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ABSTRACT 

 

 

 

DATA ANALYSIS AND PREDICTIVE MODELING FOR SYNTHETIC AND 

  

NATURALLY OCCURRING BIOLOGICAL SWITCHES 

 

 

 

Biological switches are biochemical network motifs responsible for determining the chemical 

state of cells, and are a key part of every biological system.   The impact of these biological switches on 

cell behavior is broad. For example, many diseases such as cancer are thought to be caused by a 

misregulation of the bio-chemical state in a cell or group of cells. Also cell fates in differentiating stem 

cells are controlled by biological switches. Because of their general importance the synthetic biology 

community has also constructed synthetic biological switches in living organisms.  While there are 

different kinds of possible switches, in my thesis I study switches capable of stably generating two 

unique molecular states, also called bi-stable switches. Here these switches are studied from two 

perspectives. In Chapters 1-4 I present theoretical and experimental work on analysis of specific circuits 

that act like biological switches. In Chapter 5 I employ a data mining perspective to identify gene 

expression signatures of switches that are sensitive to cytotoxic cancer drugs. 

This dissertation starts with a computational analysis of the effect of leaky promoter expression 

on bi-stable biological switches. In several biological and synthetic systems gene transcription is never 

completely off, even when repressed. This residual expression is referred to here as leaky expression. Bi-

stable systems would be expected to have some amount of leaky expression in their off state. However, 

the impact of leaky expression on the functioning and properties of biological switches has not been 

well studied. To help fill this gap we conducted a theoƌetiĐal aŶalǇsis of leakǇ eǆpƌessioŶ͛s effeĐt oŶ 

biological switches. Two switches, a positive feedback and negative inhibition-based switch were 
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studied. We found that the different circuit topologies showed different advantages in terms of their 

ability to handle leaky expression. 

Next this dissertation describes work done in collaboration with the Medford lab at Colorado 

State University, to construct and characterize a library of genetic plant parts. These parts would later be 

used in construction of perhaps the first synthetic bi-stable toggle switch in a plant. As part of this study, 

experiments were designed and conducted for finding the nature of the experimental noise associated 

with the assays used to test these plant parts. A mathematical normalization was developed to estimate 

quantitative information on the performance of each part. Validation experiments were done to assess 

the usefulness of this method for predicting the behavior of stably transformed plants from higher 

throughput transient assays. In the end a library of over one hundred quantitatively characterized plant 

parts in both Arabidopsis and Sorghum was constructed. The quantitative parameters of this library of 

genetic parts were then used in combination with a probabilistic bootstrap method we developed to 

predict optimal part combinations for construction of a bi-stable switch in Arabidopsis. 

The dissertation concludes with a study of biological networks in cancer cells from a data mining 

perspective. A large amount of data exists in the public domain on the sensitivity of cancer cell lines to 

ĐǇtotoǆiĐ dƌugs. “oŵe ĐaŶĐeƌs appeaƌ to ďe iŶ a ͞seŶsitiǀe state͟ ǁhile otheƌs aƌe iŶ a ͞ƌesistaŶt state͟. 

We would like to be able to know the gene expression signatures of these two states in order to predict 

cancer drug sensitivity from gene expression data.  As a first step towards this goal we assessed the 

repeatability of predictions between the two standard databases of cancer cell lines, the NCI60 and the 

GDSC. This lead to identification of a preprocessing method needed to combine data from multiple 

databases. This was then followed up with the development of a comparative analysis platform. This 

platform was used to test the accuracy of models designed to predict drug sensitivity, when different 

model construction methods were used. 
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CHAPTER 1 

 

 

 

Introduction 

1.1 Mathematical Models can lead to Discoveries in Biology 

Computational and mathematical methods are transforming biology and modern 

medicine. Mathematical ideas and computational methods developed and documented from 

the 1800s to the present are being applied to biological problems today. This has and is leading 

to wide variety of new discoveries in biological regulatory systems. New insights into methods 

for treatment of diseases are being discovered with the aid of mathematical models. In the field 

of synthetic biology, predictions of biological circuit function in silico has and is being 

implemented in labs across the world [1] [2] [3] [4].  

In one striking example of a new discovery using computational and mathematical 

methods, the Barkai group discovered a previously unknown molecular relationship involved in 

eye development. This molecular relationship in the Drosophila eye was found after building a 

model attempting to describe molecular interactions in eye development [1]. This model was 

unable to reproduce the molecular patterns observed in the developing eye. This led to asking 

about which additional relationship would lead to the observed pattern formation. After 

identifying the needed relationship, experimental studies were conducted to test whether it 

actually did exist, and the experiments discovered the previously unknown molecular 

relationship [1].  

Another example can be found in the development of the three drug treatment of 

human immunodeficiency virus, HIV [5]. A model of HIV infection was constructed, that helped 
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in uncovering viral dynamics during the long dormancy period between infection and 

acquisition of AIDS [5]. From an approximation of the virus behavior in the human body, 

different methods of drug treatment were explored. In the end, the study helped to propose 

and establish the aggressive early three drug treatment currently in use for the control of HIV 

[5]. 

Methods for cancer treatment have also been explored via computational and 

mathematical modeling [6] [7]. Mechanisms of different cancers have been mathematically 

modeled to gain further insight into the process [8] [9]. Large data repositories have been 

mined using computational methods to pull out differences between tumor types and identify 

molecules and mutations of interest in these complex biological systems [6] [10]. Pathway 

vulnerabilities have been discovered and are being investigated for the purpose of developing 

new treatments for cancer [10].  

In the field of synthetic biology, mathematical models have been developed based on 

mechanistic information of the underlying biological processes. These models and the 

accompanying quantification of the biological processes, have given us new insights into basic 

gene regulatory processes. Mathematical models can illuminate parts of the biological process 

that would not have been apparent in its absence. One example of this is the constraint that a 

finite number of ribosomes places on translational activity. This was modeled quantitatively  

using computational methods developed for queuing theory of job processing on central 

processing units, CPUs [11] [12]. Another example is found in the identification of what is called 

͞geŶe ďuƌstiŶg͟ [13] [14], or bursty gene transcription. This was modeled using stochastic 

differential equations describing the differences in transcription and translation rates [14]. 



 

3 

 

1.2 The Law of Mass Action and Hill Equations 

One of the early historical developments in chemistry is still used today in the 

application of computational and mathematical methods to biochemical phenomena. This is 

the Law of Mass Action (LMA), which was documented in 1862 when a chemist and 

mathematician published the first paper describing it. The LMA is a mathematical rule that 

describes the progression of a chemical reaction over time under certain ideal conditions [15]. 

The LMA has been used to model genetic systems of biochemical molecules [15]. It has even 

been used as a starting point for modeling more complex relationships. These more complex 

models have led to other rate laws such as the Michaelis-Menten rate law [15]. 

LMA ĐaŶ ďe paƌaphƌased as: a ĐheŵiĐal ƌeaĐtioŶ͛s pƌoduĐt ĐoŶĐeŶtƌatioŶ ĐhaŶges 

proportionally to the product of the concentration of its reactants, raised to the power of their 

stoichiometries. This law assumes a well-mixed system with high molecular numbers. With this 

law whole systems of chemical reactions can be translated into sets of ordinary differential 

equations, ODEs. A variety of software has been developed for automating the generation of 

the ODE systems from biochemical reaction information, such as BioNetGen, SimBiology 

toolbox for MATLAB and Copasi [16] [17] [18]. ODEs have been numerically approximated to 

predict in silico the behavior of complex biological systems for complex signaling pathways such 

as those found in cancer [8]. Also, particular parameters from the Michaelis-Menten rate law 

have become a way to report the efficiency of various enzymes [15].  

Hill equations, named after Archibald Vivian Hill, were first used by Hill to describe a 

drug͛s effect on biological responses in 1910 [19]. This equation has grown immensely in its 

applications. Hill equations can model the input-output response of systems whose behavior is 
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either hyperbolic or sigmodal. Examples of such systems include: cooperative binding of 

transcription factors [20], the cooperative effect of the lacI regulation of transcription [21] and 

heŵogloďiŶ͛s tƌaŶspoƌt of oǆǇgeŶ [22]. It is common place in the mathematical description of 

biochemical systems that the LMA and Hill equations are used together to describe the system. 

It has also been shown experimentally that both LMA and Hill equations serve as good 

mathematical models for the appropriate processes when compared to experimental data [2] 

[23]. 

1.3 Need for Quantitative Parameters 

Using LMA, Hill functions and other rate laws such as Michaelis-Menten kinetics, we can 

write systems of ordinary differential equations (ODEs) that describe the time progression of 

the concentrations of all the various species in the system. However, making predictions using 

these ODEs requires knowledge about the parameters used in the equations. For reactions 

governed by LMA, these involve estimates of the on and off rates, or at least the equilibrium 

constants. For Hill equations or Michaelis-Menten rate laws, this involves estimation of the rate 

law from experiment. Often times ODEs describing biological systems have unknown 

parameters, and experiments to find such parameters can be challenging. If the general 

behavior of the system does not change within the range of possible parameter values, 

knowing the exact parameters will not change the predictions from the system. However, 

sometimes a small change in a parameter can make a noticeable difference in the system. An 

example of this can be found when an ODE system undergoes a bifurcation. A bifurcation 

happens when fixed points within the system change their stability and/or their number. One 

example is when a system goes from being mono-stable to bi-stable. A mono-stable system has 
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one stable fixed point, which means no matter the history of the system the steady state value 

will always be the same. In contrast, a bi-stable system has two stable fixed points allowing the 

system to have one of two steady state values depending on the history of the system. Bi-stable 

systems also show history dependent behavior, called hysteresis. When working with biological 

systems capable of being bi-stable or mono-stable within the range of acceptable parameters, 

knowing quantitative information about the parameters, or system wide stability properties, is 

an important part of modeling these biological systems. 

1.4 Synergy between Computation and Experiment 

 As quantitative experiments become more sophisticated in biology, there is an 

increasing use of mathematical modeling to help understand and even predict biological 

phenomena. There are emerging interdisciplinary fields of study that have incorporated 

computational prediction with experimental verification to both understand and engineer the 

state of biological organisms. Many of these fields are adapting engineering approaches for 

work flow and designing of biological systems. For example, Synthetic Biology has used the idea 

of building quantitatively characterized modular molecular parts, analogous to parts used to 

build electronic microprocessor such as transistors or resistors. The molecular parts can then be 

assembled into functional units much like many smaller pieces are assembled to make circuit 

boards. This type of design could then be taken further to build more and more complex 

systems. Construction of electronic devices such as microprocessors is often optimized through 

a design process involving computation simulation and prediction of performance, followed by 

construction and testing of new designs leading back to more computation predictions. The 

same workflow of quantitative measurement for the characterization of genetic parts, followed 
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by computational design and experiments for testing and validation, further followed by 

improved computational design and improved experimental implementation, can also be 

applied to designing biological systems. This idea of using the synergy between computational 

models to predict the behavior of novel synthetic designs has driven the construction of 

libraries such as BioBricks, providing quantitatively characterized genetic parts useful for 

building more complex circuits [24]. These synthetically designed molecular parts have been 

used to build and investigate properties of biological systems [24].  

1.5 Biological Switch Properties 

Biological switches, as defined here, are genetic circuits that control the molecular state 

of a cell. Synthetically designed parts are often used to toggle the concentration of a molecule 

of interest between a low and high state. Biological switches have been built in the past and are 

found throughout nature both in eukaryotic and prokaryotic organisms. Two examples of 

naturally occurring switches can be found in the lactose system and sonic hedgehog-based 

systems [25] [21]. These switches play key roles in many everyday cell functions. A few 

particular single-cell-based-switches have been built synthetically [2] [23] [26].  It can be said 

that at the minimum a switch requires a threshold separating two states. We can call these the 

off and the on states. If the states are distinguished by low and high concentrations of a protein 

X, then a sharply sigmoidal input-output curve for protein X could be a kind of switch. One way 

to generate this kind of sigmoidality, called ultrasensitivity, requires oppositely acting 

phosphorylation and dephosphorylation loops [3]. Other processes in biology, especially 

involving cooperativity, can also give rise to ultrasensitive responses [22] [27] [28]. However, 

these types of circuits suffer from the drawback that the system could settle into intermediate 
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states, i.e. neither off nor on. A more complicated switch is one that can exist in only two stable 

and well-separated states. Such switches are called bi-stable, and they can be made in many 

ways, usually involving positive and negative inhibition loops [25] [21] [29] [30].  

One consequence of bi-stable switches is the observation that over a cell population this 

can lead to a bimodal response, i.e. distinct populations of cells that are either off or on. 

Bimodal distributions (i.e. two peaks in the distribution) have been observed in both 

experimental (e.g. fluorescent cell population in flow cytometry experiment) and 

computational (e.g. equilibrium probability distribution in a stochastic system) experiments [2] 

[23] [21] [31]. However, it should be noted that bi-stability is not the only way a bi-modal 

response can be achieved. Cooperative binding between regulator proteins can also produce a 

bi-modal response under some circumstances [20].  

It has been postulated that for all known naturally occurring switches, bi-stability 

requires cooperativity [2]. However, cooperativity is not always needed for bi-stability. Using 

synthetically designed parts, a non-cooperative sequestration system was built and has been 

shown to create a bi-stable system [2]. Another characteristic of biological switches is in how 

they affect the noise within the systems biological process of interest. In particular, positive and 

negative inhibition loops have been shown to magnify or diminish this intrinsic noise [4] [32] 

[33]. Intrinsic noise in biological switches can also play an important role in organism fitness 

[34] [35]. 

1.6 Gaps in our Knowledge and How this Dissertation Addresses These Gaps 

A major part of this dissertation is focused on the design of feedback-based bi-stable 

systems. During the practical, experimental implementation and testing of the designs, we 
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realized that many promoters used in synthetic biology applications, or found in nature, were 

ŶatuƌallǇ ͞leakǇ͟, i.e. showed some low level of expression. However, at that time there was no 

theoretical analysis of how leaky expression affected the important practical properties of 

biological switches. I carried out this theoretical analysis, which forms Chapter 2 of this thesis. 

This work is still unpublished, but was presented as a poster in the q-bio conference in August 

2014 [36].  

While bi-stable biological switches have been built in the past [2] [23] [26] they are 

confined to single cells. In particular, no quantitatively characterized bi-stable synthetic gene 

circuits have been constructed in plants due to the challenges posed by plant biology. Chapters 

3 & 4 presents our work, in a joint collaboration between the Prasad group and the Medford 

group, to characterize genetic parts in plants. Development of more quantitatively 

characterized parts useful for assembly of larger system in plants has a plethora of applications. 

One could imagine allowing plants to reach a set biomass before turning on a synthetically 

designed switch to start creating biofuels as suggested in this perspective on plant synthetic 

biology [37]. Also, control over the embryonic state of plants for plant transformation could be 

achieved through controlled expression of a master regulator (e.g. morphogen) [38]. Plants 

have always been an important part of our world from food to moving carbon dioxide to 

oxygen. Gaining predictable or even tunable control over plant function will impact the way we 

live.  

For our work in the world of plants described in Chapter 3, we had to overcome several 

obstacles. First, we needed to work with plants such as Arabidopsis and Sorghum that take 

weeks to months to complete their life cycle. Protoplasts, plant cells without their cell wall, can 
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be transiently transformed in an assay taking two days, helping us overcome this challenge of 

time. However, using transiently transformed protoplasts also increased the amount of 

experimental noise. This noise was around 2 orders of magnitude. Also, the data was collected 

in relative luciferase units, whose properties can change from lab to lab.  The experimental 

noise and non-physical units made the task of creating a library of characterized plant parts for 

construction of a bi-stable switch a challenge. We met this challenge by running additional wet 

lab experiments to move our system to physical units of molecule number as well as to tease 

out the nature of the experimental noise. We then created a mathematical model to describe 

how the noise was affecting our system. This led to the development of a normalization scheme 

that decreased the noise enough to find statistically significant differences between the 

different parts in the library within and across two plant species. As the end-circuit will be 

stably transformed into plants, the last challenge was to see if the transiently transformed 

protoplasts would give a reasonable approximation of the genetic part behavior observed in 

stable transformed plants then isolated to form protoplasts. Comparison of protoplasts with 

plant data required changes in the normalization scheme, which we implemented. We were 

ultimately successful in tackling these challenges and with the help of these methods we now 

have the largest-to-date quantitatively characterized parts library for plants. This work was 

recently published in Nature Methods [39]. 

Chapter 4 then goes on to describe how we used this quantitatively characterized plant 

part library to predict ideal part combination for construction of a negative inhibition based 

toggle switch. Chapter 4 also goes through our predictions for a positive feedback switch. For 

the positive feedback switch we did not have a library of plant parts but instead a few 
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preliminary experiments probing the behavior of the full circuit in Arabidopsis. With this 

information we strove to identify ideal properties each part should have when designing a 

positive based feedback system. To do this we constructed a mathematical model to describe 

the system, followed by narrowing down the region of parameter space where the preliminary 

plant system could exist. This then led to predictions in how to change the preliminary plant 

parts to make them more suitable for generating a positive feedback bi-stable switch. 

In Chapters 2-4 of my thesis I use methods that could be described as bottom-up, in the 

sense that they describe work for the construction of a quantitatively accurate model at the 

level of individual genes and proteins. In the last chapter I move to using a different suite of 

mathematical and computational methods that have been developed to look at biological 

systems from the top-down. In other words, Chapter 5 takes the top down approach in looking 

for genetic markers for drug resistance in large-scale gene expression data of cancer cell lines. 

These genetic markers may form part of naturally occurring biological switches that turn on 

drug resistance processes in cancer cells. Cancer can be thought of as the miss-regulation of the 

biochemical state of a cell or groups of cells. If we can understand the biochemical state of the 

cancer perhaps we can predict which drug or treatment would be best to treat the disease in 

different individuals. Several types of data have been collected to learn about this biochemical 

state. Among them is microarray data describing the transcriptome of different cell lines 

derived from different tumor types. These cell lines have also been used in drug screens looking 

to see how the sensitivity to each drug changes across cells lines. If we can predict cell line 

sensitivity to a drug, and we can collect a tumor biopsy from an individual with cancer that is 

comparable to one of the cell lines, then we can use this data to start to predict which drug to 
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give which patient. However, as there are many computational methods available for predicting 

drug sensitivity, the challenge then becomes to identify which computational method to use. A 

few model comparison studies have been done to assess model performance in identifying key 

biochemical states useful for prediction of drug treatment [40] [6]. One of these studies used a 

crowd-sourcing approach to attract many different groups to submit predictive models for 

breast cancer given the same data set [6]. Although there are many databases storing data 

useful for prediction of drug sensitivity, two well-known databases that are used to predict drug 

sensitivity for cancer cell lines come from: (1) a repository of data from 60 cancer cell lines 

maintained by the National Cancer Institute, called the NCI60, and (2) the Genomics of Drug 

Sensitivity in Cancer (GDSC) database maintained by the Wellcome Trust [41] [42]. However, 

there has been no study that compares predictions between these two databases to assess the 

reliability of the data and predictions. We fill this gap by running a systematic comparative 

study of different models, presented in Chapter 5 using the combined set of cell lines in the 

NCI60 and the GDSC and two different cancer types, lung and bladder. We found that validation 

of normalizing methods is imperative when using cell line microarray and drug data across 

databases. It was interesting that drug sensitivity data collected for very different assays was 

comparable. We also found data that suggested that some gene filtration methods can be 

damaging to the overall predictive power across many model types.  

From synthetic biology to modern medicine, our understanding of the molecular state 

of cells and organisms is being revolutionized by incorporating computational methods 

synergistically with wet lab experimental study. This dissertation adds to this growing body of 

interdisciplinary work by addressing challenges and gaps in our knowledge. To summarize again 
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in brief: Chapter 2 addresses the previously uncharacterized effect of leaky expression on 

biological switches. Chapter 3 describes the development of the largest quantitatively 

characterize plant part library to date. Chapter 4 develops methods for predicting in silico ideal 

molecular part combinations and properties for building feedback based biological switches. 

Chapter 5 then concludes this work with a comparative analysis of computational methods 

used to identify bio-markers involved in setting the molecular state for different cancer cell 

lines. 
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CHAPTER 2 

 

 

 

An investigation of leakǇ eǆpression’s effeĐt on ďiologiĐal feedďaĐk ĐirĐuits 

 

2.1 Introduction 

Gene expression is controlled by promoters that are specialized DNA sequences usually 

situated upstƌeaŵ of a geŶe͛s ĐodiŶg ƌegioŶ. WheŶ the geŶe is ďeiŶg eǆpƌessed at a high leǀel 

ǁe saǇ that the pƌoŵoteƌ is iŶ aŶ ͞ON͟ state, aŶd ǁheŶ it is Ŷot eǆpƌessed or expressed at a 

loǁ leǀel ǁe saǇ that it is iŶ aŶ ͞OFF͟ state. OŶe ĐoŵŵoŶ ǁaǇ iŶ ǁhiĐh this ĐhaŶge iŶ 

expression level is achieved is through repressors (proteins that repress or prevent the 

expression of a gene from a promoter that is otherwise constitutively expressed). Another 

common way this change in expression occurs is with a promoter whose gene expression can 

be activated when an activator protein is bound to it. In both cases however, the promoter is 

ofteŶ Ŷeǀeƌ ĐoŵpletelǇ ͞OFF͟ ǁheŶ fullǇ ƌepƌessed or not activated. A possible exception to 

this behavior can be found in synthetic gene circuits which contain DNA invertases [1] [2] and 

natural processes using recombinases, such as sporulation in B. subtilis [3], whose physical 

change in DNA structure may allow for a zero leakage system. However, for many systems 

controlled by repressors or activators, there is low level activity, which can be called ͞leakǇ 

eǆpƌessioŶ͟. IŶ paƌtiĐulaƌ, several inducible gene expression systems allowing for time 

dependent control of gene expression haǀe ďeeŶ said to ďe ͞leakǇ͟ oƌ eǀeŶ ͞ŶotoƌiouslǇ leakǇ͟ 

[4] [5]. Another example of leaky expression can be found in dCas9 activation of endogenous 

genes [6]. The body of work characterizing the effect of this leaky expression on other 

properties of the genetic systems is small but does include a recent comparison of positive and 
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negative inhibition in how leaky expression affects the noise within these systems [7]. Also 

there has been work done to describe how the dynamic range of small molecule inducers can 

be tuned in prokaryotes via modulation of intracellular receptors without notably changing the 

amount of leaky expression [8]. However, more work is needed to look into the effect of leaky 

expression on the ability of a system to be deterministically bi-stable and the practical 

properties within the bi-stable regions of different circuit topologies.  

The work presented here demonstrates how leaky expression plays a role in the balance 

needed for bi-stability as well as functional roles (i.e. practical properties) of switches. Practical 

properties of switches investigated here are: fold change, FC, and basal level, BL, of the switch. 

FC is the highest level molecular expression divided by the lowest level molecular expression of 

a switch. BL is the low level molecular expression of a switch. Some researchers use the terms 

leaky expression and basal expression interchangeably.  Here, however, we will define BL as the 

state of the circuit which has the lowest gene expression. Leaky expression then describes the 

loǁest possiďle eǆpƌessioŶ leǀel of a paƌtiĐulaƌ ŵoleĐule. This is ofteŶ the ͞Off͟ state of a 

promoter.  To better explain the difference between BL and leaky expression we can look to a 

rate equation for a repressible promoter. We include leaky expression by adding a constant 

term, as seen below. ݀ݐ݀ݔ = ߙ  + ͳߚ + � −  ͳ.ʹ                                                                    ݔ

An example of how leaky expression is different from BL can be found in the rate equation 

2.1, which describes a hypothetical genetic system regulating the expression of the molecule x. 

This equation has three terms on the right hand side that describe the expression rate of the 

molecule, x, over time, t. The first term α represents leaky expression; it describes the amount 
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of gene expression when the system is fully repressed. The second term, 
ఉଵ+�, represents how 

the rate of expression is changed given a repressor, R, where  is a constant. The third term, -x, 

describes the degradation of the molecule x. The leaky expression of the system, α, is different 

than the BL of the system, which depends on the steady state maximum expression of R. In 

other words, it is possible for the BL to be larger than the leaky expression for this system. Even 

though these properties of bi-stable switches are important in fields such as synthetic biology 

to stem cell research, few have explored the role leaky expression has on these properties for 

different circuit topologies. Comparing different circuit topologies in their effectiveness to 

handle leaky expression should give us insight on how to design better circuits in synthetic 

biology, while providing a platform for understanding what role leaky expression may play in 

nature. 

As listed below, this study takes a computational approach to investigate how the practical 

properties of these circuits are affected by leaky expression. Three questions were asked. 

1) How much leaky expression can a bi-stable system withstand? In other words, can leaky 

expression abrogate bi-stability? 

2) How does the FC of a bi-staďle sǇsteŵ, i.e. the ƌatio ďetǁeeŶ the ͞high͟ state aŶd the 

͞loǁ͟ state (i.e. BL), change with respect to leaky expression values? 

3) How does the low state (BL) in these bi-stable systems change with respect to leaky 

expression? 

We ask question one because we are interested in the genetic systems͛ ability to be a bi-stable 

system in the presence of leaky expression. We ask question two because a switch with a large 

difference between its low and high molecular states would prove useful in many synthetic 



 

20 

 

biology applications in need of a large change in a molecule of interest. We ask question three 

because when integrating these genetic circuits into natural systems, the low molecular state 

ŵust ofteŶ lie ďeloǁ the thƌeshold of aŶ eŶdogeŶous ŵoleĐule oƌ theƌe ĐaŶ ďe Ŷo ͞tƌue͟ off 

state for the switch. Although there are other practical properties of biological switches, these 

three are readily useful for our in silico design of biological switches in coming chapters and as 

the need arises other practical properties could be explored from the algorithms developed 

here. 

2.2 Methods 

2.2.1 System Layout 

Bi-stable biological switches are commonly based on either negative inhibition or 

positive feedback. We therefore chose to study both system topologies. We modeled the 

negative inhibition system following Gardner et. al. [9] and the positive feedback system after 

Chen and Arkin [10]. The negative inhibition system is a four promoter, two repressors (R1 and 

R2) and two inducers ( I1 and I2) genetic construct. The positive-feedback switch (denoted as the 

positive feedback system) is a three promoter, one activator (B), two inducers (I1 and I2) and 

one inhibitor (A) genetic construct. Figure 2.1 a and b illustrate the layout of each switch.   

Why would one expect the positive and negative inhibition systems described in Figure 

2.1 to act like switches? For the negative inhibition system, when the repression of R1 and R2 is 

balanced, as described by Gardner et. al. [9], then as R1 increases it keeps R2 in check allowing 

for a stable high R1 and low R2 state. However, when R2 increases it keeps R1 in check allowing 

for a stable high R2 and low R1 state. The ability to have two stable states is the definition of a 

bi-stable system. The ability to exist in a high molecular state and a low molecular state makes 
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this negative inhibition system a switch. The positive feedback system is also able to create a bi-

stable system when the molecule regulation is balanced [10]. When B is at a low expression 

state A can keep B in check. However, when B is at a high expression state A will have little 

effect on B. Unless of course, A is induced to have a high expression level, which should reset 

the expression of B. Note that while we have assumed that A is an inhibiting protein, it could 

also be a microRNA. 

 
Figure 2.1 System Layouts for Negative and Positive Biological Switches. Diagram of the positive 

and negative inhibition-based switches explored in this chapter. Panel a, the diagram of the 

negative inhibition switch depicts a four promoter based genetic circuit. Each of the two 

repressible promoters drives the expression of either repressors R1 or R2. Also the two inducible 

promoters drive the expression of the two repressors. Each inducible promoter can be activated 

by one small molecule inducer, either I1 or I2. Panel b, the diagram of the positive inhibition switch 

depicts a three promoter based genetic circuit also with two inducible promoters driving either 

the expression of an activator protein, B or an inhibitor, A (which is thought to bind to either the 

protein B or B͚s mRNA transcript). Each inducible promoter can also be activated by one small 

molecule inducer, either I1 or I2. The key difference between this positive feedback system and 

the negative inhibition system is in the third promoter of the positive feedback system. This third 

promoter is driving the expression of its own activator. Green arrows represent the upregulation 

of the molecule at the end of the arrow by the molecule at the beginning of the arrow. Red blunt 

arrows represent the down regulation of the molecule at the end of the arrow by the molecule 

at the beginning of the arrow, with the exception of the blunt arrow coming from A which could 

represent either inhibition by a micro RNA or a protein capable of sequestration of B. 
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2.2.2 Model Design 

To model the negative inhibition system, Hill equations were used to describe the effect of 

the transcription factors on the production of R1 and R2. Leaky expression was added as a zero 

order process and degradation was added as a first order process. These equations are very 

similar to those employed by Gardner et. al. [9]. ݀�ଵ݀ݐ = ଵߙ  +  
Ⱦଵͳ + ቀ�ଶkଵቁ௡ଵ  − ݀ଵ�ଵ + ݂ሺܫଵሻ                                           ʹ.ʹ 

݀�ଶ݀ݐ = ଶߙ  +  
Ⱦଶͳ + ቀ�ଵkଶቁ௡ଶ  − ݀ଶ�ଶ + ݃ሺܫଶሻ                                         ʹ.͵ 

Where: �ଵ and �ଶ represent the expression of the repressors �ଵ and �ଶ.  ߙ௡ ሺ݊ = ͳ,ʹሻ 

ƌepƌeseŶts the leakǇ eǆpƌessioŶ of ƌepƌessoƌ ͞n͟ ;i.e. 1 or 2) from both inducible and repressible 

promoters. Using the same notation, ߚ௡ helps to set the max expression of ƌepƌessoƌ ͞n͟ ;i.e. 1 

or 2) ; k௡  is concentration of ƌepƌessoƌ ͞n͟ ;i.e. 1 or 2) needed to bring the max expression, ߙ௡ + ௡ߙ ௡, toߚ + ఉ�ଶ   , or the concentration of repressor needed to bring the max expression to 

half its value, (
ఉ�ଶ ), assuming ߚ௡ ≫  (௡,  ݊௡ is the Hill coefficient of the ƌepƌessoƌ ͞n͟ ;i.e. 1 or 2ߙ

input-output function, ݀௡ is the degradation coefficient foƌ ƌepƌessoƌ ͞n͟ ;i.e. 1 or 2) and ݂ሺܫଵሻ 

and ݃ሺܫଶሻ aƌe uŶkŶoǁŶ fuŶĐtioŶs foƌ the iŶduĐeƌ͛s iŵpaĐt oŶ the ĐiƌĐuit. The eǆaĐt ƌelatioŶship 

defining the effect the inducers have on the rate equation is not needed as we are only looking 

at the stability of the system without addition of the inducers. What we are assuming is that 

when the inducer is present, it is enough to switch the state of the system. The difference in 

equations 2.2 and 2.3, used here for the negative inhibition system and those used by Gardner 

et. al. [9], is in the addition of leaky expression terms for each repressor (e.g. α1 and α2). These 
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terms assume that no matter the state of the system there exists some expression from those 

promoters.  

