NOTE TO USERS

> Page(s) missing in number only; text follows. Page(s) were scanned as received.

$16,17,209,210,221,247$ and 248

This reproduction is the best copy available.

DISSERTATION

ENVIRONMENTAL PROTEOME PROFILING APPLIED TO THE STUDY OF POLYBACTERIAL METAL RESISTANCE AND ADAPTATION

Submitted by
Carla M. R. Lacerda

Department of Chemical and Biological Engineering
 In partial fulfillment of the requirements
 For the Degree of Doctor of Philosophy
 Colorado State University
 Fort Collins, Colorado

Spring 2008

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
(®)

UMI Microform 3321290
Copyright 2008 by ProQuest LLC.
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway
PO Box 1346
Ann Arbor, Ml 48106-1346

COLORADO STATE UNIVERSITY

January $20^{\text {th }}, 2008$

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER OUR SUPERVISION BY CARLA M. R. LACERDA ENTITLED ENVIRONMENTAL PROTEOME PROFILING APPLIED TO THE STUDY OF POLYBACTERIAL METAL RESISTANCE AND ADAPTATION BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY.

Committee on Graduate Work
(Please print name after signature)

ABSTRACT OF DISSERTATION

ENVIRONMENTAL PROTEOME PROFILING APPLIED TO THE STUDY OF POLYBACTERIAL METAL RESISTANCE AND ADAPTATION

Environmental biotechnology can be defined as the use of biotechnology to solve environmental engineering problems, frequently involving bacterial communities and unsequenced species. Here we define environmental proteomics as the proteomic profiling of microorganisms of environmental relevance, targeting the improvement of environmental bioprocesses. This study demonstrates our ability to obtain proteomic data for communities of microorganisms and for environmental isolates, providing unique insights into the physiology and ecology of these systems. A combination of qualitative and quantitative proteomics methods (two-dimensional electrophoresis and/or chromatography followed by tandem mass spectrometry) was used to investigate the proteome of a sequenced mixed culture, an unsequenced mixed culture, and a bacterial isolate from the original unsequenced mixed culture. In the first case study, two soil organisms were grown in co-culture in an attempt to observe proteins induced as a response to the presence of another organism. Many proteome changes were detected and quantified, with proteins involved in protein and DNA metabolism being the most largely modulated. In the second case study, an unsequenced mixed culture was exposed to cadmium and had its dynamic response analyzed. While the community responded significantly to all shock durations, the greatest amount of change was observed in the first fifteen minutes of shock. The main groups of differentially expressed proteins identified were transport proteins, showing that the main method for cadmium tolerance was active efflux. In the study of the adaptation of a pure culture, the most cadmiumtolerant organism in the original unsequenced community was isolated and cultivated in different
concentrations of cadmium. In the last case study of metal resistance, the proteomes of this isolate were compared as it responded to short-term exposures to chromium, iron and cadmium. Metals induced proteome responses in both short- and long-term exposures, meaning that the mechanisms for adaptation and resistance are different. This project demonstrates the potential of environmental proteomics and its intricacies as different proteomic workflows are employed. This is also one of the first evaluations of metaproteomic changes due to the metal response of mixed bacterial cultures, revealing the large potential of environmental proteomics to uncover unique insights into systems-level bacterial functions.

Carla Maria Ribeiro Lacerda Department of Chemical and Biological Engineering Colorado State University Fort Collins, CO 80523
Spring 2008

Acknowledgements

I would like to acknowledge many people for their support during my doctoral work. I start with Dr. Kenneth F. Reardon for being an extraordinary mentor, providing technical guidance and encouragement all along the way. I also want to acknowledge my committee members, Dr. James C. Linden, Dr. Amy Pruden-Bagchi, and Dr. John T. Belisle, for their great assistance. I want to give special thanks to several people for technical advice during several stages of this work: Dr. Kelvin Lee, Dr. Leila H. Choe, Dr. Phillip C. Wright, Dr. Richard Reisdorph, Dr. Nichole Reisdorph, Dr. Jessica E. Prenni, and Suzanne T. Krueger-Koplin. I am also thankful for the helping hands of my colleagues: Matthew R. Hoelscher, Sage R. Hiibel, and Dr. Leigh G. Griffiths. My final thanks go to my family and friends, who have been great listeners during all these years.

Table of contents

I. Introduction 1
I.I. Background on environmental proteomics 1
I.II. Proteomics tools and general workflows 3
I.III. Comparison with other global technologies - "-omics" 7
I.IV. General workflow - metaorganisms and development of Burkholderia cepacia
Cd44 11
II. Environmental proteomics: applications of bacterial proteome profiling in environmental biotechnology 19
II.I. Introduction 19
II.II. Environmental Proteomics 20
II.II.I. Physiology of model organisms - Shewanella oneidensis 21
II.II.II. Physiology of model organisms - Pseudomonads 24
II.II.III. Physiology of model organisms - Bacilli 28
II.II.IV. Physiology of model organisms - Cyanobacteria 30
II.II.V. Physiology of model organisms - halophiles 33
II.II.VI. Metabolism 36
II.II.VII. Membrane physiology 41
II.II.VIII. Ecological maps 42
II.II.IX. Wastewater treatment 45
II.III. Metaproteomics 47
II.IV. Future Directions 48
III. Quantitative metaproteomic analysis of a model bacterial community 63
III.I. Introduction 63
III.II. Experimental Procedures 65
III.III. Results and discussion 68
III.III.I. Culture Growth and Protein Extraction 68
III.III.II. Protein Identification and Quantification 69
III.III.III. Protein Functional Classification 71
III.III.IV. Biological Interpretation 72
III.IV. Conclusions 73
IV. Metaproteomic analysis of a bacterial community response to cadmium exposure 81
IV.I.Introduction 81
IV.II. Experimental Procedures 84
IV.III. Results and Discussion 88
IV.III.I. Culture Growth 88
IV.III.II. Protein Expression Visualization 88
IV.III.III. Protein Identification and Functional Classification 90
IV.III.IV. Cadmium Shock Interpretation 92
IV.III.V. Temporal Expression Patterns 93
IV.IV. Conclusions 96
V. Quantitative proteomic analysis of a soil bacterium under different levels of cadmium stress 103
V.I.Introduction 103
V.II. Experimental Procedures 105
V.II.I. Growth medium 105
V.II.II. Microorganism 105
V.II.III. Growth conditions and metabolic labeling 107
V.II.IV. Protein extraction 107
V.II.V. Shotgun proteomic workflow 108
V.III. Results and Discussion 110
V.III.I. Protein Identification and Quantification. 110
V.III.II. Functional Classification and Biological Interpretation 112
V.IV. Conclusions 115
VI. Quantitative proteomics as a tool for systems biology: assessment of metal stresses in Burkholderia cepacia 119
VI.I.Introduction 119
VI.II. Experimental Procedures 121
VI.II.I. Simple sample mixture preparation 121
VI.II.II. Complex sample mixture preparation 122
VI.II.III. LC-MS/MS 122
VI.II.IV. Data preparation procedures 123
VI.II.V. Identification and quantification procedures 124
VI.III. Results and Discussion 126
VI.III.I. Cell growth and observations 126
VI.III.II. Quantification of simple sample mixture 126
VI.III.III. Quantification of complex sample mixture 127
VI.III.IV. Biological interpretation 129
VI.IV. Conclusions 133
VII. Closing remarks and future directions 145
List of abbreviations 150
Appendix I 152
Appendix II
Appendix III
Appendix IV

List of figures and tables

Figure 1: Common proteomics workflows 17
Figure 2: Schematic of project experimental design.1: Metaproteome of a simple culture;
2: Metaproteome of a complex culture; 3: Proteome of one organism under different
levels of cadmium stress; 4: Proteome of one organism under different metal stresses
after cadmium adaptation 18
Figure 3: Distribution of all differentially-expressed protein quantification ratios with
respect to mixed culture 79
Figure 4: Functional classification of the proteins differentially expressed in the B.
subtilis and P. putida study 80
Figure 5: Silver-stained 2DE gel images from the microbial community following theaddition of $10 \mathrm{mg} / \mathrm{L}$ cadmium. Pink circles represent up-regulated proteins, while bluecircles represent down-regulated proteins relative to the controls100
Figure 6: Gene Ontology functional classification of all 109 differentially expressed proteins identified in the cadmium shock experiment 101
Figure 7: B. cepacia Cd 44 phenotype during growth on 0.44 mM cadmium 118
Figure 8: Functional classification of proteins identified in this study, sorted by levels of
cadmium 119
Figure 9: Scatter plots with Mascot and PEAKS quantification results 137
Figure 10: Portions of MS/MS spectra showing reporter ions for three different peptides
from phasin (in the complex protein mixture) 138Figure 11: Phasin protein ratios across SCX fractions as calculated by Mascot andPEAKS139

Figure 12: Chaperonin GroEL protein ratios across SCX fractions as calculated by
Mascot and PEAKS 139
Figure 13: Phenotypic differences of B. cepacia Cd 44 after cell cultivation on different metals 140
Figure 14: Venn diagram of the similarities in protein expression of the three metal shocks, showing that 46% of the proteins of interest are common to all three shocks 141
Figure 15: Functional classification of differentially expressed proteins, broken down by metals: cadmium, chromium and iron 142
Table 1: Summary of all differentially-expressed proteins in the B. subtilis and P. putida experiment and their expression ratios with respect to mixed culture 76
Table 2: Summary of protein changes in cadmium-exposed vs. control cultures (at leasttwo-fold change from control)101
Table 3: Summary of the three major protein expression patterns observed followingexposure of the microbial community to cadmium. The temporal response patternsrepresent up- or down-regulation of each cadmium treatment normalized against thecontrol at the same time point102
Table 4: Six-protein mixture identification and comparison of PEAKS and Mascotprotein-level quantification. Two preparations of this protein mixture were combined toprovide a ratio of 0.33136

I. Introduction

I.I. Background on environmental proteomics

Environmental biotechnology can be defined as the use of biotechnology to solve engineering problems, frequently involving microbial communities, complex and heterogeneous environments, and unsequenced, little studied species. It targets the use of microorganisms for remediation of soil and water and for the development of environment-friendly processes. Within this large scope of applications, tools are constantly developed to better describe microbial physiology, metabolism and other aspects associated with improving the performance of these organisms. Proteomics is defined as the large-scale study of protein expression, where protein activities are viewed as parts of a whole, and little interpretation is made based only on single proteins. The combination of proteomics and environmental biotechnology gives rise to environmental proteomics, here defined as the proteomic profiling of microorganisms of environmental relevance, enabling the acquisition of functional information to allow for the design of more efficient environmental bioprocesses.

Over the past 20 years, the use of genomics methods has grown rapidly in environmental biotechnology research and has yielded fascinating results ${ }^{1-3}$. The majority of these methods rely on the 16 S small subunit ribosomal DNA (rDNA), which is variable among species but conserved over generations. Analysis of the 16 S rDNA can thus identify bacterial species. However, no functional information can be concluded about function from rDNA analysis. An alternative would be a transcriptomic approach, which is the global analysis of gene expression at the mRNA level. However, the main challenge is the impossibility of studying many genes due to the lack of genome sequences for most environmentally-relevant microorganisms, an issue that
can be overcome in a proteomics study. The weakness of these nucleic acid-based methods is that they only reveal genotypic information and potential function, which does not necessarily lead to useful information on metabolic capacity, and physiological responses to variable environmental conditions. Proteomics can provide this information, but there are major challenges associated with extracting proteins from different matrices, complexity of environments, and unavailability of protein sequences for relevant bacterial species.

The characterization of bacterial communities is of great importance due to their central role in environmental bioprocesses. However, communities are highly complex, which makes it very difficult to appropriately design, control, and troubleshoot those processes. As a consequence, most environmental biotechnology studies consider only axenic cultures, which is a simplification of real processes. Lately, we have seen some studies using bacterial community genomics - metagenomics - based on DNA extraction from specific environments, e.g., biofilms ${ }^{4}$, sea water ${ }^{5}$, soil ${ }^{6}$ and waste treatment ${ }^{7}$. The metagenomics concept makes use of the genomics definition, which is the determination of the total genetic content (DNA sequences) of an organism, and applies it to a metaorganism, which can be understood as a collection of organisms living in community. Along with the metagenomics development, we can also see the establishment of bacterial community proteomics field ${ }^{8-12}-$ metaproteomics.

I.II. Proteomics tools and general workflows

Proteomic approaches can be qualitative or quantitative. So far, most studies are qualitative, and the efforts towards quantification are very recent. A few papers are summarized here that use microorganisms of environmental relevance to improve proteomics methods. In the field of environmental proteomics, experimental efforts are of particular interest, mainly alternative
protein separation and identification techniques. Each of these contributes to the separation and identification of proteins from unsequenced organisms.

In quantitative proteomics, labeling approaches are used with the purpose of marking samples with a label whose abundance can be measured. Stable isotope labeling can be used in culture, where labeled nitrogen or carbon, or even amino acids, are incorporated in the growth medium and all newly-synthesized proteins are equally labeled. This method can be used for relative and absolute quantification, depending upon the standards that are used ${ }^{33,34}$. Another labeling option is during the extraction step, where proteins can be labeled with isobaric tags. Choe et al. ${ }^{35}$ presented a comparison of the quantification potential of 2DE and isobaric tagging. They found that both methods demonstrated consistent measurements and that quantification was generally similar. An alternative option is shotgun label-free quantification, an approach used successfully by Zhang et al. ${ }^{36}$. They demonstrated that label-free shotgun proteomics can detect both differential and conserved protein expression. They also showed that spectral and peptide counts are highly reproducible between technical replicates and that sequence coverage is relatively nonreproducible. Different labeling techniques can be applied according to the project goals and examples of this can be seen in future chapters.

In Figure 1 we represent the traditional proteomics workflows, 2DE or shotgun-based, starting from sample preparation. Protein sample quality is probably the most important step in proteomic studies, and several techniques are employed for purification such as dialysis, ultrafiltration and precipitation. Fractionation methods are also used depending on the objective of the experiment, and rely on different protein properties, such as isoelectric point and molecular weight, cellular location, post-translational modifications, or ligand-binding interactions. More on prefractionation methods and applications can be found on a methods paper written by Cordwell ${ }^{37}$. Another reference article for 2DE methods, also by Cordwell, covers the whole -3-
process from sample preparation to mass spectrometric analysis ${ }^{38}$. It describes in detail methods for bacterial protein extraction, including sequential extraction of proteins from both Grampositive and Gram-negative bacteria, and extraction and enrichment of membrane and extracellular proteins.

The separation methods used by Cordwell ${ }^{38}$ are protein-based and accomplished by twodimensional gel electrophoresis. Detailed descriptions of isoelectric focusing (IEF), 2DE, and image analysis can be found in the same paper. After image analysis, protein spots need to be excised prior to in-gel tryptic digestion for peptide mass spectrometry. Shotgun separation, on the other hand, can be accomplished at the protein or peptide level, usually involving an electrophoretic and a chromatographic step, but different combinations can be used. As an example, Gan et al. ${ }^{39}$ used six different workflows, including protein and peptide IEF, protein IEF followed by peptide strong cation exchange (SCX) liquid chromatography, protein 2DE followed by peptide SCX, protein weak anion exchange and peptide SCX, peptide SCX only, and finally, peptide IEF only. Because different approaches favor distinct protein properties, this study showed that different proteins are identified depending on the separation method used. This makes it clear that different sample categories (cells, tissues, etc.) require an optimization of the separation protocol to obtain better results.

The bottom part of Figure 1 is focused on the identification steps, for which new mass spectrometry technologies have been essential. Different types of classic and tandem mass spectrometers are used to determine peptide masses and that is coupled with database searching aiming to find protein identifications. Zhu et al. ${ }^{40}$ applied a standard separation workflow using native and denaturing 2DE to present a fully-automated high-throughput LC-MS/MS. Peptides are automatically introduced from the in-gel digestion workstation into a capillary column by an autosampler connected to an LC pump. Another pump was then used to deliver the gradient and -4 -
elute the peptides from the capillary column directly into the mass spectrometer. This study represents a classic mass spectrometric approach, based on electrospray ionization and tandem ion trap mass analysis. Other frequently used setups are MALDI-TOF/TOF and ESI-Q/TOF. Great emphasis is put on the tandem part, where we can obtain amino acid mass information, which facilitates peptide sequencing. Database searches are accomplished by translating databases, such as NCBInr, digesting and fragmenting them in silico. Experimental MS and MS/MS data are then compared to the database and significant protein and peptide matches are considered for protein identifications. An alternative to tandem mass spectrometry is the use of Fourier-transform ion cyclotron resonance mass spectrometry as a part of an accurate mass and time (AMT) tag strategy. The AMT tag strategy uses the high accuracy of the FTICR-MS to measure peptide masses and elution times so that they are considered unique tags among all other peptides, based only on these two properties. Advantages of the AMT approach include high sensitivity and high confidence for protein identification as well as extensive proteome coverage. Mohan et al. ${ }^{41}$ used a multidimensional separation and concentration platform coupled with FTICR-MS to obtain a high number of protein identifications.

Database searching can be very challenging, especially for unsequenced organisms, and requires some additional strategies such as cross-species identification or de novo sequencing. In the case of cross-species identification, significant peptide matches are considered as identifications even if they come from a species different from the original one in the experiment, as described by Cordwell et al. ${ }^{42,43}$ and Habermann et al. ${ }^{44}$. In the case of de novo sequencing, where peptide sequences are reconstructed in silico from tandem data, a sequence homology search is required. Shevchenko et al. ${ }^{45}$ developed MS-BLAST, a search engine that performs BLAST searches on de novo-created peptides. Basically, de novo sequencing is performed on MS/MS data, and a collection of peptide sequences from the same protein are searched on a
protein BLAST. Currently, another topic of interest has been the annotation of hypothetical proteins - proteins whose genetic code have been described, but were never previously observed in a living organism. Around 40% of the total gene products predicted in bacterial genomes are annotated as hypothetical. As proteomic data acquisition progresses and more of these predicted gene products are observed, research groups have developed schemes for annotation and functional classification of these predicted, newly-observed proteins.

I.III. Comparison with other global technologies - "-omics"

Regardless of these challenges, proteomics can still provide useful information about the functions of microorganisms of environmental relevance that cannot be obtained by any other omics approach. Proteomics can also complement other -omics technologies in several aspects, including confirming the existence of gene products predicted from DNA sequences. HumpherySmith et al. ${ }^{13}$ evaluated the complementarity of proteomic research to nucleic acid-based techniques. In this paper, they assess the need for improvement in other areas such as molecular half-life and functional competence of biomolecules, among others. By putting together all the information generated in these complementary approaches, one would achieve a holistic cellular biology view, most commonly known as systems biology.

A few interesting studies have been published on the use of proteomics for the classification of bacteria. Dworzanski and Snyder ${ }^{14}$ used mass spectrometry to identify peptides and correlate them with a bacterial species. Basically, peptide sequences identified from fragment ion information were assigned to bacterial species according to the initial organismal affiliation of the identified peptide. Histograms were then constructed for each species in order to reveal the closest bacterial relatives. The bacterial sample was finally identified according to the highest number of
confidently identified peptides. Proteomics was also used for phylogenetic classification of closely-related bacterial species as described by Dopson et al. ${ }^{15}$. In their study, 2DE-based protein expression similarities were used to construct phylogenetic trees. This approach is only valid for highly similar species cultivated under the same conditions; otherwise it can be complicated to compare 2DE gel differences or even associate protein spots to the same proteins in the cases compared. This method can overcome common pitfalls faced in phylogeny, particularly, the need for accurate DNA sequences and their alignment, and the reliance on one gene (usually 16 S rDNA), thereby overlooking important information such as lateral gene transfer. A similar study was conducted by Francisco et al. ${ }^{16}$, in which they used fatty acid methyl esters and 2DE to cluster isolates from a bacterial community under chromium stress. Forty-eight bacterial species were identified by numerical analysis of fatty acid profiles and 10 clusters were formed by comparing the protein profiles of each species. They were able to demonstrate that the mechanisms of $\mathrm{Cr}(\mathrm{VI})$ resistance and reduction differed from group to group suggesting that both $\mathrm{Cr}(\mathrm{VI})$ resistance and reduction are shared abilities and not an exclusive characteristic of a single group. A similar comparison of protein profiles to assist phylogenetic classification was accomplished by Coenye et al. ${ }^{17}$. Their study reclassifies strain ACl 100 of Burkholderia as a new species, based on genotypic and phenotypic differentiation. These three examples show that proteomic approaches (either 2DEor shotgun-based) can be associated with taxonomic information, independently of DNA sequences.

An -omics technology of interest in the analysis of bacterial function is transcriptomics. Singh and Nagaraj ${ }^{18}$ reviewed the applications of transcriptomics and proteomics to bioremediation. Microarray-based transcriptomics is restricted to the analysis of sequenced organisms given that gene probes are necessary for hybridization and measurement of gene expression. In addition, this
approach only evaluates potential function at the mRNA level, which does not fully correlate to the post-translation of proteins ${ }^{18}$. Since the analysis is done at the mRNA level, all the information related to protein translation and post-translation is not taken into consideration. Thus, the mRNA analysis only views the potential for gene expression, but ignores other events where mRNA might be degraded before translation occurs, or simply a shut down of translation to save energy. Among all the advantages and disadvantages, proteomics still holds a unique position since mRNA only transmits information from genes to ribosomes. Proteins, on the other hand, are the key players of in situ bioremediation, participating in all cellular reactions and mechanisms. The Desulfovibrio vulgaris transcriptome and proteome were used as models to develop statistical methods that improve their correlation ${ }^{18}$. The studies comparing transcriptomics and proteomics conclude that there is not a very good correlation between the two data types ${ }^{18-24}$ (as explained above). Possible reasons for that are the differences in dynamic range and rates of production and degradation of both proteins and mRNA, or even false positives in either case. Nie et al. worked on models to predict the abundance of undetected proteins ${ }^{25}$, multiple regressions to identify sources of variations ${ }^{26}$, and sequence features that affect translational efficiency ${ }^{27}$. Another combined transcriptome and proteome study of D. vulgaris describes the response to oxidative conditions ${ }^{28}$. A number of differentially expressed gene products were identified in response to oxygen exposure, including thiol-specific peroxidases. Other products also identified had the functional categories of nucleic acid and protein biosynthesis, detoxification and cell division. Xia et al. ${ }^{29}$ studied the proteome of Methanococcus maripaludis and evaluated its correlation with mRNA microarrays. They used metabolic labeling and multidimensional LC coupled with a quadrupole ion trap mass spectrometer to find 55% of the total proteins of that organism. They compared a wild and a mutant strain to support the duplex experiment and validated it through microarrays, and
concluded that shotgun proteomics and microarrays can provide similar measurements of global gene expression.

The combination of proteomics and transcriptomics can be valuable. The combination of both approaches provides the capability of finding genes and/or proteins that are neglected by the other approach, possibly due to their physical properties. Monchy et al. ${ }^{23}$ studied the proteome response to copper in Cupriavidous metallidurans CH 34 . In the presence of a high copper concentration, a total of 10 proteins were induced, while only one protein was repressed. They observed that both at the transcript and protein levels most of the induced proteins were plasmid-encoded, but chromosomal proteins also had their expression modulated by copper. They identified a number of proteins involved in copper resistance and other stress-related proteins. Tomás-Gallardo et al. ${ }^{30}$ investigated aromatic metabolism in Rhodococcus sp. strain TFB. The combination of transcriptomics and proteomics made it possible to observe the induction of specific catabolic pathways by the corresponding aromatics, the evidence of a stress response during growth on aromatics, and the absence of catabolite repression by glucose suggesting a metabolic advantage of this organism. Nunez et al. ${ }^{31}$ compared the proteomics and transcriptomics of a specific regulon in Geobacter sulfurreducens. They found significant differences between the wild and the mutant proteomes based on the activity of the regulon of interest. They also learned that several cellular processes can be regulated by genes present in this regulon and that some of the gene products can be commonly identified by both techniques. Schmid et al. ${ }^{32}$ investigated a heat shock regulon from Deinococcus radiodurans. Also using deletion mutations, transcriptomics and proteomics, they demonstrated the need for the specific regulon in the expression of heat shock genes and showed the importance of several heat shock proteins in heat protection. Morris et al. ${ }^{19}$ investigated Dehalococcoides ethenogenes strain 195 oxidoreductases. They used MALDI-MS/MS and reverse
transcriptase PCR to identify several respiratory enzymes including oxidoreductases, hydrogenases and dehalogenases. These reports demonstrate that transcriptomics and proteomics can provide complementary insights into the metabolism of prokaryotes.

I.IV. General workflow - metaorganisms and development of Burkholderia cepacia Cd44

The experimental design for this project involved an exploratory experiment of a short-term cadmium exposure of a metaorganism, or polybacterial system. As a proof-of-concept of metaproteomics changes in a polybacterial system, we were interested in assessing the ecological effects of a mixed culture of two sequenced organisms. To accomplish this goal, we used two known strains of environmentally-relevant bacteria: Pseudomonas putida KT2440 and Bacillus subtilis. These two bacteria were cultivated in rich-medium batches, in isolation and in community. Community composition was evaluated by series of Gram stains at different growth stages, i.e., both Gram-negative and Gram-positive cells were observed in comparable amounts, at all stages. Proteome analyses by a quantitative shotgun workflow were performed and are discussed in Chapter 3.

For a more complex system study, all unsequenced bacteria used in this study were obtained from an inoculum from an uncontaminated soil sample from Fort Collins, CO. The source microbial community was inoculated in a continuous-flow simulated wastewater treatment bioreactor that was fed a mixture of organic chemicals. 16 S rDNA analyses of this inoculum culture indicated the presence of approximately 50 bacterial strains ${ }^{46}$. For the metaproteomics cadmium resistance study, inocula from the continuous reactor were used for rich-medium cultivations of the culture and short-term cadmium exposures. Proteome analyses using a 2 DE workflow were performed and the results are discussed in Chapter 4. This exploratory study led to many questions involving - 10 -
the detection of proteins in a less complex community and proteins specifically related to cadmium toxicity. Figure 2 shows a schematic of the projects derived from the first metaproteomics study.

The other direction of great interest in this project involved the isolation of a bacterial species with high resistance to cadmium from the unsequenced community. The main goal was to use a variety of proteomics techniques to understand proteome changes under different cadmium environments. For the isolation, a series of inocula were taken from the continuous reactor, and cultivated on media with high cadmium concentrations. These cultures were grown on solid media, so that colonies could be grown independently and undergo several transfers, to improve the isolation of one single species. The fastest growing, most cadmium-resistant organism was identified as a strain of Burkholderia cepacia (by 16S rDNA sequencing). In order to clarify the uniqueness of the strain used here and to better describe it, we use the name B. cepacia Cd 44 in this study, where the strain code represents the highest cadmium concentration tolerated by this strain $\left(0.44 \mathrm{mM} \mathrm{Cd}^{2+}\right)$. The complete details for the isolation procedure are described in Chapter 5, along with the proteome study of adaptation to different cadmium levels.

After understanding the effects of short-term cadmium shocks and cadmium concentration, one evident direction was the evaluation of how other metals affect this bacterium. The reasoning behind the last set of experiments is that after adapting to a highly inhospitable environment, the organism should have the necessary protein machinery to tolerate the presence of other metals. For the next experimental design, exponentially-growing cultures of strain Cd 44 were subjected to short-term metal shocks ($0.44 \mathrm{mM} \mathrm{Cd}^{2+}, 0.38 \mathrm{mM} \mathrm{Cr}^{3+}$ and $0.62 \mathrm{mM} \mathrm{Fe}^{3+}$) and one was cultured without metals to serve as control. The referred metal concentrations were chosen since they caused visible phenotypic changes in the colonies. After 2 h of metal exposure, cells were
harvested and their proteins extracted and digested prior to a quantitative shotgun proteomics workflow. This experiment is fully presented in Chapter 6.

The last chapter presents the future directions for this research. All these discoveries lead to more intriguing questions and a solid foundation for environmental proteomics has yet to be built. With the advent of systems and synthetic biology, omics-based models can be built so that this work can be applied to bioremediation and other environmental biotechnology fields.

1. Lovley, D. R., Cleaning up with genomics: Applying molecular biology to bioremediation. Nature Reviews Microbiology 2003, 1, (1), 35-44.
2.Ogram, A., Soil molecular microbial ecology at age 20: methodological challenges for the future. Soil Biology \& Biochemistry 2000, 32, (11-12), 1499-1504.
3.Rodrigues, J. L. M.; Aiello, M. R.; Urbance, J. W., et al., Use of both 16S rRNA and engineered functional genes with real-time PCR to quantify an engineered, PCB-degrading Rhodococcus in soil. Journal of Microbiological Methods 2002, 51, (2), 181-189.
4.Tyson, G. W.; Chapman, J.; Hugenholtz, P., et al., Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 2004, 428, (6978), 37-43.
5.Venter, J. C.; Remington, K.; Heidelberg, J. F., et al., Environmental genome shotgun sequencing of the Sargasso Sea. Science 2004, 304, (5667), 66-74.
2. Mummey, D. L.; Stahl, P. D., Analysis of soil whole- and inner-microaggregate bacterial communities. Microb Ecol 2004, 48, (1), 41-50.
7.Martin, H. G.; Ivanova, N.; Kunin, V., et al., Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nature Biotechnology 2006, 24, (10), 12631269.
8.Kan, J.; Hanson, T. E.; Ginter, J. M., et al., Metaproteomic analysis of Chesapeake Bay microbial communities. Saline Systems 2005, 1, 7.
9.Lacerda, C. M.; Choe, L. H.; Reardon, K. F., Metaproteomic Analysis of a Bacterial Community Response to Cadmium Exposure. J Proteome Res 2007.
3. Ram, R. J.; VerBerkmoes, N. C.; Thelen, M. P., et al., Community proteomics of a natural microbial biofilm. Science 2005, 308, (5730), 1915-1920.
11.Wilmes, P.; Bond, P. L., The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environmental Microbiology 2004, 6, (9), 911-920.
12.Wilmes, P.; Bond, P. L., Towards exposure of elusive metabolic mixed-culture processes: the application of metaproteomic analyses to activated sludge. Water Science and Technology 2006, 54, (1), 217-226.
13.HumpherySmith, I.; Cordwell, S. J.; Blackstock, W. P., Proteome research: Complementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis 1997, 18, (8), 12171242.
4. Dworzanski, J. P.; Snyder, A. P., Classification and identification of bacteria using mass spectrometry-based proteomics. Expert Review of Proteomics 2005, 2, (6), 863-878.
15.Dopson, M.; Baker-Austin, C.; Bond, P. L., First use of two-dimensional polyacrylamide gel electrophoresis to determine phylogenetic relationships. Journal of Microbiological Methods 2004, 58, (3), 297-302.
5. Francisco, R.; Alpoim, M. C.; Morais, P. V., Diversity of chromium-resistant and -reducing bacteria in a chromium-contaminated activated sludge. Journal of Applied Microbiology 2002, 92, (5), 837-843.
17.Coenye, T.; Henry, D.; Speert, D. P., et al., Burkholderia phenoliruptrix sp. nov., to accommodate the 2,4,5-trichlorophenoxyacetic acid and halophenol-degrading strain $\mathrm{AC1} 100$. Syst Appl Microbiol 2004, 27, (6), 623-7.
18.Singh, O. V.; Nagaraj, N. S., Transcriptomics, proteomics and interactomics: unique approaches to track the insights of bioremediation. Brief Funct Genomic Proteomic 2006, 4, (4), 355-62.
19.Morris, R. M.; Sowell, S.; Barofsky, D., et al., Transcription and mass-spectroscopic proteomic studies of electron transport oxidoreductases in Dehalococcoides ethenogenes. Environmental Microbiology 2006, 8, (9), 1499-1509.
20.Thompson, D. K.; Beliaev, A. S.; Giometti, C. S., et a1., Transcriptional and proteomic analysis of a ferric uptake regulator (fur) mutant of Shewanella oneidensis: Possible involvement of fur in energy metabolism, transcriptional regulation, and oxidative stress. Applied and Environmental Microbiology 2002, 68, (2), 881-892.
6. Mostertz, J.; Scharf, C.; Hecker, M., et al., Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiology-Sgm 2004, 150, 497-512.
7. Mader, U.; Homuth, G.; Scharf, C., et al., Transcriptome and proteome analysis of Bacillus subtilis gene expression modulated by amino acid availability. Journal of Bacteriology 2002, 184, (15), 4288-4295.
23.Monchy, S.; Benotmane, M. A.; Wattiez, R., et al., Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology 2006, 152, (Pt 6), 1765-76.
24.Wan, X. F.; VerBerkmoes, N. C.; McCue, L. A., et al., Transcriptomic and proteomic characterization of the fur modulon in the metal-reducing bacterium Shewanella oneidensis. Journal of Bacteriology 2004, 186, (24), 8385-8400.
25.Nie, L.; Wu, G.; Brockman, F. J., et al., Integrated analysis of transcriptomic and proteomic data of Desulfovibrio vulgaris: zero-inflated Poisson regression models to predict abundance of undetected proteins. Bioinformatics 2006, 22, (13), 1641-7.
26.Nie, L.; Wu, G.; Zhang, W., Correlation between mRNA and protein abundance in Desulfovibrio vulgaris: a multiple regression to identify sources of variations. Biochem Biophys Res Commun 2006, 339, (2), 603-10.
27.Nie, L.; Wu, G.; Zhang, W., Correlation of mRNA expression and protein abundance affected by multiple sequence features related to translational efficiency in Desulfovibrio vulgaris: a quantitative analysis. Genetics 2006, 174, (4), 2229-43.
28.Fournier, M.; Aubert, C.; Dermoun, Z., et al., Response of the anaerobe Desulfovibrio vulgaris Hildenborough to oxidative conditions: proteome and transcript analysis. Biochimie 2006, 88, (1), 85-94.
8. Xia, Q. W.; Hendrickson, E. L.; Zhang, Y., et al., Quantitative proteomics of the archaeon Methanococcus maripaludis validated by microarray analysis and real time PCR. Molecular \& Cellular Proteomics 2006, 5, (5), 868-881.
30.Tomás-Gallardo, L.; Canosa, I.; Santero, E., et al., Proteomic and transcriptional characterization of aromatic degradation pathways in Rhodoccocus sp. strain TFB. Proteomics 2006, 6 Suppl 1, S119-32.
31.Nunez, C.; Esteve-Nunez, A.; Giometti, C., et al., DNA microarray and proteomic analyses of the RpoS regulon in Geobacter sulfurreducens. Journal of Bacteriology 2006, 188, (8), 2792-2800.
9. Schmid, A. K.; Howell, H. A.; Battista, J. R., et al., Global transcriptional and proteomic analysis of the Sig1 heat shock regulon of Deinococcus radiodurans. J Bacteriol 2005, 187, (10), 3339-51.
33.Malmstrom, J.; Lee, H.; Aebersold, R., Advances in proteomic workflows for systems biology. Current Opinion in Biotechnology 2007, 18, (4), 378-384.
10. Pratt, J. M.; Simpson, D. M.; Doherty, M. K., et al., Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nature Protocols 2006, 1, (2), 1029-1043.
11. Choe, L. H.; Aggarwal, K.; Franck, Z., et al., A comparison of the consistency of proteome quantitation using two-dimensional electrophoresis and shotgun isobaric tagging in Escherichia coli cells. Electrophoresis 2005, 26, (12), 2437-2449.
36.Zhang, B.; VerBerkmoes, N. C.; Langston, M. A., et al., Detecting differential and correlated protein expression in label-free shotgun proteomics. Journal of Proteome Research 2006, 5, (11), 2909-2918.
37.Cordwell, S. J., Advances in bacterial proteome analysis. Functional Microbial Genomics 2002, 33, 187-207.
38.Cordwell, S. J., Acquisition and archiving of information for bacterial proteomics: From sample preparation to database. Bacterial Pathogenesis, Pt C 2002, 358, 207-227.
39.Gan, C. S.; Reardon, K. F.; Wright, P. C., Comparison of protein and peptide prefractionation methods for the shotgun proteomic analysis of Synechocystis sp PCC 6803. Proteomics 2005, 5, (9), 2468-2478.
12. Zhu, W. H.; Venable, J.; Giometti, C. S., et al., Large-scale mu LC-MS/MS for silver- and Coomassie blue-stained polyacrylamide gels. Electrophoresis 2005, 26, (23), 4495-4507.
41.Mohan, D.; Pasa-Tolic, L.; Masselon, C. D., et al., Integration of electrokinetic-based multidimensional separation/concentration platform with electrospray ionization-Fourier transform ion cyclotron resonance-mass spectrometry for proteome analysis of Shewanella oneidensis. Analytical Chemistry 2003, 75, (17), 4432-4440.
42.Cordwell, S. J.; Basseal, D. J.; HumpherySmith, I., Proteome analysis of Spiroplasma melliferum (A56) and protein characterisation across species boundaries. Electrophoresis 1997, 18, (8), 1335-1346.
43.Cordwell, S. J.; Wilkins, M. R.; Cerpapoljak, A., et al., Cross-Species Identification of Proteins Separated by 2-Dimensional Gel-Electrophoresis Using Matrix-Assisted Laser-Desorption Ionization Time-of-Flight Mass-Spectrometry and Amino-Acid-Composition. Electrophoresis 1995, 16, (3), 438-443.
44.Habermann, B.; Oegema, J.; Sunyaev, S., et al., The power and the limitations of cross-species protein identification by mass spectrometry-driven sequence similarity searches. Molecular \& Cellular Proteomics 2004, 3, (3), 238-249.
13. Shevchenko, A.; Sunyaev, S.; Loboda, A., et al., Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time of flight mass spectrometry and BLAST homology searching. Analytical Chemistry 2001, 73, (9), 1917-1926.
14. Hanson, R.; Sans, C.; Reardon, K. F., et al., Monitoring microbial community dynamics to environmental perturbations using DGGE and CE-SSCP.

Figure 1: Common proteomics workflows.

Figure 2: Schematic of project experimental design.1: Metaproteome of a simple culture; 2:
Metaproteome of a complex culture; 3: Proteome of one organism under different levels of cadmium stress; 4: Proteome of one organism under different metal stresses after cadmium adaptation.

II. Environmental proteomics: Applications of bacterial proteome profiling in environmental biotechnology

II.I. Introduction

In this review we present the use of environmental proteomics in studies of bacterial physiology, metabolism, and ecology, among other areas. Bacteria and their intricate cell machineries can be widely applied in environmental biotechnology in a range of cleanup processes, including bioremediation. In the bioremediation field, bacterial abilities of potential interest include dehalogenation, methanogenesis, denitrification, sulfate reduction, tolerance of radiation and toxic compounds, versatility regarding carbon and energy sources, as well as use of electron donors and acceptors. Proteomics has a potentially important role in helping uncover the pathways behind these cellular processes. However, environmental samples are often highly complex, which makes proteome studies in this field especially challenging. Some of these challenges are the unavailability of genome sequences for the large majority of environmental bacteria, difficulties in isolating bacteria from certain environments and enriching species.

We compare proteomics with other -omics studies, such as genomics, and phylogenetic classifications, and transcriptomics. Despite all the challenges, proteomics offers a unique and dynamic view into cellular function at specific points in time. We then describe case studies of environmental proteomics of models organisms, such as Shewanella oneidensis and Cyanobacteria. And an important aspect of recent environmental proteomics concerns
metaproteomics or microbial community proteomics. This approach has been used by very few research groups and show great potential in the evaluation of function in a community without isolating organisms. This allows for a view of organism interactions, which are impossible to determine using axenic cultures.

The future of proteomics falls into the scope of systems biology, which encompasses the global molecular and network analysis of biological systems. As more research is done, we will be able to make predictions on bacterial activity and apply this directly to bioremediation fields, for example. Proteomics is a unique tool and can offer valuable information into cellular processes. By combining proteomics with other -omics technologies we will be able to more deeply understand previously undescribed cellular mechanisms and to reproduce them.

II.II. Environmental Proteomics

Proteomic studies of environmental samples, such as soil and seawater, are so far limited to some model microorganisms, having the ability to tolerate, degrade or precipitate toxic compounds. In terms of environmental bioprocessing, some other desirable characteristics of those model organisms are versatility regarding carbon and energy sources, as well as electron donors and acceptors. Another aspect is the availability of genome sequences. Some sequenced bacterial species are notorious for their unique abilities: Shewanella oneidensis strain MR1 can use more than ten electron acceptors ${ }^{47}$, Deinococcus radiodurans can tolerate radiation, Burkholderia strain LB400 is the most effective tetrachlorobenzene degrader known, among others. These qualities altogether make these organisms extremely attractive for environmental biotechnology applications and proteomics can be used to help
us better understand their functions in specific habitats. One technical advantage of using model organisms regards the availability of sequenced genomes, which almost always improves the quality of protein identifications. Other model organisms do not have much interest in bioremediation, but are of great ecological importance, e.g., understanding mechanisms of survival and adaptation in tundra soils ${ }^{48}$.

II.II.I. Physiology of model organisms - Shewanella oneidensis

A number of approaches have been used to try to develop environmental proteomics. The direct consequence is that model organisms, such as Shewanella oneidensis, are usually targeted. S. oneidensis is a Gram-negative bacterium that inhabits oxic-anoxic surfaces in nature. Its bioremediation potential relates to diverse respiratory capabilities, meaning the ability to reduce a wide-range of organic compounds, metal ions and radionuclides. In order to learn more about the bacterium and to improve the performance of different chromatographic and mass spectrometric methods, quantification alternatives, database annotations, etc., there is a collection of physiological studies of S. oneidensis to be reviewed here.

At the Pacific Northwest National Laboratory (Richland, WA, USA), several researchers are involved in proteomic analysis of Shewanella oneidensis, and their studies are diverse, including a focus on better annotation of hypothetical proteins. Using aerobic, suboxic and anaerobic culture conditions, they apply the AMT tag approach (LC-FTICR-MS) and a combination of filtering approaches for the identification of proteins. The studies focused on annotation of hypothetical proteins ${ }^{49-51}$ demonstrate their high-throughput capability. After detecting thousands of tryptic peptides, and using a minimum of two peptides per protein for confident identification, they confirmed the expression of at least 758 conserved hypothetical
proteins ${ }^{50}$. They developed a seven-category annotation scheme based on different functional layers: exact biochemical function, well-defined biochemical function but unknown specificity, general biochemical function based on a superfamily assignment, known biological function derived from genomics data, functional insights derived from genomic data, expressed under certain growth conditions, and organism-specific protein. This method allowed for the new categorization of over 400 proteins, with a defined biological role and confirmed expression in S. oneidensis. They also worked on criteria for the confident identification of small proteins (around 100 amino acids in length) using the AMT tag approach ${ }^{52}$. Once again they tried to validate function for the small hypothetical proteins.

There are several other study lines from the Pacific Northwest National Laboratory involving S. oneidensis and similar proteomic approaches. To improve their proteomic approaches, they developed a method constituted by smart instrumentation where isotopically-labeled species detected with "interesting" abundance ratios were selected for MS/MS in an automated fashion ${ }^{53}$. For a complex mixture of S. oneidensis peptides, they were able to target only species corresponding to proteins differentially expressed under suboxic versus aerobic conditions. Another effort for method improvement was label-free ${ }^{54}$ differential proteomics. They used relative peak intensities in conjunction with data normalization (linear regression against the elution time of peptides in the AMT tag database) to quantify protein expression. Another study focused on optimizing a top-down multidimensional chromatographic separation of intact proteins ${ }^{55}$ prior to mass spectrometry. They identified a total of 715 intact proteins, with and without PTMs such as loss of N terminal methionine and methionine oxidation. Furthermore, results combining data from the
two chromatographic separations were illustrated as a 2DE display. Their strategy proved to be high-throughput and efficient in detecting differential protein expression of biologically relevant targets. A more recent study describes the enrichment of active S. oneidensis proteins directly involved in metal reduction ${ }^{56}$, using liquid chromatography, prior to mass spectrometric identification. A number of proteins were found, including terminal electronaccepting proteins and others not previously associated with metal reduction. This was the first study to identify metal-reducing proteins without the need for purification procedures or loss of protein activity.

Integrative approaches combining proteomics and transcriptomics were also implemented to provide more detailed insight into gene function in S. oneidensis. Initial investigation aimed at characterizing a ferric uptake regulator $(f u r)^{57,58}$, which is an iron-responsive transcriptional repressor. They created a fur knockout strain and compared it to the wild type. They found a number of differentially expressed gene products in the fur mutant, including the ones involved in electron transport, energy metabolism, transcriptional regulation, oxidative stress and iron uptake, as well as binding proteins and receptors. They found a strong correlation between transcriptome and proteome data for genes undergoing large changes in expression level. More recent studies compare transcriptome and proteome changes after chronic ${ }^{59}$ and acute ${ }^{60}$ chromium stress. In the chronic stress study, they exposed S. oneidensis cells to 0.3 mM chromate for 24 hours and they observed complete uptake or reduction of the metal. Chromium-exposed cells developed filaments that tended to aggregate and the main molecular response was the up-regulation of genes involved in the prophage formation, DNA metabolism, cell division, biosynthesis, stress protection, and membrane and peptidoglycan response. They also observed down-regulation of genes
involved in chemotaxis, motility and transport. The acute stress study investigated the dynamic response after short-time intervals of exposure to 1 mM chromate. They identified the up-regulation of a number of transporters, receptors, signal transduction systems, sulfur metabolism enzymes, and cellular detoxification and DNA repair proteins. In contrast, energy metabolism proteins were repressed. They also reported comparable induction and repression transcriptomic and proteomic patterns for corresponding proteins. These two studies together show how the presence of chromium can generate a variety of cellular responses, based on the differences of acute and chronic stresses.

Other studies with S. oneidensis focusing on cellular states are the comparison of planktonic and biofilm cell growth ${ }^{61}$ and characterization of c-type cytochromes underlying their metal reduction strategy ${ }^{62}$. Further method-based studies compare "top-down" and "bottom-up" approaches ${ }^{63}$, develop non-denaturing methods for proteome analysis ${ }^{64}$, and apply new affinity labeling probes for analysis of the membrane proteome ${ }^{65}$.

II.III.II. Physiology of model organisms - Pseudomonads

The bacterial genus Pseudomonas has been extensively studied mainly due to species ubiquity. These bacteria are highly versatile with regards to carbon and energy utilization, thus being very active in aerobic decomposition and biodegradation. Because of their very low nutritional requirements, their lifestyles can be autotrophic or lithotrophic, planktonic or sessile, aerobic or anaerobic. They have a great ability to degrade aliphatic and aromatic hydrocarbons, as well as to tolerate non-degradable toxic pollutants.

