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ABSTRACT 

 

 

 

EFFECTS OF POTENTIAL TYLOSIN SUBSTITUTES ON SALMONELLA PREVALENCE 

AND THE MICROBIOME OF SUBILIAC LYMPH NODES OF BEEF FEEDLOT CATTLE 

 

 

 

Tylosin, a macrolide antibiotic, is fed to feedlot cattle for liver abscess prevention. 

Tylosin alternatives are currently being investigated as pressures to reduce the amount of 

antibiotics used in livestock increase. Understanding effects of various feeding strategies on the 

safety of beef products is a priority as alternatives are investigated. This study investigated the 

effect of Tylosin, and two Tylosin alternatives on the prevalence of Salmonella in subiliac lymph 

nodes (SLN) and the microbiome of SLN from feedlot cattle. Salmonella harborage in the lymph 

node is a challenge for the beef industry as ground beef is made from beef trimmings that 

commonly contain lymph nodes. Consumption of contaminated ground beef is one of the 

possible foodborne routes of Salmonella infection. SLN (n=600) were collected from feedlot 

cattle (n = 5,481) at the time of slaughter. Overall 84.6% of the SLN were positive for 

Salmonella and the treatment did not influence prevalence (P > 0.8402).  Samples from each pen 

of feedlot cattle (15 SLN/pen) were composited for microbiome analysis using 16s rRNA 

amplicon sequencing. Samples were analyzed using the open-source software Quantitative 

Insights Into Microbial Ecology (QIIME). The treatment did not influence the microbiome of the 

SLN (P = 0.223; P= 0.267). The top three phyla present were Proteobacteria (67.3%), 

Actinobacteria (10.2%), and Acidobacteria (9.5%). Although Salmonella was culturally isolated, 

it was not identified in the microbiome analysis because the genus could not be resolved for 

18.9% of the Enterobacteriaceae family. Understanding why Salmonella is detectable in the 
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lymph nodes may hold the key for prevention, and characterizing the microbiome is crucial for 

this process. 
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DEDICATION 

 

 

 

An Ode to the Node 

 

This is an Ode to the Node 

But I’m not going to write it in code 

I have autoclaved many a load 

And now I have knowed 

That Salmonella can gload 

For being found in the commode 

And quantities in the node by the boat load 

And causing bowel movements to be ever flowed 

To where you feel you might explode 

But not by the nematode 

And now my intestines will erode 

You may change the health code 

You greatly increased my workload 

But now I will have a new zip code 

So now I thank my node 

To the node I am owed 
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CHAPTER 1 

 

Literature Review 

 

 

 

1.1 Salmonella enterica in Beef   

Nontyphoidal Salmonella enterica is the leading cause of foodborne illness globally 

resulting in hospitalization, as well as the leading cause of foodborne illness resulting in death in 

the United States (CDC, 2011). In the United States, it is estimated that there are 1.3 million 

cases of gastroenteritis a year caused by Salmonella enterica (Scallan et al., 2011). One in seven 

Salmonella outbreaks (where the contamination was found) were attributed to beef (CDC, 2008) 

and beef is the third most common source of bacterial foodborne illness and the fourth most 

common source of Salmonella (Gould et al., 2013).  Over 24 billion pounds of beef are 

consumed in the United States each year, and beef contaminated with Salmonella can present a 

public health risk (United States Department of Agriculture, 2017).  

Using data from the Centers for Disease Control (CDC), Laufer et al. (2015) assessed 

outbreaks of Salmonella in the United States attributed to beef in the period between 1973 and 

2011. Of the 28,599 foodborne outbreaks, 1,965 were attributed to Salmonella, and beef was 

responsible for 90 of those outbreaks. Among Salmonella outbreaks associated with ground beef, 

Salmonella serotypes Typhimurium and Newport accounted for over half of the outbreaks 

identified in ground beef. Before 2002, roast beef was the leading cause of Salmonella foodborne 

illness outbreaks. However, from 2002 to 2011, ground beef became the predominant vehicle of 

foodborne illness associated with Salmonella, responsible for 17 of 38 outbreaks reported 

(Laufer et al., 2015). From 1973 to 2011, nine multistate outbreaks of Salmonella have been 
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attributed to ground beef—and generally, has been attributed to ground beef prepared in the 

home (Laufer et al., 2015).  

Previous researchers have investigated the prevalence and level of Salmonella in ground 

beef in the United States (Samadpour et al., 2006; Bosilevac et al, 2009). Samadpour and others 

(2006) assessed the prevalence of foodborne pathogens in retail foods collected from retail stores 

over a 12-month period in Seattle, Washington. (Samadpour et al., 2006). Interestingly, 

Salmonella was the most common pathogen to be isolated from the food samples taken (ground 

beef, sprouts, and mushrooms). Among beef products, ff the 1,750 ground beef samples, 4.2% 

were positive for Salmonella.  

Additionally, Bosilevac and colleagues (2009) evaluated the presence of Salmonella in 

ground beef by collecting samples from 18 commercial ground beef plants during the period 

betwen July 2005 and June 2007 (Bosilevac et al., 2009).  Overall prevalence of Salmonella was 

4.2% (172 samples). The authors found a greater prevalence of Salmonella, which they believe is 

due to using immunomagnetic separation (IMS). There were no monthly differences in 

prevalence between difference regions where the samples were collected. However, the Southern 

High Plains had the greatest prevalence, while Northern California had the lowest prevalence of 

Salmonella (broadly Northern California). Overall, the summer months tended to have a higher 

prevalence. Among the 28 Salmonella serotypes isolated, Anatum, Mbandka, Montevideo, and 

Muenster represented 50% of the isolates. The season and region did not affect the distribution of 

serotypes. Interesting, serotypes Agona, Cerro, and Typhimurium were found in four to five 

regions, but were found infrequently. Multidrug resistant (MDR) Salmonella comprised 0.6% of 

the samples. Serotypes Dublin, Reading, and Typhimurium comprised most the MDR isolates.  
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An MDR Salmonella Typhimurium DT104 outbreak in the Northeastern United States 

was investigated (Dechet et al., 2006). There were 58 case patients identified in 9 states from 

2003-2004. MDR Salmonella infections are more severe than Salmonella infections that are pan 

susceptible (Helms et al., 2002). This outbreak was associated with ground beef that had been 

bought from grocery stores, from one processor that was sold as tube stock. Illness was found to 

be associated with ground beef consumed as hamburgers at home, or eaten raw. From October 

2003 through January 2004 PulseNet identified cases of Salmonellosis in Maine, Massachusetts, 

New Hampshire, Connecticut, and Vermont. The illnesses associated with this outbreak were 

severe, with many requiring hospitalization. The meat processor that is associated with the 

outbreak sources the ground beef rom culled dairy cows.. The same processor was also 

implicated in an outbreak of ground beef tainted with MDR Salmonella Newport in five states 

with 47 cases (January to April 2002) (CDC 2002).  

Following the 1992-1993 Escherichia coli O157:H7 outbreak, substantial efforts have 

been made in the U.S. meat industry to reduce the risk of foodborne pathogens (Centers for 

Disease Control and Prevention, 1993). Though most efforts targeted E. coli O157:H7, including 

the declaration of this pathogen as an adulterant and the establishment of zero-tolerance policy 

for it by the Food Safety Inspection Service (FSIS), additional efforts also reduced the presence 

of other foodborne pathogens. The implementation of requirements for Hazard Analysis and 

Critical Control Point (HACCP) systems, and other programs, following the 1993 outbreaks have 

led to reduction in the presence of E. coli O157: H7 and the six non-O157 Shiga toxin-producing 

E. coli (STEC) serogroups found in beef. However, despite the decline in E. coli O157: related 

illnesses, Salmonella enterica related illnesses have gone relatively unchanged (Wheeler et al., 

2014, CDC 2005, CDC 2016, CDC 2011).  
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1.11. Food Safety Inspection Services Salmonella enterica Regulations 

 Salmonella verification is part of the Pathogen Reduction/ Hazard Analysis Critical 

Control Point (PR/HACCP) Systems Final Rule and is a performance standard to insure process 

control in meat and slaughter facilities (9 CFR 310.25(b)(1)). Salmonella is a target organism 

due to its presence in all major species and widespread prevalence as a foodborne illness. 

Salmonella samples are taken to “measure the effectiveness of the slaughter and grinding process 

in limiting contamination” (FSIS 2016). As Salmonella is not an adulterant, product does not 

have to be held or recalled if it is deemed positive for Salmonella. The performance standard for 

ground beef is 7.5% positive for Salmonella, or no more than 5 positive samples out of 53 

samples (FSIS Directive 10,250.1). Performance standards are in place to determine overall 

process control. In 2013, USDA-FSIS tested 17,161 ground beef samples, and 1.6% tested 

positive for Salmonella (FSIS, 2013). When compared to previous years, Salmonella prevalence 

seems to be slightly lower, as prevalence from 2010 to 2012 ranged from 1.9% to 2.4% (FSIS, 

2013). However, it is of interest to note that the sampling size increased each sampling period.  