The positive feedback system equations were constructed by assuming zero order leaky 

expression and first order degradation for both A (an inhibitor illustrated in Fig. 2.1) and B (an 

activator illustrated in Fig 2.1). Unbound B, Bu, is then calculated assuming A binds to B faster 

and independently of degradation and leaky expression. Bu is then assumed to affect B͛s 

production via a positive Hill equation. This system of equations is very similar to those 

employed by Chen and Arkin [10].  ݀݀ݐܣ = ଵߙ  − ݀ଵܣ + ݂ሺܫଵሻ                                                                ʹ.Ͷ ݀݀ݐܤ = ଶߙ  +  
Ⱦଶܤ௨௡మͳ + ቀܤ௨݇ଶቁ௡మ  − ݀ଶܤ + ݃ሺܫଶሻ                                             ʹ.ͷ 

௨ܤ =  ͳʹ (ሺܤ − ܣ − ݇�ሻ + √ሺܤ + ܣ + ݇�ሻଶ − Ͷܣܤ)                                 ʹ.͸ 

Where A represents the expression level of a regulatory molecule, such as a micro RNA or 

repressor protein, B represents the activator responsible for the positive feedback of the 

positive feedback promoter, α1 is the leaky expression of A, α2 is the leaky expression of B, d1 is 

the degradation coefficient for A, d2 is the degradation coefficient for B, ܤ௨ is the amount of B 

not bound by A, ߚଶ scales the maximum production of the positive feedback promoter, ݇ଶ helps 

to scale the effect of  ܤ௨͛s ŵaǆ positiǀe feedďaĐk effeĐt. ݇� is the dissociation constant for A 

binding to B, n2 represents the hill coefficient or the activating hill function. Finally ݂ሺܫଵሻ and ݃ሺܫଶሻ aƌe uŶkŶoǁŶ fuŶĐtioŶs foƌ the iŶduĐeƌ͛s iŵpaĐt oŶ the ĐiƌĐuit. The eǆaĐt ƌelatioŶship 

defining the effect the inducers have on the rate equation is not needed as we are only looking 
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at the stability of the system without addition of the inducers. What we are assuming is that 

when the inducer is present it is enough to switch the state of the system. 

The differences in equations 2.4-6, used here for the positive feedback system and those 

used by Chen and Arkin are in the cooperativity component and in the addition of a rate 

equation for A. The cooperativity component, n2, is to account for possible non-linear behavior 

of the positive feedback promoter. The leaky expression terms follow the same reasoning as in 

the negative inhibition system: no matter the state of the system there exists some expression 

of A and B. The Gardner et. al. and Chen and Arkin equations have been shown to represent 

their corresponding biological system using wet lab experimental data [9] [10] and should 

therefore be a productive place to begin our study.  

It is noteworthy in the derivation of Bu found in Box 2.1 that a difference in time scales is 

assumed as Bu is calculated independently from the rest of the system.  There are more 

sophisticated methods for which to simplify a system given a difference in time scales such as 

scaling the system by the slowest time [11]. However, we chose to follow Chen and Arkin due 

to their use of a simple and commonly used in biological modeling approach along with our 

desire to start with a tested simple model for the system. Also as the delay due to translation is 

not considered in these equations, hence whether A is a micro RNA or a protein will not affect 

how it is modeled. As our analysis at this point is only considering  steady state behavior and 

models without delay have been shown to be able to represent steady state behavior [9] [10], I 

believe this is a reasonable assumption. If we were to look at the stochastic or time-dependent 

nature of the system, delay may play more of a role. 
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Box 2.1 Derivation of Bu. This ďoǆ desĐƌiďes CheŶ aŶd AƌkiŶ͛s deƌiǀatioŶ of Bu. 

 

These equations were non-dimensionalized to make them easier to work with. As all 

possible behavior in the dimensional equations can also be observed with the non-dimensional 

equations, we will not lose information by non-dimensionalizing.  ݀ݎଵ݀� = ଵܮ  +  
�ଵͳ + ଶ௡భݎ  − ଵݎ + ݂̃ሺܫଵሻ                                                  ʹ.͹ 

�ଶ݀ݎ݀ = ଶܮ  +  
�ଶͳ + ሺݎଵሻ௡మ  − ଶݎ�ܦ + ݃̃ሺܫଶሻ                                                  ʹ.ͺ 

Where: ݎଵ, ݎଶ and τ are dimensionless and related to the dimensional terms �ଵ, �ଶ and t by the 

following relationships: ݎଵ = �భ௞మ, ݎଶ = �మ௞భ, � = ௧�భ. Also, the dimensionless parameters are 

combinations of the dimensional parameters as follows: ܮଵ = ఈభ௞మ�భ  ,  ܮଶ = ఈమ௞భ�భ  ,  �ଵ = ఉభ௞మ�భ  , 
�ଶ = ఉమ௞భ�భ and  ܦ� = �మ�భ.  Finally, ݂̃ሺܫଵሻ and ݃̃ሺܫଶሻ aƌe uŶkŶoǁŶ fuŶĐtioŶs foƌ the iŶduĐeƌ͛s iŵpaĐt 

on the circuit.  

 

ܣ + ܤ ௙→ :ܣ :ܣ ܤ ܤ ௕→ ܣ +  ܤ

Law of Mass Action ݀ܣ: ݐ݀ܤ = ܤܣ݂ − :ܣܾ  ܤ

Assume Steady State and Let 
௕௙ =  ݇� ܤܣ  = :ܣ �݇ܤ  

Use Conservation Rules to Substitute in A = �ܣ − :ܣ :and A ܤ B = �ܤ − �ܣܤ ܤ − �ܤሺܤ − ሻܤ = ሺܤ� − �ሻ݇ܤ  

Solve for B and Notice +/- Must Equal + to have Biologically Relevant Values for B ܤ = Ͳ.ͷ [ܤ� − �ܣ − ݇� + √ሺܤ� + �ܣ + ݇�ሻଶ − Ͷܣ�ܤ�] 

Assume ܤ� and ܣ� are the Instantaneous Values of ܤ and ܣ in the Full Rate Equation 

Assume ܤ = unbound B (i.e. ܤ௨) ܤ௨ = Ͳ.ͷ [ܤ − A − ݇� + √ሺܤ + ܣ + ݇�ሻଶ − Ͷܣܤ] 
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݀ܽ݀� =  ͳ − ܽ + ݂̃ሺܫଵሻ                                                            ʹ.ͻ 

ܾ݀݀� = ଶܮ  +  
� ܾ௨௡మͳ + ܾ௨௡మ  − ܾ�ܦ + ݃̃ሺܫଶሻ                                     ʹ.ͳͲ 

ܾ௨ =  ͳʹ (ሺܾ − ଵܮܽ − �ሻ + √ሺܾ + ଵܮܽ + �ሻଶ − Ͷܾܽܮଵ)                    ʹ.ͳͳ  
Where: a, b and τ are dimensionless and related to the dimensional terms A, B and t by the 

following relationships: ܽ = ஺௞మ, ܾ = ஻௞మ, � = ௧�భ. Also, the dimensionless parameters are 

combinations of the dimensional parameters as follows: ܮଵ = ఈభ௞మ�భ  ,  ܮଶ = ఈమ௞మ�భ  ,  � = βమ�భ௞మሺ�మ−భሻ 
, � = ௞�௞మ  and ܦ� = �మ�భ. Finally, ݂̃ሺܫଵሻ and ݃̃ሺܫଶሻ are unknown functions for the iŶduĐeƌ͛s iŵpaĐt oŶ 

the circuit. Note that in both circuits the exact relationship defining the effect the inducers have 

on the rate equation is not needed as we are only looking at the stability of the system without 

addition of the inducers. As pointed out before, we are assuming that when the inducer is present 

it is enough to switch the state of the system. 

The non-dimensionalized negative inhibition system is presented by equations 2.7 and 

2.8. The non-dimensionalized positive feedback system is presented by equations 2.9-11. Three 

facts to be aware of when comparing data collected in these non-dimensionalized systems are 

as folloǁs: ;ϭͿ WheŶ the sĐaled ͞leakǇ eǆpƌessioŶ͟ teƌŵs ܮଵ and ܮଶ in both systems are scaled 

equivalently they can be compared directly without returning to dimensionalized space. (2) The 

values of ݎଵ and ݎଶ are scaled by different k values. It is only when ݇ଵ=݇ଶ for the negative 

inhibition system that ݎଵand ݎଶ non-dimensional terms are directly comparable. On the other 

hand, for the positive feedback system a and b are scaled by the same k values. Therefore, their 

non-dimensional terms are always comparable. (3) Assuming k values across systems are 
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equivalent, ݎଵ, ݎଶ, a and b values should be directly comparable. Note: If the k values are not 

equivalent, the relationships found in the non-dimensional space would need to be mapped 

back to the dimensionalized space for a particular system whose k parameters are known. Even 

if this is the case, the analysis done here provides a platform from which these systems can be 

investigated for many different systems found in many different organisms. To increase 

readability from this point on we will work with the non-dimensionalized systems unless 

otherwise noted. 

2.2.3 Parameterization of Model 

What are biological relevant parameter values for each of these non-dimensional 

parameters in the two systems? This is a challenging question to answer in the absence of 

experimental data for the systems in question. However, databases such as Harvard Bio 

Numbers [12] have started to store information on general estimates for parameters such as 

stable protein degradation, transcription and translations rates. We also have the advantage of 

having developed one of the first quantitative plant part libraries (as described in Chapter 3) 

giving more information to draw on when determining these estimates. We decided to use 

these resources to find a range or starting point for each parameter in our models even though 

the parameters are estimated in different organisms. As we are only looking for biological 

relevant parameter values, this will give us a sufficient starting point. Although outside the 

scope of this study, it should be noted that when building or observing these systems in a 

particular organism a more defined range of parameters should be obtained. Details on the 

estimate of each non-dimensionalized parameter can be found in Table 2.1.  
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Table 2.1 Descriptions of Parameter Estimations.  

Negative Positive 
Param-

eter 

Value Reasoning Param-

eter 

Value Reasoning 

L1 unknown plan to vary L1 Unknown plan to vary 

L2 unknown plan to vary L2 Unknown plan to vary 

DR 1 If both R1 and R2 are 

stable proteins, then we 

assume the ratio of their 

degradation rates will be 

around 1. 

DR 0.02 ,1 If A is a micro RNA or protein and B is a protein, we can look 

for an estimate of micro RNA and protein degradation in the 

literature using Harvard Bio Numbers [12]. 0.05/min is in the 

range of estimated micro RNA degradation [13]. A particular 

stable protein degradation was estimated to be about 

0.05/hour [14] giving us a starting point for this estimate 

(0.05hr-1/0.05min-1 ~= 0.02).  

 

On the other hand, if both A and B are proteins as presented 

in the Chen and Arkin design of this system [10], the ratio of 

their degradation rates we will assume to be around 1. 

n1 and 

n2 

2-4 Assuming we are 

working with 

transcription factors 

similar to those used in 

our library of plant parts 

developed in Ch. 3, we 

will start by assuming the 

amount of achievable 

sigmodality is low, 2, to 

the max sigmodality 

observed in our library of 

4.  

n2 2-4 Assuming we are working with transcription factors similar to 

those used in our library of plant parts developed in Ch. 3, we 

will start by assuming the amount of achievable sigmodality is 

low, 2, to the max sigmodality observed in our library,4.  

X1 and 

X2 

0.01-100 From our library of plant 

parts developed in Ch. 2 

we get a range of [0.01-

34]. 

 

As we are comparing to a 

system where less is 

known about each 

parameter we should 

also vary these 

parameters with vigor 

increasing this range to 

[0.01-100]. 

X 3 x 10-7, 

100 

To get a rough idea of this value, Harvard Bio Numbers [12] 

was referenced. We found: 

- A translation rate of 18 amino acids, aa, per-sec and a 

transcription rate of 54 nucleotides, nt, per-sec [21]. 

-Also ͞the ŵediaŶ leŶgth of the pƌoteiŶs aŶŶotated aŵoŶg 
EukaƌǇotes ;ϯϲϭ aaͿ͟ [15]. 

-Given 3 nt per aa, this gives us 1083 nt in the coding region 

(1083nt*(1sec/54nt) = 20sec)+(361aa * (1sec/18aa)=20sec) = 

40sec/protein. This goes to b2/d1 = 30, assuming d1 is around 

0.5/min = 8.3 x 10-4/sec. 

-For k2 a bottom limits would be 1 molecule and a top limit 

would be the max number of molecules produced. 

Ron Milo in 2013 [16] estimated a total number of proteins 

per cell to be 2–4 million proteins per cubic micro. A rough 

estimate of plant cell size is 25 cubic microns [17].  

4*25 = 100 million molecules. 

 

Assuming n2 = 2 This gives us a range for X as [3 x 10-7, 30]. 

There are many unknowns. Therefore we will vary this 

parameter with vigor increasing the range to [3 x 10-7-100]. 

   T 0.001-108 At this point estimating the binding rate and dissociation rate 

of different molecule types is quite challenging.  So we will 

start with kd = 1, assuming it is just as likely to bind and 

unbind, and then vary this parameter. k2 as estimated above 

lives between [1 and 108]. There are many unknowns. 

Therefore we will vary this parameter with vigor increasing 

the range to 0.001-108. 

 

Note: These parameters come from many different organisms giving us only a general idea of what is biologically relevant. An important step 

when incorporating this information into a particular organism, such as Arabidopsis, would be to find the range of parameter values relevant 

for that organism.  
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The uncertainty for each parameter is large. As we are working with systems capable of 

being either bi-stable or mono-stable, we will need to explore this larger parameter space to 

determine which regions are bi-stable and which are mono-stable. Remember bi-stable systems 

are capable of existing in one of two steady state values depending on their history, where 

mono-stable systems have only one steady state value. Transitioning from mono-stable to bi-

stable is illustrated in the nullclines and phase diagram seen in Figure 2.2.  

 
Figure 2.2 Illustration of Nullcines changing Across Phase Diagram. Panel a is a phase diagram 

created for the positive feedback system using parameters outlined in Table 2.2. The phase 

diagram depicts the bi-stable region in the positive feedback system. The green area represents 

the area of leaky expression parameter space which is bi-stable. The red is correspondingly, 

mono-stable. The x-axis represents different L1 values. The y-axis represents different L2 values. 

The arrows connecting panels b, c and d to panel a, indicate where the nullcline diagrams come 

from in terms of parameter space. Panels b-d are plots of the nullclines in the non-

dimensionalized system. The x-axis represents different values of a where the y axis represents 
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different values of b. The blue line represents the b nullcline. The b nullcline is combinations of a 

and b values where the rate equation describing b equal zero (i.e. the amount of b is not 

changing). The magenta line represent the a nullcline. The points at which neither the amount of 

a nor the amount of b is changing are indicated when the blue and magenta lines cross. These 

are called fixed points. When two stable fixed points exist the system is said to be bi-stable. 

Panels b and d only have one fixed point which is stable making them mono-stable systems. As 

the arrows indicate, panels b and d come from the red mono-stable area in the phase diagram of 

panel a. Panel c has three fixed points two of which are stable making this a bi-stable system. The 

arrow from panel c indicates that this system maps back to part of the green bi-stable area in the 

phase diagram of panel a. Stability of these fixed points was determined during the numerical 

simulations of these systems but could also be calculated analytically by linearizing about the 

fixed point. 

 

Again as Table 2.1 depicts a large range of uncertainty for each parameter, we decided 

to divide our analysis into three sections. First we varied L1 and L2 while keeping all other 

parameters fixed giving us a slice of parameter space existing in ℝଶ (two dimensional real 

coordinate space). This provided our first look at the effect leaky expression has on the system. 

Table 2.2 describes the parameter values used for this first look. Second, we varied these 

parameters by doubling and halving their values (except for n͛s ǁhiĐh ǁe ǀaƌied to ďe Ϯ, ϯ oƌ ϰͿ 

to see if the trends we found in our first look held. Thirdly, a larger parameter range analysis 

was conducted, where we looked to see if any large deviation occurred in the effect leaky 

expression had on the bi-stable system. The initial parameter values can be found in Table 2.2 

and the larger range parameters can be found in Table 2.3. 

Table 2.2 Parameter Values. Initial parameter values used for the ODE modeling of the 

systems. 

Negative Positive 

Parameter Value Parameter Value 

L1 plan to vary L1 plan to vary 

L2 plan to vary L2 plan to vary 
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DR 1 DR 1 

n1 and n2 3 n2 3 

X1 and X2 2 X 10 

  T 1 

 

Table 2.3 Large Range Parameter Values. Parameter values used in the larger range parameter 

analysis. Note: As all X = 0.01 combinations in the positive feedback system showed no sign of 

bi-stability we did not vary this parameter further. This is also true for X1 and X2. 

Negative  Positive 

Parameter Value Parameter Value 

L1 plan to vary L1 plan to vary 

L2 plan to vary L2 plan to vary 

DR 1/3,1,3 DR 1/3,1,3 

n1 and n2 2,3,4 n2 2,3,4 

X1 and X2 0.01,1,10,100 X 0.01,1,10,100 

  T 0.001,0.1,1,10,103,105 

 

2.2.4 Exploration of practical properties via deterministic modeling 

 

MATLAB was used to simulate the non-dimensionalized ODE systems. These simulations 

were used to investigate the following three preliminary questions about switch properties: (1) 

How much leaky expression can a bi-stable system withstand before losing its bi-stable nature? 

(2) How does the ratio between the bi-stable states (FC) change with respect to leaky 

expression values? (3) How does the low state (BL) in these bi-stable systems change with 

respect to leaky expression? 
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Figure 2.3: Bi-stable Region. Phase diagrams depicting the bi-stable region in both the negative 

and positive feedback systems. The green area represents the slice of leaky expression parameter 

space which is bi-stable. The red is correspondingly, mono-stable. The x-axis represents different 

L1 values. The y-axis represents different L2 values. Note: These images were made using the 

automated program described in Table 2.4 followed by centering the bi-stable area in the figures 

generated. These images are also here to illustrate the shape of the bi-stable region on not the 

relative size between the negative and positive systems. 

 

To investigate question 1 we started with the parameters in Table 2.2. As no range for ܮଵand ܮଶ was defined we varied these parameters from near zero to a max value determined 

by the size of the bi-stable space with twenty one evenly spaced points. Figure 2.3 illustrates 

this bi-stable region for both the positive and negative inhibition systems. The size of parameter 

space to sample was determined by dynamically incrementing the max value for ܮଵand ܮଶ until 

the border of the ܮଵand ܮଶ defined space was mono-stable and contained a sample of the 

complete bi-stable region. The method associated with this incrementing of the max ܮଵand ܮଶ 

values can be found in Table 2.4. The area of the bi-stable region was then estimated from the 

simulated data. This method of incrementing the max parameter values is only possible 

because in terms of leaky expression the bi-stable space is finite for both systems in all 

parameters combinations sampled.  
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To determine whether a parameter combination was bi-stable, both non-

dimensionalized ODE systems (positive and negative) were simulated from two initial 

conditions. The first initial condition consisted of a high value of r2 or b and 0 for r1 or a. The 

second initial condition consisted of a high value for r1 and 0 for r2, b and a. The two steady 

state values of r2 or b were then stored for each simulation starting at the different initial 

conditions. If the two steady state values were different from each other the parameter 

combination was classified as bi-stable. Steady states were said to be different from each other 

if the following conditions were met: (1) The difference between the low and high steady state 

values was greater than 0.001. Taking note of the non-dimensional relationships for r2 and b 

ଶݎ) = �మ௞మ , ܾ = ஻௞మ) a change smaller than 0.001 would mean a change smaller than 0.001*k2 in 

number of molecules. (2) The FC between the two states must be greater than 1.1. Given a 

particular experimental system, one could fine tune these conditions appropriately. For this 

general analysis however, these conditions will provide a platform from which to investigate 

the effect of leaky expression on these two different topologies. (Note: A tolerance of 0.9 was 

set if FC was less than 1. That is to say if the ODE solver numerical approximation error 

produced a ratio between the high state (steady state value produced by initial conditions set 

to find a high state) and the low state (steady state value produced by initial conditions set to 

find the low state) was less than 1 but greater than 0.9, the point in parameter space was 

stored as mono-stable.) 

To look into questions 2 and 3, the low and high steady state values were stored for the 

bi-stability analysis by writing them out to file for each parameter combination. This allowed for 

creation of heat maps describing how the low state, and FC changed within the bi-stable region. 
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We can calculate the FC directly here because the scaling terms from the non-

dimensionalization cancel when calculating the ratio we are calling FC. However, the non-

dimensionalized BL (i.e. low state) is only comparable between systems when their scaling 

terms are equivalent. Note: From this point on the phrase leaky expression defined bi-stable 

area will always refer to bi-stable area in the ܮଵ and ܮଶ parameter space. BL will represent the 

amount of ݎଶ or b in the low state as defined in equations 2.7-11. FC is the same in the 

dimensional and non-dimensional systems as the scaling terms cancel when calculating the 

ratio between the low and high states.  

Table 2.4 Method for incrementing the max value of max �૚and �૛. Method used to 

determine the max ܮଵand ܮଶ such that the bi-stable region was well sampled for each 

parameter combination. 

Step 

# 

Brief description 

1 Start with a parameter range of 0.0001-1 for both ܮଵand ܮଶ. Change this range into a 

vector of 21 evenly spaced ܮଵand ܮଶ values. For all possible combinations of these 

values determine if the parameter combination is mono-stable or bi-stable. 

2 Choose the initial increment by which the max ܮଵand ܮଶwill be changed. This is done 

by starting with an increment of 0 and increasing it by 1 order of magnitude if the bi-

stable region was not full sampled for both ܮଵand ܮଶ. It was possible for us to do this 

independently for both ܮଵand ܮଶ, as max ܮଵis only associated with the right border 

and ܮଶ is only associated with the top border of the bi-stable region described in 

Figure 2.3. 

3 Change the size of the increment to be 25% less than its value until the bi-stable 

region is one increment change away from no-longer being completely sampled. 

 

Using the methods described here we can now compare the following three properties: 

(1) the size of the leaky expression defined bi-stable space between the positive and negative 

inhibition systems, (2) how FC and BL change within this bi-stable region and (3) how the BL and 

FC values themselves compare between the positive and negative inhibition systems. This will 

give us the first look at how leaky expression affects these systems. We can then vary these 

parameters by doubling and halving their values (except for n͛s ǁhiĐh ǁe ǀaƌied to ďe Ϯ, ϯ oƌ ϰͿ 
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to see if the trends we found remain the same when the other parameters are varied. Finally, 

we can run an even larger parameter range study to see if any large deviation occurred in the 

effect leaky expression has on these bi-stable systems. 

2.3 Results and Discussion  

 

2.3.1 Positive feedback system is generally more robust against leaky expression, and can 

achieve higher fold-change, but has higher average basal expression values.  

This study set out to investigate 3 questions in regards to how leaky expression affects 

the properties of the positive and negative inhibition systems. (1) How much leaky expression 

can a bi-stable system withstand? (2) How does the ratio between the bi-stable states (FC) 

change with respect to leaky expression values? (3) How does the low molecular state (BL) in 

these bi-stable systems change with respect to leaky expression? Due to the large biologically 

relevant parameter space we chose to approach the simulations in three sections.  

Our first section consisted of simulating our systems from the parameters described in 

Table 2.2. We found that the bi-stable region was larger for the positive feedback system with an 

aƌea of ϯϭ.ϯ Đoŵpaƌed to the Ŷegatiǀe iŶhiďitioŶ sǇsteŵ͛s aƌea of 0.2. Remember this bi-stable 

region may need to be mapped back to dimensional space if k scaling factors for a, b, r1 and r2 

are not equivalent. However, when estimates for the k scaling factors are obtained for particular 

genetic parts this data can be mapped back for a more precise comparison of the behavior. For 

now, the assumption that the k scaling factors are equivalent allows for a general comparison 

between the systems. A larger bi-stable area suggests that the positive feedback switch is more 

robust against increases in leaky expression. 
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We also found that the average FC within the bi-stable area was 9.0 x 103 for the positive 

feedback system compared to 5.0 for the negative inhibition system, a 3-order of magnitude 

difference. Last but not least, the average BL within this area was 2.3 for the positive compared 

to 0.5 for the negative inhibition system, a one order of magnitude difference. These results are 

illustrated in Figure 2.4. Also as seen in Figure 2.4, the standard deviations for these average 

properties are large indicating that there is a wide range of behavior within these bi-stable 

regions. 

 
Figure 2.4: Average Behavior. These bar graphs illustrated the predicted mean behavior within 

this bi-stable area of FC, fold change, and BL, the non-dimensionalized low state. The average 

value for fold change is larger in the positive feedback system at 9.0 x 103 compared to 5.0. BL 

expression for the negative inhibition system is lower than the positive, at 0.5 compared to 2.3. 

The error bars are + 1 standard deviation. The x-axis is categorical representing either FC or BL. 

The y-axis represents how much FC or BL. Panel a represents values for the negative inhibition 

system whereas panel b represents values for the positive feedback system. (Note: we are 

working within the non-dimensionalized space.) 

 

To get a view of the predicted behavior within this bi-stable region we created heat maps 

of the FC and BL values within this bi-stable region (Figure 2.5 a and b). We can see that the FC 

appears to decrease in both systems as the leaky expression of r2 or b goes up. We can also see 

that the BL appears to change inversely to FC (i.e. as FC goes up BL goes down).  To get an idea 
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of the magnitude of these changes we created histograms for the FC and BL values within this bi-

stable region, as illustrated in Figure 2.5 c and d. 

 
Figure 2.5: Histograms and Heat maps for estimated parameters. Change in key biological 

features of these switches change within the bi-stable region. Panels a and b describe how the 

BL, basal level and FC values change within the bi-stable regions. The x-axis for these plots 

represents L1 values whereas the y-axis represents L2 values. Panel c and d describe the 

distribution of BL and FC within the bi-stable region. The x-axis represents either BL or FC 

values. The y-axis represents the number of parameter combinations with those FC or BL values 

(i.e. counts). The inset graph in panel d is a histogram of the low cluster of positive feedback 

system FC values with all the negative inhibition system FC values. The x-axis of this inset graph 

represents FC where the y-axis represents counts. 

 

In Figure 2.5 d we can see the positive feedďaĐk sǇsteŵ appeaƌs to haǀe tǁo ͞Đlusteƌs͟ of FC 

values: a low cluster around that of the negative inhibition system and a high cluster around 3-

orders of magnitude greater than that of the negative inhibition system. On the other hand, the 
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negative inhibition system has a tight grouping of low BL values compared to that of the 

positive feedback system, as illustrated in Figure 2.5 c.  

These analyses lead to the following conclusions. The positive feedback system has more 

potential for higher FC between the states compared to the negative inhibition system. 

However, the negative inhibition system has more control of the BL of the system. Even though 

the positive feedback system has a larger tolerance to leaky expression (in terms of its bi-stable 

space), fold change values within this region are only high for a small region of this bi-stable 

space where the leaky expression of the bi-stable feedback molecule, B, is low.  

2.3.2 Parameter Sensitivity 

 
Figure 2.6: Average behavior in parameter sensitivity analysis. Average FC, fold change, and 

BL, basal level, results for each bi-stable area explored in the parameter sensitivity analysis for 

parameters represented in Table 2.2. Green points represent the positive feedback system 

behavior. Blue points represent the negative inhibition system behavior. The x-axis represents 

the average BL. The y-axis represents the average FC. The z-axis represents the non-

dimensionalized leaky expression defined bi-stable area. 

 

All of the analyses up to this point have been for the parameters described in Table 2.2. 

How dependent are the observations found for the Table 2.2 parameters on the other 

parameters in the system? Varying these parameters becomes a logical next step. Parameters 
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were varied to half and double their initial value presented in Table 2.2, with the exception of 

n͛s that aƌe set to ďe Ϯ, ϯ oƌ ϰ. All possiďle ĐoŵďiŶatioŶs of these paƌaŵeteƌ ĐoŶfiguƌatioŶs 

were explored. Looking at the leaky expression defined bi-stable areas and corresponding 

average values of FC and BL within those bi-stable areas we can see in Figure 2.6 that for many 

parameter combinations the positive feedback system has a larger leaky expression defined bi-

stable area, a higher average FC, and a higher BL.  

For parameters in Table 2.2, the leaky expression defined bi-stable area for the positive 

feedback system was larger than that of the negative inhibition system. However, this was not 

always true for all parameters tested in our parameter sensitivity analysis. In fact, the maximum 

bi-stable area for the negative inhibition system is 1.1 and the minimum bi-stable area for the 

positive feedback system is 0.4, if excluding parameter combinations that did not have a bi-

stable area. However, as illustrated in Figure 2.5, many of the positive feedback system 

parameters had a larger bi-stable area compared to the negative inhibition system. Again for 

parameters in Table 2.2, there was a higher regime of fold change values above 3 orders of 

magnitude compared to the negative inhibition system. However, in our parameter sensitivity 

analysis as illustrated in Figure 2.7 a and b, even though the higher regime of FC values for most 

parameter combination exists, they do not always maintain a three order of magnitude 

difference when compared to the negative inhibition system. Finally for our parameters in 

Table 2.2 the positive feedback system did not have as tight of range in BL expression compared 

to the negative inhibition system, assuming both systems are scaled equivalently in terms of 

the their non-dimensionalized concentrations. In our parameter sensitivity analysis the positive 

feedback system also did not have as tight of control over the BL expression. This is illustrated 
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in Figure 2.7 c and d. This result is also supported by the maximum values of BL expression 

being around 70 for the positive feedback system compared to around 2 for the negative 

inhibition system. 

 
Figure 2.7: Histograms of each parameter combination data. These are histograms for the values 

within each bi-stable region for each parameter combination. The green histograms are for the 

positive feedback system whereas the blue histograms are for the negative inhibition system. 

Panels a and b are for FC values whereas panels c and d are for BL values. The z-axis for each 

panel represents the number of sampled points for each bar (i.e. counts). The x-axis for each 

panel represents either FC or BL values. The y-axis for each panel represents the parameter 

combinations being tested. Over 80 different parameter combinations were tested for the 

positive feedback system and over 200 different parameter combinations were tested for the 

negative inhibition system. 

 

2.3.3 The larger parameter range 

We ran a large range parameter sensitivity analysis to look for any breaks in trends we 

had observed iŶ the eaƌlieƌ aŶalǇsis. All ĐoŵďiŶatioŶs of eaĐh paƌaŵeteƌ͛s ŵoƌe eǆtƌeŵe poiŶts 

as well as a few intermediate points (as described in Table 2.3) were examined. A further trend 
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iŶ the data ǁas oďseƌǀed ǁith the positiǀe feedďaĐk sǇsteŵ͛s paƌaŵeteƌ T. Remember T is the 

non-dimensionalized parameter representing the relationship = ௞�௞మ . Figure 2.8 illustrates how 

for T << 1 (i.e 0.001) the bi-stable region stretches to very large numbers.  

 
Figure 2.8: Parameter T’s effeĐt on the LeakǇ Eǆpression defined ďi-stable region. L1 and L2 are 

the non-dimensionalized leaky expression terms. The green area represents the bi-stable region 

whereas the red area represents the mono-stable region of parameter space. The x-axis 

represents L1 values. The y-axis represents L2 values. The parameter space for the plots where T 

= 0.01 and T = 0.001 was sample twice, first for a region of parameter space comparable to the T 

= 1 and T = 0.1 plots, and second for a larger parameter space showing how the bi-stable region 

stretched to large values of L1 and L2. 

