succeed.
run
1t1l_ApproveResLicenceAfterQualifyRes_ViableOnDifferentStates
for 8but 15Rule, 2NJH expect 0

run
1tl_ProjectApproveAfterTeamAndPILicenceApprove_viableOnDiffNJHStates
for 8but 15Rule, 6NJH expect 1

// not viable on < 4instances,

// i.e. need four distinct instances for both operations to succeed.

run
1tl_ProjectApproveAfterTeamAndPILicenceApprove_viableOnDiffNJHStates
for 8but 15Rule, 5NJH expect O

// viable on four (4) states because query could return no results

run
1t1_RunQueryWithOutQryReturnsAfterProjectApprove_viableOnDiffNJHStates
for 8but 15Rule, 7NJH expect 1

// not viable on < 4instances,

// i.e. need three distince instances for both operations to succeed.

run
1t1_RunQueryWithOutQryReturnsAfterProjectApprove_viableOnDiffNJHStates
for 8but 15Rule, 6NJH expect 1

run
1t1_RunQueryWithOutQryReturnsAfterProjectApprove_viableOnDiffNJHStates
for 8but 15Rule, 5NJH expect O

run
1t1_RunQueryWithQryReturnsAfterProjectApprove_viableOnDiffNJHStates
for 8but 15Rule expect 1

run
1t1_RunQueryWithQryReturnsAfterProjectApprove_viableOnDiffNJHStates
for 8but 15Rule, 7NJH expect 1

// not viable on < 4instances,

243

379

383
384

385

391

// i.e. need three distinct instances for both operations to succeed.

run
1t1_RunQueryWithQryReturnsAfterProjectApprove_viableOnDiffNJHStates
for 8but 15Rule, 6NJH expect O

run
1t1l_UpdateConformanceAfterRunQuery_viableOnDiffNJHStates
for 8but 15Rule expect 1

run
1t1l_UpdateConformanceAfterRunQuery_viableOnDiffNJHStates
for 8but 15Rule, 7NJH expect O

check 1tl_ApproveResLicenceAfterQualifyRes for 8but 15Rule expect O

check 1tl_ProjectApproveAfterTeamAndPILicenceApprovel for 8but 15Rule expect O
check 1tl_RunQueryAfterProjectApprovel for 8but 15Rule expect 0

check 1tl_UpdateConformanceAfterRunQuery for 8but 15Rule expect O

//check qualifyResearcherPreservesInv for 8but 15Rule expect 0
//check approveResearcherLPreservesInv for 8but 15Rule expect O
//check approveprojectATPreservesInv for 8but 15Rule expect O
//check runQueryPreservesInv for 8but 15Rule expect 0O

check skipPreservesInv for 8but 15Rule expect O

//check updateConformancePreservesInv for 8but 15Rule expect 0

check Conformance for 8but 15Rule expect O

244

APPENDIX B. INITIAL REPRESENTATION OF THE NJH SYSTEM IN CHAPTER 5

B.1 Alloy Model Slice for the Query Operation

[o N B S N

[
o ©

[
iy

Listing B.1: Slice 4: runQueryAlloy Specifications

module NJH

/*
ALLOY RELATION MODELLING REMINDER:
the relation,
AC: A some -> lomne C
means that in AC
each A is linked to at most 1(lone) C, and
each C is linked to at least one (some) A

IMPORTANT Assumptions:

1. access ticket for a project has already been granted;

2. system ONLY issues DelDed accesst tickets;

3. we enforce in the CD and the Alloy model that a project has only can have
one access ticket

INDICATON of additional constraints:
we use "// **" to identify constraints added to or removed from the Alloy
model that are not currently in the CD.

INTERPRETATION of the main assertions:
OpPreserves and AlwaysDeIDedConformance

A result of no counterexample found for OpPreserves and
AlwaysDeIDedConformance is the result we require. However a no
counterexample for both do not tell us the same things.

OpPreserves tells us that operations pre- and post condition do not
violate any of the constraints set.

AlwaysDeIDedConformance tells us that the system constraints ensure
conformance to the rules.

So, the results could show that OpPreserves has no counterexample but
AlwaysDeIDedConformance has a counterexample. This can be observed
when AllDatesCorrectlyCategorised[...] is disabled in the inv[...] predicate.

*/

open util/relation
open util/ordering[NJH] as ord

sig DataSource, Day, Month, Name, Patient, Project, Query, Researcher, Year {}

abstract sig Type {}

lone sig Individual extends Type {}

// include when checking TransFormHDateAppliesToIndividual[njh]
//lone sig Group extends Type {}

abstract sig AccessTicket {}

lone sig DeIDed extends AccessTicket{}

// include when checking TransformHDateIsDeIDedRule[njh]
//lone sig LDS extends AccessTicket{}

sig Dataltem {name: Name}
sig QryData, RetData extends Dataltem {}

245

68
69
70
71
72
73
74

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

94

96

97

98

99
100
101
102
103
104
105
106
107
108
109

110

abstract sig Data{}
sig Date extends Data {

H

day: lone Day,
month: lone Month,
year: Year

// day iff month also exists
some day implies some month
some month implies some day }

abstract sig Rule {}
abstract sig AccessRule extends Rule {}
lone sig DelDedTransformHDate extends AccessRule {}

abstract sig HIPAACat {}
lone sig HDate extends HIPAACat {}

sig NJH {

H

// style is to alphabetise for easy finding :)

// sets, creating a closed system
accessRules: set AccessRule,
accessTickets: set AccessTicket,
dataltems: set Dataltem,

values: set Data,

dates: set Date,

hCats: set HIPAACat,

patients: set Patient,

projects: set Project,

gryltems: set QryData,

queries: set Query,

researchers: set Researcher,
retItems: set RetData,

sources: set DataSource,

types: set Type,

// relations

ARAppliesTo: accessRules -> some types,

ARTransforms: accessRules -> some hCats,

ATRules: accessTickets -> some accessRules,

DataValues: dataltems -> one values,

DICat: dataltems -> hCats,

// ** no direct link between retItems and sources,

// data sources of retItems are found through the RDFromQD relation
DISource: (dataltems - retItems) -> one sources,

EnteredOn: dataltems -> lone dates,

// ** no direct link between retItems and patients,

// patients associated with retItems are found through the RDFromQD relation
PatientData: patients one -> some (dataltems - retItems),

ProjAT: projects -> one accessTickets,

ProjMembers: projects -> some researchers,

ProjQueries: projects some -> some queries,

ProjSources: projects -> some sources,

// RunQuery specs require that a query have neither RetData nor QryData
// before exexution, so we relax the multiplicity on the queries side
QryReturns: queries -> retItems,

QryWorksOn: queries -> qryltems,

RDFromQD: retItems -> some qryltems,

RDType: retItems -> one types

// CONSTRAINTS, comment out to check operation specifications

246

115
116
117
118

119

169

// when commented out, it is enforced in the traces fact
//inv[this]

}

[11771711777777777777717777777777777/77/777/77777777777777/77/77/777/7/777777777/77
// INSTANCES
[117711117777777717777717777777777777/77/777/7777777777777/77/77/7777/777777777/77

[I1717771777777777777777
// - These predicates are not a part of the model and may be removed

111117777117

L1117 77 777777777777 77
// This predicate is a part of the model, used in init[...] to initialise the
// system
111117177177
private pred ShowSomeOfEverything[njh: NJH] {

some accessRules and

some accessTickets and

some dataltems and

some values and

some dates and

some hCats and

some patients and

some projects and

some qryltems and

some queries and

some researchers and

some retltems and

some sources and

some types }
// important to run this with exactly INJH because the relations have the NJH
// instance as their first element
//run ShowSomeOfEverything for 3but exactly 1NJH expect 1

LITITTT77777777 777777777777 777
// CONSTRAINTS as predicates
1171111177777
private fun DeIDedDateTransform(d: Date): Date {
{ri: Date |

no ri.day and

no ri.month and

ri.year = d.year }}

private pred QryRetDataDeIDed[njh: NJH, q: Query] {
all gi: q.(njh.QryWorksOn) |
some qi.(njh.DICat) & HDate
implies (// imp4
// RetData
(njh.RDFromQD) .qi. (njh.DataValues) =
DeIDedDateTransform[qi. (njh.DataValues)] and
// if RetData EnteredOn exists
(some (njh.RDFromQD).qi.(njh.EnteredOn)
implies (// imp5
njh.RDFromQD) .qi. (njh.EnteredOn) =
DeIDedDateTransform[qi. (njh.EnteredOn)]
) //imp5
) // imp4

}

private pred DelDedTransformHDatelndividual[njh: NJH, p: Project, q: Queryl {

247

176
177
178
179
180
181
182
183
184
185

186

188
189
190
191

192

195

197

231

233
234
235
236
237

// When a Query has RetData, this is how we construct it’s return data and
// its EntereOn Value
(some q.(njh.QryReturns) and
// query is a part of project
some p.(njh.ProjQueries) & q and
// uses the DelDed access ticket
some p.(njh.ProjAT) & DeIDed and
// DelDed access ticket is associated with the TransformHDate rule
TransformHDateIsDeIDedRule [njh] and
// TransformHDate should be applied to individuals
TransFormHDateAppliesToIndividual [njh])
implies (QryRetDataDeIDed[njh, ql)}

pred DeIDedTransformHDatelndividual [njh: NJH] {
// When a Query has RetData, this is how we construct it’s return data and
// its EntereOn Value
// this formulation works ONLY because the DeIDed is the ONLY access ticket
// 1in the system.
all q: njh.queries |
// if query returns values
(some q.(njh.QryReturns) and
// uses the DelDed access ticket
some njh.ProjQueries.q.(njh.ProjAT) & DelIDed and
// DelDed access ticket is associated with the TransformHDate rule
TransformHDateIsDeIDedRule[njh] and
// TransformHDate should be applied to individuals
TransFormHDateAppliesToIndividual [njh])
implies (QryRetDataDeIDed[njh, q])}

private pred AllDatesCorrectlyCategorised [njh: NJH] {
// correct formulation,
// all dataltems in PatientData that are dates are identified as a HIPAACat
all di: ran[njh.PatientData] |
some di.(njh.DataValues) & Date implies some di.(njh.DICat) & HDate }

private pred TransformHDateIsDeIDedRule[njh: NJH] {
some njh.ATRules & DeIDed -> DelIDedTransformHDate }

private pred TransFormHDateAppliesToIndividual[njh: NJH] {
some njh.ARAppliesTo & DeIDedTransformHDate-> Individual }

// *% Defines additional constraints not in the UML CD
pred inv [njh: NJH] {
// all dataltems are mapped
njh.dataltems =
ran[njh.QryWorksOn] + ran[njh.QryReturns] + ran[njh.PatientData]

// closed system constraint - any date is a part of the set of dates
(njh.values & Date + ran[njh.EnteredOn]) = njh.dates

// dataltems in Patient data

all di: ran[njh.PatientData] | {
// each has a date entered, we don’t care if retItems are not in EnteredOn
some di.(njh.Entered0On)

// each EnteredOn data has a day and month (constraint in Date signature
// ensures that month is non-empty iff day is non-empty)

some di.(njh.EnteredOn.day)

// each dataltem in PateintData has at most one HIPAACat

#(di. (njh.DICat)) < 2}

248

238
239 // queryData is patient data

240 njh.qryItems & ran[njh.PatientDatal = njh.qryItems
241
242 // construct RDFromQD
243 (" (njh.QryReturns)) . (njh.QryWorksOn) = njh.RDFromQD
244
245 all ri: dom[njh.RDFromQD] |
246 // return data linked to the Individual type is only linked to one query data
247 // in RDFromQD
248 (some Individual & ri.(njh.RDType)) implies
249 #(ri. (njh.RDFromQD)) = 1
250
251 // a query’s data source is contained in its project’s sources
252 all p: njh.projects, q: njh.queries | q in p.(njh.ProjQueries) implies
253 q. (njh.QryWorksOn) . (njh.DISource) in p.(njh.ProjSources)
254
255 // Areas to seed for non-conformance
256 // 1. TransformHDate rule for Individual Type,
257 // this is important when there are other access tickets other than DeIDed
258 // in the system
259 TransformHDateIsDeIDedRule [njh]
260
261 // 2. DelDed access ticket has associated TransformHDate rule for Individuals,
262 // this is important when there are other types other than Individual in
263 // the system
264 TransFormHDateAppliesToIndividual [njh]
265
266 // 3. Ensure that all dataltems in PatientData that are dates are identified
267 // as a HIPAACat in DICat
268 AllDatesCorrectlyCategorised[njhl]
269
}

o2 | //11111777777777777/777777/77777777777/77/77/7777777777777/777/77/7/7/7/777/777777/77
273 || // INSTANCES
ora (| //17117777777777777777777/77777777777/77/77/777/7777777/77/77/77/7/7/7/777777777/77

276 (| //11111777
277 || // - These predicates are not a part of the model and may be removed
ars (| /1 11111177777

279 || private pred ShowAny [njh: NJHI{

280 inv[njh]l}

281 || //run ShowAny for 3expect 1

283 || private pred ShowProjQueryWithData [njh: NJH, q: Queryl{

284 inv[njh] and
285 q in njh.queries and
286 some q.(njh.QryWorksOn)}

287 || //run ShowProjQueryWithData for 3but 1INJH expect 1
288
280 || private pred ShowCheckingMultiplicities [njh: NJH, ar: AccessRulel{
290 inv[njh] and

201 ar in njh.accessRules and no ar.(njh.ARAppliesTo)}

292 || //run ShowCheckingMultiplicities for 3but 1NJH expect O

293
204 || private pred ShowSomeOfEverythingWithHDateUnsetAndInv[njh: NJH, q: Query, qi: QryDatal {
295 q in njh.queries and

296 qi in q.(njh.QryWorksOn) and
297 no qi.(njh.DICat) and

298 ShowSome0fEverything[njh]
299 and inv[njh] }

249

300
301
302
303
304
305
306
307
308
309

310

312
313
314
315
316
317
318

319

321

343

345

346

348
349
350
351
352
353
354
355
356
357
358
359
360

361

// gives an instance only when
// AllDatesCorrectlyCategorised[...] is disabled in inv[...]
//run ShowSomeOfEverythingWithHDateUnsetAndInv for 3but exactly 1NJH expect O

private pred ShowSomeOfEverythingWithInv[njh: NJH] {
ShowSomeOfEverything[njh] and inv[njh] }
//run ShowSomeOfEverythingWithInv for 3but exactly INJH expect 1

LITITLTTT777777 777777777777 777
// QUERY OPERATION SPECIFICATION

LITITTTTT777777 777777777777 777

[I117717777777
// HELPER/USEFUL Predicates and Functions
111117711777
// not checking this predicate is a hidden path into executing RunQuery
private pred ResearcherAuthorisedToRunQuery
[njh: NJH, res: Researcher, p: Project, gry: Queryl {
// query is associated with a project that the researcher is a member of
some p.(njh.ProjMembers) & res and some p.(njh.ProjQueries) & qry }

// Helps the model to progress in traces
private pred NoChangeOp [njh, njh’: NJH] {
njh = njh’
or (//they both have the same sets and relations
njh.accessRules = njh’.accessRules and

njh.accessTickets = njh’.accessTickets and
njh.dataltems = njh’.dataltems and
njh.values = njh’.values and

njh.dates = njh’.dates and

njh.hCats = njh’.hCats and
njh.patients = njh’.patients and
njh.projects = njh’.projects and
njh.qryItems = njh’.qrylItems and
njh.queries = njh’.queries and
njh.researchers = njh’.researchers and
njh.retItems = njh’.retItems and
njh.sources = njh’.sources and
njh.types = njh’.types and

// relations

njh.ARAppliesTo = njh’.ARAppliesTo and
njh.ARTransforms = njh’.ARTransforms and
njh.ATRules = njh’.ATRules and
njh.DataValues = njh’.DataValues and
njh.EnteredOn = njh’.EnteredOn and
njh.DICat = njh’.DICat and
njh.DISource = njh’.DISource and
njh.PatientData = njh’.PatientData and
njh.ProjAT =njh’.ProjAT and
njh.ProjSources = njh’.ProjSources and
njh.ProjMembers = njh’.ProjMembers and
njh.ProjQueries = njh’.ProjQueries and
njh.QryReturns = njh’.QryReturns and
njh.QryWorksOn = njh’.QryWorksOn and
njh.RDFromQD = njh’.RDFromQD and
njh.RDType = njh’.RDType) }

private pred RunQueryPre[njh: NJH, r: Researcher, p: Project, q: Queryl {
// in sets
q in njh.queries and
r in njh.researchers and

250

362
363
364
365
366
367
368
369

370

372
373
374
375
376
377
378
379

380

409

410

414

415

419

// in relations
ResearcherAuthorisedToRunQuery[njh,
// since (we assume) Query has not
no q.(njh.QryWorksOn) }

r, p, ql and
yet been run

private pred RunQueryPost[njh, njh’:NJH, q: Query] {
// Frame Conditions are post conditions

}

// frame conditions - no change

{

// sets

njh.accessRules = njh’.accessRules and
njh.accessTickets = mnjh’.accessTickets and
njh.hCats = njh’.hCats and

njh.patients = njh’.patients and
njh.projects = njh’.projects and
njh.queries = njh’.queries and
njh.researchers = njh’.researchers and

njh.sources = njh’.sources and
njh.types = njh’.types and

// relations
njh.ARAppliesTo = njh’.ARAppliesTo

and

njh.ARTransforms = njh’.ARTransforms and

njh.ATRules = njh’.ATRules and
njh.DICat = njh’.DICat and
njh.DISource = njh’.DISource and
njh.PatientData = njh’.PatientData
njh.ProjAT =njh’.ProjAT and
njh.ProjSources = njh’.ProjSources
njh.ProjMembers = njh’.ProjMembers
njh.ProjQueries = njh’.ProjQueries

and

// frame conditions - changes

{
// to sets
njh.dataltems = njh’.dataltems - q.
njh.values in njh’.values
njh.dates in njh’.dates and
njh.qryltems in njh’.qryItems and
njh.retItems = njh’.retltems and

// to relations

// these changes relate to changes
njh.DataValues = njh’.DataValues -
njh.EnteredOn = njh’.EnteredOn - q.
njh.QryReturns = njh’.QryReturns -
njh.QryWorksOn = njh’.QryWorksOn -
njh.RDFromQD in njh’ .RDFromQD and
njh.RDType = njh’.RDType - q.(njh’.

and

and
and

(njh’.QryReturns) and

in gryltems, and retItems
q.(njh’.QryReturns) <: njh’.DataValues //and
(njh’.QryReturns) <: (njh’.EnteredOn) and

q <: (njh’.QryReturns) and

q <: (njh’.QryWorksOn) and

QryReturns) <: njh’.RDType}

private pred RunQueryOutput[njh, njh’:NJH, p:Project, q: Query] {

// frame postconditions
RunQueryPost [njh, njh’, q] and

// currently these are a part of the invariants

// (see call to ComstructDeIDedReturnDatal...] in inv[...])
//- enforced in the traces fact but could be extracted to here
DelIDedTransformHDatelndividual [njh’, p, ql }

251

425

480

// formulation is where a query has one access ticket through the project and
// project has exactly one access ticket
// preconditions and (A11?) frame conditions can be automatically generated!
private pred runQuery[njh, njh’:NJH, r: Researcher, p: Project, q: Queryl {
// preconditions
RunQueryPre[njh, r, p, q] and
// how changes are done, i.e. construct the return data
RunQueryQutput [njh, njh’, p, ql }

I1117717777777
// Operation Specifications
// Operation specifications does not ensure Conformance!!!

111117177177

// this is how we initialise the system
pred init[njh: NJH] {
some q: Query |
q in njh.queries and
// all the sets except qryltems and retItems are are non-empty
ShowSomeOfEverything[njh] and
// instance does not violate constraints
inv[njh] and
//the query in question is the one we want to check the operation specifications
for
no q.(njh.QryWorksOn) }
//run init for 3but exactly INJH expect 1

// this is how we move from instance to instance
fact traces {
init[ord/first]
all njh: NJH - ord/last, r: Researcher, q: Query, p: Project |
let njh’ = njh.next |
runQuery[njh, njh’, r, p, q] or NoChangeOp[njh, njh’] }

// END OF THE MODEL and RunQuery specification
[1177/777-

LITITTT177-
// SOME OPERATION SPECIFICATIONS CHECKS
1171117117777
// verify that operations preserve the invariants
// also a way for possible hidden paths to exist
assert OpPreserves {
all njh, njh’: NJH |
all r: Researcher, q: Query, p: Project |
(inv[njh] and runQuery [njh, njh’, r, p, ql) implies inv[njh’] }
// after a scope of 4, the checking takes too long, i.e. > 170secs
check OpPreserves for 4expect 0

// run only when opPreserves returns a counterexample

pred OpDoesNotPreserve[njh, njh’: NJH, r: Researcher, p: Project, q: Query I1{
inv[njh] and runQuery[njh, njh’, r,p, ql and not inv[njh’] }

run OpDoesNotPreserve for 3but exactly 2NJH expect O

LITITITTT777777 7777777777777 77
// CHECKING THE MODEL FOR CONFORMANCE
LITITITTT777777 777777777777 777

[1177777177/77/77777/
// HELPER/USEFUL Predicates and Functions to check conformance

252

485

486

487

488

490

// these are not used in the model
117111117777
private pred ConformanceDeIDedHDateUnSet
[njh: NJH, qry: Query, qi: QryData, ri: RetData] {
BasicDelIdentifiedDateConditions[njh, qry, qi, ri] and
not HDateSet[njh, qi] and
not IdentifiedDatel[ri.(njh.DataValues)] }

private pred ConformanceDeIDedHDateUnSetFullDate
[njh: NJH, qry: Query, qi: QryData, ri: RetData] {
BasicDeIdentifiedDateConditions[njh, qry, qi, ri] and
FullDateConditions[njh, qi] and
not HDateSet[njh, qi] and
not IdentifiedDatel[ri.(njh.DataValues)] }

// since there should be no instance where qi’s datavalue that is a date is not
// marked as a HDate, we expect to see no instances from running these

// two predicates when there is system conformance

//run ConformanceDeIDedHDateUnSet for 3but 1NJH expect O

//run ConformanceDeIDedHDateUnSetFullDate for 3but INJH expect 0

// useful to check if Data Deided properly
private pred NonConformanceDeIDedFullDateHDateSet
[njh: NJH, qry: Query, qi: QryData, ri: RetData] {
BasicDelIdentifiedDateConditions[njh, qry, qi, ril and
FullDateConditions[njh, gi] and
HDateSet [njh, qil and
IdentifiedDate[ri. (njh.DataValues)] }

// expect no instances from this predicate when there is system conformance
//run NonConformanceDeIDedFullDateHDateSet for 3but INJH expect O

[1777717717117717777777777777777/777777777777777/77/7/7777777/7777/777/7//
// HELPER/USEFUL Predicates and Functions to check conformance
// these are needed in the model

111117177177

// these predicates help to check conformance
1111771117717
private pred IdentifiedDatel[d: Date] {some d.day }

private pred BasicDeIdentifiedDateConditions
[njh: NJH, qry: Query, qi: QryData, ri: RetData] {
// constraints hold
inv[njh] and

// qry is in the NJH system of interest
qry in njh.queries and

// query has DelDed access as a part of a project
some (njh.ProjQueries).qry.(njh.ProjAT) & DeIDed and

// query has some data
qi in qry.(njh.QryWorksOn) and

// QryData qi is a Date
some gi.(njh.DataValues) & Date and

// query returns some Data
ri in qry.(njh.QryReturns) and

// Date data for QryWorksOn is identified data

253

600
601
602
603
604
605
606
607

608

IdentifiedDate[qi.(njh.DataValues)] and

// the RetDdata we are interested in is for the QryData qi
ri = njh.RDFromQD.qi and

// When a Query has RetData, this is how we construct it’s return data for
// the DelDed access ticket for the individual category
DeIDedTransformHDatelndividual [njh]

}

private pred FullDateConditions [njh: NJH, qi: QryData 1 {
some qi.(njh.DataValues).day }

private pred HDateSet[njh: NJH, qi: QryDatal {some gi.(njh.DICat) & HDate }

// these predicates check conformance under certain conditions

111117177177

pred CanGetConformanceDeIDed
[njh: NJH, qry: Query, qgi: QryData, ri: RetData] {
BasicDeIdentifiedDateConditions[njh, qry, qi, ril
and not IdentifiedDatel[ri.(njh.DataValues)] }
// give me a system where some return data is de-identified
run CanGetConformanceDelDed for 3but 1NJH expect 1

private pred ConformanceDeIDed
[njh: NJH, qry: Query, qi: QryData, ri: RetData] {
BasicDeIdentifiedDateConditions[njh, qry, qi, ril
implies not IdentifiedDatel[ri.(njh.DataValues)] }
// give me a system where all the return data is de-identified
//run ConformanceDeIDed for 3but INJH expect 1

private pred ConformanceDeIDedHDateSet
[njh: NJH, gqry: Query, qi: QryData, ri: RetData] {
(BasicDeIdentifiedDateConditions[njh, qry, qi, ri] and
HDateSet [njh, qil)
implies not IdentifiedDatel[ri.(njh.DataValues)] }

private pred ConformanceDeIDedHDateSetFullDate
[njh: NJH, qry: Query, qi: QryData, ri: RetData] {
BasicDelIdentifiedDateConditions[njh, qry, qi, ri] and
FullDateConditions[njh, qi] and
HDateSet [njh, qil and
not IdentifiedDatel[ri.(njh.DataValues)] }

// We can get instances from this predicate even when there is non-conformance
//run ConformanceDeIDedHDateSet for 3but INJH expect 1
//run ConformanceDeIDedHDateSetFullDate for 3but INJH expect 1

private pred NonConformanceDeIDedFullDateHDateUnSet
[njh: NJH, qry: Query, qi: QryData, ri: RetData] {
BasicDelIdentifiedDateConditions[njh, qry, qi, ri] and
FullDateConditions[njh, qi] and
not HDateSet[njh, qi] and
IdentifiedDate[ri. (njh.DataValues)] }

// expect no instances from this predicate when there is system conformance
// NonConformanceDeIDedFullDateHDateUnSet[..] gives an instance only when
// AllDatesCorrectlyCategorised[...] is disabled in inv[...]