Pseudomonas putida is generally a model for the investigation of adaptation to harsh environments and toxicity mechanisms in bacteria. Due to its ability to degrade aromatic hydrocarbons, great effort has been put in this direction as an attempt to reduce the amount of
toxic pollutants spread in our environment. Several aromatic compounds are degraded by entering the benzoate pathway, either by transformation to benzoate or catechol, and later directed to the TCA cycle. Proteomic studies of these pathways target the elucidation, at the metabolic level, of the mechanisms of biodegradation and tolerance of toxic aromatic compounds. Kim et al. ${ }^{66}$ studied P. putida cultured in six different monocyclic aromatic compounds, including benzoate, and aimed at determining whether proteins involved in aromatic compound degradation pathways were altered. They were able to identify a total of 190 proteins from 2DE/MS with and without ICAT labeling. Enzymes of the central pathways (benzoate, β-ketoadipate) were confirmed to be induced in the presence of aromatic compounds. Another interesting study looked at P. putida grown on phenol, toluene and a mixture of the two ${ }^{67}$. They found that P. putida synthesizes different proteins when grown on toluene alone, phenol alone or both. Using 2DE they found seventeen proteins that were exclusively made during phenol growth and ten that were exclusive of toluene. During growth on the mixture, the protein synthesis shifted from toluene-related to phenol-related proteins, which correlated well with the substrate consumption pattern. Those proteins were not identified. A phenol-stress study was conducted by Santos et al. ${ }^{68}$ focusing on the global mechanism underlying phenol toxicity and tolerance in P. putida. They noted the differential expression of proteins involved in the oxidative and general stress response, transcription regulation, transport, cell envelope biosynthesis, cell division, motility, and lipid, amino acid, nucleotide and energy metabolism. Kurbatov et al. ${ }^{69}$ studied protein expression during growth on carbon sources with different impact on carbon catabolite repression of phenol degradation. In the presence of phenol, they found up-regulation of proteins involved in transport, detoxification, stress response, amino acid, energy, and carbohydrate and
nucleotide metabolism. Toluene-stress proteomic studies of were also accomplished. Segura et al. ${ }^{70}$ found four categories of toluene-specific proteins: proteins involved in the catabolism of toluene, proteins involved in the channeling of metabolic intermediates to the TCA cycle and activation of purine biosynthesis, proteins involved in sugar transport, and stress-related proteins, suggesting high energy demand for toluene tolerance. Volkers et al. ${ }^{71}$ also found that the differentially expressed proteins reflected the need for intracellular energy management in the defense against toluene. Other differentially expressed proteins were identified and functionally classified as outer membrane, transport, stress- and translationrelated proteins. Other proteome profiling studies of P. putida involved growth on acidic amino acids and their amides as sole carbon sources ${ }^{72}$, growth on chaotropic solutes causing water stress ${ }^{73}$, tolerance of chlorophenoxy herbicides ${ }^{74}$, response to tetracycline ${ }^{75}$, and methyl tert-butyl ether stress ${ }^{76}$.

Other Pseudomonads were also used as a model to study aromatic degradation. A P. alcaligenes mutant was built to express gentisate dioxygenase only in the presence of gentisate ${ }^{77}$. Proteomic results showed the up-regulation of a protein with a similar function to gentisate dioxygenase, as well as stress proteins. In another investigation, the same group evaluated the regulatory role of a sigma factor in response to gentisate induction ${ }^{78}$. They observed differential regulation of a number of proteins in response to the inactivation of the sigma factor. Those proteins were enzymes of the gentisate pathway, TCA cycle, pyruvate metabolism and gluconeogenesis, proving the global regulatory role of the sigma factor. Pseudomonas sp. K82 also had its aromatic degradation pathways studied. Kim et al. ${ }^{79}$ looked at the impact of several aromatics (including benzoate) on general metabolic pathways. Two types of catechol oxygenases and related enzymes were identified using
proteomics, suggesting that two cleavage pathways were induced simultaneously for aromatic degradation in Pseudomonas sp. K82. Verberkmoes et al. ${ }^{80}$ compared a "baseline" proteome of a Rhodopseudomonas palustris wild-type strain grown under six metabolic conditions, including growth on benzoate. They were able to identify 44 proteins upregulated during growth on benzoate, including all the enzymes of the benzoate degradation pathway.

Another aspect of importance in the Pseudomonas lifestyle is the ability to form biofilms. Proteomics is generally used to describe the physiological differences between planktonic and sessile cells. P. putida may contribute to the rhizosphere fitness by forming biofilms and utilizing bacterial communication to express certain phenotypes. The impact of biofilm formation and quorum sensing was investigated by comparative proteomic analyses of P. putida and a quorum sensing-deficient mutant ${ }^{81}$. They found that quorum sensing-related proteins overlapped substantially with proteins differentially expressed in sessile cells. Other Pseudomonas biofilm studies are from Sauer et al. ${ }^{82-84}$. Their first study investigates phenotypic changes in P. putida in response to surface-associated growth. They found a number of changes in gene expression following initial attachment to a surface, including ABC transporters, structural components of flagella and pilli and polysaccharide biosynthesis proteins. The second study compares planktonic cells with mature biofilm, cells, and showed differential expression of more than 800 proteins. The last study here cited deals with dispersal of P. aeruginosa cells from biofilms induced by an increase in carbon substrate availability. Glucose was the most efficient carbon source to induce dispersal, leading to 80% reduction in biofilm biomass. Proteins with increased expression in dispersed cells were kinases, flagellar and ribosomal.

Pseudomonas aeruginosa is a facultative human pathogen of high concern in the biomedical field, but also of bioremediation interest. A study by Al-Tahan et al. ${ }^{85}$ focused on optimizing the effect of biosurfactants on organism cell walls for bioremediation. P. aeruginosa was cultured on glucose and hexadecane to investigate the chemical and structural changes that occur in the presence of a rhamnolipid biosurfactant. Results showed that rhamnolipids caused an overall loss in cellular fatty acid content, which was due to release of lipopolysaccharides from the outer membrane. Another study of ecological interest of P. aeruginosa concern iron deprivation ${ }^{86}$, where the authors compared P. aeruginosa and P. putida. They found a number of common proteome changes in both species, including ferric uptake regulators, but also a number of differences suggesting important roles of iron-responsive functions in their different lifestyles. Another example is growth under magnesium limitation ${ }^{87}$, a condition shown to induce virulence factors. Results showed that magnesium stress response proteins involve bacterial virulence were the most abundant proteins induced. The same group also looked at the P. aeruginosa proteome under anaerobic growth ${ }^{88}$, where they found more than 100 proteins playing a specific role in anaerobic metabolism.

II.II.III. Physiology of model organisms - Bacilli

The Bacillus genus represents models for Gram-positive bacteria. These organisms are also of interest due to their sporulation and biofilm formation ability, as well as virulence of some species. Sporulation and biofilm formation are key mechanisms of survival during environmental stresses. Several proteomic studies have been conducted on B. subtilis due to its ease of growth and genetic manipulation. Hecker and collaborators have worked extensively on the proteome of this organism, especially on the allocation of stimulons and
regulons. A review of the application of proteomics to study physiology of B. subtilis ${ }^{89}$ is available on the literature. Hecker's early studies included starvation for glucose ${ }^{90-93}$ or phosphate ${ }^{90,91,94}$, heat shock ${ }^{90,91,93,95}$, salt ${ }^{90,91,93,96}$ and ethanol stress ${ }^{90,91}$ as well as oxidative stress ${ }^{90,95}$. These conditions were tested in order to establish comprehensive twodimensional proteome maps for B. subtilis ${ }^{97,98}$. The same group also evaluated the B. subtilis secretome ${ }^{99}$, composed of all the extracellular or secreted proteins. Proteomics showed unique value in this approach since genome-based approaches failed to predict 50% of the actual extracellular proteins. This report of individual secretion machinery components and protein traffic can help us understand mechanisms related to virulence, for example. More recent studies compared gel-free and gel-based approaches ${ }^{100}$ and stress-specific versus starvation-specific regulons ${ }^{101}$. Hecker also compared transcriptomics and proteomics of a variety of stresses and demonstrated how proteomics can be used to analyze regulation, structure and function of the sigma dependent general stress regulon ${ }^{102}$. For the comprehensive description of proteins/genes belonging to stimulons or regulons, the proteome approach was complemented with mRNA arrays in order to identify and allocate basic regulation modules. Some combined transcriptome-proteome investigations from the same group involved phosphate starvation ${ }^{103}$, stringent response ${ }^{104}$, amino acid availability ${ }^{105}$ and starvation ${ }^{106}$, ammonium starvation ${ }^{106}$, catechol and phenol growth ${ }^{107}$ and salicylic acid stress ${ }^{108}$. Unique features of interest in Bacilli are virulence and sporulation. Proteome profiles were described for the spores of B. cereus ${ }^{109}$, B. subtilis ${ }^{110,111}$ and B. anthracis ${ }^{112}$. Virulence studies mostly concentrate on the secretome - proteome of secreted or extracellular proteins. Virulence factors are generally found between those proteins and were described for a number of Bacilli, namely B. cereus ${ }^{113,114}$, B. thurigiensis ${ }^{113}$, and several B.
anthracis ${ }^{113,115,116}$ strains. Other research groups further investigated Bacilli physiology, including oxidative ${ }^{117,118}$, heat ${ }^{119,120}$ and cold ${ }^{121-123}$ stresses, nutrient ${ }^{124,125}$ and phosphate ${ }^{126}$ starvation, hexadecane as carbon source ${ }^{127}$, biofilm formation ${ }^{128,129}$, as well as full proteome maps ${ }^{130,131}$.

II.II.IV. Physiology of model organisms - Cyanobacteria

Cyanobacteria are photosynthetic bacteria, possessing different lifestyles, from aquatic to terrestrial, unicellular to filamentous, capable of forming symbiotic associations with plants. Cyanobacteria are considered model bacteria, due to availability of genome sequences for some species, and abilities to fix nitrogen and carbon dioxide, as well as produce hydrogen and secondary metabolites; all these characteristics are of great interest in biotechnology. The most commonly studied genera are Synechocystis, Nostoc and Anabaena. An overview of -omics research of cyanobacteria was written by Burja et al. ${ }^{132}$.

A considerable amount of research has been accomplished for Synechocystis sp. PCC 6803. A proteomic map was developed for Synechocystis using narrow pH range gels and automated MALDI-TOF ${ }^{133}$. A total of 105 proteins were identified in this study suggesting a baseline proteome for this organism. Choi et al. ${ }^{134}$ studied the photosynthetic proteome of light- and dark-cultured cells. Using N-terminal Edman sequencing and MALDI-TOF, they identified several proteins involved in photosynthesis and respiration, and other cellular processes. Kashino et al. ${ }^{135}$ characterized a highly active oxygen-evolving photosystem II complex using proteomic analysis. Using this approach to investigate the structure and function of a photosystem they demonstrated the presence of small polypeptides as of yet unknown. Asadulghani et al. studied salt ${ }^{136}$ and heat ${ }^{137}$ stress in Synechocystis. A mutant with an hspA deletion (second most highly expressed gene under salt stress) and the wild-
type strain had their proteomes compared under various salt stresses. The mutant had a growth disadvantage and failed to undergo the ultrastructural changes characteristic of wildtype cells. It also accumulated higher levels of GroES, GroEL1, and GroEL2, suggesting a role for these heat-shock proteins in salt stress. In the heat shock study, they found that light accelerated the heat induction of htpG, groESL1, groEL2, and hspA. They found that light affected the transcription, but not the stability of the mRNA of heat shock genes and also enhanced both the accumulation of GroEL under heat stress and the acquired thermotolerance. Slabas et al. ${ }^{138}$ found major proteome changes in a study of the heat shock response of wild type and a mutant of the histidine kinase 34 gene, which shows increased thermal tolerance. Changes occured not only in the classical heat shock proteins but also in the protein biosynthetic machinery, amino acid biosynthetic enzymes, components of the light and dark acts of photosynthesis and energy metabolism. Heat stress in Synechocystis was further studied by Suzuki et al. ${ }^{139}$ indicating that acclimation to heat shock might be governed by transcriptional and translational regulation. Kurian et al. studied heterotrophy ${ }^{140}$ and acid stress ${ }^{141}$ in Synechocystis. In the first case, proteomic alterations and activity levels of selected enzymes indicated a shift in the central carbon metabolism in response to trophic change, down-regulation of the photosynthetic machinery and enhanced levels of proteins involved in glycolysis, oxidative pentose phosphate pathway as well as tricarboxylic acid cycle. In the acid stress study, the periplasmic proteome showed remarkable changes as a function of external pH compared to cytoplasmic proteome. Among the acid- and baseinduced proteins, a few were already known for their role in pH homeostasis. A recent study of Synechocystis investigated phosphate starvation ${ }^{142}$. They observed a clear physiological response on low phosphate levels, such as a yellowish color, as well as a proteomic response,
where proteins from central carbon metabolism and stress-related were differentially regulated.

The physiology of Synechocystis membranes was described by Herranen et al. ${ }^{143}$. By culturing the wild type and several mutant strains under various growth modes (photoautotrophic, mixotrophic, or photoheterotrophic), they were able to identify approximately 20 distinct membrane protein complexes, including the ones involved in photosynthetic electron flow and ATP synthesis, as well as several novel, uncharacterized protein complexes. The Norling laboratory (Stockholm, Sweden) and collaborators have worked extensively on Synechocystis plasma and thylakoid membranes. Their first work applies a 2DE separation method for the isolation of pure plasma and thylakoid membranes without any cross-contaminations ${ }^{144}$. The purity of the fractions was verified by immunoblotting, and as a part of their exploratory approach they identified one protein of each fraction. They later focused on further separation and identification of thylakoid ${ }^{145}$, plasma ${ }^{146-148}$ and outer ${ }^{149}$ membrane proteins. Other studies investigated salt stress qualitatively ${ }^{150}$, quantitatively using SILAC ${ }^{151}$ and specific effects on plasma membranes ${ }^{152}$.

Other cyanobacterial species were also studied. Ekman et al. ${ }^{153}$ Compared the proteomes of free-living Nostoc $s p$. with an isolate from a plant tissue. A number of proteins were found to be down-regulated in the symbiotic stage, including cell envelope, membrane and exopolysaccharide-related, metabolic proteins involved in the pentose phosphate pathway and Calvin cycle, as well as the ones related to dark microaerobic conditions. Stensjö et al. ${ }^{154}$ studied the quantitative proteome of Nostoc sp. PCC 7120 under N_{2}-fixing and non- N_{2} fixing conditions. Upon nitrogen starvation, a range of processes were initiated, and a total of 486 different proteins were accurately identified. Results of metabolic regulation
demonstrated that proteomics represents an important tool for the characterization of heterocysts, specific cells where N_{2} fixation takes place. Photoautotrophically and diazotrophically grown Nostoc sp. PCC 73102 cells had their proteomes described by Ran et al. ${ }^{155}$. Soluble and membrane proteins were studied leading to the identification of 82 proteins that could be divided into 12 functional categories. Many of the identified proteins had general functions, such as housekeeping, but some presented key roles during photoautotrophic and diazotrophic growth or even potential novel functions. A threedimensional proteomic study of Nostoc punctiforme was done by Anderson et al. ${ }^{156}$. They evaluated the effect of moderate light and ammonia as single nitrogen source. 1575 proteins were identified, most having metabolic and transport functions. Many of these proteins were oxidative and light stress-related, kinases and response regulators. Barrios-Llerena et al. described the proteome of Anabaena variabilis using both a shotgun approach ${ }^{157}$ and $2 \mathrm{DE}^{158}$. Using the shotgun approach, more than 600 proteins were identified whereas 2DE identified 254 proteins only.

II.II.V. Physiology of model organisms - halophiles

Halobacteria and Haloarchaea are of great interest due to their atypical metabolism. They are usually aerobes or facultative anaerobes that utilize photosynthesis to create a proton gradient, which allows them to survive in highly salty environments. The archaeon genus Halobacterium is possibly the best studied halophile. These Archaea are adapted to be active and stable in hypersaline environments, making them especially useful for industrial bioprocesses. There are a few literature reviews of Halobacterium sp. NRC-1, describing its post-genomic research, namely, their physiological capabilities and role of lateral gene transfer in evolution ${ }^{159}$, the acidity of the proteome for function at high salinity ${ }^{160}$, and
efficient procedures for discovering novel halophilic enzymes ${ }^{161}$. An interesting structural proteomics study was conducted by Bonneau et al. ${ }^{162}$ for annotation of unknown Halobacterium sp. NRC-1 proteins. They used de novo structure prediction to extrapolate putative functions for 1,185 proteins. Proteins were analyzed in the context of a predicted association network composed of several sources of functional associations such as: predicted protein interactions, predicted operons, phylogenetic profile similarity and domain fusion. By combining the association network with transcriptome and genome data, significant improvements were made towards identifying proteins of previously unknown function. Goo et al. ${ }^{163}$ used ultracentrifugation to separate the soluble and insoluble proteomes from Halobacterium sp. NRC-1 cell lysates. They were able to identify 426 proteins, which corresponds to 20% of the theoretical proteome of this organism. Functional classification of the proteins found was accomplished with searches against the KEGG database. A number of metabolic pathways showed more than 50% of their members present in the group of expressed proteins. Shukla ${ }^{164}$ developed a proteomics approach for enhanced resolution of the extremely acidic proteome of Halobacterium sp. NRC-1. To study the heat shock response, proteomic profiles under normal $\left(42^{\circ} \mathrm{C}\right)$ and heat shock $\left(49^{\circ} \mathrm{C}\right)$ conditions were compared. They identified 30 proteins involved in stress response and protein folding, DNA replication and repair, transcriptional regulation, translation, transport, and housekeeping. Almost one thousand unique Halobacterium $s p$. NRC-1 proteins were identified by Gan et al. ${ }^{165}$ in a study using biological network analysis with the BMSorter software. This analysis allowed for the study of proteins expressed in different biomodules and interactions between biomodules. Integrated analysis of networks showed evidence of enhanced synthesis of acidic amino acids in an effort to build the highly acidic proteome.

The Kim laboratory has intensely worked on the Halobacterium salinarum proteome. They have developed specific protocols for improvement of $2 \mathrm{DE}^{166}$, strategies for functional characterization of novel halophilic enzymes ${ }^{167}$, including the ones responsible for the biodegradation of isopropyl alcohol ${ }^{168}$. Oesterhelt and coworkers also reported their proteomic work on Halobacterium salinarum. In multiple studies, they were able to identify 40% of the cytosolic proteome ${ }^{169}$ and 20% of the transmembrane proteome ${ }^{170}$, a total of 34% of all gene products in H. salinarum. In addition, they performed several quantitative study of the membrane proteome to evaluate different labeling techniques ${ }^{171}$.

Proteomic studies were also performed in other halophiles. Haloferax volcanii was used as a model for protein extraction and purification in two different studies ${ }^{172,173}$, both involving a series of protein washes and improvement of sample quality prior to 2DE. Halorhodospira halophila had its proteome analyzed by Samyn et al. ${ }^{174}$. They were able to identify more than 30 proteins using subpicomole quantities of protein, some of which are involved in the adaptation to halophilic life conditions. Halobacillus dabanensis D-8(T) had its proteome profiled under $1 \%, 10 \%$, and 20% salinities by Feng de et al. ${ }^{175}$. More than one hundred proteins were observed with a changed expression level under different salinity conditions. Twenty seven proteins with a markedly changed expression in hypersaline environments were identified and were functionally related to energy-producing pathways, stress regulators, and proteins involved in survival and adaptation to high salt challenges. Graham et al. ${ }^{176}$ reported the insoluble proteome of the alkaliphilic and halotolerant deep-sea bacterium Oceanobacillus iheyensis HTE831. The 153 proteins identified were functionally classified and physiochemically characterized, which allowed for the identification of proteins believed to be of importance in the alkaliphilic adaptation of O. iheyensis HTE831.

Konstantinidis et al. ${ }^{177}$ used proteomics in order to represent all the genes encoded by the Natronomonas pharaonis genome. They identified 929 proteins of which 886 were soluble, representing 41% of the cytosolic proteome. By using shotgun in parallel with 2 DE , they identified 700 proteins from each workflow. Overall, they were able to cover about 60% of the cytosolic proteins involved in metabolism and genetic information processing of this organism.

II.II.VI. Metabolism

Other bacterial metabolic abilities include dehalogenation, methanogenesis, denitrification, sulfate reduction, among others. These are metabolic pathways, of bioremediation interest, involving a number of enzymes, and so far not fully understood. Proteomics can provide unique insights into unknown cellular mechanisms, by finding "missing" enzymes ${ }^{178}$, which possibly, due to evolutionary pressures, lost their functions or mutated. Some of the currently available studies showing the use of proteomics not only from a biochemical standpoint but also in terms of bacterial physiology and responses to environmental changes are presented.

Some examples of methanotrophic bacterial metabolism follow. Uchiyama et al. ${ }^{179}$ studied the responses of the bacterium Methylocystis sp. M to different water-pollutants, carbon starvation, and temperature shock. Their study demonstrated the existence of stress proteins responding to different stress conditions in this bacterium, which can help in the development of more controlled applications of these organisms in bioremediation. Kao et al. ${ }^{180}$ investigated the Methylococcus capsulatus (Bath) response to different copper concentrations. More than one hundred proteins were differentially regulated, and these included mainly methane and carbohydrate metabolic enzymes, and cellular signaling
proteins. The Vorholt laboratory compared the proteome of Methylobacterium extorquens AM1 grown under methylotrophic and nonmethylotrophic conditions ${ }^{181}$ (methanol versus succinate as sole carbon source). The majority of the differentially expressed proteins were involved in methanol oxidation to CO_{2}, assimilation of one carbon units and isoenzymes. A more recent study from the same group evaluated the effects of plant colonization by the same bacterium ${ }^{182}$. They compared colonization of roots, leaves and synthetic medium growth. More than 50 proteins were found to be either leaf- or root-specific, including methanol utilization and stress proteins. They also found a two-domain response-regulator essential for epiphytic growth.

Sulfate-reducers are also of particular interest in bioremediation. Some proteome studies are described here. Geobacter sulfurreducens had its proteome described in the presence of several electron donors and acceptors ${ }^{183}$. Around 90% of the total predicted gene products were identified in this study, and most differentially regulated proteins were either hypotheticals or cytochromes. Khare et al. ${ }^{184}$ used proteomics to understand the metabolic processes involved in metal reduction in the same organism with either fumarate or ferric citrate as electron acceptor. Their results suggested adjustments in membrane transport and specific metabolic pathways in response to different electron acceptors, as well as distinct differences in the oxidative environment within the cell. The metabolism of different carbon sources in Desulfovibrio vulgaris was described by Zhang et al. ${ }^{185}$. Almost one thousand gene products were identified, including ATP biosynthesis and substrate-level phosphorylation proteins. A large number of hypothetical proteins were also found, leading to a more detailed study ${ }^{186}$ that aimed at assigning functions to these proteins according to several non-homology based methods. The Keasling laboratory studied the proteome of D.
vulgaris Hildenborough. Redding et al. ${ }^{187}$ evaluated its proteome under nitrate stress corresponding to 50% growth inhibition. They identified 737 proteins, which represent 22% of the total proteome and span every functional category. The results indicate that this was a mild stress, as proteins involved in central metabolism and the sulfate reduction pathway were unperturbed. Among the up-regulated proteins they observed nitrate reduction proteins, transport systems, and oxidative stress response proteins. Mukhopadhyay et al. ${ }^{188}$ looked at salt stress, due to its importance in D. vulgaris natural habitat. In this study, cells were exposed to high salt concentrations, and analyzed by transcriptomics, proteomics, among other techniques. The showed that ATP synthesis and efflux systems, as well as helicases, chemotaxis genes and osmoprotectants are particularly important in the hyperionic stress.

Escherichia coli has also been studied in the environmental context due to its low complexity and ubiquity. Bebien et al. ${ }^{189}$ showed different responses of E. coli proteins to selenium oxides. One impressive result was the up-regulation of eight enzymes with antioxidant properties, which made the cells more tolerant to oxidative stress. Pferdeort et al. ${ }^{190}$ investigated the proteome of E. coli metabolically engineered for trichloroethylene biodegradation, containing six genes of an evolved toluene ortho-monooxygenase from Burkholderia cepacia G4. The cellular physiology showed dramatic alterations due to the insertion of the toluene ortho-monooxygenase gene, with differential regulation of 45 proteins. Another study by Lee et al. ${ }^{191}$ analyzed the same strain. Using a quantitative proteomics approach, they found that some of the induced proteins were involved in the oxidative defense mechanism, pyruvate metabolism, and glutathione synthesis. Proteins involved in indole synthesis, fatty acid synthesis, gluconeogenesis, and the tricarboxylic acid cycle were repressed.

Rabus and collaborators studied the responses of the denitrifying bacterium strain EbN1 to a variety of environmental stresses. The evaluated anaerobic growth on different carbon sources and focused on the expression of two toluene-related operons, of toluene-adapted cells ${ }^{192}$. They also confirmed the up-regulation of an ethylbenzene pathway in the presence of toluene. In a complementary study they used proteomics and bioinformatics to uncover different mechanisms of regulation of toluene and ethylbenzene pathways ${ }^{193}$. More recently, the same group proposed a genus name for this strain - 'Aromatoleum' sp. strain EbN1, in a study where a total of 556 different proteins were identified ${ }^{194}$. They were able to identify a broad collection of pathway-specific subproteomes, reflecting the metabolic versatility as well as the regulatory potential of this bacterium. The Rabus laboratory also worked on a Pirellula $s p$. strain 1 proteome after growth on glucose and N -acetylglucosamine ${ }^{195}$. A number of proteins were unique to cells grown on N -acetylglucosamine, and those included mostly proteins related to carbohydrate metabolism.

A variety of other species had their proteomes described for specific growth and stress conditions. Callister et al. compared aerobic and photosynthetic proteomes ${ }^{196}$ of Rhodobacter sphaeroides 2.4.1. In a different study membrane, periplasm, outer membrane and chromatophore fractions ${ }^{197}$ were compared. A number of proteins were found to be unique of photosynthetic cultures. Protein abundances were compared to provide insights into bioenergetic models for the different models of growth. Novotna et al. ${ }^{198}$ induced diauxic growth followed by nitrogen starvation on Streptomyces coelicolor. The distinct growth states were characterized by distinct protein profiles and identification of stimulons related to heat, cold, salt and bacteriostatic responses. Giuffrida et al. ${ }^{199}$ evaluated the different proteins expressed in Acinetobacter radioresistens when cultivated on aromatic
compounds such as phenol and benzoate. Most of the identified proteins were enzymes involved in aromatic degradation, and some of them had housekeeping functions. Alcanivorax borkumensis is a ubiquitous marine petroleum oil-degrading bacterium with an unusual physiology specialized for alkane metabolism. Sabirova et al. ${ }^{200}$ used proteomic analysis to reveal metabolic features of this organism when cultivated on hexadecane and pyruvate. The proteins identified were related to terminal oxidation of alkanes, oxidation of fatty acids, biosynthesis of fatty acids and phospholipids, biosynthesis of amino acids, respiratory chain and gluconeogenesis, synthesis of cofactors, osmoprotection, pilus formation, transport, information processing and regulation. Morris et al. ${ }^{201}$ studied Dehalococcoides spp reductive dehalogenases - key respiratory enzymes in the anaerobic detoxification of halogenated compounds. They assessed the functional diversity of closely related strains by comparing their reductive dehalogenases. Different growth conditions were tested (dehalogenation of different chlorobenzenes). They identified several reductive dehalogenases homologues, and although the genes are almost identical at the amino acid level, different strains were capable of dehalogenating diverse compounds, depending largely on the suite of reductive dehalogenases expressed. The proteome of Ralstonia eutropha was studied by Lee et al. ${ }^{202}$ to better understand responses to formic acid. Sixty-three differentially expressed proteins in relation to formic acid were found and the greatest change was the induction of ion transporters in relation to maintenance of the acid-base balance. Cells seemed to attempt to overcome the effects of formic acid by increasing ion transporters and proteins that metabolize formic acid. Another study of interest was done by Ho et al. ${ }^{203}$ and describes the responses of Stenotrophomonas sp. OK-5 to stress caused by trinitrotoluene. Two-dimensional protein profiles showed approximately 300 differentially
expressed proteins after exposure to trinitrotoluene. The most important proteins identified by this work were stress-related proteins. Marrero et al. ${ }^{204}$ investigated the response of Enterobacter liquefaciens strain C-1 to cobalt concentration. Twelve proteins were identified to be involved with cellular antioxidant response and resistance to heavy metals.

II.II.VII. Membrane physiology

Membrane physiology studies are usually related to membrane alterations facing specific growth or stress conditions. Methodology for the analysis of membrane proteins has been developed ${ }^{205}$, such as purification in aqueous-organic mixtures among other methods compatible with mass spectrometry. Membrane proteome studies are important because the membrane works as a modulable site of communication between intra- and extracellular environments. Methanococcus jannaschii had its proteome characterized in response to hydrogen concentration, ammonium availability and growth phase ${ }^{206}$. Significant changes were observed for these conditions and the main response was regulation of motility through modifications of the building blocks of the flagella. Another proteome study of the same organism also focused on flagella as a function of partial hydrogen pressure ${ }^{207}$. Flagella synthesis was induced when hydrogen became limiting. The outer membrane proteome of Caulobacter crescentus ${ }^{208}$ was characterized for cells grown in rich and minimal media. 41 proteins were identified, and 16 were TonB-dependent receptor proteins that were upregulated in minimal medium. The same organism was used as a model for different methods of purification of alkaline membrane proteins ${ }^{209}$. 32 proteins were identified and complemented the previous study. The membrane proteome of Acinetobacter radioresistens S13 was analyzed under different growth substrates ${ }^{210}$ - acetate, benzoate or phenol. In the presence of phenol, they detected up-regulation of proteins with the following functions:
antiporters, ABC-type sugar transport system, and polysaccharide translocation. In the presence of acetate, up-regulated proteins were an OmpA-like protein, a trimeric porin and glycosyl transferases. Membrane proteome studies were also described for Paracoccus denitrificans ${ }^{211}$, Deinococcus radiodurans ${ }^{212,213}$, and Streptococcus mutans biofilms ${ }^{214}$.

II.II.VIII. Ecological maps

Genome-wide proteomics is a new concept that envisages creating a proteome map of all possible gene products encoded in a given genome. It represents an advance in the field, but it does not take account for the fact that genomes are not static, and mutations and changes in protein function may be overlooked in these ecological maps. In the metaproteomics approach, proteins are identified from unknown communities, and the construction of ecological maps would be impossible. Some pure culture ecological maps available in the current literature are reviewed.

Christendat et al. ${ }^{215}$ studied the structural proteome of Methanobacterium thermoautotrophicum. They used X-ray crystallography and magnetic resonance spectroscopy to relate protein sequence and solubility. The structures provided clues into biochemical functions that cannot be detected by sequence analysis. Giometti et al. ${ }^{216}$ worked on a global analysis of the proteome of Methanococcus jannaschii, identifying 170 of the most abundant proteins expressed under optimal fermentation conditions. Most of these proteins were involved in energy and intermediary metabolism, cell division and structure, and protein synthesis. More than 60% of the predicted proteome of Deinococcus radiodurans was identified in a series of studies ${ }^{217-219}$. An interesting study investigated proteins from D. radiodurans recovering from gamma-irradiation ${ }^{220}$. Proteins identified to be relevant to radioresistance had roles in transcription and translation, replication and repair,
general metabolism and signal transduction. Mergeay et al. ${ }^{221}$ studied heavy metal influence on Ralstonia metallidurans. This bacterium originally carries two plasmids bearing several genes for metal resistance. They found plasmid-borne proteins and several gene clusters involved in the response to high concentrations of heavy metals, and a high number of proteins induced or repressed in the presence of copper. Noel-Georis et al. ${ }^{222}$ built an ecological proteome map of R. metallidurans grown in minimal medium. Their map contained 224 unique proteins, and identified undetected open reading frames and proteins not encoded by sequenced genome fragments. Sulfolobus solfataricus had its map constructed, containing 47% of the total proteome ${ }^{223}$. In another study, the same group evaluated different concentrations of alcohols and ketones ${ }^{224}$. More than 80% of the proteins showed no discernable changes compared to the control. Another study mapped 324 proteins ${ }^{225}$, including proteins from all functional categories.

Several ecological studies focus on cold adaptation of several bacterial species. Nichols et al. ${ }^{226}$ used proteomics to map the adaptation of Methanococcoides burtonii to low temperature. Their results showed that most proteins involved in cold adaptation were involved in lipid biosynthesis and specific changes in membrane lipid unsaturation. Methe et al. ${ }^{227}$, in a similar study, used Colwellia psychrerythraea 34 H and found changes to the cell membrane fluidity, uptake and synthesis of cryotolerance compounds and strategies to overcome temperature-dependent barriers to carbon uptake. Proteomic analysis was also used by Qiu et al. ${ }^{48}$ to investigate the cold adaptation of Exiguobacterium sibiricum 255-15. They used an alternative approach involving chromatofocusing and identified 256 proteins, among which 39 were cold acclimation proteins, preferentially or uniquely expressed at $4{ }^{\circ} \mathrm{C}$. The salt and cold adaptation of Psychrobacter 273-4 was also evaluated by Zheng et al. ${ }^{228}$.

Different proteins were identified in cold adaptation in the presence of salt, showing a combination effect of salt and cold on protein expression. The proteome of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 was studied by Danchin (in silico ${ }^{229}$ and in vitro ${ }^{230}$). The first study translated the genome in silico and looked at specific features in the amino acid composition that can be related to the cold acclimation. The amino acid distribution in mesophilic and psychrophilic species displayed a few noteworthy differences specifically relevant to growth in the cold. They found that this proteome provided a way to resist to the aging features, making this bacterium a model for the study of cold adaptation. The objective of the second study was to provide information on the interaction between organisms and the ecosystem based on different carbon source usage. Identified proteins were functionally classified, and fell in three main groups: cell envelope and membraneassociated, intermediary metabolism and information transfer.

Proteins of hyperthermophilic organisms are of particular importance since they have an enhanced conformational stability, allowing them to be active at high temperatures. This property can be used to investigate the molecular basis of protein folding and conformational stability. Prosinecki et al. ${ }^{231}$ studied hyperstable proteins from Sulfurispharea sp., a hyperthermophilic archaeon, able to grow between 70 and $97^{\circ} \mathrm{C}$. They dynamically perturbed the proteome and identified proteins with enhanced stabilities, involved in key cellular processes such as detoxification, nucleic acid processing, and energy metabolism, were identified. These proteins were still biologically active after extensive thermal treatment of the proteome. A Corynebacterium glutamicum proteome study revealed a 2DE map presenting more than half of the total proteins encoded by this organism ${ }^{232}$. The proteins identified were the 35 kDa antigen, antigen 84 , ATP and cysteine synthase,
elongation factors, enolase and rotamase. In the proteome map of Corynebaterium efficiens, more than 300 proteins were identified from intracellular, membrane and extracellular fractions ${ }^{233}$. When compared with the C. glutamicum map, species-specific differences were found. This showed environmental adaptations of C. efficiens, mostly including molecular chaperones and amino acid biosynthesis enzymes. The aniline degrading bacterium Acinetobacter lwoffii K24 had its proteome map described for growth with and without aniline ${ }^{234}$. 300 proteins presented differential regulation due to the presence of aniline. Rosen et al. ${ }^{235}$ created a reference map for the plant pathogen Agrobacterium tumefaciens with more than 300 proteins. They showed evidence for post-translational modifications, based on the identification of proteins associated with multiple spots. Among the proteins identified, there were a number of transporters, transcription and translation proteins, and well as metabolic proteins. The dioxin-mineralizing bacterium Sphingomonas wittichii strain RW1 had its proteome analyzed in the presence of dibenzofuran and dibenzo-p-dioxin ${ }^{236}$. They were able to identify up to 14 peptide ions belonging to dioxin dioxygenase.

II.II.IX. Wastewater treatment

Applications of proteomics in wastewater treatment mostly characterize the organisms involved in this process and their ecology. They draw attention to the interactions that allow organisms in a community to survive, rather than discussing specific pathways or substrates required for living. MacRae and Smit ${ }^{237}$ described 33 different strains of caulobacters present in wastewater. The strains were distinguished based on colony characteristics, DNA restriction fragment length polymorphism analysis, and protein band profiles. They also point out the increasing ability of antibiotic resistance of these strains, indicating environmental adaptation. Jacob et al. ${ }^{238}$ used 1DE to characterize 24 different strains of
campylobacters present in a wastewater treatment pant. Their work confirms the findings of the different strains, only according to standard protein patterns. A similar study was conducted by Niemi et al. ${ }^{239}$ with 371 environmental isolates of fecal streptococci samples. Samples were collected from domestic and industrial wastewater, and were characterized and clustered in 7 groups according to their 1DE protein profiles. Samples from each environment had typical species compositions, and their protein profiles varied according to their environments. The protein profiles of whole bacterial cells have been observed to correlate closely with DNA-DNA hybridization results. Maszenan et al. ${ }^{240}$ did a similar analysis for strains of the species Acinetobacter, together with a range of isolates from a biological nutrient-removal activated sludge plant. The proteomic analysis generally supported the taxonomic relationships suggested from earlier DNA-DNA hybridization data. An interesting study was conducted by Wagner-Dobler et al. ${ }^{241}$ in order to better understand bacterial communities capable of degrading biphenyl, for future bioremediation applications. Different species were identified using 16S rDNA methods, and 1DE of whole-cell proteins was used to provide information on the similarity of strains of the same species. Comparison of normalized protein patterns revealed that all of the representative isolates were very similar to each other, thus coming from the same species. A more recent study involving virus-binding proteins by Sano et al. ${ }^{242}$ focused on the importance of pathogenic viruses in waterborne diseases. The objective of the study was therefore to discover virus-binding proteins from a bacterial culture derived from activated sludge. 2DE revealed that the isolated virus-binding proteins include a large number of small proteins, with molecular masses smaller than 100 kDa . Amino acid sequences of N termini of five virus-binding
proteins were determined. Finally, homology searches against all protein sequences in the NCBI database showed that the proteins isolated in this study were newly discovered.

II.III. Metaproteomics

Metaproteomics encompasses the proteomic study of metaorganisms. A metaorganism is defined as a collection of organisms evolving as a whole, sharing genes and metabolic capacities. Only a few studies on proteomes of environmental unsequenced mixed cultures have been published in the scientific literature. Valenzuela et al. ${ }^{243}$ discussed the use of emerging metagenomics and high-throughput proteomic technologies to study biomining communities. The Banfield laboratory has shown pioneer work in this area and presented a review of proteogenomic approaches being used lately for the molecular characterization of bacterial communities ${ }^{244}$. A landmark study was published on a natural acid mine drainage microbial biofilm community ${ }^{245}$. With a shotgun proteomics approach, they identified more than 2000 proteins through the use of a database created from the sequencing of a microbial community sampled from the same mine but at a different location and time. Recently, a strain-resolved community proteomics study ${ }^{246}$ was published. They used community genomic data to identify proteins from dominant community members, with strain specificity. Their findings provide evidence for exchange of genes during adaptation to specific ecological niches. Wilmes and Bond investigated a community of microorganisms from a laboratory-scale sequencing batch reactor optimized for enhanced biological phosphorus removal and enriched for polyphosphate-accumulating organisms. In their first study ${ }^{247}$, they used a $2 \mathrm{DE}-\mathrm{MS}$ approach to detect many proteins and identify three. In their subsequent studies ${ }^{248,249}$ they performed comparisons of proteome profiles of activated
sludges with sequentially increasing phosphorus removal performance and profiles of phosphorus removal versus non-phosphorus removal. Kan et al. ${ }^{250}$ studied Chesapeake Bay microbial communities using a similar workflow and identified eight proteins. Our laboratory also presented a metaproteomics study of an unsequenced bacterial community ${ }^{251}$, identifying more than 100 proteins differentially expressed in the presence of cadmium. A different approach consists of extracting proteins directly from soil, with extraction methods compatible with proteomic techniques. Ogunseitan ${ }^{252}$ described an extraction method for proteins from soil. Following this approach, Schulze et al. ${ }^{253,254}$ studied proteins isolated from dissolved organic matter using mass spectrometry and demonstrated the ability to determine a proteome fingerprint of soil. Among the proteins identified to be abundant in dissolved organic matter, there were cellulases and laccases, which composed a proteomic fingerprint of presence and activity of organisms in an ecosystem. Verberkmoes et al. ${ }^{255}$ used proteomics to evaluate biological thereat agents in complex environmental matrices. They determined the ability of current mass spectrometric-based methods to detect target species in different matrices at concentrations as low as 6%.