 

Figure 2.9 illustrates the three ideas that have been prevalent throughout this study: (1) 

the positive feedback system has higher tolerance to leaky expression in terms of its bi-stable 
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area. (2) The positive feedback system still reaches much larger average values for FC compared 

to the negative inhibition system. (3) Average BL is still more tightly controlled for the negative 

inhibition system compared the positive feedback system. These results do show more overlap 

between the systems which is not surprising considering the range of each parameter in this 

large parameter sensitivity analysis.  

 
Figure 2.9: Large range average behavior in parameter sensitivity analysis. Average FC, fold 

change, and BL, basal level, results for each non-dimensionalized leaky expression defined bi-

stable area explored in the parameter sensitivity analysis for parameters represented in Table 

2.3. Green points represent the positive feedback system behavior. Blue points represent the 

negative inhibition system behavior. The x-axis represents the average BL. The y-axis represents 

the average FC. The z-axis represents the leaky expression defined bi-stable area. 

Thus our analysis shows that the positive feedback system generally outperforms the 

negative inhibition system when faced with high levels of leaky expression from the promoter. 

However, the positive feedback system does suffer from the disadvantage that the levels of 

basal expression can be much higher than that of the negative inhibition system. Synthetic 

biologists constructing switches that require a low basal expression in the off state may still 

prefer the negative inhibition-based architecture. Positive feedback-based switches appear to 

be (anecdotally) more common in real systems. There are many examples of naturally occurring 
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bi-stable switches that have been found or hypothesized to exist in nature [18] [19] [20] [21] 

[22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34]. Although negative inhibition 

systems are contained within the natural switches references here, all of these natural switches 

contain some form of positive feedback. Our discovery of their increased robustness against 

leaky promoters in terms of deterministically defined bi-stable area, as well as being able to 

achieve a higher fold-change, may be one reason why this is so. 
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CHAPTER 3 

 

 

 

Quantitative characterization of genetic parts and circuits for plant synthetic biology1 

3.1 Introduction 

Plant synthetic biology promises immense technological benefits, with hope of 

developing a sustainable bio-based economy through enabling the predictive design of 

synthetic gene circuits.  These circuits are built from quantitatively characterized genetic parts. 

This characterization presents a significant barrier for plants because of the time required for 

stable transformation. We describe a method for rapid quantitative characterization of genetic 

plant parts using transient expression in protoplasts and dual luciferase outputs.  We observed 

experimental variability in transient assays, and developed a mathematical model to describe, 

and statistical normalization methods to account for, this variability, allowing extraction of 

quantitative parameters. We characterized over 120 synthetic parts in Arabidopsis and 

validated our method by comparing transient expression with stably transformed plants. We 

further tested over 100 synthetic parts in sorghum (Sorghum bicolor) protoplasts, showing that 

                                                             
1 I am a co-first author on this work published in Nature Methods in 2016 [1]. This work is presented here in its 

entirety over Chapter 3, Appendix A and B to maintain intellectual coherence with permission of the Nature 

Methods Journal and the Colorado State University Graduate School. Individual contributions are as presented in 

the Author Contributions. Author Contributions: Katherine A. Schaumberg designed and performed experiments 

and a significant part of the data analysis, and contributed to writing the paper. Mauricio S. Antunes designed and 

performed experiments and contributed to writing the paper. Tessema K. Kassaw engineered many of the 

constructs, designed and performed experiments and contributed to writing the paper. Christopher S. Zalewski 

designed and performed experiments and contributed to writing the paper. Wenlong Xu performed data analysis, 

developed the camera correction method and contributed to writing the paper. June I. Medford designed 

experiments, contributed to writing the paper, and supervised the overall project. Ashok Prasad designed data 

analysis, supervised the computational part of the project, and contributed to and supervised the writing of the 

paper. All authors contributed to editing the paper and read the final version. 
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our method works in diverse plant groups.  Our approach enables tunable gene circuits to be 

built in complex eukaryotic organisms.   

Synthetic Biology promises to bring new understanding of living organisms while 

allowing design of predictable biological function.  To date, all quantitatively defined gene 

circuits have been produced in unicellular organisms (bacteria, yeast) or cells in culture [2] [3] 

[30] [5], raising a question as to whether predictable synthetic gene circuits can be produced in 

multicellular organisms.  Sexual reproduction in multicellular organisms proceeds through 

meiosis, and plants include development into gametophyte and sporophyte generations, 

creating a challenge for synthetic genetic circuits. Yet, plant gene circuits with predictable and 

tunable function could have profound applications towards sustainable life on earth.  For 

example, such circuits could be used to control biofuel production or for optimal production of 

plant-based biomaterials.   

The ability to design and produce such synthetic gene circuits in plants requires a deep 

understanding of plant biology and rigorous quantitative data.  The concerns for producing 

quantitative predictable functions are myriad.  Plants develop continuously, move regulatory 

molecules between cells and tissues, and control aspects of differentiation by positional 

information with inputs from their local environment [6]. The challenges are further: develop 

synthetic genetic parts that are orthogonal, i.e., independent of endogenous regulation [7] [8], 

and methods for their rapid prototyping to enable rational and predictable design of synthetic 

circuits. We addressed these challenges by developing principles for rational engineering of 

synthetic plant genetic parts, along with an experimental and mathematical framework for their 

quantitative testing. 
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To produce quantitatively defined and orthogonal genetic parts for plants, we designed 

synthetic repressors and repressible promoters.  Our synthetic repressors consist of well-

characterized DNA-binding domains from non-plant proteins and modular repressor motifs 

from plants. Repressible plant promoters are engineered by rationally inserting DNA sequences 

recognized by the above repressors into promoters that naturally drive constitutive gene 

expression in plants (e.g., CaMV35S). 

QuantifiĐatioŶ of geŶetiĐ paƌts͛ iŶput-output characteristics is essential for building 

circuits with predictable function.  However, quantitative analysis of a large number of stably 

integrated plant genetic parts (e.g., promoters, terminators, UTRs) would require years of work.  

Current methods for rapid analysis of gene expression in plants, such as particle bombardment, 

Agrobacterium infiltration, VIGS (virus-induced gene silencing)-based systems, and protoplasts 

[9] [10] [11] [12] could be used.  However, most of these methods either lack high throughput 

capabilities or are difficult to quantify.  

To overcome these issues, we scaled up a transient expression assay using plant 

protoplasts to allow medium throughput (96-well plate) testing of our designed repressible 

promoters and repressors.  To allow simultaneous quantification of both repressor levels and 

repressible promoter activity, we used dual luciferase outputs.  We combined this assay with a 

rigorous mathematical analysis accounting for significant stochastic factors, thereby developing 

quantitative analyses for plant genetic parts.  Here, we describe our methodology and 

demonstrate its use to quantitatively characterize over 200 new synthetic plant promoter-

repressor pairs. We further show that these parts can be computationally selected and 

assembled to produce a tunable function in planta.    
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3.2 Results 

3.2.1 Building synthetic plant components 

To develop our quantitative test system for genetic parts and circuits, we constructed 

synthetic transcriptional repressor proteins and cognate repressible promoters. To aid in 

orthogonal function, we designed many synthetic components with previously described 

elements from bacteria, yeast, and plant viruses. Our synthetic plant transcriptional repressors 

consist of translational fusions between the yeast Gal4 [13] or the bacterial LexA [14] DNA-

binding domains (DBD), shown to function in plants, and known transcriptional repression 

domains from Arabidopsis proteins (EAR, OFP, BRD) [15] [16] [17] [18]. In addition to the native 

OFP1 repressor domain, we designed a synthetic repressor domain based on previously 

characterized sequences and functions of OFP proteins, and designated this OFPx (Appendix A).  

 

Figure 3.1 Design of synthetic repressible promoters and genetic circuit architecture. (a) 

Diagram of synthetic repressible promoter design containing repressor binding sites (operators) 

placed upstream (cyan), downstream (orange), or just upstream of the TATA-box (green) in 

constitutive promoter scaffolds.  Number (2x, 4x, 5x, 8x), spacing between binding sites (SP10, 

10-nt spacer represented by horizontal black bar connecting binding sites), and type of binding 

sites (Gal4 or LexA) are indicated. (b) Genetic circuit architecture used for testing promoter-
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repressor combinations in protoplasts. An external inducer (DEX or OHT) activates transcription 

of a repressor protein as well as Firefly luciferase (F-luc) through the same promoter. The 

repressor protein represses the constitutively active repressible promoter directing 

transcription of Renilla luciferase (R-luc).  

 

Constitutively active, repressible synthetic promoters (cognates to synthetic repressors) 

were produced using a scaffold of previously characterized promoters known to drive 

constitutive plant gene expression [Cauliflower Mosaic Virus (CaMV35S), Figwort Mosaic Virus 

(FMV), and Nopaline Synthase (NOS)] [19] [20] [21].  To make these promoters repressible, we 

inserted multiple copies of DNA elements recognized by Gal4 or LexA DBDs at various positions 

in the CaMV35S, FMV, and NOS promoters (Fig. 3.1a and Table B.1). Our goal was to produce 

various binding levels for the repressor proteins, and hence tunable repression of promoter 

activity. We predict these designed promoters will direct constitutive expression of a 

downstream gene in the absence of their cognate synthetic repressors. 

3.2.2 Quantitative testing of plant parts in Arabidopsis 

To quantitatively measure the input-output function of our repressors and repressible 

promoters, we constructed a simple genetic circuit (Fig. 3.1b).  With this genetic device, each 

synthetic promoter is linked to Renilla luciferase (R-luc) to provide a quantitative readout of the 

pƌoŵoteƌ͛s ďehaǀioƌ. We theŶ ŵodulated the ĐogŶate sǇŶthetiĐ ƌepƌessoƌs͛ eǆpƌessioŶ leǀels 

with one of two previously characterized externally applied inducers, dexamethasone (DEX) or 

4-hydroxytamoxifen (OHT) [22] [23]. To simultaneously quantify the repressor levels, we added 

a second copy of the inducible promoter to a second reporter, firefly luciferase (F-luc). Hence, 

F-luc serves as a proxy for the amount of repressor, as the concentrations of F-luc and repressor 
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should be proportional to each other. Using dual luciferase reporters, we simultaneously 

measured repressor production and quantitative repressible promoter function.   

Repressible promoters and cognate repressors were cloned into a single plasmid in 128 

different pairwise combinations and transiently expressed in Arabidopsis leaf protoplasts (Fig. 

B.1).  We varied repressor levels by changing the concentration of DEX or OHT, and measured 

both F-luc and R-luc activity in the same sample with a commercially available dual-luciferase 

assay (Promega Co.) and single photon ICCD Camera (Stanford Photonics, Inc.).  To increase 

assay throughput, we modified an Arabidopsis leaf protoplast assay (as presented in Appendix 

A) to allow testing promoter-repressor combinations, with multiple inducer concentrations, in a 

96-well plate format.  

With increasing inducer concentrations, we expect increasing F-luc levels (input, 

repressor concentration), coupled with decreasing R-luc levels (output, promoter activity). 

Initial results showed the expected trend, but had large variability (noise) between transient 

assays (Fig. 3.2a). Because accurate quantitative characterization of genetic parts requires high 

reproducibility and comparability across components and experiments, we investigated the 

Ŷoise͛s souƌĐe;sͿ.  

3.2.3 Analysis of stochastic and experimental variability 

To determine whether data are comparable across genetic circuits, we examined the 

basal level of F-luc luminescence (i.e., without inducer added). For all circuits controlled by a 

given inducer (DEX or OHT), basal F-luc levels should be the same. Basal F-luc data indicate 

higher variability between plasmids than between technical replicates (Fig. 3.2a).  This suggests 

that the protoplast assays are subject to variability from different batches of protoplasts, 
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transformation efficiency, and different genetic circuits, among other possible effects. We 

discovered that one source of noise in our data was systematic, and related to our luciferase 

image collection method. To correct for these imaging errors, we developed a geometric 

method (Appendix B.1, B.2 and Figs. B.2 and 3).  Next, we addressed the sources of variability 

and developed methodology to mitigate their effects.   

From the experimental design, we expect three major contributors to noise in our system.  

1) Within-plate variation, i.e., random variation arising from 96-well plate assay procedures, 

such as pipetting. 

2) Between-transformation variation, i.e., variation arising from processes involved in 

protoplast transformation, such as variations in transformation efficiency from different 

plasmids. 

3) Between-batch variation, i.e., variation arising from processes involved in preparing each 

protoplast batch.  This includes variations in the leaf tissue health, different types of cells 

isolated, shear stress effects during protoplast pipetting and centrifugation, and slight 

variations from enzymatic supplies.  

We designed experiments to isolate and quantify these three potential sources of noise. We 

used a test plasmid (beta plasmid) with all elements found in our promoter-repressor genetic 

device, except the repressor, and transformed protoplasts with either a DEX-inducible or OHT-

inducible gene circuit.  We collected luminescence data with no inducer added, and repeated 

the experiment using protoplasts batches prepared on three different days. For each circuit, in 

the absence of any noise, all wells should display identical F-luc and R-luc luminescence. 
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Figure 3.2 Analysis of noise in the protoplast data. (a) Greyscale heat map represents 

measured F-luc luminescence intensities with no inducer present (i.e., basal level expression) 

for two technical (horizontal axis) and different biological (vertical axis) replicates. OHT- and 

DEX-inducible promoter-repressor pairs are plotted separately.  (b) Scatter plot of R-luc and F-

luc luminescence for a repressible promoter without its repressor (beta plasmid), measured on 

different days. Open circles, DEX-inducible promoter; small x’s, OHT-inducible promoter.  The 

same repressible promoter was used in both circuits. (c) Standard deviation of the three 

different noise sources: within a 96-well plate (12 samples), between different transformations 

(3 samples), and between different batches of protoplasts (4 samples). 

 

The predominant source of noise originates from distinct batches of protoplasts prepared 

on different days (Fig. 3.2b). Luminescence values of each batch form distinct and well-

separated clusters, and variations within each cluster are smaller than those between clusters. 

Plotting the standard deviation from each source (Fig. 3.2c) confirms that the most variance 

Đoŵes fƌoŵ diffeƌeŶt daǇs͛ pƌepaƌatioŶ ;ďatĐhesͿ of pƌotoplasts, ǁhiĐh ǁe defiŶe as a ͚ďatĐh 

effeĐt͛. A plot of the aǀeƌage ‘-luc vs. F-luc luminescence displays strong linear trends, as 

expected if the batch effect can be represented by a random multiplicative factor that is the 

same for both F-luc and R-luc (Fig. 3.3a and Appendix B.3).   
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Figure 3.3 Analysis of the variation from different protoplast batches. (a) Plot of average R-luc 

and F-luc luminescence values for DEX- (open circles) and OHT-inducible (closed circles) beta 

plasmids from different days. Lines represent linear fits. (b) F-luc and R-luc coefficient of 

variation from beta plasmids, without (Raw) and with (TP Norm) normalization by the total 

protein content in the well. (c, d) Histogram of all basal (i.e., no added inducer) F-luc 

luminescence values, plotted as RLU/(area x sec) (left graph) and on a log scale (right graph), 

for DEX-based plasmids (c) and OHT-based plasmids (d).   

 

While our data clearly show that variation from protoplast batches is the greatest noise 

source, we have not identified its origin.  Because our protoplasts are prepared from leaves, 

each preparation could contain distinct compositions of differentiated leaf cells (e.g., 

mesophyll, palisade parenchyma, bundle sheath) produced from plants that experience micro-

climatic variations. While all protoplasts are pooled and treated equally, our data represent a 

bulk measurement of protoplast populations in an individual well.  As such, different protoplast 

populations may be represented in each preparation, giving rise to a batch effect. Our data do 

show our experiments are carefully performed, as the within-plate variation has an 

approximately normal distribution, with a small standard deviation. Differences arising from 
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intrinsic plasmid properties were also found to be minimal. Based on the above analysis, we 

constructed a quantitative model to determine the input-output characteristics of the 

promoter-repressor pairs. In accordance with the experimental findings, our quantitative model 

incorporates the batch variability as a multiplicative factor, and takes the experimental setup 

into account.  

3.2.4 Mathematical model and normalization of batch effect 

Our experiments are performed in 96-well plates, and each plasmid is tested with a 

different level of the inducer (DEX or OHT) in each well, with the corresponding F-luc and R-luc 

luminescence measured. In all cases, the indices ij refer to the j-th well from those wells with 

the i-th plasmid. Concentrations are expressed in molecules per well and RLU represent 

Relative Luciferase Units/(area x sec). We first describe the experimental data with symbols as 

follows: 

1. Repressor concentration = �௜௝ 

2. R-luc concentration = [�݈ܿݑ]௜௝     

3. F-luc concentration = [ܿݑ݈ܨ]௜௝        

4. R-luc luminescence in RLU = ܮ௜௝   

5. F-luc luminescence in RLU = ܨ௜௝   

We want to determine the quantitative relationship between the repressor 

concentration and the R-luc expression, controlled by the constitutively active repressible 

promoter. It is standard to assume that this relationship is represented by a Hill function [30] 

[24]. Hence, for a single plasmid in a protoplast we can write: 
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௜௝[ܿݑ݈�]            = ఉ೔ଵ+(�೔ೕ಼೔ )�೔                                                                       ͵.ͳ                              

Here, ߚ௜ represents the maximal expression of the R-luc protein with no repressor (i.e., 

promoter strength), while ܭ௜ is the repressor concentration required for half-maximal 

expression of R-luc, and ݊௜ is the Hill coefficient. In order for this equation to correspond with 

the experimental data, we need to make two transformations. First, we need to scale up to the 

entire well. Second, we need to express this relationship in terms of luminescence, which is 

what we experimentally measure, instead of concentration. To scale up to the entire well, we 

multiply both sides of this equation by ߙ௜ ௜ܰ௝, where ߙ௜ represents the batch variability factor 

and ௜ܰ௝ represents the total number of plasmids in the j-th well of the i-th plasmid. To 

transform to luminescence units, denoted by ܮ௜௝ for R-luc and ܨ௜௝ for F-luc, we use the fact that 

luminescence is proportional to concentration (Fig. B.4 and Appendix B.4), and multiply both 

sides by the corresponding proportionality factor. This gives the following equation: 

 

௜௝ܮ = ௜ͳܤ + ௜ܪ௜௝ܨ) )௡೔                                                                      ͵.ʹ 

 

Here, ܨ௜௝ = ௜ߙଵܥ ௜ܰ௝̃ܥ�௜௝ , where ܥଵ is the concentration-luminescence proportionality 

factor and ̃ܥ is a proportionality factor between the repressor concentration and F-luc 

concentration (both of which are controlled by the same promoter).  

The parameter Hi represents the half-maximal whole-well R-luc luminescence, while the 

parameter Bi represents the whole-well maximal R-luc luminescence of the i-th plasmid. Thus a 
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best-fit estimate of Bi is given by ܤ௜ = ۃଶܥ ௜ܰ௝ۄ௝ߙ௜ߚ௜, where the j-subscript on the angled 

brackets indicates a mean over the j-well index, i.e., over the wells associated with the i-th 

plasmid. Similarly, ܪ௜ = ۃܥଵ̃ܥ ௜ܰ௝ۄ௝ߙ௜ܭ௜.  
The unknown multiplicative batch-effect, , complicates comparison of the repressible 

promoter strength, , between plasmids. Thus, we considered normalization methods that 

remove or reduce the effect of this parameter. We first tested whether the batch effect can be 

removed by normalization with the total protein content per well, but this resulted only in a 

minor difference between the variability of raw versus normalized data from different batches 

(Fig. 3.3b), thus failing to account for the batch effect.  

Next, we hypothesized that the batch variability factor, ߙ௜, is ƌelated to the pƌotoplasts͛ 

preparation.  Thus, ߙ௜ ௜ܰ௝ describes the plasmid copy number in viable protoplasts in the j-th 

well of the i-th plasmid. The basal luminescence distribution in the absence of inducer, i.e., ܨ௜ଵ = ௜ߙଵܥ ௜ܰଵߛ௜, where ߛ௜ is the basal expression of the inducible promoter (j = 1 corresponds 

to wells with no inducer), is proportional to the distribution of ߙ௜ ௜ܰ௝ , and is fit well by a log-

normal distribution (Fig. 3.3c,d), further supporting a multiplicative source for the batch 

variation. Now, we define a normalization factor: �௜ = ೔ೝۄி೔భۃೝۄி೔భۃ = ೔ೝۄఈ೔ۃ೔ೝۄ೔భ�ۃೝఈ೔ۄ೔భ�ۃ ≈ ఈ೔ۃఈ೔ۄ೔ೝ                                                             ͵.͵                                

Here, the mean is taken over the subscripts on the angled brackets (r refers to technical 

replicates). We have assumed that the distribution of ௜ܰଵ and ߙ௜ are independent of each 

other, and that ۃ ௜ܰଵۄ� ≈ ۃ ௜ܰଵۄ௜�, i.e., there is little variation between the means in each 

transformation. Both assumptions are reasonable. We divide ܨ௜௝ and ܮ௜௝ for each well by this 
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normalization factor, which replaces the varying batch effect factor ߙ௜ with a constant, i.e., its 

mean ߙۃ௜ۄ௜�. 

The preceding analysis predicts that the variability in the F-luc luminescence at each 

value of inducer should arise mainly from the variability between different protoplast batches 

and should therefore be significantly reduced by the normalization factor, �௜. In agreement 

with this, for each inducer value, the normalized data have a significantly smaller coefficient of 

variation than the raw data (Fig. 3.4a,b), showing that the normalization method does indeed 

reduce or even eliminate the batch effect. Tests of the normalization method against simulated 

data (Appendix B.5 and Fig. B.5) show that it reduces the variability in estimating the 

parameters Bi and Hi, and makes them more comparable across plasmids.  

 

Figure 3.4 Effect of normalization on the Arabidopsis dataset. (a, b) Coefficient of Variation 

(COV) of experimental F-luc luminescence values for different inducer levels, in DEX-inducible 

plasmids (a) and in OHT-inducible plasmids (b). COV of normalized data (Norm) is significantly 

reduced and more uniform across inducer levels [F-test (two-sample F-test for equal variances), 

P-value = 0.05]. (c) Representative data and curve fits of some of the best performing 

promoter-repressor pairs. These promoter-repressor pairs were among those that satisfied 
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established criteria for a functional pair, i.e., luminescence above the threshold, fold change 

greater than 1.3, and Hill coefficient between biologically reasonable limits (e.g. 0 and 6).  

We fit the normalized data using a common nonlinear least squares package in Matlab 

(http://www.mathworks.com/products/matlab/ ) and implemented further quality control 

steps to remove protoplast assays that appeared to have failed, or promoters that did not 

function (Appendix B.6 and Fig. B.6). From 128 gene circuits tested in Arabidopsis protoplasts, 

42 met all the functionality criteria. Figure 3.4c shows representative fits of some of our best 

repressor and promoter pairs, and the quantitative parameterization allows comparison of 

different circuits. We found that our synthetic repressor motifs worked but some appear to 

favor different pairings; for example, LexA appeared to favor placement with an OFP motif. 

3.2.5 Validating the model in a different plant family: sorghum 

To test ouƌ ŵethod͛s geŶeƌalitǇ, ǁe ƋuaŶtitatiǀelǇ ĐhaƌaĐteƌized pƌoŵoteƌ-repressor pairs in 

another species in a diverse plant grouping, the monocots. Over 100 synthetic promoter-

repressor pairs for monocots were constructed (Appendix A), and characterized in sorghum 

protoplasts using a similar protocol used for Arabidopsis. In designing sorghum components, we 

used an intƌoŶ iŶ the ϱ͛-UTR to help assure function in monocots [25].  As in Arabidopsis, the 

basal F-luc expression shows significant difference across constructs (Fig. 3.5a), indicating 

substantial batch variability. We found the F-luc luminescence at every inducer level was log-

normally distributed, as in Arabidopsis. These results suggest that the multiplicative model for 

luminescence proposed in Equation 3.1 and 2 also applies to sorghum protoplasts. We found 

for sorghum protoplasts, as with Arabidopsis, the normalization scheme leads to a substantial 

decrease in the coefficient of variation for noisy data (Fig. 3.5b).  

http://www.mathworks.com/products/matlab/
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Figure 3.5 Effect of normalization on the sorghum dataset. (a) Greyscale heat map represents 

measured F-luc luminescence intensities with no inducer present (i.e., basal level expression) 

for two technical (horizontal axis) and different biological (vertical axis) replicates. OHT- and 

DEX-inducible promoter-repressor pairs are plotted separately. (b) COV of experimental F-luc 

luminescence values for different inducer levels, in DEX-inducible plasmids (left) and in OHT-

inducible plasmids (right). COV of normalized data (Norm) is significantly reduced for all inducer 

concentrations (except 0.05 µM, where there is a non-significant decrease) and more uniform 

across inducer levels (F-test, P-value = 0.05). (c) Representative data and curve fits of some of 

the best performing promoter-repressor pairs. These promoter-repressor pairs were among 

those that satisfied established criteria for a functional pair, i.e., luminescence above the 

threshold, fold change greater than 1.3, Hill coefficient between biologically reasonable limits. 

 

Using our method in sorghum protoplasts, of the 112 gene circuits tested, 41 met all the 

criteria (Fig. 3.5c and Appendix B.6). We also found analogous patterns in the data, suggesting 

that the design principles for building synthetic genetic components in plants may apply across 

species (see Discussion).  

3.2.6 Validating predictions with stably transformed plants 

Our transient assays and the derived model should provide quantitative data to predict 

the performance of a given genetic circuit in stably transformed plants. Therefore, we 
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compared the performance of promoter-repressor pairs in transient assays with that in stably 

transformed Arabidopsis plants (Fig. 3.6a). Transgenic Arabidopsis plants were produced with 

three different promoter-repressor genetic circuits:  DEX 35S2xLexA EAR, OHT nos2xGal4 EAR, 

and DEX 2xGalNos EAR (Appendix A). At least 20 independent transgenic lines for 11 distinct 

promoter-repressor genetic circuits were analyzed and screened by Mendelian segregation for 

one copy of the introduced transgene (Table B.2). Plants from one transgenic line each for three 

of the genetic circuits (DEX 35S2xLexA EAR, OHT nos2xGal4 EAR, and DEX 2xGalNos EAR) were 

used as a source for protoplasts with the gene circuit stably integrated (Fig. 3.6a).   

 

Figure 3.6 Experimental design and validation of predictions in stably transformed plants. (a) 

Schematic of experimental design comparing quantitative function of synthetic promoters and 

repressors analyzed with transient expression (left) or stable transgenic expression (right).  For 

transient expression, the genetic circuit is introduced into protoplasts via PEG-mediated 

transformatioŶ.  Foƌ staďle eǆpƌessioŶ, the geŶetiĐ ĐiƌĐuit is fiƌst iŶtegƌated iŶto the plaŶt͛s 
chromosome via Agrobacterium-mediated transformation.  Protoplasts are then prepared from 

the stably transformed plants.  Quantitative parameters for the promoter-repressor pair are 

compared from transient and stably transformed processes.  (b) Protoplast cell counts at the 

time of luciferase imaging from the transient assay (Trans) and from the stable integration 

(Stable), for 2-5 replicates. (c) F-luc and R-luc luminescence values from stable transformants or 

transient assays of the same replicates shown in b. (d) Estimates of the promoter strength 

parameter B for stably transformed plants (Plant) and transient expression (Trans) in 

protoplasts for three promoter-repressor pairs. (e) Estimates of the half-maximal repressor 
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expression H, and (f) estimates of the Hill coefficient n, for the same three pairs. Error bars are 

standard deviations. Significance was determined using a two-sample t-test. 

 

We then compared the quantitative function (behavior) of our gene circuits in transient 

assays to their behavior when stably integrated into the genome.  Protoplasts were prepared 

from the transgenic lines containing a specific promoter-repressor gene circuit; this same 

promoter-repressor gene circuit was transiently introduced into protoplasts from wildtype 

plants (Fig. 3.6a).  We induced repressor expression in both protoplast sets and determined the 

parameters describing their quantitative function. Protoplasts prepared from plants with stably 

integrated gene circuits consistently produced less F-luc and R-luc luminescence (Fig. 3.6b).  

One explanation for this difference is that circuit copy number varies between each protoplast 

set, with the transient assays likely containing more.  To account for the variation, we 

normalized the data to correct for these differences (Appendix B.7 and 8 and Fig. B.7). 

We then fit the data to the Hill function of Equation 3.1 and 2 above, and compared the 

calculated parameters for each gene circuit between stable and transient assays (Fig. 3.6c-e). 

Relative promoter strengths (B) predicted by the transient assays match those found in stable 

plants (Fig. 3.6c).  For all three parameters, error bars of the estimates typically overlap, and for 

these estimates the differences were found not to be significant (P-value = 0.1).  We further 

scrutinized our data by carrying out a bootstrapping statistical analysis (Appendix B.9). This 

analysis confirmed the agreement between the results for the transient assay and stable 

transgenic plants (Fig. B.8). Moreover, it is known that Agrobacterium-mediated transformation 

(used to produce transgenic plants) produces random integrations in the plant chromosome.  

Despite this additional variability, the broad agreement we found in quantitative parameters 
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between protoplasts from stable and transient assays suggests that our approach provides 

reliable prediction for functional synthetic plant parts.  

3.3 Discussion 

Our detailed analysis of promoter-repressor pairs in isolated plant cells provides a basis 

to quantitatively define relationships between genetic elements, an essential first step towards 

producing predictable genetic circuits in multicellular organisms such as plants. Our results 

showed that quantitative data obtained from a rapid transient protoplast assay, when 

combined with rigorous noise analysis and mathematical modeling, allows fast and quantitative 

parameter estimation of synthetic gene parts. We demonstrated that it is possible to reliably 

assess repressor strength using the suite of experimental methods, and these quantitative 

measures were shown to be valid in both eudicots (Arabidopsis) and monocots (sorghum). The 

results support our mathematical model as a rational depiction of quantitative experimental 

data. By comparing our quantitative characteristics with synthetic promoter architecture, we 

can formulate the first design principles for constructing synthetic gene components for plants.  

Interestingly, we found commonality in these principles, suggesting they are general for both 

eudicots and monocots.  

In designing our synthetic elements we use and expand upon concepts developed by 

others.  First, our synthetic repressors were produced using well-known DNA-binding domains 

combined with modular repressor domains from plant genes.  The success of this design 

suggests a path to produce other synthetic components such as activators.  We designed our 

synthetic repressible promoters using well-characterized promoters as scaffolds, into which we 

placed DNA elements for our repressors.  Quantitative analyses (Appendix B.10) suggested that 
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the CaMV35S promoter forms the best scaffold, even though it is not the strongest constitutive 

promoter in either data set.   

Our data also suggest that position of the repressor binding site affects the maximum 

expression of the synthetic promoter in the same manner for both Arabidopsis and sorghum 

(Fig.B.9 and Appendix B.10). Specifically, repressor-binding sites that are positioned near the 

TATA box decrease the maximum strength of the promoter. One explanation is that the bound 

ƌepƌessoƌ, eǀeŶ at loǁ ĐoŶĐeŶtƌatioŶ iŶ ouƌ ͞Off͟ state, leads to steƌiĐ eǆĐlusioŶ of ‘NA 

polymerase.  The data further suggest synergies between the DNA-binding domains and the 

scaffold into which these are inserted. For example, in Arabidopsis, LexA performed better 

when paired with a CaMV35S scaffold, whereas Gal4 performed better in a NOS promoter 

scaffold (though less substantially).  We also found synergies between the DNA-binding 

domains and repressor motifs. In Arabidopsis, the LexA DNA-binding domain performed better 

with an OFP motif.  The synthetic repressor built with Gal4 showed improvement (though less 

substantially) with B3.  In contrast, the EAR repressor motif worked well with both LexA and 

Gal4 DNA-binding domains.  We were not able to fully determine the impact of spacer 

sequences between the repressor binding sites; further studies are needed to determine their 

effect. 