//run NonConformanceDeIDedFullDateHDateUnSet for 3but 1NJH expect 0

LI1777

254

609 || // ACTUAL CONformance verification, predicate here is public,

610 || // run predicate DeIDedNonConformanceFullDateWhenHDateUnSet only
611 || // when AlwaysDeIDedConformanceWhenHDateUnSet[..] returns a

612 || // counterexample

ews || // /111111177

614
615 || // Verifies that in all instances the return data is always de-identified
616 || // a counterexample may mean partial conformance

617 || assert AlwaysDeIDedConformance{

618 all njh: NJH, q: njh.queries |
619 all qi: q.(njh.QryWorksOn), ri: q.(njh.QryReturns) |
620 ConformanceDeIDed[njh, q, qi, ril }

621 || check AlwaysDeIDedConformance for 3expect 0

623 || // if all a system’s return data is not de-identified, we check the reason,
624 || // Reason: HDate is set fo ra dataitem that is a date so it means the Date
625 || // was not deidentified properly

626 || // a counterexample may mean partial conformance

627 || assert AlwaysDeIDedConformanceWhenHDateSet {

628 all njh: NJH, q: njh.queries |
629 all qi: q.(njh.QryWorksOn), ri: q.(njh.QryReturns) |
630 ConformanceDeIDedHDateSet [njh, q, qi, ril }

631 || check AlwaysDeIDedConformanceWhenHDateSet for 3expect 0

633 || // if all a system’s return data is not de-identified, we check the reason,
634 || // Reason: a dataitem that is a date was not categorised as a HDate

635 || // a counterexample may mean partial conformance

636 || assert AlwaysDeIDedConformanceWhenHDateUnSet{

637 all njh: NJH, q: njh.queries |
638 all qi: q.(njh.QryWorksOn), ri: q.(njh.QryReturns) |
639 not NonConformanceDeIDedFullDateHDateUnSet[njh, q, qi, ril }

640 || check AlwaysDeIDedConformanceWhenHDateUnSet for 3expect 0O

612 || // show example where a system return data is not de-identified because a

643 || // dataitem that is a date id not categorised as a HDate

644 || // an instance means this could be one of the reasons for the non-conformance
645 || pred DeIDedNonConformanceFullDateWhenHDateUnSet

616 [njh: NJH, qry: Query, qi: QryData, ri: RetData] {

647 NonConformanceDeIDedFullDateHDateUnSet [njh, qry, qi, ril}

648 || run DeIDedNonConformanceFullDateWhenHDateUnSet for 3but 1NJH expect O

255

B.2 Important Model Checks

Table B.1 describes the predicates and assertions we added to the runQuery Alloy model to extract model
properties of interest. The most important results come from OpPreserves, CanGetConformanceDelDed
and AlwaysDelDedConformance. A point worth mentioning is that CanGetConformanceDelDed can give
instances whether or not OpPreserves or AlwaysDelDedConformance find counterexamples. We include both
the OpDoesNotPreserve and DelDedNonConformanceFullDate WhenHDate UnSet predicates as alternates to
finding instances where the main assertions find counterexamples, because the assertions have much longer

running times that probing the model for an instance when the assertions already produced counterexamples.

256

L4¢

parfuapi-a(T

108 U99(dARY P[NOYS 1] 198

yuasold skeme st jou A10893ed 99ep YVJIH 2Y3 Yam ejep jusijed 91ed
oye)s paifiquapy | 93e)s ﬁ Q0UR)SUI WO POPHUSP OT¢ J97VT) S5008 POGITAPI-SD poig 19Gu N oYe(HUIY AR [N IoouruLIOjuo)UoNpPa(Io(
SUROUI 9OUR)SUT ou {pajoodxo
e 3ursn sjnsol Aronb oIoym odOURISUI PUR SOALX)
9OUB)SUI ON
-ordurexo109unoo
® SOALS 0UDUWLLOJUO)PI(TT2 (TS IDM] Y
Juesald oye)s pojoadxe ueyM [opowt 97} 9qoid ISY3Inj 03 Pas) won
poyuapy sueown | o[dUILXoIoUNod ‘PoyIIuepI memd.« 198U ()99% (U A\ 90URULIOJUO) PO([[O(JSARMIY
odurexaajunod ON I9AQU 9IR }O3I1) SS9J0€ POYIJUIPI-op © Julsn
synsax Arenb A10897e0 99ep YYJIH © UMM Bjep
Juoryed AJIJUOPI JOU Op oM UM JRY) S)ISSSY
‘ordurexa199unod
Josord o7e1s poyoedxe ® SOAIS 0UDWLLO[UO)PI(TT2 (TS IDM]Y
poyruapy sueawl | o[dUILXSIOIUNOD uouM [apout ot} dqoid 1oy 03 posy) on 198978 (J HUO A\ 9OURULIOJUO) PO([[O(JSARMIY
: "POYIIUSPT IOADU 9T }9XOI} SSO00R POYIIUOPI-op -I9SSY
o[durexoIojunod ON
® 3ulsn sjnsor Aronb £10899e0 93ep YVJIH ®
M ejep Jualjed AJIJUSpI oM UM JeY[) SIISSSY
Juesexd oye)s pojoadxo POYIIuepI-op sAemle wony
payryuapy sueawl | o[dUIeXoIoUNOd aIe 19XD1) SS900R PAYIIUAPI-OP © JUIST SHNSOI -Emmd.@ QOURULIOJUO) PA(J[O(SARM Y
ordurexaIounod ON A10mb [[B ‘SP0URISWNOID [[@ IopUN JRI[} SIIOSSY
Juesaxd oye)s poroedxo po3oadxe se payrjuepI-ap SI o0
pay1uapL-a(S A1omb ' Aq powIn)ol v)ep YOIYM UI 9oUR)SUI UR o1 PP [P(JPOURTLIOJUO) o) UR))
SURSOUWI 9OUR)SUT : : 9)RIOUDS URD oM JRYY) MOTS 0) dOURISUI UR SIAIY) :
sojdwrexo1o)
-Unod ou SOAIS
v/N sonsssaugdp) SJUTRIISUOD ST} S9IR[OIA UOTpeIado 97ed oAI8013ONS90d0
oM poyoadso firan@un.s 9} YOIYM IOPUN dOURISUI UR SOAIX) -pa1g
Q0URISUT ON
pojoadxo poje[oIA 8q 09 d1edrpald won
V/N | eordurexeroyunod | [~-Jauz ur dn 4os om SHUTRIISUOD) 9SNRD IoAdU -Ewwd.« soATes01Jd()
ON | suoryeosymads uorjersdo fiuand) oY) Jer) S)ILssy
91e1g _ nsoy _ uorjyeue[dxsyy odAT, _ oure N

poylewt fiuondun.d o) I10J S}O9) [OPOIN Yurjroduu]

‘19 SIqEL

APPENDIX C. SPECIFICATIONS FOR CREATING DETAILED FEEDBACK IN CHAPTER 7

C.1 Counterexample in the CheckConformance Operation

C.1.1 SLICE 5: ALLOY SPECIFICATIONS

The specifications are included in Section D.1.2.

258

C.1.2 SLICE 5: ALLOY COUNTEREXAMPLE XML REPRESENTATION

See Figure 7.15 for a graphical representation of the Alloy Analyzer counterexample. Source in xml file

removed as Alloy model is given in another appendix.

Listing C.1: Slice 5: CheckConformance XML Counterexample

1 || <alloy builddate="2014-05-16 16:44 EDT">

3 || <instance bitwidth="0" maxseq="0" command="Run showDeIDedDD for 7but INJH expect 1"
filename="slice_5_g_inst.als">

5 || <sig label="seq/Int" ID="0" parentID="1" builtin="yes">
6 </Sig>

¢ || <sig label="Int" ID="1" parentID="2" builtin="yes">
o || </sig>

11 || <sig label="String" ID="3" parentID="2" builtin="yes">
12 </sig>

14 || <sig label="this/Date" ID="4" parentID="5">

15 <atom label="Date$0"/>
16 <atom label="Date$1"/>
17 || </sig>

19 || <field label="day" ID="6" parentID="4">

20 <tuple> <atom label="Date$1"/> <atom label="Day$2"/> </tuple>
21 <types> <type ID="5"/> <type ID="7"/> </types>

22 || </field>

23

24 || <field label="month" ID="8" parentID="4">

25 <tuple> <atom label="Date$1"/> <atom label="Month$0"/> </tuple>
26 <types> <type ID="5"/> <type ID="9"/> </types>
27 || </field>

29 || <field label="year" ID="10" parentID="4">

30 <tuple> <atom label="Date$0"/> <atom label="Year$0"/> </tuple>
31 <tuple> <atom label="Date$1"/> <atom label="Year$0"/> </tuple>
32 <types> <type ID="5"/> <type ID="11"/> </types>

33 || </field>

35 || <sig label="this/Data" ID="5" parentID="2" abstract="yes">
36 || </sig>

3s || <sig label="this/Project" ID="12" parentID="13">
39 <atom label="Project$0"/>
10 || </sig>

12 || <sig label="this/DataSource" ID="13" parentID="2" abstract="yes">
13 || </sig>

15 || <sig label="this/AllowDeIDed" ID="14" parentID="15" one="yes">
46 <atom label="AllowDeIDed$0"/>
a7 || </sig>

10 || <sig label="this/TotallyDeIDed" ID="16" parentID="15" one="yes">
50 <atom label="TotallyDeIDed$0"/>

259

89

100

105

106

107

109

110

111

</sig>

<sig label="this/TotallyIDed" ID="17" parentID="15" one="yes">
<atom label="TotallyIDed$0"/>
</sig>

<sig label="this/DataTransform" ID="15" parentID="2" abstract="yes">
</sig>

<sig label="this/Age" ID="18" parentID="19">
<atom label="Age$0"/>
</sig>

<sig label="this/Other" ID="20" parentID="19">
<atom label="Other$0"/>
</sig>

<sig label="this/Name" ID="19" parentID="2" abstract="yes">
</sig>

<sig label="this/DeIDed" ID="21" parentID="22" lone="yes">
<atom label="DeIDed$0"/>
</sig>

<sig label="this/Identified" ID="23" parentID="22" lone="yes">
<atom label="Identified$0"/>
</sig>

<sig label="this/AccessTicket" ID="22" parentID="24" abstract="yes">
</sig>

<sig label="this/Permission" ID="24" parentID="2" abstract="yes">
</sig>

<sig label="this/DownloadAllowed" ID="25" parentID="26" lone="yes">
<atom label="DownloadAllowed$0"/>
</sig>

<sig label="this/DownloadDisabled" ID="27" parentID="26" lone="yes">
<atom label="DownloadDisabled$0"/>
</sig>

<sig label="this/Status" ID="26" parentID="2" abstract="yes">
</sig>

<sig label="this/Day" ID="7" parentID="2">
<atom label="Day$0"/>
<atom label="Day$1"/>
<atom label="Day$2"/>

</sig>

<sig label="this/Month" ID="9" parentID="2">
<atom label="Month$0"/>
</sig>

<sig label="this/Query" ID="28" parentID="2">
<atom label="Query$0"/>
<atom label="Query$i"/>
<atom label="Query$2"/>

</sig>

<sig label="this/Year" ID="11" parentID="2">

260

130

133

166

167

168

169

170

171

172

<atom label="Year$0"/>
</sig>

<sig label="this/Dataltem" ID="29" parentID="2">
<atom label="Dataltem$0"/>
<atom label="DataItem$1"/>
<atom label="Dataltem$2"/>
<atom label="Dataltem$3"/>
<atom label="Dataltem$4"/>
<atom label="Dataltem$5"/>
<atom label="Dataltem$6"/>
</sig>

<field label="name" ID="30" parentID="29">
<tuple> <atom label="Dataltem$0"/> <atom label="Other$0"/> </tuple>
<tuple> <atom label="Dataltem$1"/> <atom label="Age$0"/> </tuple>
<tuple> <atom label="Dataltem$2"/> <atom label="Other$0"/> </tuple>
<tuple> <atom label="DataItem$3"/> <atom label="Age$0"/> </tuple>
<tuple> <atom label="Dataltem$4"/> <atom label="Age$0"/> </tuple>
<tuple> <atom label="Dataltem$5"/> <atom label="Age$0"/> </tuple>
<tuple> <atom label="Dataltem$6"/> <atom label="Other$0"/> </tuple>
<types> <type ID="29"/> <type ID="19"/> </types>

</field>

<sig label="this/NJH" ID="31" parentID="2">
<atom label="NJH$0"/>
</sig>

<field label="accessTickets" ID="32" parentID="31">
<tuple> <atom label="NJH$0"/> <atom label="Identified$0"/> </tuple>
<tuple> <atom label="NJH$0"/> <atom label="DeIDed$0"/> </tuple>
<types> <type ID="31"/> <type ID="24"/> </types>

</field>

<field label="dataltems" ID="33" parentID="31">
<tuple> <atom label="NJH$0"/> <atom label="Dataltem$0"/> </tuple>
<tuple> <atom label="NJH$0"/> <atom label="Dataltem$1"/> </tuple>
<tuple> <atom label="NJH$0"/> <atom label="Dataltem$2"/> </tuple>
<tuple> <atom label="NJH$0"/> <atom label="DataIltem$3"/> </tuple>
<tuple> <atom label="NJH$0"/> <atom label="Dataltem$4"/> </tuple>
<tuple> <atom label="NJH$0"/> <atom label="DataIltem$5"/> </tuple>
<types> <type ID="31"/> <type ID="29"/> </types>

</field>

<field label="dates" ID="34" parentID="31">
<tuple> <atom label="NJH$0"/> <atom label="Date$0"/> </tuple>
<tuple> <atom label="NJH$0"/> <atom label="Date$1"/> </tuple>
<types> <type ID="31"/> <type ID="5"/> </types>

</field>

<field label="permissions" ID="35" parentID="31">
<tuple> <atom label="NJH$0"/> <atom label="Identified$0"/> </tuple>
<tuple> <atom label="NJH$0"/> <atom label="DeIDed$0"/> </tuple>
<types> <type ID="31"/> <type ID="24"/> </types>

</field>

<field label="projects" ID="36" parentID="31">
<tuple> <atom label="NJH$0"/> <atom label="Project$0"/> </tuple>
<types> <type ID="31"/> <type ID="13"/> </types>

</field>

<field label="qryItems" ID="37" parentID="31">

261

175 <tuple> <atom label="NJH$0"/> <atom label="Dataltem$l"/> </tuple>
76 <tuple> <atom label="NJH$0"/> <atom label="Dataltem$2"/> </tuple>
177 <types> <type ID="31"/> <type ID="29"/> </types>

178 || </field>

180 || <field label="queries" ID="38" parentID="31">

181 <tuple> <atom label="NJH$0"/> <atom label="Query$0"/> </tuple>
182 <tuple> <atom label="NJH$0"/> <atom label="Query$1i"/> </tuple>
183 <tuple> <atom label="NJH$0"/> <atom label="Query$2"/> </tuple>
184 <types> <type ID="31"/> <type ID="28"/> </types>

185 || </field>
186

187 || <field label="retItems" ID="39" parentID="31">

188 <tuple> <atom label="NJH$0"/> <atom label="Dataltem$0"/> </tuple>
189 <tuple> <atom label="NJH$0"/> <atom label="Dataltem$3"/> </tuple>
190 <tuple> <atom label="NJH$0"/> <atom label="Dataltem$4"/> </tuple>
191 <tuple> <atom label="NJH$0"/> <atom label="Dataltem$5"/> </tuple>

192 <types> <type ID="31"/> <type ID="29"/> </types>
193 || </field>

195 || <field label="statuses" ID="40" parentID="31">

196 <tuple> <atom label="NJH$0"/> <atom label="DownloadDisabled$0"/> </tuple>
197 <tuple> <atom label="NJH$0"/> <atom label="DownloadAllowed$0"/> </tuple>
198 <types> <type ID="31"/> <type ID="26"/> </types>

100 || </field>

201 || <field label="transforms" ID="41" parentID="31">

202 <tuple> <atom label="NJH$0"/> <atom label="AllowDeIDed$0"/> </tuple>
203 <tuple> <atom label="NJH$0"/> <atom label="TotallyDeIDed$0"/> </tuple>
204 <tuple> <atom label="NJH$0"/> <atom label="TotallyIDed$0"/> </tuple>
205 <types> <type ID="31"/> <type ID="15"/> </types>

206 || </field>

208 || <field label="values" ID="42" parentID="31">

209 <tuple> <atom label="NJH$0"/> <atom label="Date$0"/> </tuple>
210 <tuple> <atom label="NJH$0"/> <atom label="Date$1"/> </tuple>
211 <types> <type ID="31"/> <type ID="5"/> </types>

212 || </field>

214 || <field label="dataValues" ID="43" parentID="31">

215 <tuple> <atom label="NJH$0"/> <atom label="Dataltem$0"/> <atom label="Date$0"/> </tuple>
216 <tuple> <atom label="NJH$0"/> <atom label="Dataltem$1"/> <atom label="Date$l1"/> </tuple>
217 <tuple> <atom label="NJH$0"/> <atom label="Dataltem$2"/> <atom label="Date$1"/> </tuple>
218 <tuple> <atom label="NJH$0"/> <atom label="Dataltem$3"/> <atom label="Date$1"/> </tuple>
219 <tuple> <atom label="NJH$0"/> <atom label="DataIltem$4"/> <atom label="Date$l"/> </tuple>
220 <tuple> <atom label="NJH$0"/> <atom label="Dataltem$5"/> <atom label="Date$1"/> </tuple>
221 <types> <type ID="31"/> <type ID="29"/> <type ID="5"/> </types>

202 || </field>

224 || <field label="enteredOn" ID="44" parentID="31">

225 <tuple> <atom label="NJH$0"/> <atom label="Dataltem$3"/> <atom label="Date$0"/> </tuple>
226 <tuple> <atom label="NJH$0"/> <atom label="Dataltem$4"/> <atom label="Date$0"/> </tuple>
227 <types> <type ID="31"/> <type ID="29"/> <type ID="5"/> </types>

208 || </field>
229
230 || <field label="projectAT" ID="45" parentID="31">

231 <tuple> <atom label="NJH$0"/> <atom label="Project$0"/> <atom label="DeIDed$0"/> </tuple>
232 <types> <type ID="31"/> <type ID="13"/> <type ID="24"/> </types>

233 || </field>

234
235 || <field label="projectDataTransformRequired" ID="46" parentID="31">

262

236 <tuple> <atom label="NJH$0"/> <atom label="Project$0"/> <atom label="TotallyDeIDed$0"/>
</tuple>

237 <types> <type ID="31"/> <type ID="13"/> <type ID="15"/> </types>

238 || </field>

240 || <field label="projectQueries" ID="47" parentID="31">

241 <tuple> <atom label="NJH$0"/> <atom label="Project$0"/> <atom label="Query$0"/> </tuple>
242 <tuple> <atom label="NJH$0"/> <atom label="Project$0"/> <atom label="Query$1"/> </tuple>
243 <tuple> <atom label="NJH$0"/> <atom label="Project$0"/> <atom label="Query$2"/> </tuple>
244 <types> <type ID="31"/> <type ID="13"/> <type ID="28"/> </types>

245 || </field>
246

247 || <field label="qryReturns" ID="48" parentID="31">

248 <tuple> <atom label="NJH$0"/> <atom label="Query$0"/> <atom label="DataItem$0"/> <atom
label="Dataltem$2"/> </tuple>

249 <tuple> <atom label="NJH$0"/> <atom label="Query$0"/> <atom label="Dataltem$3"/> <atom
label="Dataltem$1"/> </tuple>

250 <tuple> <atom label="NJH$0"/> <atom label="Query$1"/> <atom label="Dataltem$4"/> <atom
label="Dataltem$1"/> </tuple>

251 <tuple> <atom label="NJH$0"/> <atom label="Query$2"/> <atom label="Dataltem$5"/> <atom
label="Dataltem$1"/> </tuple>

252 <types> <type ID="31"/> <type ID="28"/> <type ID="29"/> <type ID="29"/> </types>

253 || </field>

255 || <field label="VDAllowed" ID="49" parentID="31">

256 <tuple> <atom label="NJH$0"/> <atom label="Query$0"/> <atom label="DownloadDisabled$0"/>
</tuple>

257 <tuple> <atom label="NJH$0"/> <atom label="Query$2"/> <atom label="DownloadDisabled$0"/>
</tuple>

258 <types> <type ID="31"/> <type ID="28"/> <type ID="26"/> </types>

250 || </field>

261 || <sig label="ord/Ord" ID="50" parentID="2" one="yes" private="yes">
262 <atom label="ord/0rd$0"/>
263 </Sig>

265 || <field label="First" ID="51" parentID="50" private="yes">

266 <tuple> <atom label="ord/0rd$0"/> <atom label="NJH$0"/> </tuple>
267 <types> <type ID="50"/> <type ID="31"/> </types>

268 || </field>

270 || <field label="Next" ID="52" parentID="50" private="yes">
271 <types> <type ID="50"/> <type ID="31"/> <type ID="31"/> </types>
272 || </field>

274 || <sig label="univ" ID="2" builtin="yes">

275 || </sig>

276

277 || <sig label="this/QryData" ID="53">
278 <atom label="DataItem$1"/>

279 <atom label="Dataltem$2"/>

280 <atom label="Dataltem$3"/>

281 <atom label="Dataltem$4"/>

282 <atom label="Dataltem$5"/>

283 <atom label="Dataltem$6"/>

284 <type ID="29"/>

285 || </sig>
286
287 || <sig label="this/RetData" ID="54">
288 <atom label="Dataltem$0"/>
289 <atom label="Dataltem$3"/>
290 <atom label="DataIltem$4"/>

263

291 <atom label="Dataltem$5"/>

292 <atom label="Dataltem$6"/>
203 <type ID="29"/>
204 || </sig>

296 || <skolem 1abel=”$init_q“ ID="55">

297 <tuple> <atom label="Query$1"/> </tuple>
208 <types> <type ID="28"/> </types>

299 || </skolem>

300
301 || <skolem label="$showDeIDedDD_njh" ID="56">
302 <tuple> <atom label="NJH$0"/> </tuple>
303 <types> <type ID="31"/> </types>

304 || </skolem>

306 || <skolem label="$showDeIDedDD_p" ID="57">

307 <tuple> <atom label="Project$0"/> </tuple>
308 <types> <type ID="13"/> </types>

309 || </skolem>

310

311 || <skolem 1abel="$showDeIDedDD_q" ID="58">

312 <tuple> <atom label="Query$2"/> </tuple>
313 <types> <type ID="28"/> </types>

314 || </skolem>

316 || <skolem label="$common_inst_p" ID="59">

317 <tuple> <atom label="Project$0"/> </tuple>
318 <types> <type ID="13"/> </types>

319 || </skolem>

321 || <skolem 1abel=”$common_inst_q" ID="60">

322 <tuple> <atom label="Query$2"/> </tuple>
323 <types> <type ID="28"/> </types>

324 || </skolem>

326 || <skolem label="$totallyDeIDedTransform_d" ID="61">
327 <tuple> <atom label="Date$1"/> </tuple>

328 <types> <type ID="5"/> </types>

320 || </skolem>

331 || </instance>

333 || </alloy>

264

C.1.3 SLICE 5: ALLOY COUNTEREXAMPLE USE REPRESENTATION (SEE FIGURE 7.17 FOR A GRAPHICAL

REPRESENTATION OF THE OBJECT MODEL)

Listing C.2: Slice 5: CheckConformance USE Counterexample

1 || —— Script generated by USE 4.2.0

3 || 'new DownloadDisabled(’DownloadDisabled_0’)
4 || 'new DeIDed(’DeIDed_0’)

6 || 'new QryData(’Dataltem_4’)
7 || 'new QryData(’Dataltem_5’)

o || 'Dataltem_4.name := ’Age’
10 || 'Dataltem_5.name := ’0ther’

12 || 'new Date(’Date_17)
13 || 'Date_1.day :=
14 || 'Date_1.month := 8

15 || 'Date_1.year := 1931

I oI

17 || 'insert (Dataltem_5,Date_1) into DataValues
18 || 'insert (Dataltem_4,Date_1) into DataValues

20 || 'new Project(’Project_1’)

21 || 'new Query(’Query_0’)

22 || !insert (Project_1,DeIDed_0) into ProjectAT

23 || 'insert (Project_1,Query_0) into ProjectQueries

25 || 'new RetData(’Dataltem_0’)
26 || 'new RetData(’Dataltem_1’)
27 || 'new RetData(’Dataltem_2°)
>s || 'new RetData(’Dataltem_3’)

30 || 'new Date(’Date_0’)
31 || 'Date_0O.day :=
32 || 'Date_O.month := 0

33 || 'Date_0.year := 1931

N ol

35 || 'Dataltem_O.name := ’Age’
36 || !insert (Query_O,Dataltem_O,Dataltem_4) into QryReturns
37 || 'insert (Dataltem_0,Date_0) into DataValues

309 || 'Dataltem_3.name := ’0Other’

10 || !insert (Query_O,Dataltem_3,Dataltem_5) into QryReturns
41 || 'insert (Dataltem_3,Date_1) into DataValues

42

43 || 'Dataltem_2.name := ’Age’

14 || linsert (Query_O,Dataltem_2,Dataltem_4) into QryReturns
45 || 'insert (Dataltem_2,Date_0) into DataValues

47 || 'Dataltem_1.name := ’Age’
4s || 'insert (Query_O,Dataltem_1,Dataltem_4) into QryReturns
49 || 'insert (Dataltem_1,Date_0) into DataValues

51 || !insert (Query_0,DownloadDisabled_0) into VDAllowed

265

C.2 USE Commands for Generating On-Demand Object Models in the NJH System

The listings in sections C.2.1 through C.2.4 are used in the listings in Section C.2.5.