1.12. Geographical and Seasonal Distribution of Salmonella enterica in the United States in 

Relation to Beef 

 Rivera-Betancourt et al. (2004) investigated the prevalence of Salmonella, E. coli 

O157:H7, and Listeria in two commercial beef processing plants in geographically different 

regions (south and north). Their results indicate a higher prevalence of Salmonella and E. coli 

O157:H7 in the plant located within the southern United States in comparison to the other plant 

in the north. An additional study performed by Kunze and others (2008) examined the presence 

of Salmonella in four abattoirs and six feedlots in the southern United States. Of the 1,681 total 

samples collected, Salmonella was recovered in 934 (55.6%). Salmonella was recovered from 
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30.3% of the fecal samples and 69.6% of the hide swab samples (taken post stunning and prior to 

antimicrobial treatment). Neither animal type nor season affected the prevalence of Salmonella 

on the hides of animals at slaughter. The concentration of Salmonella on the hides was greatest 

for feedlot origin cattle compared to beef-type cows and dairy-type cows. There were no 

differences in the feces of the animals based on animal type or season. Salmonella serotypes 

Anatum, Montevideo, Cerro, Mbandaka, and Kentucky were most commonly isolated from the 

hides, while serotypes Anatum, Montevideo, Mbandaka, Kentucky, Reading, and Cerro were 

most commonly isolated from the feces of the feedlot cattle. Additionally, 33.1% of the isolates 

were resistant to one drug, 8.35% were resistant to two drugs, 3.75% were resistant to three 

drugs, and 3.75% were resistant to four or more drugs. A similar study performed by Callaway et 

al. (2006) among four feedlots in the Southern Great Plains states found a fecal prevalence of 

3.75%, with serotypes Orion, Give, Kentucky, Cerro, Anatum, and Oranienburg being the most 

common.  

  Seasonal prevalence of Salmonella was studied in three Midwest fed-beef processing 

plants by Barkocy-Gallagher et al., (2003). They observed the highest fecal Salmonella 

prevalence in the summer, while the summer and fall months exhibited the highest prevalence on 

the hide and pre-evisceration carcasses. Pre-evisceration carcass samples also had a higher 

prevalence of Salmonella than the fecal samples, following the pattern of higher numbers of 

Salmonella on the hides. This study showed that pathogen levels decrease after antimicrobial 

interventions in the plant, as only one post-intervention carcass was positive for Salmonella.  

1.13. The Lymph Node  

The immune system is the defensive center of the host. This system is responsible for 

protecting the host body from bacteria, viruses, fungi, parasites, and tumors. There are two 
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branches of the immune system, acquired and innate. Physical barriers, such as skin and stomach 

acid, help to keep pathogens (also known as antigens) out of the body. Phagocytic cells (such as 

macrophages) patrol the body for pathogens and can phagocytose pathogens. Macrophages can 

discriminate from “self” and “foreign” molecules, such as mannose that is not expressed on cell 

walls of vertebrates (Fraser et al., 1998). Acquired immunity comes from B and T cells that can 

specifically identify pathogens of interest during infection. The immune system can remember 

pathogens it has encountered in the past, so that a timely immune response can be elicited.  

Lymph nodes are an incredibly important part of the immune system. Responses to pathogenic 

antigens are initiated and the immune response is controlled within the lymph node. The lymph 

node acts as a filter by grabbing antigens from the circulating lymph fluid that passes through the 

node (Buettner and Bode, 2012). Thus, the lymph node acts as a surveillance of the body’s 

tissues to identify any antigens through the flow of the lymph.  

Lymph nodes have three compartments and vessels that enter and exit the node. The three 

parts of the lymph node are the cortex, paracortex, and the medulla, which are commonly looked 

at during examination (Haley et al., 2005). The functional unit of the lymph node is the lymphoid 

lobule (Kelly 1975). A single afferent lymphatic vessel transports lymph entering the node to the 

subcapsular sinus and then drains to a single efferent lymphatic vessel that exits the node 

(Sainte-Marie et al.,1982). The paracortex houses the T cells and the cortex houses the B cells 

(Willard-Mack, 2006). Dendritic cells enter the node from the afferent lymphatic and present 

antigens to the T cells in the paracortex. These T cells then differentiate and proliferate and 

migrate to the cortex to assist B cells so that they can make antibodies to the antigen. These now 

activated T and B cells leave the node via the efferent lymphatic travel to the area of infection 

(Buettner and Bode, 2012).  
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 The medulla of the lymph node houses the macrophages, which are the immune cell of 

interest in a Salmonella infection. Gray and Cyster (2012) stated that the three most important 

functions of the medulla are phagocytosis of pathogens from the lymph, supporting plasma cell 

survival, and creating a path for antibodies to reach the rest of the lymph. The lymph exiting the 

node must pass through the medulla before exiting into the body. Roozendaal et al., (2008) 

describes the size exclusion of the conduit system of the lymph to be about 70 kDa, this prevents 

pathogens from entering the blood stream because larger particles are likely to be caught by the 

macrophages within the subcapsular sinus and the medullary region. Antigens smaller than 70 

kDa are transported to the B and T cell regions.  

Within the medulla there are macrophages (phagocytic cells) that filter and destroy 

particulate antigens (Willard-Mack, 2006). Macrophages internalize and degrade antigens by 

phagocytosis and release cytokines that alert the adaptive immune system (Gray and Cyster, 

2012). This is useful if there is an active infection and bacteria are moving through the host. The 

macrophages in the lymph node will “catch” the bacterium, thus preventing it from causing 

further infection. Parts of a bacterium can also be transported in the blood indicating an infection 

somewhere else in the body, and these smaller parts can elicit a specific immune response within 

the lymph node. The whole live Salmonella bacteria are of concern in the lymph node, because 

they can go on to cause further infection so the macrophage response in the medulla is of 

interest. Szakal et al., (1983) and Fossum and Vaaland (1983) found that macrophages in the 

subcapsular sinus of the lymph node have little opsonization and degradation of antigen activity. 

 Macrophages have multiple receptors to help recognize a wide variety of antigens. For 

example, the LPS receptor recognizes the lipopolysaccharide from gram negative bacteria, which 

can be an indication of infection (Wright et al., 1989). Phagocytosis by macrophages is an 
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important defense against pathogen invasion. Pathogens, or other material engulfed by 

phagocytosis by macrophages, is delivered to the phagosome, which combine with lysosomes 

and endosomes to enable destruction of the pathogen (Stuart and Ezekowitz, 2005; Desjardins et 

al., 1994). The phagolysosome of macrophages is hydrolytic and bactericidal (Garin et al., 2001; 

Stuart et al., 2007). The bacterium is essentially killed and broken up within the macrophage and 

then the macrophage presents specific parts of the antigen to other cells in the immune system, 

making it a professional antigen presenting cell. The macrophage can present the antigen to a 

helper T cell to alert the rest of the immune system that there was an invader. Most the antigen 

capture in the lymph node occurs in medullary sinus macrophages, indicated by the large size of 

lysosomes and a variety of vesicles (Steer, 1987).  

1.14. Salmonella enterica  

Salmonella enterica is a facultative, gram negative, intracellular pathogen. Salmonella 

can invade non-phagocytic cells, such as the intestinal epithelium, thus ingestion is the normal 

route of infection in animals. Salmonella Pathogenicity Island I (SPI-I) encodes a Type 3 

Secretion System (T3SS) that is essential for gastrointestinal infection which are, collectively 

termed the ‘invasion genes’ (Mills et al., 1995). The SPI-I causes cytoskeletal rearrangement 

resulting in membrane ruffling which facilitates bacterial mediated endocytosis into the intestinal 

epithelial cell (Finlay et al., 1992a; Francis et al., 1992b). Invasion of the intestinal cells results 

in the symptoms associated with Salmonella inflammatory gastroenteritis (in cattle fluid 

accumulation within the gut [Wallis et al., 2000]).  Salmonella can access the Peyer’s patches 

near the M cells through invasion of the non-phagocytic cells in the intestine, which then allows 

access to the lymphatic system (Penheiter et al., 1997). Dendritic cells in the Peyer’s Patch may 

take up the Salmonella after M cell invasion (Hopkins 2000).  
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Once Salmonella is within host cells it becomes easier for the bacterium to travel 

throughout the body through the lymph and circulatory system. The bacterium can eventually go 

to a lymph node either from circulation or through an immune cell.  Macrophages within the 

lymph node will either phagocytose the bacterium or the bacterium will enter the macrophage 

through membrane ruffling.  Salmonella’s ability to survive in the host cell is a result of has 

multiple genes that are turned on upon entry into the macrophage for intracellular survival.  The 

Pathogenicity Island II (SPI2) is required for intracellular survival. The SPI2 encodes a T3SS 

that is activated during intracellular conditions and is required for proliferation (Shea et al., 1996, 

Hensel et al.,1998). Almost immediately upon entry into the cell a phagolysosome is formed, 

called the Salmonella containing vacuole (SCV) that enables intracellular growth (Mills and 

Finlay, 1998; Garcia-del Portillo, 2001). The SCV is advantageous because it has less 

antibacterial activity and is less acidic. The SCV induces the formation of Salmonella induced 

filaments (SIFs) which allows an interchange between the tubular network and the luminal 

content to facilitate intracellular growth and receiving of host nutrients by endosomal remodeling 

(Liss et al., 2017). Salmonella Typhimurium 14028 inhibits phagosome-lysosome fusion within 

the macrophage (Buchmeier and Heffron 1991). The SPI2 is essential for intracellular survival 

and dissemination throughout the lymphatic system through oral inoculation (Cirillo et al., 

1998). 