In conclusion, our detailed analysis of synthetic promoter-repressor pairs in isolated 

plant cells provides a basis to quantitatively define relationships between genetic components, 

an essential first step towards engineering tunable function in multicellular organisms such as 

plants.  The procedures described here are immediately applicable for the development of 

comprehensive quantitatively characterized libraries of synthetic plant gene parts, in principle 
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for any plant species. The quantitative parameters of each promoter-repressor pair can be then 

used for in silico suitability testing of its use in more complex genetic circuits, such as a genetic 

toggle switch and feedback circuits. 
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CHAPTER 4 

 

 

 

The Computational Design of Two Different Bi-stable Switches 

4.1 Introduction 

This chapter describes work done for computational prediction of the properties of bi-

stable switches based on both negative inhibition as well as on positive feedback. 

Computational predictions for the negative inhibition systems were made using the library of 

plant parts constructed as part of the work presented in Chapter 3. As discussed in Chapter 1, 

two repressible promoters can be utilized to make a genetic toggle switch. We used 

combinations of these repressible promoters, and using the quantitative parameters that we 

estimated in Chapter 3, we simulated the possible operation of the combined circuit. We 

defined the signature of bi-stability, followed by identification of parts with the ideal properties 

to generate this bi-stability. To deal with the high level of noise in the system, we designed a 

novel bootstrap method to estimate the probability of a particular combination existing in the 

bi-stable region of parameter space. 

 Unlike the negative inhibition system, we did not measure the characteristics of the 

individual parts of the positive feedback system, a version of which was built by the Medford 

lab. Therefore, for the positive feedback system, an ODE-based parameter sensitivity analysis 

was carried out to predict ideal part properties. First a set of equations was constructed to 

simulate the system in silico. Then a non-dimensionalization was performed to reduce the 

dimensionality of the problem. Next, ideal parameter values were identified. This was followed 

by the development of hypotheses on how each parameter is connected to the particular 
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genetic parts. Finally, a list of ideal part properties was identified for the positive feedback 

system design. 

4.2 Negative Inhibition System Methods 

4.2.1 Circuit Design 

A bi-stable switch is a genetic circuit capable of being set to two different states with the 

ability to stay in either state given no outside influence. Such a circuit was first synthetically 

built by Gardner et al. in the form of a dual repression circuit [1]. Our version of this circuit 

(described in Figure 4.1) followed Gardner et al. approach in having two different repressors 

that repress each other [98].  

 
Figure 4.1 Illustration of the Negative inhibition circuit. I1 represents inducer 1 and I2 represents 

inducer 2. The inducible promoter 1 is driving the expression of repressor L (LexA repressor). The 

inducible promoter 2 is driving the expression of a distinct repressor G (Gal4 repressor). 

Repressible promoter G represents the promoter that is repressible by G and is driving the 

expression of L. Repressible promotor L represents the promoter that is repressible by L and is 

driving the expression of G. Either repressible promoter (L or G) can be used to drive the 

eǆpƌessioŶ of the ͞MoleĐule of IŶteƌest͟, ǁhiĐh Đould ďe a ƌepoƌteƌ ŵoleĐule suĐh as luĐifeƌase. 
The optional second copy promoter could either be repressible promotor L driving G expression 

or repressible promotor G driving L expression. This second copy is optional and its inclusion will 

be based on the computation results presented in this chapter.  
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We plan to build this circuit in Arabidopsis using our library of parts characterized in plants 

discussed in Chapter 3. This library contains over 100 promoter-repressor pairs tested in 

Arabidopsis. These 100 promoter-repressor pairs make use of 8 types of repressors. Each of 

these 8 repressor types is built with one of two DNA binding domains: the yeast Gal4 binding 

domain or the bacterial LexA binding domain. Yeast and bacterial binding domains were used to 

maintain orthogonality when incorporating these constructs into Arabidopsis. More 

information on the construction of these genetic circuits can be found in Appendix B. As the 

dual repressor circuit will require one LexA-based repressor combined with one Gal4-based 

repressor we shall call the repressors Gal4 and LexA from this point on. 

The dual repressor circuit will ideally be robust against environmental noise but 

responsive to key inducers meant to switch between states. This leads to the question, what 

promoter-repressor characteristics would give us the best chance of having a bi-stable circuit?  

4.2.2 Creation of the non-dimensional phase diagram 

To look for the most promising bi-stable candidates we used the same set of ordinary 

differential equations, ODEs, that we discussed in Chapter 2 and which were employed by 

Gardner et al. [1], in the following form. Note: As we are not including a leaky expression terms 

as we did in Chapter 2, we are assuming the leaky expression is effectively zero compared to 

the fully repressed state of the circuit. ݀݀ݐܩ = ͳீܤ + ቀ �ቁ௡ீܪܮ −  Ͷ.ͳ                                                                 ܩீܦ

ݐ݀ܮ݀ = ͳ�ܤ + ቀ �ቁ௡�ܪܩ −  ʹ.Ͷ                                                                   ܮ�ܦ
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Where: G and L are the concentrations of the repressors (Gal4 and LexA). t represents time. ீܤ  

is maximum expression over time of the Gal4 repressible promoter. ܤ�  is maximum expression 

over time of the LexA repressible promoter. ீܪ is the repressibility of the promoter driving Gal4 

and ܪ� is the repressibility of the promoter driving LexA. By repressibility we mean the relative 

amount of repressor needed to bring the expression level to half of its relative max expression. ீܦ is a first order degradation rate describing the degradation of the Gal4 repressor. ܦ� is a first 

order degradation rate describing the degradation of the LexA repressor. ng represents the Hill 

coefficient of Gal4 repressor effect on the system. nl represents the Hill coefficient of LexA 

repressor effect on the system. We can non-dimensionalize these equations to make them 

easier to work with. 

 ݀݃݀� = �௚ͳ + ሺ݈ሻ௡� − ݃                                                                 Ͷ.͵ 

݈݀݀� = �௟ͳ + ሺ݃ሻ௡� −  Ͷ.Ͷ                                                                ݈ܦ

 

Where: g, l and τ are dimensionless and are related to the concentrations and time: G, L and t 

by the following relationships:  ݃ = ுீಽ, ݈ = �ு�, � = ௧஽�. The other dimensionless parameters are 

related to the dimensional parameters via the following relationships: �௚= 
஻�ுಽ஽�, �௟= ஻ಽு�஽�, D=

஽ಽ஽�. 

We then used a MATLAB ODE solver to simulate the system starting at different initial 

conditions for g and l (one initial condition with high g and low l and the other initial condition 

with high l and low g), recording the steady state concentration of each simulation. If the 

different initial conditions came to two different steady states, the parameter combination was 
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stored as bi-stable, whereas if only one steady state was found, the parameter combination 

was stored as mono-stable. A tolerance of high l minus low l greater than one was set to 

determine if steady states were different from one another. Although this difference of one is 

arbitrary, it is sufficient to capture the desired trend in stability throughout parameter space, as 

illustrated in Figure 4.2. With this information we created phase diagrams for different 

parameter values to see how the bi-stable space was affected (Figure 4.2). 

 
Figure 4.2 Phase Diagrams. Red areas indicate mono-stable parameter combinations. Green 

areas indicate bi-stable parameter combinations. Each plot represents �௚ being varied along the 

x-axis and �௟ being varied along the y-axis. The Hill coefficients ng and nl values are varied 

between plots. 

 

The phase diagrams show the regions where parameter combinations lead to bi-stable 

behavior and where they lead to mono-stable behavior. Two key observations are as follows: 

(1) Increasing the Hill coefficient, n, increases the size of the bi-stable region and (2) larger and 

equivalent values for parameters �௚ and �௟ are needed to push the system into the bi-stable 

region. Thus, strong and balanced promoters are required for a bi-stable toggle switch. 

Although in principle, the balanced system may be achieved by decreasing the stability of the 
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protein controlled by the stronger promoter, increasing the strength of the weaker promoter 

will result in a system that is predicted to be farther into the bi-stable region.   

4.2.3 Selecting the parts for switch construction 

Table 4.1 The seven promoter-repressor pairs that meet the criteria. Constitutive Element: a 

sequence of DNA necessary for creating promoters with constitutive expression. Repressor 

Binding Type: a fragment of DNA whose sequence allows particular repressors to bind. 

Repressor motif: the domain in our protein-based repressors that is required to repress 

transcription.  Number of Binding Site: the number of places the repressor can bind to the 

promoter. Other Binding Site Properties: include if the sites were near the TATA box or if a 

larger amount of spacer DNA was used between the binding sites compared to the other 

promoters. Order: how each genetic domain was positioned with respect to the other domains. 

Figure 3.1a contains a visual representation of the positioning of these pieces. 

Constitutive 

Element 

Repressor 

Binding Type 

Repressor 

Motif 

Number of 

Binding Sites 

Other Binding 

Site Properties 

Order 

35s LexA EAR 1  35s LexA 

35s LexA OFPx 4 near TATA box 35s 4xLexA 

35s LexA OFP1 4 near TATA box 35s 4xLexA 

Nos LexA B3 8 with spacer DNA 8xLexA Nos 

Nos LexA OFPX 2  2xLexA Nos 

Nos Gal4 EAR 2  Nos 2xGal4 

Nos Gal4 EAR 2  2xGal4 Nos 

 

As presented in Chapter 3 we developed a library of quantitatively characterized 

promoter-repressor pairs. We then produced phase diagrams which described the effect of the 

different promoter-repressor properties on the size of the bi-stable region as illustrated in 

Figure 4.2. With this information, we developed further criteria based on the information we 

gathered from our phase diagram analysis to select from our library the most promising 

promoter-repressor pairs. The criteria are as follows: 

• one experimental replicate must result in the Hill coefficient n>2 for the promoter-

repressor pair 
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• this experimental replicate must also show a P value < 0.1 for the least squares 

parameter estimate of the statistical hypothesis test that n > 0. 

• one experimental replicate must result in a fold change > 2 

Seven out of over one hundred promoter-repressor pairs in our library meet these criteria. 

These seven promoter-repressor pairs are listed in Table 4.1.  

As two different repressor binding types are required for construction of this switch, we 

need to choose one LexA and one Gal4 promoter-repressor pair for each combination. 

Choosing promoter-repressor pairs from Table 4.1 gives us a total of 10 possible combinations 

for the dual repressor circuit. The task then became to predict which of these 10 combinations 

has the highest probability of generating a bi-stable circuit.  

4.2.4 Finding probability of being bi-stable: a bootstrap method 

 We developed a method for determining the probability of producing a bi-stable system 

for each combination using the quantitative information collected as part of our plant part 

library presented in Chapter 3. This quantitative information included 3 parameter values for 

each promoter-repressor pair being tested, B, H and n. B describes the relative max strength for 

each promoter. This would be comparable to 
஻�஽� or 

஻ಽ஽ಽ in our model described in equations 4.3 

and 4. Remeber H describes the repressibility of each promoter. This would be comparable to ீܪ or ܪ� in our model. n is then the Hill coefficient for the ƌepƌessoƌ͛s effeĐt oŶ the pƌoŵoteƌ. 

This would be comparable to ݊௚ or ݊௟ in our model. However, the estimates we made for the 

values of these parameters are limited in their accuracy due to noise in the data. In order to 

account for noisy data, we thought that if we could understand the error distribution of these 

parameter estimates, we could predict how much of this distribution lies in the bi-stable region, 
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giving us a probability of being bi-stable. We then developed a bootstrap-based approach to 

make this prediction. A reference for bootstrap methods can be found in [2]. 

Table 4.2 Outline of bootstrap-based method for predicting the bi-stability of each 

combination.  

Step # Brief Description 

1 Estimate the mean, μ, and standard deviation, σ, of the log of the parameters for 

each promoter-repressor pair.  

2 Generate a random set by sampling 1,000 B and H values from a normal 

distribution given the mean, μ, and standard deviation, σ, for log B values and μ 

and σ for log H values. 

3 For each of the 8 combinations, exponentiate each of these randomly sampled 

values and calculate all possible Xg and Xl values from the sampled Bs and Hs. This 

gives a vector of length 1 x 106 for both Xg and Xl. 

4 Separately for n = 2, 3 or 4 determine what percentage of the Xg, Xl data points lie 

in the bi-stable region using the non-dimensionalized phase diagram. 

5 Rank combos by their estimated probability of being in the bi-stable region. 

6 Repeat steps 3 and 4 after adding the corresponding mean(X) values to each of the 

1 x 106  points we have for Xg and Xl distributions. This was done to approximate 

the probability for combinations with 2 copies of one repressible promoter paired 

with 1 copy of the other (i.e. 1:2 and 2:1 combinations). Different copy numbers 

were considered as adding additional copies of the various repressor-promoter 

pairs would be within reason considering our experimental time line for the 

project.    

  

 Development of the method for predicting the probability of being bi-stable, given the 

quantitative information from our library of plant parts, started by assuming a log normal error 

distribution for the parameter estimates B and H. The reasoning behind the log normal 

assumption is due to the following: The bootstrap sampling performed for the error estimates 

in Chapter 3, for estimating B and H, yields a distribution resembling a log-normal distribution 

(illustrated in Appendix B Figure B.8 for B, H and n). Another reason influencing this choice were 

the log normal distributions of basal firefly luciferase data illustrated in Figure 3.3, considering 

that both B and H have units of molecules and the firefly luciferase data is linearly proportional 
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to molecular number. We can estimate the mean and standard deviation for the assumed log 

normal error distribution for six out of the seven promoter-repressor pairs that met our criteria. 

However, the seventh promoter-repressor pair, 35s 4xLexA OFPx, was only tested once in our 

library of characterized plant parts. We therefore have no replicate measurements from which 

to estimate a mean and standard deviation.  

 As presented in Chapter 3, the stable transformation experiments suggested that we 

require values for n in the range of 2-4. This provides the information needed to develop our 

method for predicting the probability of being bi-stable for each combination as outlined in 

Table 4.2. This method was applied to each combination whose error distribution could be 

estimated. 

4.3 Negative inhibition system Results and Discussion 

 

4.3.1 Combination strengths 

Table 4.3 Strengths of 10 our combinations. 

Promoter-Repressor Pair 1 Promoter-Repressor Pair 2 Strengths 

Nos 2xGal4 EAR 35s LexA EAR 

 

These are one of the first 

constructs tested in 2011 

and have continued to show 

the promise of bi-stability 

since then. 

2xGal4 Nos EAR 35s LexA EAR 

Nos 2xGal4 EAR 35s 4xLexA OFPX Show the highest 

cooperativity values of any 

pair. 

2xGal4 Nos EAR 35s 4xLexA OFPX 

Nos 2xGal4 EAR 35s 4xLexA OFP1 Are closely related to the 35s 

4xLexA OFPX construct but 

do not rank among the 

higher preforming 

combinations in terms of 

their probability of being bi-

stable. 

2xGal4 Nos EAR 35s 4xLexA OFP1 

Nos 2xGal4 EAR 8xLexA Nos B3 

2xGal4 Nos EAR 8xLexA Nos B3 
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Nos 2xGal4 EAR 2xLexA Nos OFPX These are the top four in 

terms of their probability of 

being bi-stable. 

2xGal4 Nos EAR 2xLexA Nos OFPX 

 

The ranking of 8 out of 10 possible combinations is made apparent in Figure 4.3. This 

whole process was repeated 1,000 times to assess the variation in the estimation of these 

probabilities. The red error bars on the plots in Figure 4.3 are the standard deviations of these 

1,000 repeats. Given this analysis, a summary of all 10 combinations strengths can be found in 

Table 4.3. Several of these constructs are currently being tested in Arabidopsis for the presence 

of a bi-stable response. 

 

Figure 4.3 Estimated Bi-stable Probability. The combinations are represented in the following 

panels: (a) 2xGal4 Nos EAR with 2x LexA Nos OFPX (b) Nos 2xGal4 EAR with 2x LexA Nos OFPX (c) 

2xGal4 Nos EAR with 8x LexA Nos B3 (d) Nos 2xGal4 EAR with 8x LexA Nos B3 (e) 2xGal4 Nos EAR 

with 35s 2xLexA EAR (f) Nos 2xGal4 EAR with 35s 2xLexA EAR (g) 2xGal4 Nos EAR with 35s 4xLexA 

OFP1 (h) Nos 2xGal4 EAR with 35s 4xLexA OFP1. Blue bars represent 1 copy of the Gal4-based 

repressible promoter paired with 1 copy of the LexA-based repressible promoter. The cyan bars 

represent 2 copies of the Gal4-based repressible promoter paired with 1 copy of the LexA-based 

repressible promoter. The green pars represent 1 copy of the Gal4-based repressible promoter 

paired with 2 copies of the LexA-based repressible promoter. The red error bars are +/- 1 
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standard deviation for the 1,000 replicated simulations. The x-axis represents categorical labels 

representing the assumed n value for each parameter combination. The y-axis represents the 

calculated probability of the different parameter combinations existing in the bi-stable region. 

 

4.4 Positive feedback system Methods 

4.4.1 Why create a positive feedback system? 

It was desirable to construct a positive feedback-based switch for plants in addition to 

the negative inhibition-based switch discussed earlier in this chapter. Chapter 2 goes into more 

detail on advantages of a positive feedback system over a negative inhibition system. Also 

theoretically, positive feedback systems can produce a bi-stable system using only one 

feedback promoter, which is less complicated then the double repressor system with requires 

two promoters that inhibit each other. Figure 4.4 describes a case of such a positive feedback 

system. This relatively simple circuit topology is where we decided to start construction of our 

positive feedback-based system for plants. To augment the design and construction of the 

genetic parts we performed a computational analysis of the switch described in Figure 4.4 with 

the purpose of defining ideal properties for each part. We hope this work will set up the 

foundation for further synergistic computational and experimental work in design of this 

system. 
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Figure 4.4 Illustration of Positive Feedback circuit. The ͞A͟ laǇeƌ ƌepƌeseŶts aŶ iŶduĐiďle 
promoter driving the expression of a protein-based activator molecule, also called A. The layer 

͞B͟ ƌepƌeseŶts the positiǀe feedďaĐk laǇeƌ iŶ the geŶetiĐ Ŷetǁoƌk. This laǇeƌ ĐoŶsists of a 
promoter driving the expression of the protein-based activator molecule B which in turn activates 

its oǁŶ tƌaŶsĐƌiptioŶ. ͞C͟ ƌepƌeseŶts the ƌepoƌteƌ laǇeƌ iŶ the geŶetiĐ Ŷetǁoƌk. This laǇeƌ ĐoŶsists 
of a promoter driving the expression of a reporter, C, such as green fluorescent protein or a 

luciferase molecule that can be monitored to assess the activity of the circuit. The arrows 

represent upregulation of the layer at the end of the arrow by the layer at the beginning of the 

arrow. 

4.4.2 Model Creation  

Positive feedback based bi-stable genetic circuits have been built in eukaryotic 

organisms via a three-layered system [3]. We wanted to construct a similar yet bi-stable three-

layered system with the circuit topology illustrated in Figure 4.4. We first created a 

mathematical framework from which to predict ideal part properties. The simplest 

mathematical model we could think of was used in development of this framework. This model 

consisted of activating Hill equations for the transcription factors effect on each promoter. First 

order degradation was assumed for each transcription factor and reporter. We also assumed a 

zero order leaky expression term.  ݀݀ݐܣ = ܽଵ − ݀ଵܣ                                                                       Ͷ.ͷ ݀݀ݐܤ = ܽଶ + ܾଵܤ௡భͳ + ቀ ଵቁ௡భܤ݇ + ܾଶܣ௡మͳ + ቀ ଶቁ௡మܣ݇ − ݀ଶܤ                                         Ͷ.͸ 

ݐܥ݀݀ = ܽଷ + ܽଷܤ௡యͳ + ቀ ଷቁ௡యܤ݇ + ܾସܣ௡రͳ + ቀ ସቁ௡రܣ݇ − ݀ଷܥ                                           Ͷ.͹ 

Where: ܽଵ aŶd ܽଶ ƌepƌeseŶt the loǁest possiďle leǀel of eǆpƌessioŶ of the tƌaŶsĐƌiptioŶ faĐtoƌs 

A aŶd B ƌespeĐtiǀelǇ. ܽଷ ƌepƌeseŶts the loǁest possiďle leǀel of eǆpƌessioŶ of the ƌepoƌteƌ 
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pƌoteiŶ, C. ݀ଵ, ݀ଶ aŶd ݀ଷ ƌepƌeseŶt the degƌadatioŶ ĐoeffiĐieŶts foƌ the pƌoteiŶs A, B aŶd C 

ƌespeĐtiǀelǇ. t ƌepƌeseŶts tiŵe. ܾଵ, ݇ଵ aŶd ݊ଵ aƌe the paƌaŵeteƌs of the Hill fuŶĐtioŶ 

ƌepƌeseŶtiŶg the positiǀe feedďaĐk tƌaŶsĐƌiptioŶ faĐtoƌ s͛ ;B s͛Ϳ aĐtiǀatioŶ of its oǁŶ eǆpƌessioŶ. ܾଶ, ݇ଶ aŶd ݊ଶ aƌe the paƌaŵeteƌs of the Hill fuŶĐtioŶ ƌepƌeseŶtiŶg the effeĐt of the tƌaŶsĐƌiptioŶ 

faĐtoƌ A oŶ the eǆpƌessioŶ of B. ܾଷ, ݇ଷ aŶd ݊ଷ aƌe the paƌaŵeteƌs of the Hill fuŶĐtioŶ 

ƌepƌeseŶtiŶg the effeĐt of the tƌaŶsĐƌiptioŶ faĐtoƌ B oŶ the eǆpƌessioŶ of C. ܾସ, ݇ସ aŶd ݊ସ aƌe 

the paƌaŵeteƌs of the Hill fuŶĐtioŶ ƌepƌeseŶtiŶg the effeĐt of the tƌaŶsĐƌiptioŶ faĐtoƌ A oŶ the 

eǆpƌessioŶ of C. The model presented in equations 4.5-7 was used to describe the effect 

different aspects of the genetic parts will have on the behavior of the circuit. 

4.4.3 Positive Feedback: Non-Dimensional Phase Diagrams  

To make this system of equations easier to work with, equation 4.7 was removed under 

the assumption that the promoter driving the expression of C is not being saturated by 

transcription factors. In other words we are assuming the promoter driving the expression of C 

will not become saturated during the low state expression of B. Also, although outside of the 

scope of this first model, it should be noted that downstream components may affect the 

stability of upstream states in a process referred to as retroactivity [4]. Therefore, by writing 

the equations as we have, we are also assuming any retroactivity effects are negligible. Also 

assuming steady state, this now two-equation system (equations 4.5 and 6), can be non-

dimensionalized to further simplify the analysis to one equation.  

 Ͳ = � ௡భͳܤ̃ + ௡భܤ̃ + ܮ −  Ͷ.ͺ                                                                  ̃ ܤ
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Wheƌe:  ܣ ̃ aŶd ܤ ̃aƌe ƌelated to A aŶd B ǀia the folloǁiŶg ƌelatioŶships: ܣ ̃ =  ஺௞మ aŶd ܤ ̃ =  ஻௞భ. 

The diŵeŶsioŶless paƌaŵeteƌs X aŶd L aƌe ƌelated to the diŵeŶsioŶal paƌaŵeteƌs ǀia the 

folloǁiŶg ƌelatioŶships: � = ௕భ௞భሺ�భ−భሻ�మ ܮ , =  
௔మ௞భ�మ + ௕మ௞మ�మ௞భ�మ × Ã�మଵ+Ã�మ aŶd ̃ܣ = ௔భ௞మ�భ. 

At steady state this non-dimensional equation 4.8 gives us a parameter space containing 

only three parameters, n1, L and X. This space describes all possible behavior for the system as 

we have modeled it. This lower dimensional parameter space can be more easily visualized 

compared to higher dimensional space seen in equations 4.5-7. We can use equation 4.8 to ask 

the question; which parameter combinations gives us bi-stability? We can also visualize the 

non-dimensional phase diagram that encompasses the bi-stable region and ask the question: 

What effect does each parameter have on this bi-stable system? Finally we can relate changes 

in properties of different genetic parts with changes in different parameters, allowing for us to 

identify ideal part properties based on the mathematical analysis.   

4.5 Positive feedback system: Results and Discussion 

4.5.1 Parameters relationship to bi-stable space 

Figure 4.5 illustrates how each dimensionless parameter in equation 4.8 is graphically 

related to the bi-stability of the system. As seen in Figure 4.5, when n1 (the cooperativity of the 

transcription factor B͛s effeĐt oŶ the sǇsteŵ) increases, so does the size of the bi-stable region.  
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Figure 4.5 Phase Diagrams for the positive feedback system. The blue area represents bi-stable 

parameter combinations, whereas the white area represents mono-stable parameter 

combinations. The x-axis represents values of the dimensionless parameter X. The y-axis 

represents values of the dimensionless parameter L. n1 is varied from left to right as indicated 

above each plot. 

 

The bi-stable space exists for low values of L. There also appears to be a need for a balanced X 

value. As seen in equation 4.8, X helps to set the maximum expression of the positive feedback 

in the system. In other words, it scales the impact ̃ܤ has on the circuit. Taking into account the 

effect of X on the circuit and this phase diagram analysis, we can see that too high an X value 

would correspond to a system that is always on, whereas too low an X value, a system that is 

always off. In other words, as we cross the bi-stable region, we move from a system on the left 

that is naturally always off to a system on the right that is naturally always on. Therefore, the 

ideal parameter value will be to keep X intermediate between high and low values. 

 We can now start to think about where early genetic parts built in the Medford lab place 

us in respect to the phase diagrams. In the Medford lab, early experimental data collected from 

these genetic parts suggested that the positive feedback promoter could be induced but had 

only one low expression level (i.e. steady state). As the experimental system suggests, we have 

a mono-stable system with a low steady state value; X is therefore confined to the left side of 

the bi-stable region. We did not draw any conclusions about L and n1 from these data. 
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 Given this starting region of parameter space, we can determine how each 

dimensionless parameter should be tuned to bring us closer or within the bi-stable region. L 

should be decreased to maximize our chances of existing in the bi-stable region. X should be 

increased as our current estimate for the value of X is lower than what is required for bi-

stability. n1 should be increased as this increases the size of the bi-stable region in both the L 

and X directions.  

We can use the relationships between the dimensionless parameters and the 

dimensional parameters to identify what changes in the dimensional parameters will bring the 

system closer to the bi-stable region. To increase X we considered its definition, Χ = ௕భ௞భሺ�భ−భሻ�మ . 

To put this relationship into words, increasing b1, k1, n1 or 1/ d2 in combination or separately 

will increase the parameter X. To decrease L we consider its definition, ܮ =  
௔మ௞భ�మ + ௕మ௞మ�మ௞భ�మ ×

Ã�మଵ+Ã�మ. Using similar reasoning as we used for X we can identify dimensional parameters needed 

to be either increased or decreased to lower the value of the non-dimensional parameter L. 

Notice, increasing d2 improves the value of L but does not improve X. However, increasing the 

value of k1 improves the values of L and X. In fact, k1 is the only parameter that has positive 

effects on both L and X.  

4.5.2 Experimental part relationship to the parameters 

Before we can identify ideal genetic part properties it is helpful to lay down a basic 

understanding of how each part is related to each parameter. This can be challenging as many 

parameter to part relationships are not known. However, this is an ideal challenge for us to 

tackle due to the synergistic benefit of our mathematical modeling in conjunction with 
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experimental study. We can use this benefit to provide a platform for hypothesizing and then 

testing what these parameter part relationship may be. We started by listing out the different 

experimental parts we have in our system: promoters, transcription factors (such as activators) 

and reporters. Next, we listed out the different parameter types we used: b type (e.g. b1, b2), d 

type (e.g. d1, d2), k type (e.g. k1, k2), n type (e.g. n1, n2) and a type (a1 and a2). Then, hypothesis 

were constructed about the parameter type to genetic part relationship should be.  

The b type parameters are related with promoter strength since they appear in the 

numerator of the activating Hill function. Thus, they can be affected by changing the combined 

maximum strength of the promoters driving the particular transcription factors. This may be 

achieved by designing stronger transcription factors as well as stronger promoters. The d type 

parameters are all degradation parameters and hence can be affected by changing the 

thermodynamic stability of the different transcription factors or targeting the transcription 

factors for faster degradation via a degradation tag. The k type parameters can be affected by 

changing the number of binding sites a particular promoter has for its activator. As this 

assumption is less intuitive than the others, the following explanation may be helpful.  

The parameter k has units of molecules and helps control at what point an activating 

transcription factor starts to saturate a particular promoter. Saturation is thought to happen 

when enough of a particular transcription factor is present that all the binding sites for that 

transcription factor on the promoter are filled. Therefore, further increase in the transcription 

factor concentration will have little to no effect. If we add more binding sites to the promoter, 

more transcription factors should be able to bind and the k type parameters should be 

increased. With this line of reasoning also comes the caveat that there will be a certain point at 
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which adding more binding sites does not increase promoter expression as the binding sites 

may be too far away from the promoter.  

The Hill coefficient or n type parameters can be changed by changing cooperative 

binding effects between the transcription factors. A currently untested hypothesis on how to 

achieve this increase in cooperativity is to use or design transcription factors that have the 

ability to attract more transcription factors once bound to the promoter. If this hypothesis is 

valid we should see an increase in cooperativity by balancing the number of binding sites and 

perhaps positions of the binding sites with transcription factors capable of this attraction. 

Finally, the leaky expression or a type parameters can be changed by many mechanisms such as 

decreasing the stability of the corresponding transcription factor or by reducing the low level 

expression from a promoter.  

Some of these changes are more easily achievable experimentally compared to others. 

Also in real systems it may be impossible to change parameters independently from one 

another, such as b1 and k1. With this in mind, the ideal part properties identified in these 

studies are as follows. The promoter driving B needs to have a sigmodal response to the 

transcription factor B which may be affected by changing the number of binding sites for B. The 

max strength of the feedback from the B needs to be increased which may be affected by 

changing the number of binding sides for B. The low level of B expression needs to be kept in 

check. This may be accomplished by changing d1 but at the expense of also changing the max 

expression of B. Another option may come from changing the number of binding sites. Using 

the assumed parameter to part relationships it is quite likely there are many ways these ideal 

properties could be designed; however, one method that stands out here is adjusting the 
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number of binding sites. Remember with the dimensionless parameters L and X, k1 was thought 

to increase X while decreasing L. If k1 can be controlled by the number of binding sites this may 

be a key part property to optimize. 

In the design of our positive feedback system we used computationally developed phase 

diagrams. We then estimated our position on these phase diagrams from qualitative results 

collected by the Medford lab for this positive feedback system. This allowed us to make 

creative suggestions to refine the design of the genetic parts in order to move to the desired 

area of the phase diagram. In the end we identified ideal part properties for design of our 

positive feedback system. 