C.2.1 USE CrLASss MODELS

Listing C.3: USE Class Model for Slice 5 to Check Conformance

1] /*
2 Model slice for NJH to

3 || 5. Check Conformance

4

5 ||Written by Phillipa Bennett
6 [|Date Sept 20, 2016

7 || Version 4

8 */

10 ||model NJHg_slice_5
12 || /* Abstract CLASSES */

14 || abstract class Data end
15 || abstract class Permission end

17 || /* Extended abstract classes */
15 || abstract class AccessTicket < Permission end

20 || /* Unextended concrete classes */
21 || class Dataltem

22 || attributes

23 name: String

24 || end

26 || class Query
27 || attributes
28 || operations

29 download ()
30 view()
31 || end

33 || abstract class Status end

35 || /* Extended concrete classes */

37 || class Date < Data
38 || attributes

39 day: Integer

40 month: Integer

41 year: Integer

42 || operations

43 isIdentified(): Boolean

44 isNotIdentified(): Boolean
45 || end

47 || class DStr < Data
45 || attributes

49 sVal: String
50 || end

266

52 || class Project end

54 || class QryData < Dataltem end
55 || class RetData < Dataltem end

57 || class DeIDed < AccessTicket end
58 || class Identified < AccessTicket end

60 || class DownloadDisabled < Status end
61 || class DownloadAllowed < Status end
62
63 || /* ASSOCIATIONS */

64 || association DataValues between
65 Dataltem[*]

66 Datal[1]

67 || end

68
69 || association EnteredOn between

70 Dataltem[*] role item
71 Date[0..1] role date
72 || end

74 || association ProjectAT between

75 Project [*]
76 AccessTicket[0..1]
77 || end

79 || association ProjectQueries between

80 Project[*] /* relax from 1to * to allow generation program to work, enforced as 1in a
constraint */

81 Query [*]

s2 || end

83
g4 || association QryReturns between

85 Query[*] role qry

86 RetData[*] role rData
87 QryData[*] role gData
ss || end

90 || association VDAllowed between

91 Query [*]
92 Status[0..1]
93 || end

267

39

40

41

42

43

44

Listing C.4: USE Class Model for Slice 4 to Ezecute Query

/*
Model slice for NJH to
4. execute query

Written by Phillipa Bennett
Date Sept 1, 2016
Version 4

*/
model NJHg_slice_4

/* Abstract CLASSES */
abstract class Category end
abstract class Data end
abstract class DataSource end
abstract class Permission end
abstract class Rule
attributes
operations

applyRule()
end

/* Extended abstract classes */

abstract class AccessTicket < Permission end
abstract class AccessRule < Rule end

abstract class HIPAACat < Category end
abstract class Consent < Category end

abstract class Type end

/* Unextended concrete classes */
class Dataltem
attributes
name: String
end

class Patient end
class Personnel end
class Query
attributes
operations

runQuery(res: Researcher, proj:

download ()
view()
end

/* Extended concrete classes */
class Allow < Consent end
class Disallow < Consent end

class Date < Data
attributes
day: Integer
month: Integer
year: Integer
operations
isIdentified(): Boolean
isNotIdentified(): Boolean

Project)

268

60

61

62

63

64

66

67

68

69

70

71

72

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

102

103

104

105

106

107

108

109

110

115

119

end

/*class DStr < Data

attributes
sVal: String
end */

class HDate < HIPAACat end

class Project < DataSource end
class ClinicalDB < DataSource end

class Researcher < Personnel end
class Qualifier < Personnel end

class QryData < Dataltem end
class RetData < Dataltem end

class Individual < Type end
class Group < Type end

class DelDed < AccessTicket end
class Identified < AccessTicket end

class TransformHDate < AccessRule end
class PatientConsent < AccessRule end

/* ASSOCIATIONS */

association ARAppliesTo between
AccessRule[*] role accessrule
Typel[l..*] role type

end

association ARHides between
AccessRule [*]
Category [*]

end

association ARTransforms between
AccessRule[*] role hAccessRules
HIPAACat [*]

end

association DataValues between
DataIltem[*]
Datal[1]

end

association DICat between
Dataltem[*]
HIPAACat [*]

end

association DISource between
DataSource[0..1]
DataIltem[*]

end

association EnteredOn between
Dataltem[*] role item
Date[0..1] role date

end

association PatientData between

269

122 Patient[0..1]

123 Dataltem[*]
124 Consent [0..1]
125 || end

126
127 || association PermRules between

128 Permission[*]
129 Rule[1..x]
130 || end

132 || association ProjectAT between

133 Project [*]
134 AccessTicket[0..1]
135 || end

136
137 || association ProjectDataCollector between

138 Project [*]
139 Personnel[0..1] role dc
140 || end

142 || association ProjectMembers between

143 Project[*] role proj
144 Researcher[*] role members
145 || end

147 || association ProjectPI between

148 Project[*] role pi_proj
149 Researcher[0..1] role pi
150 || end

152 || association ProjectQueries between

153 Project[*] /* relax from 1to * to allow generation program to work, enforced as 1lin a
constraint */

154 Query [*]

155 || end

157 || association ProjectSources between

158 Project [*]
159 DataSource [*]
160 || end

162 || association QryWorksOn between

163 Query [*]
164 QryData[*]
165 || end

167 || association QryReturns between

168 Query[*] role gry

169 RetData[*] role rData
170 QryData[*] role gData
171 || end

172
173 || association RDType between

174 Query[*] role rd_qry

175 RetData[*] role rd_data
176 Type [0..1]

177 || end

270

39

40

41

42

43

44

Listing C.5: USE Class Model for Slice 3 to Approve Access Ticket

/*
Model slice for NJH to
3. approve project access ticket,

Written by Phillipa Bennett
Date August 18, 2016
Version 4

*/
model NJHg_slice_1

/* Abstract CLASSES */
abstract class DataSource end
abstract class DataTransform end
abstract class Permission end
abstract class Rule
attributes
operations

applyRule()
end
abstract class Purpose end

/* Extended abstract classes */
abstract class AccessTicket < Permission end

class TotallyDeIDed < DataTransform end
class NotTotallyDeIDed < DataTransform end

abstract class Licence < Permission end
abstract class DecisionRule < Rule end

/* Unextended concrete classes */

class Personnel end

class Query

attributes

operations
runQuery(res: Researcher, proj: Project)
download ()
view()

end

/* Extended concrete classes */
class Project < DataSource end
class ClinicalDB < DataSource end

class Fishing < Licence end

class DeIDed < AccessTicket end
class Identified < AccessTicket end

class CanUseTotallyDelIDed < DecisionRule end

class ClinicalDBNeedsDataCollector < DecisionRule end
class DataAccessAgreementPresent < DecisionRule end
class DataSourcePriority0OK < DecisionRule end

class LicenedTeamAndPI < DecisionRule end

class NoOverlapPITeamDC < DecisionRule end

class NoSupsInPIandDC < DecisionRule end

271

60

61

62

63

64

66

67

68

69

70

71

72

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

102

103

104

105

106

107

108

109

110

115

119

class PIDefined < DecisionRule end

class ProjectMembersDefined < DecisionRule end

class QualifierPresent < DecisionRule end

class SomePurposeNotDirectTreatment < DecisionRule end
class SomeQueriesDefined < DecisionRule end

class SomeSourcesDefined < DecisionRule end

class DirectTreatment < Purpose end
class Research < Purpose end

/* These classes are defined using the ’in’ keyword in the Alloy model.
How will we achieve this in OCL? */

class Qualifier < Personnel

attributes

operations
QualifyResearcher(res: Researcher)

end

class Researcher < Personnel end

/* ASSOCIATIONS */

association ATPriority between
AccessTicket[*] role ant
AccessTicket[*] role desc
end

association DataAccessAgreement between
Project[*] role owner
Project[*] role user

end

association PermRules between
Permission[*]
Rule[1..x]

end

association ProjectAT between
Project [*]
AccessTicket[0..1]

end

association ProjectDataCollector between
Project [*]
Personnel[0..1] role dc

end

association ProjectDataTransformRequired between
Project [*]
DataTransform[0..1]

end

association ProjectMembers between
Project[*] role proj
Researcher[*] role members

end

association ProjectPI between
Project[*] role pi_proj
Researcher[0..1] role pi
end

272

122 || association ProjectPurpose between

123 Project [*]
124 Purpose[0..1]
125 || end

126
127 || association ProjectQueries between

128 Project[*] /* relax from 1to * to allow generation */
129 Query [*]
130 || end

132 || association ProjectSources between

133 Project [*]
134 DataSource [*]
135 end

137 || association ResearcherL between

138 Researcher [*]
139 Licence[0..1]
140 || end

142 || association Supervisors between

143 Personnel [*] role supervisor
144 Personnel [*] role supervised
145 || end

273

C.2.2 OCLCONSTRAINTS

Listing C.6: USE Constraints applicable only to Slices 2, and 3 to Approve Researcher’s Licence and Approve

Access Ticket respectively - filename reference for listings in Section C.2.5 is slice_23g.cnsts

1 || context Fishing

3 || inv singletonFishing:

4 Fishing.allInstances->size()<=1

¢ || inv FishingDesicionRules:

7 rule->forAll(r | r.oclIsTypeOf (QualifierPresent)=true)

9 || context QualifierPresent

11 || inv QualifierPresentOnlyForFishing:
12 permission->forAll(p | p.oclIsTypeOf(Fishing)=true)

14 || context DecisionRule

16 || inv singletonEachDecisionRule:

17 DecisionRule.allInstances.select(

18 oclIsTypeOf (CanUseTotallyDeIDed)=true)->size<=1
19 || and

20 DecisionRule.allInstances.select(

21 oclIsTypeOf (DataSourcePriority0K)=true)->size<=1
22 || and

23 DecisionRule.allInstances.select(

24 oclIsTypeOf (LicenedTeamAndPI)=true)->size<=1

25 || and

26 DecisionRule.alllnstances.select(

27 oclIsTypeOf (NoOverlapPITeamDC)=true)->size<=1

25 || and

29 DecisionRule.allInstances.select(

30 oclIsTypeOf (NoSupsInPIandDC)=true)->size<=1

31 || and

32 DecisionRule.alllnstances.select(

33 oclIsTypeOf (PIDefined)=true)->size<=1

34 || and

35 DecisionRule.allInstances.select(

36 oclIsTypeOf (ProjectMembersDefined)=true)->size<=1
37 || and

38 DecisionRule.alllnstances.select(

39 oclIsTypeOf (QualifierPresent)=true)->size<=1

40 || and

41 DecisionRule.allInstances.select(

42 0c1IsTypeOf (SomePurposeNotDirectTreatment)=true)->size<=1
43 || and

44 DecisionRule.allInstances.select(

15 oclIsTypeOf (SomeQueriesDefined)=true)->size<=1
46 || and

a7 DecisionRule.alllnstances.select(

48 oclIsTypeOf (SomeSourcesDefined)=true)->size<=1
19 || and

50 DecisionRule.allInstances.select(

51 oclIsTypeOf (DataAccessAgreementPresent)=true)->size<=1

274

Listing C.7: USE Constraints applicable only to Slices 2, 3, and 4 to Approve Researcher’s Licence, Ap-
prove Access Ticket, and Execute Query respectively - filename reference for listings in Section C.2.5 is

slice_234g.cnsts

2 || /* This was weakened in the CD for slice 5and 4,
3 so we add it as a constraint here */

4 || context Permission

5 || inv invEachPermHasAtLeastOneRule:

6 rule->size()>=1

Listing C.8: USE Constraints applicable only to Slices 8 and 4 to Approve Access Ticket and Execute Query

respectively - filename reference for listings in Section C.2.5 is slice_34g.cnsts

1 || context AccessTicket

S

3 || inv singletonEachAT:

4 AccessTicket.allInstances.select(

5 oclIsTypeOf (Identified)=true)->size()<=1
6 and

7 AccessTicket.allInstances.select(

8 oclIsTypeOf (DeIDed)=true)->size()<=1

10 || context ClinicalDB
11 || inv singletonClinicalDB:
12 ClinicalDB.allInstances.select(oclIsTypeOf (ClinicalDB)=true)->size()<=1

14 || context Project

15 || inv invProjectNeedsDataCollectorForClinicalDB:

16 dataSource->select (oc1IsTypeOf (ClinicalDB)=true)->size()=1 implies

17 dc->size()=1

1s || /* this not really required because executing the query should check it */
19 || inv invProjectSources2:

20 dataSource->select (oclIsTypeOf (Project)=true)->forAll(

21 p | p.oclAsType(Project) .accessTicket->size()=1)

23 || context DataSource
24 || inv invProjectSourcesl: /* easier to write this in the contex of DataSource */
25 project.closure(project)->excludes(self)

Listing C.9: USE Constraints applicable only to Slices 3, 4 and 5 to Approve Researcher’s Licence, Ap-
prove Access Ticket, and Execute Query respectively - filename reference for listings in Section C.2.5 is

slice_345g.cnsts

1 || context Query

N

3 || inv invEachQueryAssociatedWithOnlyOneProject:
project->size()=1

IS

275

Listing C.10: USE Constraints applicable only to Slices 4 and 5 to Ezxecute Query and Check Conformance

respectively - filename reference for listings in Section C.2.5 is slice_{5g.cnsts

1 || context Date
2 || inv attValuesl:

3 day >= Oand day <= 31

4 and

5 month >= Oand month <=12
6 and

7 year >= 1900

9 || inv attValues2:
10 day>29 implies
11 Sequence{1,3..12}->includes (month)

13 || inv attValues3:

14 (month=2 and day=29) implies

15 year .mod (4)=0

16

17 || inv attValues4:

18 (month=2 and day=29 and year.mod(100)=0) implies
19 year .mod (400)=0

21 || context Type
22 || inv singletonEachType:

23 Type.alllnstances.select(

24 oclIsTypeOf (Group)=true)->size<=1

25 and

26 Type.alllnstances.select(

27 oclIsTypeOf (Individual)=true)->size<=1

209 || context RetData
30 || inv retDataInOneQuery:
31 gry->size()<=1 /* should be =17 */

33 || inv retDataType:
34 type->size()=1

36 || context Query
37 ||inv invRDType:

38 rData->forAll(

39 (gData->size()=1 implies

10 type->select (oclIsTypeOf (Individual)=true)->size=1)
41 and

42 (gData->size()>1 implies

43 type->select (oclIsTypeOf (Group)=true)->size=1)

44)

47 || inv invQryReturnsi:
18 gryData->includesAll(gData)

50 || inv invQryReturns2:
51 gData->size()>0 implies project.accessTicket->size()=1

Listing C.11: USE Constraints applicable only to Slice 5 to Check Conformance, filename reference for

listings in Section C.2.5 is slice_5g_1.cnsts

276

1 || context Status

2 || inv singletonEachStatus:

3 Status.allInstances.select(

4 oclIsTypeOf (DownloadDisabled)=true)->size<=1
5 and

6 Status.allInstances.select(

7 oclIsTypeOf (DownloadAllowed)=true)->size<=1

Listing C.12: USE Constraints applicable only to Slice 5 to Check Conformance, filename reference for

listings in Section C.2.5 is slice_5g_2.cnsts

1 || context Query
2 || inv invVDAllowed:

3 let

4 condl: Boolean =

5 rData->size()>0,
6 cond2: Boolean =

7 status->size()=1
8 in

) condl implies cond2
10 and

11 cond2 implies condl

12
13 || inv invDownloadAllowedDeIDed:

14 let

15 condl: Boolean =

16 project.accessTicket->select (oclIsTypeOf (DeIDed)=true)->size()=1,
17 cond2: Boolean = rData.data->select(

18 oclIsTypeOf (Date)=true)->forAll(d |d.oclAsType(Date) .day=0),
19 cond3: Boolean =

20 status.oclIsTypeOf (DownloadAllowed)=true

21 in

22 condl implies (

23 (cond2 implies cond3)

24 and

25 (cond3 implies cond2))

27 || inv invDownloadDisabledDeIDed:

28 let

29 condl: Boolean =

30 project.accessTicket->select (oclIsTypeOf (DeIDed)=true)->size()=1,
31 cond2: Boolean =

32 rData.data->select(

33 oclIsTypeOf (Date)=true)->exists(d |d.oclAsType(Date) .day<>0),
34 cond3: Boolean =

35 status.oclIsTypeOf (DownloadDisabled)=true

36 in

37 condl implies (

38 (cond2 implies cond3)

39 and

10 (cond3 implies cond2))

Listing C.13: USE Constraints applicable only to Slice 4 to Fzecute Query - filename reference for listings

in Section C.2.5 is slice_4g.cnsts

1“context AccessRule

277

2 || inv invARHides:
3 category->excludesAll (hIPAACat) and
4 hIPAACat->excludesAll(category)

6 || inv singletonEachAccessRule:

7 AccessRule.alllnstances.select(

8 oclIsTypeOf (TransformHDate)=true)->size<=1
9 and

10 AccessRule.alllnstances.select(

11 oclIsTypeOf (PatientConsent)=true)->size<=1

12
13 || context Category
14 || inv singletonEachCategory:

15 Category.alllnstances.select(

16 oclIsTypeOf (HDate)=true)->size<=1

17 and

18 Category.alllnstances.select(

19 oclIsTypeOf (Allow)=true)->size<=1

20 and

21 Category.alllnstances.select(

22 oclIsTypeOf (Disallow)=true)->size<=1

23
24 || context Dataltem
25 || inv invDISourceAndEnteredOn:

26 dataSource.oclIsTypeOf (ClinicalDB)=true implies
27 (date->size()=1 and
28 date.day >=1 and date.month >=1)

29
30 || /* Correctly categoriises ClinicalCB dates as HDate
31 this relaxed for non-conformance */

32 || /*inv invPatientDataAndDICat:

33 (data.oclIsTypeOf (Date)=true and

34 self.oclIsTypeOf (RetData)=false)

35 implies

36 hIPAACat->select (oclIsTypeOf (HDate)=true)->size(D=1 */

38 || inv invEnteredOn:
30 patient->size()>0 implies (date->size()=1 and date.day>=1)

41 || context DataSource
42 || inv invDISourcel:

13 if oclIsTypeOf (Project)=true then

44 self.dataltem->forAll (oclIsTypeOf (RetData)=true)
45 else

46 self.dataltem->forAll (oclIsTypeOf (RetData)=false)
47 endif

49 || context Query
inv invDISource2:
1 rData.qData->forAl11(qd | qd.dataSource.oclIsTypeOf(ClinicalDB)=true)

oo
<)

Listing C.14: OCL Constraints applicable only to Slice 8 to Approve Access Ticket - filename reference for

listings in Section C.2.5 is slice_3g.cnsts

|| /*

2 || Constraints for approve project licence

w

4 ||Written by Phillipa Bennett
Date August 18, 2016

o

278

39

40

41

42

43

44

Version 4

*/
context AccessTicket

inv invATPriority: /* no cycles */
desc.closure(desc)->excludes(self) or
ant.closure(ant)->excludes(self)

inv QualifierPresentNotAnATDecisionRule:
rule.select(
0clIsTypeOf (QualifierPresent)=true)->size()=0

context DataTransform

inv singletonEachDT:
DataTransform.allInstances.select(
oclIsTypeOf (TotallyDeIDed)=true)->size () <=1
and
DataTransform.allInstances.select(
oclIsTypeOf (NotTotallyDeIDed)=true)->size()<=1

context Purpose

inv singletonEachPurpose:
Purpose.alllnstances.select(
oclIsTypeOf (DirectTreatment)=true)->size () <=1
and
Purpose.alllnstances.select(
oclIsTypeOf (Research)=true)->size()<=1

context Project
inv invDataAccessAggreementl: /* no cycles */
owner->closure (owner)->excludes(self) or
user->closure (user)->excludes(self)

/* inv invDataAccessAggreement2: - see invDataAccessAgreementPresent below */
context Personnel
inv invSupervisors: /* no cycles */

supervised->closure (supervised)->excludes(self) or
supervisor->closure (supervisor)->excludes(self)

279

C.2.3 ASSL PROCEDURES

o3

10
11
12
13
14

16
17
18

20
21
22
23

24

41
42
43
44
45

Listing C.15: ASSL Procedures for Slice 4 to Execute Query

/* skokokokokokokoksksk skokokckskskskokokk kkckskskokokokckk kokskokokokoskkksk skokokokckkcksksksk kokkkskskskokokk kkkskskokokokkk
PROCEDURE
ko skokokokkokskskokok kokckskckskokokoskk skokskokokokockkckk skokokokoskkksksksk kokckkskskskokokdk kkkskskokokkkk **********/
procedure add_4g_singleton_objects(
max: Integer)
var
/* misc */
n: Integer;

begin
/* a. create singleton objects */
Create(ClinicalDB);
Create(HDate) ;
Create(Allow);
Create(Disallow);
Create (Group) ;
Create(Individual);

/* Personnel, choose da, pi, and team pool */
//n := Any([Sequence{l..max}]);
CreateN(Personnel, [2]); /* if n>2 generation fails */

//n := Any([Sequence{l..max}]);
CreateN(Qualifier, [2]); /* if n>2 generation fails */

n := Any([Sequence{3..max}]);
CreateN(Researcher, [n]);
end;

/% kokskokskokokskokok kokokkRokKokoKk kokFoKKFOKKKoK kokokkdokKkok kok ok kokkkok kokkokokdokokokok ok Kok ok ok k ok
PROCEDURE
K RKRRKAKKKK KRKAKAKKKKK FKAKAKKAKKK KKK KKKKKAKK KFKKAKKAKKK KK AAKKAKAK KKK KKK KKK [
procedure configure_AT_AccessRules()
var

/* Permissions */

iat: Identified,

dat: DelDed,

g: Group,

i: Individual,

/* Hippa categories */
hipaad: HDate,

/* abstract DecisionRule object */
ar: AccessRule;

begin
dat Any ([DeIDed.allInstances->asSequence()]);
iat := Any([Identified.allInstances->asSequence()]);
g := Any([Group.allInstances->asSequence()]);
i := Any([Individual.allInstances->asSequence()]);
hipaad := Any([HDate.allInstances->asSequence()]);

/* Access ticket AccessRules,
Create PermRules and ARAppliesTo associations */
ar := Create(TransformHDate) ;

280

66

67

68

69

70

71

72

73

76

77

78

79

80

81

82

83

84

86

87

88

89

90

91

92

93

94

107

108

109

110

111

116

Insert(PermRules, [dat], [ar]);
/* Insert(ARAppliesTo, [ar]l, [gl); */
Insert (ARAppliesTo, [ar], [i]);
Insert (ARTransforms, [ar], [hipaad]);

ar := Create(PatientConsent);

Insert(PermRules, [dat], [ar]);

Insert(PermRules, [iat], [ar]);

Insert (ARAppliesTo, [ar], [gl);

Insert (ARAppliesTo, [ar], [il);
end;

/* skokokokokoksksksksk skokokoskskskskokokok skokskskskokokoksksk skkskokokokosksksksk skokokokosksksksksksk skokokskskskskokoksk skokskskskokokokkk
PROCEDURE
ko skokockskokskokskskk skokskokskokskskoksk kokokskokskdkkskk kokskokskokkskkk kskokskokkskkskk kkskokkskkkkk **********/
procedure generate_patient_data(

max: Integer,

maxMonth: Integer,

currentYear: Integer)
var

di: Sequence(Dataltem),

di_5: Sequence(Dataltem),

pdi: Sequence(Dataltem),

da: Sequence(Date),
nda: Sequence(Date),

patients: Sequence(Patient),
cnsts: Sequence(Consent),

cDB: ClinicalDB,
date: Date,
cnst: Consent,
hipaad: HDate,

allow: Boolean,
first: Boolean,
maxYears: Integer,
m: Integer,

nbr: Integer,

n: Integer;

begin
allow := [false];
nbr := [1];
maxYears :=[95];

/* Categories */
cnsts := [Consent.allInstances->asSequence()];
hipaad := Any([HDate.allInstances->asSequence()]);

/* DataSources */
cDB := Any([ClinicalDB.allInstances->asSequence()]);

/* Patients */
n := Any([Sequence{1..max}1);
patients := CreateN(Patient, [n]);

/* Dataltems */

di_5 := [Dataltem.allInstances()->asSequence()];

di CreateN(Dataltem, [nbr*n]); /* nbr Dataltem for each patient */

di [DataItem.allInstances()->asSequence()]; /* includes dataitems created in slice 5%/

281

119

120

122
123
124
125
126
127

129
130
131
132
133
134
135
136
137
138

139

164
165
166
167
168
169

170

172
173
174
175
176
177
178

179

/* Date Data */
da := CreateN(Date, [di->size()]);
for d: Date in [da] begin

// day

[d] .day := Any([Sequence{1..31}1);

// month
if [d.day>28] then begin
m:= Any([Sequence{1, 3..12}]);
end
else begin
m:= Any([Sequence{1l..12}]1); //leave out month=2 & day=29 for now
end;
[d] .month := [m];

// year
if [d.month>maxMonth] then begin

m:= Any([Sequence{currentYear-maxYears..currentYear-1}]);
end
else begin

m:= Any([Sequence{currentYear-maxYears..currentYear}]);
end;
[d].year := [m];

end;
da := [Date.allInstances()->
select(d | d.day<>0)->asSequence()]; /#* includes identified dataitems created in slice
5%/

/* Association Links */
Try(DataValues, [dil, [dal);

/* PatientData */
for p: Patient in [patients] begin
first := [false];
n := Any([Sequence{l..nbr}l);
pdi := Sub([di->select(patient->size()=0)->asSequence()], [nl);
for d: Dataltem in [di_5] begin
/*if [first=false] then begin
[d] .name := Any([Sequence{’Age’}]1);
first := [true];
end; */
/* ensure at lease one Dataltem has Allow in PatientData */
if [allow=false] then begin
cnst := Any([cnsts->select(oclIsTypeOf (Allow)=true)]);
allow := [true];
end;
/* else begin
cnst := Any([cnsts]);
end; */
Insert(PatientData, [p], [d], [cnst]);
end;
end;

/* Delete Dataltems not assigned to patient */

for d: Dataltem in [di->select(patient->size()=0)->asSequence()] begin
Delete([d]);

end;

/* do we need to update di? */
di := [DataItem.allInstances->asSequence()];

282

180 /* DISource for data linked to a patient */

181 for d: Dataltem in [di] begin

182 date := Any([dal);

183 Insert(EnteredOn, [d], [datel);

184 Insert(DISource, [cDB], [d]);

185 end;

186

187 /* Delete Date not assigned to Dataltem in DataValues or EnteredOn */
188 for d: Date in [

189 da->select(dataltem->size()=0)->asSequence()] begin
190 if [d.item->size()=0] then begin Delete([d]); end;
191 end;

192 /* do we need to update da? */

193 da := [Date.allInstances->asSequence()];

194

195 /* Set HDate for Dates */

196 for d: Dataltem in [di] begin

197 if [d.data.oclIsTypeOf(Date)=true] then begin

198 //date := [d.data.oclAsType(Date)];

199 if [d.name=’Age’] then begin

200 Insert(DICat, [d], [hipaad]);

201 end;

202 end;

203 end;

204 || end;

205

206 || /% Hkskkkdkokkokk kokkkkkokRkk KRR KKK KRR KKK AKK Kok kKKK

207 PROCEDURE
208 F okokoksokokoksokok skokokokokokokakokok skokokokskokokokakok kskokokokskokokokok kokokokkakokokokok kokskokokokakokok ok kokokskok ok okok ok /

209 || procedure setup_project(

210 proj: Project,

211 qry: Query,

212 at: AccessTicket,

213 pdss: Sequence(Project),

214 max: Integer)

215

216 || var

217 /* for objects already created */
218 cDB: ClinicalDB,

219

220 projs: Sequence(Project),

221

222 pers: Sequence(Personnel),

223 res: Sequence(Researcher),

224

225 /* for setting up links */

226 rs: Sequence(Researcher),

227 pss: Sequence(Project),

228 da: Personnel,

229 pi: Researcher,

230 team: Sequence(Researcher),

231

232 /* misc */

233 m: Integer,

234 n: Integer;

235

236 || begin

237 cDB := Any([ClinicalDB.allInstances->asSequence()]);
238

239 /* Personnel, Researchers */

240 pers := [Personnel.allInstances->asSequence()];
241 res := [Researcher.alllnstances->asSequence()];

283

242

243 /* choose da */

244 da := Any([pers]);