Virulent S. Typhimurium strains and noninvasive Salmonella mutants were studied in 

RAW264.7 macrophages for the ability to induce apoptosis (Monack et al., 1996). Membrane 

ruffling is necessary for the signaling to induce apoptosis in the macrophage. It was found that S. 

Typhimurium taken up by the macrophage through membrane ruffling or by phagocytosis could 

replicate intracellularly. The virulent strain caused macrophages to detach from the monolayer 
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and die, while the noninvasive strain did not incur cytotoxicity. The virulent strains showed 

characteristics of macrophages about to undergo apoptosis, while macrophages infected with the 

noninvasive strains only showed bacteria within the vacuoles. Virulent strains and noninvasive 

strains that were opsonized by the macrophage did not induce apoptosis in the macrophage.  

In a study by Eriksson et al., (2003) Salmonella Typhimurium infected J774-A1 

macrophage cells by complement-opsonization to study genes expressed during intracellular 

growth in the SCV. To accomplish this, RNA was extracted at times when the host oxidative 

burst was expected, after bacterial replication begins, and when the macrophage nitric oxide 

burst is produced. The study showed that 919 of the 4451 S. Typhimurium coding sequences 

changed expression while the macrophage. There was an increase in the coding for RpoS (the 

virulence associated sigma factor) that could be indicative of post-transcriptional regulation. The 

most important regulator of intracellular gene expression, PhoPQ, is a two-compartment system 

and expresses several known virulence functions that responds to environmental concentration of 

Calcium and Magnesium (Kier et al 1979; Vescovi et al., 2001). It is known that macrophages 

express two enzymes: NADPH phagocyte oxidase which produced superoxide and inducible 

nitric oxide synthase, which produces NO (Mastroeni et al., 2000; Vasques-Torres et al., 2000). 

These compounds are harmful to bacterial cells by oxidizing DNA. S. Typhimurium can avoid 

these reactive compounds by utilizing a two-step detoxification of the superoxide. The 

superoxide is converted to hydrogen peroxide by superoxide dismutase and the second step 

involves a catalase mediated destruction of hydrogen peroxide (Carmel-Harel, 2000). The 

thioredoxin and glutaredoxin systems are used to restore protein function by reducing the 

oxidized residues in the macrophage (Aslung and Beckwith, 1999). Stevanin et al., 2002 found 
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that flavohemoglobin Hmp helps to protect S. Tphimurium from nitric oxide produced by 

macrophages by detoxifying NO aerobically and reducing NO anaerobically.  

S. Typhimurium can use the Emden-Meyerhof, the pentose phosphate and the Entner-

Doudoroff pathways for intermediate sugar catabolism (Fraenkel, 1996). The Entner-Duodoroff 

pathway is the pathway of choice for intermediate sugar metabolism in S. Typhimurium in the 

intracellular environment.  The genes involved for the Emden-Meyerhof and the pentose 

phosphate pathways were repressed. Gluconate and related carbohydrates are the carbon of 

choice for the intracellular bacteria. Gluconate is converted to pyruvate and glyceraldehyde 3-

phosphate. The Entner-Duodoroff pathway is a source of NADPH that can be used in redox 

cycling (Fraenkel, 1996). The iron acquisition genes (Fur) are not induced during intracellular 

macrophage infection, indicating that the SCV is devoid of Fe3+ and rich in Fe2+ (Eriksson et al., 

2003).  

Macrophages produce antibacterial peptides against Salmonella (Hiemstra et al., 1993) 

and the PhoP/Q system in Salmonella functions to enable resistance to these antimicrobials in the 

SCV. To try and reduce immune response, it was found that Salmonella downregulated synthesis 

of flagella and type 1 fimbriae in the SCV (Hiemstra et al., 1993).  The SCV is an aerobic 

environment because the succinate dehydrogenase operon is induced. ATP synthase genes were 

repressed in the SCV and Adams et al., 2001 found that the decrease in flagella expression would 

block the proton influx through the H+/ATPase and the flagellar base structure. Heimstra et al., 

(1993) concluded that Salmonella are not starved for amino acids or iron, the SCV is low in 

phosphate and high in magnesium. Salmonella requires an acidic environment in the SCV for 

replication and uptake of nutrients and the proton gradient aids in importing the primary carbon 

source and other proton channels are downregulated to maintain the pH required for growth 
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within the SCV. An important virulence mechanism S. Typhimurium is killing of the infected 

macrophage after replication and formation of the SCV, so that the bacterium can go infect other 

cells (Lindgren et al., 1996).  

Waterman and Holden (2003) concluded that the SPI2 inhibits some endocytic traffic by 

blocking fusion between lysosomes and SCVs, avoiding macrophage NADPH oxidase-

dependent killing, and interference with the nitric oxide synthase produced by the macrophage. 

The SPI2 helps to control the environment of the SCV and surrounds itself with F-actin and 

cholesterol. Waterman and Holden (2003) hypothesized that this could help stabilize the SCV or 

facilitate transport vesicles. S. Typhimurium has been shown to induce a delayed apoptosis 

within the host cell which can promote bacterial spread to the rest of the body, specifically the 

liver and spleen. Another study found that Salmonella Typhimurium kills phagocytes not by 

apoptosis, but by a caspase-1-dependent necrosis (Brennan and Cookson 2000). Type I interferon 

is produced in response to S. Typimurium to drive necroptosis and avoid detection by the 

immune system (Robinson et al., 2012). The macrophage dies and all the Salmonella that have 

replicated in the vesicle are released to go infect other cells. 

1.15. Salmonella in the Lymph Nodes of Cattle   

Multiple studies have highlighted the isolation of Salmonella from the lymph nodes of 

cattle (Gragg et al., 2013b, Haneklaus, et al., 2012, Brichta-Harhay et al., 2012, Gragg et al., 

2013a, Vipham et al., 2015, Moo et al., 1980). In one of the initial studies of Salmonella in the 

lymph nodes of food-producing animals, Moo et al. (1980) isolated Salmonella from jejunal and 

caecal lymph nodes in slaughtered animals (Moo et al., 1980). Using enrichment methods 

Salmonella was isolated from 15 cows (30%) and 2 yearling cattle (5%). It is of interest to note 

that sheep and pigs also had Salmonella positive lymph nodes. Clostridium perfringens was also 
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isolated from the yearling cattle. Salmonella Typhimurium and Anatum were some of the 

serotypes isolated from the cattle lymph nodes. There were counts of up to 1,500 per gram of 

Salmonella in the lymph nodes.  

Bichta-Harhay et al. (2012) evalauted 906 subiliac lymph nodes and 180 resulting pooled 

samples of adipose trim from the lymph nodes. The subiliac lymph node Salmonella prevalence 

was found to be 0.8% and the prevalence for the pooled adipose samples was 5.0%. Serotpyes 

Anatum, Dublin, Cubana, Typhimurium, and Montevideo were found in the lymph nodes, while 

serotypes Newport, O3,10:R1H, Montevideo, Typhimurium, and Mbandaka were found in the 

pooled adipose trim samples.  

 In a study by Gragg et al., (2013a), Salmonella was isolated from mesenteric, subiliac, 

mandibular, and mediastinal lymph nodes of 68 beef carcasses in Mexico. Prevalence of 

Salmonella among the various types of lymph nodes was 55.9% for mandibular, 91.2% for 

mesenteric, 7.4% for mediastinal, and 76.5% for subiliac. Serotypes Kentucky, Anatum, 

Reading, Meleagridis, and Cerro were found in the subiliac lymph nodes. Reading was the only 

serotype found in mediastinal lymph nodes. Serotypes Kentucky, Anatum, Meleagridis, Cerro, 

Give, and Mbandaka were found in mesenteric lymph nodes. Within the mandibular lymph 

nodes, serotypes Kentucky, Anatum, Reading, Meleagridis, and Muenster were found. The 

isolated Salmonella expressed resistance to tetracycline, nalidixic acid, amoxicillin-clavulanic 

acid, ampicillin, cefoxitin, sulfisoxazole, trimethoprim-sulfamethoxazole, and streptomycin.  

 The effect of a direct-fed microbial (DFM) on the prevalence of Salmonella in subiliac 

lymph nodes of cattle from a commercial feedlot and research feedlot was evaluated by Vipham 

et at. (2014). In the feedlot study, the use of a DFM reduced Salmonella prevalence in the DFM 

group (57.5%) versus the control group (76.3%).  Similarly, in the research feedlot, 25.9% of the 
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subiliac lymph nodes from the control group were positive for Salmonella and only 4.7% of the 

DFM samples were positive.  