II.IV. Future Directions

Environmental proteomics still have many challenges to overcome, including improving analysis of unsequenced organisms and techniques for extraction of proteins from soil and other matrices. However, advances in the field represent a major step towards a systems view of organisms and metaorganisms. The potential applications are wide, including improvement of wastewater treatments, and bioremediation and monitoring. In a broader view, this represents a major advance in the fields of environmental biotechnology and
microbial ecology. In association with proteomics, transcriptomics and metabolomics ${ }^{256,257}$ are also powerful tools in providing information on gene function and regulatory networks. Only combined studies can correlate metabolic fluxes and physiological changes in organisms.
47. Tiedje, J. M., Shewanella - the environmentally versatile genome. Nature Biotechnology 2002, 20, (11), 1093-1094.
48. Qiu, Y. H.; Kathariou, S.; Lubman, D. M., Proteomic analysis of cold adaptation in a Siberian permafrost bacterium - Exiguobacterium sibiricum 255-15 by two-dimensional liquid separation coupled with mass spectrometry. Proteomics 2006, 6, (19), 5221-5233. 49. Elias, D. A.; Monroe, M. E.; Marshall, M. J., et al., Global detection and characterization of hypothetical proteins in Shewanella oneidensis MR-1 using LC-MS based proteomics. Proteomics 2005, 5, (12), 3120-30.
50. Elias, D. A.; Monroe, M. E.; Smith, R. D., et al., Confirmation of the expression of a large set of conserved hypothetical proteins in Shewanella oneidensis MR-1. J Microbiol Methods 2006, 66, (2), 223-33.
51. Kolker, E.; Picone, A. F.; Galperin, M. Y., et al., Global profiling of Shewanella oneidensis MR-1: expression of hypothetical genes and improved functional annotations. Proc Natl Acad Sci U S A 2005, 102, (6), 2099-104.
52. Romine, M. F.; Elias, D. A.; Monroe, M. E., et al., Validation of Shewanella oneidensis MR-1 small proteins by AMT tag-based proteome analysis. Omics-a Journal of Integrative Biology 2004, 8, (3), 239-254.
53. Masselon, C.; Pasa-Tolic, L.; Tolic, N., et al., Targeted comparative proteomics by liquid chromatography-tandem Fourier ion cyclotron resonance mass spectrometry. Anal Chem 2005, 77, (2), 400-6.
54. Fang, R.; Elias, D. A.; Monroe, M. E., et al., Differential label-free quantitative proteomic analysis of Shewanella oneidensis cultured under aerobic and suboxic conditions by accurate mass and time tag approach. Mol Cell Proteomics 2006, 5, (4), 714-25.
55. Sharma, S.; Simpson, D. C.; Tolic, N., et al., Proteomic profiling of intact proteins using WAX-RPLC 2-D separations and FTICR mass spectrometry. Journal of Proteome Research 2007, 6, (2), 602-610.
56. Elias, D. A.; Yang, F.; Mottaz, H. M., et al., Enrichment of functional redox reactive proteins and identification by mass spectrometry results in several terminal Fe (III)-reducing candidate proteins in Shewanella oneidensis MR-1. Journal of Microbiological Methods 2007, 68, (2), 367-375.
57. Thompson, D. K.; Beliaev, A. S.; Giometti, C. S., et al., Transcriptional and proteomic analysis of a ferric uptake regulator (fur) mutant of Shewanella oneidensis: Possible involvement of fur in energy metabolism, transcriptional regulation, and oxidative stress. Applied and Environmental Microbiology 2002, 68, (2), 881-892.
58. Wan, X. F.; VerBerkmoes, N. C.; McCue, L. A., et al., Transcriptomic and proteomic characterization of the fur modulon in the metal-reducing bacterium Shewanella oneidensis. Journal of Bacteriology 2004, 186, (24), 8385-8400.
59. Chourey, K.; Thompson, M. R.; Morrell-Falvey, J., et al., Global molecular and morphological effects of 24-hour chromium(VI) exposure on Shewanella oneidensis MR-1. Applied and Environmental Microbiology 2006, 72, (9), 6331-6344.
60. Brown, S. D.; Thompson, M. R.; VerBerkmoes, N. C., et al., Molecular dynamics of the Shewanella oneidensis response to chromate stress. Molecular \& Cellular Proteomics 2006, 5, (6), 1054-1071.
61. De Vriendt, K.; Theunissen, S.; Carpentier, W., et al., Proteomics of Shewanella oneidensis MR-1 biofilm reveals differentially expressed proteins, including AggA and RibB. Proteomics 2005, 5, (5), 1308-16.
62. Giometti, C. S., Tale of two metal reducers: comparative proteome analysis of Geobacter sulferreducens PCA and Shewanella oneidensis MR-1. Methods Biochem Anal 2006, 49, 97-111.
63. VerBerkmoes, N. C.; Bundy, J. L.; Hauser, L., et al., Integrating "top-down" and "bottom-up" mass spectrometric approaches for proteomic analysis of Shewanella oneidensis. Journal of Proteome Research 2002, 1, (3), 239-252.
64. Giometti, C. S.; Khare, T.; Tollaksen, S. L., et al., Analysis of the Shewanella oneidensis proteome by two-dimensional gel electrophoresis under 3 nondenaturing conditions. Proteomics 2003, 3, (5), 777-785.
65. Tang, X.; Yi, W.; Munske, G. R., et al., Profiling the membrane proteome of Shewanella oneidensis MR-1 with new affinity labeling probes. J Proteome Res 2007, 6, (2), 724-34.
66. Kim, Y. H.; Cho, K.; Yun, S. H., et al., Analysis of aromatic catabolic pathways in Pseudomonas putida KT 2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysis. Proteomics 2006, 6, (4), 1301-18.
67. Reardon, K. F.; Kim, K. H., Two-dimensional electrophoresis analysis of protein production during growth of Pseudomonas putida F1 on toluene, phenol, and their mixture. Electrophoresis 2002, 23, (14), 2233-2241.
68. Santos, P. M.; Benndorf, D.; Sa-Correia, I., Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 2004, 4, (9), 2640-2652.
69. Kurbatov, L.; Albrecht, D.; Herrmann, H., et al., Analysis of the proteome of Pseudomonas putida KT2440 grown on different sources of carbon and energy. Environ Microbiol 2006, 8, (3), 466-78.
70. Segura, A.; Godoy, P.; van Dillewijn, P., et al., Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. J Bacteriol 2005, 187, (17), 5937-45.
71. Volkers, R. J. M.; de Jong, A. L.; Hulst, A. G., et al., Chemostat-based proteomic analysis of toluene-affected Pseudomonas putida S12. Environmental Microbiology 2006, 8, (9), 1674-1679.
72. Sonawane, A.; Klöppner, U.; Hövel, S., et al., Identification of Pseudomonas proteins coordinately induced by acidic amino acids and their amides: a two-dimensional electrophoresis study. Microbiology 2003, 149, (Pt 10), 2909-18.
73. Hallsworth, J. E.; Heim, S.; Timmis, K. N., Chaotropic solutes cause water stress in Pseudomonas putida. Environ Microbiol 2003, 5, (12), 1270-80.
74. Benndorf, D.; Thiersch, M.; Loffhagen, N., et al., Pseudomonas putida KT2440 responds specifically to chlorophenoxy herbicides and their initial metabolites. Proteomics 2006, 6, (11), 3319-29.
75. Yun, S. H.; Kim, Y. H.; Joo, E. J., et al., Proteome analysis of cellular response of Pseudomonas putida KT2440 to tetracycline stress. Curr Microbiol 2006, 53, (2), 95-101.
76. Krayl, M.; Benndorf, D.; Loffhagen, N., et al., Use of proteomics and physiological characteristics to elucidate ecotoxic effects of methyl tert-butyl ether in Pseudomonas putida KT2440. Proteomics 2003, 3, (8), 1544-1552.
77. Zhao, B.; Yeo, C. C.; Lee, C. C., et al., Proteome analysis of gentisate-induced response in Pseudomonas alcaligenes NCIB 9867. Proteomics 2004, 4, (7), 2028-36.
78. Zhao, B.; Yeo, C. C.; Poh, C. L., Proteome investigation of the global regulatory role of sigma(54) in response to gentisate induction in Pseudomonas alcaligenes NCIMB 9867. Proteomics 2005, 5, (7), 1868-1876.
79. Kim, S. I.; Kim, J. Y.; Yun, S. H., et al., Proteome analysis of Pseudomonas sp K82 biodegradation pathways. Proteomics 2004, 4, (11), 3610-3621.
80. VerBerkmoes, N. C.; Shah, M. B.; Lankford, P. K., et al., Determination and comparison of the baseline proteomes of the versatile microbe Rhodopseudomonas palustris under its major metabolic states. Journal of Proteome Research 2006, 5, (2), 287-298.
81. Arevalo-Ferro, C.; Reil, G.; Görg, A., et al., Biofilm formation of Pseudomonas putida IsoF: the role of quorum sensing as assessed by proteomics. Syst Appl Microbiol 2005, 28, (2), 87-114.
82. Sauer, K.; Camper, A. K., Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J Bacteriol 2001, 183, (22), 6579-89.
83. Sauer, K.; Camper, A. K.; Ehrlich, G. D., et al., Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 2002, 184, (4), 1140-54.
84. Sauer, K.; Cullen, M. C.; Rickard, A. H., et al., Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 2004, 186, (21), 7312-26.
85. Al-Tahhan, R. A.; Sandrin, T. R.; Bodour, A. A., et al., Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: Effect on cell surface properties and interaction with hydrophobic substrates. Applied and Environmental Microbiology 2000, 66, (8), 3262-3268.
86. Heim, S.; Ferrer, M.; Heuer, H., et al., Proteome reference map of Pseudomonas putida strain KT2440 for genome expression profiling: distinct responses of KT2440 and Pseudomonas aeruginosa strain PAO1 to iron deprivation and a new form of superoxide dismutase. Environ Microbiol 2003, 5, (12), 1257-69.
87. Guina, T.; Wu, M.; Miller, S. I., et al., Proteomic analysis of Pseudomonas aeruginosa grown under magnesium limitation. J Am Soc Mass Spectrom 2003, 14, (7), 74251.
88. Wu, M.; Guina, T.; Brittnacher, M., et al., The Pseudomonas aeruginosa proteome during anaerobic growth. J Bacteriol 2005, 187, (23), 8185-90.
89. Hecker, M.; Volker, U., Towards a comprehensive understanding of Bacillus subtilis cell physiology by physiological proteomics. Proteomics 2004, 4, (12), 3727-3750.
90. Antelmann, H.; Bernhardt, J.; Schmid, R., et al., First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis. Electrophoresis 1997, 18, (8), 1451-1463.
91. Bernhardt, J.; Volker, U.; Volker, A., et al., Specific and general stress proteins in Bacillus subtilis - A two-dimensional protein electrophoresis study. Microbiology-Uk 1997, 143, 999-1017.
92. Bernhardt, J.; Weibezahn, J.; Scharf, C., et al., Bacillus subtilis during feast and famine: Visualization of the overall regulation of protein synthesis during glucose starvation by proteome analysis. Genome Research 2003, 13, (2), 224-237.
93. Schmid, R.; Bernhardt, J.; Antelmann, H., et al., Identification of vegetative proteins for a two-dimensional protein index of Bacillus subtilis. Microbiology-Uk 1997, 143, 991998.
94. Eymann, C.; Mach, H.; Harwood, C. R., et al., Phosphate-starvation-inducible proteins in Bacillus subtilis: A two-dimensional gel electrophoresis study. Microbiology-Uk 1996, 142, 3163-3170.
95. Bernhardt, J.; Buttner, K.; Scharf, C., et al., Dual channel imaging of twodimensional electropherograms in Bacillus subtilis. Electrophoresis 1999, 20, (11), 22252240.
96. Hoper, D.; Bernhardt, J.; Hecker, M., Salt stress adaptation of Bacillus subtilis: A physiological proteomics approach. Proteomics 2006, 6, (5), 1550-1562.
97. Buttner, K.; Bernhardt, J.; Scharf, C., et al., A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis. Electrophoresis 2001, 22, (14), 2908-2935.
98. Eymann, C.; Dreisbach, A.; Albrecht, D., et al., A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics 2004, 4, (10), 2849-2876.
99. Tjalsma, H.; Antelmann, H.; Jongbloed, J. D. H., et al., Proteomics of protein secretion by Bacillus subtilis: Separating the "secrets" of the secretome. Microbiology and Molecular Biology Reviews 2004, 68, (2), 207-+.
100. Wolff, S.; Otto, A.; Albrecht, D., et al., Gel-free and gel-based proteomics in Bacillus subtilis - A comparative study. Molecular \& Cellular Proteomics 2006, 5, (7), 1183-1192.
101. Tam, L. T.; Antelmann, H.; Eymann, C., et al., Proteome signatures for stress and starvation in Bacillus subtilis as revealed by a 2-D gel image color coding approach. Proteomics 2006, 6, (16), 4565-4585.
102. Hecker, M.; Engelmann, S., Proteomics, DNA arrays and the analysis of still unknown regulons and unknown proteins of Bacillus subtilis and pathogenic Gram-positive bacteria. International Journal of Medical Microbiology 2000, 290, (2), 123-134.
103. Antelmann, H.; Scharf, C.; Hecker, M., Phosphate starvation-inducible proteins of Bacillus subtilis: Proteomics and transcriptional analysis. Journal of Bacteriology 2000, 182, (16), 4478-4490.
104. Eymann, C.; Homuth, G.; Scharf, C., et al., Bacillus subtilis functional genomics: Global characterization of the stringent response by proteome and transcriptome analysis. Journal of Bacteriology 2002, 184, (9), 2500-+.
105. Mader, U.; Homuth, G.; Scharf, C., et al., Transcriptome and proteome analysis of Bacillus subtilis gene expression modulated by amino acid availability. Journal of Bacteriology 2002, 184, (15), 4288-4295.
106. Tam, L. T.; Eymann, C.; Antelmann, H., et al., Global gene expression profiling of Bacillus subtilis in response to ammonium and tryptophan starvation as revealed by
transcriptome and proteome analysis. Journal of Molecular Microbiology and Biotechnology 2007, 12, (1-2), 121-130.
107. Tam, L. T.; Eymann, C.; Albrecht, D., et al., Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis. Environmental Microbiology 2006, 8, (8), 1408-1427.
108. Van Duy, N.; Mader, U.; Tran, N. P., et al., The proteome and transcriptome analysis of Bacillus subtilis in response to salicylic acid. Proteomics 2007, 7, (5), 698-710.
109. Demirev, P. A.; Ramirez, J.; Fenselau, C., Tandem mass spectrometry of intact proteins for characterization of biomarkers from Bacillus cereus T spores. Analytical Chemistry 2001, 73, (23), 5725-5731.
110. Kuwana, R.; Kasahara, Y.; Fujibayashi, M., et al., Proteomics characterization of novel spore proteins of Bacillus subtilis. Microbiology-Sgm 2002, 148, 3971-3982.
111. Wunschel, D.; Wahl, J.; Willse, A., et al., Small protein biomarkers of culture in Bacillus spores detected using capillary liquid chromatography coupled with matrix assisted laser desorption/ionization mass spectrometry. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2006, 843, (1), 25-33.
112. Liu, H. B.; Bergman, N. H.; Thomason, B., et al., Formation and composition of the Bacillus anthracis endospore. Journal of Bacteriology 2004, 186, (1), 164-178.
113. Gohar, M.; Gilois, N.; Graveline, R., et al., A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes. Proteomics 2005, 5, (14), 3696-3711.
114. Gohar, M.; Okstad, O. A.; Gilois, N., et al., Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics 2002, 2, (6), 784-791.
115. Antelmann, H.; Williams, R. C.; Miethke, M., et al., The extracellular and cytoplasmic proteomes of the non-virulent Bacillus anthracis strain UM23C1-2. Proteomics 2005, 5, (14), 3684-3695.
116. Lamonica, J. M.; Wagner, M. A.; Eschenbrenner, M., et al., Comparative secretome analyses of three Bacillus anthracis strains with variant plasmid contents. Infection and Immunity 2005, 73, (6), 3646-3658.
117. Mostertz, J.; Scharf, C.; Hecker, M., et al., Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress.
Microbiology-Sgm 2004, 150, 497-512.
118. Topanurak, S.; Sinchaikul, S.; Phutrakul, S., et al., Proteomics viewed on stress response of thermophilic bacterium Bacillus stearothermophilus TLS33. Proteomics 2005, 5, (14), 3722-3730.
119. Holtmann, G.; Brigulla, M.; Steil, L., et al., RsbV-independent induction of the SigBdependent general stress regulon of Bacillus subtilis during growth at high temperature. Journal of Bacteriology 2004, 186, (18), 6150-6158.
120. Rosen, R.; Ron, E. Z., Proteome analysis in the study of the bacterial heat-shock response. Mass Spectrometry Reviews 2002, 21, (4), 244-265.
121. Brigulla, M.; Hoffmann, T.; Krisp, A., et al., Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation. Journal of Bacteriology 2003, 185, (15), 4305-4314.
122. Sinchaikul, S.; Sookkheo, B.; Phutrakul, S., et al., Proteomic study of cold shock protein in Bacillus stearothermophilus P1: Comparison of temperature downshifts.
Proteomics 2002, 2, (9), 1316-1324.
123. Topanurak, S.; Sinchaikul, S.; Sookkheo, B., et al., Functional proteomics and correlated signaling pathway of the thermophilic bacterium Bacillus stearothermophilus TLS33 under cold-shock stress. Proteomics 2005, 5, (17), 4456-4471.
124. Voigt, B.; Schweder, T.; Becher, R., et al., A proteomic view of cell physiology of Bacillus licheniformis. Proteomics 2004, 4, (5), 1465-1490.
125. Voigt, B.; Schweder, T.; Sibbald, M. J. J. B., et al., The extracellular proteome of Bacillus licheniformis grown in different media and under different nutrient starvation conditions. Proteomics 2006, 6, (1), 268-281.
126. He, Z. G.; Zhong, H.; Hu, Y. H., et al., Analysis of differential-expressed proteins of Acidithiobacillus ferrooxidans grown under phosphate starvation. Journal of Biochemistry and Molecular Biology 2005, 38, (5), 545-549.
127. Feng, L.; Wang, W.; Cheng, J. S., et al., Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proceedings of the National Academy of Sciences of the United States of America 2007, 104, (13), 5602-5607.
128. Morikawa, M.; Kagihiro, S.; Haruki, M., et al., Biofilm formation by a Bacillus subtilis strain that produces gamma-polyglutamate. Microbiology-Sgm 2006, 152, 28012807.
129. Oosthuizen, M. C.; Steyn, B.; Theron, J., et al., Proteomic analysis reveals differential protein expression by Bacillus cereus during biofilm formation. Applied and Environmental Microbiology 2002, 68, (6), 2770-2780.
130. Graham, R. L. J.; O'Loughlin, S. N.; Pollock, C. E., et al., A combined shotgun and multidimensional proteomic analysis of the insoluble subproteome of the obligate thermophile, Geobacillus thermoleovorans T80. Journal of Proteome Research 2006, 5, (9), 2465-2473.
131. Graham, R. L. J.; Pollock, C. E.; Ternan, N. G., et al., Top-down proteomic analysis of the soluble sub-proteome of the obligate thermophile, Geobacillus thermoleovorans T80: Insights into its cellular processes. Journal of Proteome Research 2006, 5, (4), 822-828. 132. Burja, A. M.; Dhamwichukorn, S.; Wright, P. C., Cyanobacterial postgenomic research and systems biology. Trends in Biotechnology 2003, 21, (11), 504-511.
133. Simon, W. J.; Hall, J. J.; Suzuki, I., et al., Proteomic study of the soluble proteins from the unicellular cyanobacterium Synechocystis sp. PCC6803 using automated matrixassisted laser desorption/ionization-time of flight peptide mass fingerprinting. Proteomics 2002, 2, (12), 1735-42.
134. Choi, J. S.; Kim, D. S.; Lee, J., et al., Proteome analysis of light-induced proteins in Synechocystis sp. PCC 6803: identification of proteins separated by 2D-PAGE using Nterminal sequencing and MALDI-TOF MS. Mol Cells 2000, 10, (6), 705-11.
135. Kashino, Y.; Lauber, W. M.; Carroll, J. A., et al., Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry 2002, 41, (25), 8004-12.
136. Asadulghani; Nitta, K.; Kaneko, Y., et al., Comparative analysis of the hspA mutant and wild-type Synechocystis sp strain PCC 6803 under salt stress: evaluation of the role of hspA in salt-stress management. Archives of Microbiology 2004, 182, (6), 487-497.
137. Asadulghani; Suzuki, Y.; Nakamoto, H., Light plays a key role in the modulation of heat shock response in the cyanobacterium Synechocystis sp PCC 6803. Biochemical and Biophysical Research Communications 2003, 306, (4), 872-879.
138. Slabas, A. R.; Suzuki, I.; Murata, N., et al., Proteomic analysis of the heat shock response in Synechocystis PCC6803 and a thermally tolerant knockout strain lacking the histidine kinase 34 gene. Proteomics 2006, 6, (3), 845-864.
139. Suzuki, I.; Simon, W. J.; Slabas, A. R., The heat shock response of Synechocystis sp PCC 6803 analysed by transcriptomics and proteomics. Journal of Experimental Botany 2006, 57, (7), 1573-1578.
140. Kurian, D.; Jansèn, T.; Mäenpää, P., Proteomic analysis of heterotrophy in Synechocystis sp. PCC 6803. Proteomics 2006, 6, (5), 1483-94.
141. Kurian, D.; Phadwal, K.; Mäenpää, P., Proteomic characterization of acid stress response in Synechocystis sp. PCC 6803. Proteomics 2006, 6, (12), 3614-24.
142. Gan, C. S.; Ternan, N. G.; McMullan, G., et al., Global Proteomic Response of Synechocystis sp. PCC 6803 During Phosphate Starvation. 2007.
143. Herranen, M.; Battchikova, N.; Zhang, P. P., et al., Towards functional proteomics of membrane protein complexes in Synechocystis sp PCC 6803. Plant Physiology 2004, 134, (1), 470-481.
144. Norling, B.; Zak, E.; Andersson, B., et al., 2D-isolation of pure plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803. Febs Letters 1998, 436, (2), 189-192.
145. Srivastava, R.; Pisareva, T.; Norling, B., Proteomic studies of the thylakoid membrane of Synechocystis sp. PCC 6803. Proteomics 2005, 5, (18), 4905-16.
146. Huang, F.; Parmryd, I.; Nilsson, F., et al., Proteomics of Synechocystis sp. strain PCC 6803: identification of plasma membrane proteins. Mol Cell Proteomics 2002, 1, (12), 95666.
147. Pisareva, T.; Shumskaya, M.; Maddalo, G., et al., Proteomics of Synechocystis sp. PCC 6803. Identification of novel integral plasma membrane proteins. FEBS J 2007, 274, (3), 791-804.
148. Srivastava, R.; Battchikova, N.; Norling, B., et al., Plasma membrane of Synechocystis PCC 6803: a heterogeneous distribution of membrane proteins. Archives of Microbiology 2006, 185, (3), 238-243.
149. Huang, F.; Hedman, E.; Funk, C., et al., Isolation of outer membrane of Synechocystis sp PCC 6803 and its proteomic characterization. Molecular \& Cellular Proteomics 2004, 3, (6), 586-595.
150. Fulda, S.; Huang, F.; Nilsson, F., et al., Proteomics of Synechocystis sp strain PCC 6803 - Identification of periplasmic proteins in cells grown at low and high salt concentrations. European Journal of Biochemistry 2000, 267, (19), 5900-5907.
151. Fulda, S.; Mikkat, S.; Huang, F., et al., Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp strain PCC 6803. Proteomics 2006, 6, (9), 2733-2745.
152. Huang, F.; Fulda, S.; Hagemann, M., et al., Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp strain PCC 6803. Proteomics 2006, 6, (3), 910-920.
153. Ekman, M.; Tollbäck, P.; Klint, J., et al., Protein expression profiles in an endosymbiotic cyanobacterium revealed by a proteomic approach. Mol Plant Microbe Interact 2006, 19, (11), 1251-61.
154. Stensjö, K.; Ow, S. Y.; Barrios-Llerena, M. E., et al., An iTRAQ-based quantitative analysis to elaborate the proteomic response of Nostoc sp. PCC 7120 under N2 fixing conditions. J Proteome Res 2007, 6, (2), 621-35.
155. Ran, L.; Huang, F.; Ekman, M., et al., Proteomic analyses of the photoauto- and diazotrophically grown cyanobacterium Nostoc sp. PCC 73102. Microbiology 2007, 153, (Pt 2), 608-18.
156. Anderson, D. C.; Campbell, E. L.; Meeks, J. C., A soluble 3D LC/MS/MS proteome of the filamentous cyanobacterium Nostoc punctiforme. J Proteome Res 2006, 5, (11), 3096104.
157. Barrios-Llerena, M. E.; Chong, P. K.; Gan, C. S., et al., Shotgun proteomics of cyanobacteria--applications of experimental and data-mining techniques. Brief Funct Genomic Proteomic 2006, 5, (2), 121-32.
158. Barrios-Llerena, M. E.; Reardon, K. F.; Wright, P. C., 2-DE proteomic analysis if the model cyanobacterium Anabaena variabilis. Electrophoresis 2007.
159. Dassarma, S.; Berquist, B. R.; Coker, J. A., et al., Post-genomics of the model haloarchaeon Halobacterium sp. NRC-1. Saline Systems 2006, $2,3$.
160. Kennedy, S. P.; Ng, W. V.; Salzberg, S. L., et al., Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res 2001, 11, (10), 1641-50.
161. Joo, W. A.; Kim, C. W., Proteomics of Halophilic archaea. J Chromatogr B Analyt Technol Biomed Life Sci 2005, 815, (1-2), 237-50.
162. Bonneau, R.; Baliga, N. S.; Deutsch, E. W., et al., Comprehensive de novo structure prediction in a systems-biology context for the archaea Halobacterium sp. NRC-1. Genome Biol 2004, 5, (8), R52.
163. Goo, Y. A.; Yi, E. C.; Baliga, N. S., et al., Proteomic analysis of an extreme halophilic archaeon, Halobacterium sp. NRC-1. Mol Cell Proteomics 2003, 2, (8), 506-24.
164. Shukla, H. D., Proteomic analysis of acidic chaperones, and stress proteins in extreme halophile Halobacterium NRC-1: a comparative proteomic approach to study heat shock response. Proteome Sci 2006, 4, 6.
165. Gan, R. R.; Yi, E. C.; Chiu, Y., et al., Proteome analysis of Halobacterium sp. NRC-1 facilitated by the biomodule analysis tool BMSorter. Mol Cell Proteomics 2006, 5, (6), 98797.
166. Cho, C. W.; Lee, S. H.; Choi, J., et al., Improvement of the two-dimensional gel electrophoresis analysis for the proteome study of Halobacterium salinarum. Proteomics 2003, 3, (12), 2325-9.
167. Choi, J.; Joo, W. A.; Park, S. J., et al., An efficient proteomics based strategy for the functional characterization of a novel halophilic enzyme from Halobacterium salinarum. Proteomics 2005, 5, (4), 907-17.
168. Ha, D. J.; Joo, W. A.; Han, G. Y., et al., Proteome analysis of Halobacterium salinarum and characterization of proteins related to the degradation of isopropyl alcohol. Biochim Biophys Acta 2007, 1774, (1), 44-50.
169. Tebbe, A.; Klein, C.; Bisle, B., et al., Analysis of the cytosolic proteome of Halobacterium salinarum and its implication for genome annotation. Proteomics 2005, 5, (1), 168-79.
170. Klein, C.; Garcia-Rizo, C.; Bisle, B., et al., The membrane proteome of Halobacterium salinarum. Proteomics 2005, 5, (1), 180-97.
171. Bisle, B.; Schmidt, A.; Scheibe, B., et al., Quantitative profiling of the membrane proteome in a halophilic archaeon. Mol Cell Proteomics 2006, 5, (9), 1543-58.
172. Evans, E. C.; Horn, T.; Wagner, M. A., et al., Isolation protocol for two-dimensionalpolyacrylamide gel electrophoresis analysis of Haloferax volcanii proteome. Biotechniques 2003, 35, (3), 478-80, 482.
173. Karadzic, I. M.; Maupin-Furlow, J. A., Improvement of two-dimensional gel electrophoresis proteome maps of the haloarchaeon Haloferax volcanii. Proteomics 2005, 5, (2), 354-9.
174. Samyn, B.; Sergeant, K.; Memmi, S., et al., MALDI-TOF/TOF de novo sequence analysis of 2-D PAGE-separated proteins from Halorhodospira halophila, a bacterium with unsequenced genome. Electrophoresis 2006, 27, (13), 2702-11.
175. Feng de, Q.; Yang, L. F.; Lu, W. D., et al., Analysis of protein expression profiles of Halobacillus dabanensis D-8T under optimal and high salinity conditions. Curr Microbiol 2007, 54, (1), 20-6.
176. Graham, R. L. J.; Pollock, C. E.; O'Loughlin, S. N., et al., Multidimensional analysis of the insoluble sub-proteome of Oceanobacillus iheyensis HTE831, an alkaliphilic and halotolerant deep-sea bacterium isolated from the Iheya ridge. Proteomics 2007, 7, (1), 8291.
177. Konstantinidis, K.; Tebbe, A.; Klein, C., et al., Genome-wide proteomics of Natronomonas pharaonis. J Proteome Res 2007, 6, (1), 185-93.
178. Cordwell, S. J., Microbial genomes and "missing" enzymes: redefining biochemical pathways. Archives of Microbiology 1999, 172, (5), 269-279.
179. Uchiyama, H.; Shinohara, Y.; Tomioka, N., et al., Induction and enhancement of stress proteins in a trichloroethylene-degrading methanotrophic bacterium, Methylocystis sp. M. Fems Microbiology Letters 1999, 170, (1), 125-130.
180. Kao, W. C.; Chen, Y. R.; Yi, E. C., et al., Quantitative proteomic analysis of metabolic regulation by copper ions in Methylococcus capsulatus (Bath). Journal of Biological Chemistry 2004, 279, (49), 51554-51560.
181. Laukel, M.; Rossignol, M.; Borderies, G., et al., Comparison of the proteome of Methylobacterium extorquens AM1 grown under methylotrophic and nonmethylotrophic conditions: Proteomics 2004, 4, (5), 1247-1264.
182. Gourion, B.; Rossignol, M.; Vorholt, J. A., A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proceedings of the National Academy of Sciences of the United States of America 2006, 103, (35), 13186-13191. 183. Ding, Y. H. R.; Hixson, K. K.; Giometti, C. S., et al., The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions. Biochimica Et Biophysica Acta-Proteins and Proteomics 2006, 1764, (7), 1198-1206.
184. Khare, T.; Esteve-Nunez, A.; Nevin, K. P., et al., Differential protein expression in the metal-reducing bacterium Geobacter sulfurreducens strain PCA grown with fumarate or ferric citrate. Proteomics 2006, 6, (2), 632-640.
185. Zhang, W.; Gritsenko, M. A.; Moore, R. J., et al., A proteomic view of Desulfovibrio vulgaris metabolism as determined by liquid chromatography coupled with tandem mass spectrometry. Proteomics 2006, 6, (15), 4286-99.
186. Zhang, W.; Culley, D. E.; Gritsenko, M. A., et al., LC-MS/MS based proteomic analysis and functional inference of hypothetical proteins in Desulfovibrio vulgaris. Biochem Biophys Res Commun 2006, 349, (4), 1412-9.
187. Redding, A. M.; Mukhopadhyay, A.; Joyner, D. C., et al., Study of nitrate stress in Desulfovibrio vulgaris Hildenborough using iTRAQ proteomics. Brief Funct Genomic Proteomic 2006, 5, (2), 133-43.
188. Mukhopadhyay, A.; He, Z. L.; Alm, E. J., et al., Salt stress in Desulfovibrio vulgaris Hildenborough: An integrated genomics a pproach. Journal of Bacteriology 2006, 188, (11), 4068-4078.
189. Bebien, M.; Lagniel, G.; Garin, J., et al., Involvement of superoxide dismutases in the response of Escherichia coli to selenium oxides. Journal of Bacteriology 2002, 184, (6), 1556-1564.
190. Pferdeort, V. A.; Wood, T. K.; Reardon, K. F., Proteomic changes in Escherichia coli TG1 after metabolic engineering for enhanced trichloroethene biodegradation. Proteomics 2003, 3, (6), 1066-1069.
191. Lee, J.; Cao, L.; Ow, S. Y., et al., Proteome changes after metabolic engineering to enhance aerobic mineralization of cis-1,2-dichloroethylene. Journal of Proteome Research 2006, 5, (6), 1388-1397.
192. Kühner, S.; Wöhlbrand, L.; Fritz, I., et al., Substrate-dependent regulation of anaerobic degradation pathways for toluene and ethylbenzene in a denitrifying bacterium, strain EbN1. J Bacteriol 2005, 187, (4), 1493-503.
193. Rabus, R., Functional genomics of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Appl Microbiol Biotechnol 2005, 68, (5), 580-7.
194. Hufnagel, P.; Rabus, R., Mass spectrometric identification of proteins in complex post-genomic projects. Soluble proteins of the metabolically versatile, denitrifying 'Aromatoleum' sp. strain EbN1. J Mol Microbiol Biotechnol 2006, 11, (1-2), 53-81.
195. Rabus, R.; Gade, D.; Helbig, R., et al., Analysis of N-acetylglucosamine metabolism in the marine bacterium Pirellula sp strain 1 by a proteomic approach. Proteomics 2002, 2, (6), 649-655.
196. Callister, S. J.; Nicora, C. D.; Zeng, X. H., et al., Comparison of aerobic and photosynthetic Rhodobacter sphaeroides 2.4.1 proteomes. Journal of Microbiological Methods 2006, 67, (3), 424-436.
197. Callister, S. J.; Dominguez, M. A.; Nicora, C. D., et al., Application of the accurate mass and time tag approach to the proteome analysis of sub-cellular fractions obtained from Rhodobacter sphaeroides 2.4.1. aerobic and photosynthetic cell cultures. Journal of Proteome Research 2006, 5, (8), 1940-1947.
198. Novotna, J.; Vohradsky, J.; Berndt, P., et al., Proteomic studies of diauxic lag in the differentiating prokaryote Streptomyces coelicolor reveal a regulatory network of stressinduced proteins and central metabolic enzymes. Molecular Microbiology 2003, 48, (5), 1289-1303.
199. Giuffrida, M. G.; Pessione, E.; Mazzoli, R., et al., Media containing aromatic compounds induce peculiar proteins in Acinetobacter radioresistens, as revealed by proteome analysis. Electrophoresis 2001, 22, (9), 1705-1711.
200. Sabirova, J. S.; Ferrer, M.; Regenhardt, D., et al., Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization. Journal of Bacteriology 2006, 188, (11), 3763-3773.
201. Morris, R. M.; Fung, J. M.; Rahm, B. G., et al., Comparative Proteomics of Dehalococcoides spp. Reveals Strain-Specific Peptides Associated with Activity. Appl Environ Microbiol 2007, 73, (1), 320-6.
202. Lee, S. E.; Li, Q. X.; Yu, J., Proteomic examination of Ralstonia eutropha in cellular responses to formic acid. Proteomics 2006, 6, (15), 4259-68.
203. Ho, E. M.; Chang, H. W.; Kim, S. I., et al., Analysis of TNT (2,4,6-trinitrotoluene)inducible cellular responses and stress shock proteome in Stenotrophomonas sp OK-5. Current Microbiology 2004, 49, (5), 346-352.
204. Marrero, J.; Gonzalez, L. J.; Sanchez, A., et al., Effect of high concentration of Co (II) on Enterobacter liquefaciens strain C-1: A bacterium highly resistant to heavy metals with an unknown genome. Proteomics 2004, 4, (5), 1265-1279.
205. Whitelegge, J.; Halgand, F.; Souda, P., et al., Top-down mass spectrometry of integral membrane proteins. Expert Rev Proteomics 2006, 3, (6), 585-96.
206. Giometti, C. S.; Reich, C. I.; Tollaksen, S. L., et al., Structural modifications of Methanococcus jannaschii flagellin proteins revealed by proteome analysis. Proteomics 2001, 1, (8), 1033-42.
207. Mukhopadhyay, B.; Johnson, E. F.; Wolfe, R. S., A novel p(H2) control on the expression of flagella in the hyperthermophilic strictly hydrogenotrophic methanarchaeaon Methanococcus jannaschii. Proceedings of the National Academy of Sciences of the United States of America 2000, 97, (21), 11522-11527.
208. Phadke, N. D.; Molloy, M. P.; Steinhoff, S. A., et al., Analysis of the outer membrane proteome of Caulobacter crescentus by two-dimensional electrophoresis and mass spectrometry. Proteomics 2001, 1, (5), 705-20.
209. Molloy, M. P.; Phadke, N. D.; Chen, H., et al., Profiling the alkaline membrane proteome of Caulobacter crescentus with two-dimensional electrophoresis and mass spectrometry. Proteomics 2002, 2, (7), 899-910.
210. Pessione, E.; Giuffrida, M. G.; Prunotto, L., et al., Membrane proteome of Acinetobacter radioresistens S13 during aromatic exposure. Proteomics 2003, 3, (6), 1070-6. 211. Bouchal, P.; Kucera, I., Examination of membrane protein expression in Paracoccus denitrificans by two-dimensional gel electrophoresis. Journal of Basic Microbiology 2004, 44, (1), 17-22.
212. Blonder, J.; Goshe, M. B.; Moore, R. J., et al., Enrichment of integral membrane proteins for proteomic analysis using liquid chromatography-tandem mass spectrometry. J Proteome Res 2002, 1, (4), 351-60.
213. Goshe, M. B.; Blonder, J.; Smith, R. D., Affinity labeling of highly hydrophobic integral membrane proteins for proteome-wide analysis. J Proteome Res 2003, 2, (2), 153-61. 214. Rathsam, C.; Eaton, R. E.; Simpson, C. L., et al., Up-regulation of competence- but not stress-responsive proteins accompanies an altered metabolic phenotype in Streptococcus mutans biofilms. Microbiology-Sgm 2005, 151, 1823-1837.
215. Christendat, D.; Yee, A.; Dharamsi, A., et al., Structural proteomics of an archaeon. Nature Structural Biology 2000, 7, (10), 903-909.
216. Giometti, C. S.; Reich, C.; Tollaksen, S., et al., Global analysis of a "simple" proteome: Methanococcus jannaschii. J Chromatogr B Analyt Technol Biomed Life Sci 2002, 782, (1-2), 227-43.
217. Lipton, M. S.; Pasa-Tolic, L.; Anderson, G. A., et al., Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proceedings of the National Academy of Sciences of the United States of America 2002, 99, (17), 11049-11054.
218. Smith, R. D.; Anderson, G. A.; Lipton, M. S., et al., An accurate mass tag strategy for quantitative and high-throughput proteome measurements. Proteomics 2002, 2, (5), 513-523.
219. Strittmatter, E. F.; Ferguson, P. L.; Tang, K., et al., Proteome analyses using accurate mass and elution time peptide tags with capillary LC time-of-flight mass spectrometry. J Am Soc Mass Spectrom 2003, 14, (9), 980-91.
220. Zhang, C.; Wei, J.; Zheng, Z., et al., Proteomic analysis of Deinococcus radiodurans recovering from gamma-irradiation. Proteomics 2005, 5, (1), 138-43.
221. Mergeay, M.; Monchy, S.; Vallaeys, T., et al., Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. Fems Microbiology Reviews 2003, 27, (2-3), 385-410.
222. Noël-Georis, I.; Vallaeys, T.; Chauvaux, R., et al., Global analysis of the Ralstonia metallidurans proteome: prelude for the large-scale study of heavy metal response.
Proteomics 2004, 4, (1), 151-79.
223. Chong, P. K.; Wright, P. C., Identification and characterization of the Sulfolobus solfataricus P2 proteome. Journal of Proteome Research 2005, 4, (5), 1789-1798.
224. Chong, P. K.; Burja, A. M.; Radianingtyas, H., et al., Translational and transcriptional analysis of Sulfolobus solfataricus P2 to provide insights into alcohol and ketone utilisation.
Proteomics 2007, 7, (3), 424-435.
225. Barry, R. C.; Young, M. J.; Stedman, K. M., et al., Proteomic mapping of the hyperthermophilic and acidophilic archaeon Sulfolobus solfataricus P2. Electrophoresis 2006, 27, (14), 2970-2983.
226. Nichols, D. S.; Miller, M. R.; Davies, N. W., et al., Cold adaptation in the antarctic archaeon Methanococcoides burtonii involves membrane lipid unsaturation. Journal of Bacteriology 2004, 186, (24), 8508-8515.
227. Methé, B. A.; Nelson, K. E.; Deming, J. W., et al., The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34 H through genomic and proteomic analyses. Proc Natl Acad Sci U S A 2005, 102, (31), 10913-8.
228. Zheng, S. P.; Ponder, M. A.; Shih, J. Y., et al., A proteomic analysis of Psychrobacter articus 273-4 adaptation to low temperature and salinity using a 2-D liquid mapping approach. Electrophoresis 2007, 28, (3), 467-488.
229. Médigue, C.; Krin, E.; Pascal, G., et al., Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 2005, 15, (10), 1325-35.
230. Papa, R.; Glagla, S.; Danchin, A., et al., Proteomic identification of a two-component regulatory system in Pseudoalteromonas haloplanktis TAC125. Extremophiles 2006, 10, (6), 483-91.
231. Prosinecki, V.; Botelho, H. M.; Francese, S., et al., A proteomic approach toward the selection of proteins with enhanced intrinsic conformational stability. Journal of Proteome Research 2006, 5, (10), 2720-2726.
232. Hermann, T.; Wersch, G.; Uhlemann, E. M., et al., Mapping and identification of Corynebacterium glutamicum proteins by two-dimensional gel electrophoresis and microsequencing. Electrophoresis 1998, 19, (18), 3217-3221.
233. Hansmeier, N.; Chao, T. C.; Puhler, A., et al., The cytosolic, cell surface and extracellular proteomes of the biotechnologically important soil bacterium Cornyebacterium efficiens YS-314 in comparison to those of Corynebacterium glutamicum ATCC 13032. Proteomics 2006, 6, (1), 233-250.
234. Kim, E. A.; Kim, J. Y.; Kim, S. J., et al., Proteomic analysis of Acinetobacter lwoffii K24 by 2-D gel electrophoresis and electrospray ionization quadrupole-time of flight mass spectrometry. Journal of Microbiological Methods 2004, 57, (3), 337-349.
235. Rosen, R.; Sacher, A.; Shechter, N., et al., Two-dimensional reference map of Agrobacterium tumefaciens proteins. Proteomics 2004, 4, (4), 1061-1073.
236. Halden, R. U.; Colquhoun, D. R.; Wisniewski, E. S., Identification and phenotypic characterization of Sphingomonas wittichii strain RW1 by peptide mass fingerprinting using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 2005, 71, (5), 2442-51.
237. Macrae, J. D.; Smit, J., Characterization of Caulobacters Isolated from Waste-Water Treatment Systems. Applied and Environmental Microbiology 1991, 57, (3), 751-758.
238. Jacob, J.; Bindemann, U.; Stelzer, W., Characterization of Thermophilic Campylobacters Originated from a High-Rate Sewage-Treatment Plant. Zentralblatt Fur Hygiene Und Umweltmedizin 1991, 192, (1), 14-24.
239. Niemi, R. M.; Niemela, S. I.; Bamford, D. H., et al., Presumptive Fecal Streptococci in Environmental-Samples Characterized by One-Dimensional Sodium Dodecyl SulfatePolyacrylamide Gel-Electrophoresis. Applied and Environmental Microbiology 1993, 59, (7), 2190-2196.
240. Maszenan, A. M.; Seviour, R. J.; McDougall, B. M., et al., Diversity of isolates of Acinetobacter from activated sludge systems based on their whole cell protein patterns. Journal of Industrial Microbiology \& Biotechnology 1997, 18, (4), 267-271.
241. Wagner-Dobler, I.; Bennasar, A.; Vancanneyt, M., et al., Microcosm enrichment of biphenyl-degrading microbial communities from soils and sediments. Applied and Environmental Microbiology 1998, 64, (8), 3014-3022.
242. Sano, D.; Matsuo, T.; Omura, T., Virus-binding proteins recovered from bacterial culture derived from activated sludge by affinity chromatography assay using a viral capsid peptide. Applied and Environmental Microbiology 2004, 70, (6), 3434-3442.
243. Valenzuela, L.; Chi, A.; Beard, S., et al., Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnol Adv 2006, 24, (2), 197-211.
244. Banfield, J. F.; Verberkmoes, N. C.; Hettich, R. L., et al., Proteogenomic approaches for the molecular characterization of natural microbial communities. Omics-a Journal of Integrative Biology 2005, 9, (4), 301-333.
245. Ram, R. J.; VerBerkmoes, N. C.; Thelen, M. P., et al., Community proteomics of a natural microbial biofilm. Science 2005, 308, (5730), 1915-1920.
246. Lo, I.; Denef, V. J.; Verberkmoes, N. C., et al., Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria. Nature 2007.
247. Wilmes, P.; Bond, P. L., The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environmental Microbiology 2004, 6, (9), 911-920.
248. Wilmes, P.; Bond, P. L., Towards exposure of elusive metabolic mixed-culture processes: the application of metaproteomic analyses to activated sludge. Water Science and Technology 2006, 54, (1), 217-226.
249. Wilmes, P.; Bond, P. L., Metaproteomics: studying functional gene expression in microbial ecosystems. Trends in Microbiology 2006, 14, (2), 92-97.
250. Kan, J.; Hanson, T. E.; Ginter, J. M., et al., Metaproteomic analysis of Chesapeake Bay microbial communities. Saline Systems 2005, 1, 7.
251. Lacerda, C. M.; Choe, L. H.; Reardon, K. F., Metaproteomic Analysis of a Bacterial Community Response to Cadmium Exposure. J Proteome Res 2007.
252. Ogunseitan, O. A., Direct Extraction of Proteins from Environmental-Samples. Journal of Microbiological Methods 1993, 17, (4), 273-281.
253. Schulze, W. X., Protein analysis in dissolved organic matter: What proteins from organic debris, soil leachate and surface water can tell us - a perspective. Biogeosciences 2005, 2, (1), 75-86.
254. Schulze, W. X.; Gleixner, G.; Kaiser, K., et al., A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia 2005, 142, (3), 335-343.
255. VerBerkmoes, N. C.; Hervey, W. J.; Shah, M., et al., Evaluation of "Shotgun" proteomics for identification of biological threat agents in complex environmental matrixes: Experimental simulations. Analytical Chemistry 2005, 77, (3), 923-932.
256. Phelps, T. J.; Palumbo, A. V.; Beliaev, A. S., Metabolomics and microarrays for improved understanding of phenotypic characteristics controlled by both genomics and environmental constraints. Current Opinion in Biotechnology 2002, 13, (1), 20-24.
257. Singh, O. V., Proteomics and metabolomics: the molecular make-up of toxic aromatic pollutant bioremediation. Proteomics 2006, 6, (20), 5481-92.

III. QUANTITATIVE METAPROTEOMIC ANALYSIS OF A MODEL BACTERIAL COMMUNITY

III.I. Introduction

Differential proteomics is usually applied to study the response of cells and tissues to environmental perturbations (nutrients ${ }^{258}$, xenobiotics ${ }^{259}$, infection ${ }^{260}$) and genetic alterations (cancer ${ }^{261,262}$, metabolic engineering ${ }^{263,264}$) by identifying proteins with altered expression levels. In an effort to obtain more than a qualitative description of a proteome there has been a large development of quantitative proteomics methods. Quantitative proteomics can help characterize pathway regulation and complex system networks by providing protein concentration information corresponding to different cellular states. Such information is of utmost importance in the developing field of systems biology ${ }^{265}$. With the increasing rate of acquisition and interpretation of -omics data (including functional proteomics) and high computational power, the new science of systems biology will be able to predict systems behavior when facing different types of perturbations.

Current experimental methods for quantitative proteomics include in vivo and in vitro methods ${ }^{266-268}$. Stable isotope labeling with amino acids (SILAC) ${ }^{269,270}$ or with small nitrogenor carbon-containing nutrients ${ }^{271-273}$ can be incorporated in the growth medium to directly label proteins while synthesized in vivo. In vitro quantification methods include labeling of cysteine residues (isotope-coded affinity tags, ICAT) ${ }^{274,275}$, and labeling of N -termini (isobaric tags for relative and absolute quantification, iTRAQ) ${ }^{276-278}$. Other less commonly used quantification
methods were reviewed by Lau et al ${ }^{279}$. The iTRAQ technology has a significant advantage over other methods due to its capability of multiplexing up to eight samples in one experimental setup ${ }^{280}$. Another positive aspect includes unbiased peptide labeling, since iTRAQ isobaric tags label lysine side groups and all free amino-terminal groups of the peptides present in a sample. The iTRAQ tags consist of a reporter group, a balance group, and a peptide reactive group that covalently binds to the peptides. The balance group gives all tags the same mass during peptide mass fingerprinting. In the CID stage of a tandem mass spectrometer, there is a neutral loss of the balance group, and the reporter groups are detected in the second MS. The tandem mass spectra include contributions from each sample, and the individual contributions of each sample can be measured by the intensity of the reporter ion peaks.

The objective of this experiment is to evaluate the potential of quantitative metaproteomics, and show that in vitro peptide labeling can be successfully used to measure proteome changes in a mixed culture of organisms and in the corresponding pure species. Our goal is to determine the ability of quantitative metaproteomics to reveal unique protein expression responses derived from the interactions of the microorganisms living in co-culture. Comparing microbial proteomes in co-culture with the corresponding pure cultures is key for microbial ecology and understanding mechanisms of bacterial communication and signaling. Due to the challenges associated with metaproteomics of unsequenced organisms (further discussed in Chapter 4), we designed a simple model bacterial mixed culture of two sequenced organisms to use in a quantitative shotgun proteomics experiment. To the best of our knowledge, no such quantitative metaproteomics study is available in the proteomics literature.

The organisms of choice here were bacteria commonly found in soil and considered as models for Gram-positive (Bacillus atrophaeus) and Gram-negative (Pseudomonas putida KT2440) microorganisms in environmental research. Pseudomonas putida KT2440 is a ubiquitous soil organism, non-pathogenic, with a fully sequenced genome ${ }^{281}$. It derives from a toluenedegrading bacterium and it is well-known for its metabolic versatility, including the ability to degrade several xenobiotic compounds. Bacillus atrophaeus is the current name for the Bacillus subtilis strain DSM675 used in our study ${ }^{282}$. This Bacillus subtilis strain was first characterized based on its red pigmentation, but has since been reclassified a number of times. This sequenced species is the best-characterized of all Gram-positive bacteria, and is known for its ability to colonize plants and to produce and secrete industrially important enzymes and metabolites ${ }^{283}$. These organisms were tested for successful growth in community through Gram-staining at every growth stage. After determining community growth in rich medium and at mesophilic temperatures, we compared the community proteome with the proteome of the pure species grown in the same conditions.