245

246 /* set pi and update team */

247 if [da.oclIsTypeOf (Researcher)] then begin

248 pi := Any([res->excluding(da.oclAsType(Researcher))]);
249 team := [res->excluding(da.oclAsType(Researcher))->excluding(pi)];
250 end

251 else begin

252 pi := Any([res]);

253 team := [res—->excluding(pi)];

254 end;

255

256 /* Projects, put proj in projs */

257 projs := [Project.alllnstances->excluding(proj)->asSequence()];
258

259 /* Generate applicable association links */

260

261 /* SomeSourcesDefined, Clinical DB ProjectSource for proj */
262 Insert(ProjectSources, [projl, [cDBI);

263

264 /* Since pi, team and da do not overlap, NoOverlapPITeamDC=true
265 Insert datacollector is applicable */

266 if [proj.dataSource->select(oclIsTypeOf(ClinicalDB)=true)->size=1]
267 then begin

268 Insert (ProjectDataCollector, [projl, [dal);

269 end;

270

271 /* Add other ProjectSources */

272 for p:Project in [pdss] begin

273 if [p.accessTicket->size()>0] then begin

274 Insert(ProjectSources, [projl, [pl);

275 end;

276 end;

277

278 /* Insert Project PI */

279 Insert(ProjectPI, [projl, [pil);

280

281 /* Insert Project Members */

282 m := [team->size()];

283 n := Any([Sequence{1l..m}1);

284 rs := Sub([team], [n]);

285 for r: Researcher in [rs] begin

286 Insert(ProjectMembers, [projl, [r]l);

287 end;

288

289 /* Insert Link between proj and qry in ProjectQueries */

290 Insert(ProjectQueries, [projl, [qryl);

291

292 /* Insert link between proj and at */

293 Insert(ProjectAT, [projl, [atl);

204 || end;

295

206 || /% kKKK KAKKAAAKAK FAAAAKAAKK KKK KAKAKK HAAKAAKAKAK KKK AKAK HAK KA KKK KKK
297 || PROCEDURE

208 ||k dkkkkkdokk kokkokkRk KRR KARKAKAKAK KKK HAKAKAKAKK KA KA KA KK KA KKK KA KK [
299 || procedure add_query_works_on(

300 proj: Project,

301 qry: Query,

302 res: Researcher,

303 at: AccessTicket,

284

304

305 max: Integer)

306 || var

307 qd: Sequence(QryData),

308 qd2: Sequence(QryData),

309 di: Sequence(Dataltem),

310

311 p: Patient,

312 c: Consent,

313 d: Dataltem,

314

315 n: Integer;

316

317 || begin

318

319 /* check prerequisites */

320 if [proj.query->includes(qry) and

321 proj.pi->union(proj.members)->includes(res) and
322 proj.accessTicket->size() = 1] then begin
323

324 /* Apply Patient Consent AccessRule */

325 if [at.rule->select(oclIsTypeOf (PatientConsent)=true)->size()=1]
326 then begin

327 di := [Allow.allInstances.dataltem->asSequence()];
328 end

329 else begin

330 di := [Dataltem.allInstances->asSequence()];

331 end;

332

333 /* add qd as a subset of di and set up related associations*/
334 n := Any([Sequence{l..di->size()}1);

335 qd2 := [QryData.alllnstances()->asSequence()]; /* set before qd */
336 qd := CreateN(QryData, [nl);

337 n := [1];

338

339 for q: QryData in [qd] begin

340 d := [di->at(n)];

341 [q] .name := [d.name];

342

343 Insert(DataValues, [q], [d.datal);

344 end;

345

346 for q: QryData in [qd->union(qd2)] begin

347 /*for h: HIPAACat in [d.hIPAACat->asSequence()] begin
348 if [g.name=’Age’] then begin Insert(DICat, [ql], [h]); end;
349 end;

350

351 Insert(DISource, [d.dataSourcel, [ql);

352

353 p:= Any([d.patient->asSequence]);

354 c:= Any([d.consent->asSequence]);

355 Insert(PatientData, [pl, [ql, [cl);

356

357 Insert (EnteredOn, [q], [d.datel); */

358 Insert (QryWorksOn, [qryl, [ql);

359

360 n := [n + 1];

361 end; /* end for qryData, qd and qd2 */

362

363 end; /* end prerequisites */

364 /* else do nothing */

365 || end;

285

367
369
370
371
372
373
374
375
376
377
378
379

380

382
383

384

386

416

418
419

420

422
423
424
425

426

/* skokokokokkokokoksk skokokkskokskokokk kkckskskokokokckk kokskokokokskksksk skokokokkkckskcksk skokkkskskskokokk kkskskskokokokkk

PROCEDURE

*kokkokokokokokok kokokkokRKRRK Kok kR ok ok kok

procedure add_query_returns(

var

qry: Query,
at: AccessTicket
)

qd: Sequence(QryData),
rd: Sequence(RetData),
rd2: Sequence(RetData),
di: Sequence(Dataltem),

ind: Individual,

grp: Group,
da: Data,
p: Patient,

c: Consent,
d: Dataltem,

n: Integer;

begin

qd := [qry.qryData->asSequence()];
ind :
grp :

/* add

sokokokokokokokokok Kok oKk KK KKKk

Any([Individual.allInstances->asSequence()]);
Any ([Group.alllnstances->asSequence()]);

RetData based on access ticket */

n := Any([Sequence{1l..qd->size()}]);

rd2
rd :
n:=

= CreateN(RetData, [n]);
[1]

for r: RetData in [rd2] begin
d := [qd->at(n)];

[r] .name := [d.name];

Insert (QryReturns, [qryl, [r],

>

:= [RetData.allInstances()->asSequence()]; /* set before rd */

[d.oclAsType(QryData)]);

/* Apply TransformHDate AccessRule */

if [at.rule->select(oclIsTypeOf (TransformHDate)=true)->size()=1 and

at.rule->select(

oclIsTypeOf (TransformHDate)=true) .oclAsType (AccessRule) . type—>

select (oclIsTypeOf (Individual)=true)->size()=1 and
at.rule->select (oclIsTypeOf (TransformHDate)=true) .oclAsType(
AccessRule) .hIPAACat.dataltem->includes(d)

]
then begin
da := Create(Date);

[da.oclAsType(Date)] .day :=
[da.oclAsType(Date)] .month :
:= [d.data.oclAsType(Date) .year];

[da.oclAsType(Date)] .year

[ol;
= [0];

Insert(DataValues, [r], [dal);
end
else begin
Insert(DataValues, [r], [d.datal);

end; /* end Apply TransformHDate AccessRule */

/* setup RDType */

if [r.gData->size()=1] then begin

Insert (RDType, [qryl, [r],
end
else begin

[ind]);

286

Fokkokokokokokokok kokokkk Kk KKk /

428 Insert (RDType, [qryl, [r], [grpl);

429 end;

430 end; /* end for each RetData */
431 || end;

432

1433 || procedure complete_query_returns(
434 qry: Query,

435 at: AccessTicket

436)

437 || var

438

439 rd: Sequence(RetData),

440 ind: Individual,

441 || grp: Group;
442
443 || begin

444 ind := Any([Individual.allInstances->asSequence()]);

1445 grp := Any([Group.allInstances->asSequence()]);
446

447 rd := [RetData.alllnstances()->asSequence()];
448

449 for r: RetData in [rd] begin

450 /* setup RDType */

451 if [r.gData->size()=1] then begin

452 Insert (RDType, [qryl, [r], [indl);

453 end

454 else begin

455 Insert(RDType, [qryl, [r], [grpl);

456 end;

457 end; /* end for each RetData */

458 || end;

287

Listing C.16: ASSL Procedures for Slice 3 to Approve Access ticket

procedure generate_objects(
max: Integer)

var
/* misc */
n: Integer;

begin
/* a. create singleton objects */
Create(DirectTreatment) ;
Create(Research);
Create(TotallyDeIDed) ;
Create (NotTotallyDeIDed) ;

/* Personnel, choose da, pi, and team pool */
n := Any([Sequence{l..max}]1);
CreateN(Personnel, [2]); /* if n>2 generation fails */

n := Any([Sequence{1l..max}1);
CreateN(Qualifier, [1]); /* if n>2 generation fails */

//n := Any([Sequence{2..max}]);
//CreateN(Researcher, [n]);
end;

procedure configure_PermRules_and_ATPriority()
var

/* Permissions */

f1: Fishing,

iat: Identified,

dat: DelDed,

/* abstract DecisionRule object */
dr: DecisionRule;

begin
f1 := Any([Fishing.allInstances->asSequence()]);
dat := Any([DeIDed.alllnstances->asSequence()]);
iat Any([Identified.allInstances->asSequence()]);

/* ATPriority */
Insert (ATPriority, [iat], [dat]);

/* Access ticket DecisionRules and Create PermRules Associations */
dr := Create(CanUseTotallyDeIDed);
Insert(PermRules, [dat], [dr]);

dr := Create(ClinicalDBNeedsDataCollector);
Insert(PermRules, [dat], [dr]);
Insert(PermRules, [iat], [dr]);

dr := Create(DataAccessAgreementPresent);
Insert (PermRules, [dat], [drl);
Insert(PermRules, [iat], [dr]);

dr := Create(DataSourcePriorityOK) ;
Insert(PermRules, [dat], [dr]);
Insert(PermRules, [iat], [dr]);

dr := Create(LicenedTeamAndPI);

288

60
61
62
63

64

66
67
68
69
70
71

72

86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

102
103
104
105
106
107
108
109

110

114
115
116
117
118
119

120

Insert(PermRules, [dat], [dr]);
Insert(PermRules, [iat], [dr]);

dr := Create(NoOverlapPITeamDC);
Insert(PermRules, [dat], [dr]);
Insert(PermRules, [iat], [dr]);

/*dr := Create(NoSupsInPIandDC);
Insert (PermRules, [dat], [dr]);
Insert (PermRules, [iat], [drl); */

dr := Create(PIDefined);
Insert(PermRules, [dat], [dr]);
Insert (PermRules, [iat], [dr]);

dr := Create(ProjectMembersDefined) ;
Insert(PermRules, [dat], [drl);
Insert (PermRules, [iat], [dr]);

dr := Create(SomePurposeNotDirectTreatment);
Insert(PermRules, [dat], [dr]);
Insert(PermRules, [iat], [dr]);

dr := Create(SomeQueriesDefined);
Insert(PermRules, [dat], [dr]);
Insert(PermRules, [iat], [dr]);

dr := Create(SomeSourcesDefined);
Insert(PermRules, [dat], [dr]);
Insert(PermRules, [iat], [dr]);

dr := Create(QualifierPresent);
Insert(PermRules, [f1], [dr]);

end;

procedure generate_approved_project(

var

proj: Project,
at: AccessTicket,
max: Integer)

/* for objects already created */
td: TotallyDelDed,

ntd: NotTotallyDeIDed,

research: Research,

fl: Fishing,

cDB: ClinicalDB,

projs: Sequence(Project),
ps: Sequence(Project),

pers: Sequence(Personnel),
res: Sequence(Researcher),

//qrys: Sequence(Query),

/* for setting up links */
rs: Sequence(Researcher),
gs: Sequence(Query),

pss: Sequence(Project),
da: Personnel,

pi: Researcher,

289

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

140

162
163
164
165
166
167
168
169

170

172
173
174
175

176

178
179
180
181
182

183

//team: Sequence(Researcher),

/* misc */
m: Integer,
n: Integer;

begin

td := Any([TotallyDelIDed.alllnstances->asSequence()]);
ntd := Any([NotTotallyDeIDed.allInstances->asSequence()]);

research := Any([Research.allInstances->asSequence()]);
f1 := Any([Fishing.allInstances->asSequence()]);
cDB := Any([ClinicalDB.allInstances->asSequence()]);

/* Personnel, Researchers */
pers := [Personnel.alllnstances->asSequence()];
res := [Researcher.alllnstances->asSequence()];

da := [proj.dcl;
pi := [proj.pil;
//team := [proj.members->asSequence()];

/* Projects, put proj in projs */
projs := [Project.alllnstances->excluding(proj)->asSequence()];
ps := [Sequence{proj}l;

/* Queries */
n := Any([Sequence{l..max}]);
//qrys := CreateN(Query, [nl);

/* Generate association links to fulfil each rule */

/* 1. CanUseTotallyDeldentified */
if [at.oclIsTypeOf (DeIDed)=true]
then begin

Insert(ProjectDataTransformRequired, [projl, [td]l);
end
else begin

Insert(ProjectDataTransformRequired, [projl, [ntdl);
end;

/* 13. SomeSourcesDefined, Clinical DB ProjectSource for proj
- from slice 4%/

/* 2. 6. ClinicalDBNeedsDataCollector,
Since pi, team and da do not overlap, NoOverlapPITeamDC=true
get from slice 4%/

/* 3. 4. DataAccessAgreementPresent, DataDourcePriority0OK */
m := [projs->size()];
if [m>0] then begin
n := Any([Sequence{l..m}1);
pss := Sub([projs]l, [nl);
for p:Project in [pss] begin
if [p.accessTicket->size()>0] then begin
if [p.accessTicket=at or at.ant->includes(p.accessTicket)]
then begin
Insert(ProjectSources, [projl, [pl);
Insert(DataAccessAgreement, [pl, [projl);
end;
end;

290

184
185
186
187
188
189
190
191
192
193
194
195
196

198

199

206

end;
end;

/* 4. See 3above */
/* 5. See after 8. and 9. below (as 5depends on 8% 9)*/
/* 6. See 2. above */

/* 7. NoSupsInPIandDC */
/*Try(Supervisors, [pers], [pers]); */

/* 8. PIDefined - get from slice 4x/
/* 9. ProjectMembersDefined and LicencedTeamAndPI - from slice 4%/

/* 5. LicencedTeamAndPI */
if [at.rule.select(oclIsTypeOf (LicenedTeamAndPI)=true)->size()=1]

then begin

rs := [proj.members->including(proj.pi)->asSequence()];
for r: Researcher in [rs] begin
if [r.licence->size()=0] then begin
Insert (ResearcherL, [r], [f1]);
end;
end;
end;

/* 10. QualifierPresent does not apply to access tickets */
/* 11. SomePurposeNotDirectTreatment */

if [at.rule.select(
oclIsTypeOf (SomePurposeNotDirectTreatment)=true)->size()=1]

then begin

end;

Insert(ProjectPurpose, [projl, [research]);
end;

/* 12. /* Some Queries Defined from slice 4%/
/* 13. SomeSourcesDefined. inserted before 2(as 2depends on it) */

/* Finally insert link between proj and at - from slice 4x*/

291

C.2.4 SOIL COMMANDS

Listing C.17: SOIL Commands used to re-create objects from slice 5 needed in other slices - filename reference

for listings in Section C.2.5 is slice_5_overlap\ overlapping_objects_1.soil

lcreate iat: Identified
Inew DeIDed(’DeIDed_0’)

1

2

Listing C.18: SOIL Commands used to re-create objects from slice 5 needed in other slices - filename reference

for listings in Section C.2.5 is slice_5_overlap\ overlapping_objects_2.s0il

1 || == Script generated by USE 4.2.0
2 || 'new QryData(’Dataltem_4’)

3 || 'new QryData(’Dataltem_5)
4

'Dataltem_4.name :
6 || 'Dataltem_5.name :

’Age’
’Other’

s || 'new Date(’Date_1’)
o || 'Date_1.day :=
10 || 'Date_1.month 8

11 || 'Date_1.year := 1931

I ©oI

13 || 'insert (Dataltem_5,Date_1) into DataValues
14 || 'insert (Dataltem_4,Date_1) into DataValues

Listing C.19: SOIL Commands used to re-create objects from slice 5 needed in other slices - filename reference

for listings in Section C.2.5 is slice_5_overlap\ overlapping_objects_3.soil

1 || 'new Project(’Project_17)

Inew Query(’Query_07)

2

Listing C.20: SOIL Commands used to re-create objects from slice 5 needed in other slices - filename reference

for listings in Section C.2.5 is slice_5_overlap\ overlapping_objects_4.s0il

1 || —— Script generated by USE 4.2.0
2 || 'new Project(’Project_1’)

3 || 'new Query(’Query_0’)

4 || 'insert (Project_1,DeIDed_0) into ProjectAT

5 || !insert (Project_1,Query_0) into ProjectQueries

Listing C.21: SOIL Commands used to re-create objects from slice 5 needed in other slices - filename reference

for listings in Section C.2.5 is slice_5_overlap\ overlapping_objects_5.s0il

1 || —— Script generated by USE 4.2.0
> || 'new RetData(’Dataltem_0’)
3 || 'new RetData(’Dataltem_1’)
4 || 'new RetData(’Dataltem_2°’)

292

5 || 'new RetData(’Dataltem_3’)

7 || 'new Date(’Date_0’)
s || 'Date_0O.day :=
9 || 'Date_O.month := 0

10 || 'Date_O.year := 1931

ol

12 || 'Dataltem_O.name := ’Age’
13 || 'insert (Query_O,Dataltem_O,Dataltem_4) into QryReturns
14 || 'insert (DataItem_0,Date_0) into DataValues

16 || 'Dataltem_3.name := ’0ther’
17 || 'insert (Query_O,Dataltem_3,Dataltem_5) into QryReturns
18 || 'insert (Dataltem_3,Date_1) into DataValues

20 || 'Dataltem_2.name := ’Age’
21 || 'insert (Query_O,Dataltem_2,Dataltem_4) into QryReturns
22 || !insert (Dataltem_2,Date_0) into DataValues

24 || 'Dataltem_1.name := ’Age’
25 || !insert (Query_O,Dataltem_1,Dataltem_4) into QryReturns
26 || 'insert (Dataltem_1,Date_0) into DataValues

2s || !insert (Query_0,DownloadDisabled_0) into VDAllowed

Listing C.22: SOIL Commands used to re-create objects from slice 4 needed in slice 8 - filename reference

for listings in Section C.2.5 is slice_4_overlap\ overlapping_objects_1.s0il
1 || -— Script generated by USE 4.2.0
2
3 || 'new DeIDed(’DeIDed_0)
4 || 'new ClinicalDB(’ClinicalDB1’)

Listing C.23: SOIL Commands used to re-create objects from slice 4 needed in slice 3 - filename reference

for listings in Section C.2.5 is slice_4-overlap\ overlapping-objects_2.soil

1 || == Script generated by USE 4.2.0

2

3 || 'new Project(’Project_0’)

Listing C.24: SOIL Commands used to re-create objects from slice 4 needed in slice 3 - filename reference

for listings in Section C.2.5 is slice_j_overlap\ overlapping-objects_3.soil

1 || -— Script generated by USE 4.2.0

N

'new Researcher (’Researcherl’)

'new Researcher (’Researcher2’)

'new Researcher (’Researcher3’)

6 || 'new Researcher(’resi’)

7 || 'new Project(’Project_1’)

s || 'new Query(’Query_0’)

o || !insert (Project_1,ClinicalDB1) into ProjectSources

10 || !insert (Project_1,Researcherl) into ProjectDataCollector

w

IS

o

293

linsert
linsert
linsert
linsert
linsert

(Project_1,Researcher2) into ProjectMembers

(Project_1,resl) into ProjectMember

S

(Project_1,Researcher3) into ProjectPI
(Project_1,Query_0) into ProjectQueries

(Project_1,DeIDed_0) into ProjectAT

294

C.2.5 USE CoMMANDS TO GENERATE ON-DEMAND FEEDBACK

Listing C.25: USE Commands to Generate Object Model for Slice 4 to Execute Query

1||/* 1. Initialisation - remove all the elements in the object diagram */
2 || reset

4 ||/* 2. unload constraints */
5 || constraints -unload

7 || /* 3. Load the class diagram specification */
s || open /Users/Philly/Desktop/slice_seq_nc/slice_4/slice_4g.use

10 ||/* 4. Load some of the invariants */

11 || constraints -load /Users/Philly/Desktop/overlap/slice_345g.cnsts
12
13 ||/* 5. load flags, -d enables invariants, -n does not negate the invariants */
14 || constraints -flags -d -n

16 || /* 6. Generate an object model that satisfies invariants in the class diagram
17 || /* a. generate singleton objects */

1s || gen start -b -d /Users/Philly/Desktop/slice_seq_nc/slice_4/slice_4g.assl
add_4g_singleton_objects(3)

19 || gen result accept

21 || /* b. Also, since I want to pass in an access ticket explicitly,
22 || I create them here */
23 || open /Users/Philly/Desktop/slice_seq_nc/slice_5_overlap/overlapping_objects_1.soil

25 || /* c. generate PermRules and ATPriority links, load appropriate constraints
26 || here as well x/

27 || constraints -load /Users/Philly/Desktop/overlap/slice_234g.cnsts

2s || gen start -b -d /Users/Philly/Desktop/slice_seq_nc/slice_4/slice_4g.assl
configure_AT_AccessRules()

29 || gen result accept

30
31 || /* d. generate Data for project sources */

32 || open /Users/Philly/Desktop/slice_seq_nc/slice_5_overlap/overlapping_objects_2.soil

33 || gen start /Users/Philly/Desktop/slice_seq_nc/slice_4/slice_4g.assl generate_patient_data(l, 8
, 2016)

34 || gen result accept

36 || /* e. since I want to pass in the project and query explicitly,
37 || I create them here */
3s || open /Users/Philly/Desktop/slice_seq_nc/slice_5_overlap/overlapping_objects_3.soil

10 || /* £. Load the rest of the invariants */
41 || constraints -load /Users/Philly/Desktop/overlap/slice_45g.cnsts
12 || constraints -load /Users/Philly/Desktop/slice_seq_nc/slice_4/slice_4g.cnsts

14 || /* g. setup project links */

45 || gen start -b -d /Users/Philly/Desktop/slice_seq_nc/slice_4/slice_4g.assl
setup_project (Project_1, Query_0, DeIDed_0, Sequence{}, 3)

46 || gen result accept

48 || /* h. since I want to pass in the researcher who is running the query,

49 I create it here, I also explicity ass the researcher as a ProjectMember for
50 || the project that the query belongs to, to ensure successful query execution */
51 || !create resl: Researcher

52 || !insert (Project_1, resl) into ProjectMembers

295

/* i. generate query works on data */

open /Users/Philly/Desktop/slice_seq_nc/slice_5_overlap/overlapping_objects_4.soil

gen start -b -d /Users/Philly/Desktop/slice_seq_nc/slice_4/slice_4g.assl
add_query_works_on(Project_1, Query_O, resl, DeIDed_O, 3)

gen result accept

/* j. generate query returns data */

open /Users/Philly/Desktop/slice_seq_nc/slice_5_overlap/overlapping_objects_5.s0il

gen start -b -d /Users/Philly/Desktop/slice_seq_nc/slice_4/slice_4g.assl
complete_query_returns(Query_O, DeIDed_0)

gen result accept

/* 7. Check */
check

296

Listing C.26: USE Commands to Generate Object Model for Slice 8 to Approve Access Ticket

/* 1. remove all the elements in the object diagram */
reset

/* 2. unload constraints */
constraints -unload

/* 3. Load the class diagram specification */
open /Users/Philly/Desktop/slice_seq_nc/slice_3/slice_3g.use

/* 4a. Load some of the invariants and flags */
constraints -load /Users/Philly/Desktop/overlap/slice_23g.cnsts
constraints -load /Users/Philly/Desktop/overlap/slice_34g.cnsts

/* load flags, -d enables invariants, -n does not negate the invariants */
constraints -flags -d -n

/* 5. generate an object diagram that satisfys the class diagram

/* a. generate objects */
gen start -b -d /Users/Philly/Desktop/slice_seq_nc/slice_3/slice_3g.assl generate_objects(3)
gen result accept

!create fl: Fishing
!create iat: Identified
open /Users/Philly/Desktop/slice_seq_nc/slice_4_overlap/overlapping_objects_1.soil

/* b. generate PermRules and ATPriority links */

gen start -b -d /Users/Philly/Desktop/slice_seq_nc/slice_3/slice_3g.assl
configure_PermRules_and_ATPriority()

gen result accept

/* c. Load some more of the invariants */
constraints -load /Users/Philly/Desktop/overlap/slice_345g.cnsts

/* d. generate projects that are approved */

open /Users/Philly/Desktop/slice_seq_nc/slice_4_overlap/overlapping_objects_2.soil

open /Users/Philly/Desktop/slice_seq_nc/slice_4_overlap/overlapping_objects_3.soil

gen start -b -d /Users/Philly/Desktop/slice_seq_nc/slice_3/slice_3g.assl
generate_approved_project(Project_1, DeIDed_0, 2)

gen result accept

/* f. Load the rest of the invariants */
constraints -load /Users/Philly/Desktop/slice_seq_nc/slice_3/slice_3g.cnsts
constraints -load /Users/Philly/Desktop/slice_seq_nc/slice_3/slice_3g_at.cnsts

/* 6. check that none of the invariants have been violated */
check

297

APPENDIX D. SPECIFICATIONS FOR VALIDATING HMCA IN CHAPTER 8

D.1 Updated Alloy Specifications

D.1.1

10
11
12
13
14

16
17
18
19
20
21
22
23
24
25
26
27
28
29

43
44
45
46
a7
48
49

ALLOY SPECIFICATIONS FOR SLICE 3 TO APPROVE ACCESS TICKET

Listing D.1: Updated Alloy Specifications for Slice 3 to Approve Access Ticket

/********** skokoskokokokokoksksk skokokokkskoksksksk okokckkskskskokoksk kskokskokokokdkkk skokokokokdkkksksk skokokokkkkskskk

Begin Structural Model, NJH, slice 3

Written By: Phillipa Bennett
Version 5
Date: Version 5completed Nov 28, 2016

Notes:

Predicates and Assertions are executed with
exactly 11Rule

when the NSIPIDC Rule is excluded from the model.

Places in the specification that are impacted by excluding of the
NSIPIDC Rule are labeled with

*xk DA_COT **x*
either just before or at the end of the line.

Also other notes throughout the specification.