 Haneklaus et al. (2012) evaluated the prevalence of Salmonella in cervical and 

iliofemoral lymph nodes of cattle finished at different feedyards. Prevalence differed among 

feedyards and ranged from 0% to 88.2%. Similarly, Gragg et al. (2013b) examined the 

prevalence of lymph node Salmonella in cull and feedlot cattle from different regions of the 

United States over a 12-month period (Gragg et al, 2013b). Salmonella point prevalence was 

greater in feedlot cattle than in cull cattle, and was greater in the southwest region. Additionally, 

prevalence was greater in the summer/fall when compared to winter/spring. Cull cattle 

Salmonella prevalence is not affected be region or season.  

 Arthur et al. (2008) evaluated the prevalence of Salmonella in lymph nodes that would be 

incorporated into ground beef trimmings, specifically from the chuck and flank (superficial 

cervical and subiliac). Overall, 1.6% of lymph nodes were positive for Salmonella, and lymph 

nodes from carcasses of culled cattle had a higher prevalence of Salmonella than those from fed 

cattle. Subiliac lymph nodes from culled cattle had the greatest prevalence of Salmonella 

(3.86%), while the lowest prevalence was observed in the superficial cervical lymph node of fed 

cattle (0.35%). The serotypes found in culled cattle were Anatum, Blockley, Cerro, Montevideo, 

Muenster, Newport, Thompson, and Typhimurium. The serotypes found in fed cattle were Cerro, 

Montevideo, Seftenberg, and Typhimurium. Three isolates from cull cattle were resistant to six 

to eight antibiotics.  

 The source(s) of Salmonella contamination in ground beef in dairy cows was studied in a 

U.S commercial beef processing plant (Koohmaraie et al., 2012). Samples were collected 

throughout the harvest process; 96% of the hides positive for Salmonella and 47% positive for 
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pre-intervention treatment carcasses were positive for Salmonella. Post-intervention, 0 carcasses 

were positive for Salmonella. Superficial cervical lymph nodes were 18% positive for 

Salmonella. Trim was 7.14% positive and ground beef was 1.67% positive for Salmonella. This 

study suggested that the hide and lymph nodes were important sources of Salmonella in ground 

beef. Lymph nodes were a larger contributor of contamination in ground beef since they are 

shielded from antimicrobial carcass sprays within the carcass. Nonetheless, this study showed 

that interventions in the plant are effective in eliminating contamination from hides during 

processing.  

 Recently, Brown et al. (2015) assessed the influence of breed on the prevalence of 

Salmonella in lymph nodes. Breed had no measurable influence on Salmonella prevalence. 

However, the prevalence of Salmonella in Holstein and beef steers decreased from May to 

October.  

1.16 Transmission of Salmonella to Peripheral Lymph Nodes of Cattle 

 Based on current research, there appears to be multiple routes of inoculation for 

Salmonella to reach peripheral lymph nodes in cattle. Like for infection in humans, Brown et al. 

(2015) assessed oral inoculation of Salmonella in the subsequent uptake into the peripheral 

lymph nodes of cattle. They reported Salmonella could be found in peripheral lymph nodes after 

an oral experimental inoculation of 106 to 107 CFU of Salmonella per day for 14 days. Cattle 

deprived of feed and water were not more likely to harbor Salmonella within the peripheral 

lymph nodes following experimental inoculation compared to a control group. This paper 

suggested that a lower dose inoculation of Salmonella (102 to 103), like that found in drinking 

water (unpublished data from the authors), over a longer period (15-150 days) could result in 

Salmonella positive peripheral lymph nodes. It is important to note that this study recovered 
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Salmonella positive lymph nodes from control calves that were not provided a Salmonella 

inoculation.  

 Insects, like flies, are normal inhabitants surrounding livestock and are commonly found 

at feedlots. Haematobia irritans, the horn fly, is a blood feeding and biting fly that parasitizes 

cattle, it has been shown to be a mechanical vector of Staphylococcus aureus in dairy cattle 

(Owens et al., 1998). Horn flies feed almost hourly (Harris et al., 1974), and therefore present 

potential for bacterial inoculation at each feeding. Survival of Salmonella enterica Montevideo 

in horn flies was studied to try and better understand Salmonella transmission and uptake into 

peripheral lymph nodes (Olafson et al., 2014). A fluorescently labeled Salmonella enterica 

Montevideo was used to look at the survival of the bacterium within the fly. Tactile exposure of 

Salmonella resulted in Salmonella being found on the mouthparts and subsequent digestion in 

the fly. A blood meal of the fluorescently labeled Salmonella (102 to 106) resulted in colonization 

for up to three days after ingestion (Olafson et al., 2014).  Salmonella were found in feces of 

100% of flies fed the inoculated blood meal 6-7 hours after feeding. Mean quantity of 

Salmonella excreted was 5.65- 67.5 x 102 CFU per fly, which can could account for microbial 

contamination on the hide of cattle.  

 Olafson et al., (2016) assessed transmission of Salmonella to peripheral lymph nodes 

using horn flies as a vector. Horn flies could feed on Salmonella inoculated blood meal for 12 

hours before inoculation of cattle. A prolonged exposure time of the horn flies to cattle resulted 

in lymph nodes that cultured positive for Salmonella. After 5, 11, or 19 days of exposure, 8%, 

50%, and 42% of lymph nodes were positive for Salmonella.A microlancet inoculation was used 

as a control, and the repeated inoculations by the horn flies resulted in a higher concentration 

than the microlancet inoculation. Salmonella was recovered from popliteal, superficial cervical, 
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and subiliac lymph nodes at different time points in the study. However, a negative control 

animal was also found to be positive for Salmonella.  

 Edrington et al. (2016) performed experimental transdermal inoculation in the lab with 

Salmonella inoculation with an allergy skin test device on cattle. Cattle were inoculated on the 

lower legs, abdomen, and back, and were euthanized up to 21 days post inoculation to look for 

Salmonella in superficial cervical, popliteal, and subiliac lymph nodes. The challenge strain used 

was identified 6 hours after inoculation and until 21 days post inoculation. The Salmonella levels 

within the lymph nodes was found to be from 0.8 to 1.8 log CFU/g. This experiment found that 

Salmonella should be eliminated from the lymph nodes in about 28 days after a single 

inoculation event of an allergy skin test device with Salmonella. Two experiments were 

conducted since elimination of Salmonella from the lymph nodes was not complete by day 21 

post inoculation, so a second experiment was completed until 28 days post inoculation. 

Elimination of Salmonella from the lymph nodes starts to occur on day 14, but can still be found 

in the lymph nodes in smaller numbers.  

1.17. Bacteria in the Lymph Nodes of Other Animals  

  Salmonella also have been found in lymph nodes of sheep and goats (Hanlon et al., 

2016). Lymph nodes were collected from 311 goats and 357 lambs in California, New Mexico 

and Texas. Salmonella were detected in mandibular, mesenteric, and subiliac lymph nodes of 

goats. The subiliac lymph node of goats had the highest prevalence of Salmonella at 9.62%. The 

type of lymph node was significant in goats when comparing prevalence. In lambs, mesenteric 

lymph nodes had the highest prevalence of Salmonella, and there was not a significance in lymph 

node type in lambs for Salmonella prevalence. Salmonella prevalence were greatest in the month 

of March over the five months of sample collection.  
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 Pork carcasses were sampled for Salmonella in Portugal (Vieira-Pinto et al., 2005). The 

study looked at carcass, lymph nodes (including tonsils) and ileum Salmonella contamination. A 

total of 101 pigs were sampled. Ileocolic lymph nodes most frequently were positive for 

Salmonella (18.8%). The ileum was sampled alongside the ileocolic lymph nodes and had a 

prevalence of 13.9%. Mandibular lymph nodes had a prevalence of 12.9% and tonsils had a 

prevalence of 9.9%. The most prevalent serotype identified was Typhimurium and it was found 

in 47.8% of the isolates in the study.  

 Salmonella can be found in the lymph nodes of orally inoculated swine (Broadway et al., 

2015). Thirty-eight pigs were inoculated with Salmonella Typhimurium in two different phases, 

one phase with either phosphate buffered saline or phosphate buffered saline with Enterobacter 

cloacae and the other phase with or without the inclusion of a yeast cell wall product. The 

ileocecal, subiliac, popliteal, and mandibular lymph nodes were sampled. Salmonella was not 

present in the popliteal lymph node. Ileocecal lymph node had the highest prevalence, 41.6% and 

37% for the two phases respectively. Mandibular and subiliac lymph nodes had a prevalence of 

2.7% for phase one. There were no statistical differences between phases for Salmonella 

prevalence.  

 Gnotobiotic mice (germ-free) were used to study the translocation of bacteria from the 

gastrointestinal tract to the mesenteric lymph nodes (Steffen and Berg 1983). The mice were 

given an inoculum of indigenous bacteria of the cecum. A relationship between the population of 

the bacteria within the cecum and the number of bacteria found in the mesenteric lymph node 

was found. The higher the bacterial population in the cecum, the larger the number of viable 

bacteria found in the mesenteric lymph node.  
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1.2. The Microbiome of Lymph Nodes  

 Culture independent methods are a relatively new development in the scientific field. 