4.6 Conclusion 

 This study started with the goal of determining the ideal parts for two different types of 

bi-stable systems. The first system was based on a negative inhibition circuit that required a 

combination of genetic parts from our previously developed library.  We developed part 

selection criteria and a method for predicting the probability of creating a bi-stable system with 

different part combinations; this leads to determining the strengths and weakness of each part 

combination.  

The second system was based on positive feedback. As we did not have access to a part 

library for building the positive feedback system in plants, we wanted to know if we could 

identify key properties that the different parts should have. To do this we constructed a system 

of ODE͛s to desĐƌiďe the effeĐt diffeƌeŶt plaŶt geŶetic parts could have on the system. Non-

dimensionalizing these ODEs allowed us to reduce the parameter space to 3 dimensions. This in 

tuƌŶ alloǁed foƌ ideŶtifiĐatioŶ of the ŵatheŵatiĐal paƌaŵeteƌ͛s effeĐt iŶ the sǇsteŵ. FiŶallǇ, we 
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were able to suggest ideal part properties for the positive feedback system based on 

connections between the parameters in the model and the genetic parts. Altogether these 

predictions provide a platform for construction of plant synthetic gene circuits that are hoped 

to lead to the first multicellular bi-stable switches. 
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CHAPTER 5 

 

 

 

Identification of Transcriptomic Trends in Cancer Cell Lines 

5.1 Introduction 

Cancer is one of the leading causes of mortality worldwide, and over half a million 

people died of cancer in the United States in 2015 [1]. Many cancer patients are treated with 

chemotherapy. While there are new targeted therapies available for a few cancers, many 

patients will encounter broad range chemotherapy drugs, such as cytotoxic drugs, as one of the 

common lines of treatment [2]. However, there are a large number of drugs available and 

patient response to drugs is very heterogeneous [3] [4]. Because every patient and every cancer 

is different, this naturally raises the question: can we tailor cancer drugs to the specific cancer 

of a patient, and develop individualized medicine? In order to do this, we need to find 

signatures of sensitivity or resistance to a drug, i.e. signatures of those biological switches that 

cells can turn on to escape from a chemotherapy drug. Because these biological circuits are 

genetic, we need to look for the molecular signatures that results from the underlying genetic 

circuitry. Some of these signatures can be found in the transcriptome. 

Transcriptomic data is publically available for cancer cell lines in many databases, 

including the NCI60 and GDSC. The NCI60 was established in 1990 as a panel of 60 cell lines to 

screen existing and potential drugs for cancer treatment [5]. The NCI60 database is part of the 

Developmental Therapeutics Program at the National Cancer Institute. The GDSC database 

contains a panel of over 600 cell lines used to screen drugs for cancer treatment [6]. Its main 

reference was published in 2013 and is maintained by the Cancer Genome Project at Wellcome 
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Trust Sanger Institute and the Center for Molecular Therapeutics at Massachusetts General 

Hospital Cancer Center [6].  Both databases contain transcriptomic data in the form of micro-

array analysis at the native state of the cell lines (i.e. transcriptomic state of the cell before drug 

treatment).   

Micro-array analysis is done by extracting mRNA from the cell lines. This mRNA is then 

reverse transcribed to cDNA that is labeled with fluorescence. The labeled cDNA then is allowed 

to hybridize with probes on a microchip. These probes consist of complementary sequences to 

many known genetic transcripts. The chip is then washed to remove unbound cDNA and the 

fluorescence is measured for each probe. There are often several probes on a chip 

corresponding to one gene target; these are called probe sets. Preprocessing methods, such as 

RMA (Robust Multi-array Average) [7], are applied to these probe sets to give a signal value for 

each gene represented on a micro array chip.  

The purpose of RMA, which may be among the most widely used preprocessing 

methods, is to reduce the experimental variation within a chip as there are differences in probe 

sets used and the affinities of those probe sets for their targets. This method was developed 

using data collected on Affymetrix Gene Chips [7]. It has been shown that when compared with 

other methods, RMA can reduce more of the variation while maintaining comparatively little 

bias [7].  Even after RMA processing, there exists experimental variation from data collected on 

diffeƌeŶt Đhips aŶd diffeƌeŶt eǆpeƌiŵeŶts. Methods, suĐh as COMBAT ;͚CoŵďatiŶg͛ ďatĐh effeĐt 

when combining batches of gene expression microarray data), have been developed to reduce 

the further variation that exists when combining data across different experiments from 

multiple chips [8]. 
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The micro array data found in the NCI60 and GDSC databases is coupled with drug 

sensitivity data for each of the cell lines. There also has been much research over the years on 

the power of these micro-array assays to predict drug sensitivity [9]. This work includes the 

development of gene filtration methods and models for prediction of drug sensitivity [10] [11] 

[12]. However, there has been less work done in comparing different methods and repeatability 

between methods for construction of predictive models for these data. For example questions 

like the following are still open: 

1) Which gene filtration method and model type are best for predicting drug response? 

2) Are the best performing methods and models different for different drugs? 

3) How do the predictions change if the database used (i.e. NCI60 or GDSC) changes? 

  DREAM projects are challenges posed to the public often aimed at solving biological 

problems [13]. They often pose a challenge and accept entries attempting to meet that 

challenge over a set time range. Recent work published in response to one of the DREAM 

projects has begun to look at the predictive power of this transcriptomic data for breast cancer 

cell lines while running a comparative model analysis for different model types [14]. Here we 

expand on this idea by running a comparative analysis of Databases, Models and gene filtration 

methods focusing on 13 chemotherapeutics tested in both the NCI60 and GDSC databases. This 

led us to assess the repeatability of data across the two databases and create a data set of 

accuracy scores for over 1,000 database, drug, gene filtration and model type combinations.  

5.2 Repeatability Between the Databases 

The two major repositories of cancer line data, the NCI60 and the GDSC, have data on 

many of the same cell lines, which were collected by different groups at different points of 



 

94 

 

time. This gives us an opportunity to test whether the data in the two databases give 

comparable results, i.e. whether the results of a statistical analysis from one database is 

reproducible when taking data from the other database. Reproducibility of results across 

databases is important for science, and would give us confidence in the quality of the data 

maintained. The question becomes how to compare databases for repeatability. For the NCI60 

and GDSC there are two different types of data we need to compare for repeatability, micro-

array data and the drug sensitivity data. The 35 matching cell lines between the NCI60 and 

GDSC (i.e. cell lines that were tested in both databases) present an ideal place from which to 

assess this repeatability. 

We started by comparing the micro-array data. Before we could begin to compare these 

databases we needed to make sure we were using the same probe sets in both the NCI60 and 

GDSC dataset by only keeping probes that were present in both data sets. We also needed to 

reduce the known variability of working with micro-array data collected in different samples.  

Common techniques used to reduce this variability are RMA and COMBAT (as discussed in the 

introduction of this chapter). Although not included in this study, there are other methods 

available for normalizing micro-array data, such as FROZEN [15]. 

For the purposes of this comparison we tried many different methods of preprocessing 

the data, using the techniques mentioned above, followed by clustering of the matching cell 

lines. Four of the preprocessing methods are described in Table 5.1. We used an Euclidean 

distance agglomerative hierarchical clustering algorithm implemented in R through the 

fastcluster package for clustering matching cell lines based on their micro-array data [16]. This 

algorithm clusters cell lines according to their Euclidean distance assuming a space where each 
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probe measurement is a dimension. We then chose the method that clustered the most 

matching cell lines together. Matching cell lines were said to cluster together when there were 

no other cell lines between them in terms of their Euclidean distance. 

Table 5.1 Preprocessing Methods for Combining Databases. Four preprocessing methods used 

to test whether if microarray data from different databases could be combined. 

Method 

Number 

Details of Method Results of 

Method 

1 1. Download .cell files from NCI60 and GDSC databases 

2. Combine data before RMA  and COMBAT processing 

3. Run through clustering algorithm 

One pair of 

matching cell 

lines clustered 

together 

2 1. Download .cell files from NCI60 and GDSC databases 

2. RMA  and COMBAT processes NCI60 and GDSC data separately 

3. Run through clustering algorithm 

zero pairs of 

matching cell 

lines clustered 

together 

3 1. Download .cell files from NCI60 and GDSC databases 

2. Combine data before RMA  and COMBAT processing 

3. Center data by probe value means and divide by probe value standard 

deviations for each probe across all cell lines in combined NCI60 and 

GDSC data set 

4. Run through clustering algorithm 

Zero pairs of 

matching cell 

lines clustered 

together 

4 1. Download .cell files from NCI60 and GDSC databases 

2. RMA  and COMBAT processes NCI60 and GDSC data separately 

3. Center data by probe value means and divide by probe value standard 

deviations for each probe across all cell lines in combined NCI60 and 

GDSC data set 

4. Run through clustering algorithm 

26 pairs of 

matching cell 

lines cluster 

together 

 

Figure 5.1 illustrates the results from each of these four methods. We chose to move 

forward with preprocessing method 4 as it was by far the one with the most matching cell lines 

clustered correctly. Without further study we cannot say why this method performed the best, 

however, one possible reason could be in how COMBAT handles the batch effect. COMBAT was 

developed by testing data collected on different chips of the same microchip array type. 

However, the NCI60 and GDSC are collected not only between many different chips but the 
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NCIϲϬ ĐoŶtaiŶ ŵaŶǇ diffeƌeŶt aƌƌaǇ tǇpes; heƌe ǁe Đhose to use the NCIϲϬ͛s Affymetrix HG-

U133A array data [5] whereas for the GDSC we used HT-HGU122A Affymetrix whole genome 

array data [6]. Perhaps it is the differences in these arrays that make method 4 the best. 

Altogether this brings up an important point for these studies across databases: It is imperative 

to have a control for which to check repeatability between the databases to ensure usability of 

the data when running multi-database studies. 

Figure 5.1 Cell Line Clustering. Dendogram outputs of the fastcluster algorithm on top of a blue 

and green bar graphs indicating the database type of each cell line (i.e. NCI60=green, GDSC-blue). 

a) Data clustered after preprocessing method 1.  As we can see in the bar graph the cell lines are 

clustering by database. b) Preprocessing method 2, (c) preprocessing method 3 and (d) 

preprocessing method 4. 

 

Next, we wanted to assess the repeatability of the drug sensitivity data between these 

databases. Both the NCI60 and GDSC report growth inhibition scores as defined in equation 5.1. 

One way to conceptualize this score is that scores between 0 and 1 represent retardation in the 

growth of the cells (i.e. cell are dividing more slowly but are still growing the population size), 

while scores < 0 represent a decrease in the initial size of the population. We chose to use the 
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GI50 for our study. The GI50 is the log of drug concentration needed to bring the growth 

inhibition score to 50% of its initial value [5] [6].  

ܫܩ  =  �௜−�௭஼−�௭  ×  ͳͲͲ                                                                    5.1 

 

Where: GI = growth inhibition score, Tz = cell population when drug is added, Ti = cell 

population after incubation with drug and C = control: cell population after incubation with no 

drug. 

 

Figure 5.2 Matching Cell Line Drug Sensitivity Pearson Correlations. This figure shows a blue 

histogram of Pearson correlation coefficients between the GI50 values of 13 drugs for each of 

the matching cell lines in the NCI60 database against the GDSC database. The green histogram is 

obtained when extrapolated GI50 values have been removed. 

 

Although the NCI60 and GDSC are both reporting the GI50, the assays they used to 

collect the cell population information are different. The NCI60 uses SRB staining, where cell 

population measure is based on the colorimetric dye, Sulforhodamine B, binding to amino acids 
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of fixed cells [17]. The GDSC on the other hand uses the Thermo Fisher Syto60 Fluorescent 

Nucleic Acid Stain [6]. As we are looking for a general score of drug sensitivity both of these 

assays should provide equivalent information. To assess the repeatability of the drug sensitivity 

data, ǁe ĐalĐulated the PeaƌsoŶ ĐoƌƌelatioŶs foƌ eaĐh ŵatĐhiŶg Đell liŶe͛s GIϱϬ ǀalues aĐƌoss all 

13 drugs of interest, as represented by the blue histogram in Figure 5.2. However, we 

discovered that the GDSC database used extrapolated values when calculating the GI50 for 

certain cell line and drug combinations2. After removal of these extrapolated values we re-ran 

the comparison across the matching cell lines and found a general shift upwards in the Pearson 

correlations, as seen in the green histogram in Figure 5.2.  

5.3 Comparative Analysis 

To construct our comparative analysis of databases, drugs, models and gene filtration 

methods we started by creating a work flow depicted in Figure 5.3. The work flow was 

constructed to approach the comparative analysis with an unbiased systematic method for 

predictive model creation. As each model type has a random component, all models were 

created three times to access the repeatability of building each model. The work flow has four 

factors and several different measures of accuracy for each model.   

Factor 1 represents which database to use. We decided to look at the two different 

databases in five different ways: (1) NCI60 only, (2) GDSC only, (3) NCI60 and GDSC combined, 

(4) Non-extrapolated GDSC only (i.e. we removed the cell lines for which the GI50 was based on 

                                                             
2 The realization and removal of the extrapolated GI50 values was conducted by Joshua Mannheimer. 
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extrapolation) and (5) Non-extrapolated GDSC and NCI60 combined. This allowed us to look 

into the following questions: 

- Do models constructed on NCI60 only and GDSC only give comparable results? 

- Does the use of extrapolated values ever improve the models performance? 

- Does combining the data sets improve model performance? 

 

Figure 5.3 Prediction Score Generation Work Flow. This figure illustrates the work flow for 

generating the prediction scores for all database, drugs, gene filtration and model type combos. 

First one picks a database type. Then a drug is selected. This is followed by application of a chosen 

gene filtration methods to the data. Then a chosen model type is used to create predictions 

scores to assess each method of model construction. This was done for all possible combinations 

of the factors. 

 

Factor 2 represents which drug to test. We chose to look at 13 different chemotherapeutic 

drugs tested in both the NCI60 and GDSC databases, Bleomycin, Bortezomib, Cisplatin, 

Cytarabine, Docetaxel, Doxorubicin, Etoposide, Gemcitabine, Methotrexate, Mitomycin, 

Paclitaxel, Vinblastine and Vorinostat. This allowed us to look into the question: 

- Do models predict the behavior of chemotherapeutic drugs differently under different 

modeling conditions? 
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Factor 3 represents which gene filtration method to use. The gene filtration methods 

explored in this chapter are Differentially Expressed Genes, DEGs, [10] and COXEN [11]. The 

DEGs method filters based on how well the probe set data correlate with drug sensitivity data 

[10]. COXEN is based on filtering the micro-array data to only probes that correlate well with 

corresponding micro-array analysis from tumor biopsies of the same histotype [11]. To be more 

specific COXEN uses the probes that have the highest correlation of correlation scores [11]. 

Correlation of correlation scores can be broken down as follows: within target and reference 

probe values are correlated with other probe values within the same set [11]. These 

correlations are then correlated across the target and reference sets for each probe, hence a 

correlation of correlations score is determined for each probe [11]. Then COXEN probe values 

are filtered by choosing probes with high correlation of correlation scores, using a sample of the 

cell lines micro-array analysis as the target set and a specific tumor type micro-array analysis as 

the reference set [11]. Four methods of gene filtration were chosen: (1) no gene filtration, (2) 

COXEN with lung or bladder tumor samples, (3) Differentially Expressed Genes, DEG and (4) 

DEG then COXEN. This allowed us to look into the following questions: 

- Do we see an improvement in model performance for any specific gene filtration 

method? 

- Do we see an improvement in model performance for histologically similar cell lines 

when COXEN is performed with tumor samples? 

Factor 4 represents the type of model to use. We looked at two different categories of 

models, regression and probabilistic type models. For our regression models we choose the 

following model types: (1) principal components regression, PCR, (2) partial least squares 
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regression, PLSR and (3) non-linear logistic regression (a neural net machine learning 

algorithm). For our probabilistic models we choose the following model types: (1) MiPP based 

linear discriminant analysis [18] and (2) a neural net classifier. This paved the way for questions 

such as: 

- Do we see an increase in model performance for any a specific model type? 

- Do we see a difference between the linear and non-linear models? 

In order to look into all of these combinations we analyzed >1,000 models for each tumor 

type. To assess the repeatability of building each model, the whole algorithm was repeated 

three times for each combination. This systematic approach to model development would not 

work for all MiPP-based models, as MiPP-based models do not run fast enough to test all 

20,000+ probes in around a month of simulation time. Thus MiPP-based models were not 

created when no gene filtration method was applied. 

5.4 The Algorithm 

5.4.1 Description of Algorithm 

The algorithm was constructed in four different modular script types: Partition Lists, 

Gene Filtration, Create Model and Analyze Results. The modularity of these scripts allows for 

easy parallelization of the code when scripts are run on a cluster. 

  The Partition Lists script (partition_lists.py) was used to create partitions of the micro-

array and drug sensitivity data, for each drug. A testing and a validating partition were created 

to allow models to be built using the testing partition and assessed using the validation 

partition. The Partition Lists script also insured that at least 1 cell line of the corresponding 

tumor type was in both the testing and validation partitions. The Gene Filtration script 
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(gene_flitration.py) was needed to run gene filtration on the testing partition. The Create 

Model scripts (create_model.R and create_model.py) were needed to create each model. 

Finally the Analyze Results script (analyze_results.py) was needed to calculate the model 

performance scores for each combination.  

Model performance scores for the probabilistic models are: (1) the p value from the 

Binomial test. The Binomial test looks for deviation from an expected distribution of two 

possible outcomes. This test is used here to see if the number of predicted correctly drug 

sensitivity classes is different than a 50 percent successful Bernoulli experiment, (2) the percent 

correct and (3) the MiPP score. The MiPP score (misclassification penalized posterior) is a score 

that not only looks into the number of predicted correctly drug sensitivity classes but also 

considers how confident we were in each prediction by looking at the posterior probability used 

to make each prediction [18]. The performance scores for regression models are: (1) root mean 

squared error, RMSE (2) Pearson correlation and (3) REC. REC stands for regression error 

ĐhaƌaĐteƌistiĐ aŶd is ƌelated to the eƌƌoƌ͛s Đuŵulatiǀe distƌiďutioŶ [19]. The formula we created 

for REC can be found in equation 5.2 below and takes into account what a random set of 

prediction scores would have been3.  �ܥܧ = ݀݊ܽ�ܿ݋ܽ −  ݈ܽݑݐܿܣܿ݋ܽ

ܿ݋ܽ = ݁ݑ݈ܽ�ݎ݋ݎݎܧݔܽܯ − ∑ � ( √ሺ௫−௬ሻమ୫axሺ௫ሻ−୫i୬ሺ௫ሻ)                                      5.2  

 

                                                             
3 The development of our rec scores was conducted by Joshua Mannheimer. 
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Where, x and y are target and predicted values. P(u) is the estimated cumulative probability of 

the values <=u given all data. (Note: aoc stands for area over the cumulative error distribution 

curve). 

With this set up we were able to create our data set of over 1,000 model prediction 

scores for two different tumors, specifically Lung and Bladder. To get a birds eye view we ran a 

four way ANOVA on the data set for each performance score. The ANOVA by design will look to 

see which factor or combination of factors is responsible for significant portions of the variance 

in the entire data set. Two confounding factors to take note of for this analysis are as follows: 

(1) If a significant portion of the variance is allotted to a signal factor and a combination of that 

factor with another factor, then the test cannot say if the significance is due to the signal factor 

alone. (2) When a combination of factors is said to contain a significant portion of the variance 

those factors are thought to interact. This interaction can be visualized in a marginal mean plot. 

5.4.2 Description of Marginal Mean Plots 

Marginal mean plots are plots of the mean behavior of one or more factors across all 

other factors. For example, Figure 5.4a contains a plot of the prediction score (binomial p 

values) marginal mean for two factors: Database and Model Type.  Each point represents the 

mean across all other factors. In this figure we can see as the database changes so does the 

mean behavior of the different models. We can also see that for different databases different 

model types have on average lower Binomial p values; because of this difference the lines for 

the diffeƌeŶt ŵodels Đƌoss. The ANOVA tests to see if these ĐƌossiŶg liŶes, ͞iŶteƌaĐtioŶs͟, aƌe 

significant by looking to see if a significant portion of that variance belongs to the combination 

of these two factors. As seeŶ iŶ Taďle ϱ.Ϯ the ͞Dataďase:Model͟ faĐtoƌ ĐoŵďiŶatioŶ is Ŷot 
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considered to hold a significant portion of the variance. However, it is still interesting that we 

can see a trend in the marginal means for the plots of Figure 5.4. Further study should 

investigate the distributions of scores that make up these means to see if any significant 

difference exists.  

5.4.3 Trends in the Database Factor 

For good performing classification models the trend should be low Binomial P values, 

high percent correct values and high MiPP score values. Using the key provided in the figure 

legend database levels: (0) NCI60 only, (3) Non-extrapolated GDSC only and (4) Non-

extrapolated GDSC and NCI60 combined appear to not do as well in model performance 

compared to the (1) GDSC only and (2) GDSC and NCI60 combined. With a few exceptions for 

the (2) GDSC and NCI60 combined, this trend also appears to hold for the bladder data found in 

Figure 5.5. However, even though the database factor does hold a significant portion of the 

variance in all cases there exists confounding factors showing significant interactions (Tables 5.3 

and 5.4). As this is a high level view, further studies may want to break down each marginal 

means individual scores to see if there is any fine detailed information we could gather from 

the distributions of these scores.  

To continue with this high level view, we can turn to the impact of the factor databases 

on the regression models. Figure 5.6 and 5.7 show the marginal mean plots for the different 

predictions scores of these regression models. Tables 5.4 and 5.5 are the ANOVA results for the 

regression models. In these tables the factor databases, is again attributed a significant portion 

of the variance but there are more significant confounding interactions then we had seen with 

the classifications models. Therefore, again we only looked at the general trend to help identify 
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areas we would like to break down in future analysis. Good performing regression models 

should have low RMSE, high Pearson correlations and high REC scores. As there is less variation 

iŶ ‘ aŶd ‘EC ďetǁeeŶ dataďases, ǁe ǁill ďase ouƌ ďiƌd͛s eǇe ǀieǁ oŶ ‘M“E. Hoǁeǀeƌ, it is 

iŶteƌestiŶg to take Ŷote of the diffeƌeŶĐes pƌeseŶted ďetǁeeŶ these sĐoƌes͛ tǇpes. Peƌhaps 

further study could look into why there is less variation for these different scores. The general 

trend here for the database factor levels is a follows: (0) NCI60 only, (3) Non-extrapolated GDSC 

only and (4) Non-extrapolated GDSC and NCI60 combined appear to do better in RMSE model 

performance compared to the (1) GDSC only and (2) GDSC and NCI60 combined.  Future 

directions should include a more fine-tuned break down of these interesting areas. However, 

even with the coarse grained high level view we can begin to see interesting trends between 

regression and probabilistic models. For example, probabilistic models do better on average 

when all data is present, including the extrapolated values in the GDSC. On the other hand, 

Regression models appear to do better when the extrapolated values are removed. 
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Figure 5.4 Classification Marginal Means From Lung ANOVA Analysis. This figure shows 

representative images of the marginal means for probabilistic models. The key is as follows: 

Model Database Gene Filter 

0 = neural net classifier 0 = NIC60 0 = no filtration 

1 = MiPP 1 = GDSC 1 = COXEN 

 2 = Combined 2 = DEG 

 3 = non-extrapolated GDSC 3 = DEG then COXEN 

 4 = non-extrapolated Combined  
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Table 5.2 Four Way ANOVA Results for Lung Tumor based Classification Models. This table 

contains the output from three different ANOVA analyses. One for each of the following 

predictions scores: Binomial p value, Percent Correct and MiPP. 

Lung Binomial P Value Percent Correct MiPP Score 

Database < 2e-16 *** 1.09e-13 *** < 2e-16 *** 

Drug < 2e-16 *** < 2e-16 *** < 2e-16 *** 

GeneFilter 1.37e-12 *** 8.71e-12 *** 2.1e-15 *** 

Model 0.431  0.341  < 2e-16 *** 

Database:Drug 1.23e-14 *** < 2e-16 *** < 2e-16 *** 

Database:GeneFilter 0.128   0.017 * 2.51e-4 *** 

Drug:GeneFilter 0.699  0.910  0.902  

Database:Model 0.321  0.854  0.0205 * 

Drug:Model 0.211  0.634  0.0690 . 

GeneFilter: Model 0.301  0.181  0.871  

Database:Drug:GeneFilter 0.725  0.925  0.694  

Database:Drug:Model 0.557  0.0963 . 0.0216 * 

Database:GeneFilter:Model 0.572  0.705  0.912  

DrugLGeneFilter:Model 0.297  0.489  0.736  

Database:Drug:GeneFilter:Model 0.783   0.654  0.750  

“igŶif. Đodes:  Ϭ ͚***͛ Ϭ.ϬϬϭ ͚**͛ Ϭ.Ϭϭ ͚*͛ Ϭ.Ϭϱ ͚.͛ Ϭ.ϭ ͚ ͛ ϭ 
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Figure 5.5 Classification Marginal Means From Bladder ANOVA Analysis. This figure show 

representative images of the marginal means for probabilistic models. The key is as follows: 

Model Database Gene Filter 

0 = neural net classifier 0 = NIC60 0 = no filtration 

1 = MiPP 1 = GDSC 1 = COXEN 

 2 = Combined 2 = DEG 

 3 = non-extrapolated GDSC 3 = DEG then COXEN 

 4 = non-extrapolated Combined  
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Table 5.3 Four Way ANOVA Results for Bladder Tumor based Classification Models. This table 

contains the output from three different ANOVA analyses. One for each of the following 

predictions scores: Binomial p value, Percent Correct and MiPP. 

Bladder Binomial P Value Percent Correct MiPP Score 

Database < 2e-16 *** < 2e-16 *** < 2e-16 *** 

Drug < 2e-16 *** < 2e-16 *** < 2e-16 *** 

GeneFilter 4.07e-16 *** 1.64e-11 *** 6.92e-15 *** 

Model 0.793  0.00347 ** < 2e-16 *** 

Database:Drug < 2e-16 *** < 2e-16 *** < 2e-16 *** 

Database:GeneFilter 0.276  0.534  0.0617 . 

Drug:GeneFilter 0.0339 * 0.134  0.0707 . 

Database:Model 0.163  7.35e-05 *** 2.95e-4 *** 

Drug:Model 0.124  0.275  0.0456 * 

GeneFilter: Model 0.00179 ** 0.0531 . 0.633  

Database:Drug:GeneFilter 0.0326 * 0.184  0.173  

Database:Drug:Model 0.366  0.579  0.0270 * 

Database:GeneFilter:Model 0.0893 . 0.368  0.465  

DrugLGeneFilter:Model 0.810  0.864  0.713  

Database:Drug:GeneFilter:Model 0.413  0.997  0.962  

“igŶif. Đodes:  Ϭ ͚***͛ Ϭ.ϬϬϭ ͚**͛ Ϭ.Ϭϭ ͚*͛ Ϭ.Ϭϱ ͚.͛ Ϭ.ϭ ͚ ͛ ϭ 
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Figure 5.6 Regression Marginal Means From Lung ANOVA Analysis. This figure show 

representative images of the marginal means for regression models.  

Model Database Gene Filter 

0 = neural net 0 = NIC60 0 = no filtration 

1 = PCR 1 = GDSC 1 = COXEN 

2 = PLSR 2 = Combined 2 = DEG 

 3 = non-extrapolated GDSC 3 = DEG then COXEN 

 4 = non-extrapolated Combined  
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Table 5.4 Four Way ANOVA Results for Lung Tumor based Regression Models. This table 

contains the output from three different ANOVA analysis. One for each of the following 

predictions scores: RMSE (root mean squared error), Pearson correlation and REC. 

Lung RMSE Pearson Correlation REC 

Database < 2e-16 *** 4.28e-07 *** < 2e-16 *** 

Drug < 2e-16 *** < 2e-16 *** < 2e-16 *** 

GeneFilter < 2e-16 *** < 2e-16 *** 3.36e-12 *** 

Model < 2e-16 *** < 2e-16 *** < 2e-16 *** 

Database:Drug < 2e-16 *** < 2e-16 *** < 2e-16 *** 

Database:GeneFilter 0.085 . 0.433  0.00696 ** 

Drug:GeneFilter 0.127  0.0347 * 0.689  

Database:Model < 2e-16 *** 0.000145 *** 0.0585 . 

Drug:Model < 2e-16 *** 0.00350 ** 0.0408 * 

GeneFilter: Model < 2e-16 *** 2.44e-09 *** 1.08e-4 *** 

Database:Drug:GeneFilter 0.999  0.747  0.997  

Database:Drug:Model < 2e-16 *** 0.287  0.00661 ** 

Database:GeneFilter:Model 4.98e-10 *** 0.00121 ** 0.0945 . 

DrugLGeneFilter:Model 0.218  0.992  1.00  

Database:Drug:GeneFilter:Model 1.00  1.00  1.00  

“igŶif. Đodes:  Ϭ ͚***͛ Ϭ.ϬϬϭ ͚**͛ Ϭ.Ϭϭ ͚*͛ Ϭ.Ϭϱ ͚.͛ Ϭ.ϭ ͚ ͛ ϭ 
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Figure 5.7 Regression Marginal Means From Bladder ANOVA Analysis. This figure show 

representative images of the marginal means for regression models.  

Model Database Gene Filter 

0 = neural net 0 = NIC60 0 = no filtration 

1 = PCR 1 = GDSC 1 = COXEN 

2 = PLSR 2 = Combined 2 = DEG 

 3 = non-extrapolated GDSC 3 = DEG then COXEN 

 4 = non-extrapolated Combined  
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Table 5.5 Four Way ANOVA Results for Bladder Tumor based Regression Models. This table 

contains the output from three different ANOVA analysis. One for each of the following 

predictions scores: RMSE (root mean squared error), Pearson correlation and REC. 

Bladder RMSE Pearson Correlation REC 

Database < 2e-16 *** 4.83e-06 *** < 2e-16 *** 

Drug < 2e-16 *** < 2e-16 *** < 2e-16 *** 

GeneFilter < 2e-16 *** < 2e-16 *** < 2e-16 *** 

Model < 2e-16 *** < 2e-16 *** < 2e-16 *** 

Database:Drug < 2e-16 *** < 2e-16 *** < 2e-16 *** 

Database:GeneFilter 4.17e-06 *** 0.00386 ** 0.00089 *** 

Drug:GeneFilter 0.0622 . 1.59e-06 *** 0.790  

Database:Model < 2e-16 *** 0.0318 * 0.00918 ** 

Drug:Model < 2e-16 *** 0.203  0.0555 . 