/********** skookoskokokoskokkoksk skokokokkkoksksksk okokckkskskskokokk kkokskokokokckkk skokokokokkkkkk **********/
module slice_3_g_inst

/********** kokokokokokokkokok kokkokokskokokokk kokokokkokokokdkk o kokokkkokkokokk

imports

JFRFAFAKFAAK KFAKFAKAAK KFAKFAKKAK HKAAFAAFAK KA KK A KKK [
open util/relation

open util/ternary

open util/ordering[NJH] as ord

[RKKAFKKKAK KKAFKKKAFK KKK KRKKA KK KA FKKKAFKK KoKk KK kKK

base abstract signatures

sorsiokokoksokokok skokskolokokskokokok kokskskokokoksiokok kokokskolokokskokok skokokokskokkokskok /
abstract sig

DataSource,
DataTransform,
Permission,
Purpose,
Rule{}

[RRKERokRKA K KKK FRKKAFK KKK KKK KKK KK FRKKAFKK K Fok kKKK kKK

extended abstract signatures

soksokokskskokokokkokskokokokskokokokkokskskokokokskokokkokokskokokokskokok skokokokskosk ok skok /
abstract sig

AccessTicket,
Licence

extends Permission{}

abstract sig

DecisionRule

298

66
67
68
69
70
71
72
73
74

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

94

96

97

98

99
100
101
102
103
104
105
106
107
108
109

110

extends Rule {}

/xsckokskskokokskok skokokokokskokokoksk skokskokokokskokokok sokskokokokskokokok skokkskok ok sk sk ok
unextended concrete signatures
sokskokokskokokokok okskokokokskokokok skokakoskokokakokokok kokokskokokokskokok skokkoksksk ok sk ok /
sig
/* Personnel cannot be abstract,
because of supervisors and data collectors */
Personnel,

Query {}

[RRKEFRRKA K KKK FRKKAFK KKK KKK KK KK FRKKAFKK K dok kKKK kKK

extended concrete signatures
sorsokokokskokokok skokskokokokskokokokskokskskokokokskokok kokokskokokskskokok skokokskskosk ok skok /

one sig
CUTD, /* CanUseTotallyDeIDed */
DAAP, /* DataAccessAgreementPresent */
DSPOK, /* DataSourcePriorityOK */
LTAPI, /* LicenedTeamAndPI */

NOPITDC, /* NoOverlapPITeamDC */
NSIPIDC, /* NoSupsInPIandDC */ /%% DA_COI *xx*/

PID, /* PIDefined */

PMD, /* ProjectMembersDefined */

QP, /* QualifierPresent */

SPNDT, /* SomePurposeNotDirectTreatment */
SQD, /* SomeQueriesDefined */

SSD /* SomeSourcesDefined */

extends DecisionRule {}

one sig
AllowDeIDed,
TotallyDelIDed,
TotallyIDed

extends DataTransform {}

sig Project extends DataSource{}
one sig ClinicalDB extends DataSource{}

one sig Fishing extends Licence {}

one sig DelDed,
Identified
extends AccessTicket {}

one sig
DirectTreatment,
Research

extends Purpose{}

[xsckkskskokkokok skskskokokskokokoksk kokskokokoksiokokokkokskolokokskokokokkokokoskokkokskok ok
subset concrete signatures
sorsokokokskokokok skokskolokokskokokok kokskoskokokoksiokok okokskolokokskokok skokokokskokkokskok /
sig
Researcher
in Personnel{}

/********** kokokokokokkkokok kokkkokokdkkkk kokkokkkokdkkk kkokkkkkkkk

NJH Closed System
sokokskokokskokokok skokskskokskokokokok kokskokskokokokokok skokokskokokskokskok skokskokokskokok sk ok /

sig NJH {
accessTickets: set AccessTicket,
decisionRules: set DecisionRule,

299

113
114
115
116
117
118
119
120
121
122
123

124

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

160
161
162
163
164
165
166
167
168
169
170
171
172
173

licences: set Licence,
permissions: set Permission,
personnel: set Personnel,
projects: set Project,
purposes: set Purpose,
queries: set Query,
researchers : set Researcher,
rules: set Rule,

sources: set DataSource,
transforms: set DataTransform,

/* helps to determine

1. if data from a project can be used as a data source */
ATPriority : accessTickets -> accessTickets,

// pl->p2 means pl gives p2 access to data produced by pl
dataAccessAgreement: projects -> projects,

/* permission has applicable decision and access rules that must be
applied to approve the licence or to access the data. */
permRules: permissions -> some rules,

/* project access tickets, each one has at most one */
projectAT: projects -> lone accessTickets,

/* project data collector, each project has at most one */
projectDataCollector: projects —> lone personnel,

projectDataTransformRequired: projects —> one transforms,

/* project team members */

projectMembers: projects -> researchers,

/* project principal investigator */
projectPI: projects -> lone researchers,

/* project purpose */

projectPurpose: projects -> lone purposes,

/* project queries */

projectQueries: projects one -> queries,

/* project sources, could be other projects too */
projectSources: projects -> sources,

/* researcher licence */

researcherL: researchers -> lone licences,

/* supervisors, each personnel has at most one supervisor */
supervisors: personnel lone -> personnel }

[RKKERokkKA K kokkAoRKKK ok KKKk KK KKK

End Structural Model, NJHg
[Fkkskokskokokokok skokskokokokokokokok skokokokskokok ok ok

/********** kokokokokkokkkk kokkkkkkkkxk

Begin INVARIANTS
[Fskokokokoskokokokok skokskokokokokokokok skokokokokokokkokok

FoKK KA KKKKK KKK K F KKK KK

FoKkK KKK KKKK KKK K KKK KK

kokkokokokkkkk kokokkkkokkkk

kokkokokokkkkk kokokkkokokkkk

300

Fok ok KKK kKKK

FK ok KKK KKK K

kKK 3k %k k kK Kk

kK 5k 3k %k %k kK kK

ok KK K Kok KK K

koK ok Kk ok Kk ok /

3k >k K Kk %k %k k kK

koK ok Kk kok ok kok /

174
175
176
177
178
179
180
181

182

191
192
193
194
195
196
197
198
199

200

230
231
232
233
234

235

/xsckokskskokokskok skskokokokskokokoksk skokskokokokskokokok okskokokokskokokok skokoksksk ok sk ok ok

INVARIANTS

separating the invariants for each set, relation,

or related sets and relations allows for

easier decomposition later on when slicing
sorsiokokokskokokok skokskolokokskokokok kokskoskokokoksiokok kokokskolokokskokok skokokokskokkokskok /
/* this predicate is exported from the model, to be used in inv[] */
pred inv (njh: NJH) {

all

njh: NJH |

/** for sets */
invPermissions[njh] and
invPersonnel [njh] and
invRules[njh] and
invSources[njh] and

/** for relations */
invATRules[njh] and
invATPriority[njh] and
invDataAccessAggreement [njh] and
invProjectAT[njh] and
invProjectDataCollector[njh] and
invProjectSources[njh] and
invSupervisors[njh] }

[xsckksksokkokok skskskokokskokokoksk kokskokokoksiokokokkokskolokokskokokokkokokoskokkokskok ok
Set invariants, ordered alphabetically by

name of set used, as best as possible
sokskokokskokokokok okskokokokskokokok kokakokokokakokokok kokokskokokokskokok skokokoksksk ok ok ok /

private pred invPermissions (njh: NJH) {
njh.permissions = njh.accessTickets + njh.licences }

private pred invPersonnel (njh: NJH) {
njh.researchers in njh.personnel}

private pred invRules (njh: NJH) {
njh.rules = njh.decisionRules }

private pred invSources (njh: NJH) {
njh.projects in njh.sources }

/********** skokoskokokokokksksk skokokokokkoksksksk kokckkskskskokokk kkckskokokokkkk
Relation invariants, ordered alphabetically by
name of main relation used as best as
possible
sorkokokokskokokok kokskolokokskokokok kokskoskokokoksiokok kokokskolokokskokok skokokokoskoskkokskok /
private pred invATPriority (anjh: NJH) {
irreflexive[~(njh.ATPriority)] }

/* pl->p2 means pl gives p2 access to data produced by pl */
private pred invDataAccessAggreement (njh: NJH) {
/* no project has a data access agreement with itself */
irreflexive[” (njh.dataAccessAgreement)]

/* a project with a data access agreement with another
proj g
project has that project as a data source */

“(njh.dataAccessAgreement) in njh.projectSources }

private pred invATRules (njh: NJH) {
/* for approving of project access ticket */

301

236 let

237 dr =

238 CUTD +

239 DAAP+

240 DSPOK +

241 LTAPI +

242 NOPITDC +

243 NSIPIDC + /#*x DA_COI #x*x/

244 PID +

245 PMD +

246 SPNDT +

247 SQD +

248 SSD,

249 di = dr - CUTD,

250 d = DelDed,

251 i = Identified |

252

253 /* specific for DeIDed access tickets */
254 d.(njh.permRules) & njh.decisionRules = dr
255 and

256 /* specific for Identified access tickets */
257 i.(njh.permRules) & njh.decisionRules = di }

259 || private pred invCUTD(njh: NJH, p: Project, at: AccessTicket) {

260 some at->CUTD & njh.permRules implies (

261 (some at & Identified iff

262 /* kind of Transformation access ticket allows,

263 mixed, AllowDeIDed

264 or

265 TotallyIDed, no deidentification allowed */

266 some p.(njh.projectDataTransformRequired) & (TotallyIDed + AllowDeIDed)) or
267 (some at & DelDed iff

268 // kind of Transformation access ticket allows, totally deidentified

269 some p.(njh.projectDataTransformRequired) & TotallyDelIDed)) }

271 || private pred inv_DAAP_DSPO(njh:NJH, p: Project, at: AccessTicket) {
272 all

273 ps: p.(njh.projectSources) & njh.projects | {

274 (some at->DAAP & njh.permRules and some ps) implies

275 some ps -> p & njh.dataAccessAgreement

276

277 /* if access ticket being considered has priority over
278 the access tickets of any of its project sources

279 (i.e. other projects) }then we cannot approve the

280 project because the data returned would not be at the level required */
281 (some at->DSPOK & njh.permRules and some ps) implies
282 some ps.(njh.projectAT) and

283 no at-> ps.(njh.projectAT) & njh.ATPriority }}

285 || private pred inv_LTAPI_NOPITDC_PMD_PID(njh: NJH, p:Project, at: AccessTicket) {
286 let

287 team = p.(njh.projectMembers),

288 pi = p.(njh.projectPI),

289 dc = p.(njh.projectDataCollector) | {
290

291 all

202 r: (team + pi) | {

203 /* application of the LTAPI Decision Rule
294 each pi and team member has a licence */
295 some at->LTAPI & njh.permRules implies
296 some r.(njh.researcherl) }

297

302

302
303
304
305
306
307
308
309

310

312
313
314
315
316
317
318
319

320

325

341

343

/* application of the NOPITDC Decision Rule */
some at -> NOPITDC & njh.permRules implies (
/* 1. neither pi nor dc are a part of project team */
(no (pi + dc) & team and
// 2. pi and da are not the same
no pi & dc) and (/**x DA_COI #*x/
let
ps = p.("(njh.projectSources)) & Project |
no pi & ps.(njh.projectDataCollector) and
no team & ps.(njh.projectDataCollector))
)

/* application of the PMD Decision Rule
> 1 team members */
some at -> PMD & njh.permRules implies #team > O

/* application of the PID Decision Rule has a pi */
some at -> PID & njh.permRules implies #pi> 0}}

/*%* DA_COI *x*x/
/* application of the NSIPIDC Decision Rule
the pi does not supervise the dc directly or indirectly */
private pred invNSIPIDC (njh: NJH, p: Project, at: AccessTicket) {
let
ps = p. (" (njh.projectSources)) & Project |
some at -> NSIPIDC & njh.permRules implies (
no p.(njh.projectPI) -> p.(njh.projectDataCollector) &
“(njh.supervisors) and (
some ps implies
no p.(njh.projectPI) -> (p+ps).(njh.projectDataCollector) &
“(njh.supervisors))

)}

private pred invSPNDT (njh: NJH, p: Project, at: AccessTicket) {
/* application of the SPNDT Decision Rule
project purpose is not for direct treatment */
some at -> SPNDT & njh.permRules implies
p. (njh.projectPurpose) != DirectTreatment }

private pred invSQD (njh: NJH, p: Project, at: AccessTicket) {
/* application of the SQD Decision Rule
at least one project query */
some at -> SQD & njh.permRules implies
some p.(njh.projectQueries) }

private pred invSSD (njh: NJH, p: Project, at: AccessTicket) {
/* application of the SSD Decision Rule
at least one project source */
some at -> SSD & njh.permRules implies
some p.(njh.projectSources) }

private pred invProjectAT (njh: NJH) {

all
p: njh.projects |
let
pat = njh.projectAT,
at = p.pat |

some p.pat implies (
invCUTD [njh, p, at] and
inv_DAAP_DSPO[njh, p, at] and
inv_LTAPI_NOPITDC_PMD_PID[njh, p, at] and

303

360 invNSIPIDC[njh, p, at] and /#** DA_COI ***/

361 invSPNDT [njh, p, at] and
362 invSQD[njh, p, at] and
363 invSSD[njh, p, at]l) }

364
365 || private pred invProjectDataCollector(njh: NJH) {

366 all

367 p: njh.projects |

368 /* ClinicalDB iff DataCollector */

369 (some p->ClinicalDB & njh.projectSources) iff
370 (some p.(njh.projectDataCollector)) }

s72 || private pred invProjectSourcesl (njh: NJH) {
373 // no self datasource for projects, directly or indirectly
374 irreflexive [~ (njh.projectSources :> njh.projects)] }

376 || private pred invProjectSources2 (njh: NJH) {

377 all

378 p: njh.projects |

379 some p.(njh.projectAT) implies (

380 /* all data sources for a project that are projects themselves
381 should be (already) approved when the project gets it’s
382 access ticket */

383 some (p.(njh.projectSources) & Project) implies

384 all

385 ps: (p.(njh.projectSources) & Project) |

386 some ps.(njh.projectAT)

387) }

388

380 || private pred invProjectSources (njh: NJH) {

390 invProjectSourcesl[njh] and

391 invProjectSources2[njh]l }

303 || private pred invSupervisors (njh: NJH) {

394 /* no cycles in supervisor relations, */

395 irreflexive[” (njh.supervisors)]

396 /* all personnel are either supervisor or supervised */
397 all

398 p: njh.personnel | {

399 p in (dom[njh.supervisors] + ran[njh.supervisors])} and
400 /* supervisor relation is a single tree, i.e. not a forest
401 this means that one personel has no supervisor */

402 one

103 sup: njh.personnel |

404 no (njh.supervisors).sup }

405
406 /********** kokokokokkokkokok kokkkokskokkkk kokckokkkokdkdkk kokokdkdkokkkokdk kkkokokdkkkkk kokokkkdkkkkxk

407 End INVARIANTS
408 || /kokskoskokokokskok skokokokokskokokokok sokskokokokokokokok skskokskokokakokokok skokskokokokokokokok skokokskokokokokokok kokokskokkokokokok /

413 || /HKkkkkokkkk kKKK RRKKA K KKAFKKKAFK KAFKKKKA KK KA FRKKA KKK K FKKKAFKKK Fok KoKk F KKK K
414 Partial instance CONFIGURATION,

415 these will be instantiated in every instance
416 || FRskoksokokskokk skskokskokokskokakok skokskokokskokokokok skokskokakokokskokok skskokakoskokskokakok skokakoskokskokokokokkokskokokok ok ok ok /

417 || pred setPartiallnstanceConfiguration (njh: NJH) {

419 /x¥kxkkkkkkk for sets */
420 njh.decisionRules = /* (12) */
421 CUTD +

304

422 DAAP +

423 DSPOK +

424 LTAPI +

425 NOPITDC +

426 NSIPIDC + /#** DA_COI *x*x*/

127 PID +

428 PMD +

429 SPNDT +

430 QP +

431 SQD +

432 SSD and

433

434 /* access tickets (2) */

435 njh.accessTickets =

436 DelDed +

437 Identified and

438

439 /* licences (1) x/

440 njh.licences = Fishing and

441

442 /* transforms (3) */

443 njh.transforms =

444 AllowDelIDed +

445 TotallyDeIDed +

446 TotallyIDed and

447

448 /* sources (at least 1) */

449 some ClinicalDB & njh.sources and

450

451 /xx*kkxx*k%x*x*x for relations */

452 /* access ticket priority (1) */

453 njh.ATPriority = Identified -> DelDed and
454

455 /* permRules: permissions -> some rules (22) */
456 njh.permRules =

157 /* decision rules for fishing licence (1) */
458 Fishing -> QP +

459

460 /* decision rules for DelIDed access ticket (11) x/
461 DeIDed -> CUTD +

162 DeIDed -> DAAP+

463 DeIDed -> DSPOK +

464 DeIDed -> LTAPI +

465 DeIDed -> NOPITDC +

466 DeIDed -> NSIPIDC + /*** DA_COI #*%x/
167 DeIDed -> PID +

468 DeIDed -> PMD +

469 DeIDed -> SPNDT +

470 DeIDed -> SQD +

471 DeIDed -> SSD +

472

473 /* decision rules for Identified access ticket (10) */
474 Identified -> DAAP+

475 Identified -> DSPOK +

476 Identified -> LTAPI +

477 Identified -> NOPITDC +

478 Identified -> NSIPIDC + /**% DA_COI **x*/
479 Identified -> PID +

480 Identified -> PMD +

481 Identified -> SPNDT +

482 Identified -> SQD +

483 Identified -> SSD and

305

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

502

/** Important to add these so that Alloy does not use a
subset of the configuration !!!
In general this is important when using Alloy to set
object configurations */

//#njh.decisionRules = 1land /*** DA_COI *x*/

#njh.decisionRules = 12and

#njh.accessTickets = 2and

#njh.licences = land

#njh.sources > Oand

#njh.transforms = 3and

#njh.ATPriority = 1//and

//eq[#njh.permRules, 22] /* This produces an error ! x/

[KRR FRRKA K KKK FKKKA R K KKK FKKK KRR KA FRKKAFKK KA KKK KK kK K FokKK K FokokK Fokokok Kk Kok kK

end partial instance configuration,
sorsokokskskokokokokskokokokskokokokskokskokokokskokokok kokokskokokokskokok skokokskokokokskokok skokokokskokokokskok skokokksk sk ok skok /

[xsckokskskokokskok skskokokskskokokoksk skokskokokskokokokok okskokokokskokokok kokskokokokskokokokskokokskokokokskoskok skokokskosk ok skok ok
MODEL Instances - These are required in the op specifications
some0fAllRelationsSatisfyingInvAndConfiguration is used in init
skok ok kokkokok Kook HOKK KoK kokRkoKkFokKk ok kokkokokdokkokok okkokokkokkokok okkokokkokokkok ok kokokkokokkok /

[xsckkkskokkskok skskskokokskokokoksk kokskokokokskokokok kokskolokokskokokokskokakokokkokskok ok
Can we get an instance of the model for all
the sets?
sokskokokskokokokk Rk g et Siokkokskokok skokokokskokokakokok skokokokskokokokskok kskokkokskskkkok /
private pred some0fAllSets(njh: NJH) {
some njh.accessTickets and
some njh.decisionRules and
some njh.licences and
some njh.permissions and
some njh.personnel and
some njh.projects and
some njh.purposes and
some njh.queries and
some njh.researchers and
some rules and
some njh.sources and
some njh.transforms }
//run some0fAllSets for 7but INJH expect 1

/********** skokoskokokokokksksk skokokokokkoksksksk kokckkskskskokokk kkckskokokokkkk
Can we get an instance of the model for all
the relations?
sorskokokskoskokokoksokskokokokskokokok skokskskokokokskokokkokokskokokokskokok skokkkskosk ok sk ok /
private pred someOfAllRelations(njh: NJH) {
some njh.ATPriority and
some njh.dataAccessAgreement and
some njh.permRules and
some njh.projectAT and
some njh.projectDataCollector and
some njh.projectDataTransformRequired and
some njh.projectMembers and
some njh.projectPI and
some njh.projectPurpose and
some njh.projectQueries and
some njh.projectSources and
some njh.researcherL and
some njh.supervisors }
//run someOfAllRelations for 7but INJH expect 1

306

547 || /kkskokokskskokok skokokskokokokokokok skokokokokokokokokok kokskoRokokokokokok koksk sk koK ok ok ok

548 Can we get an instance of the model for all

549 the relations that satisfy generator[]?

550 || kckkskokokokskok skokokokskokokokskok skskokokokskokokokok skokskokokokskokokok skokskoskokokskok ok /

s51 || private pred someOfAllRelationsSatisfyingInvAndConfig (njh: NJH) {

552 some0fAllRelations[njh] and

553 some0fAllSets[njh] and

554 inv[njh] and

555 setPartialInstanceConfiguration[njh] }

556 || Tun someOfAllRelationsSatisfyingInvAndConfig

557 //for Tbut exactly 11Rule, 1NJH expect 1/*x* DA_COI *x**/
558 for 7but exactly 12Rule, INJH expect 1

560 /********** skookokokokokokkokok skokokokkckckskskk okokckkskckskokokck kckckskokokokokkk skokokokokkckkskck skokokokkkkkkk

561 End MODEL Instances
562 || Fkkdkkokkokok skokokokokokokokokk KKKk okokokokokakokok kokokokkoKkKK KK kokkkkkkkokok kokokskokokokokokok /

567 /********** kokokokokkokkokok kokkokokskskkokk okokckokkkokdkdkk kokokskdkokkkokdk kkkokokdkkokkk kokokkkokdkkkxk

568 OPERATION Specs
569 || Fkckkskokokokskok skokokokskokokokskok skskokokokskokokokok skokoskokokskokokokok kokskokokokskokokok kokskoskskokskokokokskokokskok ok sk sk ok /

570 || private pred noChangeSets (njh, njh’: NJH) {

571 njh.accessTickets = njh’.accessTickets and
572 njh.decisionRules = njh’.decisionRules and
573 njh.licences = njh’.licences and

574 njh.permissions = njh’.permissions and

575 njh.personnel = njh’.personnel and

576 njh.projects = njh’.projects and

577 njh.purposes = njh’.purposes and

578 njh.queries = njh’.queries and

579 njh.researchers = njh’.researchers and

580 njh.rules = njh’.rules and

581 njh.sources = njh’.sources and

582 njh.transforms = njh’.transforms }

ss4 || private pred noChangeRelations(njh, njh’: NJH) {

585 njh.ATPriority = njh’.ATPriority and

586 njh.dataAccessAgreement = njh’.dataAccessAgreement and
587 njh.permRules = njh’.permRules and

588 njh.projectAT = njh’.projectAT and

589 njh.projectDataCollector = njh’.projectDataCollector and
590 njh.projectDataTransformRequired = njh’.projectDataTransformRequired and
591 njh.projectMembers = njh’.projectMembers and

592 njh.projectPI = njh’.projectPI and

593 njh.projectPurpose = njh’.projectPurpose and

594 njh.projectQueries = njh’.projectQueries and

595 njh.projectSources = njh’.projectSources and

596 njh.researcherlL = njh’.researcherlL and

597 njh.supervisors = njh’.supervisors }

590 || private pred skip(njh, njh’: NJH){

600 /** Sets */

601 noChangeSets[njh, njh’] and
602

603 /**x Relations */

604 noChangeRelations[njh, njh’] }

605
606 || pred approveProjectAT (njh, njh’: NJH, p: Project, at: AccessTicket) {
607 /** Pre-conditions */

307

608 p in njh.projects and
609 at in njh.accessTickets and

610 no p->at & njh.projectAT and

611

612 /** Post-conditions */

613

614 /* Applying Decision Rules */

615 inv_DAAP_DSPO[njh, p, at] and

616 inv_LTAPI_NOPITDC_PMD_PID[njh, p, at] and
617 invNSIPIDC[njh, p, at] and /##** DA_COI *xx/
618 invSPNDT [njh, p, at] and

619 invSQD[njh, p, at] and

620 invSSD[njh, p, at] and

621

622 /* No change to sets */

623 noChangeSets[njh, njh’] and

624

625 /* These relations do not change */

626 njh.ATPriority = njh’.ATPriority and

627 njh.dataAccessAgreement = njh’.dataAccessAgreement and
628 njh.permRules = njh’.permRules and

629 njh.projectDataCollector = njh’.projectDataCollector and
630 njh.projectMembers = njh’.projectMembers and
631 njh.projectPI = njh’.projectPI and

632 njh.projectPurpose = njh’.projectPurpose and
633 njh.projectQueries = njh’.projectQueries and
634 njh.projectSources = njh’.projectSources and
635 njh.researcherlL = njh’.researcherlL and

636 njh.supervisors = njh’.supervisors and

638 /* These relations change */

639 njh’.projectAT = njh.projectAT + p->at and

640

641 /* Changes ensures the correct Data Transform exists */
642 (some at & DelDed iff

643 njh’ .projectDataTransformRequired =

644 njh.projectDataTransformRequired + p->TotallyDeIDed) and
645

646 (some at & Identified iff

647 (njh’ .projectDataTransformRequired =

648 njh.projectDataTransformRequired + p->TotallyIDed or
649 njh’.projectDataTransformRequired =

650 njh.projectDataTransformRequired + p-> AllowDeIDed)
651) }

652

653 || private pred ProjectApprovePossible(

654 njh, njh’: NJH,

655 proj: Project,

656 at: AccessTicket) {

657 let

658 first = ord/first |

659 some0fAl1RelationsSatisfyingInvAndConfig[njh] and

660 some proj & first.projects and

661 some at & first.permissions and

662 approveProjectAT[njh, njh’, proj, at] and

663 inv [njh] and

664 inv[njh’] }

665 || Tun ProjectApprovePossible

666 //for Tbut exactly 11Rule, 2 NJH expect 1/#%* DA_COI **x/
667 for 7but exactly 12Rule, 2 NJH expect 1

668

669 || // this is how we initialise the system

308

670 || pred init(njh: NJH) {

671 some p: Project |

672 p in njh.projects and

673 some0fAl1RelationsSatisfyingInvAndConfig[njh]l and
674 no p.(njh.projectAT) }

675 ||run init

676 //for Tbut exactly 11Rule, 1INJH expect 1/#%* DA_COI *xx*/
677 for 7but exactly 12Rule, I1NJH expect 1

678
679 || /** this is how we move from instance to instance */
6s0 || fact traces {

651 init[ord/first]

682 all

683 njh: NJH - ord/last |

684 some

685 p: Project,

636 at: AccessTicket |

687 let

688 njh’ = njh.next |

689 approveProjectAT[njh, njh’, p, at] or
690 skip[njh, njh’] }

692 || assert OpPreserves {

693 all njh, njh’: NJH |

694 all p: Project, at: AccessTicket |

695 (inv[njh] and approveProjectAT [njh, njh’, p, at]) implies inv[njh’] }
696 || check OpPreserves

697 //for Tbut exactly 11Rule expect O/*** DA_COI *x**/

698 for 7but exactly 12Rule expect O

699

700 || /** run only when opPreserves returns a counterexample */

701 || pred OpDoesNotPreserve[njh, njh’: NJH, r: Researcher, p: Project, at: AccessTicket 1{
702 inv[njh] and approveProjectAT[njh, njh’, p, at] and not inv[njh’] }

703 || run OpDoesNotPreserve

704 //for Tbut exactly 2NJH, 11Rule expect O/**x DA_COI *x*x*/

705 for 7but exactly 2NJH, 12Rule expect O

707 || /Fkkskokskokkskok skokskokskokokskokok skskokskskokskokokok skokokskokskokokokok kokskokskokokokokok skokokskokokskokokok skokskskok sk k ok ok
708 || END OPERATION Specs