Charles Darwin and Gregor Mendel were the pioneers for genetics in the 1800s. Darwin wrote 

“On the Origin of the Species by Means of Natural Selection” and Mendel came up with the 

Laws of Inheritance. Many scientists have made major accomplishments in the field of genetics 

to get science to where it is today. Watson and Crick won the Nobel Prize for discovering that 

DNA is in the shape of a double helix (Watson and Crick 1953). Marshall Nirenberg cracked the 

genetic code (Nirenberg and Leder 1964). In 1975 DNA could be sequenced, a method refered to 

as Sanger Sequencing after Frederick Sanger (Sanger and Coulson 1975). It is now possible to 

sequence the genome of eukaryotes, prokaryotes, and viruses. There is an interest in looking at 

an entire microbiome (all the microorganisms that inhabit an environment). The human 

microbiome has been characterized (Human Microbiome Project Consortium, 2012) and 

continues to be characterized to try and understand how the microbial environment impacts 

health of an individual. A method of utilizing the 16S rRNA subunit for phylogenies was first 

done by Carl Woese and George E. Fox (Woese et al., 1990). The 16S rRNA gene can be used as 

a molecular marker for microbial ecology studies andnis unique to bacteria and is highly 

conserved among species (Coenye et al., 2003, Case et al.,2007)). There are nine hypervariable 

regions of the 16S rRNA gene that aid in the identification of bacteria (Gray et al., 1984). The 

Illumina platform is generally utilized for 16S rRNA sequencing because of the cost and deeper 

community coverage and low error rate (Burke et al., 2016). The V4 hypervariable region can be 

used to predict taxonomic levels and is used in many studies (Yang et al., 2016). A shortcoming 

of 16S rRNA sequencing is the inability to differentiate between closely species (Yang et al., 
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2016). Microbiome analysis represents the entire bacterial population, which is one of the 

benefits of using a culture free method.    

Eight healthy slaughter pigs in Austria were investigated for metabolically active bacteria 

in the tonsils and mandibular lymph nodes (Mann et al., 2015). The hypervariable V1-V2 region 

of the bacterial 16S rRNA genes were amplified, sequenced, and analyzed using mothur. Sixteen 

phyla and 230 genera were represented in the lymph node and tonsil samples with a total of 576 

operational taxonomic units (OTUs). There was variability in the number of OTUs detected in 

each sample. The lymph node samples had between 23 and 171 OTUs per sample, with the 

median at 66 OTUs. In the lymph nodes, Serratia proteamaculans dominated 41.8% of the 

sequences. Pseudomonas marginalis and Herbaspirillum huttiense were at 5.6% and 4.1% 

relative abundance respectively. Spearman correlations were calculated for genera, and 

Treponema, Anaerovirgula, and Proteocatella were highly positively correlated, as well as 

Gemella, Porphyromonas, and Fusobacterium were postivitely correlated in lymph nodes. 

 Using meta-transcriptomics and 16S rRNA amplicon sequencing the retropharyngeal 

lymph nodes of five mule deer were analyzed for bacterial and viral microbial communities 

(Wittekindt et al., 2010). Bacterial diversity of lymph nodes was greater using the meta-

transcriptomic approach compared to amplicon sequencing. The V6 hypervariable region of the 

16S rRNA was sequenced to evaluate the bacterial diversity of the lymph node samples. The 

transcript-tags could be assigned to 99.3% eukaryotic origin (mainly Bos taurus) and 0.3% 

assigned to bacteria. Of the bacterial hits, Proteobacteria dominated at 60%, and 

Enterobacteriaceae was the most prevalent family within this group. Firmicutes represented 22% 

of the identifiable taxa, followed by Actinobacteria at 5%. Interestingly, 37 transcripts were 

assigned to viruses, with the greatest matches to Retroviridae and Poxviridaes, and the remainder 
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of the transcripts belonging to phages and a single assignment to herpesvirus. This study used the 

metagenomic approach as well, which only identified four bacterial genera. The genera identified 

were Xylella, Burkholderia, Acidovorax, and Bartonella. These authors suggested that these 

might not have been actively replicating organisms. Using the transcriptome libraries, intestinal, 

skin-dwelling, soil, and freshwater bacteria were identified in the lymph nodes. Ruminococcus 

was found in all the samples and is normally found in the intestines of deer. Pathogenic bacteria, 

like Escherichia and Streptococcus, also were found in the lymph nodes. Diversity among 

samples was substantial; two of the samples had a higher diversity than the other samples, and 

contained genera such as Legionalla, Enterobacter, Salmonella, Yersinia, Vibrio, Listeria, and 

Acinetobacter, which are known pathogens. These two samples also had the most reads assigned 

to the Enterobacteriaceae family. This study by Wittenkindt et al (2010) confirmed that there are 

viable organisms in the lymph node. The microbiome is made up of organisms found in the 

environment associated and commensal organisms normally found in the mule deer.  

 Ileocecal lymph nodes of slaughter pigs were characterized to understand microbial 

diversity and community shifts of different pathologies of lymph nodes (Mann et al., 2014). The 

various lymph nodes utilized were unreactive, enlarged, purulent, and granulomatous formations. 

There were 32 lymph nodes that were pyrosequenced by the 16S rRNA amplicon. Proteobacteria 

(50%) was the most common phylum followed by Firmicutes (15-33%) and then Bacteroidetes 

(4-11%). The lymph nodes were highly diverse. Each pathology group of lymph nodes had 

similar microbiomes (distinct OTUs and abundance). An unreactive lymph node had a balanced 

microbial community, and the most common genera were Faecalibacterium, Cloacibacterium 

rupense, and Novosphingobium panipatense. Enlarged lymph nodes had an increase in 

Lactobacillus amylovorus and Clostridium glycolicum. Mycobacterium hysosynoviae was the 
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causative genera of granulatomous lymph nodes. Within the purulent lymph nodes, Escherichia, 

Pseudomonas, and Acinetobacter were dominant.  

 Sixteen ileocecal lymph nodes were taken from 16 slaughter pigs (Mann et al., 2015). 

Half of the lymph node was sequenced using 16S rRNA amplification and the other half was 

subjected to cultivation techniques. Pigs were either asymptomatic (normal appearance of lymph 

nodes) or had hyperplasia, purulence, granulomas formations of the lymph nodes. Assignment to 

taxa identified that Proteobacteria was the most prevalent (68%), followed by Firmicutes (27%) 

and then Actinobacteria (5%). The pathogens Salmonella enterica were identified in the isolates, 

as well as Streptococcus suis. The most abundant isolate was Escherichia coli. The E. coli 

isolates had a high diversity and at least 24% of the isolates were positive for at least one gene 

associated with enterohemorrhagic disease.    

1.3. Tylosin 

 Tylosin (or Tylan), manufactured by Elanco Animal Health, is a macrolide antibiotic fed 

to feedlot cattle for the prevention of liver abscesses (Nagaraja and Chengappa 1998). Tylosin is 

fed in 71.2% of U.S. feedlots. Tylosin is fed in 77.2% of the feedlots that can feed more than 

8000 head (USDA-APHIS, 2013).  Livers are important exports for the United States, and liver 

abscesses cost the U.S. beef industry $15.8 million a year (USDA, 2014). It has been 

demonstrated that Tylosin can reduce liver abscesses by 40 to 70% (Nagaraja and Chengappa 

1998).  Liver abscesses can negatively affect live animal and carcass performance in cattle 

(Hicks, 2011).  

 Macrolides are bacteriostatic and inhibit protein synthesis by binding to the 23S rRNA of 

the 50S subunit of the bacterial ribosome (Schlect 2015). Macrolides are generally effective 

against gram positive bacterial organisms.  
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CHAPTER 2 

 

Effects of Potential Tylosin Substitutes on Salmonella Prevalence and the Microbiome of 

Subiliac Lymph Nodes of Beef Feedlot Cattle 

 

 

 

Introduction  

Non-typhoidal Salmonella is a major contributor of foodborne illness in the United States 

(CDC, 2010). Approximately 1.3 million cases of gastroenteritis are caused by Salmonella 

enterica annually (Scallan et al., 2011). In one out of every seven cases in which the food vehicle 

of contamination was identified, contamination was attributed to beef (CDC, 2008). Post-harvest 

food safety interventions are effective for surface control of contamination (Arthur et al., 2007 

and Bosilevac et al., 2005), but if Salmonella contamination is within the carcass (i.e., not on the 

carcass surface), antimicrobial sprays and carcass washes will not be effective. Multiple studies 

have found Salmonella within the lymph nodes of beef cattle (Gragg et al., 2013, Haneklaus, et 

al., 2012, Brichta-Harhay et al., 2012, Gragg et al., 2013, Vipham et al., 2015, Arthur et al., 

2008). As lymph nodes can be incorporated into beef trimmings for ground beef, Salmonella 

positive lymph nodes have the potential to cause foodborne illness.  