GeneFilter: Model < 2e-16 *** 3.96e-11 *** 0.00426 ** 

Database:Drug:GeneFilter 0.966  0.184  0.978  

Database:Drug:Model < 2e-16 *** 0.00574 ** 0.259  

Database:GeneFilter:Model 1.00e-15 *** 1.43e-4 *** 0.0460 * 

DrugLGeneFilter:Model 0.191  0.998  0.927  

Database:Drug:GeneFilter:Model 1.00  1.00  1.00  

“igŶif. Đodes:  Ϭ ͚***͛ Ϭ.ϬϬϭ ͚**͛ Ϭ.Ϭϭ ͚*͛ Ϭ.Ϭϱ ͚.͛ Ϭ.ϭ ͚ ͛ ϭ 

 

5.4.4 Lung Gene filtration Factor with No Confounding Factors 

Another significant area highlighted by the ANOVA analysis can be seen in the lung 

tumor-based classification models. As seen in Table 5.2, the ANOVA analysis indicated a 

significant portion of the variance is attributed to the gene filtration factor. Furthermore, the 

significance of this factor is not confounded by significant interactions with the other factors in 
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the analysis (e.g. drug, database and model type). Considering this, we can ask the question: 

which gene filtration levels are significantly different from each other? To do this we ran an 

Honestly Significant Difference Tukey test whose results can be found in Table 5.6. These 

ƌesults iŶdiĐate the sigŶifiĐaŶt diffeƌeŶĐe is ĐoŵiŶg fƌoŵ the geŶe filtƌatioŶ leǀel, ͞DEG theŶ 

COXEN͟, as this is sigŶifiĐaŶtlǇ diffeƌeŶt ǁith every other level. From the marginal mean plots in 

Figuƌe ϱ.ϰ the leǀel, ͞DEG theŶ COXEN͟, appeaƌs to Ŷot peƌfoƌŵ as ǁell as the otheƌ leǀels ;e.g. 

͞COXEN͟ aŶd ͞DEG͟Ϳ. This is suƌpƌisiŶg as this ŵethod ǁas hoǁ the oƌigiŶal COXEN papeƌ 

performed their analysis [11]. One might have expected it to perform the best and not the 

ǁoƌst as seeŶ iŶ Figuƌe ϱ.ϰ. Hoǁeǀeƌ, ǁe should poiŶt out that the leǀel, ͞DEG theŶ COXEN͟, 

represents the method with the least probes used for model creation. Considering this, further 

study of this data set should make sure the lack in performance is not due to the probe number 

alone. In other words, further studies should look to make sure the higher probe number 

models are not performing better due to non-meaningful connections found between the 

probes by chance.  

Table 5.6 Tukey Results for Lung Classification Binomial P Value Gene filtration Results. This 

taďle illustƌates the ƌesults of the TukeǇ test iŶdiĐatiŶg the leǀel ͞DEG theŶ COXEN͟ geŶe 
filtration methods is significantly different from the other methods. 

Group 1 Group 2 ‘ejeĐt foƌ α = Ϭ.Ϭϱ 

DEG then COXEN COXEN True 

DEG then COXEN DEG True 

DEG then COXEN No gene filtration     True 

DEG COXEN False 

DEG No gene filtration     False 

COXEN No gene filtration     False 
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The other predictive scores, such as MiPP, also suggest there may be a significant 

diffeƌeŶĐe ǁithiŶ the geŶe filtƌatioŶ faĐtoƌ; hoǁeǀeƌ, the ANOVA͛s usiŶg these otheƌ pƌediĐtiǀe 

scores show significant confounding interactions between the factors. Therefore, we cannot say 

if the significant difference across all scores is due to the gene filtration method alone. What we 

can do is look at the marginal means of these comparisons to see if the trend across gene 

filtration methods holds. Representative images in Figure 5.4 suggest that the trend does hold. 

We can also look at the classification bladder tumor-based models that show the same trend. 

However, unlike the lung tumor-based models, the bladder tumor-based models show 

confounding factors within all classification score types, as shown in Table 5.3. Though, again 

we can look at the marginal means to see if the trend of low performance for the level, ͞DEG 

theŶ COXEN͟, geŶe filtƌatioŶ ŵethod holds. ‘epƌeseŶtatiǀe iŵages iŶ Figuƌe ϱ.ϱ suggest that 

the trend does hold. Further support for the pooƌ peƌfoƌŵaŶĐe iŶ the leǀel, ͞DEG theŶ COXEN͟, 

gene filtration method comes from the regression models. Representative images (Fig. 5.6 and 

7) of the marginal means in the regression models of both tumor types also indicate the level, 

͞DEG theŶ COXEN͟, as giǀiŶg oŶ aǀeƌage loǁeƌ pƌediĐtioŶ aĐĐuƌaĐǇ sĐoƌes. 

5.5 Summary of Conclusions and Future Directions 

In conclusion, we found that micro-array data across databases is comparable if normalized 

appropriately. This is a significant conclusion as it allows for use of both the NCI60 and the 

GDSC data, when treated appropriately, for predicting drug sensitivity. This in turn should 

improve the performance of drug sensitivity algorithms.  We also found the nucleic acid stain 

used in the NCI60 for drug sensitivity measurements show Pearson correlations greater than 

0.8 when compared to the same measurement taken for the GDSC using an amino acid type 
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stain. We also showed that as extrapolated values from the GDSC were removed, the overall 

trend in these Pearson correlations increased. Altogether this improved our ability to combine 

the databases. 

For this large dataset we developed a parallelizable algorithm for model generation on a 

cluster. The output of this algorithm brought trends to light for different model building factors. 

We saw regression models appeared to do better when extrapolated data from the GDSC was 

removed, whereas classification models did better when this extrapolated data was included. 

We also found a trend in which gene filtration method was employed. For lung tumor-based 

ŵodels the geŶe filtƌatioŶ faĐtoƌ leǀel, ͞DEG theŶ COXEN͟, ǁas sigŶifiĐaŶtlǇ different and 

showed a trend of poor behavior compared to all other gene filtration methods in terms the 

binomial p value. Although confounded by other factors, the trend of poor performance with, 

͞DEG theŶ COXEN͟, ǁas fouŶd ŵoƌe ofteŶ thaŶ Ŷot to ďe pƌesent in all other accuracy scores 

for both regression and probabilistic methods.  

Moving forward, the difference in behavior between the accuracy scores is worth 

investigating. It would be helpful to know if this difference is due to noise alone or if it is related 

to different aspects of model performance. Another future direction should include assessment 

of the question: Are the significant differences, such as seen within the gene filtration factor, 

due to removal of key probe information, or does the number of probes play a role? This study 

has put us a step closer to diving into the plethora of questions mentioned throughout this 

chapter. Altogether, this platform for model construction is aiding in the development and 

comparison of many model types, which in turn could be used to further the science of creating 

individualized treatments for cancer. 



 

117 

 

REFERENCES 

 

[1]  "Cancer Facts & Figures," American Cancer Society, Inc., Surveillance Research, 2015. [Online]. 

Available: http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2015/. 

[Accessed 1 May 2016]. 

[2]  "Treatment Types," American Cancer Society, [Online]. Available: 

http://www.cancer.org/treatment/treatmentsandsideeffects/treatmenttypes/. [Accessed 1 May 

2016]. 

[3]  J. Barretina and et.al., "The Cancer Cell Line Encyclopedia enables predictive modelling of 

anticancer drug sensitivity," Nature, vol. 483, no. 7391, pp. 603-607, 2012.  

[4]  M. Garnett and etal., "Systematic identification of genomic markers of drug sensitivity in cancer 

cells," Nature, vol. 483, no. 7391, pp. 570-575, 2012.  

[5]  R. Shoemaker, "The NCI60 human tumour cell line anticancer drug screen," Nature Reviews 

Cancer, vol. 6, pp. 813-823, 2006.  

[6]  W. Yang, J. Soares, P. Greninger, E. Edelman, H. Lightfoot, S. Forbes, N. Bindal, D. Beare, J. Smith, R. 

Thompson, S. Ramaswamy, A. Futreal, D. Haber, M. Stratton, C. Benes, U. McDermott and M. 

Garnett, "Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker 

discovery in cancer cells," Nucleic Acids Research, vol. 41, pp. 955-961, 2012.  

[7]  ‘. A. IƌizaƌƌǇ, B. Hoďďs, F. ColliŶ, Y. D. Beazeƌ‐BaƌĐlaǇ, K. J. AŶtoŶellis, U. “Đheƌf aŶd T. P. “peed, 
"Exploration, normalization, and summaries of high density oligonucleotide array probe level 

data," Biostat, vol. 4, no. 2, pp. 249-264, 2003.  

[8]  W. Johnson, A. Rabinovic and C. Li, "Adjusting batch effects in microarray expression data using 

Empirical Bayes methods," Biostatistics, vol. 8, no. 1, pp. 118-127, 2007.  

[9]  N. Kim, N. He and S. Yoon, "Cell line modeling for systems medicine in cancers (Review)," 

International Journal of Oncology, vol. 44, no. 2, pp. 371-376, 2014.  

[10]  S. Dudoit, Y. Yang, M. Callow and T. Speed, "STATISTICAL METHODS FOR IDENTIFYING 

DIFFERENTIALLY EXPRESSED GENES IN REPLICATED cDNA MICROARRAY EXPERIMENTS," Statistica 

Sinica, vol. 12, pp. 111-139, 2002.  

[11]  S. Smith, A. Baras, J. Lee and D. Theodorescu, "The COXEN Principle: Translating signatures of in 

vitro chemosensitivity into tools for clinical outcome prediction and drug discovery in cancer," 

Cancer Res, vol. 70, no. 5, pp. 1753-1758, 2010.  



 

118 

 

[12]  J. Zhao, X.-S. Zhang and S. Zhang, "Predicting cooperative drug effects through the quantitative 

cellular profiling of response to individual drugs," CPT: Pharmacometrics and Systems 

Pharmacology, vol. 3, no. 2, p. e102, 2014.  

[13]  "DREAM CHALLENGES," Dream Challenges, 2006. [Online]. Available: http://dreamchallenges.org/. 

[Accessed 28 April 2016]. 

[14]  J. C. Costello, L. M. Heiser, E. Georgii, M. Gönen, M. P. Menden, N. J. Wang, M. Bansal, M. Ammad-

ud-din, P. Hintsanen, S. A. Khan, J.-P. Mpindi, O. Kallioniemi, A. Honkela, T. Aittokallio, K. 

Wennerberg, NCI DREAM Community, J. Collins, D. Gallahan, D. Singer, J. Saez-Rodrigue, S. Kaski, J. 

Gray and G. Stolovitzky, "A community effort to assess and improve drug sensitivity prediction 

algorithms," Nature Biotechnology, vol. 32, pp. 1202-1212, 2014.  

[15]  M. McCall, B. Bolstad and R. Irizarry, "Frozen robust multiarray analysis (fRMA)," Biostatistics, vol. 

11, no. 2, pp. 242-253, 2010.  

[16]  D. Müllner, "fastcluster: Fast Hierarchical, Agglomerative Clustering Routines for R and Python," 

Journal of Statistical Software, vol. 53, no. 9, pp. 1-18, 2013.  

[17]  V. Vicha and K. Kirtikara, "Sulforhodamine B colorimetric assay for cytotoxicity screening," Nature 

Protocols, vol. 1, pp. 1112-1116, 2006.  

[18]  M. Soukup, H. Cho and J. Lee, "Robust classification modeling on microarray," Bioinformatics, vol. 

21, no. 1, pp. i423-i430, 2005.  

[19]  J. Bi and K. Bennett, "Regression Error Characteristic Curves," in Proceedings of the Twentieth 

International Conference on Machine Learning (ICML-2003), Washington DC, 2003.  

 

 

 

  



 

119 

 

APPENDIX A4 

 

 

 

Protocols for Quantitative characterization of genetic parts and circuits for  

plant synthetic biology 

A.1 Plasmid Construction 

Our transcriptional repressor proteins are built with two genetic components: a DNA 

binding (DB) and a repressor domain (RD). The DNA binding domains of the yeast Gal4 and the 

bacterial LexA transcription factors were used to create orthogonal repressor proteins for the 

plant synthetic circuits.  The repressor domains we use are:  Ethylene-responsive element 

binding factor-associated amphiphilic repression (EAR), plant-specific B3 repression domain 

(BRD), two variants of the Arabidopsis OVATE Family proteins (AtOFP1 and AtOFPx). AtOFPx 

represents a consensus sequence of the OVATE domains of the AtOFP family repressor proteins 

demonstrating the highest levels of repression [1]. Sequence optimized Gal4 and LexA DB, and 

the two OVATE RD, were synthesized as double stranded gBlocks (GeneArt/Life Technologies 

and IDT (Integrated DNA Technologies)). The synthetic repressor domains were fused in frame 

to one of two mentioned synthetic DNA binding domains using overlapping extension PCR with 

compatible BsaI restriction enzyme sites built into the primers for downstream cloning. The 

small-sized EAR and B3 repressor domains were incorporated into reverse primers used to 

amplify DNA binding domains, creating in-frame C-terminal fusions. The hybrid products were 

                                                             
4 Appendix A comprises the protocol supporting data that was published alongside the paper [10] in Nature 

Methods. It represents joint work and has been put here in its entirety to preserve the intellectual coherence of 

the project. In particular, the plasmid construction in section A.1 and the plant experiments in section A.7 was 

done by the co-authors from the Medford lab. The protoplast experiments detailed in were done by co-authors 

from the Medford lab, with assistance from Wenlong Xu and I of the Prasad lab. The image correction method in 

section A.4 was developed by Wenlong Xu. 
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sub-cloned and sequenced in pJET2.1 vector using pJET forward and reverse primers (Thermo 

Scientific). Two core repressor modules containing an upstream transcription block [2], 

estrogen inducible promoters, repressors and NOS terminator [3] were synthesized (GeneArt, 

Fig. B.1a,b). To interchange the different repressors in the module, the Golden Gate cloning 

method [4], using type II endonuclease BsaI restriction sites, was used (Fig. B.1a,b). Repressor 

expression was controlled by two inducible promoters, 10xN1 and pOp6, which are 4-

hydroxytamoxifen [5] (4-OHT) and dexamethasone [6] (DEX) inducible, respectively. Each of the 

inducible promoters was also designed to direct expression of the Firefly luciferase (F-luc) gene 

(Fig. B.1c,d). F-luc reporter gene serves as a proxy for quantifying the amount of repressor in 

the system.  

The constitutively active repressible promoters were constructed by introducing DNA 

binding elements (operators) in the backbone of Cauliflower Mosaic Virus 35S (CaMV35S), 

Nopaline Synthase (NOS) and Figwort Mosaic Virus (FMV) promoters. The DNA binding 

elements containing two copies of Gal4, and two or eight copies of LexA, were synthesized as a 

gene block with appropriate restriction sites included (IDT). A series of repressible promoters 

was generated by varying the number of DNA binding elements, the spacing between each 

binding element and its position relative to the transcription start site. Plasmid backbone (Fig. 

B.1e) was used as a sub-cloning plasmid, from which promoter variants were made by adding 

DNA binding elements upstream and downstream of the promoters.  Upstream of each 

promoter, DNA binding elements were cloned using BsaI and HindIII restriction sites, whereas 

downstream of the promoters, elements were cloned using MluI and AatII sites. Two CaMV35S 

based promoters with 4xLexA and 5xGal4 binding elements at the -32 position were 
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synthesized (GeneArt). For ease of cloning, a single repressible promoter module with two BsaI 

restriction enzyme sites flanking a repressible promoter was synthesized (Fig. B.1f). The 

sǇŶthetiĐ ŵodule has a ϱ͛ tƌaŶsĐƌiption block, repressible promoter controlling expression of 

Renilla luciferase (R-luc), PEST domain [7], and transcriptional terminator (Fig. B.1f). The 

resulting promoter fragments from sub-cloning vector (Fig. B.1e) were digested with BsaI and 

cloned into the repressible promoter module (Fig. B.1f) upstream of R-luc. We use R-luc to 

quantitatively determine the repressibility of the promoter upon repressor binding. In theory, a 

functional repressor-repressible promoter pair should show decreasing R-luc activity with 

increasing F-luc activity as a result of increasing inducer concentrations. 

Two pBluescript SK+ backbone plasmids (Fig. B.1c-g) containing F-luc under the control of two 

estrogen inducible systems, 10xN1 + NEV [5] and pOp6 + LhGR2
 [6], were used to assemble the 

expression cassette encoding the repressors and corresponding repressible promoters. Plasmid 

backbones were prepared by restriction digest with KpnI and simultaneously dephosphorylated 

with alkaline phosphatase (FastAP, Thermo Scientific) to prevent self-ligation. The repressor 

and repressible promoter fragments were prepared by digesting with BsaI and KpnI. The two 

sticky BsaI ends from the repressors and repressible promoters are compatible and the two 

external KpnI sites were used for non-directional cloning into the vector backbone. Similarly, 

four beta plasmids, i.e., containing repressible promoters directing R-luc expression without any 

repressors, were also constructed to monitor the maximum R-luc expression level (strength of 

the promoter). Electro-competent E. coli stƌaiŶ DHϱα ǁas used foƌ all ĐloŶiŶg puƌposes. Pƌiŵeƌs 

were synthesized by IDT. PCR reactions were performed using Herculase II fusion DNA 

polymerase (Agilent Technologies). All restriction enzymes were purchased from NEBioLabs and 



 

122 

 

Thermo Scientific. Plasmid preparations and gel extractions were conducted using Thermo 

Scientific GeneJET and Zymo Research miniprep and gel purification kits. All synthetic designs 

were sequence verified.  DNA sequencing was provided by the Colorado State University 

Proteomics and Metabolomics Facility. 

A.2 Protoplast Isolation and Transformation 

Arabidopsis protoplast isolation and transformation were carried out according to the 

protocol described by Yoo et al. [8], with some modifications to allow higher throughput testing 

of synthetic components in 96-well plates. Wild-type Arabidopsis thaliana ecotype Columbia 

plants were grown in short days (10h light, 14h dark), and 20-25 leaves, approximately 4 cm in 

length, were used.  In brief, leaves in W5 solution were cut into approximately 1 mm strips 

using a scalpel blade. Enzyme solution [0.4 M Mannitol, 20 mM KCl, 20 mM MES (pH 5.7), 1.5% 

Cellulase R-10 (Yakult Honsha), 0.4% Macerozyme R-10 (Yakult Honsha), 10 mM CaCl2, 1 mg/ml 

BSA] was added, a slight vacuum was applied, and incubated at room temperature with gentle 

shaking (40 rpm) for 3 hours. Resulting protoplasts were filtered through a 70 μŵ cell strainer 

(BD Biosciences) and harvested by centrifugation at 600 x g. After two washes in W5 solution, 

the protoplasts were re-suspended in MMg solution, and the concentration adjusted to 2 x 105 

protoplasts/ml. Protoplast transformation with plasmids of interest was performed in 15-ml 

conical centrifuge tubes by carefully mixing 50 μl of protoplasts (approx. 10,000 cells), 5 μl of 

plasmid DNA (1 μg/μl), and 55 μl of 40% PEG solution for one reaction. Larger-scale (14 

reactions) transformations were used to allow testing of multiple concentrations of inducers. 

Transformed protoplasts were re-suspended in 200 μl of WI solution per reaction, and plated 

on black, clear-bottom, 96-well Costar assay plates (Corning), using a multi-channel pipette. 
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Inducers (4-OHT or dexamethasone) were added using a multi-channel pipette, and plates were 

incubated overnight in the dark, with gentle agitation (50 rpm). For transient assays aimed at 

validating our method in stable transgenic plants, initial experiments showed that protoplasts 

prepared from transgenic lines typically had reduced signal. Hence, we increased the number of 

cells per well when protoplasts were prepared from transgenic plants relative to the number of 

cells per well when protoplasts were prepared for transient expression assays.    

A.3 Luciferase Imaging 

All test plasmids used in this work had Firefly and Renilla luciferases as the measurable 

outputs. Therefore, we used the Dual-Luciferase Reporter Assay system (Promega) to lyse the 

protoplasts and provide both substrates for luciferase imaging. After overnight incubation of 

protoplasts with the inducers, cell lysis was carried out on the assay plates by removing 160 μl 

of supernatant from each well, followed by addition of 50 μl of 2x Passive Lysis Buffer, and 

incubation at room temperature for 30 minutes.  Quantitative measurements of Firefly and 

Renilla luciferase expression were obtained by the addition of LAR II and Stop & Glo reagents, 

respectively, and imaged using a Stanford Photonics XR/Mega-10 ICCD Camera System and 

available Piper software (v. 2.6.17).  Regions of interest, ROI's, are drawn around each well of a 

96-well plate. Pixel intensity values for the first minute of collection time are summed and 

divided by the area of the ROI and time collected to give us the RLU/(area x sec) value in each 

well. The data then go through post-image correction (below). We remove assays that had 

obviously failed for reasons such as failure to show an increase in F-luc expression with the 

addition of inducers. 
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A.4 96-well plate post-image correction 

First, we determine five primary systematical parameter values: 1) ݎଵ (Radius of well 

opening); 2) ݎଶ (Radius of well bottom); 3) ℎଵ (Height of the camera relative to the surface of 

the 96 wells); 4) ℎଶ (Depth of well); 5) �(Reaction reagent total volume). Second, we feed these 

parameters into the function �ሺ݀ሻ (Appendix B.1, B.2) to yield the secondary parameter ݀ 

(depth of solution added in the well). Third, we substitute values of ݎଵ, ݎଶ and ℎଵ  into function ܣ௩ (Appendix B.1,B. 2) resulting in ܣ௩ሺݏ,  ሻ. Fourth, we substitute ℎଶ and ݀ as the lower andܦ

upper integration limits, respectively, for the integration of ܣ௩ሺݏሻ݀ݏ, resulting in �௩௧௢௧௔௟ሺܦሻ. 

Here, the function is fully parameterized and the only input needed is ܦ, the positional 

parameter corresponding to each well in this algorithm. We assume the well in the i-th row, j-th 

column from the top left corner of the microplate (as the origin of 96-well-plate plane) holds a 

coordinate of (ݔ௜௝ ,  ௜௝) and the projected camera center onto the plate holds a coordinate ofݕ

ሺݔ, ௜௝ܦ ௜௝ for the well (i, j) can be calculated asܦ ,ሻ. Thenݕ = ௜௝ݔ)√ − ଶ(ݔ + ௜௝ݕ) − ଶ(ݕ
. 

Substitute ܦ௜௝ into �௩௧௢௧௔௟ሺܦሻ to generate the total visible volume for well (i, j). The ratio of this 

total visible volume to � (total reagent volume) is then used for camera correction. 

A.5 Noise Estimation 

The noise (Fig. 3.2c) was calculated as follows. For within-plate noise (source 1), we 

calculated the standard deviation of F-luc and R-luc luminescence for each plate independently. 

This gave us a measure of between-well noise for a single plasmid on a single plate. For 

between-transformation noise (source 2), we calculated the standard deviation between the 

mean R-luc values coming from the two different inducible genes (DEX- and OHT-inducible) on 

the same day (as R-luc expression is controlled by the same repressible promoter in both gene 
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circuits). Finally, we calculated the standard deviation of the mean luminescence between days 

for both F-luc and R-luc. This gave us a measure of the batch effect (source 3). 

A.6 Data Analysis 

Data is processed in the following steps using MATLAB. 

(1) Camera-corrected F-luc RLU/(area x sec) and R-luc RLU/(area x sec) values, and inducer type 

and concentration are stored in different .csv files for each promoter tested. 

(2)  DEX and OHT data are separated. 

(3)  Fold Change (FC) values are calculated for each promoter. Promoters with a FC > 1.3 are 

stored for further analysis. 

(4) Data from promoters that do not meet the threshold criteria are tagged and kept for further 

processing. 

(5) RLU data are converted to Molecule Number per well via the RLU vs. concentration standard 

curves (Fig. B.4). 

(6) The mean F-luc values at zero inducer concentration of those plasmids showing a FC > 1.3 

are calculated for both DEX- and OHT-based systems. 

(7) Values of the normalization factor i are calculated using Equation 3.3 (Main Text) and the 

data values of F-luc and R-luc molecule number divided by this factor.  

(8) Data are fit to the functional form given in Equation 3.2 with different initial conditions for 

the nonlinear fit (we used 4 different initial conditions to ensure convergence). If the fits 

converged to different minima, we chose the fit with the lowest P-value. The parameters of the 

fit are then stored, and can be used for further analysis. 
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A.7 Stably Transformed Plants 

Select promoter-repressor pair genetic circuits (DEX-inducible LexA-EAR + 35S2xLexA, 

noted as DEX 35S2xLexA EAR; OHT-inducible LexA-EAR + NOS2xGal4, noted as OHT NOS2xGal4 

EAR; DEX-inducible Gal4-EAR + 2xGal4NOS, noted as DEX 2xGal4NOS EAR in Fig. 3.6) were sub-

cloned into pCAMBIA2300 plant transformation vector and stably transformed into Arabidopsis 

thaliana ecotype Columbia plants by Agrobacterium floral dip method [9]. We selected 

transgenic plants in kanamycin-containing media, and screened for F-luc expression (indicative 

of repressor expression) in the presence of the inducer (OHT or DEX) and luciferin. Plants not 

expressing F-luc were discarded, whereas F-luc expressing plants were allowed to set seed. 

Second generation (T1) plants were germinated in kanamycin-containing media and transgenic 

lines segregating 3:1 (resistant:sensitive), indicating one copy of the transgene, were used for 

further analysis. 
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APPENDIX B5 

 

 

 

Methods for Quantitative characterization of genetic parts and circuits for plant synthetic 

biology  

B.1 Luminescence imaging correction 

False-colored images of the protoplast luminescence collected from 96-well plates 

appeared to show a systematic difference based on well position. To measure the extent of this 

diffeƌeŶĐe ǁe desigŶed a siŵple ͞flip-plate͟ eǆpeƌiŵeŶt. LuŵiŶesĐeŶĐe ǁas ĐolleĐted foƌ ϱ 

minutes with well A1 in the top left hand corner and again for 5 minutes with well A1 in the 

bottom right hand corner. We used the first minute of each collection time to calculate the 

Relative Luminescence Units (RLU) for each well. We then calculated the percent change of F-

luc (in RLU/(area x sec)) between the two values for each well. We repeated the experiment 

using purified recombinant F-luc protein diluted to give luminescence values in the range of our 

protoplast data. In both cases, we found substantial differences between the measured 

luminescence of the two positions for the outer wells. The graph in Fig. B.2b depicts the change 

in luminescence within the wells for one flip-plate experiment. The two measurements of the 

plate are superimposed, such that two measurements of the same well are plotted on top of 

each other (i.e., A1 when imaged near the top of the Đaŵeƌa͛s field of ǀieǁ, supeƌiŵposed ǁith  

                                                             
5 Appendix B comprises of supporting data that was published alongside the paper [9] in Nature Methods. It 

represents joint work and has been put here in its entirety to preserve the intellectual coherence of the project. In 

particular, the experiments outlined in B.1 was conducted by co-authors from the Medford lab and myself. The 

camera correction method B.2, collection of simulated data B.5 and 8 were conducted by co-author Wenlong Xu in 

the Prasad lab. Also the Quantitative analysis of the design elements, B.10 was conducted by Wenlong Xu and 

myself. 



 

129 

 

Aϭ iŵaged Ŷeaƌ the ďottoŵ of the Đaŵeƌa͛s field of ǀieǁͿ. As seeŶ iŶ the gƌaph, luŵiŶesĐeŶĐe 

values of the wells on the left-hand side of the plate were consistently lower than values 

measured on the right-hand side of the plate. This experiment was repeated three times with 

results showing an average maximum percent change of 36% with a standard deviation of  9%.   

Since we imaged for five minutes (though only used the first minute of data for 

comparisons), we calculated the possible natural decrease of the luminescence signal during 

this time. Our data show that the F-luc signal decreased an average of 7% over a five-minute 

period (Fig. B.2a). Hence, we assumed that F-luc degradation would lead to a signal decrease of 

about 7%. We theorize that the most likely reason for these systematic imaging errors is that 

the camera does not pick up as many photons from wells that are farther away from its central 

axis when compared to wells that are closer to the central axis. This could be seen from the 

dark crescents in the images themselves (Fig. B.2c), suggesting a slight blocking effect by the 

non-transparent walls of the wells. The further away the well is from the projection 

of camera center on the plate, the larger the portion of its total volume is blocked by its wall, 

and consequently a smaller portion of the total F-luc luminescence is collected by the camera.  

We developed a post-imaging mathematical correction method to correct the images 

based on a geometriĐ ĐalĐulatioŶ of this ͞ŵissiŶg ǀoluŵe͟ aŶd phǇsiĐal ŵeasuƌeŵeŶts oŶ ouƌ 

imaging system (details of the calculation are in Fig. B.3). We developed a formula for the 

percentage difference between the original luciferase level and the level registered by 

the camera for each of the wells on a plate, as a function of the distance between the 

geometric center of each well on the plate and the projection of camera center, given a chosen 

shelf height for the plate. 



 

130 

 

Another complication arises when the camera center does not coincide with the center 

of the 96-well plate. We estimated where the camera center lies from the pattern of percent 

changes for each well on the plate, since the wells closest to the camera center should have the 

minimum percent changes (zero if the camera center lies directly above any well). We 

corrected the luminescence data by using this formula to calculate the corrected luminescence 

of each well from its position on the plate based on the observed intensity. In addition, we built 

a frame for the 96-well plate that we used for all subsequent imaging in order to keep the plate 

center in a fixed position in relation to the camera center. 

B.2 Image correction method 

The formula derived below for estimating the imaging correction is based on the 96-well 

plate geometry (Fig. B.3).  

1. Calculate the distance ܦ between the center of the targeting well and projection of the 

camera center using similar triangles (Fig. B.3a):  ℎଵℎଵ + ℎଶ = ܦ − ܦଵݎ + ݈ −  ଶݎ

Yields,  

݈ = ℎଶℎଵ ሺܦ − ଵሻݎ − ሺݎଵ −  ଶሻݎ

Then we projected the upper edge of the well to the bottom along the sight line 

between the camera and its closest point on the upper edge.  ݈ is the shift distance on the well bottom of the closest point along the sight line.  

The visible portion of the bottom edge is the part enclosed by the projection of the 

upper edge and itself. We calculated the area of this portion as follows:  
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This portion can be separated into two parts, ܣଵ and ܣଶ, by the connecting line 

between the two intersections of the two circles. ܣଵ and ܣଶ can then be calculated 

using the differences of their corresponding sectors and triangles (Fig. B.3b).  