709 skokokokokkokskoksk okokokokskokskokokk kckckskokokokokckk skokskokokkokksksk skokokokkkcksksksk okokokkkskskokokk **********/

714 || /dkksokokkskokok skokokskokokokskokok skokokokskoskokokskok skokokokskokokokokok skskokokokskoskokokok skokokskokskokokokok kokskok ok sk sk ok ok
715 Internal NJH Conformance Rules

716 || Fkckkskokokokskok skokokokskokokokskok skskokokokskokokokok skokoskokokskokokokok skokskokokokskoskokok kokskoskskokskokokokskokokskok ok sk sk ok /
717 || /** This predicates, generatorl and generator2 are used in this section */
71s || private pred generatorl (njh: NJH, p: Project) {

719 some p.(njh.projectAT) and

720 inv[njh] }

722 || private pred generator2 (njh: NJH, p: Project) {

723 generatorl[njh, pl and
724 some0fAllRelations[njh] and
725 setPartialInstanceConfiguration[njh] }

726

727 || assert NoInProjectNSIPIDC_Sups{

728 all

729 njh: NJH, p: Project |

730 generatorl[njh, p] implies

731 no p.(njh.projectPI) -> p.(njh.projectDataCollector) &

309

732 ~(njh.supervisors) }

733 || check NoInProjectNSIPIDC_Sups

734 //for Tbut exactly 11Rule expect 1/*x* DA_COI *x*x*/
735 for 7but exactly 12Rule expect O

736

737 || assert NoInSourcesNSIPIDC_Sups{

738 all

739 njh: NJH, p: Project |

740 let

741 ps = p. ("(njh.projectSources)) & Project |

742 (generatorl[njh, p] and some ps) implies

743 no p.(njh.projectPI) -> (p+ps).(njh.projectDataCollector) &
744 ~(njh.supervisors) }

745 || check NoInSourcesNSIPIDC_Sups

746 //for Tbut exactly 11Rule expect 1/*x* DA_COI *x*x*/

747 for 7but exactly 12Rule expect O

710 || assert NoInSourcesNSIPIDC_PIandDC{

750 all

751 njh: NJH, p: Project |

752 let

753 ps = p. (" (njh.projectSources)) & Project |

754 (generatorl[njh, p] and some ps) implies

755 no p.(njh.projectPI) & ps.(njh.projectDataCollector) }
756 || check NoInSourcesNSIPIDC_PIandDC

757 //for Tbut exactly 11Rule expect 1/*x* DA_COI *x*x*/

758 for 7but exactly 12Rule expect O

760 || assert NoInSourcesNSIPIDC_MEMSandDC{

761 all

762 njh: NJH, p: Project |

763 let

764 ps = p. ("(njh.projectSources)) & Project |

765 (generatorl[njh, p] and some ps) implies

766 no p.(njh.projectMembers) & ps.(njh.projectDataCollector) }
767 || check NoInSourcesNSIPIDC_MEMSandDC

768 //for Tbut exactly 11Rule expect 1/%¥% DA_COI *x*x*/

769 for 7but exactly 12Rule expect O

771 /********** skokokokokokokkoksk skokokokokkokskskk okokckkskskskokokk kkkskokokokkkk

772 Can we get an instance of the model for all
773 the relations that satisfy inv[] and a

774 project has a DeIDed access Ticket

775 and a project where there is some suspicious
776 relationship with the dataColector?

lddd skokokokokkokskoksk kokkkskskskokoksk kkokskokokokokkk kokskokokkkkkk **********/

779 || /** 1. PI directly supervises DataCollector */
7so || private pred DataCollectorIC0I11(njh: NJH, p: Project){

781 generator2[njh, p] and

782 some p.(njh.projectAT) and

783 some p.(njh.projectPI) -> p.(njh.projectDataCollector) &

784 (njh.supervisors) }

785 || run DataCollectorICOI11l for 7

786 //but exactly 11Rule, 3Project, 1NJH expect 1/*** DA_COI *x*x/

787 /** use only when the applicable part of rule NSIPIDC rule is commented */
788 //but exactly 12Rule, 4Project, 1NJH expect 1/*** DA_COI x*x*x/

789 but exactly 12Rule, 1NJH expect O

790
7o1 || /** 1. PI indirectly supervises DataCollector */

792 || private pred DataCollectorIC0I12(njh: NJH, p: Project){
793 generator2[njh, p] and

310

794 some p.(njh.projectAT) and

795 some p.(njh.projectPI) -> p.(njh.projectDataCollector) &

796 “(njh.supervisors) and

797 no p.(njh.projectPI) -> p.(njh.projectDataCollector) &

798 (njh.supervisors) }

799 || rTun DataCollectorICOI12 for 7

800 //but exactly 11Rule, 3Project, 1NJH expect 1/x** DA_COI *x*x/

801 /** use only when the applicable part of rule NSIPIDC rule is commented */
802 but exactly 12Rule, 4Project, INJH expect 1/#%* DA_COI **x/

803 //but exactly 12Rule, 1NJH expect O

804
so5 || /** 2. PI supervises DataCollector on direct ProjectSource */
sos || private pred DataCollectorC0I21(njh: NJH, p: Project){

807 let

808 ps = p. (" (njh.projectSources)) & Project |

809 some ps and

810 generator2[njh, p] and

811 some p.(njh.projectAT) and

812 some p.(njh.projectPI) -> (p+ps).(njh.projectDataCollector) &
813 ~(njh.supervisors)}

s14 || run DataCollectorC0I21 for 7

815 //but exactly 11Rule, 3Project, 1NJH expect 1/x*x DA_COI **x/

816 /** use only when the applicable part of rule NSIPIDC rule is commented */
817 but exactly 12Rule, 4Project, INJH expect 1/*x* DA_COI x*xx*/

818 //but exactly 12Rule, 1NJH expect O

819

s20 || /** 3. PI directly supervises DataCollector on indirect ProjectSource */
s21 || private pred DataCollectorC0I22Indirect(njh: NJH, p: Project){
822 let

823 ps = ((p.(njh.projectSources) & Project).(njh.projectSources)) & Project |
824 some ps and

825 generator2[njh, p] and

826 some p.(njh.projectAT) and

827 some p.(njh.projectPI) -> ps.(njh.projectDataCollector) &

528 (njh.supervisors)}

820 || run DataCollectorC0I22Indirect for 7

830 //but exactly 11Rule, 3Project, INJH expect 1/%**x DA_COIL *x*x*/

831 /** use only when the applicable part of rule NSIPIDC rule is commented */
832 //but exactly 12Rule, 4Project, 1NJH expect 1/x*x DA_COIL **x/

833 but exactly 12Rule, 1NJH expect O

835 || /** 3. PI indirectly supervises DataCollector on indirect ProjectSource */
s36 || private pred DataCollectorC0I23Indirect(njh: NJH, p: Project){
837 let

838 ps = ((p.(njh.projectSources) & Project).(njh.projectSources)) & Project |
839 some ps and

840 generator2[njh, p] and

841 some p.(njh.projectAT) and

842 some p.(njh.projectPI) -> ps.(njh.projectDataCollector) &

843 “(njh.supervisors) and

844 no p.(njh.projectPI) -> ps.(njh.projectDataCollector) &

845 (njh.supervisors) }

846 || run DataCollectorC0I23Indirect for 7

847 //but exactly 11Rule, 3Project, INJH expect 1/%*x DA_COIL *x*x*/

848 /** use only when the applicable part of rule NSIPIDC rule is commented */
849 //but exactly 12Rule, 4Project, INJH expect 1/%*x DA_COIL *x*x*/

850 but exactly 12Rule, 1NJH expect O

853 || /*#*4. PI is Data Collector on ProjectSource */
ss4 || private pred DataCollectorIC0I31(njh: NJH, p: Project){
855 let

311

863

865
866
867
868

869

875

885

906
907
908
909
910
911
912
913
914
915
916
917

ps = p. ("(njh.projectSources)) & Project |
some ps and

generator2[njh, p] and

some p.(njh.projectAT) and
some p.(njh.projectPI) & ps.(njh.projectDataCollector) }
run DataCollectorICO0I31 for 7

//but exactly 11Rule, 3Project, 1NJH expect 1/#%* DA_COI *xx*/
/** use only when the applicable part of rule NOPITDC rule is commented */
//but exactly 12Rule, 4 Project, 1INJH expect 1/#** DA_COI **x/
but exactly 12Rule, 1NJH expect O

/**5. PI is Data Collector on ProjectSource */
private pred DataCollectorIC0I32Indirect(njh: NJH, p: Project){
let
ps = ((p.(njh.projectSources) & Project).(njh.projectSources)) & Project |
some ps and
generator2[njh, p] and
some p.(njh.projectAT) and
some p.(njh.projectPI) & ps.(njh.projectDataCollector) }
run DataCollectorICO0I32Indirect for 7
//but exactly 11Rule, 3Project, 1NJH expect 1/*** DA_COL *x*x*/
/** use only when the applicable part of rule NOPITDC rule is commented */
//but exactly 12Rule, 4 Project, INJH expect 1 /#** DA_COI **x/
but exactly 12Rule, 1NJH expect O

/** 6. ProjectMember is Data Collector on ProjectSource */
private pred DataCollectorC0I41(njh: NJH, p: Project){
let
ps = p. (" (njh.projectSources)) & Project |
some ps and
generator2[njh, p] and
some p.(njh.projectAT) and
some p.(njh.projectMembers) & ps.(njh.projectDataCollector) }
run DataCollectorC0I41 for 7
//but exactly 11Rule, 3Project, 1NJH expect 1/*** DA_COI x*x*x/
/** use only when the applicable part of rule NOPITDC rule is commented */
//but exactly 12Rule, 4Project, 1NJH expect 1/*** DA_COI **x/
but exactly 12Rule, 1NJH expect O

/** T. ProjectMember is Data Collector on ProjectSource */
private pred DataCollectorC0I42Indirect(njh: NJH, p: Project){
let
ps = ((p.(njh.projectSources) & Project).(njh.projectSources)) & Project |
some ps and
generator2[njh, p] and
some p.(njh.projectAT) and
some p.(njh.projectMembers) & ps.(njh.projectDataCollector) }
run DataCollectorC0I42Indirect for 7
//but exactly 11Rule, 3Project, 1NJH expect 1/*** DA_COI **x/
/** use only when the applicable part of rule NOPITDC rule is commented */
//but exactly 12Rule, 4 Project, I1NJH expect 1/#*x DA_COI **x/
but exactly 12Rule, 1NJH expect O

[RKKAFKKKAK KKK FKKKA KK KKK FKKKA KK KA FKKKAFKK KA KKK K KKK FFKKKAFKKK Fk KKK F Kok kK
End Internal NJH Conformance Rules
FORK KA FRKKK KKK AFKKKAK KKK K FRKK KK KKK FKKKA AR KA F KKK K KKk Kk FokokKKFokk KFokokokkkkokk /

312

918
919
920
921
922

931
932
933
934
935
936
937
938
939
940
941

942

962
963
964
965
966
967
968
969
970
971
972
973

[xsckokskskokokskok skskokokskskokokokok skskokokokskokokokok okskokokokskokokok skokskokokokskokokokkokokskokkokskokok skokokskosk ok skok ok
These are not a part of the object configuration.
They provide sanity checks

sorsiokokskskokokok kokskolokokskokokok skokskolokoksksiokokkokokskolokokskokok Sokokakokokokskokok skolokokskokokokokok skskokkkskskokokok /

JFRFEFFAFAAK KA KAKKAK KKK KAAKAK HAKAAKAKKAK KKK AAK KKK
any instance of the model

KAFKAKAKKAK HAKAKKAKKAK FAKAAKAAKK FAKKAAKAKK KKK AAKAAK [

private pred showg (njh: NJH) {}

//run showg
//for Tbut exactly 11Rule, 1INJH expect 1/#** DA_COI *x*x*/
//for Tbut exactly 12Rule, 1NJH expect 1

/xsckoksksokokskok skskskokskskokokoksk skokskokokokskokokokskokskokokskskokokokkokokskosk ok skok ok

Can we get an instance of the model for all

the relations that satisfy generator[] and a

project has an Identified access Ticket?
soksokokskskokokoksokskokokokskokokok skokskskokokokskokok kokokskokokokskoskok skokokksksk ok skok /
private pred someOfAllRelationsSatisfyingInvForIdentifiedAT(

njh: NJH, at: Identified) {

some njh.projectAT.at and

someOfAllRelations[njh] and
inv[njh] and
setPartialInstanceConfiguration[njh]l }

run some0fAllRelationsSatisfyingInvForIdentifiedAT

//for Tbut exactly 11Rule, INJH expect 1/*x* DA_COI *x*x*/

for 7but exactly 12Rule, 1NJH expect 1

[Fkkskokskokskokok kokskokskokokokokok skokokskokokokokokok skokskokokskokokokok Kok ko ok ok sk ok ok
Can we get an instance of the model for all
the relations that satisfy generator[] and a
project has a DeIDed access Ticket?
sokokokskokokokokok skokokskokokokokokok kokskokokokokokokok skokokokokokokokokok kokskskokok ok kok /
private pred someOfAllRelationsSatisfyingInvForDeIDedAT (
njh: NJH, at: DeIDed) {
some njh.projectAT.at and
someOfAllRelations[njh] and
inv[njh] and
setPartialInstanceConfiguration[njhl}
run some0OfAllRelationsSatisfyingInvForDeIDedAT
//for Tbut exactly 11Rule, INJH expect 1/** DA_COI x*x**/
for 7but exactly 12Rule, INJH expect 1

/********** skokoskokokokokksksk skokokokokkoksksksk kokckkskskskokokk kkckskokokokkkk
all sets that are defined are used!
using IFF instead of IMPLIES is not applicable
because lone on some sides of the relations.
sorkokokokskokokok kokskolokokskokokok kokskoskokokoksiokok kokokskolokokskokok skokokokoskoskkokskok /
assert TestIfAllSetsAreApplicableToTheModel {
all
njh: NJH |
some0fAl1RelationsSatisfyingInvAndConfig[njh] implies
some0fAllSets[njh] }
check TestIfAllSetsAreApplicableToTheModel
//for Tbut exactly 11Rule, 1NJH expect O/*** DA_COI *x*x*/
for 7but exactly 12Rule, 1NJH expect O

313

D.1.2 ALLOY SPECIFICATIONS FOR SLICE 5 TO CHECK CONFORMANCE

Listing D.2: Updated Alloy Specifications for Slice 5 to CheckConformance

1 /********** Skokokokskskokskskok kokokskskokokskkok kokokskkokokskokk kokokskkokskskokdk kokdkkokokskkkdk kokskkokdkkkkk
Begin Structural Model, NJH slice 5

N

3

4 Written By: Phillipa Bennett

5 Version 5

6 Date: Version 5completed Nov 28, 2016

7

8 Notes:

9 A lot of notes through out the specification!

10
11 || /okskskokskskokskokok skokokskokokskokokok skokskskokskokokokok skokskokskokokskokok skskokskokokskokokok skokokoskokskokokokok ok skoksk ook sk ook /
12 [|[module slice_5

13
14 || /kkskkkokkokkk kokkokokkokkkok KRRk KK RRKK kKKK KKK KKK KK KK KKK
15 imports

16 || /*skskokokkokkk skokkokokkokkkok KkokokkkkRokk kKKK kKKK KKKk KKK KK [
17 || open util/relation

1s || open util/ternary

19 || open util/ordering[NJH] as ord

20
21 || /kkskokokokokokok skokokokokokokokokok skokokokokokokokokok skokokokokokkokokok Kok skokok ok ok kok
22 base abstract signatures

23 || Hokkskskokokokokok skokskokokokokokokk kokokokokokokokokok skokokokokokokkokok kokokokokok ok ok ok /
24 || abstract sig

25 Data,

26 DataSource,

27 DataTransform,
28 Name,

29 Permission,

30 Status {}

32 || /kksrsokkrsokk sokokskokokokskokok okokokokokokokskok kokokokokskokokokok kokokokokkskok ok
33 extended abstract signatures

34 || dokskarsokokoksiok skokokokskokokokokok skskokokokskokokoksk kokskokokokskokokok kokskokokokkoskokok /
35 || abstract sig

36 AccessTicket

37 || extends Permission {}

38
39 || /dkskskokokakokokok skokokskokokokskokok skokokokskokokokokok skokokokokokokokokok kkokokokskok ok ok

40 unextended concrete signatures

41 || Fwskoksrokokskokok skskokskokokskokakok skokskoskokskokakokok kokoskokskokokokokok skokokskokokokkok ok /
42 || sig Day,

43 Month,

44 Query,

45 Year {}

46
a7 || sig Dataltem {
48 name: Name}
49
50 || /dkkskokoksrskokok skokokskokokokskokok skokokokskokokokskok skskokokokskokokokok skskokokoksk sk ok ok
51 extended concrete signatures

52 || dokskskskokokakskok skokokokskokokokskok skskokokokskokokoksk skokskokokskskokokok skokskokokokskok ok /
53 || sig Age, Other extends Name {}

55 || sig Project extends DataSource{}

314

66
67
68
69
70
71
72
73
74

76
77
78
79
80
81
82
83

84

86
87
88
89
90
91
92
93

94

105
106
107
108
109
110

111

116

lone sig DelDed,
Identified
extends AccessTicket {}

lone sig
DownloadAllowed,
DownloadDisabled

extends Status {}

sig Date extends Data {
day: lone Day,
month: lone Month,
year: Year }{
/* day iff month also exists */
some day iff some month }

one sig
AllowDelIDed,
TotallyDelIDed,
TotallyIDed

extends DataTransform {}

/********** skokoskokokokokoksksk skokokokokskoksksksk kokckkskskskokokk kkokskokokokkkk
subset concrete signatures
skokokokokkokskoksk kokokkskskskokokk kkokskokokokokkk kokskokokkkkkk **********/
sig
QryData,
RetData
in Dataltem {}

[KKK FKRKAK KKK FKKKAFK KA FKKKKA KK KA FKKKAFKK K Fok kKK F kKK
NJH Closed System
FOoRK KK FKKKK KKK AFKKKAK KKK FKRKK KK KKK FRKKAFK Kok dokkkkFkk /
sig NJH {
accessTickets: set AccessTicket,
dataltems: set Dataltem,
dates: set Date,
permissions: set Permission,
projects: set Project,
qryltems: set QryData,
queries: set Query,
retItems: set RetData,
statuses: set Status,
transforms: set DataTransform,
values: set Data,

/* data items must a value or not. */
dataValues: dataltems -> one values,

enteredOn: dataltems -> lone dates,

/* project access tickets, each one has at most one */
projectAT: projects -> lone accessTickets,

// Transformation of the data required
projectDataTransformRequired: projects -> lone transforms,

/* project queries */
projectQueries: projects one -> queries,

/* a query can work on any kind of data item
retData is in position 2%/

315

119

120

122
123
124
125
126
127
128
129
130

131

135
136
137
138

139

167
168
169
170

171

173
174
175
176
177
178
179

180

gryReturns: queries -> retItems -> dataltems,

/* determines is query results meets conformance and the next

operation, i.e. view/download is allowed */
VDAllowed: queries -> lone statuses }

/********** kokokokokokokkokok kokkokokdkdkkkk kokokkkkokdkkk kkokkkkkkkk

End Structural Model, NJHg_slice_5
[Fkokkokokokokokok kokokKKKKKAK Rk kokok kokoK kKKK KKK KKKk KKk

[Rkrsskokskokokok kskskokokokokokokok skokokokokokakokskok kokokokakskskokokok koK skskok sk ok ko
INVARIANTS
separating the invariants for each set, relation,
or related sets and relations allows for
easier decomposition later on when slicing
[Fkssrokokokokokok skokokokokkokokokok kokokokokokakokokok kokokokakokokokokok ok okskokokokok ok ok

/xsckokskskokokskok skokskokskskokokoksk skokskokokokskokokok sokskokokokskokokok skokokskosk ok skok ok
Some Functions and Predicates to be reused
when writing invariants and generating
instances/counterexamples
skorsokokskokokokokokskokokokskokokok skokskskokokskskokok kokokskokokokskokok skokokoksksk ok sk ok /
private fun applicableDates(njh: NJH, q: Query): set Dat
{ Date &
dom[q. (njh.gryReturns)].(njh.dataValues) +
dom[q. (njh.qryReturns)] . (njh.enteredOn) }}

private fun DelDedDateTransform (d: Date): Date {
{ri: Date |
no ri.day and
no ri.month and
ri.year = d.year }}

private pred identifiedDate (d: Date) {
some d.day }

private pred totallyIDedTransform (njh: NJH, q: Query) {
all
d: applicableDates[njh, ql |
identifiedDate[d] }

private pred totallyDelIDedTransform (njh: NJH, q: Query)
all
d: applicableDates[njh, ql |
not identifiedDatel[d] }

private pred allowDeIDedTransform (njh: NJH, q:Query) {
all
d: applicableDates[njh, ql |
identifiedDate[d] or not identifiedDatel[d]}

[xsckkskskokkokok skskskokskskokokoksk skokskokokoksiokokok skokskolokokskokokokkokokskokkokskok ok
Set invariants, ordered alphabetically by
name of set used, as best as possible
sokokokokskokokokokokskokokokskokokok kokakoskokokakokokok kokokskokokokskokok skokokokskok ok ok ok /

private pred invDataltems (njh: NJH) {

kKK 3k %k %k k K Kk
kK K3k 5k %k k K kK

kK K3k %k k kK kK

*okok ok ok K ok ok K K

e {

{

3k %k %k %k 3k 3k %k k k Xk

skok ok ok kok ok k ok /

3k >k %k Kk %k %k k kK

skok ok sk ok sk ok kkk /

/* set up dataltems, keep out of inv because it is always true */

(qryItems + retItems) = dataltems }

/* closed system constraint - any date is a part of the set of dates */

private pred invDates (njh: NJH) {
njh.dates = (njh.values & Date) + ran[njh.enteredOn]

316

181
182
183
184
185
186
187
188
189
190

191

193
194
195
196
197
198

199

231
232
233
234
235
236
237
238
239
240
241

242

all
d: Date |

(d in njh.dates and identifiedDate[d]) implies
DeIDedDateTransform[d] in njh.dates}

private pred invPermissions (njh: NJH) {
njh.permissions = njh.accessTickets }

/wsckokskoskokokskok skskokokokskokokokok skokskokokakokokokok sokskokokokskokokok skokokskskokok sk ok ok
Relation invariants, ordered alphabetically by
name of main relation used as best as possible
sorsokokskskokokok skokskokokokskokokokkokskskokokokskokokskokokskokokokskokok skokokskskosk ok skok /
/** extracted from invCUTD in slice 3%/
private pred invProjectATDataTransform(njh: NJH) {
all
p: njh.projects |
(some p.(njh.projectAT) & Identified iff
/* kind of Transformation access ticket allows,
mixed - AllowDeIDed or TotallyIDed */
some p.(njh.projectDataTransformRequired) &
(TotallyIDed + AllowDeIDed))
and
(some p.(njh.projectAT) & DelDed iff
/*kind of Transformation access ticket allows,
totally deidentified */
some p.(njh.projectDataTransformRequired) &
TotallyDeIDed) }

private pred invQryReturnsAT (njh: NJH) {
all
q: njh.queries |
some q.(njh.qryReturns) implies
some njh.projectQueries.q.(njh.projectAT) }

/* if a query has a a VD status then it has some return data */
private pred invVDAllowedWithQueryResults (njh: NJH, q: Query) {
(some q.(njh.VDAllowed) implies
some q.(njh.qryReturns)) }

/* project with AllowDelIDed can never have a DownloadDisables
status */
private pred invVDAllowedWithAllowDeIDed (
njh: NJH, p: Project, q: Query) {
some p.(njh.projectDataTransformRequired) & AllowDeIDed implies
no g->DownloadDisabled & njh.VDAllowed }

/% kokkokokokok ok ok

TotallyIDED

Hokokokkokokokokok /

/** using iff does not matter, i.e., all predicated/assertions
give the expected results. */

private pred invDownloadAllowedTotallyIDed(
njh: NJH, p: Project, q: Query) {
some p.(njh.projectDataTransformRequired) & TotallyIDed implies

totallyIDedTransform[njh, ql }

/** iff causes counterexample for HIPAADateConformanceDeIDed */
private pred invDownloadDisabledTotallyIDed(
njh: NJH, p: Project, q: Query) {
some p.(njh.projectDataTransformRequired) & TotallyIDed implies
not totallyIDedTransform[njh, ql }

317

243 || /%*kkkkkkkkk
244 || Al1lowDeIDED
245 ok ok ook ok k ok k /

246 /** Introducing a fault in invDownloadAllowedAllowIDed,

247 We introcuce a fault in the connector for these clauses that
248 allows the Identified access ticket with a TotallyIDeD transform
249 to give de-identified data.