Important to the challenge of mitigating Salmonella in the lymph node is understanding 

the lymph node’s role and how it may become contaminated. The microbiome of the lymph node 

may yield important information in mitigating Salmonella, because lymph nodes act as a filter 

for the body to sequester and terminate pathogens, and to initiate the subsequent immune 

response (Sainte-Marie 2010). Thus, the lymph node microbial community is representative of 

whatever microorganisms are present within the host, and can differ from animal to animal. The 

microbiome of pig and mule deer lymph nodes have been previously characterized (Mann et al., 
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2015 and Wittenkindt et al., 2010), but the microbiome of bovine lymph nodes has not. Further, 

no prior studies have evaluated the effect of in-feed antibiotic supplementationon the 

microbiome of lymph nodes in beef feedlot cattle. Subiliac lymph nodes were sampled after 

slaughter to assess the influence of pre-harvest management strategies on post-harvest beef 

safety. 

Materials and Methods 

Cattle Population 

Commercial steers and heifers (n =5,481 hd) were sourced for enrollment in a feeding 

trial at a commercial feedyard in the panhandle of Texas. Upon arrival at the feedyard (Spring 

2016), cattle were randomly assigned to one of four treatment groups within ten pen blocks (one 

pen of each treatment group per block; (n= 10 pens/treatment). The four treatment groups 

reflected the inclusion of differing supplements in finishing diets as possible substitutes for 

tylosin and were as follows: i) finishing ration with tylosin (90 mg/hd/d; Elanco Animal Health, 

Indianapolis, IN); ii) finishing ration without tylosin, iii) finishing ration without tylosin, but 

with an essential oil (1g/hd/d of CRINA-L; source of limonene); and iv) finishing ration without 

tylosin but with Diamond V-Prototype (18g/hd/d).  

Lymph Node Collection 

Cattle were harvested at a commercial beef processing facility in Texas within a three-

week period in August and September 2016. Fifteen subiliac lymph nodes (SLNs) were collected 

from each pen (40 pens x 15 SLN = 600 SLN) at the time of slaughter. Lymph nodes were 

collected immediately following evisceration and carcass splitting. Lymph nodes encapsulated in 

the surrounding fat were placed into sterile sample bags (WhirlPak, Nasco, Modesto, CA) for 

refrigerated transportation to the Food Safety Microbiology lab at Colorado State University 
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(Fort Collins, CO). Upon arrival to CSU, the SLNs were kept at 4°C until processing (within 12 

h). 

Sample Processing 

In order to appropriately assess the presence of Salmonella inside of the lymph node, 

eliminating external contamination was imperative. To do this, the individual SLN was 

immersed in ethanol and the external surface was flame sterilized. Afterwards, SLNs were 

placed on sterile cutting boards (wrapped in aluminum foil sprayed with 70% ethanol) and 

trimmed of all excess fat and fascia using sterile instruments. The exposed SLNs were then 

immersed in boiling water (about 100°C) for 3 to 5s. Next, the SLN was then placed in filtered 

sample bags (WhirlPak) and pulverized with a rubber mallet to disrupt the lymphatic tissue 

before the addition of 80 ml of Tryptic Soy Broth (TSB, Neogen, Lansing, MI). Samples were 

homogenized for 2 mins at 230 rpm using a commercial stomacher (Stomacher 400 Circulator, 

Seward, England). 

Culture Detection of Salmonella 

Following homogenization, the TSB lymph node homogenate was incubated at 42°C for 

12 h. Following incubation, immunomagnetic bead separation was performed using anti-

Salmonella Dynabeads (Invitrogen, Carlsbad, CA) following the manufacturer’s guidelines. The 

resultant bead-bacteria complex in 100 l of PBS-Tween (phosphate-buffered saline, Sigma 

Aldrich, St Louis, MO; Tween 20, ThermoFisher Scientific) was transferred into 3 ml of 

Rappaport-Vassiliadis Broth (RV; Difco, Becton Dickinson and Company, Sparks, MD). The 

RV tubes were incubated for 18 to 20 h at 42°C. After incubation, a disposable inoculating loop 

was used to remove 10 l of the enriched RV for streaking onto split plates containing Brilliant 

Green Agar with Sulfadiazine and Xylose-Lysine-Deoxycholate Agar (BGS/XLT4; Hardy 
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Diagnostics, Santa Maria, CA). Following incubation (35°C for 24 h) of the BGS/XLT4 split 

plates, three isolated colonies were picked from each agar type and streaked onto separate 

Brilliant Green Sulfa Agar (Difco, Becton Dickinson and Company) or XLT4 (Difco, Becton 

Dickinson and Company) plates. Plates were incubated at 35°C for 24 h. Following sequential 

streaking to obtain pure isolates, an isolated colony from each agar type was inoculated into 10 

ml of TSB and incubated at 35°C for 24 h to facilitate growth of a pure culture for confirmation, 

serogrouping (ongoing), and assessment of antimicrobial susceptibility (ongoing). Broth (TSB) 

cultures of the isolates in 16% glycerol were frozen in duplicate and stored at -80°C until 

evaluation of serogroup (ongoing)and antimicrobial susceptibly (ongoing) by the Colorado State 

University Veterinary Diagnostic Laboratory (Fort Collins, CO). 

Sample Processing for Sequencing  

In addition to traditional culture-based assessments of Salmonella in the SLN, an aliquot 

of the TSB/SLN homogenate was utilized for assessment of the SLN microbiome. After 

homogenization, 10 ml from each of the 15 lymph node/TSB suspensions from within each pen 

were pooled to formulate one composited SLN sample per pen (total of 150 ml). The composited 

sample was centrifuged (4300 x g, 10 min, 10°C, Sorvall Legend XT-R,ThermoFisher 

Scientific). Following centrifugation, the supernatant was removed and the remaining pellet 

stored at -80°C. 

DNA Isolation 

At the time of DNA isolation, 0.1-0.2 g of the SLN homogenate pellet was weighed to 

facilitate isolation of DNA using the PowerFecal DNA Isolation Kit (Mo Bio Laboratories, San 

Diego, CA) with minor modifications to the protocol. The Mini-Beadbeater-16 (Biospec 

Products, Bartlesville, OK) was used for the bead beating step, where samples were processed 
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for 3 pulses of 30 s each. During DNA elution from the spin filter, a single 75 µl volume of C6 

elution buffer was passed twice through the spin filter used per sample, resulting in a single 75 µl 

DNA sample.  

16S rRNA Gene Sequencing 

16S rRNA gene amplification and sequencing was performed by a commercial 

sequencing company (Novogene Corporation, Beijing, China). Replicates were shipped on ice 

and analyzed in distinct sequencing runs. The V4 region of the 16S rRNA gene was amplified 

using the Earth Microbiome Project primer set 515F/806R (Caporaso et al., 2012), with reverse 

primers containing unique barcode sequences. Library sequencing (paired-end, 2 x 250 base 

pairs) was performed on an Illumina HiSeq 2500 platform (Illumina, Inc.). Raw data were 

demultiplexed and quality filtered by Novogene. 

Statistical Analysis for Culture Data 

Analyses were performed using a commercial statistical software system (R, version 

3.3.1) and the car (Fox and Weisberg, 2011), lsmeans (Lenth, 2016), and ggplot2 (Wickham, 

2009) packages. A linear model was fit using Salmonella percent positive as the response and the 

data were analyzed as a randomized, complete block design. Fixed effects included treatment (1, 

2, 3, and 4) and pen block. Treatments and pen blocks were compared using Tukey adjusted 

pairwise comparisons using the lsmeans package. For all comparisons, an alpha level of 0.05 was 

used.  

Bioinformatics and Statistical Analysis for Microbiome Data  

Novogene trimmed adaptors from samples. Primers were trimmed using cutadapt. 

Forward and reverse reads for each sample were merged using PEAR v0.9.10 (Zhang et al., 

2014). Using Qiime, (Caporaso et al., 2010) raw sequencing reads were categorized into 
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operational taxonomic units (OTU’s) via “open reference” with the default settings. Operational 

taxonomic units assigned to mitochondria and chloroplasts, and OTUs were assigned to the 

fraction of 0.05% of the minimum observation count of an OTU for the OTU to be retained, and 

completely unknown taxa that did not have a Domain assignment were removed. A rarefaction 

curve was constructed using chao_1 measurements for each sample fastq file to determine 

whether sequencing depth was adequate to capture diversity. 

The “ANOSIM” function in the Vegan Package in R version 3.3.1 was used to assess 

differences between groups. A Permanova test was performed which uses a permutation test with 

pseudo F ratios to assess differences between treatment groups. The “ANOSIM” and Permanova 

tests were used to compare beta diversity across samples. A Kruskal-Wallis test in R was 

performed to compare alpha diversity between treatment groups. For all comparisons in the 

study, an alpha level of 0.05 was used.  