Before we calculate the areas, we need the lengths of yଵ, yଶ and x via the equations 

listed as follows:  yଵ + yଶ = ଵݎ − ଶݎ + ଵଶݎ ݈ − ଵଶݕ = ଶଶݎ − ଶଶݕ =  ଶݔ

Yields,  

yଵ = ଵଶݎ − ଶଶݎ + ሺݎଵ − ଶݎ + ݈ሻଶʹሺݎଵ − ଶݎ + ݈ሻ = ଵଶݎ − ଶଶݎ + ܽଶʹܽ  

yଶ = ܽ − yଵ = ܽଶ − ଵଶݎ + ܽʹଶଶݎ  

 

x = ଵଶݎ√ −  ଵଶݕ

With ܽ = ଵݎ − ଶݎ + ݈;  

Based on these equations, we calculated the central angles of these two sectors: 

Ƚଵ = arccos ሺyଵrଵሻ 

Ƚଶ = arccos ሺyଶrଶሻ 

The areas of the two sectors can be expressed as:  

ଵଶ Ƚଵݎଵଶ and 
ଵଶ Ƚଶݎଶଶ 

The two portions of the visible area on this plane can be calculated as:  
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ଵܣ = ͳʹ Ƚଵݎଵଶ −  ݔଵݕ

ଶܣ = ͳʹ Ƚଶݎଶଶ −  ݔଶݕ

The total visible area on the bottom is:  

௩ܣ = ଵܣ + ଶܣ = ͳʹ Ƚଵݎଵଶ − yଵx + ͳʹ Ƚଶݎଶଶ − yଶx = ͳʹ Ƚଵݎଵଶ + ͳʹ Ƚଶݎଶଶ − ܽx 

To get the visible volume from the visible area, we integrated from the bottom of the 

well to the liquid surface. Therefore, we needed to calculate the depth of the reagent 

iŶside the ǁell. TakiŶg Ŷote of the ͞iŵagiŶaƌǇ ĐoŶe͟ ;Fig. B.ϯĐͿ, this integral can be set 

up using the three steps described below:  

1) To ĐalĐulate the height of the ͞iŵagiŶaƌǇ ĐoŶe͟ ďǇ siŵilaƌ tƌiaŶgles foƌ the 

integration upper limit:  ℎ௜ℎ௜ + ℎଶ =  ଵݎଶݎ

We can calculate h as:  

ℎ௜ = ଵݎଶℎଶݎ −  ଶݎ

Also from another pair of similar triangles:  ℎ௜ℎ௜ + ݀ = ݎଶݎ  

Results in:  

ݎ = ℎ௜ + ݀ℎ௜ ଶݎ = ଵݎଶℎଶݎ − ଶݎ + ଵݎଶℎଶݎ݀ − ଶݎ ଶݎ = ଶℎଶݎ + ݀ሺݎଵ − ଶሻℎଶݎ = ଶݎ + ℎ݀ଶ ሺݎଵ −  ଶሻݎ
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Reagent volumes are derived from the protoplast transformation protocol, and we 

can employ this to calculate the depth using:  

�ሺ݀ሻ = ͳ͵ ଶሺℎ௜ݎ� + ݀ሻ − ͳ͵ ଶଶℎ௜ݎ� = ͳ͵ �ሺݎଶ + ℎ݀ଶ ሺݎଵ − ଶሻሻଶሺℎ௜ݎ + ݀ሻ − ͳ͵  ଶଶℎ௜ݎ�
2) Change ℎଶ in the expression for bottom visible area into a variable ݏ, as the distance 

between the top circle and the current plane. This gives us the infinitesimal visible 

volume as:  ܣ௩ሺݏሻ݀ݏ 

3) We integrate these elements from the bottom of the well to the surface of the liquid 

to get the total visible volume as:  

�௩௧௢௧௔௟ = ∫ �ݏሻ݀ݏ௩ሺܣ
ℎమ = �௩௧௢௧௔௟ሺܦሻ 

B.3 Testing the sources of noise 

We prepared protoplast transformations with one DEX-inducible gene circuit and one 

OHT-inducible gene circuit (enough for 48 wells each).  Some wells were emptied and frozen for 

further studies. We collected luminescence data with no inducer added, and repeated the 

experiment on three different days with three different batches of protoplasts. In the absence 

of any noise, all wells should display identical F-luc and identical R-luc luminescence, with R-luc 

expression at its maximum (since no repressor should be present). Thus, variations between 

luminescence values from wells containing the same gene circuit on the same plate represent 

within-plate noise (the first source of noise). The difference between the mean R-luc 

luminescence measured from the DEX-inducible gene circuit and the OHT-inducible gene circuit 

in the same batch represents the between-transformation noise (the second source of noise). 
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Finally, the difference between the mean luminescence of the three batches represents the 

between-batch noise (the third source of noise). 

BeĐause the ͚ďatĐh effeĐt͛ is a ƌaŶdoŵ ǀaƌiatioŶ that affeĐts the eŶtiƌe populatioŶ of 

protoplasts in a batch, we can represent it mathematically by a random number  such that the 

observed luminescence in the j-th well of the i-th batch can be represented by �௜௝ = �ܤ௜ߙ + ௜௝ߜ  

and ܨ௜௝ = ிܤ௜ߙ + ′௜௝ߜ , for R-luc and F-luc luminescence, respectively. Here, ܤ� , ிܤ  are the 

steady state number of luciferase molecules in the well in the absence of any noise for the R-luc 

and F-luc promoters, respectively; ߙ௜ is a random number that represents a multiplicative batch 

effect, while ߜ௜௝ , ′௜௝ߜ  are random variables that represent additive noise terms that could arise 

from the remaining noise sources. If we average the R-luc and the F-luc luminescence for each 

batch and plot them, we are plotting ߙ௜ܤ� + �ܤ௜ߙ ௝ againstۄ௜௝ߜۃ + ′௜௝ߜۃ  ௝ (where the subscriptۄ

on the angled brackets indicates the index being averaged). If this plot is approximately linear, 

we can conclude that the batch effect is identical for both R-luc and F-luc, and dominates the 

additive noise terms. 

B.4 Conversion of Luminescence Values to Physical Units 

We experimentally characterized the function of our promoter-repressor pairs using 

luminescence from two types of luciferase.  Luminescence values are typically reported in RLUs, 

or relative luciferase units. For our collection system (Stanford Photonics ICCD Camera), RLU is 

the sum of pixel intensity values within an area over collection time (i.e., RLU/(area x sec)), and 

represents the activity of F-luc and R-luc for each protoplast sample.  We converted RLUs to 

molecules of luciferase by quantifying the relationship between the luminescence and the 

luciferase activity using purified recombinant F-luc and R-luc.  We plotted standard curves to 
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convert from RLU values to an absolute number of molecules for both F-luc and R-luc (Fig. B.4). 

Our standard curves are linear, with high R2 values (0.97 and 0.96, respectively). We found that 

there is a difference in the number of molecules of R-luc or F-luc that generate the same RLU 

value. We used these standard curves with our image-corrected data to provide absolute 

molecule numbers for our mathematical analysis.   

B.5 Testing the normalization scheme with simulated data 

To generate simulated data, we first calculated single-plasmid data using Equation 3.1 with 

assumed parameter values. Then the single-plasmid data were multiplied by a normally 

distributed random number representing the number of plasmids in each well ( ௜ܰ௝), and 

another random number drawn from a lognormal distribution representing the batch effect 

factor (ߙ௜). The latter was assumed smaller than one, based on our analysis described in the 

main text.   

For simplicity, we set all the constants ܥଵ, ܥଶ and ̃ܥ to 1. We simulated 1,000 sets of 

data, consisting of six inducer levels and two technical replicates, similar to our experimental 

data. For each set we chose one value of α from a log normal distribution with a mean less than 

one. Because the lognormal distribution is unbounded in the positive infinity direction, we 

assumed a 95% cut-off for the distribution of α. To test the normalization scheme with different 

levels of noise, we increased the standard deviation to obtain a series of distributions with a 

decreasing population mean and increasing variance of ߙ௜. Since each well in our experiments 

had approximately 10,000 protoplasts, we set this to be the mean of ௜ܰ௝ and simulated various 

levels of noise by changing the standard deviation of the normal distribution.  
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This procedure produced fits with an unreasonably high Hill coefficient at high levels of 

noise in the simulated data. We therefore imposed the criteria that the fitted Hill coefficient of 

the repressible promoter should lie between 0 and 6. Due to the high levels of noise we can 

aƌtifiĐiallǇ geŶeƌate iŶ the siŵulated data, theƌe aƌe also ͞ďad fits͟ ǁithiŶ Ϭ < Ŷ < ϲ. These ĐaŶ 

be further characterized by unreasonably high fitted values of B which are far away from the 

well-formed distribution of most fitting results. We observed that the fitting results of each 

parameter form lognormal distributions similar to the assumed distribution of α. Therefore, we 

carried out logarithmic transformation to the fitted values of B and applied outlier tests 

folloǁiŶg PeiƌĐe͛s ŵethod [1]. Specifically we used the R-code written by Dardis and Muller 

(https://r-forge.r-project.org/projects/peirce/Ϳ, ǁhiĐh eǆteŶds the deǀelopŵeŶt of PeiƌĐe͛s 

method by S. M. Ross [2]. 

Fits that met the criterion of n and pass the outlier tests were deemed successful and 

this defined the Number of Successes (NOS) among the 1000 repeats carried out. Within these 

biologically feasible results, we compared the mean and standard deviation of the three fitted 

parameters, namely B, H and n iŶ EƋuatioŶ ϯ.ϭ aŶd Ϯ. The ǀaƌiatioŶ iŶ the paƌaŵeteƌs͛ 

magnitude is a measure of the effect of experimental noise on our estimates. We therefore 

plotted the estimated parameters coefficient of variation against the level of noise introduced 

in the simulated data (Fig. B.5). We found that our normalization procedure can indeed, as 

expected, reduce the coefficient of variation of the estimates of B and H between different log 

standard deviations of the alpha distribution, and thus make them more comparable. However, 

the estimates of the Hill coefficient n were not improved by our normalization.  

 

https://r-forge.r-project.org/projects/peirce/
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B.6 Fitting the data and selecting plant gene circuits 

We implemented a number of quality control steps to filter out the gene circuits whose 

behavior was questionable, as described below. First, we eliminated all gene circuits whose F-

luc value with all inducer levels was below a designated threshold. These assays were assumed 

to have failed for various reasons and the data not usable. Our criteria for this threshold were: 

first, at least one well within the transformation had to produce a signal above the bottom 10% 

of our data.  Second, our synthetic promoters had to demonstrate a reasonable fold-change 

ǁheŶ the ƌepƌessoƌ is pƌoduĐed. We defiŶed a ͚ƌeasoŶaďle͛ ĐhaŶge as haǀiŶg a fold-change of 

at least 1.3-fold in the output (R-luc), as calculated from the lowest amount of the repressor 

(average of three lowest F-luc values) to the highest amount of the repressor (average of three 

highest F-luc values).  Third, we examined our data for biologically meaningful Hill coefficient 

(n) values, since our simulated results had shown that we had the most uncertainty in our 

estimates of this parameter. With these criteria, we selected the gene circuits whose fitted n 

values lay between 0 and 6. A Hill coefficient < 0 would indicate the repressor is acting more 

like an activator than a repressor, while a Hill coefficient of 6 or greater is implausible in our 

system. We then selected the best performing repressible promoter gene circuits from those 

that we assembled. 

B.7 Normalization for comparison with stably transformed plants 

A key difference in the mathematical description of protoplasts prepared from the 

stably transformed plants is the number of working circuits each protoplast contains. We used 

genetic segregation data to select for plants segregating for a single T-DNA insertion.  In the T1 

generation used in our study, heterozygous plants self-fertilized producing both homozygous 
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and heterozygous progeny in a 1:2 ratio. Hence, homozygous progeny contain two copies, and 

heterozygous plants contain one copy of the genetic circuit.  However, for the transient 

protoplast assay, we expected that on average multiple copies of the plasmid would be found in 

each transformed protoplast, which was confirmed by our data (Fig. 3.6b,c).  In the no-inducer 

treatment, R-luc luminescence levels are just over 4-fold smaller in protoplasts from stably 

transformed plants compared to transiently transformed protoplasts, despite the fact that the 

initial cell density of the former is five times greater than the latter. Since the parameter B in 

Equation 3.1 is proportional to the average number of viable plasmids ߙۃ௜ۃۄ ௜ܰ௝ۄ for the gene 

circuit, estimates of B from transient data are expected to be overestimates of B for stable gene 

circuit.  In agreement with this expectation, tests on simulated data with varying levels of mean 

௜ܰ௝ showed that ܤ௜  was systematically overestimated as the mean number of plasmids became 

larger (Fig. B.8). In order to correct for this overestimation, we normalized our stably 

transformed plant data with the mean of the distribution coming from the transient assay. In 

other words, we defined a normalization factor �௜∗ such that:  

  

�௜∗ = ி೔భೞۃ ி೔భ೟ۃೝۄ ೔ೝۄ = ೔భೞ�ۃ ೔భ೟�ۃೝ ఈ೔ۄ                           ۄఈ೔ۃ೔ೝۄ
 

Here, the superscript t refers to the transient assay, and s refers to the stable transformation 

assay. The subscripts on the angled brackets indicate the index over which the average is being 

taken (r refers to technical replicates). Dividing the data by �௜∗ therefore accomplishes two 

goals.  First, it replaces ߙ௜ by ߙۃ௜ۄ.  In addition, it multiplies each F-luc and R-luc value by the 

fraction by which the plasmids in a transient protoplast average well exceed those in assays 
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with protoplasts prepared from stably transformed plants (i.e., the fraction 
೔భ೟�ۃ ೔భೞ�ۃ ೔ೝۄ ೝۄ  ). Tests on 

simulated data (Fig. B.7) show that the estimates of B and H obtained by this method are 

insensitive to changes in the mean of the plasmid number ௜ܰ௝ and therefore allow comparison 

of transient assays with stably transformed assays. 

B.8 Testing the normalization factor ��∗ with simulated data 

As previously described, protoplasts prepared from stably transformed plants segregate 

for a single insertion of the gene circuit, whereas protoplasts prepared via transient assays 

contain multiple copies of the gene circuit. This leads to different multipliers found in 

parameter B in Equation 3.1 and hinders direct comparisons of the estimated parameter values 

between transient and stably transformed assays. In the main text, we proposed a 

normalization factor �௜∗ to correct this bias from plasmid numbers. We then tested if this 

normalization factor �௜∗ behaved as expected using simulated data (similar to Fig. B.5).  

Due to the differences between the transient and stably transformed assays, the noise 

levels should be positively proportional to the mean numbers of plasmid in each protoplast. 

Therefore, the coefficient of variance (COV) can be assumed to be the same between the 

transient and stably transformed assays, whereas the absolute levels should be different. 

Hence, we varied the standard deviation and mean values at the same time and kept the COV 

the same (Fig. B.7). To observe the trend clearly, we carried out simulations with five 

decreasing absolute noise levels. We then normalized the simulated data at each level as 

discussed above. We applied the same fitting procedure and measurements to both the 

normalized dataset and its corresponding raw dataset. Similar to what we observed in Figure 

B.5, fitting of n is insensitive to the normalization we applied. As expected, decreases in mean 
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fitted values for B and H were observed for the raw data. In contrast, the mean fitted values for 

B and H in the normalized data were at similar levels across all five noise levels simulated. This 

shows our proposed normalization factor �௜∗ meets our expectation and makes different 

absolute levels comparable.  

B.9 Bootstrapping data analysis of transient vs. stable transformants 

Bootstrapping statistical analysis was carried out to generate mean values and 

confidence intervals for the predictions in stably transformed plants. Bootstrapping is a useful 

inference method when the underlying distribution of the data is not known or when the 

sample size is small [3]. Bootstrapping was used here to test whether the predictions (Fig. 3.6) 

would still be the same if the data had been sampled differently. 

To generate the different sample sets, the original data set was randomly selected to form 

bootstrap sample sets in the following three steps. 

1. We chose the appropriate number of bins to histogram F-luc values. The chosen number 

of bins was the largest number that yielded no bins with zero values in them. This was 

done to optimize the sampling of the data. 

2. We chose the number of sample points to draw from each bin. This number was set to 

be one greater than the minimum number of points in any bin, to avoid drawing the 

same point an excessive number of times per sample. For example, if one bin in the F-

luc histogram contained only one point, the maximum number of sample points that 

could be drawn from any bin was set as 2. 

3. We made histograms of the F-luc data with the number of bins chosen in step 1, and the 

corresponding R-luc data were placed in a corresponding R-luc bin. Bootstrapped 
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samples were created by drawing the number of sample points fixed in step 2 from each 

bin, randomly and with replacement.  

Five hundred bootstrap samples were created separately from data obtained in transient 

assays and from stable transgenic plants, for each gene circuit. Each bootstrap sample was fit 

using our standard procedure, and the parameters B, H and n estimated. This exercise 

produced a distribution of fitted values for each parameter. These distributions appear to have 

large outliers (Fig. B.8a). Outliers that were 3 standard deviations or greater away from the 

mean were identified and removed. Mean values and confidence intervals were then calculated 

from the remaining distribution. The lower and upper bound for each confidence interval were 

the 5% and 95% values from the final bootstrapped distribution, given a 90% confidence 

interval.  

The results of the bootstrapping exercise are shown in Figure B.9b-d. To summarize these 

results: 

 The predictions for B appeared to be in the same range and showed the same trend as 

the original fits. 

 The predictions for H appeared to be in the same range and gave a similar, if not better, 

comparison between stable and transient data as in the original fits.  

 The mean value for the predictions for n lay within at least a factor of 2.56 between the 

stable and transient data. However, the increased confidence intervals suggest that this 

parameter may be more difficult to recover, as suggested by the simulated data. 
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B.10 Quantitative analysis of design elements 

B.10.1 Outline of Method 

Each promoter-repressor gene circuit we constructed had seven design elements of our 

test system that we experimentally characterized. We analyzed our data for statistical patterns 

that associate design elements, and their combinations, with satisfactory performance and 

allowed derivation of design principles.  

The seven design elements in our test genetic circuit are: 

1) Inducible promoter (controlling repressor levels); 

2) DNA-binding domain (Gal4 or LexA); 

3) Repressor motif; 

4) Constitutive promoter scaffold; 

5) Number of binding sites; 

6) Location of binding sites; 

7) Use of spacer DNA inserted between the binding sites. 

Each design element can be used to divide the synthetic gene circuits into categories that 

reflect the choices of that design element. For example, there were two options for DNA-

binding domain; hence, all promoter-repressor pairs can be divided into those that use Gal4 

and those that use LexA DNA-binding domain. We compared repressible promoter 

performance between LexA-based and Gal4-based promoter-repressor pairs. To make this 

comparison, we defined six measures of promoter performance, two qualitative and four 

quantitative.  
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1) Success ratio (number of gene circuits with good fits/total number of promoters tested 

for each category); 

2) Mean rank of gene-circuits ranked by fold-change (mean of the rank of all gene circuits 

in a category); 

3) Fold-change of R-luciferase expression; 

4) B parameter value (maximal expression of the repressible promoter); 

5) H parameter value (amount of repressor needed to reduce expression by half); 

6) n parameter value (sigmoidality of the input-output relation). 

We specifically focused on two aspects: 

1. Among the gene circuits that met the criteria for good promoter-repressor 

combinations, we examined the data for patterns that are associated with particular 

performance measures (see details and results of the ANOVA).  

2. We sought differences between genetic components that met our criteria and those 

that did not meet our criteria. 

B.10.2 Comparison among functional gene circuits 

For the first aspect, we carried out an ANOVA analysis based on the four quantitative 

measures of promoter performance (items 3-6 above). Because of our limited data set, we 

assumed no multicollinearity.  In this case, when analyzing the effect of one given design 

element, we assumed the effect of the remaining design elements averages out.  For example, 

when analyzing the effect of the three distinct promoter scaffolds (CaMV35S, FMV, NOS), the 

effect of the other design elements (numbers and positions of DNA binding elements) average 

out.  When possible, we further checked our assumption of no mulitcollinearity by dividing the 
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data set by element. For example, we separated data for DEX-inducible promoters from data 

for OHT-inducible promoters.  Also, when possible, we ensured an observed trend correlated 

with known biological function.  For example, the monocot promoter ZmUbi1 is known to be a 

very strong constitutive promoter [4], and our analysis shows that this promoter was found to 

have a large B value compared to CaMV35S, indicating a strong constitutive expression.  

B.10.3 Details and results of the ANOVA 

We carried out a one-way ANOVA on each of the design elements described above for 

the Arabidopsis normalized protoplast data. Fold-change and the parameter values of B, H and 

n were used to verify if there was a significant difference between the groups for each element. 

We used log(B) and log(H), since the bootstrap analysis showed that distributions of both B and 

H were approximately lognormal. We found that the inducer used had a significant impact on 

Fold-change and n value performance. This was expected because they represent two different 

biological systems, and because the normalization constant between the two inducible systems 

is also different. We therefore re-ran the one-way ANOVA for each of the six remaining design 

elements separately for DEX- and OHT-inducible systems (Table B.1). This analysis yielded two 

design elements to explore further: (i) the number of binding sites used, and (ii) the location of 

the binding sites. 

We used a HSD (Honestly Significant Difference) Tukey test to perform a sequential 

comparison of all subgroups for these two design elements. We found a significant difference 

for the number of binding sites used between 2x and 4x for DEX-based circuits, and between 2x 

and 5x for OHT-based circuits. As 4x and 5x binding sites were only present in promoters with 

binding sites positioned just upstream of the TATA box, this significant difference could be due 
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to positioning of the binding site, rather than their copy number. As this trend in the B value 

was not seen with promoters containing 8x binding sites, the observed difference is likely due 

to positioning, and not binding site copy number. The HSD Tukey results for binding site 

position suggested that binding sites positioned just upstream of the TATA box have lower and 

significantly different B values compared to binding sites before or after the constitutive 

promoter scaffold (Fig. B.9a).  

ANOVA results for the normalized sorghum data can be found in Table B.2. As we found 

in Arabidopsis, our results are most notable when there is significance with multiple genetic 

circuits (e.g., DEX and OHT induction). The four elements that showed significance in both gene 

circuits are:  

(i) The B value showed significance in terms of binding site copy number. However, similar to 

what we found in Arabidopsis, this difference seen in the binding site number is likely due to 

the positioning of the TATA box. 

(ii) The n value showed significance in terms of binding site number. However, the HD Tukey 

results for the n value with the copy number showed different significant comparison between 

the DEX and OHT data.  

(iii) The B value showed significance in terms of the position of the binding elements. The HD 

Tukey results were similar to those observed in Arabidopsis;  promoters containing the binding 

sites just upstream of the TATA box have significantly lower B value compared to promoters 

with binding sites upstream or downstream of the constitutive scaffold (Fig. B.9b). 
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(iv) The B value showed significance in terms of the constitutive elements. The HD Tukey results 

suggested promoters based on the CaMV35S scaffold have significantly lower B values 

compared to ZmUbi1 promoters (Fig. B.9c). 

Comparison between functional and non-functional circuits 

For this comparison, we used our two qualitative metrics of performance, success ratio 

and mean rank. Success ratio was defined as the number of successful components over the 

total number of components tested. A successful component is one that displays the desirable 

behavior, in this case, transcriptional repression. We then ranked all the successful circuits 

according to their fold-change values. For each category, the mean rank was calculated as a 

non-parametric measurement of circuit performances. All results are outlined in the Tables B.1-

4. We have summarized several of these comparisons below.  

To facilitate pairwise comparisons, ǁe used Fisheƌ͛s eǆaĐt test aŶd WilĐoǆoŶ ƌaŶk suŵ 

test to calculate P-ǀalues foƌ the suĐĐess ƌatio aŶd ŵeaŶ ƌaŶk, ƌespeĐtiǀelǇ. Fisheƌ͛s eǆaĐt test 

was chosen for success ratio due to its validity for small sample sizes and accuracy when sample 

size is large. The Wilcoxon rank sum test was chosen for mean rank as a non-parametric 

alternative for testing the null hypothesis that the medians of two samples are the same. The 

Wilcoxon rank sum test was applied directly to the fold-change data of the pair of interest. For 

ease of direct comparisons across different pairs for the bulk measurements, mean ranks listed 

in all the tables were calculated based on the ranks of the entire list of successful gene circuits. 

However, this caused no difference in the statistical test results. Due to our limited sample size, 

we chose a significance level of 0.1, which is higher than the conventional significance level of 
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0.05. In Tables B.3 and B.4, we used notations for different significance levels as * for P-value < 

0.1, ** for P-value < 0.05 and *** for P-value < 0.01.  

We applied this analysis to the Arabidopsis and sorghum datasets to identify possible 

design principles that correlated with function of synthetic components in plants. Supporting 

data are provided in Table B.3 for Arabidopsis circuits and Table B.4 for sorghum circuits.  

In Arabidopsis, we found that the DEX-inducible promoter leads to statistically 

significantly better function than the OHT-inducible promoter, in terms of both success ratio 

and mean rank. This was also observed in sorghum. Of the three constitutively expressed 

scaffolds used in Arabidopsis circuits (CaMV 35S, FMV, NOS), FMV is typically regarded as the 

strongest constitutive promoter [5] [6] [7], and we found that it performed the worst in 

repressibility. The two DNA-binding domains, LexA and Gal4, worked similarly in terms of both 

mean rank and success ratio. Interestingly, some combinations of the constitutively expressed 

scaffolds and DNA-binding domains worked better than others. In particular, CaMV35S 

functioned statistically significantly better with LexA. Although not statistically significant, it is 

interesting to note that the NOS scaffold appeared to function better when paired with Gal4. 

Similarly, some combinations of repressor domains and DNA-binding domains worked better 

than others. Specifically in terms of mean rank, OFP1/OFPx worked significantly better with 

LexA. Although not significant there is an interesting trend of B3 working better with Gal4, and 

there is no obvious preference for EAR. Due to the limits on sample size, we were not able to 

draw general conclusions for other design elements (i.e., the relative positions of binding 

elements and constitutive scaffolds, number of binding elements and presence of spacers 

between binding elements).  
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To address the genomic differences between monocots and dicots, different 

constitutive promoter scaffolds (namely ZmUbi1 and OsACT2) were used for sorghum circuits, 

except for CaMV 35S, which has been reported to also function in sorghum [8]. In sorghum, 

CaMV 35S was statistically the best scaffold in terms of success ratio and although not 

significant has a relatively better Mean Rank. Only five ZmUbi1-based circuits were 

characterized as repressible and none of the OsACT2 met the quality criteria. Although not 

statistically significant, it is interesting to note that Gal4 showed a trend to be favored in terms 

of the combinations between the DNA-binding domains and the repressor domain. Overall, two 

key conclusions we found in both Arabidopsis and sorghum data for function of our synthetic 

genetic circuit are: (i) CaMV 35S is the best performing constitutive scaffold. (ii) DEX-inducible 

promoter leads to statistically significantly better function than the OHT-inducible promoter.   

Table B.1. Arabidopsis ANOVA results. A one-way ANOVA was carried out for each design 

element with each quantitative measure of promoter performance. Each row represents a 

different design element and each column represents a different measure. Only P-values < 0.1 

are shown. Tests that did not show significance are marked by a dash ( - ). 

Design 

Element 

DEX 

(Fold-

change) 

OHT 

(Fold-

change) DEX (B) OHT (B) DEX (H) 

OHT 

(H) 

DEX 

(n) 

OHT 

(n) 

Repressors - - - P = 0.02 - - - 
P < 

0.01 

Binding 

sitesa P = 0.08 - P < 0.01 P = 0.05 
P = 

0.01 
- - - 

Constitutive 

scaffolds 
P = 0.01 - - - - - 

P = 

0.08 
- 

Gal or Lex - - P = 0.04 - 
P = 

0.08 
- - - 

Positionb P = 0.01 - P < 0.01 P = 0.01 - - - - 

Spacers - - - - - - - - 
anumber of DNA binding elements inserted in the constitutive promoter scaffold; 
bpositioŶ of DNA ďiŶdiŶg eleŵeŶts ;upstƌeaŵ of the sĐaffold, doǁŶstƌeaŵ iŶ the ϱ͛UT‘, oƌ just 
upstream of the TATA box). 
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Table B.2. Sorghum ANOVA results. A one-way ANOVA was carried out for each design 

element with each quantitative measure of promoter performance. Each row represents a 

different element and each column represents a different measure. Only P-values < 0.1 are 

shown. Tests that did not show significance are marked by a dash ( - ). 

Design 

Element 

DEX 

(Fold-

change) 

OHT 

(Fold-

change) DEX (B) 

OHT 

(B) DEX (H) 

OHT 

(H) DEX (n) 

OHT 

(n) 

Repressors - - -  - - - - 

Binding 

sitesa - - 
P < 

0.01 

P = 

0.04 

P = 

0.095 
- 

P = 

0.07 

P = 

0.01 

Constitutive 

scaffolds 
- - 

P < 

0.01 

P < 

0.01 
- - - - 

Gal or Lex - - -  - - - - 

Positionb P = 0.08 - 
P < 

0.01 

P = 

0.02 
- - - - 

Spacers - - - 
P = 

0.03 
- - - - 

anumber of DNA binding elements inserted in the constitutive promoter scaffold; 
bposition of DNA binding eleŵeŶts ;upstƌeaŵ of the sĐaffold, doǁŶstƌeaŵ iŶ the ϱ͛UT‘, oƌ just 
upstream of the TATA box). 

 

Table B.3. Supporting data of design principles for Arabidopsis. Bulk measurements applied 

are success ratio and mean rank. For success ratio, the number inside the parentheses 

represents the actual number of successful gene circuits over the total number of gene circuits 

made, with calculated absolute ratio shown outside of the parentheses. P-values for mean rank 

are calculated using Wilcoxon rank sum test and P-ǀalues foƌ suĐĐess ƌatio usiŶg Fisheƌ͛s eǆaĐt 
test. a) Inducible promoters. Gene circuits with DEX-inducible promoter are statistically 

significantly better than the ones with OHT-inducible promoter in terms of both success ratio 

and mean rank. b) Constitutively expressing scaffold. Overall comparison shows FMV has the 

statistically significantly lowest success ratio and highest mean rank (statistically significant 

between FMV and CaMV35S).  CaMV35S is the best scaffold in terms of both measurements, 

with the same performance compared to NOS in terms of success ratio. c) DNA binding domain 

(LexA/Gal4). LexA and Gal4 perform similarly in terms of both success ratio and mean rank. d) 

Combinations of constitutive promoter and DNA binding domain (LexA/Gal4). FMV works 

similarly with both LexA and Gal4 DNA binding elements. CaMV35S works the statistically 

significantly best with LexA, while there is no statistically significant difference between LexA 

and Gal4 for the NOS scaffold. e) Repressor domain. Due to high homology between OFP1 and 

OFPx, a new category is created as OFP1/OFPx by combining these two domains together. B3 

works better with Gal4 than LexA in terms of mean rank (big difference but not statistically 

significant), OFP1/OFPx works statistically significantly better with LexA in terms of mean rank, 

and EAR has no statistically significant preference. There is no statistically significant advantage 

for any repressor domain in terms of overall comparisons.  f) Positions of binding sites. 

͞Upstƌeaŵ͟ staŶds foƌ ĐoŶstitutiǀelǇ-expressing-scaffold-fiƌst geŶe ĐiƌĐuit aŶd ͞DoǁŶstƌeaŵ͟ 
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for DNA-binding-domain-first gene circuit. Four pairs of direct comparisons for relative order 

between constitutive promoter and DNA binding domain were made. None of them are 

statistically significant. g) Overall comparison for positions of binding site. Gene circuits with a 

spacer were excluded from this analysis. There is no statistically significant difference between 

͞Upstƌeaŵ͟ aŶd ͞TATA.͟ ͞DoǁŶstƌeaŵ͟ peƌfoƌŵed ǁoƌse thaŶ the otheƌ tǁo. Moƌe 
speĐifiĐallǇ, ͞Upstƌeaŵ͟ is statistiĐallǇ sigŶifiĐaŶtlǇ ďetteƌ thaŶ ͞DoǁŶstƌeaŵ͟ iŶ teƌŵs of 
suĐĐess ƌatio aŶd ͞TATA͟ is statistiĐallǇ sigŶifiĐaŶtlǇ ďetteƌ thaŶ ͞DoǁŶstƌeaŵ͟ iŶ teƌŵs of 
mean rank. h) Effects of spacer. Eight pairs of direct comparisons were available for this 

analysis. None of them were significantly different. i) Overall comparison for effects of spacer. 