III.II. Experimental Procedures

Inocula were added to duplicate $500-\mathrm{mL}$ baffled Erlenmeyer flasks containing 200 mL of 10 g/L tryptic soy broth (BD Diagnostics, Franklin Lakes, NJ, USA) to achieve an initial OD 600 of 0.002 (approximately $0.02 \mathrm{mg} / \mathrm{mL}$ of dry cells). A total of eight flasks were incubated (two blanks, two B. subtilis, two P. putida, two mixed culture of equal numbers of P. putida and B. subtilis). The culture flasks were then incubated at $\mathrm{pH} 7,30^{\circ} \mathrm{C}$, and 200 rpm for approximately 24 h . Protein extraction followed a multi-step process that combined chemical and mechanical
lysis steps to lyse both Gram-positive and Gram-negative cells. Immediately after harvesting, cell cultures were centrifuged at $4^{\circ} \mathrm{C}$ and 7500 xg for 10 min . The resulting cell pellets were washed in 30 mL of a pH 7 buffer composed of $3 \mathrm{mM} \mathrm{KCl}, 1.5 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}, 68 \mathrm{mM} \mathrm{NaCl}$, and $14 \mathrm{mM} \mathrm{NaH}{ }_{2} \mathrm{PO}_{4}$, and centrifuged again. Each cell pellet was resuspended in 2 mL of 10 mM Tris- $\mathrm{HCl} \mathrm{pH} 8,1.5 \mathrm{mM} \mathrm{MgCl} 2,10 \mathrm{mM} \mathrm{KCl}, 0.5 \mathrm{mM}$ dithiothreitol, 0.5 mM Pefabloc SC (protease inhibitor, Roche Applied Science, Indianapolis, IN, USA), and 0.1% SDS. Cells were then sonicated on ice using a 550 Sonic Dismembrator probe (Fisher Scientific, Hampton, NH, USA) vibrating at 20 kHz for 5 minutes, in cycles of 1 second on and 2 seconds off. After sonication, the suspension was centrifuged at $4^{\circ} \mathrm{C}$ and 7500 xg for 15 min and the supernatant isolated. The pellet was resuspended in 2 mL of a second lysis solution, containing 10 mM Tris$\mathrm{HCl} \mathrm{pH} 8,1 \mathrm{mM}$ EDTA disodium salt, 0.05 mM dithiothreitol, 0.5 mM Pefabloc $\mathrm{SC}, 10 \%$ glycerol and $1 \mathrm{mg} / \mathrm{mL}$ lysozyme. This was sonicated and centrifuged as before. The two final supernatants were combined, and the protein concentration of the final lysate was determined using the bicinchonic acid (BCA) assay from Pierce Biotechnology Inc. (Rockford, IL USA). Protein samples were divided into aliquots of $100 \mu \mathrm{~g}$ and stored at $-80^{\circ} \mathrm{C}$. The two-step extraction procedure assured that proteins from both Gram-positives and Gram-negatives were extracted, and that in the case of pure species, the protein solutions had the same reagents contributing as background in the protein assay. Tryptic digestions of $100 \mu \mathrm{~g}$ of each biological replicate followed the iTRAQ Reagents protocol from Applied Biosystems. Briefly, samples were dissolved in $20 \mu \mathrm{~L}$ of Dissolution Buffer and $1 \mu \mathrm{~L}$ of Denaturant. After full sample dissolution, $2 \mu \mathrm{~L}$ of Reducing Reagent were added, and samples were incubated for 1 h at $60^{\circ} \mathrm{C}$. Cysteines were blocked by the addition of $1 \mu \mathrm{~L}$ of Cysteine Blocking Reagent followed by room
temperature incubation for 10 min . Samples were then digested overnight with $\operatorname{trypsin}(10 \mu \mathrm{~g})$ at $37{ }^{\circ} \mathrm{C}$. After complete digestion, samples were were labeled with iTRAQ reagents, also following the iTRAQ Reagents protocol. Samples were labeled according to the following scheme: B. subtilis, 115; mixed culture, 116; and P. putida, 117.

Labeled peptides were mixed and then fractionated by SCX chromatography using a Polysulfoethyl A column $100 \mathrm{~mm} \times 2.1 \mathrm{~mm} \times 5 \mu \mathrm{~m}, 200 \AA$ (PolyLC Inc., Columbia, MD USA). Buffer A was 5 mM potassium phosphate in 25% acetonitrile, pH 3 , and Buffer B contained 500 mM potassium chloride added to the buffer A composition. A 35-min linear gradient at 0.2 $\mathrm{mL} / \mathrm{min}$ was used. Fractions were collected every minute, and purified with C 18 PepClean spin columns (Pierce Biotechnology Inc., Rockford, IL USA), according to the manufacturer's protocol. C18-cleaned samples were vacuum-dried and resuspended in $15 \mu \mathrm{~L}$ of 0.1% formic acid. Samples were separated on an Agilent ZORBAX reverse-phase column (C18 wide-pore, 50 $\mathrm{mm} \times 0.075 \mathrm{~mm}$ internal diameter) in an Agilent 1200 HPLC system, containing a nanospray directly connected to the mass spectrometer ionization source. The HPLC buffers were 0.1% formic acid in 3\% acetonitrile (Buffer A) and 0.1% formic acid in 97% acetonitrile (Buffer B). The method used a $45-\mathrm{min}$ gradient at $0.6 \mu \mathrm{~L} / \mathrm{min}$ starting with 5% Buffer B for 5 min , followed by 30 min of ramping to 70% Buffer B. Two other 5-min steps followed at 90% and 5% Buffer B. Mass spectrometry was accomplished by an ESI-QTOF instrument (Agilent 6510, with Chip Cube sample inlet), with the following settings: gas temperature $300^{\circ} \mathrm{C}$; drying gas $5 \mathrm{~L} / \mathrm{min}$; and capillary voltage of 1875 V . The auto MS/MS mode was used, with positive ion polarity and centroid data storage. Acquisition ranges were $300-2000 \mathrm{~m} / \mathrm{z}$ for MS (4 spectra/s) and $59-$ $1800 \mathrm{~m} / \mathrm{z}$ for MS/MS (5 spectra/s). Collision energy used a slope of 4 (V/100 Da). Four
precursor ions were collected per cycle, with active exclusion. Internal reference mass standard was used for Chip operation. All datasets were exported to the mzData format. Database searches were conducted on Mascot using the following parameters: all bacterial species in the NCBInr database, decoy search, trypsin digestion allowing for up to two missed cleavages, methionine oxidation and iTRAQ on N -termini and lysines, iTRAQ 4-plex quantification, 0.3 Da tolerance for MS and MS/MS, peptide charges of $+1,+2$ and +3 , and monoisotopic masses.

III.III. Results and discussion

III.III.I. Culture Growth and Protein Extraction

Cells were cultivated in duplicate as described in the previous section. Cell growth in coculture was monitored by Gram-staining of aliquots collected approximately every 4 h . One aliquot was collected from every replicate flask, and spread over three microscope slides. Cells were immobilized on slides by air-drying and Gram stained. The presence of similar counts of Gram-positive and Gram-negative cells was confirmed by using an optical microscope and 40X lens. Averaging of all the observations at different time points showed that B. subtilis and P. putida were equally abundant in the co-culture. At approximately 20 h of growth, the harvesting OD_{600} for the cultures were: 3.82 for pure P. putida, 3.66 for pure B. subtilis and 3.94 for the coculture. During harvesting, B. subtilis cell pellets had an orange coloration, P. putida cell pellets were tan, and the community cell pellet presented a lighter orange shade. After protein extraction and purification, the discarded cellular material was mostly tan, and the protein solutions retained the colorations described above. Visual inspection indicates that many of the
B. subtilis proteins are pigmented, which could potentially interfere with downstream protein analyses.

III.III.II. Protein Identification and Quantification

Identification and quantification tables for the proteins of interest in this study are present in Appendix I. Those tables contain the minimum information required for a proteome experiment, i.e., protein name and accession numbers, the organism in which the protein was first identified, protein and peptide scores, mass errors, peptide sequence and protein sequence coverage, protein and peptide ratios and standard deviations, peptide weights, and estimation of false discovery rates. The false positive identification rate was calculated for each fraction analyzed by the Mascot decoy search, and the average value for the overall experiment was 2.88%, which can be considered good. Table 1 presents the 63 proteins that were differentially expressed (expression two times larger) in the co-culture. It is interesting to note that MS/MS data were searched against the whole Eubacterial database for protein identifications, but all proteins of interest in this study were highly homologous to pseudomonad proteins.

Figure 3 presents protein quantification for all differentially expressed proteins. The quantification values compare the ratios of B. subtilis against mixed culture (blue) and P. putida against the culture (red), sorted according to the B. subtilis ratios. The leftmost side of the graph shows the proteins that were down-regulated in the B. subtilis pure culture, equivalent to upregulation in the community. In general, proteins that were down-regulated in the B. subtilis pure culture were also down-regulated, with less drastic changes, in the P. putida pure culture. In other words, these proteins underwent up-regulation in the community environment, most probably due to some community effect, not present in the pure cultures. The right-hand side of
the graph indicates proteins that were up-regulated in the B. subtilis pure culture. This side does not show a very good agreement between proteins differentially by the pure cultures, i.e., not all the proteins up-regulated by B. subtilis were up-regulated by P. putida. This leads to two protein groups that are uniquely differentially expressed in either pure culture. Another interpretation of this event can be that the culture appropriately regulates certain proteins (down in one organism and up in the other) to keep an overall balance of activities.

Among the proteins with the largest expression changes in B. subtilis, we find the extreme down-regulation of elongation factor G, acetolactate synthase III large subunit, electron transfer flavoprotein, alpha subunit, and quinone oxidoreductase; and the up-regulation of putative coldshock DNA-binding domain protein and heat shock protein Hsp20. For P. putida, the largest expression changes were the down-regulation of outer membrane lipoprotein OprI and isocitrate lyase and the large up-regulation of DNA-binding protein HU, form N . We further discuss possible roles for these proteins in the biological interpretation paragraphs.

Several issues associated with the quantification aspects of this study merit discussion. First, the newly-developed Mascot quantification algorithm yielded negative quantification values for many peptides (available in Appendix I). This is clearly an error since visual inspection of MS/MS spectra revealed that the iTRAQ reporter ions were present. Due to proprietary issues, we do not understand which parts of the Mascot algorithm are responsible for such discrepancy, nor why only peptide quantification is affected, and not protein quantification. Another quantification issue relates to the clear under-quantification of the 115 isobaric tag (refer to Appendix I for examples), not corresponding to stoichiometric amounts of protein. This could be attributed to experimental errors, but all replications of this experiment presented the same
distortion of the data, and parallel peptide quantification of the samples showed that overall peptide concentrations were equivalent for all three samples (data not shown). Several protein and peptide concentration assays were performed for these samples at various stages of the shotgun protocol, and the quantities were shown to be stoichiometric. To correct for this bias, average values were calculated for the expressed tags and all Mascot ratios were normalized against the mean values, as a correction for the lower average of 115 . Since all the quantification values expressed here are ratios, a mean normalization should transform these values into proportional amounts, and reflect the true differential expression ratio of the proteins identified. The mean value normalization technique is used in transcriptomics research among other data correction methods ${ }^{284}$.

III.III.III. Protein Functional Classification

Proteins of interest in this study were classified according to the biological processes where they are involved using Gene Ontologies (http://www.godatabase.org/cgi-bin/amigo/go.cgi).

Table 1 presents each process where these proteins take part, and Figure 4 shows the more general function category spanning the biological processes. Approximately two-thirds of the proteins identified were involved in metabolism, and the majority of those were related to amino acid and protein metabolism, and well as nucleic acid and DNA metabolism. Some of the proteins in this group also have regulatory functions, but only major functions are used for the functional classification scheme. It is also important to note that approximately 13% of the proteins of interest were involved in cellular defense mechanisms. In addition, the total number of differentially modulated hypothetical proteins is small, reflecting the high homology of the proteins found with proteins present in the NCBI database.

III.III.IV. Biological Interpretation

There are no available metaproteomic studies in the literature that can be used to confirm our results, but here we describe some common trends between protein function and regulation and how that is associated with growth in community. The community of B. subtilis and P. putida expressed antioxidant and xenobiotic metabolism proteins (organic hydroperoxide resistance protein, antioxidant AhpC/Tsa family) at higher levels than the pure cultures. This might be a direct response to some stress generated by the life in community. Also generally up-regulated in the community are proteins involved in DNA metabolism (DNA-directed RNA polymerase subunits and single-strand binding protein), electron transport (electron-transfer flavoproteins), and energy generation metabolism (catalase/peroxidaase HPI and quinone oxidoreductase). The latter is a group of enzymes, related to increased central carbon metabolism, which can be correlated with better fitness of the organisms living in community in comparison with in pure cultures. Further insights in this direction would be gained by studying the secretome of the community. Among proteins that show unique response in B. subtilis, heat- and cold-shock proteins (heat shock protein Hsp20 and cold shock protein CspA) were up-regulated and proteins involved in protein metabolism (chaperonin GroEL and elongation factors) were mostly downregulated. An alternative interpretation for this regulation can relate to a similar expression of heat- and cold-shock proteins in the community and in P. putida. In a similar way, a number of proteins involved in protein metabolism are less abundant in the B. subtilis pure culture, meaning that larger concentrations are required for life in community with the other species, which presents no differential expression. Proteins involved in lipid and amino acid metabolism (acyl carrier protein, dihydrolipoamide dehydrogenase, 4-hydroxyphenylpyruvate dioxygenase and
methylmalonate semialdehyde dehydrogenase) are only down-regulated in P. putida. This is the opposite case of the one described above, where the community and the pure culture of B. subtilis share similarities in specific protein expression groups.

This study is used to further validate the evidence of unique metaproteomic responses observed in the previous chapter. We were able to find major differences in protein expression between the community and the corresponding pure cultures. These responses serve as further foundation for the metaproteomics concept, as they reveal unique evidence for interactions between the two organisms in co-culture. The approach used here is fundamentally different from the one used in the next chapter (2DE versus shotgun) and so is the mixed culture studied. This was the first metaproteomics study to make use of a peptide labeling technology for peptide and protein quantification.

III.IV. Conclusions

Proteomics is the -omics science that most closely relates to cellular physiology. In this quantitative metaproteomics study, we were able to detect and quantify regulation of proteins that are unique to growth in pure cultures or in the community of B. subtilis and P. putida, two independently-growing soil bacteria. The metaproteomics approach is the only one that provides information on protein regulation due to interactions between organisms. The ecological view of this study is unique in the sense that one organism is the environmental perturbation for the other. This is the first shotgun-based metaproteomics study of a constructed sequenced microbial community employing iTRAQ technology for quantification of proteins.
258. Sarry, J. E.; Kuhn, L.; Le Lay, P., et al., Dynamics of Arabidopsis thaliana soluble proteome in response to different nutrient culture conditions. Electrophoresis 2006, 27, (2), 495507.
259. Leonard, J. F.; Courcol, M.; Mariet, C., et al., Proteomic characterization of the effects of clofibrate on protein expression in rat liver. Proteomics 2006, 6, (6), 1915-1933.
260. Scharlaken, B.; de Graaf, D. C.; Memmi, S., et al., Differential protein expression in the honey bee head after a bacterial challenge. Archives of Insect Biochemistry and Physiology 2007, 65, (4), 223-237.
261. Kuruma, H.; Egawa, S.; Oh-Ishi, M., et al., Proteome analysis of prostate cancer. Prostate Cancer and Prostatic Diseases 2005, 8, (1), 14-21.
262. Somiari, R. I.; Somiari, S.; Russell, S., et al., Proteomics of breast carcinoma. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2005, 815, (12), 215-225.
263. Lee, P. S.; Lee, K. H., Engineering HlyA hypersecretion in Escherichia coli based on proteomic and microarray analyses. Biotechnology and Bioengineering 2005, 89, (2), 195-205.
264. Park, S. J.; Lee, S. Y.; Cho, J., et al., Global physiological understanding and metabolic engineering of microorganisms based on omics studies. Applied Microbiology and Biotechnology 2005, 68, (5), 567-579.
265. Aggarwal, K.; Lee, K. H., Functional genomics and proteomics as a foundation for systems biology. Brief Funct Genomic Proteomic 2003, 2, (3), 175-84.
266. Chen, X.; Sun, L. W.; Yu, Y. B., et al., Amino acid-coded tagging approaches in quantitative proteomics. Expert Review of Proteomics 2007, 4, (1), 25-37.
267. Frohlich, T.; Arnold, G. J., Proteome research based on modern liquid chromatography tandem mass spectrometry: separation, identification and quantification. Journal of Neural Transmission 2006, 113, (8), 973-994.
268. Heck, A. J. R.; Krijgsveld, J., Mass spectrometry-based quantitative proteomics. Expert Review of Proteomics 2004, 1, (3), 317-326.
269. Mann, M., Functional and quantitative proteomics using SILAC. Nature Reviews Molecular Cell Biology 2006, 7, (12), 952-958.
270. Ong, S. E.; Blagoev, B.; Kratchmarova, I., et al., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular \& Cellular Proteomics 2002, 1, (5), 376-386.
271. Beynon, R. J.; Pratt, J. M., Metabolic labeling of proteins for proteomics. Molecular \& Cellular Proteomics 2005, 4, (7), 857-872.
272. Palmblad, M.; Bindschedler, L. V.; Cramer, R., Quantitative proteomics using uniform

N-15-labeling, MASCOT, and the trans-proteomic pipeline. Proteomics 2007, 7, (19), 34623469.
273. Snijders, A. P. L.; de Vos, M. G. J.; Wright, P. C., Novel approach for peptide quantitation and sequencing based on $\mathrm{N}-15$ and C-13 metabolic labeling. Journal of Proteome Research 2005, 4, (2), 578-585.
274. Vaughn, C. P.; Crockett, D. K.; Lim, M. S., et al., Analytical characteristics of ICAT-LCMS/MS for quantitative proteomics studies. Journal of Molecular Diagnostics 2005, 7, (5), 691692.
275. Wu, W. W.; Wang, G. H.; Baek, S. J., et al., Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. Journal of Proteome Research 2006, 5, (3), 651-658.
276. Boehm, A. M.; Putz, S.; Altenhofer, D., et al., Precise protein quantification based on peptide quantification using iTRAQ (TM). Bmc Bioinformatics 2007, 8, -.
277. Melanson, J. E.; Avery, S. L.; Pinto, D. M., High-coverage quantitative proteomics using amine-specific isotopic labeling. Proteomics 2006, 6, (16), 4466-4474.
278. Stensjo, K.; Ow, S. Y.; Barrios-Llerena, M. E., et al., An iTRAQ-based quantitative analysis to elaborate the proteomic response of Nostoc sp PCC 7120 under N-2 fixing conditions. Journal of Proteome Research 2007, 6, (2), 621-635.
279. Lau, K. W.; Jones, A. R.; Swainston, N., et al., Capture and analysis of quantitative proteomic data. Proteomics 2007, 7, (16), 2787-99.
280. Choe, L.; D'Ascenzo, M.; Relkin, N. R., et al., 8-Plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer's disease. Proteomics 2007, 7, (20), 3651-3660.
281. Nelson, K. E.; Weinel, C.; Paulsen, I. T., et al., Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environmental Microbiology 2002, 4, (12), 799-808.
282. Fritze, D.; Pukall, R., Reclassification of bioindicator strains Bacillus subtilis DSM 675 and Bacillus subtilis DSM 2277 as Bacillus atrophaeus. International Journal of Systematic and Evolutionary Microbiology 2001, 51, 35-37.
283. Kunst, F.; Ogasawara, N.; Moszer, I., et al., The complete genome sequence of the Grampositive bacterium Bacillus subtilis. Nature 1997, 390, (6657), 249-256.
284. Hill, A. A.; Brown, E. L.; Whitley, M. Z., et al., Evaluation of normalization procedures for oligonucleotide array data based on spiked cRNA controls. Genome Biol 2001, 2, (12), RESEARCH0055.

Table 1: Summary of all differentially-expressed proteins in the B. subtilis and P. putida experiment and their expression ratios with respect to mixed culture.

Bacillus/ MIX	Pseudomo nas/Mix	Accession	Protein ID	GO Biological Process
2.02	1%	gi\|129036	2-oxoglutarate dehydrogenase El component (Alpha-ketoglutarate dehydrogenase)	tricarboxylic acid cycle
2.34	133	gil 148546904	2-oxoglutarate dehydrogenase, E2 subunit, dihydrolipoamide succinyltransferase [Pseudomonas putida F1]	tricarboxylic acid cycle
2.04	06	gij26988503	30S ribosomal protein S1 [Pseudomonas putida KT2440]	cellular protein metabolic
2.67	!	gi 26990146	4-hydroxyphenylpyruvate dioxygenase [Pseudomonas putida KT2440]	process amino acid metabolic process
86	2.14	gil26987185	50 S ribosomal protein L1 [Pseudomonas putida KT2440]	cellular protein metabolic process
0.38	ab	gi\|26987198	50 S ribosomal protein L2 [Pseudomonas putida KT2440]	cellular protein metabolic process
2.13	6\%	698720		cellular protein metabolic
				process
031	a\%	gil26987195	50 S ribosomal protein L3 [Pseudomonas putida KT2440]	cellular protein metabolic
				process cellular protein metabolic
0.28	4	gil 26987187	50S ribosomal protein L7/L12 [Pseudomonas putida KT2440]	
0.26	\%	gi! 29839337	60 kDa chaperonin (Protein Cpn60) (groEL protein)	protein folding
0.12	56	gill 5599890	acetolactate synthase III large subunit [Pseudomonas aeruginosa	isoleucine / valine
		gilss980	PAOI]	biosynihetic process
18	0.44	gil 15600516	acetylglutamate kinase [Pseudomonas aeruginosa PAO1]	arginine biosynthetic process
0.48	a)	gi\|26989063	aconitate hydratase [Pseudomonas putida KT2440]	tricarboxylic acid cycle
0.38	()	gil 148549005	acyl carrier protein [Pseudomonas putida F1]	fatty acid biosynthetic
				process
43	0.32	gi\|26991567	adenylosuccinate synthetase [Pseudomonas putida KT2440]	purine ribonucleotide biosynthetic process
				oxygen and reactive
$0 \times$	0.49	gi\|26987820	antioxidant, AhpC/Tsa family [Pseudomonas putida KT2440]	oxygen species metabolic
				process plasma membrane ATP
O\%	0.44	gi\|26992088	ATP synthase subunit B [Pseudomonas putida KT2440]	synthesis coupled proton
				transport
0.35	87	gi\|26987361	ATP-dependent Clp protease, ATP-binding subunit ClpB [Pseudomonas putida KT2440]	proteolysis
0.36	\%.8)	gi\|26988214	betaine aldehyde dehydrogenase, putative [Pseudomonas putida	betaine biosynthetic
		gi2698214	KT2440]	process
0.31	0.4	gil26990379	catalase/peroxidase HPI [Pseudomonas putida KT2440]	response to oxidative stress
0.43	\square	gil13096652	Chain A, Catabolic Omithine Carbamoyltransferase From	amino acid metabolic

0.30	क.	gil126359797
(\%	0.46	gil119856883
0.46	0.40	gil32028588
2.87	4	gil26989186
\% ${ }^{3}$	0.32	gil26991831
289	0.43	gij26990879
3.03	9.69	gi\|26987711
3.09	¢ ${ }^{\text {a }}$	gil26989027
0.27	0.44	gi\|26987220
022	क¢	gi\|15599466
2.30	0.8	gi\|26987189
0.23	93	gil15598148
0.15	0.50	gi\|26990893
0.11	0.38	gil26987192
S	0.40	gi\|26988324
2.88	!	gil 148545498
as	0.34	gil13310130
0.48	0.45	gi\|6855333
2.07	0.78	gi\| 148546266
489	2.21	gil148547677
0.40	\%	gi\|535709
\% 86	0.50	gi\|89893980
0.12	+	gi\|26987139
19	2.21	gi\| 26991516
0.28	as	gil 15598965
0.37	0.23	gil26990810

Pseudomonas aeruginosa	process
chaperonin GroEL [Pseudomonas putida GB-1]	protein folding
chaperonin GroEL [Pseudomonas putida W619]	protein folding
COG0055: F0F1-type ATP synthase, beta subunit [Haemophilus	ATP synthesis coupled
somnus 2336]	proton transport
cold	protein folding / response
	to oxidative stress
D-3-phosphoglycerate dehydrogenase [Pseudomonas putida	L-serine biosynthetic
KT2440]	process
dihydrolipoamide dehydrogenase [Pseudomonas putida KT2440]	fatty acid catabolic process
DNA-binding protein HU, form N [Pseudomonas putida KT2440]	DNA packaging
DNA-binding protein HU-beta [Pseudomonas putida KT2440]	DNA packaging
DNA-directed RNA polymerase alpha subunit [Pseudomonas putida KT2440]	transcription
DNA-directed RNA polymerase beta subunit [Pseudomonas aeruginosa PAO1]	transcription
DNA-directed RNA polymerase beta' subunit [Pseudomonas putida KT2440]	transcription
electron transfer flavoprotein beta-subunit [Pseudomonas	generation of precursor
aeruginosa PAOI]	metabolites and energy
	electron transport
electron transfer flavoprotein, alpha subunit [Pseudomonas putida	generation of precursor metabolites and energy I
KT2440]	electron transport
elongation factor G [Pseudomonas putida KT2440]	translational elongation
elongation factor Ts [Pseudomonas putida KT2440]	translational elongation
extracellular solute-binding protein, family 3 [Pseudomonas putida F1]	transport
FadB1x [Pseudomonas putida]	fatty acid catabolic process
glutamine synt	glutamine biosynthetic
gutamie symhetase [Pseudomonas syringae pv.	process
glycine cleavage system T protein [Pseudomonas putida F1]	glycine decarboxylation via glycine cleavage system
heat shock protein Hsp20 [Pseudomonas putida F1]	protein folding / response
	to oxidative stress
HU protein	DNA packaging
hypothetical protein DSY1234 [Desulfitobacterium hatniense	Unknown
Y51]	Unknow
hypothetical protein PP_0397 [Pseudomonas putida KT2440]	Unknown
hypothetical protein PP_4836 [Pseudomonas putida KT2440]	Unknown
inositol-5-monophosphate dehydrogenase [Pseudomonas	purine ribonucieotide
aeruginosa PAOI]	biosynthetic process
isocitrate lyase [Pseudomonas putida KT2440]	tricarboxylic acid cycle

$1 \times$	0.29	gi\|3201828
2.68	05	gi\|26991351
0.33	16	gi\|26991410
43\%	0.48	gil104780737
Ss	0.22	gi\|26989046
3 m	0.31	gil26987920
0.24	0.43	gil26991177
4.64	093	gil148546265
3.66	40	gil17547847
0.17	0.49	gi\|26986817
2.20	008	gil148546001
0.26	40.	gil119858954
3.83	14	gi\|90020610
0.41	17	gil1 19860710
2.16	14	gil26991396
2.17	08	gil148548757

major outer membrane lipoprotein I [Pseudomonas oleovorans] methylmalonate semialdehyde dehydrogenase [Pseudomonas putida KT2440]	Linid modification amino acid metabolic process
molecular chaperone DnaK [Pseudomonas putida KT2440] organic hydroperoxide resistance protein [Pseudomonas entomophila L48]	response to stress response to stimulus / response to toxin
outer membrane lipoprotein OprI [Pseudomonas putida KT2440] outer membrane protein H1 [Pseudomonas putida KT2440] pterin-4-alpha-carbinolamine dehydratase [Pseudomonas putida KT2440]	Lipid moditication lipid modification tetrahydrobiopterin biosynthetic process
putative cold-shock DNA-binding domain protein [Pseudomonas putida F1]	protein folding / response to oxidative stress
PUTATIVE NAD + DEPENDENT ACETALDEHYDE DEHYDROGENASE OXIDOREDUCTASE PROTEIN [Ralstonia solanacearum GMIIO00]	aromatic compound catabolic process
quinone oxidoreductase [Pseudomonas putida KT2440]	generation of precursor metabolites and energy
ribosomal 5S rRNA E-loop binding protein Ctc/L25/TL5 [Pseudomonas putida F1]	response to siress / translation
ribosomal protein S1 [Pseudomonas putida W619]	translation
Single-strand binding protein [Saccharophagus degradans 2-40]	DNA teplication recombination
Small GTP-binding protein domain [Pseudomonas putida W619] transcription elongation factor NusA [Pseudomonas putida KT2440]	translation RNA elongation
UspA domain protein [Pseudomonas putida F1]	response to stress

Figure 3: Distribution of all differentially-expressed protein quantification ratios with respect to mixed culture.

Figure 4: Functional classification of the proteins differentially expressed in the B. subtilis and P. putida study.

IV. Metaproteomic Analysis of a Bacterial Community Response to Cadmium Exposure

This study was published in the Journal of Proteome Research by Lacerda et al. ${ }^{285}$.

IV.I.Introduction

Microbial communities impact our lives in many different ways, including our health, environment and industry. A better understanding of microbial ecology would lead to clearer descriptions of processes such as disease, biodegradation, corrosion, and global cycling. However, the complexity of these communities poses significant challenges to their study. A variety of tools have been used in the past to gain insights into microbial communities, including traditional enrichment methods, multispecies modeling, and lipid, DNA- and RNAbased approaches ${ }^{286-291}$. In particular, the development of lipid- and nucleic acid-based profiling techniques has enabled the elucidation of microbial community structures in soils and groundwater ${ }^{289,291,292}$. Unfortunately, knowledge of community structure does not necessarily lead to useful information on functions such as metabolic capacity, population dynamics, and physiological responses to variable environmental conditions. In addition to the general inability to extrapolate from phylogenetic data to function, the limitations of standard 16 S rDNA / rRNA-based genomic analysis of a mixed culture include the relatively long times required for detectable population changes (several microbial doubling times) and the fact that a variety of organisms can provide the same function. Lately, microbial community genomics, based on DNA extraction from a particular environment, is being hailed as a path forward ${ }^{293-297}$. Although it is an exciting development that has already led to
the discovery of new genes, this approach does not provide direct information on function and is not suited for the study of system dynamics.

Proteomic analysis, in contrast, can reveal rapid physiological responses since proteins can be synthesized and folded within seconds ${ }^{298}$. Direct large-scale measurement of protein expression levels provides an insight into cellular and community activity - information unavailable from any other approach. Most of the work done in the proteomics field so far has focused on single species subjected to different conditions, leaving the potential of microbial community proteomics almost completely unexplored. In this approach, a mixed culture can be viewed as a metaorganism, in which population and meta-proteome shifts are forms of functional responses.

There are several challenges in microbial community proteomics, including representative protein extraction, separation of proteins in highly complex samples (dozens to thousands of bacterial proteomes), and the near complete absence of genomic sequences for the microorganisms in these environmental communities. While the latter leads to an impediment to protein identification, we note that approximately 650 prokaryotic genomes have been sequenced to date (http://www.ncbi.nlm.nih.gov/sutils/ genom_table.cgi) with new sequences completed at an increasing rate. It is thus reasonable to expect some protein sequence homology across species such that an identification could be assigned to a protein from the unsequenced organism.

Although there have been proteomic studies on pure cultures of sequenced organisms of environmental interest ${ }^{299-301}$, reports on the proteomic analysis of unsequenced pure cultures are rare ${ }^{300,302}$. Only six studies on proteomes of unsequenced mixed cultures have been published in the scientific literature. Schulze et al. ${ }^{303}$ studied proteins isolated from
dissolved organic matter using MS and demonstrated the ability to determine a proteome fingerprint of soil. Wilmes and Bond ${ }^{304-306}$ investigated a community of microorganisms from a laboratory-scale sequencing batch reactor optimized for enhanced biological phosphorus removal and enriched for polyphosphate-accumulating organisms. In their first study ${ }^{306}$, they used a 2DE-MS approach to detect many proteins and identify three. In their subsequent studies, also 2DE-based, they performed comparisons of proteome profiles of activated sludges with sequentially increasing phosphorus removal performance ${ }^{305}$ and profiles of phosphorus removal versus non-phosphorus removal ${ }^{304}$. Neither of the latter studies included information on protein identification. Kan et al. ${ }^{307}$ studied Chesapeake Bay microbial communities using a similar workflow and identified eight proteins. Recently, a landmark study was published by Ram et al. ${ }^{308}$ on a natural acid mine drainage microbial biofilm community. With a shotgun proteomics approach, they identified more than 2000 proteins through the use of a database created from the sequencing of a microbial community sampled from the same mine but at a different location and time. These studies either mapped proteomes of certain conditions or focused on single comparisons, rather than investigating a functional response.

Here, we describe the use of proteomics as a tool to obtain functional information about the dynamic response of a microbial community to cadmium stress. Specifically, we demonstrate the abilities to use 2DE gels from a microbial community to detect proteome shifts, to identify protein markers of significant environmental change, and to use mass spectrometry coupled with de novo sequencing to identify 158 proteins, 109 of which were unique. The microbial community was obtained from a continuous-flow; stirred-tank bioreactor fed a mixture of organic chemical pollutants. Cadmium was chosen as the
chemical stress because the effects and tolerance mechanisms to this common contaminant are relatively well-studied. This community had no previous exposure to cadmium, and thus the experiment served to assess the response of a naïve community to a chemical stress.

IV.II. Experimental Procedures

The source of the microbial community used in this study was a continuous-flow wastewater treatment bioreactor that was fed a mixture of twelve organic chemicals (acetone, 2-butanone, 2-hexanone, phenol, p-cresol, 2,4-dimethyl phenol, benzene, toluene, m-xylene, chlorobenzene, 1,4-dichlorobenzene, and 1,2,4-trichlorobenzene) at a dilution rate of $0.01 \mathrm{~h}^{-}$ 1. This culture was maintained at $\mathrm{pH} 7 \pm 0.2$ and $20^{\circ} \mathrm{C}$. The continuous culture was originally inoculated from an uncontaminated soil sample from Fort Collins, CO. 16S rDNA analyses of this inoculum culture indicated that it consisted of approximately 50 bacterial strains ${ }^{309}$.

The inoculum was added to two replicate $500-\mathrm{mL}$ baffled Erlenmeyer flasks containing 200 mL of $10 \mathrm{~g} / \mathrm{L}$ tryptic soy broth (BD Diagnostics, Franklin Lakes, NJ, USA) to achieve an initial OD 600 of 0.002 (approximately $0.02 \mathrm{mg} / \mathrm{mL}$ of dry cells). The culture flasks were then incubated at $\mathrm{pH} 7,20^{\circ} \mathrm{C}$, and 200 rpm for approximately 20 h , when $\mathrm{CdCl}_{2} \cdot 5 / 2 \mathrm{H}_{2} \mathrm{O}$ was added to half of the flasks to achieve a concentration of $0.09 \mathrm{mM}(10 \mathrm{mg} \mathrm{Cd} / \mathrm{L})$. This concentration of cadmium was chosen to inhibit but not stop culture growth (based on OD 600 measurements). All flasks were incubated further, and both treated and control cultures were harvested $15 \mathrm{~min}, 1,2$ and 3 h after the time of cadmium addition.

Protein extraction was a multi-step process developed in this project that combined chemical and mechanical lysis steps to lyse both Gram-positive and Gram-negative cells.

Immediately after harvesting, cell cultures were centrifuged at $4^{\circ} \mathrm{C}$ and 7500 xg for 10 min . The resulting cell pellets were washed in 30 mL of a pH 7 buffer composed of 3 mM KCl , $1.5 \mathrm{mM} \mathrm{KH}{ }_{2} \mathrm{PO}_{4}, 68 \mathrm{mM} \mathrm{NaCl}$, and $14 \mathrm{mM} \mathrm{NaH}_{2} \mathrm{PO}_{4}$, and centrifuged again. Each cell pellet was resuspended in 2 mL of 10 mM Tris- $\mathrm{HCl} \mathrm{pH} 8,1.5 \mathrm{mM} \mathrm{MgCl}_{2}, 10 \mathrm{mM} \mathrm{KCl}, 0.5$ mM dithiothreitol, 0.5 mM Pefabloc SC (protease inhibitor, Roche Applied Science, Indianapolis, IN, USA), and 0.1% SDS. Cells were then sonicated on ice using a 550 Sonic Dismembrator probe (Fisher Scientific, Hampton, NH, USA) vibrating at 20 kHz for 5 minutes, in cycles of 1 second on and 2 seconds off. After sonication, the suspension was centrifuged at $4^{\circ} \mathrm{C}$ and $7500 \times \mathrm{g}$ for 15 min and the supernatant isolated. The pellet was resuspended in 2 mL of a second lysis solution, containing 10 mM Tris- $\mathrm{HCl} \mathrm{pH} \mathrm{8,1} \mathrm{mM}$ EDTA disodium salt, 0.05 mM dithiothreitol, 0.5 mM Pefabloc SC, 10% glycerol and 1 $\mathrm{mg} / \mathrm{mL}$ lysozyme. This was sonicated and centrifuged as before. The two supernatants were combined, and the protein concentration of the final lysate was determined using the Bradford-based protein assay from Bio-Rad (Hercules, CA, USA). Protein samples were divided into aliquots of $200 \mu \mathrm{~L}$ and stored at $-80^{\circ} \mathrm{C}$ until 2 DE analysis.

A volume of sample containing protein sufficient for one 2 DE gel ($1000 \mu \mathrm{~g}$) was precipitated to further purify the sample before electrophoresis. Large sample loadings were used in order to increase the amount of protein per spot and facilitate MS analyses. Ten volumes of ethanol were added to one volume of sample and the final solution was incubated at $-80^{\circ} \mathrm{C}$ for 20 min . After incubation, the precipitated sample was centrifuged at $10,000 \times \mathrm{g}$ for 3 min and the supernatant removed by pipette. Sample pellets were air-dried until no ethanol residue remained. After this step, samples were ready for rehydration and electrophoresis. The electrophoretic protocols were previously described in detail by

Pferdeort et al. ${ }^{310}$. Briefly, isoelectric focusing was carried out using $18 \mathrm{~cm}, \mathrm{pH} 4-7$ Immobiline IPG gels (GE Healthcare, Piscataway, NJ, USA) in a Multiphor II (GE Healthcare). SDS-PAGE was carried out in 12% acrylamide gels ($18 \times 16 \times 0.1 \mathrm{~cm}$) in a Protean II xi Multicell (Bio-Rad). After electrophoresis, gels were stained with the PlusOne Silver Staining Kit (GE Healthcare) before imaging. In the gels from which spots were excised, Sypro Ruby (Invitrogen, Carlsbad, CA, USA) and Simply Blue SafeStain (Invitrogen) were also used, following the manufacturers' protocols. Gel images were generated using a UVP Bioimaging System (UVP, Upland, CA, USA). A minimum of four replicate gels for each treatment and control were analyzed using Proteomweaver v. 3.0 analysis software (Definiens AG, Munich, Germany). Spots present in at least three replicates were considered true protein spots. Differential regulation of protein was determined by a change in spot volume of at least two fold.

After analyzing the gel patterns, differentially expressed proteins were chosen for identification and cut out of the gels using $1.5-\mathrm{mm}$ spot pickers (The Gel Company, San Francisco, CA, USA). Digestion, mass spectrometry and database searching were performed according to the methods previously described by Choe et al. ${ }^{311}$. In brief, proteins in gel plugs were digested in an Investigator ProGest (Genomic Solutions, Ann Arbor, MI, USA). Digests were de-salted and spotted onto target plates with $5 \mathrm{mg} / \mathrm{ml}$ alpha-cyano-4hydroxycinnamic acid. MALDI-MS/MS was performed on a 4700 Proteomics Analyzer running v2.0 software (Applied Biosystems, Framingham, MA, USA). MS was performed in positive ion reflector mode over $850-4000 \mathrm{~m} / \mathrm{z}$ mass range, with 1000 laser shots per spot and internal calibration. Up to five of the most intense peaks, excluding trypsin autolysis peaks, were selected from each MS spectrum for MS/MS. Tandem MS was performed in positive
ion mode with 5000 laser shots, 1 kV collision energy, air at $1 \mathrm{E}^{-6}$ torr as the collision gas, and default calibration. GPS Explorer (v2.0, Applied Biosystems) was used as an interface between the raw data from the mass spectrometer and a local copy of the Mascot search engine (v1.9, Matrix Science, London, UK). A combined MS and MS/MS search was performed against a local copy of NCBInr (downloaded October 25, 2004). Searches were restricted to the Eubacteria taxonomy with 50 ppm MS and $0.3 \mathrm{Da} \mathrm{MS} / \mathrm{MS}$ mass tolerances, trypsin specificity allowing for one missed cleavage, and the following three variable modifications: methionine oxidation, cysteine modifications by iodoacetamide and acrylamide. All MS/MS peak lists belonging to the same parent mass were analyzed as one set in order to give the most accurate protein matches.

In addition, de novo sequencing was conducted on all datasets using Peaks Studio Version 3.1 (Bioinformatics Solutions, Waterloo, ON, Canada). De novo searches were performed for every protein, using their respective MS/MS data in the same set. The parameters used to generate peptide sequences were similar to the ones used in Mascot in order to keep the same level of confidence. Specifically, these parameters were tryptic digestion with one missed cleavage allowed, 0.1 Da MS and MS/MS mass tolerances, carbamidomethylation of cysteine and oxidation of methionine, and allowance for a maximum of three modifications per peptide. De novo peptide sequences obtained in this manner were used for a hybrid de novo sequence-guided MS/MS search with the Peaks protein ID tool, a process similar to an MS-BLAST search. These searches were conducted against the NCBInr database, with taxonomies restricted to Bacteria, Archaea, "others", and "unrelated", with a monoisotopic mass search type. The "others" and "unrelated" taxons were used in order to cover important datasets such as proteins found in recent metagenomics projects.

A second search was performed for all datasets in order to estimate the rate of falsepositive identification. This search used the same de novo sequencing parameters, but the searches were conducted against the entire NCBInr database in order to find peptides that would match more significantly to proteins coming from eukaryotic organisms. If a pair of peptides matched a eukaryotic protein with a higher significance, then it was categorized as a potential false positive. The number of potential false positive peptides was divided by the number of total peptides identified to obtain a rate of false positives.

IV.III. Results and Discussion

IV.III.I. Culture Growth

OD measurements (data not shown) showed that cadmium-shocked cultures had slower growth rates than the controls but that the OD still increased. At the time of cadmium addition, the OD 600 was around 3.8 . After 3 h of cadmium shock, the OD 600 for the control cultures was around 5.2 , while that of the cadmium-treated cultures was 4.0.

IV.III.II. Protein Expression Visualization

Images of 2 DE gels from Cd-treated cultures are shown in Figure 5. More than 500 wellresolved spots were detected in each gel. The protein expression analysis was performed in a temporal manner, so that each cadmium treatment was normalized against the control at the same time point. The protein profile in the culture changed significantly within the first 15 min, and continued changes were noted over the entire 3-h post-perturbation period. The early response to cadmium addition was the up-regulation of a large set of proteins - nearly 15% of the total number of proteins detected (Table 2). A substantial number of proteins were present at lower levels in cadmium-exposed cultures, but, overall, more proteins were
up-regulated in response to this environmental change. The observation of up- and downregulation of proteins due to cadmium exposure shows that cadmium can have both stimulatory and inhibitory effects, as has been noted previously ${ }^{312,313}$. More than 100 protein expression changes relative to control cultures were observed at each sampling time, consistent with the magnitude of changes (up and down) reported in proteomic studies on cadmium exposure of Saccharomyces cerevisiae ${ }^{314}$ and Schizosaccharomyces pombe ${ }^{315}$, and with a transcriptomic investigation of the response of an ectomycorrhizal fungus ${ }^{316}$.

An important observation is that the protein levels of at least 100 proteins had changed (by at least two fold) within 15 min of exposure to cadmium. A smaller number of proteins with altered expression levels relative to the control were noted after the other exposure times. Comparison of the proteomes after 15 min and 3 h of Cd exposure revealed major differences, indicating that the cadmium shock led to rapid physiological responses as well as longer term changes. These observations are in contrast to the trend reported for S. cerevisiae, for which exposure for 15 min yielded a similar pattern of protein expression as noted for a $60-\mathrm{min}$ exposure ${ }^{314}$.

When the temporal expression patterns were tracked for each of the differentially expressed proteins, several trends were evident. However, the three most frequent patterns, accounting for approximately 90% of the differentially expressed proteins, were: (a) differential expression (increase or decrease) after 15 min exposure, and restoration to control levels after 2 h ; (b) differential expression at all sampling points; and (c) control levels of expression until around 2 h of exposure, then differential expression (Table 3). The first behavior was also reported in a proteomic study of cadmium shock in S. pombe e^{315}.

IV.III.III. Protein Identification and Functional Classification

From the four pairs of gels (Cd-exposed and control, at each time point), approximately 200 unique protein spots were excised, digested, and analyzed by MS/MS. From these, 189 sets of MS/MS data were obtained. A strategy based on sequence homology was explored initially in which repeated identification of proteins from different bacteria within the list of best matches was taken as initial evidence for the identification of the sample protein. A more thorough approach that has been successful for unsequenced species was to use MS/MS data to generate de novo peptide sequences followed by BLAST searches of the NCBInr database ${ }^{302,317}$. A critical tool in this effort was the recently developed commercial software Peaks ${ }^{318}$, which accomplished both de novo sequencing and MS-BLAST searches. The Mascot-based homology search yielded the identification of 50 proteins, which were then used as pseudo-positive controls for the de novo sequencing approach.

De novo sequences were obtained for all 50 of the datasets for which protein identifications had been obtained with Mascot. These sequences were then used in an MS-BLAST search using the parameters described in the Methods section and the same identifications previously produced by Mascot were obtained again in all cases. In some instances, the highest scoring match was not the identical database entry (e.g., different gi), but the two matches were the same protein, with the same cellular function, but in different organisms. The resulting scores were different, even though the parameters used were the same. This happened due to the completely different searching and scoring algorithms and was thus expected. Given that Peaks could confidently identify all of the proteins that were identified by Mascot, the remaining sets of MS/MS data were then analyzed with Peaks. MS-BLAST identifications with confidence levels of at least 90% were obtained for a total of 158
proteins, 109 of which were unique. All protein identifications were made on the basis of two or more peptides. These are listed in Appendix II, along with the assignment to a biological process (obtained from Gene Ontologies (http://www.godatabase.org/cgibin/amigo/go.cgi)), trends observed during the whole shock (resistance, tolerance or adaptation), and up- or down-regulation. Appendix II also lists the organism from which the database entry was obtained. It is not the case that our culture contained these organisms; instead, the sequences of the proteins expressed by our culture are highly homologous to those presented. Nearly all proteins identified in this study were bacterial. Although the searches included Archaea and important related databases obtained through metagenomics projects, no significant hits were obtained from these, with the exception of three synthetic constructs (proteins 15, 39 and 90 in Appendix II).

Nineteen proteins were found in two or more 2DE gel spots. In some cases, these proteins were in neighboring spots with similar molecular weight and slightly different isoelectric point values. In pure culture studies, such patterns are attributed to protein isoforms or posttranslational or other modifications. However, in other cases (e.g., proteins 25 and 53 in Appendix II), the same protein identification (in different database entries) was obtained from gel spots with significantly different molecular weight and isoelectric point. Since metaproteomics studies inherently include the possibility that different organisms will produce variants of a protein with the same function, proteins from spatially distinct gel spots were classified as unique. Nineteen such proteins were identified here. This classification is a hypothesis that could be investigated further (e.g., by acquiring more complete protein coverage). Proteins in 31 spots for which MS/MS data had been obtained could not be identified through the de novo approach due to difficulties in finding an accurate peptide
sequence.
Appendix II also presents the molecular weight and isolelectric point of each protein, gi and accession numbers, protein scores, and mass errors. The peptides with the highest score contributing to the identification are also listed along with the corresponding mass/charge ratio, percent coverage, and potential to be a false positive identification. A false positive rate, calculated based on the total number of peptides identified, was 5.7%. This value is comparable to those found in other studies ${ }^{308,319}$ and can be considered good because of the very large decoy database.