Results 

Culture Results 

The overall prevalence of Salmonella in the SLN was 84.6% (95% CI, 0.7859379 to 

0.9073954); however, Salmonella prevalence did not differ (P = 0.8402) between treatment 

groups, indicating that the feed additives in this study—or their exclusion—did not influence the 

prevalence of Salmonella within the SLN (Table 1). However, large differences (P < 0.001) were 

noted between blocks. Block two had a lower prevalence of Salmonella (48.25% [95% CI, 

0.3593585 to 0.6056415]) in comparison to the other blocks (66.75%- 100%). There were 1514 

isolates recovered from the SLN that were plated on the BGS agar and there were 1405 isolates 

recovered from the XLT4 agar. There was a total of 2,919 isolates from the SLNs.The 

antimicrobial susceptibility and serogroup results are currently pending. 
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16S rRNA Results 

Due to low biomass of the lymph node samples, only nine of the samples could be 

successfully sequenced. Although the number of samples that could be sequenced was not ideal, 

among those sequenced, every treatment was represented at least twice. Sixteen phyla were 

represented in the samples sequenced (Figure 1). The three most relatively abundant phyla 

present were Proteobacteria (67.3%), Actinobacteria (10.2%), and Acidobacteria (9.5%). The 

family level of classification was dominated by Enterobacteriaceae, making up 42.6% of the 

samples. Pseudomonadaceae (6.8%) was the second most abundant in the SLNs at the family 

level. The genus could not be resolved for the most abundant Enterobacteriaceae (18.9%), which 

was followed closely by Citrobacter (17.6%), and then Trabulsiella (6.1%) (Figure 2). It was not 

unexpected that the genus could be not resolved for the most abundant Enterobacteriaceae 

because it is difficult to differentiate closely related species, such as Enterobacteriaceae, that may 

only have a few nucleotides different at the V4 region (Jovel et al., 2016 and Vetrovsky and 

Baldrian 2013). As a result, these closely related species could not be classified at the lowest taxa 

level. Salmonella was identified by culture methods to be present in the SLNs, so it is probable 

that it was found in the 16S samples, however, the genus could not be resolved. 

Alpha diversity (within sample diversity) was examined using a Kruskal-Wallis test to 

compare Shannon alpha diversity scores among treatment groups. There was not a difference in 

alpha diversity between treatment groups (P > 0.3108; Figure 3, Table 2). Similarly, beta 

diversity (differences in species composition across samples) did not differ by treatment groups 

(P = 0.267 [ANOSIM] and P = 0.223 [PERMANOVA]). A principal coordinate analysis plot 

(PCoa) was constructed with unweighted UniFrac distances (Figure 4) to aid in the visualization 

of beta diversity across samples. Each dot represents a composited SLN pen sample, and each 

javascript:gg('f__Pseudomonadaceae');
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dot was scaled to show overlapping of samples. Principal coordinate one accounted for 98.54% 

of the variability in the sample microbiomes. There was clustering observed in the PCoA that 

could not be attributed to treatment effects. There was not a difference in composition between 

treatment groups.  

The relationship between treatment groups with and without tylosin (control, treatment 3, 

and treatment4) was analyzed. Alpha and beta diversity did not differ between Tylosin and no 

Tylosin treatment groups (P > 0.05). There was clustering in the PCoA plot, but differences 

between treatment groups were not significant (Figure 5). There was no difference in microbial 

composition between tylosin and no tylosin treatment groups. Nonetheless, due to the small 

sample size, it is difficult to make inferences about the entire SLN microbial community in the 

study.  

Alpha diversity varied among SLN samples, which was probably the driving factor in the 

clustering seen on the PCoA plot (Figure 4). SLN composites 18, 40, and 38 had a greater 

Shannon alpha diversity index (Table 2, Figure 2) than the other samples, which accounted for 

their clustering. SLN sample 24 had the lowest Shannon alpha diversity index at 1.812, and was 

dominated by a genus that could not be resolved for Enterobacteriaceae (making up 80% of the 

sample) (Table 2, Figure 2). SLN samples 20, 4, 21, 16, and 5 had a similar Shannon alpha 

diversity index, with many similar taxa being represented across all samples. There was a 

possible indication that Tylosin and Treatment 4 influenced alpha diversity (Figure 6). SLN 

samples 16 and 5 from Treatment 4 and both Tylosin samples clustered on the PCoA with 

Shannon alpha diversity. The control SLN samples clustered with Treatment 3 SLN 38, 

indicating a similar alpha diversity (Figure 6). Treatment 3 had two samples with different alpha 

diversities and were distant from another on principle component 1, which accounted for 98.54% 
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of the variability (Figure 6). SLN samples 40 (control), 18 (control), 38 (Trt 3), and 24 (Trt 4) 

were similar in that they were clustering by principal component one. Samples from the same 

treatments groups did not always have the same characteristics.  A larger samples size would be 

needed to understand treatment effects, if there are any present. Samples with high alpha 

diversity also had the largest proportion of rare taxa (taxa that were not included in the top 25 

most common taxa in the samples).  

Discussion 

 This study suggested that addition of a feed additive does not influence the microbiome 

(composition and diversity) or the prevalence of Salmonella in the subiliac lymph nodes of beef 

feedlot cattle. The high prevalence of Salmonella in SLNs is in agreement with previous research 

indicating Salmonella lymph node prevalence is affected by both region and season, and tends to 

be higher in the southern region of the United States during the warmer months (Gragg et al., 

2012 and Haneklaus et al., 2012).  

 The microbial community of the lymph node is dependent on the microorganisms that are 

currently trying to infect the host, and will vary from animal to animal for this reason. This 

variability among animals could account for the differences in microbial communities of the 

different lymph nodes, since the differences could not be attributed to treatments. Additionally, it 

is likely that differences in the microbial community of the lymph node are probably influenced 

by immune status and general health of the animal.  

This study, to our knowledge, was the first of its kind to assess not only the microbiome 

of the lymph node, but also the effect of immune modulators on the host microbial community. 

In that regard, we encountered several challenges which limit our study results. Although 

compositing of lymph nodes prior to sequencing was performed due to monetary constraints, the 
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potential for individual animal bias in the composite limits our interpretation of the data. One 

sick or immune challenged animal in the pen with a large biomass in the SLN could have 

dominated the sample, and eliminated the ability of the composite to represent the pen.  Further, 

as the biomass of the SLN was relative low, using targeted extractions kits could have increased 

our success in sequencing the SLN samples. Nonetheless, this study provided information that is 

useful to understanding the complexity of microbiological approaches to assess immune system 

organs. Future studies, with a larger sample size, will be useful to identify the influence of pre-

harvest management strategies on the lymph node microbiome 
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Table 1. The impact of pre-harvest feeding strategies1 on the prevalence of Salmonella enterica 

in the subiliac lymph nodes of feedlot beef cattle.2 

Treatment  
Percentage (%) of Subiliac Lymph Nodes 

positive for Salmonella enterica  

Tylosin  86.00 

No Tylosin 83.33 

Treatment 3 86.67 

Treatment 4 82.00 

 

1 Finishing ration with tylosin, finishing ration without tylosin, finishing ration without tylosin, 

but with an essential oil, and finishing ration without tylosin but with Diamond V-Prototype 
2 Prevalence did not differ among treatment groups (P = 0.8402). 
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Table 2. The Shannon diversity index of pen composited subiliac lymph nodes1 

SLN         Treatment Shannon diversity   

4  3 3.846 

5 4 4.049 

16 4 4.795 

18 

20 

21 

24 

38 

40 

2 

1 

1 

4 

3 

2 

6.410 

3.978 

5.131 

1.812 

6.525 

6.532 

1 Percentage did not differ among treatment groups (P = 0.3108). 
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Figure 1. The phylum-level taxa plot summary of nine lymph nodes derived from feedlot cattle 

fed one of four feed supplements: finishing ration with tylosin, finishing ration without tylosin, 

finishing ration without tylosin, but with an essential oil, and finishing ration without tylosin but 

with Diamond V-Prototype. 
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Figure 2. The genus-level taxa plot summary, and Shannon alpha diversity, of the nine lymph 

nodes derived from feedlot cattle fed one of four feed supplements: finishing ration with tylosin, 

finishing ration without tylosin, finishing ration without tylosin, but with an essential oil, and 

finishing ration without tylosin but with Diamond V-Prototype. 
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Figure 3. A boxplot of Shannon alpha diversity of lymph nodes derived from feedlot cattle fed 

one of four feed supplements: finishing ration with tylosin, finishing ration without tylosin, 

finishing ration without tylosin, but with an essential oil, and finishing ration without tylosin but 

with Diamond V-Prototype 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 38 

 
 

 

 

 

 

 

 

 

Figure 4. Principal coordinate analysis plot of lymph nodes derived from feedlot cattle fed one of 

four feed supplements: finishing ration with Tylosin, finishing ration without tylosin, finishing 

ration without tylosin, but with an essential oil, and finishing ration without tylosin but with 

Diamond V-Prototype, scaling is used to show overlapping samples.  
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Figure 5. Principal coordinate analysis plot of tylosin and no tylosin (finishing ration without 

tylosin, finishing ration without tylosin, but with an essential oil, and finishing ration without 

tylosin but with Diamond V-Prototype) treatment groups, scaling is used to show overlapping 

samples.  
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Figure 6. Principal coordinate analysis plot of lymph nodes derived from feedlot cattle fed one of 

four feed supplements: finishing ration with tylosin, finishing ration without tylosin, finishing 

ration without tylosin, but with an essential oil, and finishing ration without tylosin but with 