Gene circuits without a spacer are statistically significantly better than the ones with spacer in 

terms of success ratio. j) Effects of binding site copy number. No data for direct comparisons for 

effects of increase in number of binding sites (e.g., 2 or 8 copies of LexA), as shown in f). The 

overall comparison shows (gene circuits with spacer excluded) 2 copies of LexA is statistically 

significantly better than 8 copies of LexA in terms of success ratio. 5xGal4 and 4xLexA are 

always associated with TATA, so these two are not included for the analysis on copy number of 

binding site. Notations for significance level: * for P-value < 0.1, ** for P-value < 0.05 and *** 

for P-value < 0.01.  

 

a) Inducible promoters 

 DEX OHT P-value 

Success ratio 0.44 (28/64) 0.22 (14/64) 0.014** 

Mean rank 18.2 28.1 0.014** 

 

b) Constitutively expressing scaffolds  

1) Bulk measurements:  

 CaMV35S FMV Nos 

Success ratio 0.44 (14/32) 0.17 (8/48) 0.42 (20/48) 

Mean rank 14 29.4 23.6 

2) P-values:  

Comparisons Fisher’s EǆaĐt Test Wilcoxon rank sum test 

CaMV35S vs FMV 0.011** 0.011** 

CaMV35S vs NOS 1 0.020** 

FMV vs NOS 0.013** 0.21 

 

c) DNA Binding Domain (LexA/Gal4) 

 Gal4 LexA P-value 

Success ratio 0.31 (20/64) 0.34 (22/64) 0.85 

Mean rank 23.3 19.9 0.38 

 

d) Combinations of constitutive promoter and DNA Binding Domain (LexA/Gal4) 

1) Bulk measurements:  

Constitutive 

Promoter 

DNA Binding 

Module 

Success Number Mean Rank 
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CaMV35S 
LexA 0.63 (10/16) 9 

Gal4 0.25 (4/16)  26.5 

Nos 
LexA 0.33 (8/24) 28.9 

Gal4 0.5 (12/24) 20 

FMV 
LexA 0.17 (4/24) 29.3 

Gal4 0.17 (4/24) 29.5 

2) P-ǀalue fƌoŵ Fisheƌ͛s EǆaĐt Test:  

 
CaMV35S NOS FMV 

LexA Gal4 LexA Gal4 LexA Gal4 

CaMV35S 
LexA - 0.073* 0.114 0.53 0.0059*** 0.0059*** 

Gal4  - 0.734 0.19 0.69 0.69 

NOS 
LexA   - 0.38 0.32 0.32 

Gal4    - 0.030** 0.030** 

FMV 
LexA     - 1 

Gal4      - 

3) P-value of Wilcoxon rank sum test:  

 
CaMV35S NOS FMV 

LexA Gal4 LexA Gal4 LexA Gal4 

CaMV35S 
LexA - 0.036** 3.2e-4*** 0.019** 0.0040*** 0.0080*** 

Gal4  - 0.81 0.38 1 0.89 

NOS 
LexA   - 0.11 0.81 0.93 

Gal4    - 0.17 0.17 

FMV 
LexA     - 0.69 

Gal4      - 

 

e) Repressor domain  

1) Bulk measurements:  

  B3 EAR OFP1 OFPx OFP1/OFPx 

LexA 
Success 

Ratio 

0.38 (6/16) 0.31 (5/16) 0.31 (5/16) 0.38 (6/16) 0.34 

(11/32) Mean Rank 24.2 19.4 16.4 19 17.8 

Gal4 
Success 

Ratio 

0.31 (5/16) 0.56 (9/16) 0.25 (4/16) 0.13 (2/16) 0.19 (6/32) 

Mean Rank 12.2 24.1 28.8 36 31.2 

Total 
Success 

Ratio 

0.34 

(11/32) 

0.44 

(14/32) 

0.28 (9/32) 0.25 (8/32) 0.27 

(17/64) Mean Rank 18.7 22.4 21.9 23.3 22.6 

2) P-ǀalues fƌoŵ Fisheƌ͛s EǆaĐt Test foƌ split ĐoŵpaƌisoŶs:  

 
B3 EAR OFP1 OFPx OFP1/OFPx 

LexA Gal4 LexA Gal4 LexA Gal4 LexA Gal4 LexA Gal4 

B3 
LexA - 1 1 0.48 1 0.70 1 0.22 1 0.18 

Gal4  - 1 0.29 1 1 1 0.39 1 0.47 

EAR 
LexA   - 0.29 1 1 1 0.39 1 0.47 

Gal4    - 0.29 0.15 0.48 0.023** 0.22 0.019** 
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OFP1 
LexA     - 1 1 0.39 - - 

Gal4      - 0.70 0.65 - - 

OFPx 
LexA       - 0.22 - - 

Gal4        - - - 

OFP1/ 

OFPx 

LexA         - 0.26 

Gal4          - 

3) P-values of Wilcoxon rank sum test for split comparisons:  

 
B3 EAR OFP1 OFPx OFP1/OFPx 

Lex

A 

Gal4 LexA Gal

4 

Lex

A 

Gal4 LexA Gal4 LexA Gal4 

B3 
Lex

A 

- 0.18 0.54 1 0.33 0.76 0.59 0.29 0.35 0.40 

Gal

4 

 - 0.31 0.15 0.69 0.016*

* 

0.54 0.095* 0.51 0.0043*** 

EAR 
Lex

A 

  - 0.61 0.84 0.29 0.93 0.095* 0.83 0.082* 

Gal

4 

   - 0.24 0.60 0.46 0.33 0.22 0.33 

OFP1 
Lex

A 

    - 0.19 0.93 0.19 - - 

Gal

4 

     - 0.48 0.53 - - 

OFPx 
Lex

A 

      - 0.29 - - 

Gal

4 

       - - - 

OFP1/ 

OFPx 

Lex

A 

        - 0.078* 

Gal

4 

         - 

4) P-ǀalues fƌoŵ Fisheƌ͛s EǆaĐt Test foƌ oǀeƌall ĐoŵpaƌisoŶs:  
 B3 EAR OFP1 OFPx OFP1/OFPx 

B3 - 0.61 0.79 0.59 0.48 

EAR  - 0.30 0.19 0.11 

OFP1   - 1 - 

OFPx    - - 

OFP1/OFPx     - 

5) P-values of Wilcoxon rank sum test for overall comparisons:  

 B3 EAR OFP1 OFPx OFP1/OFPx 

B3 - 0.49 0.54 0.49 0.42 

EAR  - 0.92 0.92 1 

OFP1   - 0.81 - 

OFPx    - - 

OFP1/OFPx     - 

 

f) Positions of Binding Site  

1) Bulk measurements:  

 Gal4 LexA 

Copy Number 2 5 2 4 8 

Relative Order Before After TATA Before After TATA Before After 

DEX 

CaMV35S - 1 (35) 2 (14.5) 4 (5.8) - 4 (6.8) - - 
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FMV 2 (29.5) 0 - 2 (24.5) - - - 1 (36) 

NOS 3 (11) 3 (16.3) - - 3 (29.7) - - 0 

OHT 

CaMV35S - 0 1 (42) 1 (14) - 1 (26) - - 

FMV 2 (29.5) 0 - 0 - - - 1 (32) 

NOS 1 (40) 2 (20) - - 2 (33) - - 0 

2) P-values:  

Before vs After Fisher’s EǆaĐt Test Wilcoxon rank sum test 

DEX_FMV_2xGal4 0.43 0.67 

DEX_nos_2xGal4 1 0.70 

OHT_FMV_2xGal4 0.43 0.67 

OHT_nos_2xGal4 1 0.67 

 

g) Overall comparison (excluding gene circuits with spacer) for Positions of Binding Site  

1)  Bulk measurements:  

 Before  After  TATA 

Success ratio 0.47 (15/32) 0.27 (13/48) 0.5 (8/16) 

Mean rank 18.5 26.7 15.5 

2) P-values  

 Fisher’s EǆaĐt Test Wilcoxon rank sum test 

Before vs After 0.095* 0.13 

Before vs TATA 1 0.77 

After vs TATA 0.13 0.039** 

 

h) Effects of Spacer  

1) Bulk measurements:  

 Gal4 LexA 

Copy Number 2 8 

Spacer Yes No Yes No 

DEX 

CaMV35S  - - - - 

FMV 
Success 

Ratio 

0 (0/4) 0 (0/4) 0 (0/4) 0.25 (1/4) 

Mean Rank NA NA NA 36 

NOS 
Success 

Ratio 

0.25 (1/4) 0.75 (3/4) 0.50 (2/4) 0 (0/4) 

Mean Rank 29 16.3 25.5 NA 

OHT 

CaMV35S  - - - - 

FMV 
Success 

Ratio 

0 (0/4) 0 (0/4) 0 (0/4)  0.25 (1/4) 

Mean Rank NA NA NA 32 

NOS 
Success 

Ratio 

0.50 (2/4) 0.50 (2/4) 0.25 (1/4) 0 (0/4) 

Mean Rank 25 20 25 NA 
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2) P-values for available direct comparisons:  

 Fisher’s EǆaĐt Test Wilcoxon rank sum test 

DEX_FMV_2xGal4 1 NA 

DEX_nos_2xGal4 0.49 0.50 

OHT_FMV_2xGal4 1 NA 

OHT_nos_2xGal4 1 0.67 

DEX_FMV_8xLexA 1 NA 

DEX_nos_8xLexA 0.43 NA 

OHT_FMV_8xLexA 1 NA 

OHT_nos_8xLexA 1 NA 

 

i) Overall comparisons for Effects of Spacer  

 With Spacer Without Spacer P-value 

Success Ratio 0.19 (6/32) 0.38 (36/96) 0.054* 

Mean Rank 25.8  20.8  0.36 

 

j) Effects of binding site copy number 

1) Bulk measurements:  

 Success Ratio Mean Rank 

2xGal4 0.35 (14/40) 22.5 

5xGal4 0.38 (3/8) 23.7 

2xLexA 0.50 (12/24) 20.1 

4xLexA 0.63 (5/8) 10.6 

8xLexA 0.13 (2/16) 34 

2) P-values:  

 Fisher’s EǆaĐt Test Wilcoxon rank sum test 

2xGal4 vs 5xGal4 1 0.86 

2xLexA vs 4xLexA 0.69 0.19 

2xLexA vs 8xLexA 0.020** 0.26 

4xLexA vs 8xLexA 0.021** 0.095* 

 

Table B.4. Supporting data of design principles for sorghum. Measurements are the success 

ratio and mean rank. For the success ratio, the number inside the parentheses is number of 

successful gene circuits over total number of gene circuits made, with calculated absolute 

number shown outside of the parentheses. P-values for mean rank are calculated using 

Wilcoxon rank sum test and P-ǀalues foƌ suĐĐess ƌatio is ĐalĐulated usiŶg Fisheƌ͛s eǆaĐt test. a) 

Inducible promoters. Gene circuits with DEX inducible promoter are statistically significantly 

better than the ones with an OHT inducible promoter in terms of both the success ratio and 

mean rank. b) Constitutive promoters. Overall comparison shows CaMV35S is statistically 

significantly the best in terms of success ratio. None of the OSACT2-based gene circuits passed 

our criteria. c) DNA binding domain (LexA/Gal4). LexA and Gal4 perform similarly in terms of 

the success ratio and mean rank. d) Combinations of constitutively expressing scaffold and 
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DNA binding domain (LexA/Gal4). Other constitutively expressing scaffold were tested but 

have few gene circuits passing our criteria. CaMV 35S works statistically significantly the best 

with both LexA and Gal4 in terms of success ratio. e) List of ZmUbi1-based gene circuits. Except 

that there are more DEX gene circuits than OHT (3 versus 2), there is no other observation we 

can make for these ZmUbi1-based gene circuits. We did not include these five gene circuits in 

the following analyses. f) Combinations of DNA binding domain (LexA/Gal4) and repressor 

domain combinations.  Due to high homology between OFP1 and OFPx, a new category is 

created as OFP1/OFPx by combining these two together. No statistically significant difference 

was observed for comparisons split into LexA and Gal4. In overall comparisons, the only 

statistically significant difference is between OFP1 and OFPx in terms of success ratio. g) 

Positions of binding sites. ͞Upstƌeaŵ͟ staŶds foƌ ĐoŶstitutiǀelǇ-expressing-scaffold-first gene 

ĐiƌĐuits aŶd ͞DoǁŶstƌeaŵ͟ foƌ DNA-binding-domain-first gene circuits. No direct comparison 

for TATA was available to make a solid conclusion. There are four pairs of direct comparisons 

available ďetǁeeŶ ͞Upstƌeaŵ͟ aŶd ͞DoǁŶstƌeaŵ.͟ OŶlǇ the DEX_ϮǆLeǆA paiƌ shoǁs 
statistically significant difference in terms of mean rank. h) Overall comparison for positions of 

binding site. Gene circuits with a spacer were excluded from the analysis. The performance of 

ƌelatiǀe positioŶ of ͞Upstƌeaŵ͟ foƌ CaMV ϯϱ“-based gene circuits is nearly perfect in terms of 

suĐĐess ƌatio. EǆĐept foƌ the suĐĐess ƌatio ďetǁeeŶ ͞Upstƌeaŵ͟ aŶd ͞DoǁŶstƌeaŵ,͟ theƌe is Ŷo 
statistically significant difference in other measurements. i) Effects of spacer. ͞Yes͟ staŶds foƌ 
spaĐeƌs pƌeseŶt iŶ the geŶe ĐiƌĐuit, ǁhile ͞No͟ staŶds foƌ Ŷo spaĐeƌ iŶ this geŶe ĐiƌĐuit. From 

the available direct comparisons, having the spacer made the performance of each gene circuit 

worse in terms of both success ratio and mean rank compared to its corresponding gene 

circuits without the spacer in terms of the bulk measurements. Among these measurements, 

the only statistically significant difference is present for DEX_2xGal4 pair in terms of mean rank. 

j) Overall comparison for effects of spacer. The performances with or without spacer seem 

similar for all 35S-based gene circuits in terms of both success ratio and mean rank. 

Distinguishing between DEX and OHT-based gene circuits also suggests no statistically 

significant difference. k) Effects of binding site copy number. There are two pairs of direct 

comparisons as shown in g. These two pairs suggest that there is no difference on either 

measurement. 5xGal4 and 4xLexA gene circuits were always associated with TATA for binding 

site position, so these two types were not included for the overall comparison. We compared 

results for two and eight copies of LexA. The overall comparison shows 8xLexA performed 

worse than 2xLexA in terms of both success ratio and mean rank for bulk measurements, but 

these two differences are not statistically significant. Notations for significance level: * for P-

value < 0.1, ** for P-value < 0.05 and *** for P-value < 0.01. 

  

a) Inducible promoter 

 DEX OHT P-value 

Success ratio 0.46 (26/56) 0.27 (15/56) 0.0065*** 

Mean rank 17.1  27.7 0.049** 

 

b) Constitutively expressing scaffolds  

1) Bulk measurements:  
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 35S ZmUbi1 OSACT2 

Success ratio 0.56 (36/64) 0.16 (5/32) 0 (0/16) 

Mean rank 20.0 28.0 NA 

2) P-values:  

 Fisher’s EǆaĐt Test Wilcoxon rank sum test 

35S vs ZmUbi1 1.6e-4*** 0.20 

35S vs OSACT2 2.5e-05*** NA 

ZmUbi1 vs OSACT2 0.15 NA 

 

c) DNA Binding Domain (LexA/Gal4)  

 Gal4 LexA P-value 

Success ratio 0.36 (23/64) 0.38 (18/48) 1 

Mean rank 18.9 23.7  0.20 

 

d) Combinations of constitutively expressing scaffolds and DNA binding domain 

combinations (LexA/Gal4)  

1) Bulk measurements:  

 
CaMV 35S ZmUbi1 OSACT2 

LexA Gal4 LexA Gal4 LexA Gal4 

Success ratio 0.50 

(16/32) 

0.63 (20/32) 0.125 (2/16) 0.19 (3/16) - 0 

(0/16) Mean rank 22.5  18.1 33.5 24.3  NA NA 

2) P-ǀalues fƌoŵ Fisheƌ͛s EǆaĐt Test:  

 
CaMV 35S ZmUbi1 OSACT2 

LexA Gal4 LexA Gal4 LexA Gal4 

CaMV 

35S 

LexA - 0.45 0.013** 0.060* - 3.0e-4*** 

Gal4  - 0.0017*** 0.0059*** - 2.0e-5*** 

ZmUbi1 
LexA   - 1 - 0.48 

Gal4    - - 0.23 

OSACT2 
LexA     - - 

Gal4      - 

3) P-values of Wilcoxon rank sum test:  

 
CaMV 35S ZmUbi1 

LexA Gal4 LexA Gal4 

CaMV 35S 
LexA - 0.30 0.26 1 

Gal4  - 0.12 0.30 

ZmUbi1 
LexA   - 0.40 

Gal4    - 

 

e) List of ZmUbi1-based gene circuits 

DEX_2x_gal4_ZmUbi1_OFP1 

DEX_2x_lexA_ZmUbi1_B3 
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DEX_8x_lexA_ZmUbi1_EAR 

OHT_2x_gal4_ZmUbi1_OFPx 

OHT_2x_gal4spacer10_ZmUbi1_B3 

 

f) Combinations of DNA binding domain (LexA/Gal4) and repressor domain 

combinations (only 35S-based gene circuits included)  

1) Bulk measurements:  

 B3 EAR OFP1 OFPx OFP1/OFPx 

LexA 
Success Ratio 0.375 

(3/8) 

0.63 (5/8) 0.75 (6/8) 0.25 (2/8) 0.50 (8/16) 

Mean Rank 23 22 24.2 18 22.6 

Gal4 
Success Ratio 0.75 (6/8) 0.50 (4/8) 0.75 (6/8) 0.50 (4/8) 0.63 (10/16) 

Mean Rank 23.2 11.5 17.2 18.25 17.6 

Overall 
Success Ratio 0.56 

(9/16) 

0.56 

(9/16) 

0.75 

(12/16) 

0.38 (6/16) 0.56 (18/32) 

Mean Rank 23.1 17.3 20.7 18.2 19.8 

2) P-ǀalues fƌoŵ Fisheƌ͛s EǆaĐt Test foƌ split ĐoŵpaƌisoŶs:  

 
B3 EAR OFP1 OFPx OFP1/OFPx 

LexA Gal4 LexA Gal4 LexA Gal4 LexA Gal4 LexA Gal4 

B3 
Lex

A 

- 0.31

7 

0.62 1 0.31 0.31 1 1 0.68 0.39 

Gal

4 

 - 1 0.61 1 1 0.13 0.61 0.39 0.67 

EAR 
Lex

A 

  - 1 1 1 0.31 1 0.68 1 

Gal

4 

   - 0.61 0.61 0.61 1 1 0.67 

OFP1 
Lex

A 

    - 1 0.13 0.61 - - 

Gal

4 

     - 0.13 0.61 - - 

OFPx 
Lex

A 

      - 0.61 - - 

Gal

4 

       - - - 

OFP1/ 

OFPx 

Lex

A 

        - 0.72 

Gal

4 

         - 

3) P-values of Wilcoxon rank sum test for split comparisons:  

 
B3 EAR OFP1 OFPx OFP1/OFPx 

LexA Gal4 LexA Gal4 LexA Gal4 LexA Gal4 LexA Gal4 

B3 
LexA - 1 1 0.40 0.71 0.55 0.80 0.63 0.92 0.47 

Gal4  - 0.93 0.26 0.94 0.39 0.86 0.61 1 0.37 

EAR 
LexA   - 0.41 0.93 0.79 0.86 0.90 0.83 0.77 

Gal4    - 0.17 0.35 0.53 0.49 0.15 0.30 

OFP1 
LexA     - 0.39 0.64 0.48 - - 

Gal4      - 1 0.91 - - 

OFPx 
LexA       - 1 - - 

Gal4        - - - 

OFP1/ 

OFPx 

LexA         - 0.41 

Gal4          - 

4) P-ǀalues fƌoŵ Fisheƌ͛s EǆaĐt Test foƌ oǀeƌall ĐoŵpaƌisoŶs:  
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 B3 EAR OFP1 OFPx OFP1/OFPx 

B3 - 1 0.46 0.48 1 

EAR  - 0.46 0.48 1 

OFP1   - 0.073* - 

OFPx    - - 

OFP1/OFPx     - 

5) P-values of Wilcoxon rank sum test for overall comparisons:  

 B3 EAR OFP1 OFPx OFP1/OFPx 

B3 - 0.44 0.70 0.46 0.52 

EAR  - 0.55 0.78 0.55 

OFP1   - 0.68 - 

OFPx    - - 

OFP1/OFPx     - 

 

g) Positions of binding site (only CaMV 35S-based gene circuits included) 

1) Bulk measurements:  

 Gal4 LexA 

Copy 

Number 

2 5 2 4 8 

Positions Before After TATA Before After TATA Before After 

DEX 

Success 

Ratio 

1 (4/4) 0.25 

(1/4) 

0.75 

(3/4) 

1 (4/4) 0.75 

(3/4) 

0.50 

(2/4) 

- 0.75 

(3/4) Mean Rank 5.8 11 13 6 26 26 - 25.7 

OHT 

Success 

Ratio 

1 (4/4) 0.75 

(3/4) 

0.25 

(1/4) 

0.75 

(3/4) 

0 (0/4) 0.25 

(1/4) 

- 0 (0/4) 

Mean Rank 22.3 22.3 41 31 NA 36 - NA 

2) P-values:  

 Fisher’s EǆaĐt Test Wilcoxon rank sum test 

DEX_2xGal4 Before vs After 0.14 0.40 

OHT_2xGal4 Before vs After 1 0.86 

DEX_2xLexA Before vs After 1 0.057* 

OHT_2xLexA Before vs After 0.14 NA 

 

h) Overall comparison (excluding gene circuits with spacer) for positions of binding site 

(only 35S-based gene circuits included) 

1) Bulk measurements:  

 After Before TATA 

Success ratio 0.42 (10/24) 0.94 (15/16) 0.44 (7/16) 

Mean Rank 23.3 15.3 24 

2) P-values:  

 Fisher’s EǆaĐt Test Wilcoxon rank sum test 

Before vs After 9.1e-4*** 0.10 
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Before vs TATA 0.14 0.14 

After vs TATA 0.89 0.89 

 

i) Effects of spacer (only 35S-based gene circuits included)  

1) Bulk measurements:  

Copy Number 2xGal4 8x LexA 

Spacer Yes No Yes No 

DEX  

Success Ratio 0.75 (3/4)  1 (4/4)  - - 

Mean Rank 19.7 5.8 NA NA 

OHT  

Success Ratio 0.25 (1/4)  1 (4/4)  - - 

Mean Rank 32 22.3 NA NA 

2) P-values:   

 Fisher’s EǆaĐt Test Wilcoxon rank sum test 

DEX_2xGal4 Yes vs No 1 0.057* 

OHT_2xGal4 Yes vs No 0.14 0.40 

 

j) Overall comparisons for effects of spacer (only 35S-based gene circuits included) 

 Without Spacer With Spacer P-value 

DEX 
Success Ratio 0.71 (20/28) 0.75 (3/4) 1 

Mean Rank 15.2 19.7 0.39 

OHT 
Success Ratio 0.43 (12/28) 0.25 (1/4) 0.63 

Mean Rank 27.2 32 0.15 

TOTAL 
Success Ratio 0.57 (32/56) 0.5 (4/8) 0.72 

Mean Rank 19.7 22.8 0.50 

 

k) Effects of binding site copy number (only 35S-based gene circuits without spacers 

included) 

1) P-values for direct comparisons:  

 Fisher’s EǆaĐt Test Wilcoxon rank sum test 

DEX_LexA_35S 2x vs 8x 1 1 

OHT_LexA_35S 2x vs 8x 1 NA 

2) Bulk measurements for overall comparisons: 

 Success Ratio Success Ratio 

2xGal4 0.75 (12/16) 15.8 

5xGal4 0.50 (4/8) 20.0 

2xLexA 0.63 (10/16) 19.5 

4xLexA 0.38 (3/8) 29.3 

8xLexA 0.38 (3/8) 25.7 

3) P-values for overall comparisons:   
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 Fisher’s EǆaĐt Test Wilcoxon rank sum test 

2xGal4 vs 5xGal4 0.36 0.86 

2xLexA vs 4xLexA 0.39 0.29 

2xLexA vs 8xLexA 0.39 0.57 

4xLexA vs 8xLexA 1 0.70 
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Figure B.1 Plasmids used to test repressors, repressible promoters, and promoter-repressor 

combinations in transient protoplast assays. (a) Repressor module used to assemble synthetic 

repressors under control of dexamethasone (DEX). (b) Repressor module used to assemble 

synthetic repressors under control of 4-hydroxytamoxifen (OHT). BsaI restriction enzyme sites 

were included to exchange repressors. (c) Test plasmid used to assemble all DEX-inducible 

promoter-repressor combinations. (d) Test plasmid used to assemble all OHT-inducible 

promoter-repressor combinations. Repressors and repressible promoters were cloned into the 

test plasmids using the KpnI restriction site. Both test plasmids contain Firefly luciferase (F-luc) 

expressed under control of one of two inducible promoters, pOp6 and 10xN1. F-luc is used as a 

proxy for the amount of repressors produced in the system. (e) Sub-cloning plasmid used to 

generate synthetic repressible promoters containing repressor binding sites upstream (BsaI and 

HindIII) or downstream (MluI and AatII) of the promoter. (f) Promoter module used to assemble 

repressible promoters controlling expression of the reporter gene, Renilla luciferase (R-luc). 

BsaI restriction enzyme sites were included to exchange promoters. A PEST protein degradation 

sequence was added to R-luc to increase protein turnover and facilitate quantitative 

measurements of promoter repression. (g) Example of a complete DEX-inducible test plasmid 

used for protoplast assay. LEAR is a synthetic repressor composed of LexA DNA-binding domain 

and EAR repressor motif. 35S2xLexA is synthetic repressible promoter composed of constitutive 

CaMV 35S promoter and two copies of LexA binding elements placed downstream of the 

promoter scaffold. LhGR2, DEX-activated transcription factor; NEV, OHT-activated transcription 

factor; NOST, nopaline synthase terminator; E9T, pea rbcS-E9 terminator; TB, transcription 

block; 35S, Cauliflower Mosaic Virus 35S promoter; AmpR, ampicillin resistance gene for 
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bacterial selection; KanR, kanamycin resistance gene for bacterial selection; ColE1, bacterial 

origin of replication. 

 

 
Figure B.2 Camera correction. (a) The camera collects one image (i.e., frame) every 1/30 

seconds. Each image represents the sum of pixel intensity within each well for every frame. 

Upper graph shows the F-luc signal is stable over time; lower graph shows the R-luc signal 

decays over the same time.  (b) Representative graph showing the distribution of luciferase 

pixel intensity values RLU/(area x sec) for each well for both a plate imaged with well position 

A1 in the top left hand corner of the camera (blue), and the same plate with A1 in the bottom 

left hand corner of the camera (green). Data show that amount of luminescence recorded is 

influenced by the well position and changes on plate rotation.  (c) Representative images of the 

luminescence of individual wells for one 96-well plate experiment. Wells at the edges of the 

plate (blue and cyan outlinesͿ shoǁ ͞Ŷeǁ-moon-shaped͟ oĐĐluded aƌeas, ǁheƌeas ǁells at the 
center of the plate (green outline) do not have these same occluded areas. (d) Percent change 

in the luminescence of the wells after rotation of the plate is shown for the original data (blue) 

and after imaging correction (green). Image correction removes almost all of the positional bias 

in the data. 
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Figure B.3 Schematic geometric diagram of imaging correction method. (a) Side view of the 

optical system and the well in microplate of interest. Part of the well is blocked from the sight 

of the camera by the nontransparent wall. (b) Top view of the well of interest with the upper 

rim shifted to the bottom along the sight direction shown in a. The overlapping area of the two 

circles O1 and O2 is the visible part of the well bottom. (c) Side view of well in microplate as part 

of an imaginary cone. r, radius; h, height; d, diameter; a, area. 

 

 
Figure B.4 Standard curves: luminescence to approximate number of molecules. Standard 

curve of luminescence produced in RLU/(area x sec) as a function of total number of molecules 

for F-luc (a) and R-luc (b). Lines represent best fits. 
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Figure B.5 Testing our normalization method with simulated and experimental repressor-

repressible promoter data. (a) Coefficient of variation (COV) of the estimated parameter B with 

increasing noise levels in the distribution of the random multiplicative factor, . Non-

normalized (Raw) data shows increasing COV, but the normalized data (Norm) is able to adjust 

for the increase in noise in , and shows no significant change in the COV. (b) COV of the 

estimated parameter H also increases with increasing noise for the raw data fits, but stays 

approximately constant for the normalized data. (c) COV of the estimates for n do not show a 

difference between the normalized and raw data. 

 

 
Figure B.6 Representative curve fits to non-normalized Arabidopsis data. Raw F-luc (Input) and 

R-luc (Output) luminescence values for six different promoter-repressor combinations, as 

indicated above the graphs. Solid lines represent fits to Hill function forms using the nonlinear 

least squares fitting package in MATLAB. Open circles represent experimental data. 
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Figure B.7 Testing the normalization factor ��∗ with simulated data. (a) Mean levels of 

estimated parameter B with increasing absolute levels in both mean and standard deviation of 

random number, N ij . Raw data (Raw) show decreases in mean values, but the normalized data 

(Norm) show insensitivity to changes in absolute levels. (b) Mean levels of estimated parameter 

H also show decreases in raw data and remain constant with increasing absolute levels. (c) 

Mean levels of estimated parameter values of n do not show a difference between the 

normalized and raw data and across different absolute values. 

 
Figure B.8 Bootstrap results. (a) Distribution of parameter values (B, H, n) obtained from 

bootstrapping fits. (b) Comparison of bootstrapped estimates of the parameter B for 

protoplasts from the stably transformed plants (Stable) and protoplasts from transient 

expression (Trans) for three promoter-repressor pairs. (c) Comparison of bootstrapped 
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estimates of half-maximal expression, H. (d) Bootstrapped estimates of the Hill coefficient n are 

shown for the same three pairs. 

 

 
Figure B.9 ANOVA and HSD Tukey analysis. (a) Arabidopsis log(B) values for all good 

performing gene circuits categorized first by inducer type (DEX or OHT), and then by binding 

site position. Red star indicates a significant difference of DEX-inducible promoters when 

binding sites are near the TATA-box compared with binding sites either upstream or 

downstream of the constitutive element (P < 0.01). Black star indicates the same for OHT 

promoters (P = 0.04 for upstream, and P = 0.01 for downstream). (b) Sorghum log(B) values for 

all good performing gene circuits categorized first by inducer and then by binding site position. 

Red and black stars have the same meaning as in a. (P-values for significance are P < 0.01 for 

both upstream and downstream for DEX, and P = 0.02 for upstream and P = 0.06 for 

downstream, respectively, for OHT.) (c) Sorghum log(B) values for all good performing gene 

circuits categorized first by inducer and then by constitutive element (CaMV 35S or ZmUbi1). 

Red star indicates a significant difference in DEX promoters with these two elements (P  < 0.01). 

Black star indicates the same for OHT promoters (P < 0.01). TATA, promoters with binding sites 

just upstream of the TATA-box; Up, binding sites placed upstream of the constitutive scaffold; 

Down, binding sites placed downstream of the constitutive scaffold; 35S or ZmUbi1, refers to 

the constitutive promoter scaffold used. log(B), logarithm of the bulk promoter strength, B. 

Bars are standard deviations. 
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