The functional categories and the distribution of the 109 unique differentially expressed proteins are shown in Figure 6 and related to the primary temporal protein expression patterns in Appendix II. It is interesting and important to note that not all proteins in a functional category displayed the same pattern of response to cadmium exposure. For example, defense proteins were found to be differentially expressed for the short term only, at the longest time only, and at both short and long times. Similarly, while some metabolic proteins were found to be differentially expressed only over the first 15 minutes, others were differentially expressed over the entire three-hour monitoring period. The short-term response was also observed in previous cadmium stress studies done on S. pombe by Bae et al. ${ }^{315}$ (proteomics) and on microbial communities by Lorenz et al. ${ }^{293}$ (soil enzyme activities). Another interesting observation concerns ribosomal proteins that were only differentially regulated during short-term exposure and then restored their normal levels of expression, also observed by Bae et al. ${ }^{315}$ in the S. pombe study.

IV.III.IV. Cadmium Shock Interpretation

Two of the known mechanisms for cadmium detoxification used by bacteria are ATPase
(ABC- or P-type) and chemiosmotic pumps. The latter includes several types of mechanisms: the major facilitator superfamily, the cation diffusion facilitator, and the resistance nodulation division, among others ${ }^{320,} 321$. Among the differentially expressed proteins identified in this study, we observed several of the proteins related to these pumps, including P-type and ABC ATPases (e.g. proteins 22, 25, 37, 59 and 104 in Appendix II). Nies ${ }^{320}$ observed that most prokaryotic genomes only encode one mechanism of heavy metal resistance, and that it is rare to find an organism with all of the efflux pumps. The detection here of proteins from several efflux pumps is consistent with the concept of the microbial community as a metaorganism.

While there are no similar reports of the effect of cadmium exposure on mixed cultures, it is of interest to compare the results from this study with those obtained from the limited number of pure culture experiments in the literature. Many proteins identified here were also found previously in other cadmium shock studies ${ }^{313-316}$, including dehydrogenases ${ }^{313,314,316}$ (protein 100), ribosomal proteins ${ }^{314-316}$ (proteins 62 and 90), ATPases ${ }^{314-316}$ (proteins 22, 25, 37, 59 and 104), oxidoreductases ${ }^{314,315}$ (proteins 47 and 65), catalase ${ }^{314,315}$ (protein 26), superoxide dismutase ${ }^{314,315}$ (protein 64), inorganic pyrophosphatase ${ }^{314,316}$ (protein 43), and transcriptional regulators ${ }^{314,316}$ (protein 97).

IV.III.V. Temporal Expression Patterns

Differentially expressed proteins found in this study were classified according to one of the three behaviors presented in Table 3. Those behaviors may be correlated to the different mechanisms that the members of the culture use to survive the cadmium shock. The "shortterm only" type of response suggests a mechanism of resistance to the cadmium in the environment. Proteins presenting that behavior include those involved in nucleic acid and
protein synthesis and xenobiotic metabolism. The "long-term only" response indicates a phase of adaptation and that group contains mostly membrane proteins involved in transport. The last behavior, an immediate response that is sustained, may indicate tolerance of the metal during the shock. Representatives of all protein functionalities were found in this group. Some proteins found here are of special interest in the response to cadmium shock and are discussed in the following paragraphs.

ATPases and other ion transport proteins. ATP synthase (ATPase) is a complex membrane protein involved in ATP synthesis and hydrolysis. It is composed of several subunits functioning as a motor ${ }^{322}$ that pumps ions in and out of the cells. Three of those subunits were identified here (proteins $22,25,37,59$ and 104) and, interestingly, were found in eight different spots throughout the gels. As noted earlier, this distribution could be attributed to minor sequence differences that might be present in ATPases coming from different species in the community, to post-translational modifications, or to breakdown or truncation products. An important point is the combination of finding ATPases in many spots and their different regulation from all other membrane proteins. While the ATPases were found to follow the pattern of a short-term response, all other membrane proteins involved in secretion, according the Gene Ontologies functional classification, had a longerterm response. As described by Nies^{320}, ATPases should occur more frequently than other transport proteins since they are the only ones responsible for the detoxification of metalthiolate complexes, which appear to be the most common form of metals in the intracellular space ${ }^{323}$.

Another important group of proteins found here were secretion system proteins (e.g. proteins 14,53 and 103). These were found to be either up-regulated during the whole post-
shock period or towards the end of the experiment. This behavior may be related to ATPase activity. ATPases can pump ions into the periplasm but not outside of the cell ${ }^{320}$. According to Mitra et al. ${ }^{324}$, during the early stages of the cadmium shock, 75% of the bioavailable cadmium is in the periplasm, suggesting the need for secretion systems for detoxification. When the ATPase levels returned to pre-shock levels, then up-regulation of the secretion systems was noted.

Macromolecular synthesis and repair proteins. Cadmium is known to enhance the genotoxicity of DNA-damaging agents ${ }^{325}$. A suggested mechanism for this phenomenon is cadmium binding to methyl group acceptor sites in DNA methylases (methyltranferases), inhibiting their activity and causing DNA damage. Consistent with this, an initial increase followed by decrease in the level of DNA methylase (protein 89) was observed. Several DNA repair proteins (proteins 20 and 76) were also rapidly up-regulated. This observation can be associated with the fact that cadmium is known to induce DNA single-strand breakage ${ }^{325}$. Finally, we observed an immediate up-regulation of two ribosomal proteins (proteins 62 and 90). A similar response was noted by Bae and Chen ${ }^{315}$ for S. pombe; these researchers hypothesized that this response could be attributed to the increased demand for protein synthesis at early stages of the shock. A later reduction of ribosomal protein synthesis is thought to permit cells to save energy and resources for other mechanisms involved in the response to cadmium stress.

Metabolic proteins. Proteins from this group were equally represented in all three trends: resistance, sustained tolerance, and adaptation. It is interesting to point out that proteins involved in sugar metabolism only followed the resistance and tolerance patterns, showing their rapid response to the shock. Cadmium is known to inhibit cell respiration ${ }^{326}$, primarily
via mechanisms prior to the entry of electrons into the electron transport system ${ }^{327}$. We observed the down-regulation of several glycolytic enzymes, e.g., glyceraldehyde-3phosphate dehydrogenase (protein 33) and enolase (protein 1). This could be due to the fact that cadmium can bind cysteine residues ${ }^{328}$, leading to a shift in protein molecular weight and making the original spot observed in the control have reduced intensity.

Metallothioneins. Metallothioneins were not detected in this study, although they are a known mechanism for metal resistance via complexation ${ }^{321}$. This lack of detection might be due to their small molecular weight (typically 6 kDa) or it may be the case that metallothioneins were not expressed in this culture; cadmium complexation appears to have a higher energetic cost than cadmium efflux ${ }^{323}$. An interesting observation is that most bacterial metallothioneins are observed in cyanobacteria, and very few metallothioneins have been described among heteretrophic bacteria.

IV.IV. Conclusions

Proteomic analysis revealed significant shifts in the microbial community physiology within 15 min of cadmium exposure, a rapid change not detectable using the phylogenetic profiling tools common to molecular microbial ecology. Furthermore, the proteome of the cells exposed to cadmium for longer times was significantly different from that of the cells exposed for 15 min , suggesting that the community's short-, medium-, and long-term responses to this stress were different. These results demonstrate that 2DE can be used to separate and resolve hundreds of proteins from a microbial community of more than 50 species, and that it is possible to identify proteins from a mixture of bacteria with unsequenced genomes. The protein identified here, and their temporal expression patterns,
not only provided confirmation of the toxicity of cadmium to the organisms in the community but also yielded insights into mechanisms of tolerance and resistance. Evidence for altered metabolism was also obtained. Clearly, the application of proteomics tools can provide important insights into the physiology of microbial communities, thus establishing proteomics as a viable tool in microbial ecology.
285. Lacerda, C. M.; Choe, L. H.; Reardon, K. F., Metaproteomic Analysis of a Bacterial Community Response to Cadmium Exposure. J Proteome Res 2007.
286. Dumont, M. G.; Murrell, J. C., Stable isotope probing - linking microbial identity to function. Nature Reviews Microbiology 2005, 3, (6), 499-504.
287. Ogunseitan, O., Microbial diversity: form and function in prokaryotes. Blackwell Pub.: Malden, MA, 2005; p xv, 292, [8] of plates.
288. Pernthaler, A.; Amann, R., Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Applied and Environmental Microbiology 2004, 70, (9), 5426-5433.
289. Rochelle, P. A., Environmental molecular microbiology: protocols and applications. Horizon Scientific: Wymondham, 2001; p x, 264.
290. Sharkey, F. H.; Banat, I. M.; Marchant, R., Detection and quantification of gene expression in environmental bacteriology. Applied and Environmental Microbiology 2004, 70, (7), 3795-3806.
291. Valenzuela, L.; Chi, A.; Beard, S., et al., Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnol Adv 2006, 24, (2), 197-211.
292. Schloss, P. D.; Handelsman, J., Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biology 2005, 6, (8), -.
293. Lorenz, N.; Hintemann, T.; Kramarewa, T., et al., Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biology \& Biochemistry 2006, 38, (6), 1430-1437.
294. Martin, H. G.; Ivanova, N.; Kunin, V., et al., Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nature Biotechnology 2006, 24, (10), 1263-1269.
295. Venter, J. C.; Remington, K.; Heidelberg, J. F., et al., Environmental genome shotgun sequencing of the Sargasso Sea. Science 2004, 304, (5667), 66-74.
296. Tyson, G. W.; Chapman, J.; Hugenholtz, P., et al., Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 2004, 428, (6978), 37-43.
297. Schmeisser, C.; Stockigt, C.; Raasch, C., et al., Metagenome survey of biofilms in drinking-water networks. Applied and Environmental Microbiology 2003, 69, (12), 72987309.
298. Lehninger, A. L., Bioenergetics: the molecular basis of biological energy transformations. W. A. Benjamin: New York, 1965; p xv, 258.
299. Lipton, M. S.; Pasa-Tolic, L.; Anderson, G. A., et al., Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proceedings of the National Academy of Sciences of the United States of America 2002, 99, (17), 11049-11054.
300. Marrero, J.; Gonzalez, L. J.; Sanchez, A., et al., Effect of high concentration of Co (II) on Enterobacter liquefaciens strain C-1: A bacterium highly resistant to heavy metals with an unknown genome. Proteomics 2004, 4, (5), 1265-1279.
301. Reardon, K. F.; Kim, K. H., Two-dimensional electrophoresis analysis of protein production during growth of Pseudomonas putida F1 on toluene, phenol, and their mixture. Electrophoresis 2002, 23, (14), 2233-2241.
302. Shevchenko, A.; Sunyaev, S.; Loboda, A., et al., Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time of flight mass spectrometry and BLAST homology searching. Analytical Chemistry 2001, 73, (9), 1917-1926.
303. Schulze, W. X.; Gleixner, G.; Kaiser, K., et al., A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia 2005, 142, (3), 335-343.
304. Wilmes, P.; Bond, P. L., Towards exposure of elusive metabolic mixed-culture processes: the application of metaproteomic analyses to activated sludge. Water Science and Technology 2006, 54, (1), 217-226.
305. Wilmes, P.; Bond, P. L., Metaproteomics: studying functional gene expression in microbial ecosystems. Trends in Microbiology 2006, 14, (2), 92-97.
306. Wilmes, P.; Bond, P. L., The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environmental Microbiology 2004, 6, (9), 911-920.
307. Kan, J.; Hanson, T. E.; Ginter, J. M., et al., Metaproteomic analysis of Chesapeake Bay microbial communities. Saline Systems 2005, 1, 7.
308. Ram, R. J.; VerBerkmoes, N. C.; Thelen, M. P., et al., Community proteomics of a natural microbial biofilm. Science 2005, 308, (5730), 1915-1920.
309. Hanson, R.; Sans, C.; Reardon, K. F., et al., Monitoring microbial community dynamics to environmental perturbations using DGGE and CE-SSCP.
310. Pferdeort, V. A.; Wood, T. K.; Reardon, K. F., Proteomic changes in Escherichia coli TG1 after metabolic engineering for enhanced trichloroethene biodegradation. Proteomics 2003, 3, (6), 1066-1069.
311. Choe, L. H.; Aggarwal, K.; Franck, Z., et al., A comparison of the consistency of proteome quantitation using two-dimensional electrophoresis and shotgun isobaric tagging in Escherichia coli cells. Electrophoresis 2005, 26, (12), 2437-2449.
312. Hultberg, M., Rhizobacterial glutathione levels as affected by starvation and cadmium exposure. Current Microbiology 1998, 37, (5), 301-305.
313. Stuczynski, T. I.; McCarty, G. W.; Siebielec, G., Response of soil microbiological activities to cadmium, lead, and zinc salt amendments. Journal of Environmental Quality 2003, 32, (4), 1346-1355.
314. Vido, K.; Spector, D.; Lagniel, G., et al., A proteome analysis of the cadmium response in Saccharomyces cerevisiae. Journal of Biological Chemistry 2001, 276, (11), 8469-8474.
315. Bae, W.; Chen, X., Proteomic study for the cellular responses to $\mathrm{Cd} 2+$ in Schizosaccharomyces pombe through amino acid-coded mass tagging and liquid chromatography tandem mass spectrometry. Molecular \& Cellular Proteomics 2004, 3, (6), 596-607.
316. Jacob, C.; Courbot, M. L.; Martin, F., et al., Transcriptomic responses to cadmium in the ectomycorrhizal fungus Paxillus involutus. Febs Letters 2004, 576, (3), 423-427.
317. Habermann, B.; Oegema, J.; Sunyaev, S., et al., The power and the limitations of cross-species protein identification by mass spectrometry-driven sequence similarity searches. Molecular \& Cellular Proteomics 2004, 3, (3), 238-249.
318. Ma, B.; Zhang, K. Z.; Hendrie, C., et al., PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Communications in Mass Spectrometry 2003, 17, (20), 2337-2342.
319. Lee, J.; Cao, L.; Ow, S. Y., et al., Proteome changes after metabolic engineering to enhance aerobic mineralization of cis-1,2-dichloroethylene. Journal of Proteome Research 2006, 5, (6), 1388-1397.
320. Nies, D. H., Efflux-mediated heavy metal resistance in prokaryotes. Fems Microbiology Reviews 2003, 27, (2-3), 313-339.
321. Silver, S.; Phung, L. T., A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. Journal of Industrial Microbiology \& Biotechnology 2005, 32, (11-12), 587-605.
322. Yoshida, M.; Muneyuki, E.; Hisabori, T., ATP synthase - A marvellous rotary engine of the cell. Nature Reviews Molecular Cell Biology 2001, 2, (9), 669-677.
323. Nies, D. H., Microbial heavy-metal resistance. Applied Microbiology and Biotechnology 1999, 51, (6), 730-750.
324. Mitra, R. S.; Gray, R. H.; Chin, B., et al., Molecular Mechanisms of Accommodation in Escherichia-Coli to Toxic Levels of Cd2+. Journal of Bacteriology 1975, 121, (3), 11801188.
325. Hartwig, A., Role of DNA-Repair Inhibition in Lead-Induced and Cadmium-Induced Genotoxicity - a Review. Environmental Health Perspectives 1994, 102, 45-50.
326. Morozzi, G.; Cenci, G.; Scardazza, F., et al., Cadmium Uptake by Growing-Cells of Gram-Positive and Gram-Negative Bacteria. Microbios 1986, 48, (194), 27-35.
327. Surowitz, K. G.; Titus, J. A.; Pfister, R. M., Effects of Cadmium Accumulation on Growth and Respiration of a Cadmium-Sensitive Strain of Bacillus-Subtilis and a Selected Cadmium Resistant Mutant. Archives of Microbiology 1984, 140, (2-3), 107-112.
328. Stepanauskas, R.; Glenn, T. C.; Jagoe, C. H., et al., Elevated microbial tolerance to metals and antibiotics in metal-contaminated industrial environments. Environmental Science \& Technology 2005, 39, (10), 3671-3678.

Figure 5: Silver-stained 2DE gel images from the microbial community following the addition of $10 \mathrm{mg} / \mathrm{L}$ cadmium. Pink circles represent up-regulated proteins, while blue circles represent down-regulated proteins relative to the controls.

Figure 6: Gene Ontology functional classification of all 109 differentially expressed proteins identified in the cadmium shock experiment.

Table 2: Summary of protein changes in cadmium-exposed vs. control cultures (at least two-fold change from control).

Time point	Down-regulated proteins	Up-regulated proteins	Total proteins detected
15 min	$4 \%(19)$	$14 \%(72)$	512
1 h	$5 \%(25)$	$10 \%(52)$	524
2 h	$2 \%(13)$	$10 \%(55)$	568
3 h	$3 \%(15)$	$8 \%(41)$	530

Table 3: Summary of the three major protein expression patterns observed following exposure of the microbial community to cadmium. The temporal response patterns represent up- or down-regulation of each cadmium treatment normalized against the control at the same time point.

Temporal response pattern		Proteins in trend30%	Protein functions
Short-term only RESISTANCE			- Metabolism - Electron Transport - Cell communication - Structural
Long-term only ADAPTATION		11\%	- Secretion - Localization - Metabolism
Short- and longterm TOLERANCE		50\%	- All classes

V. QUANTITATIVE PROTEOMIC ANALYSIS OF A SOIL BACTERIUM UNDER DIFFERENT LEVELS OF CADMIUM STRESS

V.I. Introduction

Quantitative proteomics, as described in the previous chapter, can be accomplished by in vitro or in vivo ${ }^{329}$ labeling techniques, at the peptide- or protein-level. Due to the relative ease of growth of bacterial cultures, an important quantification alternative is metabolic labeling, or in vivo incorporation of stable isotopes into proteins. In this technique, proteins are labeled as they are synthesized, due to the presence of stable isotopes in the growth medium, i.e., essential components such as amino acids, carbon or nitrogen are supplied as heavy isotopes, leading to synthesis of proteins which only have heavy isotopes in their compositions. Heavy isotopes commonly used for metabolic labeling are ${ }^{15} \mathrm{~N}$ (as ammonium sulfate in the medium) and ${ }^{13} \mathrm{C}$ (as ${ }^{13} \mathrm{C}_{6}$ glucose, arginine or lysine). The specific case where heavy amino acids are incorporated directly into the medium is known as SILAC (stable isotope labeling with amino acids in culture $)^{330,331}$. Small carbon- or nitrogen-containing nutrients (e.g., glucose or ammonium sulfate) are the most common options supplied in defined minimal media.

Proteomic experimental design for metabolic labeling allows for multiplexing of usually two or three samples (e.g., one unlabeled, one labeled with ${ }^{13} \mathrm{C}$, and one with ${ }^{15} \mathrm{~N}$). Each treatment is cultivated with a different isotope and then combined during cell harvesting or
protein analysis. Sample combination during cell harvesting gives the advantage of reducing experimental error, or at least making it identical for all treatments, for all downstream proteomics steps. However, combination of samples at the protein level allows for generation of single-treatment protein samples that can be used in other complementary analyses. During LC/MS analysis, light and heavy peptides elute at the same retention time, making it easy to compare their mass spectra. The peaks representing the heavy isotopes should be localized in a heavier m / z region in the spectra, based on the number of heavy isotopes found in the peptide being analyzed. This method of targeting heavy isotopes allows for accurate protein quantification at the peptide level and increases the confidence of a protein identification by adding a stoichiometric constraint to the identification. Quantification software packages to use with metabolic labeling are, so far, limited. Here, we propose a manual analysis method, as well as using Mascot, which allows for detection of light and heavy isotopes in the search results.

In this study, we isolated an organism with high cadmium resistance and sought to answer the following research questions. How does cadmium concentration affect proteomes and cadmium resistance mechanisms? Can we successfully quantify the cadmium response of the isolate using metabolic labeling and a combination of proteomic approaches? How does the response of the isolate compare to that of the mixed culture? The central idea is to use proteomics to detect differences between cadmium resistance mechanisms. In our previous metaproteomics study (Chapter 3), we evaluated the short-term effect of cadmium on a community of different types of bacteria. Half of the proteome changes in that study were metabolic proteins, and 15% were transport-related proteins. In this case, we measure the effect of different doses of cadmium on an organism capable of surviving in a wide range of - 104 -
cadmium concentrations. The isolate is adapted to growing in the presence of cadmium, which leads to possible new tolerance mechanisms other than transport-related. This bacterium was identified by 16 S rDNA sequencing as a type of Burkholderia cepacia. We named it strain Cd44 in reference to its isolation procedure, further discussed in the experimental section.

V.II. Experimental Procedures

V.II.I. Growth medium

We developed a growth medium optimized to avoid cadmium precipitation, adapted from previous media studies available in the literature ${ }^{332}$. The final medium composition was 18 g / L glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right), 4 \mathrm{~g} / \mathrm{L}$ HEPES buffer $\left(\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\right), 4 \mathrm{~g} / \mathrm{L}$ ammonium sulfate $\left(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right.$ as either ${ }^{14} \mathrm{~N}$ or $\left.{ }^{15} \mathrm{~N}\right), 2 \mathrm{~g} / \mathrm{L}$ sodium pyrophosphate $\left(\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}\right), 0.5 \mathrm{~g} / \mathrm{L}$ magnesium sulfate heptahydrate $\left(\mathrm{MgSO}_{4} * 7 \mathrm{H}_{2} \mathrm{O}\right), 5 \mathrm{mg} / \mathrm{L}$ ferrous sulfate heptahydrate $\left(\mathrm{FeSO}_{4} * 7 \mathrm{H}_{2} \mathrm{O}\right)$, at pH 6 . Glucose and ammonium sulfate were autoclaved separately.

V.II.II. Microorganism

The pure species used in this study was isolated from a mixed culture maintained in a continuous reactor. Cadmium as $\mathrm{Cl}_{2} \mathrm{Cd} * 2.5 \mathrm{H}_{2} \mathrm{O}$ was added to media plates in a range of concentrations: $0,0.02,0.04,0.22,0.44,0.66 \mathrm{mM}$. Inocula from the continuous reactor mixed culture were cultivated on these plates, and very few colonies grew in the presence of higher concentrations of cadmium. Colonies from the 0.44 and $0.66 \mathrm{mM}, \mathrm{Cd}$ plates were transferred to new plates containing $10 \mathrm{~g} / \mathrm{L}$ tryptic soy broth, without cadmium. New - 105 -
colonies from the rich-medium plates were transferred to defined medium with cadmium. The objective of this series of sequential plating was to ensure that the isolated species had the necessary machinery to survive in high cadmium concentrations even after cultivation in a nutrient-rich environment. The isolates were considered to be pure species after eight sequential transfers. No isolates survived at 0.66 mM Cd after all the transfers, and further characterization of the 0.44 mMCd isolates proceeded. A PCR-cloning approach of the 16 S rDNA molecule of the isolates was used prior to DNA sequencing. DNA was extracted using UltraClean Kit (MoBio Laboratories Inc., Carlsbad, CA, USA) and 16S gene was amplified using primers 8 F and 1492 R . Cloning was performed using the TOPO TA Cloning Kit (Invitrogen) and cloned inserts were amplified using M13 PCR. The PCR products were verified on an agarose gel, and had their concentrations determined prior to mixing with T7 sequencing primer. Sequencing was performed at the Macromolecular Resources Facility at CSU. Based on 16 S rDNA sequences, we identified the isolate as a strain of Burkholderia cepacia on NCBI with a 99.9% confidence. Due to its ability to grow on $0.44 \mathrm{mM} \mathrm{Cd}^{2+}$, this organism was given the strain name of Cd 44 and was used in the remainder of this study. Another interesting feature to note is that colonies of this bacterium grown on high cadmium concentrations presented a very distinct dark blue phenotype, shown in Figure 7. This color was clearly visible when the colony reached a large size ($2-3 \mathrm{~mm}$ diameter), and was only observed on the cadmium-containing plates. B. cepacia is a Gram-negative bacterium related to the Pseudomonas genus ${ }^{333}$. The cepacia designation describes a complex of a number of species, almost always related with lung diseases.

V.II.III. Growth conditions and metabolic labeling

For the metabolic labeling study, duplicate batch cultures of this bacterium were used. In order to compare the effect of different cadmium doses, we used control cultures (without cadmium $)$, low cadmium concentration cultures $(0.04 \mathrm{mM})$, and high cadmium concentration cultures $(0.44 \mathrm{mM})$, all cultivated in the minimal medium described above. Two pair-wise comparisons were performed, with the low cadmium cultivations conducted with $\left({ }^{15} \mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$. In other words, the low cadmium treatment $\left({ }^{15} \mathrm{~N}\right.$ isotope incorporated) was compared with the high cadmium treatment and with the control, both grown in ${ }^{14} \mathrm{~N}$ medium. All cultures originated from a single colony on rich medium agar, and then transferred to 1 mL of defined minimal medium without cadmium in a test tube. Tube cultures were grown for approximately 3 days, and then were transferred to 500 mL shake flasks containing 200 mL of the appropriate medium. Flask cultures were grown approximately 60 h until midexponential phase or OD_{600} of 0.5 , at $25^{\circ} \mathrm{C}$ and 200 rpm .

V.II.IV. Protein extraction

Cell harvesting and protein extraction followed the protocol described by Pferdeort et al. ${ }^{334}$. Briefly, cell cultures were centrifuged at $4^{\circ} \mathrm{C}$ and 7500 xg for 10 min . The resulting cell pellets were washed in a pH 7 buffer and centrifuged again. Each cell pellet was resuspended in 2 mL of 10 mM Tris- $\mathrm{HCl} \mathrm{pH} 8,1.5 \mathrm{mM} \mathrm{MgCl} 2,10 \mathrm{mM} \mathrm{KCl}, 0.5 \mathrm{mM}$ dithiothreitol, 0.5 mM Pefabloc SC, and 0.1% SDS. Cells were then sonicated on ice using a 550 Sonic Dismembrator probe vibrating at 20 kHz for 5 min , in cycles of 1 s on and 2 s off. After sonication, the suspension was centrifuged at $4^{\circ} \mathrm{C}$ and $7500 \times \mathrm{g}$ for 15 min and the supernatant isolated. This procedure was previously described in the first protein extraction
step in Chapter 3. The protein concentration of the final lysates was determined using the bicinchonic acid (BCA) assay. Protein samples were divided into aliquots of $100 \mu \mathrm{~g}$ and stored at $-80{ }^{\circ} \mathrm{C} .{ }^{14} \mathrm{~N}$ and ${ }^{15} \mathrm{~N}$ samples were combined in equal amounts prior to shotgun analysis.

V.II.V. Shotgun proteomic workflow

Shotgun proteomics was the method of choice for the analysis of these samples. Complementary approaches were used (1DE and 2DE, followed by LC-MS/MS), but their low throughput and large sample requirements hindered the efficiency of the analysis. The tryptic digestion protocol used for the shotgun work is as follows. A total of $200 \mu \mathrm{~g}$ of sample ($100 \mu \mathrm{~g}$ each treatment) were precipitated in three volumes of cold acetone and incubated at $-20^{\circ} \mathrm{C}$ for at least 1 h . The sample was then resuspended in $70 \mu \mathrm{~L}$ of bicine buffer (100 mM bicine, pH 8.5) and $1 \mu \mathrm{~L}$ of 10% SDS solution. After complete resuspension, the sample was reduced with $5 \mu \mathrm{~L}$ of TCEP solution (200 mM TCEP in bicine buffer) for 10 min at $70^{\circ} \mathrm{C}$. The sample was then alkylated with $4 \mu \mathrm{~L}$ of IAA solution (1 M IAA in bicine buffer) for 1 h at room temperature. An additional $20 \mu \mathrm{~L}$ of TCEP solution was added (to reduce any excess IAA) and incubated for another hour at room temperature. A $400 \mu \mathrm{~L}$ aliquot of bicine buffer was added to the reduced and alkylated sample, making it ready for tryptic digestion. Four microliters of $1 \mathrm{mg} / \mathrm{mL}$ trypsin (in 1 mM HCl) was added to the $200 \mu \mathrm{~g}$ sample (in a total of $500 \mu \mathrm{~L}$ solution), and the mixture was incubated for 16 h at $40^{\circ} \mathrm{C}$. After digestion, the sample was vaccum dried to completion and resuspended in SCX buffer A. The chromatographic, mass spectrometric and database searching procedures were the same described in Chapter 4.

Data analysis procedures followed the sequence of steps described here. From the Mascot results, all peptides identified as significant were chosen for ${ }^{15} \mathrm{~N}$ constraint identification. All peptide information was gathered to construct the data analysis table: peptide sequence, respective reverse-phase fraction number, m / z and delta mass, expected value, number of missed cleavages. Using the composition calculator (from the proteomics toolkit available through http://db.systemsbiology.net) and the peptide sequences, the number of nitrogen atoms present in each peptide was determined. The expected position of the ${ }^{15} \mathrm{~N}$ isotope was calculated by dividing the number of nitrogen atoms by the charge of the peptide, then adding this to the m / z of the ${ }^{14} \mathrm{~N}$ peptide. At this exact position there should be a peak representing the ${ }^{15} \mathrm{~N}$ labeled peptide with the same sequence as the original peptide. In a constitutively expressed housekeeping protein, with correct labeling, both the ${ }^{14} \mathrm{~N}$ and ${ }^{15} \mathrm{~N}$ peaks should have the same height. If the ${ }^{14} \mathrm{~N}$ and ${ }^{15} \mathrm{~N}$ peaks have different heights, this peptide is part of a differentially expressed protein, and thus of interest in this study. If the ${ }^{15} \mathrm{~N}$ peak was completely absent, it might have been below the limit of detection of the instrument, the ${ }^{14} \mathrm{~N}$ peptide is a false positive, or the protein was completely down-regulated in the low cadmium case. The latter was considered only if all ${ }^{15} \mathrm{~N}$ peptides in an identified protein were absent or low. All peptides belonging to proteins of interest were used for $d e$ novo sequencing of their respective MS/MS info followed by MS-BLAST searching. All de novo sequences were compared with the ones given by Mascot and then combined with the results across fractions.

V.III. Results and Discussion

V.III.I. Protein Identification and Quantification

Using a shotgun approach, we identified 72 proteins with expression modulated (expression two times larger) by the presence of cadmium in the culture medium. These proteins and all data pertinent to their identification procedures are presented in Appendix III. Among the proteins whose expression changed to a greater extent in the low cadmium concentration $(0.04 \mathrm{mM})$ relative to the control, 8 were down-regulated and 16 up-regulated. Interestingly, all of these proteins had unchanged expression levels for the high cadmium concentration (relative to low cadmium), or were undetected. For the high cadmium concentration (0.44 mM), 18 proteins were down-regulated and 30 up-regulated relative to the low cadmium case. Among these proteins, 28 also had an expression change in the lower cadmium concentration, but this change was not as large. These proteins are identified in the complete data table. The false positive identification rate was calculated using a decoy database search and reached a total of 3.19%, corresponding to the identification of approximately two proteins for our complete dataset.

Identification of proteins from these samples was especially complicated. The proteins extracted from the cells cultivated in the presence of cadmium were unusually resistant to protein digestion. This was observed by the real-time monitoring of digestion protocols with an assay that measures decreasing protein fluorescence as it is digested (LavaDigest, Fluorotechnics, Sydney, Australia). Several protocol optimization steps were necessary to perform this experiment, and the optimal digest was obtained using trypsin as the protease, but tris-2-carboxyethyl phosphine (TCEP), instead of dithiothreitol (DTT), for the reducing
agent. A possible explanation for this is based on the fact that DTT uses its thiol groups to perform sample reduction, and thus that reduction could potentially be affected by cadmium since interaction of cadmium with polythiols is particularly strong and of biological importance ${ }^{335}$, and DTT binds to cadmium as well as with peptides containing sulfhydryl groups ${ }^{336}$. However, the possibility that cadmium salts added to culture medium might be carried over to the cell lysate and there bind nonspecifically to proteins is small ${ }^{337}$. From the observations made in this experiment, it seems more likely that cadmium must be bound to disulfide-containing proteins as they are synthesized. This can also affect protein identification searches. We created variable posttranslational modifications, containing the molecular weight of one or two cadmium ions added to amino acids, to perform database searching. These searches did not identify any protein significantly, although it is possible that the scores were highly penalized by such complex variable modifications.

The quantification procedure used here is functional, but the manual analysis has a very low throughput and is subject to errors, especially regarding quantification of the correct isotopes in the peptide isotopic distribution. In addition, quantification of complete downregulation of a labeled protein is not accurate since we count on the ${ }^{15} \mathrm{~N}$ constraint to consider an identification as true. As a side note, the most current version of Mascot performs ${ }^{15} \mathrm{~N}$ metabolic labeling quantification, by searching for the labeled peptides in addition to unlabeled ones, for use as an identification constraint. However, it does not provide the actual peptide amounts or ratios of the peptides found.

V.III.II. Functional Classification and Biological Interpretation

All proteins found in this study were classified according to their functionality, and plotted on graphs according to differential expression based on cadmium concentration (Figure 8). It is interesting to note that for efficient cell growth in a very low cadmium concentration, proteins involved in protein metabolism are the most often induced/repressed. Proteins involved in cellular defense and energy reserve metabolism also play an important role. At high cadmium concentrations, however, we notice that the shares of all protein classes are approximately the same, with the exception of a large amount of proteins with unknown function. It seems that adaptation to high cadmium concentrations require a number of proteins that, as of yet, have not been recognized to have that specific function. Cadmium cellular damage during adaptation is further described below according to protein classes. All the comparisons used here for the biological interpretation are made with adaptation of microorganisms to cadmium-rich environments, and contain both similarities and differences. A previous cadmium adaptation study showed that almost half of the extracellular cadmium is bioaccumulated ${ }^{338}$, and cells have to make adjustments to deal with this new condition.

In this study we found the down regulation of ATPase and of a cell wall hydrolase, as well as up-regulation of outer membrane proteins, efflux pumps and ABC transporters. Previous cadmium adaptation studies observed that cadmium adaptation involves a cellular return to its control state by decreasing cadmium-specific transport and compartmentalization of intracellular cadmium ${ }^{339}$. Other modifications towards adaptation involve optimization of ABC transporters ${ }^{340}$, and major modifications in membrane morphology and permeability ${ }^{341}$.

Changes in cell morphology may be related to the large amount of cadmium localized in the cell envelope, polyphosphate granules (due to precipitation of cadmium-phospahte complexes ${ }^{340}$) and high molecular weight proteins. Cadmium-adapted may release whole membrane fragments, leaving lesions or holes that could account for the increased permeability, ultimately inducing the synthesis of new membrane ${ }^{339}$.

We also observed the up-regulation of redoxin proteins and general down-regulation of other electron transporters. This can be explained by a unique intermolecular redox-active disulfide center utilized by redoxins for their protective activity. The richness in disulfide bonds in this catalytic center also makes it a very attractive site for cadmium binding. This might lead to constant induction in synthesis of these proteins to compensate for loss of activity due to cadmium binding. Other explanations for the up-regulation of redoxins are related to the more commonly understood need for redoxins during oxidative stress. Also, higher intracellular content of cadmium in cells probably mediate an increase in $\mathrm{H}_{2} \mathrm{O}_{2}$ generating compounds ${ }^{340}$. Usually, cross-resistance to oxidative stress in cadmiumchallenged cells can be counted for by a parallel increase in glutathione content, which can act both as an antioxidant and as a metal-chelating agent ${ }^{342}$. Glutathione induction was not detected in this study.

Regarding DNA damage by cadmium, we were able to detect the down-regulation of an endoribonuclease and a helicase, as well as up-regulation of DNA polymerase III and a ribosyltransferase, among others. Through the generation of reactive oxygen species, cadmium binds to DNA, causing single-strand DNA damage and disrupts the synthesis of nucleic acids ${ }^{343}$. Cadmium-exposed cells have previously shown to induce DNA repair and
recombination systems and repress genes encoding DNA replication and translation systems ${ }^{344}$. Induced synthesis of proteins appears to occur specifically to protect the singlestranded DNA from further nuclease activity ${ }^{345}$.

The proteins involved in protein metabolism found in this study were almost all upregulated. These included a histone-like bacterial DNA-binding protein, peptide synthetase, ribosomal proteins, proteases, chaperones, elongation factors, and others. Cadmium is known to induce protein synthesis and repair ${ }^{343}$. Cadmium strongly binds to amino acids and peptides and both C - and N -termini, and has larger affinity for those than nucleic acids ${ }^{336}$. The use of chaperones mostly relates to their ability of preventing protein denaturation, especially due to cadmium binding.

Proteins involved in energy reserve were also identified in this study, and we observed down-regulation of glycolysis proteins, and up-regulation of a phasin, among others. Phasin is a storage protein generally induced in adverse environments, with the purpose of conserving energy ${ }^{346}$. This protein was greatly up-regulated in this study, possibly to save energy and prioritize cadmium detoxification. Cadmium is known to repress energy production pathways ${ }^{336,340}$. A number of other proteins were identified as differentially expressed in this study. However, there is not enough information to put together the last pieces of the puzzle. The current literature does not have any large-scale proteomic study of cadmium adaptation in bacteria that has gone beyond our current findings.

In comparison with the metaproteomics cadmium shock study, we found a number of similarities and differences. The similarities are among transporters (with fast induction during shock), chaperones (preventing protein denaturation) and respiratory enzymes being
repressed (for energy saving). Regarding cadmium adaptation trends, no specific conclusions can be drawn with the current datasets since only a few proteins were observed in all three cadmium concentrations. Based on these proteins only, the cadmium adaptation response is only observable at higher cadmium concentrations, not strongly modulated at 0.04 mM Cd . Metabolic labeling was shown as a good labeling alternative, reducing the amount of experimental work by multiplexing at the cellular level, however, its data analysis is intense and improvements are needed in this direction. For this experiment, it functioned as an important identification constraint but its quantification scheme was subjective and not very robust.

V.IV. Conclusions

Significant shifts in protein regulation were found for the different levels of cadmium, with the final identification of 72 unique proteins involved in cadmium adaptation. The ${ }^{15} \mathrm{~N}$ metabolic labeling approach added important constraints for identification and quantification of proteins. Cadmium caused the induction of a complex network of regulatory systems, including DNA and protein synthesis and repair, energy saving, oxidative stress, as well as efflux systems for heavy metals. Many proteins involved in cadmium adaptation are also involved in short-term cadmium resistance. This study proves to be a great contribution to cadmium resistance and adaptation science.
329. Chen, X.; Sun, L. W.; Yu, Y. B., et al., Amino acid-coded tagging approaches in quantitative proteomics. Expert Review of Proteomics 2007, 4, (1), 25-37.
330. Mann, M., Functional and quantitative proteomics using SILAC. Nature Reviews Molecular Cell Biology 2006, 7, (12), 952-958.
331. Ong, S. E.; Blagoev, B.; Kratchmarova, I., et al., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular \& Cellular Proteomics 2002, 1, (5), 376-386.
332. Knotek-Smith, H. M.; Deobald, L. A.; Ederer, M., et al., Cadmium stress studies: Media development, enrichment, consortia analysis, and environmental relevance. Biometals 2003, 16, (2), 251-261.
333. Yabuuchi, E.; Kosako, Y.; Oyaizu, H., et al., Proposal of Burkholderia Gen-Nov and Transfer of 7 Species of the Genus Pseudomonas Homology Group-Ii to the New Genus, with the Type Species Burkholderia-Cepacia (Palleroni and Holmes 1981) Comb-Nov. Microbiology and Immunology 1992, 36, (12), 1251-1275.
334. Pferdeort, V. A.; Wood, T. K.; Reardon, K. F., Proteomic changes in Escherichia coli TG1 after metabolic engineering for enhanced trichloroethene biodegradation. Proteomics 2003, 3, (6), 1066-1069.
335. Vallee, B. L.; Ulmer, D. D., Biochemical Effects of Mercury, Cadmium, and Lead. Annual Review of Biochemistry 1972, 41, 91-\&.
336. Jacobson, K. B.; Turner, J. E., The Interaction of Cadmium and Certain Other MetalIons with Proteins and Nucleic-Acids. Toxicology 1980, 16, (1), 1-37.
337. Binet, M. R. B.; Ma, R. L.; McLeod, C. W., et al., Detection and characterization of zinc- and cadmium-binding proteins in Escherichia coli by gel electrophoresis and laser ablation-inductively coupled plasma-mass spectrometry. Analytical Biochemistry 2003, 318, (1), 30-38.
338. Perez-Rama, M.; Alonso, J. A.; Lopez, C. H., et al., Cadmium removal by living cells of the marine microalga Tetraselmis suecica. Bioresource Technology 2002, 84, (3), 265-270.
339. Higham, D. P.; Sadler, P. J.; Scawen, M. D., Effect of Cadmium on the Morphology, Membrane Integrity and Permeability of Pseudomonas-Putida. Journal of General Microbiology 1986, 132, 1475-1482.
340. Pages, D.; Sanchez, L.; Conrod, S., et al., Exploration of intraclonal adaptation mechanisms of Pseudomonas brassicacearum facing cadmium toxicity. Environmental Microbiology 2007, 9, (11), 2820-2835.
341. Higham, D. P.; Sadler, P. J.; Scawen, M. D., Cadmium-Binding Proteins in

Pseudomonas-Putida - Pseudothioneins. Environmental Health Perspectives 1986, 65, 5-11.
342. Stohs, S. J.; Bagchi, D., Oxidative Mechanisms in the Toxicity of Metal-Ions. Free Radical Biology and Medicine 1995, 18, (2), 321-336.
343. El-Rab, S. M. F. G.; Shoreit, A. A. F.; Fukumori, Y., Effects of cadmium stress on growth, morphology, and protein expression in Rhodobacter capsulatus B10. Bioscience Biotechnology and Biochemistry 2006, 70, (10), 2394-2402.
344. Wang, A. Y.; Crowley, D. E., Global gene expression responses to cadmium toxicity in Escherichia coli. Journal of Bacteriology 2005, 187, (9), 3259-3266.
345. Mitra, R. S., Protein-Synthesis in Escherichia-Coli during Recovery from Exposure to Low-Levels of Cd-2+. Applied and Environmental Microbiology 1984, 47, (5), 1012-1016.
346. York, G. M.; Stubbe, J.; Sinskey, A. J., New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate. Journal of Bacteriology 2001, 183, (7), 2394-2397.

Figure 7: B. cepacia Cd44 phenotype during growth on 0.44 mM cadmium.

Figure 8: Functional classification of proteins identified in this study, sorted by levels of cadmium.

VI. QUANTITATIVE PROTEOMICS AS A TOOL FOR SYSTEMS BIOLOGY: ASSESSMENT OF METAL STRESSES IN Burkholderia cepacia

VI.I. Introduction

Quantitative proteomics methods have been extensively described in the previous chapters. Our final experiment has two major aims: to improve our knowledge of the biology of metal resistance after cadmium adaptation and to compare iTRAQ quantification software packages. After studying B. cepacia Cd44 adaptation to different cadmium levels, our next question is how the machinery involved in cadmium adaptation can help this bacterium tolerate other metals. For this study we chose iron(III) and chromium(III) due to some of their observed phenotypic changes on this bacterium and because of some of their known effects, briefly described below. Iron is an essential nutrient for most organisms, but can also be relatively toxic in high concentrations. In the presence of oxygen, iron is both poorly available and potentially toxic, requiring that organisms have well-designed homeostasis mechanisms. The best-known homeostasis mechanisms used by bacteria involve high-affinity iron transport, deposition of intracellular iron stores, redox stress resistance systems, control of iron consumption by down-regulation of the expression of iron-containing proteins, and an ironresponsive regulatory system ${ }^{347}$. All of these mechanisms were expected to be of fundamental importance in the context of this study. Trivalent chromium also has some unique and interesting properties. $\mathrm{Cr}(\mathrm{III})$ is considered to be less toxic than the oxidized version because of its tendency to form insoluble hydrated complexes, which cannot cross cell membranes of some microorganisms ${ }^{348}$. However, $\mathrm{Cr}(\mathrm{III})$ has been shown to cause DNA damage and inhibit
topoisomerase DNA relaxation activity in bacteria. To cope with chromium toxicity, some bacteria have developed detoxification strategies that include biosorption, diminished intracellular accumulation and extracellular precipitation ${ }^{349}$. The goal here is to detect cadmium-adaptation related proteins that are capable of helping the cells in the resistance to short-term less-toxic metal shocks.

For the second part of this study, we know that data analysis for iTRAQ requires special software packages that perform protein identification as well as quantification of reporter ions. Such quantification procedures vary, and different results can be obtained from different software, depending on how peak intensity is calculated for peptide quantification, and on how peptide abundances are averaged for protein quantification. Currently, iTRAQ data analysis is supported by Mascot (Matrix Science Inc., Boston, MA USA), I-Tracker ${ }^{350}$, Libra (http://tools.proteomecenter.org/Libra.php), Pro QUANT (Applied Biosystems, Foster City, CA USA), SpectrumMill (Agilent Inc., Santa Clara , CA USA), and by other software supplied by spectrometer vendors. Here, we present a comparison between the quantification schemes of Mascot and PEAKS (quantification software from Bioinformatics Solutions Inc., slated for commercial release in 2008), and evaluate similarities and differences in the results of these two approaches. Mascot was chosen as a widely used software, not associated with a particular mass spectrometer vendor. PEAKS (Bioinformatics Solutions Inc., Waterloo, ON Canada) is am alternative peptide mass spectrometry data analysis solution, containing database search algorithms for identification of peptides, which use de novo sequences both for identification of homologues and in parallel with peptide fragment fingerprinting. PEAKS uses rigorous algorithms for data processing, with improved peak detection, charge recognition, peptide identification and results validation. Well-known for its de novo
sequencing algorithms, PEAKS uses tandem mass spectrometry spectra to determine peptide sequences based on the measured fragmentation pattern without reference to sequence database.

Two experiments were designed to accomplish our goals. The first was the quantification of a simple protein mixture (Applied Biosystems six-protein mix provided in the iTRAQ Reagent Methods Development Kit). The second experiment evaluated protein expression in complex samples from a strain of Burkholderia cepacia Cd 44 exposed to different toxic heavy metals.

VI.II. Experimental Procedures

VI.II.I. Simple sample mixture preparation

This sample was only used for the PEAKS and Mascot quantification comparison. The sixprotein mix and solutions used here were provided by the iTRAQ Reagent Methods Development Kit (Applied Biosystems). One vial of protein mix (containing $129 \mu \mathrm{~g}$ or 3.71 nmol) was used according to the iTRAQ Reagents protocol from Applied Biosystems. Briefly, sample was dissolved in $20 \mu \mathrm{~L}$ of Dissolution Buffer and $1 \mu \mathrm{~L}$ of Denaturant. After full sample dissolution, $2 \mu \mathrm{~L}$ of Reducing Reagent were added, and sample was incubated for 1 h at $60^{\circ} \mathrm{C}$. Cysteines were blocked by the addition of $1 \mu \mathrm{~L}$ of Cysteine Blocking Reagent followed by room temperature incubation for 10 min . The sample was then digested overnight with trypsin $(10 \mu \mathrm{~g})$ at $37^{\circ} \mathrm{C}$. After digestion, $34 \mu \mathrm{~L}$ of Dissolution Buffer were added to the resulting peptide mixture, which was then divided into two vials, labeled with 114 and 117 separately. The labeled peptides were mixed in the ratio $114: 117=1: 3$. The peptide mix was purified with cation exchange cartridge - labeled peptides were diluted with
4.4 mL SCX buffer A (described in the upcoming section). The eluate from the cation exchange cartridge was vacuum dried and re-dissolved in 1 mL of 0.1% trifluoroacetic acid (TFA). The resulting concentration of this solution was about $1.8 \mathrm{pmol} / \mu \mathrm{L}$ and 1800 fmol were injected into the LC-MS/MS for analysis.