250

251 This fault causes the:

252 1. showDeIDedNCDA, showIdentifiedNCTotallyIDedDA, and

253 HIPAADateNonConformanceldentified predicates to give

254 instances, and

255 2. HIPAADateConformanceldentified and

256 HIPAADateConformanceDeIDed assertions to produce

257 counterexamples

258 for the Identified access ticket. */

259

260 /*x for fault use implies instead of iff */

262 || private pred invDownloadAllowedAllowIDed(

263 njh: NJH, p: Project, q: Query) {
264 some p.(njh.projectDataTransformRequired) & AllowDelIDed implies
265 allowDeIDedTransform[njh, q] }

267 || /%%kkkkkkokkk
268 || TotallyDeIDED

269 sokokok ok okokokok /

270 || /** using iff does not matter, i.e., all predicated/assertions

271 give the expected results. */

272 || private pred invDownloadAllowedTotallyDeIDed (

273 njh: NJH, p: Project, q: Query) {

274 some p.(njh.projectDataTransformRequired) & TotallyDeIDed implies
275 totallyDeIDedTransform[njh, ql }

277 || /*#*% iff gives instances for

278 showIdentifiedNCTotallyIDedDA and
279 HIPAADateNonConformanceIdentified
280 and counterexamples for

281 HIPAADateConformanceIdentified
282 all contrary to expectation*/

283 || private pred invDownloadDisabledTotallyDeIDed(

284 njh: NJH, p: Project, q: Query) {

285 some p.(njh.projectDataTransformRequired) & TotallyDeIDed implies
286 not totallyDeIDedTransform[njh, ql }

288 || private pred invVDAllowedCondAllowed(

289 njh: NJH, p: Project, q: Query) {

290 let

291 a = invDownloadAllowedTotallyIDed[njh, p, ql,

292 b = invDownloadDisabledTotallyIDed[njh, p, ql,

293 ¢ = invDownloadAllowedAllowIDed[njh, p, ql,

294 d = invDownloadAllowedTotallyDelIDed[njh, p, al,

205 e = invDownloadDisabledTotallyDeIDed[njh, p, ql | {
296

297 some gq->DownloadAllowed & njh.VDAllowed implies

208 ((a and not b) or (d and not e) or c) }}

299

300 || private pred invVDAllowedCondDisabled(

301 njh: NJH, p: Project, q: Query) {
302 let
303 a = invDownloadAllowedTotallyIDed[njh, p, ql,

invDownloadDisabledTotallyIDed[njh, p, ql,

304 b

318

305

306

307

308

309

310

311

d = invDownloadAllowedTotallyDelIDed[njh, p, ql,
invDownloadDisabledTotallyDeIDed[njh, p, ql | {

o
1]

some g->DownloadDisabled & njh.VDAllowed implies
((not a and b) or (not d and e)) }}

/[kkkokkokkkokok
VDAllowed for all queries
*okokokokokkokkk /
/* this is how VDAllowed is well formed for all queries */
private pred invVDAllowed (njh: NJH) {
all
q: njh.queries |
let
p = njh.projectQueries.q | {

invVDAllowedWithQueryResults[njh, q]
invVDAllowedWithAllowDeIDed[njh, p, ql

no q.(njh.VDAllowed) or {
invVDAllowedCondAllowed[njh, p, ql
invVDAllowedCondDisabled[njh, p, ql }}}

R I I T
the FACTS
B L R Ty,
private pred inv (njh: NJH) {
all
njh: NJH |

/*x for sets */
invDataltems[njh] and
invDates[njh] and
invPermissions[njh] and

/** for relations */
invProjectATDataTransform[njh] and
invQryReturnsAT [njh] and
invVDAllowed[njh] }

//run inv for 7expect 1

/*fact {all njh: NJH | inv[njh]l }*/

[skokskokskokokokok skokskskskokokokokok skokokokokokokokokok kokokoskskokskokokok kokokokokokokokokok sokokokokoskokokokok skok ko k ok ok k ok
End of INVARIANTS
/skokskokokokokokok skokskskskokokokokok skokskokokoolokokok kokokokoskoskokskokok kokskokskokskokokokskokokokokokokokokok koksksk sk ok ok ok ok ok /

[xsckokskskokokskok skskokokokskokokokok skskokokokskokokokok okskokokokskokokok skokskokokokskokokokkokokskokkokokokok skokokskosk ok skok
Start of Predicates for MODEL Instances that are a part of the

operation specifications
sorsokoksksokokok kokskolokokskokokok kokakolokokoksiokokkokokskolokokskokok siokokskoskokokskokok skokokokskokokokskok skskokkkskokkokok /

[xsckoksksokokokok skskskokskskokokoksk skokskokokokskokokokkokskolokokskokokokskokskskokkokskok ok
Can we get an instance of the model for all
the relations?
seokskokokokokokokokokskokokokskokokok kokakokokokakokokok kokokskokokokskokok skokokokskok ok ok ok /
private pred someOfAllRelations(njh: NJH) {
some njh.dataValues and
some njh.enteredOn and

319

367 some njh.projectAT and

368 some projectDataTransformRequired and

369 some njh.projectQueries and

370 some njh.qryReturns /*and */

371 /** comment some VDAllowed when using operation specs
372 to allow CheckConformance to get and instance

373 It may break TestIfAllSetsAreApplicableToTheModel
374 assertion, but that’s ok */

375 /*some njh.VDAllowed */ }

377 || /kckokskokokokokok skoskokokokokokokokok skkokokokskokokokok sokskokokokskokokok kokkoskskok sk ok ok ok

378 Can we get an instance of the model for all

379 the relations that satisfy generator[]?

380 || Hkskokokskokokokok skokskokokakskokokok skokskokokokskskokok skokokskokokokskokok skokskkskok ok skok /

381 || private pred someOfAllRelationsSatisfyingInvAndConfig DeIDed (
382 njh: NJH) {

383 someOfAllRelations[njh] and
384 inv[njh] and
385 setPartialInstanceConfig_DeIDed[njh]l }

3s7 || private pred someOfAllRelationsSatisfyingInvAndConfig_Identified (
388 njh: NJH) {

389 some0fAllRelations [njh] and
390 inv[njh] and
391 setPartialInstanceConfig_Identified[njh] }

303 || private pred someOfAllRelationsSatisfyingInvAndConfig (
304 njh: NJH) {

395 someOfAllRelations[njh] and
396 inv[njh] and
397 setPartialInstanceConfig [njh] }

3099 || /*run someOfAllRelations for

400 7 but 1NJH expect 1

401 || run someOfAllRelationsSatisfyingInvAndConfig_DelIDed for
402 7 but 1 NJH expect 1

403 || run someOfAllRelationsSatisfyingInvAndConfig Identified
404 for 7but 1NJH expect 1

405 || run someOfAllRelationsSatisfyingInvAndConfig for

106 7 but 1NJH expect 1x/

408 /********** skookokokokokokksksk skokokokoskkokskskk kokckkskskskokokk kkkskokokokkkk

409 Just sanity check. These 2checks can be

410 removed from the model-

411 the TestIfAllSetsAreApplicableToTheModel

412 assertion checks that in all instances where
413 the relations are non-empty, the invariants
414 and the partial configuration ensures that
415 all the sets defined are used!

416

417 using IFF instead of IMPLIES in

418 TestIfAllSetsAreApplicableToTheModel

419 is not applicable because lone on some sides
420 of the relations.

421 skokkokokokskokkk kokokokkokokdkdkk kokokdkkkkkdkk kkkkkkkkkk **********/

423 || /kckoksokokokokok skskokokokokokokokok skokokokokskokokokok skokskokokokskokokok kokkskokok ok ok ok ok
424 Can we get an instance of the model for all

425 the sets?

426 || Frkokksokkkk kkgetSickkokkk skokkskokkokskokok kokokskskokokskokok skokokkskokkokskok /
127 || private pred someOfAllSets(njh: NJH) {

428 (some njh.accessTickets or

320

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

476

480

485
486
487
488
489

490

some njh.permissions) and
(some njh.dataltems or
(some njh.qryItems and
some njh.retItems)) and
some njh.dates and
some njh.projects and
some njh.queries and
some njh.statuses and
some transforms and
some njh.values }

assert TestIfAllSetsAreApplicableToTheModel {
all
njh: NJH |
(someOfAllRelationsSatisfyingInvAndConfig[njh] and
someOfAllRelations[njh]) implies
some0fAllSets[njh] }

/*run some0fAllSets for 7but INJH expect 1
check TestIfAllSetsAreApplicableToTheModel for 7expect 0%/

[xsckokskskokokskok skskokokskskokokoksk skokskokokskokokokok okskokokokskokokok kokakokokokskokokokskokokskokokokskoskok skokoksk sk ok skok ok
End of Predicates for MODEL Instances that are a part of the
operation specifications

skokokokokkokskoksk okokokkskokskokokk kckokskokokokokckk skokskokokkokksksk skokokokkkokskcksk okokkkskckskokokk ***********/

JHRKAAKFAKAKKK KAKKAAAAKK KAAKKAKAKAAKK HAKAAAAKAK AKAKAKAKAK KKK AAKAKKK KKK AAK KK KKK
Start of OPERATION Specifications
JHRRAAKFA KKK HAAAAKKAKAK KAAKAKAAKKAK KAAAAAA KKK HAAAAKAAAAK KA AKA KKK KKK KKK A KK
/** this is how we initialise the system */
private pred init(njh: NJH) {
some
q: Query |
some q.(njh.qryReturns) and
no q.(njh.VDAllowed) and
some0fAllRelationsSatisfyingInvAndConfig[njh] }

private pred noChangeSets(njh, njh’: NJH) {
njh.accessTickets = njh’.accessTickets and
njh.dataltems = njh’.dataltems and
njh.dates = njh’.dates and
njh.permissions = njh’.permissions and
njh.projects = njh’.projects and
njh.qryItems = njh’.qryItems and
njh.queries = njh’.queries and
njh.retlItems = njh’.retItems and
njh.statuses = njh’.statuses and
njh.transforms = njh’.transforms and
njh.values = njh’.values }

private pred noChangeRelations(njh, njh’: NJH) {
njh.dataValues = njh’.dataValues and
njh.enteredOn = njh’.enteredOn and
njh.projectAT = njh’.projectAT and
njh.projectDataTransformRequired =

njh’ .projectDataTransformRequired and

njh.projectQueries = njh’.projectQueries and
njh.qgryReturns = njh’.qryReturns and
njh.VDAllowed = njh’.VDAllowed }

321

491
102 || /** i.e., specification of no operation */
193 || private pred skip (njh, njh’: NJH) {

494 noChangeSets[njh, njh’] and

495 noChangeRelations[njh, njh’] }

496
197 || private pred checkConformance (njh, njh’: NJH, p: Project, q: Query) {
498 /*xlet

199 at = p.(njh.projectAT) |*/ /** at are implied by the transtorm */
500 /** Pre-conditions */

501 P in njh.projects and

502 q in p.(njh.projectQueries) and

503 no q.(njh.VDAllowed) and

504 some q.(njh.qryReturns) and

505

506 /** Post-conditions - Frame Conditions*/

507 noChangeSets[njh, njh’] and

508

500 njh.dataValues = njh’.dataValues and

510 njh.enteredOn = njh’.enteredOn and

511 njh.projectAT = njh’.projectAT and

512 njh.projectDataTransformRequired =

513 njh’.projectDataTransformRequired and

514 njh.projectQueries = njh’.projectQueries and

515 njh.qryReturns = njh’.qryReturns and

516

517 /** Post-conditions - Changes*/

518 njh.VDAllowed = njh’.VDAllowed - (gq->DownloadAllowed +
519 g->DownloadDisabled) and

520 some q.(njh’.VDAllowed) and (

521 let

522 a = invDownloadAllowedTotallyIDed[njh, p, ql,
523 b = invDownloadDisabledTotallyIDed[njh, p, ql,
524 ¢ = invDownloadAllowedAllowIDed[njh, p, ql,

525 d = invDownloadAllowedTotallyDeIDed[njh, p, ql,
526 e = invDownloadDisabledTotallyDeIDed[njh, p, ql | {
527

528 some q->DownloadAllowed & njh’.VDAllowed implies
529 ((a and not b) or (d and not e) or c)

530

531 some gq->DownloadDisabled & njh’.VDAllowed implies
532 ((not a and b) or (not d and e)) }) }

534 || private pred CheckConformancePossible(

535 njh, njh’: NJH,
536 p: Project,

537 q: Query) {

538 someOfAllRelationsSatisfyingInvAndConfig[njh] and
539 checkConformance [njh, njh’, p, q] and

540 inv[njh’] }

542 || /** this is how we move from instance to instance */
sa3 || fact traces {

544 init[ord/first]

545 all

546 njh: NJH - ord/last,

547 p: Project,

548 q: Query |

549 let

550 njh’ = njh.next |

551 skip[njh, njh’] or

552 checkConformance [njh, njh’, p, ql }

322

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613

614

assert OpPreserves {
all
njh, njh’: NJH ,
p: Project, q: Query |
(inv[njh] and
checkConformance [njh, njh’, p, ql) implies
inv[njh’] }

/** run only when opPreserves returns a counterexample */
pred OpDoesNotPreserve[njh, njh’: NJH, p: Project, q: Query 1{
inv[njh] and
checkConformance [njh, njh’, p, q] and
not inv[njh’] }

/*run init for 7but 1NJH expect 1

run skip for 7but 3NJH expect 1%/

run checkConformance for 7but 2NJH expect 1/*

run CheckConformancePossible for 7but 2NJH expect 1%/
check OpPreserves for 7expect O

run OpDoesNotPreserve for 7expect O

/********** skokoskokokokokksksk skokokokokskskskoksk okokckkskskskokokck kskokskokokokckkk skokokokokkkksksk skokokokkkkskkk

End Operation Specification
sokokokskokokkok skokokoRioRsoRskkokkokokaiokiokok soksioRioRskoRskok kokskokaiokaiokaiokoloRsioRskoRskoksk skokokskokakokokokok /

[Rk kokokokokokok koK KKKKKAK KRRk ok RoKKK KKK KK KKKk okokokok kKKK ok Kok KK KKKk KK
Partial instance CONFIGURATION,

these will be instantiated in every instance
sorsokokskskokokok kokskolokokskokokok skoksksiokoksksiokokskokokskolokokskokok siokokskoskokokskokok skokokokskokokokskok skskokkkskokkokok /

/** We want to generate a small model. It is mportant to add the
the size of the set so that Alloy does not use a subset of the
configuration. */

private pred config_overlap (njh: NJH) {

[/F*kkkkkkkkkkx for sets */
njh.dataltems.name =
Age + Other and

/* transforms (3) */

njh.transforms =
AllowDeIDed +
TotallyDeIDed +
TotallyIDed and

/* statuses (2) */

njh.statuses =
DownloadAllowed +
DownloadDisabled and

/*kkkkkkkkkk for relations */
#dataltems >= 6and
#njh.dataltems.name = 2and
#njh.transforms = 3and
#njh.projects > Oand
#qryItems >= land

#queries > land

#retItems >= 3and
#njh.statuses >1 and

323

615
616
617
618
619
620
621
622
623
624
625
626
627
628

629

663
664
665
666
667
668
669
670
671
672
673
674
675

676

#njh.transforms = 3and

/* all projects have an access ticket */
all

p: njh.projects [{
some p.(njh.projectAT)} and

/* qryItems and retItems are distinct data */

no njh.qryltems & njh.retItems and

/* all qryltems are used to construct the return data */

ran[select13[njh.qryReturns]] = njh.qryItems and

/* all retItems are returned */

ran[select12[njh.qryReturns]] = njh.retItems and

/* all qryltems are identified dates */
all

q: njh.qryItems | {
identifiedDate[q. (njh.dataValues)] }and

/* there is only one retItem that is de-identified */

#{r: njh.retItems | not identifiedDate[r.(njh.dataValues)]}= land

/* the identified retItem and its associated dataltem have

name = Age */
all
r: njh.retItems | {

identifiedDate[r. (njh.dataValues)] implies

r.name = Age and

r.(select23[njh.qryReturns]) .name = Age }and

/* the not identified retItems and their associated dataltem have

name = Other */
all
r: njh.retItems | {

not identifiedDatel[r.(njh.dataValues)] implies
r.name = Other and r.(select23[njh.qryReturns]) .name

private pred setPartiallnstanceConfig DeIDed (njh: NJH) {

config_overlap[njh] and

/* access tickets (1) */
njh.accessTickets = DelDed and
#njh.accessTickets = 1}

Other }}

private pred setPartiallnstanceConfig_Identified (njh: NJH) {

/* load the overlap */
config_overlap[njh] and

/* access tickets (1) */
njh.accessTickets = Identified and
#njh.accessTickets = 1}

private pred setPartiallnstanceConfig (njh: NJH) {

/* load the overlap */
config_overlap[njh] and

/* access tickets (2) */

njh.accessTickets = Identified + DeIDed and

#njh.accessTickets = 2}

324

677
678
679
680
681
682
683
684
685
686

687

692

729
730
731
732
733
734
735
736
737
738

/*run config_overlap for 7expect 1

run setPartiallnstanceConfiguration_DeIDed for 7expect 1
run setPartiallnstanceConfiguration_Identified for 7expect 1
run setPartiallnstanceConfiguration for 7expect 1%/

[RRKAAKKKAK KKAFKKKAKK KKK FKKKA K KAFKKKAFKK KA KKK K KKK HFKKKAFKKK FK KKK F kKKK

End of Partial Configuration
[Fkkskokskokskokok skokskokokokokokokok skokokokskokskokokok skokokskokskokokokok kokskokskokokokokok | skokokskokokskokokok skokskskoksk ook kok /

[xsckokskoskokokskok skskokokokskokokokok skokokokokskokokokok okskokokokokokokok kokakokokokakokokokkokokskokokokokoskok skokokskosk ok skok ok
Start of Predicates/Assertions for other MODEL Instances
sekokokokskokokokokokskokokokskokokok kokakokokokakokokok kokokskokokokskokok kokskokokokokakokok skokokokskokokokokok skokokkkokskokakok /
private pred common_inst(
njh: NJH, proj: Project, qry: Query, at: AccessTicket) {
inv[njh] and
some
p: njh.projects |
p = proj and
p in njh.projects and
p—>at in njh.projectAT and
some q: Query |
q = qry and
some p->q & njh.projectQueries and
some q.(njh.qryReturns) }

[dksksrskokiokk skoksoRsoRskoRskok skokskokaiokaiokiok kkokskoRskoRskokokkokokakokskokskoksk

AT: DeIDED

Transform: well formed instances imply it

Query Status: DD

Conformance: yes
sokokokokokokokokok kokokokokskokokokok skokskokoskokokokokok | skokskokokokskokokok skokk ok kok ok ok /
private pred showDeIDedDD (

njh: NJH, p: Project, q: Query) {

setPartialInstanceConfig[njh] and

common_inst [njh, p, q, DeIDed] and
some gq->DownloadDisabled & njh.VDAllowed and
not totallyDeIDedTransform[njh, ql }

/********** skookokokokokokksksk skokokokoskkokskskk kokckkskskskokokk kkkskokokokkkk
AT: IDED
Transform: TotallyIDed
Query Status: DD
Conformance: yes
sorskokokskoskokokoksokskokokokskokokok skokskskokokokskokokkokokskokokokskokok skokkkskosk ok sk ok /
private pred showIdentifiedTotallyIDedDD(
njh: NJH, p: Project, q: Query) {
setPartialInstanceConfig[njh] and
common_inst [njh, p, q, Identified] and
some p->TotallyIDed &
njh.projectDataTransformRequired and
some g->DownloadDisabled & njh.VDAllowed and
not totallyIDedTransform[njh, ql }

[3kkskoksokkokok skokskokskokokokokok kokokskokokokokskok skokskokokokokskokok kokokokskoksk sk okok
AT: IDED
Transform: AllowDeIDed
Query Status: DD

Conformance: yes
sorsokokskskokokokkokskokokskskokokokskokskskokokokskokok kokokskokokokskokok skokokokskosk ok skok /

325

730 || private pred showIdentifiedAllowDeIDedDD (njh: NJH) {

740 setPartialInstanceConfig[njh] and

741 inv[njh] and

742 some

743 p: njh.projects |

744 p in njh.projects and

745 p—>Identified in njh.projectAT and

746 some q: Query |

747 some p->q & njh.projectQueries and

748 some q.(njh.qryReturns) and

749 some gq->DownloadDisabled & njh.VDAllowed and
750 some p->AllowDeIDed &

751 njh.projectDataTransformRequired and
752 allowDeIDedTransform[njh, ql}

754 || /FFRRkkkokkk kokskokokokkkokk kokokokkokokokokok kokkokkokokokokok kokskokokokok ko k
755 AT: DeIDED

756 Transform: wel formed instances imply it
757 Query Status: DA
758 Conformance: yes

759 skokokokokkokokoksk kokkkskskskokokk kkokskokokokokkk kokskokokkkkkk **********/
760 || private pred showDeIDedDA(

761 njh: NJH, p: Project, q: Query) {

762 setPartialInstanceConfig[njh] and

763 common_inst [njh, p, q, DeIDed] and

764 some gq->DownloadAllowed & njh.VDAllowed and
765 totallyDeIDedTransform[njh, ql }

767 || /dFRdokkokskokk skokkokokokkakokok okokokakokokokakok kokokokokokokokakok kskokok o skok ok ok
768 AT: IDED

769 Transform: TotallyIDed
770 Query Status: DA
771 Conformance: yes

772 || Rkkskokskokkok skokskoskokskokokokok skokskokskokokokokok skoskokskokokokokskok skokskokokok ook kok /
773 || private pred showIdentifiedTotallyIDedDA(

774 njh: NJH, p: Project, q: Query) {

775 setPartialInstanceConfig[njh] and

776 common_inst [njh, p, q, Identified] and

77T some p->TotallyIDed &

778 njh.projectDataTransformRequired and

779 some g->DownloadAllowed & njh.VDAllowed and
780 totallyIDedTransform[njh, q] }

782 || /HFFkkokdkokokok skokokokokokokokokok KKKk Rokokkokokokokok kKoK koK kKK KK
783 AT: IDED

784 Transform: AllowDeIDed
785 Query Status: DA
786 Conformance: yes

787 || kckkskokokokskok skokokokskoskokokskok skskokokokskokokoksk skokskokokokskokokok okskokokokskok ok /
7ss || private pred showIdentifiedAllowDeIDedDA (

789 njh: NJH, p: Project, q: Query) {

790 setPartialInstanceConfig[njh] and

791 common_inst [njh, p, q, Identified] and

792 some p->AllowDeIDed & njh.projectDataTransformRequired and
793 some gq->DownloadAllowed & njh.VDAllowed and

794 allowDeIDedTransform[njh, ql}

795
706 || /FFKkRkkokokkk kkskokokokkkokk kokokokkokkkokok kokkokkokokokokk kokkokokokokk kK
797 AT: DeIDED

798 Transform: wel formed instances imply it
799 Query Status: DA
800 Conformance: no

326

801

802

803

804

805

806

807

808

809

810

811

818

842

844

845

846

sorskokokokskokokok okskokokokskokokok skokskskokokskskokokkokokskokokokskokok skokkksksk ok sk ok /
private pred showDeIDedNCDA (
njh: NJH, p: Project, q: Query) {
setPartialInstanceConfig[njh] and
common_inst [njh, p, q, DeIDed] and
some g->DownloadAllowed & njh.VDAllowed and
not totallyDeIDedTransform[njh, ql }

[REREKAKEKKK KKK KKKKAK KKK KKAKKAKK K KAKKAKKAKKK KKK KK KKK

AT: DeIDED

Transform: wel formed instances imply it

Query Status: DA

Conformance: no
sokokokskokokokokok skokokokokokokokokok kokokokokokokokokok skokokokokokokkokok kokokskok ok ok k ok /
private pred showIdentifiedNCTotallyIDedDA (

njh: NJH, p: Project, q: Query) {

setPartialInstanceConfig[njh] and

common_inst [njh, p, q, Identified] and
some p.(njh.projectDataTransformRequired) & TotallyIDed and
some g->DownloadAllowed & njh.VDAllowed and
not totallyIDedTransform[njh, ql }

/********** skokoskokokokokoksksk skokokokokskoksksksk kokckkskskskokokk kkokskokokokkkk
Give me any instance of the system

sorskokokokskokokok kokskolokokskokokok kokskolokokokskokok okokskolokokskokok skokokokskokkokskok /

private pred show (njh: NJH) {}

[KKK KKK KAKKAAAAKK KAAKKAAAKAKK HAKKAAAAKKAKK KKK KA KKK
Give me an instance of the system where a
query has no VDAllowed
kKKK KKK KRR KKK KoKk K KKK oK KKK KoK KKKk ok [
pred showg(njh: NJH, p: Project, q: Query) {
some p & (njh.projects) and
some p->q & njh.projectQueries and
some p.(njh.projectAT) and
no q.(njh.VDAllowed) and
some q.(njh.qryReturns) }

/*

run show for 7but INJH expect 1
run showg for 7expect 1/%

run common_inst for 7expect 1%/

run showDeIDedDD for 7but 1INJH expect 1
run showDeIDedDA for 7but 1NJH expect 1
run showDeIDedNCDA for 7but 1NJH expect O

run showldentifiedTotallyIDedDD for 7but 1NJH expect 1
run showIldentifiedTotallyIDedDA for 7but 1INJH expect 1
run showIdentifiedNCTotallyIDedDA for 7but 1NJH expect O

run showIdentifiedAllowDeIDedDD for 7but 1INJH expect O
run showIldentifiedAllowDeIDedDA for 7but 1INJH expect 1

/********** kokokokokokokkokok kokkokokskskkkk kokckokkkokdkdkk kkokdkkkkkokk kkkkdkkkkkk kokkkkkkkkxk

End of Predicates/Assertions for other MODEL Instances
Fok ook kR koK ok ok K oKKKKKKKRK Rk okok KRR KKK KKK KKKk Rk okokokokokokokokok KoKk Kk Kk Kk ok /

[RRKAFKKKA K KKAFKKKA KK KKK FKKKAFK KA FKKKAFKK KA KoK KKK KKK FFoRKKAFKKK Fokokok kK kKKK
HIPAA Conformance Checks
Asserts MODEL Instances well formed for VD Allowed

327

863 || Hkskokoksrokokokok skokskokokskskokoksk skokskokokokskokokok skokskskokokokokokok kokokskoskokokskokok skokokokskokokokoskok kokokoksk sk ok skok /
so4 || private pred conform_overlap (njh: NJH, q: Query, at: AccessTicket) {

365 some0fAllRelationsSatisfyingInvAndConfig[njh] and

866 some (njh.projectQueries).q.(njh.projectAT) & at }

867
ses || pred conformanceQryIdentifiedAllowed (

869 njh: NJH, p: Project , q: Query) {

870 some p.(njh.projectDataTransformRequired) & TotallyIDed implies
871 all

872 r: applicableDates[njh, q] |

873 identifiedDate[r] }

s75 || pred conformanceQryldentifiedDisabled (njh: NJH, p: Project , q: Query) {

876 (some p.(njh.projectDataTransformRequired) & TotallyIDed implies
877 some

878 r: applicableDates[njh, ql |

879 not identifiedDatelr]) }

ss1 || pred conformanceQryDeIDedAllowed (njh: NJH, p: Project , q: Query) {
882 all

883 r: applicableDates[njh, q] |

884 not identifiedDatel[r] }

sse || pred conformanceQryDeIDedDisabled (njh: NJH, p: Project , q: Query) {
887 some

388 r: applicableDates[njh, q] |

889 identifiedDate[r] }

so1 || /** fault in the invDownloadAllowedAllowIDed predicate allows a

892 counterexample here, i.e.,

893 conformanceQryIldentifiedAllowed fails */

s04 || private pred HIPAADateNonConformanceIdentified

895 (njh: NJH, p: Project, q: Query) {

896 p = (njh.projectQueries).q and

897 conform_overlap[njh, q, Identified] and

808 some p.(njh.projectDataTransformRequired) & TotallyIDed and
899 some q.(njh.VDAllowed) & DownloadAllowed and

900 not conformanceQryIdentifiedAllowed[njh, p, ql }

901 || run HIPAADateNonConformanceldentified for 7expect 0

903 || /** fault in the invDownloadAllowedAllowIDed predicate allows a

904 counterexample here, i.e.,

905 conformanceQryIdentifiedAllowed fails */

906 || assert HIPAADateConformanceldentified {

907 all

908 njh: NJH,

909 q: njh.queries |

910 let

911 p = (njh.projectQueries).q | {

912

913 (conform_overlap[njh, q, Identified] and

914 some q.(njh.VDAllowed) & DownloadAllowed) implies
915 conformanceQryIdentifiedAllowed[njh, p, ql