Diamond V-Prototype including Shannon alpha diversity 
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	Previous researchers have investigated the prevalence and level of Salmonella in ground beef in the United States (Samadpour et al., 2006; Bosilevac et al, 2009). Samadpour and others (2006) assessed the prevalence of foodborne pathogens in retail foo...
	Additionally, Bosilevac and colleagues (2009) evaluated the presence of Salmonella in ground beef by collecting samples from 18 commercial ground beef plants during the period betwen July 2005 and June 2007 (Bosilevac et al., 2009).  Overall prevalenc...
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	The immune system is the defensive center of the host. This system is responsible for protecting the host body from bacteria, viruses, fungi, parasites, and tumors. There are two branches of the immune system, acquired and innate. Physical barriers, s...
	Lymph nodes are an incredibly important part of the immune system. Responses to pathogenic antigens are initiated and the immune response is controlled within the lymph node. The lymph node acts as a filter by grabbing antigens from the circulating ly...
	Lymph nodes have three compartments and vessels that enter and exit the node. The three parts of the lymph node are the cortex, paracortex, and the medulla, which are commonly looked at during examination (Haley et al., 2005). The functional unit of t...
	The medulla of the lymph node houses the macrophages, which are the immune cell of interest in a Salmonella infection. Gray and Cyster (2012) stated that the three most important functions of the medulla are phagocytosis of pathogens from the lymph, ...
	Within the medulla there are macrophages (phagocytic cells) that filter and destroy particulate antigens (Willard-Mack, 2006). Macrophages internalize and degrade antigens by phagocytosis and release cytokines that alert the adaptive immune system (Gr...
	Macrophages have multiple receptors to help recognize a wide variety of antigens. For example, the LPS receptor recognizes the lipopolysaccharide from gram negative bacteria, which can be an indication of infection (Wright et al., 1989). Phagocytosis...
	1.14. Salmonella enterica
	Salmonella enterica is a facultative, gram negative, intracellular pathogen. Salmonella can invade non-phagocytic cells, such as the intestinal epithelium, thus ingestion is the normal route of infection in animals. Salmonella Pathogenicity Island I (...
	Once Salmonella is within host cells it becomes easier for the bacterium to travel throughout the body through the lymph and circulatory system. The bacterium can eventually go to a lymph node either from circulation or through an immune cell.  Macrop...
	Virulent S. Typhimurium strains and noninvasive Salmonella mutants were studied in RAW264.7 macrophages for the ability to induce apoptosis (Monack et al., 1996). Membrane ruffling is necessary for the signaling to induce apoptosis in the macrophage. ...
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	Insects, like flies, are normal inhabitants surrounding livestock and are commonly found at feedlots. Haematobia irritans, the horn fly, is a blood feeding and biting fly that parasitizes cattle, it has been shown to be a mechanical vector of Staphyl...
	Olafson et al., (2016) assessed transmission of Salmonella to peripheral lymph nodes using horn flies as a vector. Horn flies could feed on Salmonella inoculated blood meal for 12 hours before inoculation of cattle. A prolonged exposure time of the h...
	Edrington et al. (2016) performed experimental transdermal inoculation in the lab with Salmonella inoculation with an allergy skin test device on cattle. Cattle were inoculated on the lower legs, abdomen, and back, and were euthanized up to 21 days p...
	1.17. Bacteria in the Lymph Nodes of Other Animals
	Salmonella also have been found in lymph nodes of sheep and goats (Hanlon et al., 2016). Lymph nodes were collected from 311 goats and 357 lambs in California, New Mexico and Texas. Salmonella were detected in mandibular, mesenteric, and subiliac ly...
	Pork carcasses were sampled for Salmonella in Portugal (Vieira-Pinto et al., 2005). The study looked at carcass, lymph nodes (including tonsils) and ileum Salmonella contamination. A total of 101 pigs were sampled. Ileocolic lymph nodes most frequent...
	Salmonella can be found in the lymph nodes of orally inoculated swine (Broadway et al., 2015). Thirty-eight pigs were inoculated with Salmonella Typhimurium in two different phases, one phase with either phosphate buffered saline or phosphate buffere...
	Gnotobiotic mice (germ-free) were used to study the translocation of bacteria from the gastrointestinal tract to the mesenteric lymph nodes (Steffen and Berg 1983). The mice were given an inoculum of indigenous bacteria of the cecum. A relationship b...
	1.2. The Microbiome of Lymph Nodes
	Culture independent methods are a relatively new development in the scientific field. Charles Darwin and Gregor Mendel were the pioneers for genetics in the 1800s. Darwin wrote “On the Origin of the Species by Means of Natural Selection” and Mendel c...
	Eight healthy slaughter pigs in Austria were investigated for metabolically active bacteria in the tonsils and mandibular lymph nodes (Mann et al., 2015). The hypervariable V1-V2 region of the bacterial 16S rRNA genes were amplified, sequenced, and an...
	Using meta-transcriptomics and 16S rRNA amplicon sequencing the retropharyngeal lymph nodes of five mule deer were analyzed for bacterial and viral microbial communities (Wittekindt et al., 2010). Bacterial diversity of lymph nodes was greater using ...
	Ileocecal lymph nodes of slaughter pigs were characterized to understand microbial diversity and community shifts of different pathologies of lymph nodes (Mann et al., 2014). The various lymph nodes utilized were unreactive, enlarged, purulent, and g...
	Sixteen ileocecal lymph nodes were taken from 16 slaughter pigs (Mann et al., 2015). Half of the lymph node was sequenced using 16S rRNA amplification and the other half was subjected to cultivation techniques. Pigs were either asymptomatic (normal a...
	1.3. Tylosin
	Tylosin (or Tylan), manufactured by Elanco Animal Health, is a macrolide antibiotic fed to feedlot cattle for the prevention of liver abscesses (Nagaraja and Chengappa 1998). Tylosin is fed in 71.2% of U.S. feedlots. Tylosin is fed in 77.2% of the fe...
	Macrolides are bacteriostatic and inhibit protein synthesis by binding to the 23S rRNA of the 50S subunit of the bacterial ribosome (Schlect 2015). Macrolides are generally effective against gram positive bacterial organisms.
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	Introduction
	Non-typhoidal Salmonella is a major contributor of foodborne illness in the United States (CDC, 2010). Approximately 1.3 million cases of gastroenteritis are caused by Salmonella enterica annually (Scallan et al., 2011). In one out of every seven case...
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	Materials and Methods
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	Lymph Node Collection
	Cattle were harvested at a commercial beef processing facility in Texas within a three-week period in August and September 2016. Fifteen subiliac lymph nodes (SLNs) were collected from each pen (40 pens x 15 SLN = 600 SLN) at the time of slaughter. Ly...
	Sample Processing
	In order to appropriately assess the presence of Salmonella inside of the lymph node, eliminating external contamination was imperative. To do this, the individual SLN was immersed in ethanol and the external surface was flame sterilized. Afterwards, ...
	Culture Detection of Salmonella
	Following homogenization, the TSB lymph node homogenate was incubated at 42 C for 12 h. Following incubation, immunomagnetic bead separation was performed using anti-Salmonella Dynabeads (Invitrogen, Carlsbad, CA) following the manufacturer’s guidelin...
	Sample Processing for Sequencing
	In addition to traditional culture-based assessments of Salmonella in the SLN, an aliquot of the TSB/SLN homogenate was utilized for assessment of the SLN microbiome. After homogenization, 10 ml from each of the 15 lymph node/TSB suspensions from with...
	DNA Isolation
	At the time of DNA isolation, 0.1-0.2 g of the SLN homogenate pellet was weighed to facilitate isolation of DNA using the PowerFecal DNA Isolation Kit (Mo Bio Laboratories, San Diego, CA) with minor modifications to the protocol. The Mini-Beadbeater-1...
	16S rRNA Gene Sequencing
	16S rRNA gene amplification and sequencing was performed by a commercial sequencing company (Novogene Corporation, Beijing, China). Replicates were shipped on ice and analyzed in distinct sequencing runs. The V4 region of the 16S rRNA gene was amplifi...
	Statistical Analysis for Culture Data
	Analyses were performed using a commercial statistical software system (R, version 3.3.1) and the car (Fox and Weisberg, 2011), lsmeans (Lenth, 2016), and ggplot2 (Wickham, 2009) packages. A linear model was fit using Salmonella percent positive as th...
	Bioinformatics and Statistical Analysis for Microbiome Data
	Novogene trimmed adaptors from samples. Primers were trimmed using cutadapt. Forward and reverse reads for each sample were merged using PEAR v0.9.10 (Zhang et al., 2014). Using Qiime, (Caporaso et al., 2010) raw sequencing reads were categorized into...
	The “ANOSIM” function in the Vegan Package in R version 3.3.1 was used to assess differences between groups. A Permanova test was performed which uses a permutation test with pseudo F ratios to assess differences between treatment groups. The “ANOSIM”...
	Results
	Culture Results
	The overall prevalence of Salmonella in the SLN was 84.6% (95% CI, 0.7859379 to 0.9073954); however, Salmonella prevalence did not differ (P = 0.8402) between treatment groups, indicating that the feed additives in this study—or their exclusion—did no...
	16S rRNA Results
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	Discussion
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