VI.II.II. Complex sample mixture preparation

Burkholderia cepacia strain Cd44, identified by 16 S rDNA sequencing, was isolated from a soil bacterial community based on its high cadmium resistance, i.e., ability to grow on 0.44 $\mathrm{mM} \mathrm{Cd}^{2+}$. After 24 h of growth in a defined mineral medium, cultures of strain Cd 44 were subjected to additions of metals with different toxicities $\left(0.44 \mathrm{mM} \mathrm{Cd}^{2+}, 0.38 \mathrm{mM} \mathrm{Cr}^{3+}\right.$ and $0.62 \mathrm{mM} \mathrm{Fe}^{3+}$) and one was kept without metals to serve as control. After 2 h of metal exposure, cells were harvested and their proteins extracted and immediately digested prior to a shotgun proteomics workflow. Tryptic digestion of $100 \mu \mathrm{~g}$ of each sample followed the iTRAQ Reagents protocol from Applied Biosystems (described in the previous section). iTRAQ labeling also followed the iTRAQ Reagents protocol, with samples labeled according to the following scheme: control (no metal shock), 114; chromium shock, 115; iron shock, 116; and cadmium shock, 117.

VI.II.III. LC-MS/MS

The labeled peptides were mixed and then fractionated by SCX chromatography using a Polysulfoethyl A column $100 \mathrm{~mm} \times 2.1 \mathrm{~mm} \times 5 \mu \mathrm{~m}, 200 \AA$ (PolyLC Inc., Columbia, MD USA). Buffer A was 5 mM potassium phosphate in 25% acetonitrile, pH 3 , and Buffer B contained 500 mM potassium chloride added to the buffer A composition. A 35-min linear gradient at $0.2 \mathrm{~mL} / \mathrm{min}$ was used. Fractions were collected every minute, and purified with C18 PepClean spin columns (Pierce Biotechnology Inc., Rockford, IL USA), according to the
manufacturer's protocol. C18-cleaned samples were vacuum-dried and resuspended in $15 \mu \mathrm{~L}$ of 0.1% formic acid. Samples were separated on an Agilent ZORBAX reverse-phase column (C18 wide-pore, $50 \mathrm{~mm} \times 0.075 \mathrm{~mm}$ internal diameter) in an Agilent 1200 HPLC system, containing a nanospray directly connected to the mass spectrometer ionization source. The HPLC buffers were 0.1% formic acid in 3% acetonitrile (Buffer A) and 0.1% formic acid in 97% acetonitrile (Buffer B). The method used a $45-\mathrm{min}$ gradient at $0.6 \mu \mathrm{~L} / \mathrm{min}$ starting with 5% Buffer B for 5 min , followed by 30 min of ramping to 70% Buffer B. Two other $5-\mathrm{min}$ steps followed at 90% and 5% Buffer B. Mass spectrometry was accomplished by an ESIQTOF instrument (Agilent 6510, with Chip Cube sample inlet), with the following settings: gas temperature $300{ }^{\circ} \mathrm{C}$; drying gas $5 \mathrm{~L} / \mathrm{min}$; and capillary voltage of 1875 V . The auto MS/MS mode was used, with positive ion polarity and centroid data storage. Acquisition ranges were $300-2000 \mathrm{~m} / \mathrm{z}$ for MS (4 spectra $/ \mathrm{s}$) and $59-1800 \mathrm{~m} / \mathrm{z}$ for MS/MS (5 spectra $/ \mathrm{s}$). Collision energy used a slope of $4(\mathrm{~V} / 100 \mathrm{Da})$. Four precursor ions were collected per cycle, with active exclusion. Internal reference mass standard was used for Chip operation.

VI.II.IV. Data preparation procedures

All datasets were exported to the mzData format and imported into PEAKS Studio 4.2 sp 2 . Since a mass spectrometer may take an MS/MS scan of the same peptide several times, replicate spectra were merged (using the PEAKS 'data refine' tool with a parent ion m / z tolerance of 0.1 and a retention time window of 30 seconds) to provide a more complete fragmentation pattern, better signal to noise ratio, and a more representative intensity value for each reporter ion, before submission to both PEAKS and Mascot. The PEAKS 'data refine' tool uses an additive approach to merging. Providing the same merged data set to each quantification algorithm also allowed for easier post-analysis comparison. Data were
acquired in centroid mode, and parent charge states were assigned by the instrument, so MS/MS spectra were not subjected to further preprocessing prior to searching; any deconvolution or deisotoping was done by the search engine.

VI.II.V. Identification and quantification procedures

Database searches were conducted on Mascot and PEAKS using the following parameters: all bacterial species in the NCBInr database, decoy search, trypsin digestion allowing for up to two missed cleavages, methionine oxidation and iTRAQ on N-termini and lysines, iTRAQ 4plex quantification, 0.3 Da tolerance for MS and MS/MS, peptide charges of $+1,+2$ and +3 , and monoisotopic masses. The data analysis stage of iTRAQ quantification relies on accurate computation of the intensities of reporter ion peaks in MS/MS spectra and rigorous statistical analysis of relative reporter ion intensities from multiple peptides in computation of protein expression ratios. The calculation of peak intensity, though trivial to the human eye, requires complex tasks of a computer algorithm, and appears to be one aspect in which PEAKS and Mascot differ. When starting with profile data, the PEAKS algorithm uses a dynamic baseline subtraction algorithm to recognize how much of the peak's area can be attributed to noise; recognizes the shape of a real peak and what part of the peak can be attributed to an interfering signal; bounds the width of the peak; and determines at what point the peak sinks into the noise. The preprocessing scheme used by Mascot was previously described by Berndt et al. ${ }^{351}$, and uses a sequence of steps: baseline correction, peak detection, isotope distribution fit, and subtraction of fit. To avoid bias created by any preprocessing algorithm, previously centroided data was used for both PEAKS and Mascot. Calculation of peak intensities (and their ratios), then, was not based on peak area, but on height of a single peak, and could only
be complicated by inadvertent addition of another peak to the reporter ion during deconvolution/deisotoping.

The calculation of a protein expression ratio from the peptide ratios relies on accurate peptide identifications and accurate peptide ratios. Since these are not guaranteed, and are subject to some randomness, differences between the two algorithms evaluated here are noteworthy. The PEAKS quantification algorithm performs a statistical analysis at the protein level. Firstly, PEAKS computes a weighting for each peptide ratio to allow peptide ratios from high quality spectra to be considered more trustworthy than those from spectra where reporter ions are barely visible. Secondly, outliers are removed before protein ratio computation (using Dixon's Test ${ }^{352}$) in PEAKS since some peptide ratios can be erroneous e.g., those resulting from false positive peptide identifications and/or chemical aberrations. Finally, to facilitate review of results, PEAKS displays the protein expression ratio along with some measures of the success of the statistical analysis: standard deviation of the peptide ratio values as well as the coefficient of variation corresponding to this standard deviation.

A detailed description of MASCOT approach to iTRAQ quantification can be found on the Mascot website (http://www.matrixscience.com/help/quant_reporter_help.html). Briefly, identification and quantification are performed at the peptide level. Ratios for peptide matches are reported depending on peptide modification state, minimum precursor charge, strength of the peptide match, minimum number of fragment ion pairs, among other criteria. The Mascot result report assigns peptide matches to protein hits, and the ratios for individual peptide matches are combined to determine ratios for the protein hits (usually by weighted average). A ratio for a protein hit is only reported if two peptide matches are found. Standard
deviations are only reported if the ratios for the peptide matches are consistent with a normal distribution.

VI.III. Results and Discussion

VI.III.I. Cell growth and observations

This final experiment is the one that most resembles the first metaproteomics experiment described in Chapter 3. It evaluates short-term (2 h) responses of an organism when facing a metal perturbation. The main difference between these experiments is that for this one we have one single organism facing different metal stresses. A metal adaptation experiment (similar to the one in the previous chapter) was conducted to evaluate effects of different metals on the high-cadmium resistance B. cepacia strain $C d 44$. Figure 13 shows some phenotypes observed in the cultivation plates each metal chosen for the experiment. The phenotypes in Figure 13 show a clear difference in coloration, leading to a hypothesis that these metals have an effect even during a short-term exposure, and that this effect could be detected using proteomics technologies.

VI.III.II. Quantification of simple sample mixture

Table 4 lists the identifications and quantifications obtained from both Mascot and PEAKS. High-score identifications were obtained from the Swiss-Prot database for beta-lactoglobulin (human and ovine), beta-galactosidase (E. coli), apotransferrin (human), serum albumin (bovine), and lysozyme (chicken). No significant identification was obtained for alphalactalbumin, the sixth protein present in the protein mix, with either software. Good protein coverage and number of queries matched were found for all proteins identified in this mixture. Table 4 also summarizes the protein quantification results obtained for this mixture. The
average protein quantification from PEAKS was 14% lower than the expected value of 0.33 for the $114: 117$ reporter ratio, whereas Mascot provided values that averaged nearly three times the expected value. Protein-level quantification is based on peptide quantification, and also relies on an accurate peptide weighting strategy, which will take into consideration the ionization method used, among other factors. Data analysis suggests that peptide quantification and weighting are the two main causes of the differences in protein quantification found in this study. However, the observed quantification differences might also be attributed to the composition of this particular six-protein mixture. Table 4 further presents the standard deviation from the mean calculated by PEAKS, which is useful to determine the accuracy of the quantification. This information is unavailable from Mascot. An expanded version of Table 4, containing all peptide quantification values, can be found in Appendix IV.

VI.III.III. Quantification of complex sample mixture

The quantification results for the differentially expressed proteins according to Mascot are presented in Appendix IV. The complete tables contain all the information required for a proteomics experiment, namely: protein name and accession numbers, the organism in which the protein was first identified, protein and peptide scores, peptide sequence and protein sequence coverage, protein and peptide ratios and standard deviations, and peptide weights. Database searches were performed as described in the experimental section and similar results (protein identifications) were obtained from both software packages. However, challenges were faced when merging the two datasets, mostly due to the distinct scoring systems in which proteins and peptides are ranked differently. In order to compare the two quantification schemes, it was necessary to construct the results tables manually. Some of these tables are
presented in Appendix IV. The agreement level of Mascot and PEAKS quantification can be described in three levels. Quantification results in good agreement (within 20\%) represent 26% of the peptides sampled in this study. Adequate agreement (within 50%) was found for 60% of the peptides and improper agreement (difference greater than 100%) was found in 9% of the peptides analyzed here. Scatter plots with the quantification results of PEAKS and Mascot are presented in Figure 9.

Some extreme cases of disagreement between the two methods are described in further detail below. One example comes from one peptide identified from phasin, with a 115:114 ratio of 17.4 according to Mascot and 3.2 according to PEAKS. This can be attributed to the various peptide quantification factors discussed previously. It is interesting to note that such a large value might be generated by an inefficient removal of outliers during the averaging of the reporter peaks. Further observations of this case can be made by analyzing the spectra of the reporter genes for the specified peptide (Figure 10); visual inspection reveals that the 115:114 peak ratio is closer to 3 than to 17 . In contrast to this result for the highest ratio reported by Mascot, the highest ratio reported by PEAKS was 5.8 , which corresponded well to the value of 5.98 produced by Mascot. No errors in the PEAKS quantification results were evident on the basis of visual inspection of this sample set. Other cases of differences in peptide quantification can be found in Appendix IV.

The correct protein expression ratios are not known for the complex mixture, so evaluation of the results must be performed by means other than calculation of standard errors. Such approach makes use of the experimental design. Since the peptide mixture was divided into several fractions through SCX chromatography, we can expect to identify a protein in several fractions (though perhaps represented by different peptides), and the same abundance ratios
should be observed for that protein in each fraction. A basis for algorithm comparison is thus the degree of consistency of the protein ratio calculations across the fractions. Examples of such comparisons are shown in Figures 3 and 4. For phasin (gi|78066909|), the 116:114 ratio as calculated by PEAKS is 1.8 with a variance of 0.1 across all fractions, the PEAKScalculated $115: 114$ ratio is 2.8 with a variance of 0.5 , and the $117: 114$ ratio for this protein is 4.6 with a variance of 0.9 (Figure 11). The Mascot calculations show considerably higher variations across fractions (115:114 ratio of 10.0 with a variance of $24.4,116: 114$ ratio of 4.0 with a variance of $1.5,117: 114$ ratio of 5.6 with a variance of 3.3). When this analysis is performed for chaperonin GroEL(gi|107021936|ref|YP_620263.1|), both tools are found to provide consistently similar ratio calculations across the fractions, with PEAKS showing lower variance in two of the three cases (Figure 12). All these calculations are available in Appendix IV.

VI.III.IV. Biological interpretation

Using the procedures described in the experimental section, we were able to identify almost 400 proteins with a false positive identification rate of 1.96%, according to the Mascot decoy search. A total 112 proteins were differentially modulated (expression two times larger/smaller) in response to cadmium, iron or chromium in relation to the control (containing no metals). These findings are extremely interesting since this experiment is based on a short-term metal exposure, and the cadmium treatment shows adaptation characteristics similar to the ones found in Chapter 5. Cadmium is more toxic than the other metals used in this experiment and this can be confirmed by the quantification of the proteomic responses. A Venn diagram of how similar protein expression was among the metals tested is presented in Figure 14. It is important to note that almost half of the proteins
with differential expression were commonly modulated by all three metals, and more than 80% of the total proteins were modulated by cadmium. The complete data tables are presented in Appendix IV, with the raw database searches, and the summary table of the differentially expressed proteins.

Proteins were functionally classified using Gene Ontologies. Figure 15 shows the functional classification pies for each metal. Almost half of the proteins of interest were related to metabolism, and more than half of those were proteins involved in protein and amino acid metabolic pathways. In addition to metabolic changes, proteins of major importance for the metal shocks are proteins involved in localization, structure and defense, also identified by this study. After careful analysis of Figure 15 we can see that the different metals show different functional responses, and these will be explored in detail in the following paragraphs. Since we have extensively exploited cadmium responses in the previous chapters, here we will try to better understand iron and chromium responses.

Iron. Iron acquisition by bacteria can be done by porin proteins (for Fe^{2+}), or by specific iron receptors for Fe^{3+}, usually bound to siderophores ${ }^{347}$. To confirm this first step that requires iron modulation of proteins, we were able to identify and quantify the up-regulation of several porins and a group of outer membrane receptor proteins (COG1629), dedicated to iron transport. For the active transport to happen through the iron receptors, energy needs to be provided by an energy-transducing TonB complex ${ }^{347}$. This step was also observed in our proteome study with the detection of specific TonB receptors (TonB-dependendt siderophore receptor and TonB-dependent haemoglobin/transferrin/lactoferrin receptor). For transport across the periplasmic membrane, ABC transporters are required, and these were also found in our study. Another protein of interested in this study is also related to iron acquisition.

Pathogenic bacteria absolutely require the uptake of haem (or its precursor protoporphyrin IX) for its biosynthetic machinery ${ }^{347}$. The proteome of the organism in this study showed an extreme down-regulation of an iron (III) protoporphyrin IX monomer binding protein. This can be directly connected to the abundance of iron in the shock, making the cell dispose of such mechanism of iron acquisition through haem. Once inside the cell, iron is deposited into proteins specialized in intracellular iron storage. There are three types of iron storage proteins: Dps proteins, ferritins and bacterioferritins, the latter being most commonly found ${ }^{347}$. In this experiment we were able to identify a bacterioferritin with a six-fold expression increase in the iron shock. Intracellular iron (III) can react with reactive oxygen species to produce a hydroxyl radical. This role of iron in redox stress is also observed in this study through the identification on a number on redox proteins involved in cellular defense mechanisms (e.g., redoxins). The ferric-uptake regulator (Fur) protein, which controls iron metabolism, was not identified as a protein of interest in this study. However, it was previously hypothesized that Fur and the bacterial histone-like protein might compete for the same binding site ${ }^{353}$, and these were found differentially expressed (up-regulated) in this study. Fur also is responsible for the positive regulation of superoxide dismutase ${ }^{353}$, also observed here.

A gene expression study in P. aeruginosa ${ }^{354}$ recently revealed the iron-dependent expression of iron acquisition systems, protases, ferredoxins, oxidoreductases and dehydrogenases, all identified here. A recent proteome study of iron-starvation of Bordetella pertussis ${ }^{355}$ revealed the differential expression of a number of proteins also found in this study, namely, superoxide dismutase, acetyltransferase, fumarate hydratase, outer membrane proteins and iron receptors, porins, chaperonins, lipoproteins and secreted proteins.

Chromium. Unlike iron acquisition and intracellular storage mechanisms, chromium tolerance mechanisms are not very well understood. The best described mechanism for chromium (VI) bioremediation involves intracellular reduction to chromium (III) followed by its transport and accumulation on the cell surface. Not much is known about chromium (III), except that it binds tightly to lipopolysaccharides and cell walls of Bacillus, Salmonella, Escherichia ${ }^{349}$, and Shewanella ${ }^{356}$. However, it has been hypothesized that chromium enters the cell as a cation or cationic hydroxyl $\left(\mathrm{Cr}(\mathrm{OH})^{2+}\right.$ or $\mathrm{Cr}(\mathrm{OH})_{2}{ }^{+}$, highly unstable and toxic) after the reduction has taken place extracellularly ${ }^{357}$. In the presence of a high concentration of a complexing agent, such as pyrophosphate of ferrous ions, Cr (III) is complexed, preventing cellular damage. Evidence suggests that this happened in this experiment, and if further confirmed by the amount on DNA damaged usually caused by Cr (III). Cr (III) is known to bind nonspecifically to DNA and other cellular components, cross-link DNA and proteins, interfere with DNA replication, prevent transcription and increase the rate of spontaneous mutations ${ }^{357}$. Our study indicates the induction in the expression of a number of redoxins, proteases and peptidases, and well as DNA single-strand binding proteins, which might be a cellular attempt to prevent DNA and protein damage.

A number of transcriptome and proteome studies of chromate showed similar responses to the ones found in this experiment. This is very interesting since it correlates the intracellular reduction of $\mathrm{Cr}(\mathrm{VI})$ to Cr (III) and how the cells prevent damage from newly-formed Cr (III). The proteins found in common with our study were: outer membrane proteins ${ }^{358,359}$, superoxide dismutase ${ }^{359}$, thioredoxin 359, cytochrome c protein ${ }^{359,360}$, ABC transporters ${ }^{360}$, oxidoreductases ${ }^{360}$, TonB-dependent receptors ${ }^{361}$, lipoproteins ${ }^{348}$ and peptidases ${ }^{348}$. This set of proteins related to chromium response leads us to believe that some sort of chromium
oxidation and reduction is happening inside the cells, despite the fact that they were fed relatively innocuous Cr (III). An alternative -omics study should be used to complement our experiment and provide more information about the response of this strain to Cr (III).

Cadmium. The proteins differentially expressed in this study that were also present in the metaproteomics study of Chapter 3 were TPR repeat (responsible for the assemblage of muyltiprotein complexes), catalase, malate dehydrogenase, elongation factor Tu, two ATP synthase subunits, redoxins, chaperonins, ABC transporters and outer membrane proteins. With the exception of transport-related proteins, responsible for transporting cadmium outside of the cell, these proteins do not provide insights into cadmium tolerance mechanisms. A genetic network would help us understand the regulatory cascade that leads to the differential expression of these proteins during short-term cadmium exposure. Another possibility to consider here is that due to the completely different proteomic approaches, it is difficult to show agreement between the two datasets. We believe that most of the differences are due to the simplicity of the B. cepacia proteome when compared to the metaorganism, but the choice of proteomic methods used cannot be disregarded.

VIIIV. Conclusions

This study presented comparable results to previous gene expression studies of exposures to the metals in question. There seemed to be little or no effect of cadmium resistance genes in tolerance to iron on chromium. Valuable knowledge was still gained from this study using the quantification of these metal responses. The cadmium response appeared to be different from the responses obtained for the mixed culture of organisms, leading to the conclusion that this organism was probably not the most active in the short-term cadmium response of the
metaorganism. We also report the fundamental challenges involved in analyzing quantitative proteomic data. The quantification performance of Mascot and PEAKS were compared using iTRAQ datasets from a six-protein mixture and a complex protein sample. The quantification results obtained from PEAKS were found to be more accurate in the case of the simple mixture. The analysis of the complex protein mixture revealed the influence of many variables involved in the quantification, including reporter ion peak intensity calculation and baseline subtraction for peptide quantification, and efficient weighting and removal of outliers for protein quantification. This analysis also demonstrated that the quantification algorithms need further development. As of yet, there is no consensus on how peptide and protein quantification should be accomplished, and direct comparison of results obtained by two software packages can be difficult. Studies of this kind can serve as inputs for future cellular models in the field of systems biology. The study of different components, such as different metals, can be unique in the characterization of microorganisms' behavior at the molecular level.
347. Andrews, S. C.; Robinson, A. K.; Rodriguez-Quinones, F., Bacterial iron homeostasis. Fems Microbiology Reviews 2003, 27, (2-3), 215-237.
348. Chourey, K.; Thompson, M. R.; Morrell-Falvey, J., et al., Global molecular and morphological effects of 24-hour chromium(VI) exposure on Shewanella oneidensis MR-1. Applied and Environmental Microbiology 2006, 72, (9), 6331-6344.
349. Cervantes, C.; Campos-Garcia, J.; Devars, S., et al., Interactions of chromium with microorganisms and plants. Fems Microbiology Reviews 2001, 25, (3), 335-347.
350. Shadforth, I. P.; Dunkley, T. P. J.; Lilley, K. S., et al., i-Tracker: For quantitative proteomics using iTRAQ (TM). Bmc Genomics 2005, 6, -.
351. Berndt, P.; Hobohm, U.; Langen, H., Reliable automatic protein identification from matrix-assisted laser desorption/ionization mass spectrometric peptide fingerprints.
Electrophoresis 1999, 20, (18), 3521-3526.
352. Dixon, W. J., Processing Data for Outliers. Biometrics 1953, 9, (1), 74-89.
353. Dubrac, S.; Touati, D., Fur positive regulation of iron superoxide dismutase in Escherichia coli: Functional analysis of the sodB promoter. Journal of Bacteriology 2000, 182, (13), 3802-3808.
354. Ochsner, U. A.; Wilderman, P. J.; Vasil, A. I., et al., GeneChip((R)) expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Molecular Microbiology 2002, 45, (5), 1277-1287.
355. Vidakovics, M. L.; Paba, J.; Lamberti, Y., et al., Profiling the Bordetella pertussis proteome during iron starvation. Journal of Proteome Research 2007, 6, (7), 2518-2528. 356. Neal, A. L.; Lowe, K.; Daulton, T. L., et al., Oxidation state of chromium associated with cell surfaces of Shewanella oneidensis during chromate reduction. Applied Surface Science 2002, 202, (3-4), 150-159.
357. Bencheikh-Latmani, R.; Obraztsova, A.; Mackey, M. R., et al., Toxicity of Cr (III) to Shewanella sp strain MR-4 during Cr(VI) reduction. Environmental Science \& Technology 2007, 41, (1), 214-220.
358. Ackerley, D. F.; Barak, Y.; Lynch, S. V., et al., Effect of chromate stress on Escherichia coli K-12. Journal of Bacteriology 2006, 188, (9), 3371-3381.
359. Hu, P.; Brodie, E. L.; Suzuki, Y., et al., Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. Journal of Bacteriology 2005, 187, (24), 8437-8449.
360. Brown, S. D.; Thompson, M. R.; VerBerkmoes, N. C., et al., Molecular dynamics of the Shewanella oneidensis response to chromate stress. Molecular \& Cellular Proteomics 2006, 5, (6), 1054-1071.
361. Thompson, M. R.; VerBerkmoes, N. C.; Chourey, K., et al., Dosage-dependent proteome response of Shewanella oneidensis MR-1 to acute chromate challenge. Journal of Proteome Research 2007, 6, (5), 1745-1757.
362. Torsvik, V.; Ovreas, L.; Thingstad, T. F., Prokaryotic diversity - Magnitude, dynamics, and controlling factors. Science 2002, 296, (5570), 1064-1066.
363. Ingraham, J. L.; Maaløe, O.; Neidhardt, F. C., Growth of the bacterial cell. Sinauer Associates: Sunderland, Mass., 1983; p xi, 435.
364. Cordwell, S. J.; Basseal, D. J.; HumpherySmith, I., Proteome analysis of Spiroplasma melliferum (A56) and protein characterisation across species boundaries. Electrophoresis 1997, 18, (8), 1335-1346.
365. Cordwell, S. J.; Wilkins, M. R.; Cerpapoljak, A., et al., Cross-Species Identification of Proteins Separated by 2-Dimensional Gel-Electrophoresis Using Matrix-Assisted LaserDesorption Ionization Time-of-Flight Mass-Spectrometry and Amino-Acid-Composition. Electrophoresis 1995, 16, (3), 438-443.

Table 4: Six-protein mixture identification and comparison of PEAKS and Mascot proteinlevel quantification. Two preparations of this protein mixture were combined to provide a ratio of 0.33 .

Accession \#	Mass (Da)	Score (\%)	Coverage (\%)	Queries matched	Ratio from Mascot quantification	Ratio from PEAKS quantification	PEAKS coefficient of variance
P02754 LACB_BOVIN	19,883	99	40	25	0.992	0.316	0.115
P67975 LACB OVIMU	18,151	99	28	26	0.994	0.313	0.110
P00722 BGAL_ECOLI	116,483	99	16	21	1.067	0.237	0.098
P02787\| TRFE_HUMAN	77,050	99	13	16	0.928	0.271	0.147
P02769\| ALBU_BOVIN	69,294	99	13	13	0.866	0.370	0.252
P00698\| LYSC CHICK	16,239	99	23	3	1.014	0.214	0.152

Figure 9: Scatter plots with Mascot and PEAKS quantification results.

Figure 10: Portions of MS/MS spectra showing reporter ions for three different peptides from phasin (in the complex protein mixture).

Figure 11: Phasin protein ratios across SCX fractions as calculated by Mascot and PEAKS.

Figure 12: Chaperonin GroEL protein ratios across SCX fractions as calculated by Mascot and PEAKS.

Figure 13: Phenotypic differences of B. cepacia Cd 44 after cell cultivation on different metals.

- 140 -

Figure 14: Venn diagram of the similarities in protein expression of the three metal shocks, showing that 46% of the proteins of interest are common to all three shocks.
- 141 -
『

- 142 -
亡

－ 143 ．
Fe

VII. CLOSING REMARKS AND FUTURE DIRECTIONS

Despite all the advances in the proteomics technologies, there is still much to be seen in the bacterial world. In a study of prokaryotic diversity, Torsvik et al. ${ }^{362}$ showed that the total cell abundance in prokaryotic communities from the most diverse habitats was in the order of 10^{9} cells per cubic centimeter and community genome complexity was on average in the order of 10^{10} base pairs. From this information we can deduce that there is a massive number of proteins of potential environmental significance still to be found in proteomic studies. This is just one among all the challenges faced in the application of proteomics in environmental biotechnology.

The other challenge relates to how many proteins can be identified in metaproteomics studies. Assuming an average 3000 open reading frames per bacterial species, and that natural communities usually have hundreds of species, it is doubtful that we could represent a significant portion the whole proteome using the current techniques. In addition to that, the wide dynamic range of proteins, around 10^{5} in bacteria ${ }^{363}$, makes it impossible to detect lower abundance proteins either by 2 DE or shotgun proteomics. Due to all these difficulties in metaproteomics, most environmental proteomics studies so far are based on pure cultures. These studies are relevant but lack the community aspect of protein expression, i.e., they do not consider that proteins are almost certainly expressed differently in a community and thus studying the proteome of a single species leads to the expression of an entirely new set of proteins.

Another challenge discussed here regards the difficulties involved in extracting proteins from mixed cultures, soils and other types of matrices where proteins of interest might lie in the environment. Proteins in nature are almost always combined with other molecules, e.g., lipids or carbohydrates, or even salts or nucleic acids. Due to their diverse physical properties, such as hydrophobicity and charge, these interactions can be weak or strong making it hard to remove those "contaminants" from protein solutions. Extracting proteins from a mixed culture of microorganisms is difficult due to different cell wall complexities. The scenario is more complicated if one considers that soil has several components of "unknown" composition such as humic acids and tannins. These substances have a great influence on electrophoresis and chromatography of proteins, making it necessary to improve immobilization columns and other types of targeted separation methods.

A topic of constant debate in the proteomics field is the identification of proteins from unsequenced organisms. Basically, it would be impossible to find identifications for proteins that are not yet present in translated databases, due to the lack of genome sequencing. To overcome this problem one usually accepts protein identifications coming from highly similar proteins present in sequenced species. This is common in proteomic research, but greatly dependent on the amino acid coverage used for the identification. The first articles to present cross-species identification are from Cordwell et al. ${ }^{364,365}$. Both articles used MALDI-TOF and amino acid sequencing followed by cross-species identification, showing the importance of the development of tandem mass spectrometry. However, the other concern for the future is that as databases increase, most sequences will have one or more potential matches, and for those reasons, other indicators of quality of identification need to be developed.

The technical challenges are many and not only mass spectrometry advances are necessary. Mass spectrometry revolutionized the science of proteomics, but much progress is still needed in other directions such as protein denaturation, purification and quantification techniques, since high sample quality is still imperative for any proteomic study. Furthermore, due to the complexity of these mixtures, and depending on the nature of the perturbations and the organisms, posttranslational modifications are likely to be important. On the other end of analysis, bioinformatics methods coupled with computational power are a major need. Most proteomics experiments can generate incredibly large amounts of data, and file transfer, extraction and/or conversions can be complicated. Software packages that combine all analyses in an interpretable way are not always compatible with the most current technologies.

In this study, we learned that we can combine proteomics approaches to obtain complementary information about a metaorganism. We showed that some types of data can only be obtained by the use of other "-omics" approaches and that all the information can be ultimately combined to demonstrate the acquired knowledge in the field. More specifically, the metaproteomics study of an unsequenced mixed culture led to more complex questions regarding metal resistance and adaptation in bacteria, and how one bacterial species in the culture responded as a member of the metaorganism. Studies of this kind are valuable tools for systems biology, since they can serve as input for future cellular models, and each independent component of this work can be used to model different behaviors and possibly used for training of neural networks. Once further modeling progress is reached, there will be a possibility of applying this information to molecular characterization of other metaorganisms subjected to metal shocks and predict their behavior. Proteomics is used here
as a stepping stone for a much larger wave of molecular work to be produced soon and that will span a variety of sciences combined to reach a unique goal of predicting organismal behavior at the molecular level, both with a static and dynamic view.

Proteomics, however, is a technology that offers a unique view of current status of cells in a certain point in time. Its application to environmental research, much discussed here, still needs progress towards field applications, and the possibility of coupling this technology with metabolic engineering is just one door leading to efficient bioremediation, or any type of contamination remediation process. Another field with large potential for metaproteomics research is the study of acid mine drainage remediation, where very complex communities of organisms are actively participating on reducing the toxic effects of these zones. Other possibilities are industrial metaproteomics, with a slightly different focus, not related to substrate remediation, but instead with the formation of a product. Examples of these are in general fermentations and especially in the biofuel industry. Proteomics has a great potential in these areas, possibly leading to better process control. And, in the fundamental sciences, where metaproteomics has seen its major applications, there are still many areas to be explored, such as microbial ecology of several complex environments, with different colonizing microbes (e.g., tundra soils, polluted seawaters, etc.). The future of the field of biomedical metaproteomics can be especially bright if the necessary advances are made. Currently, in the medical field, the best way to study diseases is by separation of healthy and diseased cells/tissues, to prevent "contamination" of the proteome. But it is known that a number of diseases affect different tissues and cell types, thus metaproteomics can prove a unique tool in demonstrating how much cell isolation is necessary, and also showing unique
intracellular and intercellular (e.g., the case of infections) interactions that are not evident using only "pure" cell studies and other molecular approaches.

A final comment regards the fact that proteomics studies should most definitely be coupled with other technologies. As reviewed in the earlier chapters, the combination of proteomics and transcriptomics usually presents the most complete results in gene expression, and overall is a very powerful tool. We also believe that there are other aspects (inside the metaproteomics field) that can be an essential addition, such as the study of the secretome of communities, or cellular mixtures. The secretome should contain unique proteins that are exported from the cells with very specific functions. The combination of proteomics and metabolomics is another option, which can be coupled to further explain pathway regulation and metabolites that are synthesized in parallel with proteins. Other studies of interest might involve the use of targeted structural proteomics, possibly gene knockouts and other more focused methods that do not use the "survey" procedure, common in -omics technologies. These could be a great complement to more specific case studies, where one cellular activity is known to be present, but not everything related to the cascade of proteomic events is clear. In such case, these more targeted technologies will explain specific proteome features that are not observable using only the functional proteomics technologies. These approaches are the most attractive options in the field of systems and synthetic biology, ultimately leading to organismal models spanning from genomes to metabolic fluxes, incorporating all the necessary information to predict cellular behavior when facing all possible perturbations. This field is in its early infancy, and there is still much to be seen.

List of abbreviations

1DE	One-dimensional electrophoresis
2DE	Two-dimensional electrophoresis
ABC	ATP-binding cassette
AMT	Accurate mass and time
ATP	Adenosine 5'-triphosphate
BCA	Bicinchonic acid
BLAST	Basic local alignment search tool
C18	Octadecyl hydrophobic reverse phase
CID	Collision-induced dissociation
DTT	Dithiothreitol
EDTA	Ethylenediaminetetraacetic acid
ESI	Electrospray ionization
FTICR	Fourier transform ion cyclotron resonance
gi	GenInfo identifier
IAA	Iodoacetamide
ICAT	Isotope-coded affinity tag
ID	Identification
IEF	Isoelectric focusing
IPG	Immobilized pH gradient
iTRAQ	Isobaric tags for relative and absolute quantification

KEGG Kyoto encyclopedia of genes and genomes
LC Liquid chromatography
MALDI Matrix-assisted laser desorption and ionization
mRNA Messenger ribonucleic acid
MS Mass spectrometry
MS/MS Tandem mass spectrometry
NCBInr National center for biotechnology information non-redundant databse
OD Optical density
PAGE Polyacrylamide gel electrophoresis
PCR Polymerase chain reaction
PTM Posttranslational modification
Q/TOF Quadrupole time-of-flight
rDNA Ribosomal deoxyribonucleic acid
rRNA Ribosomal ribonucleic acid
SCX Strong cation exchange
SDS Sodium dodecyl sulfate
SILAC Stable isotope labeling with amino acids in culture
TCA Tricarboxylic acid
TCEP Tris-2-carboxyethyl phosphine
TFA Trifluoroacetic acid
TOF/TOF Tandem time-of-flight
TPR Tetratrico peptide repeat

Appendix I:

Peptide summary for all proteins identified in the quantitative metaproteomics of a model culture. (pages 153 to 163)
 $\begin{array}{llll}\text { gi|26987220 } & \text { Mass: } 39149 \text { Score: } 58 \text { Queries matched: } 6 \text { emPAI: } 0.08 \\ \text { DNA-directed } & \text { RNA polymerase alpha subunit [Pseudomonas putida KT2440] }\end{array}$
$\begin{array}{cclcc}\text { DNA-directed } & \text { RNA polymerase alpha subunit [Pseudomonas putida KT244 } \\ \text { Quantitation: } & \text { Ratio } & \text { Weighted } & \text { N } & \text { SD(geo) } \\ & 115 / 114 & 0.355 & 2 & 1.464\end{array}$

$\begin{array}{rllrl}\text { Expect } & 115 / 114 & 116 / 114 & 117 / 114 & \text { Peptide } \\ 0.00011 & -3.073 & -144.755 & -138.659 & \text { R.VDASQEQTDVESFAVLEPLADGFR.N } \\ 1.2 & -5.086 & -97.164 & -72.913 & \text { R.FIYYVGPVDPVGDEVVGPAGPTTATR.M }\end{array}$

$116 / 114$
3.090

$\begin{array}{ll}\text { 117/114 } & \text { Peptide } \\ \text { 1.226 } & \text {-.MQISVNEFLTPR.H } \\ \text {--- } & \text { K.ALFESIER.D }\end{array}$

\square

$\begin{array}{ll}12 & 0 \\ 8 & 0\end{array}$
1.402
Delta
0.0084

	$116 / 114$		
	$117 / 114$	1.576	2
Query	Observed	Mr(expt)	2
1115	526.9553	1577.8441	1577.8357
$\mathbf{3 6 7}$	554.8127	1107.6109	1107.6046

$\begin{array}{llll}\text { gil26986817 } & \text { Mass: } 36791 \text { Score: } 70 \text { Queries matched: } 7 \text { emPAl: } 0.19 \\ \text { quinone oxidoreductase }\end{array}$
$\begin{array}{lllll}\text { quinone oxidoreductase [Pseudomonas putida } & \text { KT2440] } & \\ \text { Quantitation: } & \text { Ratio } & \text { Weighted } & \mathrm{N} & \text { SD(geo) } \\ & 115 / 114 & 0.181 & 2 & 1.060 \\ & 116 / 114 & 2.111 & 4 & 1.328\end{array}$

$\begin{array}{rrr}\text { Quen } & 515.8158 & 1029.6170 \\ \mathbf{4 8 2 4} & 991.1924 & 2970.5555\end{array}$
1.442
Delta
-0.0022
1824- $2970.5420-0.01$
gil15598148. Mass: 30009 Score: 132 Queries matched: 11 emPAI: 0.37
$\begin{array}{llll}\text { electron transfer flavoprotein beta-subunit } & \text { [Pseudomonas aeruginosa PAO } \\ \text { Quantitation: } & \text { Ratio } & \text { Weighted } & \mathrm{N}\end{array}$
1.136
2.007
Delta
$\begin{array}{rrrrrrrrrrl}\text { Query } & \text { Observed } & \text { Mr(expt) } & \text { Mr(calc) } & \text { Delta } & \text { Miss } & \text { Score } & \text { Expect } & 115 / 114 & 116 / 114 & \text { 117/114 }\end{array}$ Peptide \quad (
qil3201828 Mass: 9850 Score: 66 Queries matched: 8 emPAl: 0.35

$\begin{array}{r} 480 \\ 1824 \\ \hline \end{array}$	515.8158 991.1924	1029.6170 2970.5555	1029.6192 2970.5420	-0.0022 0.0135	0	3 67	$2.3 \mathrm{e}+003$ 0.0011	0.172	2.029	1.607	R.TVGSTVLIP.- R.SGLYAPPSLPSGLGTEAAGVVEAVGEGVSR.L
8148 Mass: 30009 Score: 132 Queries matched: 11 emPAI: 0.37											
n transfer fiavoprotein beta-subunit [Pseudomonas aeruginosa PAO1]											
tation:	Ratio	Weighted	N	SD(geo)							
	115/114	0.100	2	2.019							
	116/114	0.882	3	1.136							
	117/114	1.090	3	2.007							
Query	Observed	Mr(expt)	Mr(calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
1629	818.4758	2452.4057	2452.3659	0.0398	0	72	0.00033	0.154	1.105	1.787	R.EIDGGLQTVALNLPAIVTTDLR.L
1327	623.7078	1868.1016	1868.0975	0.0042	0	60	0.0055	0.418	2.904	3.028	K.GVSAGDQLIAGALAPIK.A

Peptide
R.LLDI.-
K.GEGDTVLSDELLGSIVEGGAAAAPAAAAAPAAAPAAASADAGEDDPIAAPAA!
음

aldehyde dehydrogenase, putative [Pseudomonas putida KT2440]											
ation:	Ratio	Weighted	N	SD(geo)							
	115/114	0.329	3	1.582							
	116/114	1.840	3	1.399							
	117/114	1.445	3	1.631							
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
1450	710.7173	2129.1300	2129.1126	0.0174	0	56	0.014	0.771	3.834	4.012	K.APVLVFDDADIDAAIDGIR.T
1672	852.7964	2555.3673	2555.3427	0.0247	0	59	0.0068	-6.929	-52.937	-21.839	R.EVFLIEEPMAAAIGAGLPVEEAR.G

Mass: 42226 Score: 99 Queries matched: 10 emPAI: 0.25											
yphenylpyruvate dioxygenase [Pseudomonas putida KT2440]											
tion:	Ratio	Weighted	N	SD(geo)							
	115/114	1.119	2	2.887							
	116/114	0.838	2	1.405							
	117/114	1.232	2	1.474							
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
1339	717.3416	2149.0028	2148.9982	0.0047	0	37	0.96	2.473	1.206	1.851	R.FMTAPPQTYYEMLEER.L
1380	738.3927	2212.1563	2212.1531	0.0032	0	(42)	0.34	0.304	0.616	0.859	R.ALELGAQPVEIETGPMELR.L

$\begin{array}{cccccl}37 & 0.96 & 2.473 & 1.206 & 1.851 & \text { R.FMTAPPQTYYEMLEER.L } \\ (42) & 0.34 & 0.304 & 0.616 & 0.859 & \text { R.ALELGAQPVEIETGPMELR.L }\end{array}$ -
gil26991351 Mass: 58310 Score: 78 Queries matched: 10 emPAl: 0.06
$\begin{array}{lll}\text { methylmalonate semialdehyde dehydrogenase [Pse } \\ \text { Quantitation: } & \text { Ratio } & \text { Weighted } \\ & \text { N }\end{array}$
$\begin{array}{lllll}\text { Quantitation: } & \text { Ratio } & \text { Weighted } & \mathrm{N} & \text { SD(geo) } \\ & 115 / 114 & 2.364 & 3 & \mathrm{NN}\end{array}$
$115 / 114$
$116 / 114$
$117 / 114$
$\begin{array}{rcr} & 117 / 114 & 1.521 \\ \text { Query } & \text { Observed } & \text { Mr (expt) } \\ \frac{887}{} & 523.9602 & 1568.8588 \\ 1178 & 630.6826 & 1889.0258\end{array}$
$\begin{array}{r}\frac{887}{1178} \\ \hline\end{array}$

צ
$-ヤ \subseteq I-$

1147	615.0201	1842.0386	1842.0342	0.0044	0	62	0.0032	0.404	1.211	13.889	K.DQLIADIAESIAAPK.A 11451146
gil32028588 Mass: 55436 Score: 121 Queries matched: 16 emPAl: 0.41											
COG0055: FOF1-type ATP synthase, beta subunit [Haemophilus somnus 2336]											
Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	0.506	5	1.642							
	116/114	2.200	6	1.174							
	117/114	1.165		1.147							
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
909	532.3033	1593.8880	1593.8848	0.0032	0	54	0.02	-0.034	1.437	0.837	R.YTLAGTEVSALLGR.M 905906907908910
1498	817.4161	2449.2266	2449.2103	0.0163	0	67	0.00094	-9.390	-54.515	-37.467	R.MPSAVGYQPTLAEEMGVLQER.I 14991500
gil 26992092 Mass: 18663 Score: 47 Queries matched: 6											
ATP synthase subunit B [Pseudomonas putida KT2440]											
Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	0.554	1								
	116/114	1.737	2	--.							
	117/114	1.025	2	---							
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
801	486.9573	1457.8502	1457.8446	0.0056	0	20	46	---	---	---	R.AQVGALAVGGAEK.I 800
1190	635.0170	1902.0291	1902.0301	-0.0011	0	27	10	---	---	---	K.AQALAEIEQELNSAK.D 11911192
gil126359797 Mass: 62562 Score: 103 Queries matched: 30 emPAl: 0.59											
chaperonin GroEL [Pseudomonas putida GB-1]											
Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	0.686	12	1.705							
	116/114	4.518	14	1.341							
	117/114	4.125	14	1.335							
Query	Observed	$\mathrm{Mr}(\mathrm{expt})$	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
945	544.9897	1631.9472	1631.9524	-0.0052	0	62	0.0032	0.169	2.682	1.605	K.MLVGVNVLADAVK.A
1049	575.3334	1722.9783	1722.9750	0.0033	0	41	0.39	0.759	1.367	0.828	R.AAVEEGVVPGGGVALVR.A
gil26991177 Mass: 14704 Score: 91 Queries matched: 10 emPAl: 0.87											
pterin-4-alpha-carbinolamine dehydratase [Pseudomonas putida KT2440]											
Quantitation:	Ratio	Weighted		SD(geo)							
	115/114	0.27		1.191							
	116/114	2.217		1.673							
	117/114	1.269	3	1.655							
Query	Observed	Mr(expt)	Mr(calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
761	707.8765	1413.7384	1413.7374	0.0010	0	39	0.55	-16.022	-14.550	-8.173	R.EIPDWNIEVR.D
781	477.9329	1430.7768	1430.7738	0.0029	0	52	0.031	-0.012	4.875	2.580	K.VTDEELAELIR.E
gil26988503 Mass: 69800 Score: 100 Queries matched: 20 emPAl: 0.20											
30 S ribosomal protein S1 [Pseudomonas putida KT2440]											
Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	0.803	4	1.477							
	116/114	0.789	4	1.479							
	117/114	0.688	4	1.451							
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
1620	539.9456	1616.8148	1616.8103	0.0046	0	29	5.8	0.520	0.440	0.382	K.QMGEDPWVAITAR.Y
1826	587.3138	1758.9195	1758.9056	0.0139	0	71	0.0004	-11.742	-23.103	-16.406	K.NAPEAAADTTMAALLR.E
gi\|26987198. Mass: 32959 Score: 67 Queries matched: 4 emPAl: 0.10											
50 S ribosomal protein L2 [Pseudomonas putida KT2440]											
Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	1.774	2	1.426							
	116/114	9.358	2	1.704							
	117/114	6.952	2	1.445							
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
116	397.2391	792.4637	792.4616	0.0021	0	5	1.2e+003	---	\cdots	---	R.LVDFR.R
1934	623.7078	1868.1015	1868.0975	0.0040	0	62	0.0033	1.135	14.801	9.807	K.GVSAGDQLIAGALAPIK.A
gil29839337	Mass: 63371	Score: 106 Q	ries matched:	1 emPAl:	. 29						
60 kDa chaperonin (Protein Cpn60) (groEL protein)											