916

917 (conform_overlap[njh, q, Identified] and

918 some q.(njh.VDAllowed) & DownloadDisabled) implies
919 conformanceQryIdentifiedDisabled[njh, p, ql }}

920 || check HIPAADateConformanceldentified for 7expect O
921
922 || assert HIPAADateConformanceDeIDed {
923 all

924 njh: NJH,

328

925
926
927
928
929
930
931
932
933
934
935
936
937
938

939

q: njh.queries |
let
p = (njh.projectQueries).q | {

(conform_overlap[njh, q, DeIDed] and
some q.(njh.VDAllowed) & DownloadAllowed) implies
conformanceQryDeIDedAllowed[njh, p, ql

(conform_overlap[njh, q, DeIDed] and
some q.(njh.VDAllowed) & DownloadDisabled) implies
conformanceQryDeIDedDisabled[njh, p, ql }}
check HIPAADateConformanceDelIDed for 7expect O

[RRKAFRKKA K KKAFKKKAFK KKK FKKKAFK KA FKKKAFKK KA oRK KK oRK HFRKKAFRKK Fokokok kK Kok kK

End HIPAA Conformance Checks
FORK KK FKKKK KKK AFKKKA K KKK K FRKK KK KKK FRKK KAk Kokdokokokk ok kok Kok dokokkokdokok kkokokokkkkokk /

329

D.2 Updated USE Class Model Specifications and Constraints for Slice 3 to ApproveAcces-

sTicket Operation

Listing D.3: USE Class Model for Slice 3 to Approve Access Ticket

1 /*
2 Model slice for NJH to
3. approve project licence,

5 [|[Written by Phillipa Bennett
6 ||Date August 18, 2016
7 || Version 4

8 */

10 [|[model NJHg_slice_1
11
12 || /* Abstract CLASSES */

13 || abstract class DataSource end

14 || abstract class DataTransform end
15 || abstract class Permission end

16 || abstract class Rule

17 || attributes

18 || operations

19 applyRule()

20 || end

21 || abstract class Purpose end

23 || /* Extended abstract classes */
24 || abstract class AccessTicket < Permission end

26 || class TotallyDeIDed < DataTransform end
27 || class TotallyIDed < DataTransform end
28 || class AllowDeIDed < DataTransform end

30 || abstract class Licence < Permission end
31 || abstract class DecisionRule < Rule end

33 || /* Unextended concrete classes */
34 || class Personnel end

35 || class Query

36 || attributes

37 || operations

38 runQuery(res: Researcher, proj: Project)
39 download ()

40 view()

41 || end

41 || /* Extended concrete classes */
45 || class Project < DataSource end
46 || class ClinicalDB < DataSource end

19 || class Fishing < Licence end

51 || class DeIDed < AccessTicket end
52 || class Identified < AccessTicket end

54 || class CanUseTotallyDeIDed < DecisionRule end

330

60

61

62

63

64

66

101

102

109

110

116

class ClinicalDBNeedsDataCollector < DecisionRule end
class DataAccessAgreementPresent < DecisionRule end
class DataSourcePriority0OK < DecisionRule end

class LicenedTeamAndPI < DecisionRule end

class NoOverlapPITeamDC < DecisionRule end

class NoSupsInPIandDC < DecisionRule end

class PIDefined < DecisionRule end

class ProjectMembersDefined < DecisionRule end

class QualifierPresent < DecisionRule end

class SomePurposeNotDirectTreatment < DecisionRule end
class SomeQueriesDefined < DecisionRule end

class SomeSourcesDefined < DecisionRule end

class DirectTreatment < Purpose end
class Research < Purpose end

/* These classes are defined using the ’in’ keyword in the Alloy model.
How will we achieve this in OCL? */

class Qualifier < Personnel

attributes

operations
QualifyResearcher(res: Researcher)

end

class Researcher < Personnel end

/* ASSOCIATIONS */

association ATPriority between
AccessTicket[*] role ant
AccessTicket[*] role desc
end

association DataAccessAgreement between
Project[*] role owner
Project[*] role user

end

association PermRules between
Permission[*]
Rule[1..x]

end

association ProjectAT between
Project [*]
AccessTicket[0..1]

end

association ProjectDataCollector between
Project [*]
Personnel[0..1] role dc

end

association ProjectDataTransformRequired between
Project [*]
DataTransform[0..1]

end

association ProjectMembers between
Project[*] role proj
Researcher[*] role members

end

331

117
118 || association ProjectPI between
119 Project[*] role pi_proj
120 Researcher[0..1] role pi
121 || end

122
123 || association ProjectPurpose between

124 Project [*]
125 Purpose[0..1]
126 || end

127
128 || association ProjectQueries between

129 Project[*] /* relax from 1to * to allow generation */
130 Query [*]
131 || end

133 || association ProjectSources between

134 Project [*]
135 DataSource [*]
136 || end

137
138 || association Researcherl between

139 Researcher [*]
140 Licence[0..1]
141 || end

143 || association Supervisors between

144 Personnel [*] role supervisor
145 Personnel [*] role supervised
146 || end

Listing D.4: USE Class Model for Slice 5 to Check Conformance

1 /*
2 Model slice for NJH to
3 [|4. execute query

5 ||Written by Phillipa Bennett
6 ||Date Sept 20, 2016
7 || Version 4

8 */

10 ||model NJHg_slice_5
11
12 || /* Abstract CLASSES */
13
14 || abstract class Data end

15 || abstract class Permission end

16 || abstract class DataTransform end
17
18 || /* Extended abstract classes */

19 || abstract class AccessTicket < Permission end
20 || class TotallyDeIDed < DataTransform end

21 || class TotallyIDed < DataTransform end

22 || class AllowDeIDed < DataTransform end

23
24 || /* Unextended concrete classes */
25 || class Dataltem

26 || attributes

27 name: String

332

28
29

30

38
39
40
41

42

60
61
62
63
64
65
66
67
68

80
81
82
83

84

86
87

88

end

class Query

attributes

operations
download()
view()

end

abstract class Status end
/* Extended concrete classes */

class Date < Data
attributes
day: Integer
month: Integer
year: Integer
operations
isIdentified(): Boolean
isNotIdentified(): Boolean
end

class DStr < Data
attributes

sVal: String
end

class Project end

class QryData < Dataltem end
class RetData < Dataltem end

class DelIDed < AccessTicket end
class Identified < AccessTicket end

class DownloadDisabled < Status end
class DownloadAllowed < Status end

/* ASSOCIATIONS */

association DataValues between
Dataltem[*]
Datal[1]

end

association EnteredOn between
Dataltem[*] role item
Date[0..1] role date

end

association ProjectAT between
Project [*]
AccessTicket[0..1]

end

association ProjectDataTransformRequired between
Project [*]
DataTransform[0..1]

end

association ProjectQueries between

333

89 Project[*] /* relax from 1to * to allow generation program to work, enforced as 1in a
constraint */

90 Query [*]

o1 || end

92
93 || association QryReturns between

94 Query[*] role qry

95 RetData[*] role rData
96 QryData[*] role gData
o7 || end

98
99 || association VDAllowed between

100 Query [*]
101 Status[0..1]
102 || end

Listing D.5: Additional USE Constraints applicable only to Slices 8 and 5 to Approve Access Ticket and

Check Conformance respectively

1 || context DataTransform
inv singletonEachDT:
DataTransform.allInstances.select(

M)

3

4 0clIsTypeOf (TotallyDeIDed)=true)->size()<=1
5 and

6 DataTransform.allInstances.select(

7 oclIsTypeOf (TotallyIDed)=true)->size()<=1

8 and

9 DataTransform.allInstances.select(

10 oclIsTypeOf (AllowDeIDed)=true)->size()<=1

12 || context Project
13 || inv invProjectATDataTransforml:

14 projectAT.select(
15 oclIsTypeOf (Identified)=true)->size()=1 implies
16 dataTransform.select (oclIsTypeOf (TotallyDeIDed)=true)->size()=0

18 || inv invProjectATDataTransform2:

19 projectAT.select(

20 oclIsTypeOf (DeIDed)=true)->size()=1 implies (

21 dataTransform.select (oclIsTypeOf (AllowDeIDed)=true)->size()=0 and
22 dataTransform.select (oclIsTypeOf (TotallyIDed)=true)->size()=0)

334

APPENDIX E. SPECIFICATIONS FOR CHILDREN PROTECTED POPULATION IN CHAPTER 9

E.1 Updated USE Class Model Specifications and Constraints for Slice 3 to ApproveAcces-

sTicket Operation

Listing E.1: USE Class Model for Slice 8 to Approve Access Ticket

1| /*

2 Model slice for NJH to

3 || 3. Approve project licence when rules for Children Protected Populations
4 are to be considered

6 [|[Written by Phillipa Bennett
7 || Date December 20, 2016

s || Version 5

10 || Updated Dec 28, 2016

11 with additional requirements

12 for IRB to specify if consent/assent required
13

14 */

16 ||model NJHg_slice_1

18 || /* Abstract CLASSES */

19 || abstract class Consent end

20 || abstract class ConsentRequirement end
21 || abstract class DataSource end

22 || abstract class DataTransform end
23 || abstract class Permission end

24 || abstract class PersonRole end

25 || abstract class ResearchRisk end
26 || abstract class Rule

27 || attributes

28 || operations

29 applyRule ()

30 || end

31 || abstract class Purpose end

33 || /* Extended abstract classes */
34 || abstract class AccessTicket < Permission end

36 || class ResponsiblityRole < PersonRole end
37 || abstract class SpecialSubject < PersonRole end

39 || abstract class Licence < Permission end

41 || abstract class ChildrenResearchRisk < ResearchRisk end
43 || abstract class DecisionRule < Rule end

45 || /* Unextended concrete classes */

46 || class IRB end

47 || class Person end

45 || class Personnel < Person end
19 || class Query

335

79

80

81

82

83

84

99

109

attributes

operations
runQuery(res: Researcher, proj: Project)
download()
view()

end

/* Extended concrete classes */
class DelIDed < AccessTicket end
class Identified < AccessTicket end

class RiskNotAllowed < ChildrenResearchRisk end

class MinimalRisk < ChildrenResearchRisk end

class DirectBenefit < ChildrenResearchRisk end

class DirectBenefitGeneralisable < ChildrenResearchRisk end

class FurtherUnderstandingPreventionAlleviation < ChildrenResearchRisk end

class Allow < Consent end
class DisAllow < Consent end

class Required < ConsentRequirement end
class NotRequired < ConsentRequirement end

class Project < DataSource end
class ClinicalDB < DataSource end

class TotallyDeIDed < DataTransform end
class TotallyIDed < DataTransform end
class AllowDeIDed < DataTransform end

class CanUseTotallyDeIDed < DecisionRule end

class ClinicalDBNeedsDataCollector < DecisionRule end
class DataAccessAgreementPresent < DecisionRule end
class DataSourcePriority0OK < DecisionRule end

class LicenedTeamAndPI < DecisionRule end

class NoOverlapPITeamDCIRB < DecisionRule end

class NoSupsInPIandDC < DecisionRule end

class PIDefined < DecisionRule end

class ProjectMembersDefined < DecisionRule end

class QualifierPresent < DecisionRule end

class SomePurposeNotDirectTreatment < DecisionRule end
class SomeQueriesDefined < DecisionRule end

class SomeSourcesDefined < DecisionRule end

class SpecialResearchApproved < DecisionRule end

class Fishing < Licence end

class DirectTreatment < Purpose end
class Research < Purpose end

class Researcher < Personnel end

class Parent < ResponsiblityRole end
class Guardian < ResponsiblityRole end
class WardOfState < ResponsiblityRole end
class Children < SpecialSubject end

/* ASSOCIATIONS */

association ATPriority between
AccessTicket [*] role ant

336

112 AccessTicket[*] role desc
113 || end

115 || association DataAccessAgreement between

116 Project[*] role owner
117 Project[*] role user
118 || end

119
120 || association IRBMembers between

121 IRB[0..1] role irb
122 Personnel[2..*]
123 || end

125 || association PermRules between

126 Permission[*]
127 Rule[1..%]
128 || end

130 || association ProjectAT between

131 Project [*]
132 AccessTicket[0..1]
133 || end

134
135 || association ProjectConsentAssssentReq between

136 Project [*]

137 PersonRole [*]

138 ConsentRequirement [0. .1]
139 || end

141 || association ProjectDataCollector between

142 Project [*]
143 Personnel[0..1] role dc
144 || end

146 || association ProjectDataTransformRequired between

147 Project [*]
148 DataTransform[0..1]
149 || end

151 || association ProjectMembers between

152 Project[*] role proj
153 Researcher[*] role members
154 || end

156 || association ProjectPI between

157 Project[*] role pi_proj
158 Researcher[0..1] role pi
150 || end

160
161 || association ProjectPurpose between
162 Project [*]

163 Purpose[0..1]

164 || end

165

166 || association ProjectQueries between

167 Project[*] /* relax from 1, to * to allow generation program to work */
168 Query [*]
169 || end

170
171 || association ProjectSources between
172 Project [*]

173 DataSource [*]

337

174 || end

176 || association ProjectSpecialResearch between

177 Project[*] role ssSubject
178 SpecialSubject [*]
179 || end

181 || association ProjectSpecialResearchApproval between

182 Project[*] role spProject

183 SpecialSubject[*] role spSubject
184 ResearchRisk[0..1]

185 IRB[0..1] role irb

186 Consent [0..1]

187 || end

189 || association ResearcherL between
190 Researcher [*]

191 Licence[0..1]

192 || end

193
104 || association Supervisors between
195 Personnel [*] role supervisor
196 Personnel [*] role supervised
197 || end

338

39

40

41

42

43

44

Listing E.2: USE Class Model for Slice 4 to Execute Query

/*
Model slice for NJH to
4. execute query with Protected Children

Written by Phillipa Bennett
Date December 20, 2016
Version 5

Updated Dec 28, 2016
with changed and additional requirements
1. advocate can be IRB member; and
2. advocate cannot be associated with guardian organisation

*/
model NJHgv_pc_slice_4

/* Abstract CLASSES */
abstract class Category end
abstract class Consent end
abstract class ConsentRequirement end
abstract class Data end
abstract class DataSource end
abstract class DataTransform end
abstract class Permission end
abstract class PersonRole end
abstract class Rule
attributes
operations

applyRule ()
end

/* Extended abstract classes */
abstract class HIPAACat < Category end

class TotallyDeIDed < DataTransform end
class TotallyIDed < DataTransform end
class AllowDeIDed < DataTransform end
abstract class SpecialPopn < HIPAACat end

abstract class AccessTicket < Permission end

class ResponsiblityRole < PersonRole end
abstract class SpecialSubject < PersonRole end

abstract class AccessRule < Rule end
abstract class Type end
/* Unextended concrete classes */
class Dataltem
attributes

name: String

end

class IRB end
class Person end

/* Extended concrete classes */

339

60

61

62

63

64

66

67

68

69

70

71

72

86

87

88

89

90

91

92

93

94

100

102

103

104

105

106

107

108

109

110

119

class
class
class
class
class
class

class
class

class
class

class

class
class

class

ChildAdvocateForWardOfState < AccessRule end
ChildAssentAndResponsibilityConsent < AccessRule end
HideSpecialPopn < AccessRule end
ChildAdvocateNotAssocWithResearchOrWardOrg < AccessRule end
PatientConsent < AccessRule end

TransformHDate < AccessRule end

DeIDed < AccessTicket end
Identified < AccessTicket end

Allow < Consent end
CannotGive < Consent end

DisAllow < Consent end

Required < ConsentRequirement end
NotRequired < ConsentRequirement end

Date < Data

attributes
day: Integer
month: Integer
year: Integer
operations
isIdentified(): Boolean
isNotIdentified(): Boolean

end

class
class

class
class

class

class
class

class
class

class

HDate < HIPAACat end
HIPAAChild < SpecialPopn end

Project < DataSource end
ClinicalDB < DataSource end

Researcher < Personnel end

QryData < Dataltem end
RetData < Dataltem end

Patient < Person end
Personnel < Person end

Query

attributes

operations
runQuery(res: Researcher, proj: Project)
download ()
view()

end

class
class
class

class

class
class

Parent < ResponsiblityRole end
Guardian < ResponsiblityRole end
WardOrg < ResponsiblityRole end

Children < SpecialSubject end

Individual < Type end
Group < Type end

/* ASSOCIATIONS */

association ARAppliesTo between
AccessRule[*] role accessrule
Typel[1l..%] role type

340

125

126

127

128

129

130

134

139

162

163

164

165

166

167

168

169

172

173

174

175

176

177

178

179

180

end

association ARHides between
AccessRule [*]
Category [*]

end

association ARTransforms between
AccessRule[*] role hAccessRules
HIPAACat [*]

end

association ChildAdvocate between
Patient [*] role advocatePt
Person [0..1] role ptAdvocate
end

association ChildParticipationAssent between
Patient[*] role spPatient
Consent [*¥] role spPatientAssent

end

association ChildParticipationPerm between
ResponsiblityRole [*]
Person[*] role spPWPerson
Patient[*] role spPWPatient
Consent [0..1] role spPatientPerm
end

association DataValues between
DataIltem[*]
Datal[1]

end

association DICat between
Dataltem[*]
HIPAACat [*]

end

association DISource between
DataSource[0..1]
Dataltem[*]

end

association EnteredOn between
Dataltem[*] role item
Date[0..1] role date

end

association IRBMembers between
IRB[0..1] role irb
Personnel[1..*]

end

association PatientData between
Patient[0..1]
Dataltem[*]
Consent[0..1]

end

association PermRules between
Permission[*]

341

184 Rule[1..x]
185 || end

186
187 || association ProjectAT between

188 Project [*]
189 AccessTicket[0..1]
190 || end

191

192 || association ProjectConsentAssssentReq between

193 Project [*]

194 PersonRole [*]

195 ConsentRequirement [0..1]

196 || end

197

108 || association ProjectDataCollector between
199 Project [*]

200 Personnel[0..1] role dc

201 end

202
203 || association ProjectDataTransformRequired between

204 Project [*]
205 DataTransform[0..1]
206 || end

208 || association ProjectMembers between

209 Project[*] role proj
210 Researcher[*] role members
211 || end

213 || association ProjectPI between

214 Project[*] role pi_proj
215 Researcher[0..1] role pi
216 || end

218 || association ProjectQueries between

219 Project[*] /* relax from 1to * to allow generation program to work, enforced as 1in a
constraint */

220 Query [*]

221 || end

223 || association ProjectSources between

224 Project [*]
225 DataSource [*]
226 || end

228 || association ProjectSpecialResearch between

229 Project[*] role ssProject
230 SpecialSubject [*]

231 || end

232

233 || association QryWorksOn between
234 Query [*]

235 QryData[*]

236 || end

237
238 || association QryReturns between

239 Query[*] role qry

240 RetDatal[*] role rData
241 QryData[*] role gData
242 || end

243
244 || association RDType between

342

Query[*] role rd_qry
RetData[*] role rd_data
Typel[0..1]

end

association SpecialPatient between
Patient [*]
SpecialPopn[*]

end

association WardAssociates between
WardOrg [*]
Person[1..x*]

end

343

Listing E.3: Full USE Class Model for the NJH sysyem

/*
NJH Full

Written by Phillipa Bennett
Updated January 26, 2017
Version 5

*/
model NJHgv_pc_full

/* Abstract CLASSES */
abstract class Category end
abstract class Consent end
abstract class ConsentRequirement end
abstract class Data end
abstract class DataSource end
abstract class DataTransform end
abstract class Permission end
abstract class PersonRole end
abstract class Purpose end
abstract class ResearchRisk end
abstract class Rule
attributes
operations

applyRule ()
end
abstract class Status end

/* Extended abstract classes */
abstract class HIPAACat < Category end

class TotallyDeIDed < DataTransform end
class TotallyIDed < DataTransform end
class AllowDeIDed < DataTransform end

abstract class SpecialPopn < HIPAACat end

abstract class AccessTicket < Permission end
abstract class Licence < Permission end

class ResponsiblityRole < PersonRole end

abstract class SpecialSubject < PersonRole end

abstract class ChildrenResearchRisk < ResearchRisk end

abstract class AccessRule < Rule end
abstract class DecisionRule < Rule end

abstract class Type end

/* Extended concrete classes */

class ChildAdvocateForWardOfState < AccessRule end
class ChildAssentAndResponsibilityConsent < AccessRule end

class HideSpecialPopn < AccessRule end

class ChildAdvocateNotAssocWithResearchOrWardOrg < AccessRule end

class PatientConsent < AccessRule end
class TransformHDate < AccessRule end

344

60

61

62

63

64

66

67

68

69

70

71

72

86

87

88

89

90

91

92

93

94

100

102

103

104

105

108

109

110

114

115

116

117

118

119

120

class DelIDed < AccessTicket end
class Identified < AccessTicket end

class RiskNotAllowed < ChildrenResearchRisk end

class MinimalRisk < ChildrenResearchRisk end

class DirectBenefit < ChildrenResearchRisk end

class DirectBenefitGeneralisable < ChildrenResearchRisk end

class FurtherUnderstandingPreventionAlleviation < ChildrenResearchRisk end

class Allow < Consent end
class CannotGive < Consent end
class DisAllow < Consent end

class Required < ConsentRequirement end
class NotRequired < ConsentRequirement end

class Date < Data
attributes
day: Integer
month: Integer
year: Integer
operations
isIdentified(): Boolean
isNotIdentified(): Boolean
end

class HDate < HIPAACat end
class HIPAAChild < SpecialPopn end

class QryData < Dataltem end
class RetData < Dataltem end

class Project < DataSource end
class ClinicalDB < DataSource end

class CanUseTotallyDeIDed < DecisionRule end

class ClinicalDBNeedsDataCollector < DecisionRule end
class DataAccessAgreementPresent < DecisionRule end
class DataSourcePriority0OK < DecisionRule end

class LicenedTeamAndPI < DecisionRule end

class NoOverlapPITeamDCIRB < DecisionRule end

class NoSupsInPIandDC < DecisionRule end

class PIDefined < DecisionRule end

class ProjectMembersDefined < DecisionRule end

class QualifierPresent < DecisionRule end

class SomePurposeNotDirectTreatment < DecisionRule end
class SomeQueriesDefined < DecisionRule end

class SomeSourcesDefined < DecisionRule end

class SpecialResearchApproved < DecisionRule end

class Fishing < Licence end

class Patient < Person end
class Personnel < Person end
class Researcher < Personnel end
class Qualifier < Personnel
attributes
operations

QualifyResearcher(res: Researcher)
end

345

122 || class DirectTreatment < Purpose end
123 || class Research < Purpose end

125 || class DownloadDisabled < Status end
126 || class DownloadAllowed < Status end
127
128 || class Parent < ResponsiblityRole end

120 || class Guardian < ResponsiblityRole end
130 || class WardOrg < ResponsiblityRole end

132 || class Children < SpecialSubject end

134 || class Individual < Type end
135 || class Group < Type end

136
137 || /* Unextended concrete classes */
138 || class Dataltem

139 || attributes

140 name: String

141 || end

143 || class IRB end
144 || class Person end

146 || class Query
147 || attributes
148 || operations

149 runQuery(res: Researcher, proj: Project)
150 download()

151 view()

152 || end

155 || /* ASSOCIATIONS */
156 || association ARAppliesTo between

157 AccessRule[*] role accessrule
158 Typell..%] role type
159 || end

161 || association ARHides between

162 AccessRule[*]
163 Category[*]
164 || end

165
166 || association ARTransforms between
167 AccessRule[*] role hAccessRules
168 HIPAACat [*]

169 || end

171 || association ATPriority between

172 AccessTicket[*] role ant
173 AccessTicket[*] role desc
174 || end

175
176 || association ChildAdvocate between

177 Patient[*] role advocatePt
178 Person [0..1] role ptAdvocate
179 || end

180
181 || association ChildParticipationAssent between
182 Patient[*] role spPatient

183 Consent [*] role spPatientAssent

346

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

203

235

236

238
239
240
241
242
243
244

245

end

association ChildParticipationPerm between
ResponsiblityRole [*]
Person[*] role spPWPerson
Patient[*] role spPWPatient
Consent[0..1] role spPatientPerm

end

association DataAccessAgreement between
Project[*] role owner
Project[*] role user

end

association DataValues between
DataIltem[*]
Datal[1]

end

association DICat between
Dataltem[*]
HIPAACat [*]

end

association DISource between
DataSource[0..1]
Dataltem[*]

end

association EnteredOn between
Dataltem[*] role item
Date[0..1] role date

end

association IRBMembers between
IRB[0..1] role irb
Personnel[1..x*]

end

association PatientData between
Patient[0..1]
Dataltem[*]
Consent[0..1]

end

association PermRules between
Permission[*]
Rule[1..x]

end

association ProjectAT between
Project [*]
AccessTicket[0..1]

end

association ProjectConsentAssentReq between
Project [*]
PersonRole [*]
ConsentRequirement [0..1]

end

association ProjectDataCollector between

347

246 Project [*]
247 Personnel[0..1] role dc
248 || end

250 || association ProjectDataTransformRequired between

251 Project [*]
252 DataTransform[O0..1]
253 || end

255 || association ProjectMembers between

256 Project[*] role proj
257 Researcher[*] role members
258 || end

260 || association ProjectPI between

261 Project[*] role pi_proj
262 Researcher[0..1] role pi
263 || end

264
265 || association ProjectPurpose between

266 Project [*]
267 Purpose[0..1]
268 || end

270 || association ProjectQueries between

271 Project[*] /* relax from 1to * to allow generation program to work, enforced as 1in a
constraint */

272 Query [*]

273 || end

275 || association ProjectSources between

276 Project [*]
277 DataSource [*]
278 || end

280 || association ProjectSpecialResearch between

281 Project[*] role ssProject
282 SpecialSubject [*]
283 || end

285 || association ProjectSpecialResearchApproval between

286 Project[*] role spProject
287 SpecialSubject[*] role spSubject
288 ResearchRisk[0..1]

289 IRB[0..1] role irb

290 Consent [0. .1]

201 || end

292

203 || association QryWorksOn between
204 Query [*]

295 QryData[*]

206 || end

297
208 || association QryReturns between

299 Query[*] role qry

300 RetData[*] role rData
301 QryData[*] role gData
302 || end

304 || association RDType between
305 Query[*] role rd_qry
306 RetData[*] role rd_data

348

307

308

309

310

311

313

314

315

316

317

319

320

Typel[0..1]
end

association ResearcherL between
Researcher [*]
Licence[0..1]

end

association ResearcherQualifier between
Researcher [*]
Qualifier[0..1]

end

association SpecialPatient between
Patient [*]
SpecialPopn[*]

end

association Supervisors between
Personnel [*] role supervisor
Personnel [*] role supervised
end

association VDAllowed between
Query [*]
Status[0..1]

end

association WardAssociates between
WardOrg [*]
Person[1..x*]

end

349