$\begin{array}{rrrrrccccccc}\text { Query } & \text { Observed } & \text { Mr（expt）} & \text { Mr（calc）} & \text { Delta } & \text { Miss } & \text { Score } & \text { Expect } & 115 / 114 & 116 / 114 & 117 / 114 & \text { Peptide } \\ \underline{2243} & 477.6431 & 1429.9075 & 1429.8999 & 0.0075 & 0 & 56 & 0.013 & -3.410 & -64.305 & -110.039 & \text { K．TVLEVVELIK．A } \\ \underline{3244} & 512.0460 & 2044.1550 & 2044.1530 & 0.0020 & 1 & 16 & 1.3 e+002 & -- & -- & -- & \text { K．EKVDGAPQVVAEGVSK．E }\end{array}$

gil119856883 Mass： 62836 Score： 74 Queries matched： 65 emPAl： 0.43											
chaperonin GroEL［Pseudomonas putida W619］											
Quantitation：	Ratio	Weighted	N	SD（geo）							
	115／114	1.419	5	NN							
	116／114	4.344	6	1.193							
	117／114	2.637	6	1.263							
Query	Observed	$\mathrm{Mr}($ expt）	Mr （calc）	Delta	Miss	Score	Expect	115／114	116／114	117／114	Peptide
581	466.3116	930.6086	930.6106	－0．0020	0	37	0.94	0.754	4.511	2.087	R．NVVLAK．S
3746	673.1036	2688.3852	2688.4174	－0．0322	0	37	0.99	1.647	6.480	5.274	K．ANDAAGDGTTTATVLAQAIVNEGLK．A
gil119858954 Mass： 67694 Score： 98 Queries matched： 25 emPAl： 0.21											
ribosomal protein S1［Pseudomonas putida W619］											
Quantitation：	Ratio	Weighted	N	SD（geo）							
	115／114	0.795	6	1.793							
	116／114	6.014	5	1.303							
	117／114	4.813	6	1.415							
Query	Observed	Mr（expt）	Mr （calc）	Delta	Miss	Score	Expect	115／114	116／114	117／114	Peptide
2932	606.6895	1817.0465	1817.0390	0.0076	0	59	0.0065	0.399	6.028	3.545	K．GAIVTLADDIEATLK．A
3600	594.5613	2374.2160	2374.1896	0.0264	0	39	0.68	2.631	9.740	7.570	K．VGDEVHVALDAVEDGFGETK．L
gil26987192 Mass： 85627 Score： 65 Queries matched： 31 emPAl： 0.08											
elongation factor G［Pseudomonas putida KT2440］											
Quantitation：	Ratio	Weighted	N	SD（geo）							
	115／114	－－	1	－－－							
	116／114	0.181	2	1.400							
	117／114	0.091	2	1.098							
Query	Observed	Mr（expt）	Mr （calc）	Delta	Miss	Score	Expect	115／114	116／114	117／114	Peptide
3739	892.8654	2675.5742	2675.5757	－0．0015	0	49	0.059	－－－	－－－	－－－	K．GVPLVLDAVIDFLPAPTEIPAIK．G
3848	613.3661	3061.7941	3061.8157	－0．0216	1	16	1e＋002	0.154	0.146	0.095	K．NKGVPLVLDAVIDFLPAPTEIPAIK．G
gil26988324 Mass： 34540 Score： 103 Queries matched： 36 emPAl ： 0.73											
elongation factor Ts［Pseudomonas putida KT2440］											
Quantitation：	Ratio	Weighted	N	SD（geo）							
	115／114	4.611	5	1.297							
	116／114	13.897	6	1.748							
	117／114	7.349	5	1.338							
Query	Observed	Mr（expt）	Mr（caic）	Delta	Miss	Score	Expect	115／114	116／114	117／114	Peptide
3787	705.1417	2816.5378	2816.5285	0.0093	0	39	0.65	5.012	10.494	14.317	K．VGEGIEKPVDDFAAEVAAQVAAAK．Q
3835	737.1172	2944.4399	2944.4358	0.0041	0	64	0.0018	7.169	3.421	5.359	K．NIAMHVAASNPEFLDSSEISAEAIER．E

gill 17547847 Mass： 58670 Score： 80 Queries matched： 3 emPAl： 0.06 gill 17547847 Mass： 58670 Score： 80 Queries matched： 3 emPAl： 0.06
PUTATVE NAD DEPENDENT ACETALDEHYDE DEHYDROGENASE OXIDOREDUCTASE PROTEIN［Ralstonia solanacearum GMI1000］
Quantitation：Ratio \quad Weighted
$\begin{array}{ll}115 / 114 & \mathbf{1 . 6 2 3} \\ 116 / 114 & 0.887 \\ 117 / 114 & 0.829\end{array}$
1.080
1.466
1.416

Delta
0.0095
0.0119
Score Expect 115／114 116／114 117／114 Peptide
$\begin{array}{lllll}0.86 & -7.148 & -3.582 & -3.687 & \text { R．ALDAABAADAK．} \\ 0.31 & -6.797 & -4.704 & -5.039 & \text { K．EVLMESIDIHELK．A }\end{array}$
C
$116 / 114$
0.897
1.270
$115 / 114$
0.944
0.677

Score
38
42
気历す
心
Miss
0
0
46266 Mass． 42569 Score． 72 Queries matched 3 emPAl： 0.08

	$117 / 114$	0.829	2
Query	Observed	Mr（expt）	Mr（calc）
$\underline{935}$	513.9341	1538.7806	1538.7711
$\underline{1492}$	615.3447	1843.0124	1843.0004

gil 148546266	Mass： 42569	Score： 72	Queries matched： 3 emPAl： 0	
glycine cleavage system	T protein［Pseudomonas putida F 1$]$			
Quantitation：	Ratio	Weighted	N	SD（geo）

Delta
0.0003
$\begin{array}{lrr}263 & 3 & \\ 260 & 3 & \\ M r \text {（expt）} & \text { Mr（calc）} \\ 17169072 & 1716.9069\end{array}$
Mr（expt）
1716.9072
2460.3603
$115 / 114$
$116 / 114$
$117 / 114$
L60と $2 \angle 9$
penesqo
20／m

Peptide K.QFIMHADFVR.V K.GVEFVALAHGDDK A

$117 / 114$
0.1411
1.45

Expect
14
0.13
${ }^{4 n}$

Miss 0 0

 gil129036 Mass: 112324 Score: 110 Queries matched: 3 emPAI: 0.03
2-oxoglutarate dehydrogenase E1 component (Alpha-ketoglutarate dehydrogenase) $\begin{array}{lll}\text { Quantitation: } & \text { Ratio } & \text { Weighted } \\ & 115 / 114 & 0.600 \\ & 11714 & 0.652\end{array}$

$\begin{array}{ll}16 / 114 & 0.652\end{array}$

$\begin{array}{cll}\text { Expect } & 115 / 114 & 116 / 114 \\ 0.039 & 0.677 & 0.544 \\ 0.0058 & 0.292 & 1.272\end{array}$
Expect
0.009
0.0058
Score
51
59
 $\begin{array}{ll}\text { 117/114 } & \text { Peptide } \\ \text { 0.884 } & \text { R.TIGAEFHIVDSEQR.N } \\ 0.465 & \text { K.GIDKGLVGQVAAEIR.D }\end{array}$

 $\stackrel{\substack{0}}{9}=\infty$ $\begin{array}{ll}117 / 114 & \text { Peptide } \\ \text { 6.877 } & \text { K.SAQQLNEQLLGLLR.D } \\ \text { K.ATGQLGQSHLLSQVK.R }\end{array}$ K.ATGQLGQSHLLSQVK. K. (

277 KGYGFITPESGPDLFVHFR.A
-13.397
5.651
7.7

2301	546.5309	2182.0947	2182.0970	-0.0023	0	28
48757 Mass: 33831 Score: 54 Queries matched: 6 emPAl : 0.10						
omain p ation:	Ratio	Weighted	N	SD(geo)		
	115/114	1.340	2	2.530		
	116/114	1.236	2	1.842		
	117/114	0.931		1.727		
Query	Observed	Mr(expt)	Mr(calc)	Delta	Miss	Score
1292	518.6258	1552.8556	1552.8331	0.0225	0	15
1448	415.4937	1657.9459	1657.9386	0.0073	0	39

R.SILVVLDPAHAHSR.A

$\stackrel{1.7}{1.850}$
$116 / 114$
$-\cdots 14$
$\stackrel{\frac{\pi}{5}}{\stackrel{\pi}{6}}$ 3.627
Expect
$1.4+002$
0.69
0.69

 Quantitation:

$\begin{array}{ll}117 / 114 \\ -8.976 & \text { Peptide } \\ \text { R.ALDAVIESVTGALK.Q } \\ 1.827 & \text { K.SELIDAIAASADIPK.A }\end{array}$ $\begin{array}{ll}1.513 & \text { R.KLPASVLLR.A } \\ 0.740 & \text { R.MNVGOLIETHLGLAAK.G }\end{array}$
$\begin{array}{rrcccl}\text { Score } & \text { Expect } & 115 / 114 & 116 / 114 & 117 / 114 & \text { Peptide } \\ 15 & 2.4 \mathrm{e}+0.3 & \ldots & \ldots & \\ 42 & 0.33 & 4.127 & 3.723 & 3.706 & \text {-MKDLLNLK.N } \\ & & & & & \end{array}$
$\begin{array}{llll}4.127 & 3.723 & 3.706 & \text { R.ELLHAIDLEHEIGR.L }\end{array}$
$116 / 114$
1.178
0.584
$\begin{array}{rl}\text { Expect } & 115 / 114 \\ 29 & 1.578 \\ 0.49 & -0.109\end{array}$
$116 / 114$
-7.216
1.496
$\begin{array}{rl}\text { Expect } & 115 / 114 \\ 13 & -7.204 \\ 2.5 & 3.990\end{array}$

[^0] gil26987189 Mass: 168078 Score: 57 Queries matched: 4 emPAl: 0.02

	$116 / 114$	3.648	3
	$117 / 114$	3.946	3
Query	Observed	Mr(expt)	
$\underline{1229}$	507.3203	1518.991	
$\underline{1701}$	596.9963	1787.9672	

$\begin{array}{lllll}\text { Quantitation: } & \text { Ratio } & \text { Weighted } & \mathrm{N} & \text { SD(geo) } \\ & 115 / 114 & 0.433 & 2 & 1.641\end{array}$
$\begin{array}{ll}116 / 114 & 1.233 \\ 117 / 114 & 0.503\end{array}$

	$117 / 114$	0.503	2	
Query	Observed	Mr(expt)	$\operatorname{Mr}($ calc $)$	1.034
1355	533.2911	1596.8516	1596.8464	0.0052
$\underline{3133}$	667.6148	2666.4301	2666.4523	-0.0222

Query	Observed	$\operatorname{Mr}($ expt $)$	$\operatorname{Mr}($ calc $)$	Delta
$\underline{1355}$	533.2911	1596.8516	1596.8464	0.0052
$\underline{3133}$	667.6148	2666.4301	2666.4523	-0.0222

gil148545498. Mass: 33349 Score: 48 Queries matched: $4 \mathrm{emPAl}: 0.10$
extracellular solute-binding protein, family 3 [Pseudomonas putida F1]
extracellular solute-binding protein, family
Quantitation: Ratio Weighted
$\begin{array}{lllll}\text { Quantitation: } & \text { Ratio } & \text { Weighted } & \mathrm{N} & \text { SD(geo) } \\ & 115 / 114 & 0.933 & 2 & 1.320 \\ & 116 / 114 & 0.647 & 2 & 1.041 \\ & 117 / 1.360\end{array}$
$\frac{\text { gi| } 89893980 \text { Mass: } 62232 \text { Score: } 78 \text { Queries matched: } 3 \text { emPA: } 0.05}{\text { hypothetical protein DSY1234 [Desulfitobacterium hafniense Y51] }}$

Appendix II:

Part 1: Sample spectra for de novo sequencing. Contains spectra with the aligned sequences, y ions (where found) and the corresponding protein information on the top left. (pages 165 to 172)

Part 2: Protein identification table. Contains peptide and protein numbers, protein name, accession and gi numbers, protein and peptide scores, mass errors in Da and ppm, peptide sequence, sequence coverage, protein molecular weight and isoelectric point, organism where protein was first found, trend associated with time course, regulation, theoretical biological process, identification by Mascot or Peaks, and potential for being a false positive. (pages 173 to 199)
2015.0774 - protein 1

- 165 -

- 166 -
2877.5146 - protein 33

$-167=$
1733.8674 - protein 43

- 168 -
1553.7239 - protein 59

- 170 -
1663.8660 - protein 64

 Proter Score (\%) 888888888888888888888888888888888888 Score (\%)

\#

peptide \# protein \# Protein Name

1	1 Enolase
2	1 Enolase
3	2 Putative enoyl-CoA hydratase
4	2 Putative enoyl-CoA hydratase
5	3 Phosphopyruvate hydratase
6	3 Phosphopyruvate hydratase
7	4 Chaperone protein HscA
8	4 Chaperone protein HscA
9	5 Glycoside hydrolase, family 3
10	5 Glycoside hydrolase, family 3
11	6 COG3764: Sortase (surface protein transpeptidase)
12	6 COG3764: Sortase (surface protein transpeptidase)
13	7 Electron transfer flavoprotein alpha-subunit
14	7 Electron transfer flavoprotein alpha-subunit
15	8 Heterodisulfide reductase, iron-sulfur-binding subunit, putative
16	8 Heterodisulfide reductase, iron-sulfur-binding subunit, putative
17	9 Hydrogenase expression/formation protein, putative
18	9 Hydrogenase expression/formation protein, putative
19	10 Bacterial trigger factor
20	10 Bacterial trigger factor
21	11 Histidine kinase, HAMP region:Bacterial chemotaxis sensory transducer
22	11 Histidine kinase, HAMP region:Bacterial chemotaxis sensory transducer
23	12 Peroxiredoxin
24	12 Peroxiredoxin
25	13 Alkyl hydroperoxide reductase subunit C
26	13 Alkyl hydroperoxide reductase subunit C
27	14 HMP-like outer membrane protein
28	14 HMP-like outer membrane protein
29	15 Enolase 2, (gamma, neuronal)
30	15 Enolase 2, (gamma, neuronal)
31	16 atpD beta synthase chain
32	16 atpD beta synthase chain
33	17 Nucleoside-diphosphate-sugar pyrophosphorylase
34	17 Nucleoside-diphosphate-sugar pyrophosphorylase
35	18 Cell division protein FtsA
36	18 Cell division protein FtsA

19 Nucleoside diphosphate kinase
19 Nucleoside diphosphate kinase
20 Chain B, Crystal Structure Of Escherichia Coli Topoisomerase Iv 21 S -adenosylmethionine synthetase 21 S -adnosylmethine synimease 22 Membrane-bound ATP synthase, F1 sector, beta-subunit 22 Membrane-bound ATP synthase, F1 sector, beta-subunit 23 Myo-inositol-1-phosphate synthase 23 Myo-inositol-1-phosphate synthase 24 Hydroxypyruvate isomerase 24 Hydroxypyruvate isomerase
25 ATP synthase $F 1$, beta subunit 25 ATP synthase $F 1$, beta subunit
26 Catalase
26 Catalase
27 Malate dehydrogenase
27 Malate dehydrogenase
28 Probable glycine betaine/carnitine/Choline ABC transporter 28 Probable glycine betaine/carnitine/choline ABC transporter 29 Translation elongation factor Tu 29 Translation elongation factor Tu 30 Chaperonin Cpn60/TCP-1 30 Chaperonin Cpn60/TCP-1
31 Protein chain elongation factor EF -Tu, possible GTP-binding factor 31 Protein chain elongation factor EF-Tu, possible GTP-binding factor 32 Chemotaxis sensory transducer
33 Glyceraldehyde-3-phosphate dehydrogenase, type I 33 Glyceraldehyde-3-phosphate dehydrogenase, type 34 Putative purine nucleoside phosphorylase 34 Putative purine nucleoside phosphorylase 35 Succinyl-COA synthetase, beta subunit 35 Succinyl-CoA synthetase, beta subunit 36 COG0137: Argininosuccinate synthase ${ }_{36}$ COG0137: Argininosuccinate synthase 37 Sodium-transporting two-sector ATPase 37 Sodium-transporting two-sector ATPase 38 Chaperonin GroEL

58 COG3315: O-Methyltransferase involved in polyketide biosynthesis 58 COG3315: O-Methyltransferase involved in polyketide biosynthesis 59 ATP synthase alpha subunit
59 UDP-N 60 UDP-N-acelmuramoyl-L-alanyI-D-glutamate synthetase 60 UDP-N-acetylmuramoyl-L-a 61 Dipeptide-Binding Protein 6250 S ribosomal protein L9 6250 S ribosomal protein L9 63 3-oxoacid CoA-transierase 63 3-oxoacid CoA-transferase 64 Superoxide dismutase 64 Superoxide dismutase 65 COG1979: Uncharacterized oxidoreductases 65 COG1979: Uncharacterized oxidoreductases 66 Alcohol dehydrogenase, NAD(P)-dependent 66 Alcohol dehydrogenase, NAD(P)-dependent 67 Putative long-chain fatty acid transport protein 67 Putative long-chain fatty acid transport protein 68 Dihydrolipoamide dehydrogenase (Glycine oxidation system L-factor) 68 Dihydrolipoamide dehydrogenase (Glycine oxidation system L-factor) 69 Phosphoribosyltransferase 69 Phosphoribosyltransferase 70 Cof protein:HAD-superfamily hydrolase subfamily IIB 70 Cof protein:HAD-superfamily hydrolase subfamily IIB 71 COG3142: Uncharacterized protein involved in copper resistance 71 COG3142: Uncharacterized protein involved in copper resistance 72 CztR
73 6-phosphogluconate dehydrogenase related protein 736 -phosphogluconate dehydrogenase related protein 74 Ketol-acid reductoisomerase 74 Ketol-acid reductoisomerase
75 COG0747: ABC-type dipeptide transport system, periplasmic component 75 COG0747: ABC-type dipeptide transport system, periplasmic component 76 Single-strand binding protein
76 Single-strand binding protein
77 Similar to ABC-type uncharacterized transport system periplasmic component

88888888888888888888988888

\footnotetext{

114 Superoxide dismutase 115 Carbonate dehydratase 115 Carbonate dehydratase 116 Carbonate dehydratase 116 Carbonate dehydratase 117 Carbonate dehydratase 17 Carbonate dehydratase 118 Carbonate dehydratase 118 Carbonate dehydratase 119 HMP－like outer membrane protein 119 HMP－like outer membrane protein 120 HMP－like outer membrane protein 20 HMP－like outer membrane proten 21 HMP－like outer membrane proten 22 HMP－like outer membrane protein 122 HMP－like outer membrane protein 123 Electron transfer flavoprotein alpha－subunit 123 Electron transfer flavoprotein alpha－subunit 24 Electron transfer flavoprotein alpha－subunit 124 Electron transfer flavoprotein alpha－subunit 125 Transporter，EamA family 125 Transporter，EamA family 126 Transporter，EamA family
 127 Transporter，EamA family 127 Transporter，EamA family 128 Malate dehydrogenase 128 Malate dehydrogenase 129 Malate dehydrogenase 129 Malate dehydrogenase 130 Glyceraldehyde－3－phosphate dehydrogenase，type I 30 gycerald hyde－phosph 131 Outermbrane protein A 3． 132 Outer membrane protein A

88888888888888888888888888888888888888

152 ATP synthase F1, beta subunit

\% eve

18.7824	1607.8916 VFEHDSARLPAPPR
0.4911	3054.4985 KKYLNLERELHKRVIGQDDAVSSISR
8.9566	3159.6812 SFSDL)OxM)KPPSVTGELADFTRDLTELAR
16.4208	1893.9364 TGIPFWAVMTHSLETSTR
17.0129	1922.0757 LAVVQILVHLKYFLHLR
-12.7103	2250.1448 KPVLASET(CamC)ALD(OxM)IGARFVR
-15.4239	2405.3542 LGFLSVDGLYDALEAGQRDPATPR
13.7574	2987.4824 SPDMQV(OxM)FRA(CamC)GPDFKAGYESKGFVR
0.1486	3363.7483 YRDSVYNALKDVPHIHVWKKEEIPAELNK
29.0975	1532.7790 MGTSLEELFVHNR
0.9169	1963.0380 VPANQITGLEPGEVFVHR
15.5139	1953.0831 EAVGDLPVVLYNVPGR
-1.9433	3087.5757 ADMDMKKKSVLPHAARALDSVDGYHKRTLNVK
-37.2780	992.5419 EVGFSDHSVK
-33.7131	1177.5824 SLREAFGLEVGK
-5.1255	2029.0707 QYLLAPTSLPPSPLGTAFR
10.3682	2199.0374 HPLREUTSSEPLPLLVER
-7.7621	1571.7330 YIANEKFTRETAER
-14.4844	1940.0138 GGSIANRARLLLEVTDAAIR
-35.5346	1879.8563 PERIRDFGGD(CamC)FAAIR
-21.5438	2548.2957 VIT(OxM)D(OxM)PDRFINREVSWLK
-0.6005	1498.8256 FVDEIVPVSIPQR
0.4075	2454.2415 VGTDQVGEVI(OxM)GQVLAAGAGQNPAR
-3.6748	2040.9274 AEYGVPQARERVIIGNR
-24.1138	2056.9163 QVNQHEI(CamC)DYLRYYR
24.5309	1255.5593 DTAHTKAERNIR
-35.4729	1623.7753 GKGGYGKVFQVRKVTR
-0.3859	1295.7327 AGLRFVAHPATR
0.9370	1600.8457 LADTARIERAWLDAR
-3.8705	1756.8750 VFSSIHQRWEQLVK
25.7806	2273.0286 (OxM)DETTHYHPQIGLNKYYR
-25.6409	1571.7075 AADAGRLERGEDR
5.2062	1940.0001 LAALAADAGRLRERGEDR
-29.9358	1596.7518 YIPTLTPPDTPLIR
20.2962	1635.7756 IEDYDYIEYLQATR
-2.5641	1989.0237 VLPLFEVGMAWLLPTMTAR
19.6214	2339.2852 FSILFFAVAMFFSWSQGKLIR
-10.3433	918.4731 (OxM)VAAGQLGR
9.6693	1996.0156 ATATDRPDRFIGMHFFNR

$\begin{array}{r}0.0302 \\ 0.0015 \\ 0.0283 \\ 0.0311 \\ 0.0327 \\ -0.0286 \\ -0.0371 \\ 0.0411 \\ 0.0005 \\ 0.0446 \\ 0.0018 \\ 0.0303 \\ -0.0060 \\ -0.0370 \\ -0.0397 \\ -0.0104 \\ 0.0228 \\ -0.0122 \\ -0.0281 \\ -0.0668 \\ -0.0549 \\ -0.0009 \\ 0.0010 \\ -0.0075 \\ -0.0095 \\ 0.0193 \\ 0.0051 \\ 0.0308 \\ -0.0576 \\ -0.0005 \\ 0.0015 \\ -0.0068 \\ 0.0586 \\ -0.0403 \\ 0.0101 \\ \hline\end{array}$

[^1]

人ֹ

[^2]| Biological process |
| :--- |
| Sugar metabolism |
| Sugar metabolism |
| Sugar metabolism |
| Sugar metabolism |
| Energy reserve metabolism |
| Energy reserve metabolism |
| Structural |
| Structural |
| Sugar metabolism |
| Sugar metabolism |
| Protein metabolism |
| Protein metabolism |
| Electron transport |
| Electron transport |
| Electron transport |
| Electron transport |
| Protein metabolism |
| Protein metabolism |
| Response to stimulus |
| Response to stimulus |
| Cell communication |
| Cell communication |
| Response to stimulus |
| Secretion |
| Secretion |
| Sugar metabolism |
| Sugar metabolism |
| Localization |
| Localization |
| Nucleic acid metabolism |
| Nucleic acid metabolism |
| Localization |
| Localization |

Organism
Thermobifida fusca $Y X$

Nucleic acid metabolism	Peaks
Nucleic acid metabolism	Peaks
Nucleic acid metabolism	Peaks
Nucleic acid metabolism	Peaks
Protein metabolism	Peaks
Protein metabolism	Peaks
Localization	Both
Localization	Both
Energy reserve metabolism	Peaks
Localization	Both
Localization	Both
Response to stimulus	Both
Response to stimulus	Both
Energy reserve metabolism	Peaks
Energy reserve metabolism	Peaks
Localization	Peaks
Localization	Peaks
Protein metabolism	Peaks
Protein metabolism	Peaks
Structural	Peaks
Structural	Peaks
Protein metabolism	Both
Protein metabolism	Both
Cell communication	Peaks
Cell communication	Peaks
Energy reserve metabolism	Both
Energy reserve metabolism	Both
Nucleic acid metabolism	Peaks
Nucleic acid metabolism	Peaks
Energy reserve metabolism	Both
Energy reserve metabolism	Both
Protein metabolism	Both
Protein metabolism	Both
Localization	Both
Localization	Both
Structural	Both

Croceibacter atlanticus HTCC2559 Croceibacter atlanticus HTCC2560 Escherichia colil
Prochlorococcus marinus subsp. marinus str. CCMP1375 Prochlorococcus marinus subsp. marinus str. CCMP1375 Acinetobacter sp. ADP1
Acinetobacter sp. ADP1

Kineococcus radiotolerans SRS30216

 Kineococcus radiotolerans SRS30216 Chromohalobacter salexigens DSM 3043 Chromohalobacter salexigens DSM 3043 Rhodoferax ferrireducens T118CB07
Leifsonia xyli subsp. xyli str. CTCB07 Leifsonia xyli subsp. xyli str. CTCB07 Acinetobacter sp. ADP1
13 Clostridium perfringens str. 13 Clostridium perfringens str. 13 Arthrobacter sp. FB24 Arthrobacter sp. FB24 Dechloromonas aromatica RCB Dechloromonas aromatica RCB Acinetobacter sp. ADP1
11170 Rhodospirillum rubrum ATCC 11170 Arthrobacter sp. FB24 Arthrobacter sp. Streptomyces avermitilis Streptomyces avermitilis Acidovorax sp. JS42 Actinobacillus pleuropneumoniae serovar 1 str. 4074 Actinobacillus pleuropneumoniae serovar 1 str. 4074 Verminephrobacter eiseniae EF01-2 Anaeromyxobacter dehalogenans 2CP-C

 Structural
Localization
Localization
Sugar metabolism
Sugar metabolism
Nucleic acid metabolism
Nucleic acid metabolism
Nucleic acid metabolism
Nucleic acid metabolism
Energy reserve metabolism
Energy reserve metabolism
Protein metabolism
Protein metabolism
Protein metabolism
Protein metabolism
Regulation
Regulation
Electron transport
Electron transport
Electron transport
Electron transport
Protein metabolism
Protein metabolism
Protein metabolism
Protein metabolism
Protein metabolism
Protein metabolism
Response to stimulus
Response to stimulus
Secretion
Secretion
Protein metabolism
Protein metabolism
Energy reserve metabolism
Energy reserve metabolism
Protein metabolism
Protein metabolism
Protein metabolism
Protein metabolism

Resistance
Adaptation
Adaptation
Tolerance
Tolerance
Resistance
Resistance
Resistance
Resistance
Adaptation
Adaptation
Tolerance
Resistance
Resistance
Tolerance
Tolerance
Tolerance
Tolerance
Resistance
Resistance
Resistance
Resistance
Tolerance
Tolerance
Adaptation
Adaptation
Tolerance
Tolerance
Adaptation
Adaptation
Tolerance
Tolerance
Resistance
Resistance

Anaeromyxobacter dehalogenans 2CP-C synthetic construct synthetic construct Pseudomonas aeruginosa C3719
Pseudomonas aeruginosa C3719 Porphyromonas gingivalis W83 Porphyromonas gingivalis W83 Tenacibaculum sp. MED152 Tenacibaculum sp. MED152
Polynucleobacter sp. QLW-P1DMWA-1 Polynucleobacter sp. QLW-P1DMWA-1 Polynucleobacter sp. QLW-P1DMWA-1
Acinetobacter sp. ADP 1
HCIm-lovalur Op. AL.
Acradyrhizobium japonicum USDA 110 Bradyrhizobium japonicum USDA 110
Bradyrhizobium japonicum USDA 110 Silicibacter sp. TM1040 Silicibacter sp. TM1040
Nostoc punctiforme PCC 73102 Nostoc punctiforme PCC 73102
Nostoc punctiforme PCC 73102 Acidovorax sp. JS42 Acidovorax sp. JS42 Burkholderia xenovorans LB400 Burkholderia xenovorans LB400 Rickettsia felis URRWXCal2
Rickettsia elis URRWXCal2
12444 Novosphingobium aromaticivorans DSM 12444 Novosphingobium aromaticivorans DSM 12444
Acidovorax sp. JS42 Acidovorax sp. Acidovorax sp. Js42
Acinetobacter sp. V-26 Acinetobacter sp. V-26
Verminephrobacter eiseniae EF01-2
Verminephrobacter eiseniae EF01-2 Verminephrobacter eiseniae EF01-2 Wolinella succinogenes
Wolinella succinogenes Wolinella succinogenes
Wolinella succinogenes Ralstonia solanacearum UW551
Ralstonia solanacearum UW551 Ralstonia solanacearum UW551
Ralstonia solanacearum UW551 Vibrio vulnificus YJ016
Vibrio vulnificus YJ017 Vibrio vulnificus YJ017
synthetic construct Acinetobacter sp. ADP1 Silicibacter sp. TM1040 Novosphingobium aromaticivorans DSM 1244

Protein metabolism
Protein metabolism
Localization
Localization
Protein metabolism
Protein metabolism
Protein metabolism
Protein metabolism
Structural
Structural
Localization
Localization
Response to stimulus
Response to stimulus
Electron transport
Electron transport
Regulation
Regulation
Lipid metabolism
Lipid metabolism
Lipid metabolism
Lipid metabolism
Localization
Localization
Protein metabolism
Protein metabolism
Xenobiotic metabolism
Xenobiotic metabolism
Xenobiotic metabolism
Xenobiotic metabolism
Sugar metabolism
Sugar metabolism
Energy reserve metabolism
Energy reserve metabolism
Localization
Localization
Nucleic acid metabolism
Nucleic acid metabolism
Localization

Burkholderia dolosa AUO158
Burkholderia dolosa AUO158
Sodalis glossinidius str. 'morsitans'
Sodalis glossinidius str. 'morsitans'
Zymomonas mobilis
Zymomonas mobilis
Escherichia coli
Escherichia coli
Acinetobacter sp. ADP1
Acinetobacter Sp. ADP1
Acidovorax avenae subsp. citrulli AACOO-1 Acidovorax avenae subsp. citrulli AACOO-1 Polaromonas naphthalenivorans CJ2 Polaromonas naphthalenivorans CJ2
Escherichia coli E110019 Escherichia coli E110019 Escherichia coli K12 Eschenima colk Acinetobacter sp. ADP1 Acinetobacter sp. ADP1 Pseudomonas syringae pv, syringae $B 728$ a Pseudomonas syringae pv. syringae B728 Caldicellulosiruptor saccharolyticus DSM 8903 Caldicellulosiruptor saccharolyticus DSM 8903 Vibrio cholerae RC385 Pseudomonas fluorescens Nitrococcus mobilis Nb-231 1090 Neisseria gonorrhoeae FA 1090 Neisseria gonorrhoeae FA 1090 Escherichia coli E24377A
rulli AACOO-1 Acidovorax avenae subsp. citrulli AAC00-1 Rhodobacter sphaeroides ATCC 17029

人

$$
\begin{aligned}
& \begin{array}{l}
\text { Localization } \\
\text { Structural } \\
\text { Structural } \\
\text { Electron transport } \\
\text { Electron transport } \\
\text { Sugar metabolism } \\
\text { Sugar metabolism } \\
\text { Nucleic acid metabolism } \\
\text { Nucleic acid metabolism } \\
\text { Electron transport } \\
\text { Electron transport } \\
\text { Protein metabolism } \\
\text { Protein metabolism } \\
\text { Response to stimulus } \\
\text { Response to stimulus } \\
\text { Sugar metabolism } \\
\text { Sugar metabolism } \\
\text { Xenobiotic metabolism } \\
\text { Xenobiotic metabolism } \\
\text { Nucleic acid metabolism } \\
\text { Nucleic acid metabolism } \\
\text { Energy reserve metabolism } \\
\text { Energy reserve metabolism } \\
\text { Nucleic acid metabolism } \\
\text { Nucleic acid metabolism } \\
\text { Structural } \\
\text { Structural } \\
\text { Unknown } \\
\text { Unknown } \\
\text { Sugar metabolism } \\
\text { Sugar metabolism } \\
\text { Cell communication } \\
\text { Cell communication } \\
\text { Unknown } \\
\text { Unknown } \\
\text { Localization } \\
\text { Localization } \\
\text { Protein metabolism } \\
\text { Protein metabolism } \\
\hline
\end{array}
\end{aligned}
$$

Rhodobacter sphaeroides ATCC 17029
Lactobacillus sakei subsp. sakei 23 K Lactobacillus sakei subsp. sakei 23K Shewanella sp. PV-4
Caulobacter crescentus CB15 Caulobacter crescentus CB15 Bacteroides fragilis NCTC 9343 Bacteroides fragilis NCTC 3 , Verminephrobacter eiseniae EFO1-2 Verminephrobacter eiseniae EF01-2 Rhodospirillum rubrum ATCC 11170 Nitrobacter winogradskyi Nb-255 Nitrobacter winogradskyi Nb-255 Streptomyces avermitilis MA-4680 Streptomyces avermitilis MA-4680 Acidiphilium cryptum JF-5
11170 Rhodospirillum rubrum ATCC 11170 Deffia acidovorans
Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMD-9 synthetic construct
is BisA53 Rhodopseudomonas palustris BisA53 Geobacillus kaustophilus HTA426 Rhodopseudomonas palustris BisA53 Rhodopseudomonas palustris BisA53 Crocosphaera watsonii WH 8501 Crocosphaera watsonii WH 8501 Vibrio vulnificus CMCP6 Vibrio vulnificus CMCP6 Bradyrhizobium sp. BTAi1

Regulation
Regulation
Localization
Localization
Response to stimulus
Response to stimulus
Regulation
Regulation
Sugar metabolism
Sugar metabolism
Localization
Localization
Secretion
Secretion
Localization
Localization
Electron transport
Electron transport
Energy reserve metabolism
Energy reserve metabolism
Response to stimulus
Response to stimulus
Sugar metabolism
Sugar metabolism
Nucleic acid metabolism
Nucleic acid metabolism

Resistance
$\stackrel{0}{0}$
흔
흥
Tolerance

Tolerance

든
$\frac{10}{2}$
$\frac{\pi}{8}$

※
흥
응

Tolerance
Tolerance
Resistance
Resistance

๗ N
Response to stimulus
Electron transport
Secretion
Secretion
Secretion
Secretion
Secretion
Secretion
Secretion
Secretion
Electron transport
Electron transport
Electron transport
Electron transport
Secretion
Secretion
Secretion
Secretion
Secretion
Secretion
Energy reserve metabolis
Energy reserve metabolism
Energy reserve metabolis
Energy reserve metabolis
Energy reserve metabolism
Energy reserve metabolism
Secretion
Secretion
Secretion
Secretion
Secretion

Polaromonas sp. JS666 Polaromonas sp. JS666 8
0
0
0
0
0
0
0
0
0
0
0
0
0 Polaromonas sp. JS666 8
0
0
0
0
0
0
0
0
0
0
0
0
0
0 Acinetobacter junii Acinetobacter junii Acinetobacter junii Acinetobacter junii

 Acinetobacter sp. ADP1 Acinetobacter sp. ADP1

Acinetobacter sp. ADP1
Bacillus anthracis str. 'Ames Ancestor' Acinetobacter sp. ADP1

 Acinetobacter sp. ADP1 Arthrobacter sp. FB24 | N |
| :--- |
| 0 |

 Acinetobacter sp. V-26

```
M్~
```


Acinetobacter sp. V-26 Aurantimonas sp. SI85-9A1 Aurantimonas sp. SIB5-9 Polaromonas sp. JS666 Polaromonas sp. JS666 Polaromonas sp. JS666 Polaromonas sp. JS666 Tropheryma whipplei str. Twist Tropheryma whipplei str. Twist Arthrobacter sp. FB24 Arthrobacter sp. FB24 Arthrobacter sp. FB24 Arthrobacter sp. FB24 Arthrobacter sp. FB24
Arthrobacter sp. FB24 marine actinobacterium PHSC20C1 marine actinobacterium PHSL20C1 marine actinobacterium PHSC20C1 Dechloromonas aromatica RCB Dechloromonas aromatica RCB Ralstonia solanacearum UW551 Ralstonia solanacearum UW551 Bordetella pertussis Tohama I路 Burkholderia pseudomallei K96243 Nitrosomonas eutropha C71 Nitrosomonas eutropha C71 Nitrosomonas eutropha C71 Nitrosomonas eutropha 50
2
0
0
0
0
0
0
0
0
0
0
0
0
4
4 Rhodoferax ferrireducens DSM 15236 Rhodoferax ferrireducens DSM 15236 Polaromonas naphthalenivorans CJ2 Polaromonas naphthalenivorans CJ2 Polaromonas naphthalenivorans CJ2

응응ํ오응으응으응
Polaromonas naphthalenivorans CJ2 Rubrivivax gelatinosus PM1 Rubrivivax gelatinosus PM1 Rubrivivax gelatinosus PM1 Rubrivivax gelatinosus PM1
Rubrivivax gelatinosus PM1 Rubrivivax gelatinosus PM1 Rubrivivax gelatinosus PM1 Rubrivivax gelatinosus PM1

Appendix III:

List of peptides and their respective proteins identified in the metabolic labeling experiment of B. cepacia Cd 44 cadmium adaptation.(pages 201 to 210)

Fractic Accession	Mass	Score (\%)	Function
29	1169.7797	99	
29	1578.9918	99	
29	1871.9865	99	
29 gil84316904	32,626	99	Protein metabolism
1	814.5794	99	
1	1009.5893	99	
1	1873.9817	99	
1	1086.5884	99	
1 gil110595124	31,108		Electron transport
28	1482.3804	99	
28	3149.1553	99	
28 gi\|107022109	107,094	99	Energy reserve metabolism
9	1629.8848	99	
9	1538.7776	99	
9	1500.7168	99	
9 gi\|67546900	9,605		Protein metabolism
4	1055.601	99	
4	1167.7267	99	
4	1292.6982	99	
4	1609.7979	99	
4	2010.0638	99	
4	1917.9446	99	
4	778.3911	99	
4	1302.6128	99	
4	1298.6835	99	
$4 \mathrm{gi} / 78066909$	19,801		Energy reserve metabolism
38	2024.9752	99	
38	1559.5756	99	
38	2094.9963	99	
$38 \mathrm{gi\mid} 67548608$	41,207		Energy reserve metabolism
15	1241.3727	98	
15	1971.7881	98	
$15 \mathrm{gi} \mid 77459624$	142,944		Unknown
28	1184.3883	98	
28	1253.5946	98	
$28 \mathrm{gi} \mid 106883414$	55,844		Protein metabolism
5	1474.7782	97	
5	1030.5763	97	
$5 \mathrm{gi\mid 78778922}$	24,625		Nucleic acid metabolism
38	3211.1628	97	
38	3241.198	97	
38	3815.5754	97	
38	1933.9723	97	
38 gil53722657	362,971		Protein metabolism
34	2885.98	97	
34	2117.5554	97	
34 gi 68546839	124,941		Structural
9	1780.9998	96	
9	1781.0065	96	
9	1971.0366	96	
9	984.51025	96	
9 gi 167545539	100,675		Electron transport
9	1549.7881	96	
9	957.59503	96	
$9 \mathrm{gi} \mid 67738122$	18,916		Defense
19	535.1919	96	
19	1331.577	96	
19	1002.83093	96	
19	1959.8889	96	
19 gi\|86747755	127,450	96	Nucleic acid metabolism
4	1414.782	95	
4	1356.7743	95	
$4 \mathrm{gi} \mid 90962024$	32,147		Localization
10	2010.989	95	
10	1254.881	95	
10 gil 77686734	46,980		Cell communication
22	1581.8818	94	

Coverage Description m/z $\quad \mathbf{z}$ COG0459: Chaper 585.89712 COG0459: Chaper 790.50322 COG0459: Chaper 937.00052
10.54\% COG0459: Chaperonin GroEL (HSP6 Electron transfer fla $408.29697 \quad 2$ Electron transfer fla $\quad 505.8019 \quad 2$ Electron transfer fla $937.9981 \quad 2$ Electron transfer fla $544.30145 \quad 2$
14.19\% Electron transfer flavoprotein beta-sul formate dehydroge $742.19745 \quad 2$ formate dehydroge $788.2961 \quad 4$
4.58\% formate dehydrogenase, alpha subun Histone-like bacter 544.30223 Histone-like bacter $770.39606 \quad 2$ Histone-like bacter 751.365662
60.87\% Histone-like bacterial DNA-binding pr Phasin [Burkholder 528.807742 Phasin [Burkholder 584.87062 Phasin [Burkholder 647.35642 Phasin [Burkholder 805.90622 Phasin [Burkholder 1006.03922 Phasin [Burkholder 640.322143 Phasin [Burkholder 390.202822 Phasin [Burkholder 652.313662 Phasin [Burkholder $650.349 \quad 2$
57.98\% Phasin [Burkholderia sp. 383] Succinyl-CoA syntl $1013.4949 \quad 2$ Succinyl-CoA syntt 780.795042 Succinyl-CoA syntt 1048.50552
13.14\% Succinyl-CoA synthetase, beta subun hypothetical proteir $414.79816 \quad 3$ hypothetical proteir $986.9013 \quad 2$
2.20\% hypothetical protein Pfl_3402 [Pseuds threonine dehydrat 593.20142 threonine dehydrat 627.804572
3.91\% threonine dehydratase, biosynthetic [I Phosphoribosylantl 738.396362 Phosphoribosylantl 516.29542
9.17\% Phosphoribosylanthranilate isomeras probable non-ribos $\quad 803.7984$ $\begin{array}{llll}\text { probable non-ribos } & 811.30676 & 4\end{array}$ probable non-ribos $\quad 954.90114$ probable non-ribos $\quad 967.9934 \quad 2$
3.01\% probable non-ribosomal peptide syntr type IV pilin biogen $963.0006 \quad 3$ type IV pilin biogen 530.39614
2.18\% type IV pilin biogenesis protein, putati 2-oxo-acid dehydrc 891.507142 2-oxo-acid dehydrc 594.6761 3 2-oxo-acid dehydrc 986.5256 2-oxo-acid dehydrc 493.26242
5.57\% 2-oxo-acid dehydrogenase E1 compo COG0450: Peroxirt 775.90132 COG0450: Peroxirt 479.804782
13.02\% COG0450: Peroxiredoxin [Burkholder UviD/REP helicas $\quad 536.199161$ $\begin{array}{llll}U v i D / R E P & \text { helicas } \epsilon \quad 666.7958 \quad 2\end{array}$ UvrD/REP helicase $335.28424 \quad 3$ UvrD/REP helicas $\quad 654.3036 \quad 3$
3.88\% UvrD/REP helicase [Rhodopseudomc Cell division proteir $708.39825 \quad 2$ Cell division proteir 679.3944
8.10\% Cell division protein [Lactobacillus sal Homoserine dehyd 1006.50182 Homoserine dehyd 419.300933
3.94\% Homoserine dehydrogenase [Alkaliph Peptidoglycan-bind 528.30123

22	1234.5881	94
22	2759.5793	94
22 gi\|89211304	61,533	94 Structural
11	823.58685	93
11	1240.7888	93
11 gi\|89054673	43,761	93 Energy reserve metabolism
35	1228.5802	93
35	1656.7767	93
$35 \mathrm{gi} \mid 29346774$	41,412	93 Nucleic acid metabolism
14	1074.584	93
14	1032.5853	93
14	1002.79486	93
$14 \mathrm{gi\mid} 20806991$	90,746	93 Unknown
21	1706.7909	93
21	2130.1758	93
21	2809.168	93
21 gi\|76811647	70,350	93 Lipid metabolism
13	1028.5895	93
13	2081.9802	93
$13 \mathrm{gi\mid} 15896641$	36,670	93 Electron transport
6	2129.6636	93
6	2065.1816	93
6 gi 191215079	36,722	93 Energy reserve metabolism
7	4001.5566	93
7	1660.7897	93
7	2537.9644	93
$7 \mathrm{gi} \mid 56962459$	46,956	93 Sugar metabolism
31	1549.7881	92
31	661.4964	92
31	2713.1685	92
31 gil 115422149	20,230	92 Defense
18	1706.7909	92
18	1356.7743	92
18 gi\|91775132	116,984	92 Nucleic acid metabolism
25	2237.6738	92
25	2777.1582	92
25	3049.5513	92
$25 \mathrm{gi\mid} 46156887$	143,149	92 Nucleic acid metabolism
8	2738.9753	92
8	2266.161	92
8 gi 108803641	19,179	92 Lipid metabolism
7	1856.389	92
7	2641.1694	92
7	2611.4783	92
$7 \mathrm{gi} \mid 68229369$	81,736	92 Unknown
16	1030.5763	92
16	655.49023	92
16	1261.5923	92
16 gi\|52842521	130,787	92 Cell communication
9	2143.049	92
9	1164.6013	92
9	1502.7557	92
9	2143.0479	92
$9 \mathrm{gi\mid} 78060115$	29,035	92 Response to stimulus
1	1995.06	91
1	2082.9116	91
1	1923.9229	91
$1 \mathrm{gil116691651}$	129,194	91 Protein metabolism
17	3393.273	91
17	3126.389	91
$17 \mathrm{gi\mid} 89362433$	66,161	91 Localization
9	1337.7831	91
9	1112.5756	91
9	1426.8578	91
$9 \mathrm{gi\mid} 84360487$	15,096	91 Protein metabolism
9	1545.7366	91
9	1291.6083	91
9	1082.764	91

$9 \mathrm{gi\mid} 84357159$	22,407
20	2212.4946
20	1260.5906
20 gil89199851	74,023
38	3312.2603
38	2372.0002
38 gil 71367974	45,671
17	2806.1765
17	1264.5782
17	2278.189
17 gil82738547	116,867
14	2207.694
14	2525.5635
14	749.3962
14 gil94417343	53,263
7	2258.6914
7	1526.774
$7 \mathrm{gi\mid} 111220783$	36,335
37	1219.1874
37	2076.719
37	1786.7938
37 gil 39936010	48,335
36	3465.2852
36	2951.9639
$36 \mathrm{gi\mid} 116617591$	98,282
10	2300.687
10	1571.5966
10	1442.7885
10 gi\|83622431	27,932
36	2625.8867
36	4260.3516
$36 \mathrm{gi\mid} \mid 86130443$	76,747
12	1776.3839
12	823.58685
12 gil89359069	71,654
8	2225.687
8	1418.7762
8 gi\|91975323	26,739
16	3312.2603
16	1262.5797
$16 \mathrm{gi} \mid 104773956$	50,786
19	1559.376
19	1082.7805
$19 \mathrm{gi\mid} 116625582$	56,345
38	1605.2655
38	1967.7799
38 gi\|83368175	68,735
9	1240.7406
9	1518.7314
$9 \mathrm{gi\mid} 78067536$	13,861
8	2099.6736
8	926.3995
8 gi\|85707925	117,503
24	1833.5819
24	1583.5883
$24 \mathrm{gi} \mid 116625650$	88,271
11	1551.3799
11	2101.1626
$11 \mathrm{gi\mid} 92116781$	56,586
6	2705.9614
6	3917.986
$6 \mathrm{gi\mid} 16761557$	131,625
26	1301.779
26	1779.7794
26 gi\|91787132	66,411
9	1575.3798
9	722.3903
$9 \mathrm{gi} \mid 32471645$	119,319

	Localization
91	
91	
	Unknown
91	
91	
	Unknown
91	
91	
91	
	Unknown
91	
91	
91	
	Unknown
91	
91	
	Unknown
91	
91	
91	
	Structural
91	
91	
	Structural
91	
91	
91	
	Lipid metabolism
91	
91	
	Defense
91	
91	
91 90	Electron transport
90	
	Localization
90	
90	
	Energy reserve metabolism
90	
90	
	Lipid metabolism
90	
90	
	Sugar metabolism
90	
90	
	Nucleic acid metabolism
90	
90	
	Unknown
90	
90	
	Unknown
90	
90	
90	Unknown
90	
90	
	Localization
90	
90	
	Protein metabolism
90	
90	
	Protein metabolism

15.46\% COG2885: Outer membrane protein e conserved hypothe 738.50553 conserved hypothe 421.204133
4.37% conserved hypothetical protein [Bacill conserved hypothe 1105.09413 conserved hypothe 1187.00742
11.06% conserved hypothetical protein [Noca conserved hypothe 936.39943 conserved hypothe $633.2964 \quad 2$ conserved hypothe 1140.10182
5.05% conserved hypothetical protein [Pseu hypothetical proteir $736.9053 \quad 3$ hypothetical proteir $632.39813 \quad 4$ hypothetical proteir $750.40344 \quad 1$
10.06\% hypothetical protein PaerP_0100066C hypothetical proteir 753.904363 hypothetical proteir $764.3943 \quad 2$
9.63% hypothetical protein; putative signal p NADH-ubiquinone : 610.600952 NADH-ubiquinone : 520.1874 NADH-ubiquinone $\quad 894.40422$
9.30\% NADH-ubiquinone dehydrogenase ch Predicted membral 1156.10243 Predicted membral 984.995243
6.33\% Predicted membrane protein [Leucon Predicted periplasn 767.902953 Predicted periplasn 786.805542 Predicted periplasn $722.4015 \quad 2$
17.12\% Predicted periplasmic or secreted lipc putatve zinc-bindin 876.30286 putatve zinc-bindin 1066.09524
7.79\% putatve zinc-binding dehydrogenase [similar to Cation/m $445.10324 \quad 4$ similar to Cation/m $412.8007 \quad 2$
2.85% similar to Cation/multidrug efflux pum ABC transporter re $\quad 742.9029 \quad 3$ ABC transporter re $\quad 710.39542$
14.17\% ABC transporter related [Rhodopseuc Acetyl-CoA carbox: $1105.0941 \quad 3$ Acetyl-CoA carbox: $\quad 632.2971 \quad 2$
8.48\% Acetyl-CoA carboxylase, biotin carbo: Carboxylesterase, 780.695252 Carboxylesterase, 542.39752
4.13\% Carboxylesterase, type B [Solibacter Deoxyxylulose-5-pt 536.09576 3 Deoxyxylulose-5-ph 984.89722
4.94\% Deoxyxylulose-5-phosphate synthase Endoribonuclease | 621.377562 Endoribonuclease | $760.373 \quad 2$
17.19\% Endoribonuclease L-PSP [Burkholder hypothetical proteir $700.89844 \quad 3$ hypothetical proteir $927.40674 \quad 1$
2.08\% hypothetical protein NAP1_01780 [Er protein of unknown $612.20123 \quad 3$ protein of unknown $792.8014 \quad 2$
3.21% protein of unknown function DUF214 protein of unknown $776.6972 \quad 2$ protein of unknown $701.3948 \quad 3$
5.51% protein of unknown function DUF882 putative ABC trans 902.99443 putative ABC trans 980.50384
4.84\% putative ABC transporter protein [Salı serine/threonine pr $651.8968 \quad 2$ serine/threonine pr $\quad 890.897 \quad 2$
4.14\% serine/threonine protein kinase [Polar serine/threonine pr $\quad 788.69714 \quad 2$ serine/threonine pr $723.3976 \quad 1$
1.68% serine/threonine protein kinase [Rhod

30	3085.1213	90		Twin-arginine trans	772.2876	4
30	2044.9741	90		Twin-arginine trans	1023.4943	2
30 gi 109648135	92,825	90 Cell communication	5.08\%	Twin-arginine translo	cation pathw	as
7	1311.76	89		COG0050: GTPas	656.88727	2
7	1680.9073	89		COG0050: GTPast	841.46094	2
$7 \mathrm{gi} \mid 67645167$	36,391	89 Protein metabolism	7.78\%	COG0050: GTPases	- translation	
1	2140.115	87		COG0469: Pyruvat	714.3789	3
1	1552.8417	87		COG0469: Pyruvat	777.4281	2
1	1146.542	87		COG0469: Pyruvat	574.27826	2
1 gi\|84355614	49,048	87 Energy reserve metabolism	8.35\%	COG0469: Pyruvate	kinase [Burk	
17	2308.7832	87		NLP/P60 [Herpetos	770.6016	3
17	942.5785	87		NLP/P60 [Herpetos	472.2965	2
$17 \mathrm{gi\mid} 113941631$	59,431	87 Unknown	5.04\%	NLP/P60 [Herpetosip	phon aurantia	
37	3287.178	86		nitroreductase fam	822.80176	4
37	1844.7609	86		nitroreductase fam	923.3877	2
$37 \mathrm{gi\mid} 30264416$	24,011	86 Electron transport	20.29\%	nitroreductase family	protein [Bac	
2	3010.462	86		serine hydroxymett	1004.49457	3
2	4034.1062	86		serine hydroxymett	1009.5338	4
2	1442.756	86		serine hydroxymett	722.38525	2
$2 \mathrm{gi\mid} 78065369$	44,842	86 Protein metabolism	15.42\%	serine hydroxymethy	ltransferase	[Bur
3	1311.7244	85		elongation factor T	656.86945	2
3	1332.6385	85		elongation factor T	667.32654	2
3	1327.7184	85		elongation factor T	664.86646	2
3	1200.5438	85		elongation factor \mathbf{T}	601.2792	2
3	1680.915	85		elongation factor T	841.4648	2
$3 \mathrm{gi\mid} 78064909$	42,934	85 Protein metabolism	15.00\%	elongation factor Tu	[Burkholderia	
1	2287.0916	85		serine-type carbox!	763.3711	3
1	2313.1216	85		serine-type carbox.	1157.5681	2
1	2287.1924	85		serine-type carbox!	1144.6035	2
1	2485.1519	85		serine-type carbox	829.3912	3
$1 \mathrm{gi\mid} 83716854$	60,133	85 Protein metabolism	8.12\%	serine-type carboxyp	eptidase fam	
16	2372.7788	83		filamentous haema	594.20197	4
16	2333.1934	83		filamentous haema	1167.604	2
16 gi\|115526543	415,701	83 Defense	1.03\%	filamentous haemagg	glutinin family	
4	2429.1008	80		Redoxin [Burkholds	810.7075	3
4	1306.6781	80		Redoxin [Burkholds	654.3463	2
4 gi 107021678	17,200	80 Defense	21.56\%	Redoxin [Burkholderi	a cenocepacia	
1	1943.992	79		Alkyl hydroperoxids	973.00323	2
1	2287.0916	79		Alkyl hydroperoxide	763.3711	3
$1 \mathrm{gi\mid} 67546142$	17,283	79 Defense	21.56\%	Alkyl hydroperoxide	reductase/ Th	
38	1748.9796	78		malate dehydroger	875.4971	2
38	1759.7727	78		malate dehydroger	880.8936	2
$38 \mathrm{gi} \mid 33593357$	35,664	78 Energy reserve metabolism	8.81\%	malate dehydrogena	se [Bordetella	
35	3444.3884	77		protease Do [Syntr	862.1044	4
35	2115.2646	77		protease Do [Syntr	706.09546	3
$35 \mathrm{gi\mid} 116749436$	49,467	77 Protein metabolism	9.68\%	protease Do [Syntrop	phobacter fum	
15	3528.2612	76		Queuine/archaeosi	1177.0944	3
15	1222.5867	76		Queuine/archaeosi	612.3006	2
15	770.69745	76		Queuine/archaeosi	771.7047	1
$15 \mathrm{gi\mid 116493017}$	43,206	76 Nucleic acid metabolism	11.58\%	Queuine/archaeosine	tRNA-ribos	
1	1516.7074	75		GroEL [Bartonella I	759.36096	2
1	1089.5344	75		GroEL [Bartonella I	545.7745	2
1	1259.662	75		GroEL [Bartonella I	630.83826	2
1	1419.6893	75		GroEL [Bartonella I	474.23703	3
1	1887.021	75		GroEL [Bartonella I	944.51776	2
$1 \mathrm{gi\mid} 2290621$	43,658	75 Protein metabolism	7.35\%	GroEL [Bartonella he	enselae]	
22	2468.6877	75		Heavy metal efflux	823.9032	3
22	1666.7924	75		Heavy metal efflux	834.40344	2
22	1488.7832	75		Heavy metal efflux	745.39886	2
22	770.2884	75		Heavy metal efflux	771.29565	1
22 gi\|110599599	117,187	75 Electron transport	4.95\%	Heavy metal efflux p	ump CzcA [G	Geok

Peptide	Mr(Calc)	Delta(Mass)	Score(\%) Starser	Start	End	As Cd goes up	Change	Accession
AVIAAVEELKK	1169.7019	0.07775879	99.00	123	133	3.67	0-0.04-0.44	
AAVEEGVVPGGGVAL	1578.873	0.11877441	99.00	405	421	3.67	0-0.04-0.44	
ENTTIIDGAGVQADIE $/$	1871.9224	0.06408691	98.39	94	111	3.67	0-0.04-0.44	
: 0 family) [Pseudomonas aeruginosa C3719]						down	0-0.04-0.44	$\mathrm{gi} \mid 84316904$
LGAAIGASR	814.4661	0.11328125	99.00	221	229	1.95	0.04-0.44	
VLHADGASLK	1009.5556	0.03369141	99.00	57	66	1.95	0.04-0.44	
AAVDAGYAPNDLQVG	1873.917	0.06469727	99.00	230	248		0.04-0.44	
SDRPELTAAK	1086.5669	0.02148438	38.97	186	195	1.95	0.04-0.44	
bunit:Electron transfer flavoprotein, alpha subunit [Acidovorax sp. JS42]						down	0.04-0.44	gi\|110595124
GYPASCTTPAEAGMK	1482.6482	-0.26782227	99.00	103	117		0-0.04-0.44	
VAAGESESFMASECV	3149.3477	-0.19238281	99.00	225	256	4.33	0-0.04-0.44	
it [Burkholderia cenocepacia AU 1054]						up	0-0.04-0.44	gi\|107022109
AQTGETLDTLLEVIK	1629.8826	0.00219727	99.00	19	33	4.28	0-0.04	
GDAVQLIGFGSFGSGI	1538.773	0.00463867	95.98	39	54	3.94	0-0.04	
QELIDAVAAQTGASK	1500.7783	-0.06152344	53.91	4	18	4.56	0-0.04	
otein [Burkholderia vietnamiensis G4]						up	0-0.04	gi\|67546900
VQALVDNVAK	1055.5974	0.00354004	99.00	113	122		0-0.04	
LIELNLQVVK	1167.7227	0.00402832	99.00	34	43	4.89	0-0.04	
ANLESLFGLTTK	1292.6978	0.00048828	99.00	15	26	5.32	0-0.04	
SALNAANTTYETVOK	1609.7947	0.00317383	95.69	137	151	4.02	0-0.04	
DAQELIALOASLSQPV	2010.0632	0.00061035	94.87	61	79	2.69	0-0.04	
QAVEIAETNFNAAAAV	1917.9795	-0.03491211	92.91	155	173	3.55	0-0.04	
AFEGVEK	778.3861	0.00500488	84.13	27	33		0-0.04	
STLAEGQENAQR	1302.6165	-0.00366211	60.77	44	55	3.85	0-0.04	
NAPAGSETAVAALK	1298.6831	0.00036621	53.05	123	136	6.21	0-0.04	
						up	0-0.04	giif8066909
VIVEPSTGLLDAQADD	2025.063	-0.08776856	99.00	147	166		0-0.04-0.44	
DLDEEDPAEIEASK	1559.6838	-0.10827637	98.90	234	247	3.48	0-0.04-0.44	
IGVPAASIPQARTILQG	2095.2153	-0.21899414	50.12	167	186		0-0.04-0.44	
it [Burkholderia vietnamiensis G4]						down	0-0.04-0.44	gi\|67548608
AVELQQSALQR	1241.6729	-0.3001709	89.47	985	995	2.33	0.04-0.44	
APRSPFQVTGTTAALF	1972.0378	-0.24975586	75.33	1252	1270	2.33	0.04-0.44	
monas fluorescens PfO-1]						down	0.04-0.44	gi\|77459624
ESVLAVTIPEK	1184.6653	-0.27697754	94.23	331	341	2.94	0-0.04-0.44	
MTELSAAQYLK	1253.6326	-0.03796387	53.14	1	11	2.94	0-0.04-0.44	
Psychromonas ingrahamii 37]						down	0-0.04-0.44	gi\|106883414
DLEKTGALIKFLK	1474.8757	-0.09753418	98.08	204	216	1.56	0-0.04	
MPKTNTLVK	1030.5845	-0.00817871	53.04	1	9	1.56	0-0.04	
e [Prochlorococcus marinus str. MIT 9312]						up	0-0.04	gi\|78778922
ESPSRTYWMYRCHHI	3211.457	-0.29418945	99.00	145	171		0.04-0.44	
FDSRGYRMDVSRAPL	3241.4712	-0.27319336	78.81	1220	1247		0.04-0.44	
TYWMYRCHHLVADG	3815.8088	-0.23339844	61.81	150	180	1.86	0.04-0.44	
EEALAAIWRELLHVEF	1934.0374	-0.06506348	52.50	2110	2125		0.04-0.44	
letase [Burkholderia pseudomallei K96243]						up	0.04-0.44	$\mathrm{gi} \mid 53722657$
APELMVKTRCEDNNE	2886.2039	-0.22387695	99.00	1107	1132	3.33	0-0.04	
TRCEDNNEHCDGCPF	2117.7834	-0.22802734	89.39	1114	1132		0-0.04	
ive [Shewanella amazonensis SB2B]						down	0-0.04	gi\|68546839
ATSLPVPALDAFEPLL	1780.9973	0.00244141	98.35	476	492		0-0.04	
ATSLPVPALDAFEPLL	1780.9973	0.00915527	90.37	476	492	3.49	0-0.04	
F(OxM)KYLESRGIAQT	1971.0361	0.00048828	68.59	215	231	3.72	0-0.04	
AEADKKAPR	984.5352	-0.02496338	56.14	728	736	2.88	0-0.04	
nent homodimeric type [Burkholderia vietnamiensis G4]						down	0-0.04	gi\|67545539
DAVLLGGSSDNEFVK	1549.7625	0.02563477	99.00	62	76	3.23	0-0.04-0.44	
DKEAGVALR	957.52423	0.07080078	84.08	109	117	3.23	0-0.04-0.44	
ia pseudomallei 668]						up	0-0.04-0.44	gi\|67738122
ITFR	535.3118	-0.11993408	88.23	193	196		0-0.04-0.44	
DALAASDTAQLEK	1331.657	-0.07995606	82.56	279	291		0-0.04-0.44	
IVDGPHLPR	1002.561	0.2699585	75.14	245	253		0-0.04-0.44	
AEIASLIASGTMTGPRI	1959.9685	-0.07958984	66.12	569	587	2.7	0-0.04-0.44	
mas palustris HaA2]						down	0-0.04-0.44	gi\|86747755
LTSNGRELNVGQK	1414.7527	0.02929688	93.64	171	183	3.07	0.04-0.44	
DVNISLEKNVVK	1356.7612	0.01306152	81.24	139	150	3.07	0.04-0.44	
livarius subsp. salivarius UCC118]						down	0.04-0.44	gi\|90962024
PSVSLVFITHRTNEGN	2011.0852	-0.09619141	92.83	391	408	4.25	0.04-0.44	
PSVSLVFITHR	1254.7085	0.17248535	89.85	391	401	4.25	0.04-0.44	
ilus metalliredigenes QYMF]						up	0.04-0.44	gi\|77686734
IMSYNDLTYGHLR	1581.761	0.12084961	92.49	395	407	3.22	0.04-0.44	

Appendix IV:

Part 1: Complete data table for simple mixture quantification experiment. (pages 212 to 216)

Part 2: Comparison of Mascot and PEAKS quantification data. (pages 217 to 220)

Part 3: Summary of all proteins identified in the chromium-iron-cadmium shocks experiment. (pages 221 to 225)

Part 4: Complete data table with all peptides identified in the chromium-iron-cadmium shocks experiment. (pages 226 to 248)

Accession	Mass	Score (\%)	Coverage \%)	Uuery matched	uc score	m/z	Peptide	RSD	Spectrum Quality
P02754\|LACB_BOVIN	19,883		9940	25	99				
						567.393	2 (iTRAQ4plexK)IIAE(iTRAQ4plexK)	0.25	0.791154816
						431.259	2 (ITRAQI)IAE(ITRAQKK)	0	0.790991988
						602.793	2 (ITRAQI)DALNEN(ITRAQKK)	0	0.791569195
						481.274	2 (ITRAQG)LDIQ(ITRAQKK)	0	0.791660048
						499.297	2 (ITRAQA)LP(M16M)HIR	0.6666667	0.791294439
						767.326	2 (ITRAQT)PEVDDEALE(ITRAQKK)	0.30769232	0.791382746
						445.912	3 (ITRAQT)(ITRAQKK)IPAVF(ITRAQKK)	0.3	0.791425808
						542.659	3 (ITRAQV)LVLDTDY(ITRAQKK)(ITRAQKK)	0	0.791690479
						813.502	2 (ITRAQV)LVLDTDY(ITRAOKK)(ITRAQKK)	0	0.79152998
						690.003	3 (ITRAQT)PEVDDEALE(ITRAQKK)FD(ITRAQKK)	0	0.791753068
						481.801	2 (ITRAQL)PAVF(ITRAQKK)	0	0.790676526
						677.409	2 (ITRAQV)LVLDTDY(ITRAQKK)	0.22222222	0.791732759
						481.83603	2 (ITRAQL)PAVF(ITRAQKK)	0	0.79152998
						481.28302	2 (ITRAQG)LDIQ(ITRAQKK)	0	0.791569195
						602.863	2 (ITRAQI)DALNEN(ITRAQKK)	0.6	0.791535214
						481.328	2 (ITRAQG)LDIQ(ITRAQKK)	0	0.791501938
						1373.36	2 (ITRAQV)YVEEL(ITRAQKK)PTPEGDLEILLQ(ITRA	0.3	0.791694435
						481.319	2 (ITRAQG)LDIQ(ITRAQKK)	0	0.791554291
						602.863	2 (ITRAQI)DALNEN(ITRAQKK)	0.8	0.791672967
						481.354	2 (ITRAOG)LDIQ(ITRAQKK)	0.85714287	0.791554291
						602.873	2 (ITRAQI)DALNEN(ITRAQKK)	0.22222222	0.791587057
						481.31	2 (ITRAQG)LDIQ(ITRAQKK)	0.5	0.791434458
						602.853	2 (ITRAOI)DALNEN(ITRAQKK)	0.8888889	0.79161549
						481.328	2 (ITRAQG)LDIQ(ITRAQKK)	0	0.791521923
						602.873	2 (ITRAOI)DALNEN(ITRAOKK)	0	0.791576355
P67975\|LACB_OVIMU	18,151		$99 \quad 28$	26	99				
						567.393	2 (iTRAQ4plexK)IIAE(iTRAQ4plexK)	0.25	0.791154816
						431.259	2 (ITRAQI) 1 AE(ITRAQKK)	0	0.790991988
						602.793	2 (ITRAOI)DALNEN(ITRAOKK)	0	0.791569195
						481.274	2 (ITRAQG)LDIQ(ITRAQKK)	0	0.791660048
						499.297	2 (ITRAQA)LP(M16M)HIR	0.6666667	0.791294439
						619.365	2 (ITRAQI) ${ }^{\text {IVTOT(M16M)(ITRAOKK) }}$	0	0.791434879
						445.912	3 (ITRAQT)(ITRAQKK)IPAVF(ITRAQKK)	0.3	0.791425808
						611.393	2 (ITRAQI)IVTQTM(ITRAQKK)	0	0.7918039
						619.324	2 (ITRAQI)IVTQT(M)6M)(ITRAQKK)	0.25	0.791425808
						542.659	3 (ITRAQV)LVLDTDY(ITRAQKK)(ITRAQKK)	.	0.791690479
						813.502	2 (ITRAQV)LVLDTDY(ITRAQKK)(ITRAQKK)	0	0.79152998
						481.801	2 (ITRAQL)PAVF(ITRAQKK)	0	0.790676526
						611.272	2 (ITRAOI)IVTOTM(ITRAQKK)	1	0.79163889
						677.409	2 (ITRAQV)LVLDTDY(ITRAQKK)	0.22222222	0.791732759
						481.83603	2 (ITRAQL)PAVF(ITRAQKK)	0	0.79152998
						481.28302	2 (ITRAQG)LDIQ(ITRAQKK)	0	0.791569195
						602.863	2 (ITRAQ)DALNEN(ITRAOKK)	0.6	0.791535214
						481.328	2 (ITRAQG)LDIQ(ITRAQKK)	0	0.791501938
						481.319	2 (ITRAQG)LDIQ(ITRAQKK)	0	0.791554291
						602.863	2 (ITRAQI)DALNEN(ITRAQKK)	0.8	0.791672967
						481.354	2 (ITRAQG)LDIQ(ITRAQKK)	0.85714287	0.791554291
						602.873	2 (ITRAQI)DALNEN(ITRAQKK)	0.22222222	0.791587057
						481.31	2 (ITRAQG)LDIQ(ITRAQKK)	0.5	0.791434458
						602.853	2 (ITRAOI)DALNEN(ITRAQKK)	0.8888889	0.79161549
						481.328	2 (ITRAQG)LDIQ(ITRAQKK)	0	0.791521923
						602.873	2 (ITRAQI)DALNEN(ITRAQKK)	0	0.791576355
P00722\|BGAL_ECOLI	116,483		$99 \quad 16$	21	97				
						415.557	3 (ITRAQT)DRPSQQLR	0.5	0.791464581
						430.71	2 (ITRAQL)TDDPR	0.5714286	0.79115048
						405.714	2 (ITRAQD)QFTR	0.33333334	0.791460588
						676.87994	2 (ITRAQT)PHPALTEA(ITRAQKK)	0.4	0.79148562
						551.336	2 (ITRAQL)NVENP(ITRAQKK)	0	0.791456516
						522.727	2 (ITRAQF)NDDFSR	0	0.79170785
						801.388	2 (ITRAQA)PLDNDIGVSEATR	0	0.79170785
						440.756	2 (ITRAQT)LFISR	0.33333334	0.79099616
						786.887	2 (ITRAQD)WENPGVTQLNR	0	0.791524627
						492.819	2 (ITRAQQ)LLTPLR	0.2857143	0.791603226
						427.727	2 (ITRAOM)SGIFR	0.33333334	0.791550238
						815.43	2 (ITRAQV)DEDQPFPAVP(ITRAQKK)	0.64285713	0.791559726
						614.313	2 (ITRAQG)DFQFNISR	0	0.791550238
						622.304	2 (ITRAQL)DPNAWVER	0	0.791521491
						575.308	2 (ITRAQW)LPA(M16M)SER	0.875	0.791420779
						567.277	2 (ITRAOW)LPAMSER	0	0.791533332

Charge Correction min charge $=1$ max charge $=4$
Remove Low Quali quality > 0.65
Deconvolution true
After Preprocessin! 277
Database Options
Database swiss
Taxon All
PEAKS Protein ID
Title ITRAQ_QTOF
Database to Searcl swiss
Taxonomy \quad All
Instrument \quad Quad-TOF[Quadrupole:ESI(nano-spray):Time of Flight (TOF):CID, CAD, IRMPD (y and b ions)]
Parent Mass Error 0.1Da
Fragment Mass Erio.1Da
Enzyme Trypsin[RK:P:C]0
Max Missed Cleave 1
Fixed Modification ITRAQ(144.10207)@[ARNDCEQGHILKMFSTWYV(N-term)],ITRAQK(144.10207)@[K(Anywhere)]
Variable Modificatii ITRAQY(144.10207)@[Y(Anywhere)],M16(15.9949)@[M(Anywhere)]
Max Variable PTM 2
Precursor Mass $S \in$ Monoisotopic
Mascot
Title Dilwyang_worklworklpeaks\mascotlF001575.dat
Database SwissProt
Taxonomy All entries
Enzyme Trypsin
Fixed modifications iTRAQ4plex (K), iTRAQ4plex (N -term)
Variable modificatic iTRAQ4plex (Y),Oxidation (M)
ICAT
Protein mass $\quad 1000$
Missed cleavages $\quad 1$
Peptide tol. 0.1Da
$\begin{array}{lr}\text { MS/MS tol. } & 0.1 \mathrm{Da} \\ \text { <html>\#\ <su } & 0\end{array}$
<html>\#\&narp,<su
Peptide charge
1+, $2+$ and $3+$
Experimental mass Monoisotopic Instrument ESI-QUAD-TOF

Score(\%)	Peaks Score(\%)	Mascot Score	Peaks Quantification	Mascot Quantification	reaks SD to Mean Ratio
			0.3158717	0.992063492	0.11528057
28.85657034	0	24.43			
97.27016499	0.45647	26.63			
99.73880597	0.99	50.07			
73.62173552	0.69826	36.5			
98.66464321	0.63523	16.89			
90	0.99	0			
90	0.97929	0			
99.73880597	0.99	49.24			
99.73880597	0.99	61.49			
99.73880597	0.99	109.75			
99.73807832	0.89975	26.9			
99.73880597	0.94417	67.27			
96.16105684	0.37122	16.99			
67.56175538	0.57302	24.47			
97.50945186	0.47992	19.64			
62.72895316	0.47895	30.11			
90	0.97527	0			
69.64382874	0.52897	20.01			
92.84355416	0.23417	7.77			
10.26159969	0.10262	0			
99.32416274	0.77598	31.8			
51.18080274	0.32905	14.92			
97.47647638	0.47655	28.33			
66.78134929	0.53364	21.06			
99.73880597	0.92063	45.72			
			0.31299916	0.994035785	0.11008405
28.85657034	0	24.43			
97.27016499	0.45647	26.63			
99.73880597	0.99	50.07			
73.62173552	0.69826	36.5			
98.66464321	0.63523	16.89			
99.62910093	0.86359	36.09			
90	0.97929	0			
99.73880597	0.99	54.69			
90	0.99	0			
99.73880597	0.99	49.24			
99.73880597	0.99	61.49			
99.73807832	0.89975	26.9			
5.363924786	0.053639	0			
99.73880597	0.94417	67.27			
96.16105684	0.37122	16.99			
67.56175538	0.57302	24.47			
97.50945786	0.47992	19.64			
62.72895316	0.47895	30.11			
69.64382874	0.52897	20.01			
92.84355416	0.23417	7.77			
10.26159969	0.10262	0			
99.32416274	0.77598	31.8			
51.18080274	0.32905	14.92			
97.47647638	0.47655	28.33			
66.78134929	0.53364	21.06			
99.73880597	0.92063	45.72			
			0.23687364	1.067235859	0.097923905
99.05644347	0.71217	25.89			
16.97835769	0.16978	0			
93.15924386	0.24298	10.18			
99.70851186	0.88965	34.14			
99.4259908	0.80325	40.75			
99.73880597	0.99	35.88			
99.73880597	0.99	90.93			
99.66406759	0.91436	22.03			
99.73880597	0.99	47.95			
99.73880597	0.95757	32.34			
99.62996799	0.86387	23.12			
99.73880597	0.95088	75.38			
99.73880597	0.99	53.29			
99.73880597	0.99	49.15			
85.48132678	0.12186	13.16			
99.73880597	0.99	35.48			

99.73880597	0.95841	30.59			
99.73880597	0.96252	32.49			
90	0.97227	0			
99.73880597	0.99	62.1			
99.73361659	0.99	47.3			
			0.27123868	0.928505107	0.14678486
98.7147593	0.64416	29.2			
30	0	5.42			
30	0	24.43			
88.95058443	0.15948	4.08			
29.23332863	0	40.85			
99.73880597	0.97605	47.72			
99.6131595	0.85854	31.27			
99.7360654	0.99	59.63			
55.01202727	0.55012	0			
98.03235923	0.54007	25.92			
99.73880597	0.95399	33.33			
99.73880597	0.99	84.85			
2.480548929	0.024805	0			
98.12365809	0.55208	29.59			
99.73880597	0.99	59.62			
87.70989646	0.14398	15.56			
			0.36982238	0.865800866	0.25170702
99.71138309	0.89062	33.15			
97.72315978	0.50288	15.18			
96.86190495	0.42113	23.4			
99.73880597	0.96945	48.33			
96.72539499	0.41044	31.22			
99.73880597	0.99	50.28			
96.29203769	0.37968	15.25			
99.73612614	0.92651	55.57			
99.73880597	0.98985	48.85			
99.73880597	0.98896	51.16			
19.67462867	0	51.71			
99.65632641	0.91456	41.41			
99.73880597	0.99	44.7			
			0.21394321	1.014198783	0.15237533
99.73880597	0.99	71.6			
99.73614101	0.99	84.79			
91.32374883	0.19877	16.16			

ザo
＋80．0
1010
$960{ }^{\circ}$
$\begin{aligned} & z 6 r^{\circ} \varepsilon \\ & Z S L^{\prime} \bar{Z} \end{aligned}$
$\downarrow 60^{\circ} 0$
$\begin{aligned} & 6010 \\ & \text { oupen loosew } \end{aligned}$
$6 \varepsilon \varepsilon^{*}$－
£6G＇Z
108．
$9 \downarrow 8^{\circ} 0$
$\begin{aligned} & \varepsilon \angle Z Z^{\prime} \\ & \text { SIZ'0 } \end{aligned}$
†てL＇
$80{ }^{\circ} \varepsilon$
$\angle 1.0$
เャレ゚O
＋010
olpe jossew

4PF18
＞gi｜124893497｜gb｜EAY67377．1｜Extracellular ligand－binding receptor［Burkholderia dolosa
SD to mean：0．23417383
Gト8tEZ6ト0：ueem of OS t0己LLOZZ 0：ueəu of OS

SD to mean：－3．109223
SD to mean：－2．7454774
SD to mean：－2．4978433

$\pm \infty$
N
0
0
0
0

SD to mean：0．15475105
 SD to mean：0．28447855

＞gi｜78066693｜ref｜YP＿369462．1｜ATP－dependent Clp protease proteolytic subunit

$>$ gi｜107024372｜ref｜YP＿622699．1｜Extracellular ligand－binding receptor［Burkholderia
cenocepacia AU 1054］；
0.36423537 Pro ratio SD－ 1.0
0.40034539 Pro ratio SD－1．0
sp．383］；
$\angle \angle 96 G 9 L^{\circ} 0$ OS O！！ed odd 91Z906．0
0.7920475 Pro ratio SD 0.12078383
1.2890229 Pro ratio SD 0.16426615

 0.234114 Pro ratio SD 0.05072277
ABB09034．1｜
$8086826 \vdash^{\circ} \mathrm{O}$ as olpe ond $9966 ャ \angle 8^{\circ} \mathrm{L}$
 3.7693918 Pro ratio SD 0.58331734
acid－ amino acid－
0.98700583
0.16633332 Pro ratio SD 0.031469386
 0.24076432 Pro ratio SD 0.06951899 0.95
0.30
0.3002123 Pro ratio SD 0.03836527
0.2447438 Pro ratio SD 0.0284664
0.62185514 Pro ratio SD 0.075165495
$-L I Z$
N్Nّ
$\stackrel{\text { Br }}{\text { in }}$ 0.306
0.34
0.375

$\stackrel{\infty}{\stackrel{\infty}{\sim}} \stackrel{N}{\infty}$
官

>gi|78067415|ref|YP_370184.1| hypothetical protein Bcep18194_A5946 [Burkholderia sp.
383];
SD to mean:0.24026768
SD to mean:0.40144762
SD to mean: 0.28374103 SD to mean:0.28374103 SD to mean:0.15770759
SD to mean:0.21422918
SD to mean:0.16181792 SD to mean: 0.07997151
SD to mean: 0.11267904 SD to mean:0.0974364 0.27405673 Pro ratio SD 0.04434729 0.99504751
0.2991647 Pro ratio SD 0.023924652
0.2698212 Pro ratio SD 0.030403193
 0.59869206
Pro ratio SD 0.0583344 related

0.998446584 transport systems, periplasmic component [Burkholderia cenocepacia PC184];
SD to mean:0.24026768

!

$\varepsilon 8 \varepsilon \cdot d$
peptidoglycan-associated (lipo)proteins [Burkholderia cenocepacia PC184];;

ProMatch Score:

Pro ratio (116.1:114.1):
Pro ratio (117.1:114.1):
Pro ratio (117.1:114.1).

ProMatch Score:
Pro ratio (115.1:114.1):
Pro ratio (116.1:114.1): Pro ratio (117.1:114.1)

ProMatch ID:
ProMatch Score:
ProMatch Score:

Pro ratio (116.1:114.1):

Pratio(17.1.114.1)

 ProMatch ID:ProMatch Score:
Pro ratio (115.1:114.1):
Pro ratio (116.1:114.1): Pro ratio (117.1:114.1) ProMatch ID:

ProMaich Score. 14.1):
Pro ratio (115.1:114.1):
Pro ratio (116.1:114.1):
Pro ratio (117.1:114.1):
ProMatch ID:
ProMatch Score
Pro ratio (115.1:114.1):
Pro ratio (116.1:114.1):
Pro ratio (117.1:114.1): Pro ratio (117.1:114.1):
4PF13

ProMatch ID:
ProMatch Score:
Pro ratio (115.1:114.1):
Pro ratio (116.1:114.1):
Pro ratio (117.1:114.1):
ProMatch ID:
ProMatch Score:
$\begin{array}{lll}\text { >gi|118720065|ref|ZP_01572593.1| Extracellular ligand-binding receptor [Burkholderia } & \\ \text { multivorans ATCC 17616]; } & 0.999927461 & \\ & 0.15860213 \text { Pro ratio SD } 0.021488197 & \text { SD to mean:0.13548492 } \\ & 0.07650985 \text { Pro ratio SD } 0.013685544 & \text { SD to mean:0.17887297 } \\ & 0.1802165 \text { Pro ratio SD } 0.0559576 & \text { SD to mean:0.30408162 } \\ \text { >gi|107021936|ref|YP_620263.1| chaperonin GroEL [Burkholderia cenocepacia AU 1054]; } & 0.99957943 & \end{array}$
$\begin{array}{llll}\text { >gi| } 118720065|r e f| Z P _01572593.1 \mid ~ E x t r a c e l l u l a r ~ l i g a n d-b i n d i n g ~ r e c e p t o r ~[B u r k h o l d e r i a ~ & & \\ \text { multivorans ATCC 17616]; } & 0.999927461 & \\ & 0.15860213 \text { Pro ratio SD } 0.021488197 & \text { SD to mean:0.13548492 } \\ & 0.07650985 \text { Pro ratio SD } 0.013685544 & \text { SD to mean:0.17887297 } \\ >\text { gi|107021936|ref|YP_620263.1| chaperonin GroEL [Burkholderia cenocepacia AU 1054]; } & 0.18402165 \text { Pro ratio SD } 0.0559576 & \text { SD to mean:0.30408162 } \\ & 0.99957943 & \end{array}$
$\begin{array}{lcl}\text { >gil|118720065|ref|ZP_01572593.1| Extracellular ligand-binding receptor [Burkholderia } & \\ \text { multivorans ATCC 17616]; } & 0.999927461 & \\ & 0.15860213 \text { Pro ratio SD } 0.021488197 & \text { SD to mean:0.13548492 } \\ & 0.07650985 & \text { Pro ratio SD } 0.013685544 \\ \text { SD to mean:0.17887297 }\end{array}$
$\begin{array}{lcl}\text { >gil|118720065|ref|ZP_01572593.1| Extracellular ligand-binding receptor [Burkholderia } & \\ \text { multivorans ATCC 17616]; } & 0.999927461 & \\ & 0.15860213 \text { Pro ratio SD } 0.021488197 & \text { SD to mean:0.13548492 } \\ & 0.07650985 & \text { Pro ratio SD } 0.013685544 \\ \text { SD to mean:0.17887297 }\end{array}$

G4

t Clp
 \circ
$\stackrel{0}{0}$
$\stackrel{0}{0}$
0
0
0
0
0
\vdots
\vdots
0
0
0
0
0
0
$\begin{array}{rr}0.991349816 & \\ 0.5904142 \text { Pro ratio SD } 0.12292641 & \text { SD to mean:0.20820367 } \\ 0.78958035 \text { Pro ratio SD } 0.20368893 & \text { SD to mean:0.25797114 }\end{array}$
SD to mean:0.30532348

0.2
0.253
0.28 0.253
0.28 0.163
0.215
0.269 .566
.648
0.85

Pro ratio (115.1:114.1):
Pro ratio (116.1:114.1):

Pro ratio

ProMatch ID:

Pro ratio (117.1:114.1):
4PF12
ProMatch ID:

Pro ratio (116.1:114.1):
Pro ratio (117.1:114.1):
ProMatch ID:

Pro ratio (116.1:114.1):
Pro ratio (117.1:114.1):
ProMatch ID:
ProMatch Score:
ProMatch Score:
Pro ratio (115.1:114.1):
Pro ratio (116.1:114.1):

Pro ratio (117.1:114.1):
4PF11
4PF11
ProMatch Score:

Pro ratio (116.1:114.1):

Pro ratio (117.1:114.1):

ProMatch ID:

Pro ratio (117.1:114.1):
ProMatch ID:
ProMatch Score:
Pro ratio (115.1:114.1):
Pro ratio (116.1:114.1):
Pro ratio (117.1:114.1):
$>$ gi| 78062511 |ref|YP_372419.1| ABC branched chain amino acid family transporter,
periplasmic ligand binding protein [Burkholderia sp. 383];

383]; 0.7672

e!ordəo
>gi| $84355078 \mid$ ref|ZP_00979968.1| hypothetical protein BcenP_01002743 [Burkholderia
>gi|134294995|ref|YP_001118730.1| extracellular solute-binding protein, family 1

[Burkholderia vietnamiensis G4];

protein);

 Burkholderia sp. 383]; cenocepacia PC184];.
0.22424653 Pro ratio SD 0.028219327 SD to mean:0.12584063 18LZLSI'0:Ueəw of OS
0.9993643688 Pro ratio SD 0.030167837 SD to mean:0.13322845 SD to mean:0.2124706 SD to mean:0.15874162
0.30640933 Pro ratio SD 0.033816848 SD to mean:0.110364944 SD to mean:0.12709314

SD to mean: 0.188917
SD to mean: 0.19366701
SD to mean: 0.114712544
SD to mean:0.16675538
SD to mean:0.19998644 SD to mean:0.11488291

0.8111118 Pro ratio SD 0.093182884
$\angle 86866666^{\circ} 0$

N
N
©
0

SD to mean:0.13573323

SD to mean: 0.1498517
SD to mean: 0.160685
SD

\hat{m}
$\stackrel{y}{*}$

6 ${\text { LIL } 66666^{\circ}}^{\circ}$

LS91666.0

mino aci ABC transporier, periplasmio amino acid-binding proter, putatye [Burkholderia hationdensis E264]
TP-dependent Cip protease protedyic subunit lurnholgena sp. 383

HRD doman protein [Bukholdera sp. 383]
o-chaperonin GroES [Bumboideria sp. 383]

OG0740: Pyetease subunt of ATP-dependan Clp proteases [Eurkhotiena cenocepacia PCi84t

engacellular ligand-binumg receptor Burknodesia mutivorans ATCO 1761 GT
Exiracelluar ligand-binuing receptor Burno
iutamate aspartate perpiasmic bindng proein precursor [Burkholdena pseadomalle K 36243]
roEL [Francisella buarensis]
HamaghtuiniAitotransporier athesin [Buthoideria sp. 383]

3344
C124721

ketonadic reductosomerase [Burkholania sp . 383]
poamde dehydrogenase Vibro parahaemolycust

Regulation phage shock proiein A, Pspa [8urki phage shock poten A, Pspa [bumodena vietnamiensis G4] Regulation
Energy metabolisr
Structural Electron transport
Defense Defense
Protein metabolisr Protein metabolisr Protein metabolism Protein metabolism Protein metabolism
Regulation
DNA metabolism Defense Defense

Cell communication Protein metabolisr Lipid metabolism Function Cr

$$
\mathrm{Fe} \quad \mathrm{Cd}
$$

Energy metabolisr
Energy metabolism
Lipid metabolism
Localization
Protein metabolisr Protein metabolisr
Response to stiml Sugar metabolism Xenobiotic metabc CO

$$
\text { Cd peripasmisecreted potem [Gurhtodoria cenocepata Pcy } 18 \text {] }
$$

Haemagluttinin/Autotransporter
groEL [Francisella tuiarensis]
Peptidase S10, serine carboxypeptidase [Burkholderia sp. 383]
tryptophan synthase subunit apha [Burkholderia sp. 383]
Toluene tolerance [Burkholderia sp. 383]
PhaB [Burkholderia sp. DSMZ 9242] 5 -oxopent-3-ene-1,2,5-tricarboxylate decarboxylase [Burkhoide
30 S ribosomal protein S 15 [Ralstonia solanacearum GM11000] Molybdenum-pterin binding protein [Burkhoideria sp. 383]
potassium-transporting ATPase c chain [Burkholderia pseudomallei K96243]
Chaperone protein dnaK (Heat shock protein 70) (Heat shock 70 kDa protein)
TPR repeat protein [Burkhoideria sp. 383]
ribosome recycling factor [Burkholderia thailandensis E264]
hiamine biosynthesis protein Thic [Burkholderia sp. 383] ATC 12472] Haemagluttinin/Autotransporter adhesin [Burkholderia sp. 383]

pacia PC:184] eptidase S10, yptophan synth

61223 Mass: 63061 Score: 72 Queries matched: 4 emPAI: 0.12				
dase S10, serine carboxypeptidase [Burkholderia sp. 383]				
titation:	Ratio	Weighted	N	SD(geo)
	115/114	2.663	4	1.492
	116/114	0.992	4	1.177
	117/114	1.317	4	1.372
Query	Observed	$\mathrm{Mr}($ expt)	Mr (calc)	Delta
1592	600.9508	1799.8306	1799.8482	-0.0176
1605	606.2893	1815.8461	1815.8431	0.0030
062970 Mass: 30057 Score: 48 Queries matched: 2 emPAI: 0.13				
phan synthase subunit alpha [Burkholderia sp. 383]				
titation:	Ratio	Weighted	N	SD(geo)
	115/114	3.345	2	1.129
	116/114	2.037	2	1.750
	117/114	3.127	2	3.045
Query	Observed	Mr(expt)	Mricalc)	Delta
1718	701.3792	2101.1158	2101.1177	-0.0019
1821	827.0983	2478.2730	2478.2625	0.0105

Miss	Score	Expect	$115 / 114$	$116 / 114$	$117 / 114$	Peptide
0	47	0.1	0.226	0.337	0.471	R.ADPADTDVVVK.T
0	44	0.2	--	--		K.ADGSLDIVSTSNAATPLTTADK.A
Miss	Score	Expect	$115 / 114$	$116 / 114$	$117 / 114$	Peptide
0	56	0.013	0.265	0.315	1.266	K.AEVGEIDVLVNNAGITR.D
0	86	$1.4 \mathrm{e}-005$	0.288	0.229	0.393	R.AATGQAIEAAQSGFDAVSETATR.G

$\begin{array}{llrllll}0 & 56 & 0.013 & 0.265 & 0.315 & 1.266 & \text { K.AEVGEIDVLVNNAGITR.D } \\ 0 & 86 & 1.4 \mathrm{e}-005 & 0.288 & 0.229 & 0.393 & \text { R.AATGQAIEAAQSGFDAVSETATR.G }\end{array}$

 gil78060990 Mass: 32382 Score: 103 Queries matched: 3 emPAI: 0.10 | Ration: | Ratio | Weighted | N | |
| ---: | ---: | ---: | ---: | ---: |
| | $115 / 114$ | 0.230 | 4 | SD(geo) |
| | $116 / 114$ | 0.187 | 4 | 1.185 |
| | $117 / 114$ | 0.702 | 3 | 2.135 |
| Query | Observed | Mr(expt) | Mr(calc) | 1.078 |
| 904 | 709.3952 | 1416.7759 | 1416.7704 | Delta |
| 1811 | 812.7720 | 2435.2941 | 2435.2635 | 0.0054 |

Peptide
R.DLAAMYDATVSDTGAR.M
R.DLAAMYDATVSDTGAR.M
$117 / 114$
2.156
0.637

$115 / 114$
3.075
0.733

$\underset{\substack{0 \\ 0}}{0}$ 员

 $116 / 114$
1.212
0.607 $0.710-0.065$.
 $\begin{array}{rllll}\text { Expect } & 3.039 & 1.170 & 4.735 & \text { R.AAQIDPIFLLAPTSTDER.I } \\ 21 & 3.030 & 0.065 & 0.973 & \text { K.GVNVVPYQNQDQVYADLISGR.L }\end{array}$ K.GVNVVPYQNQDQVYADLISGR.L
 Miss
0
0
 $\begin{array}{lll}\text { Toluene tolerance [Burkholderia sp. 383] } \\ \text { Quantitation: } & \text { Ratio } & \text { Weighted }\end{array}$
$\begin{array}{lcccc}\text { gil } 78060990 & \text { Mass: } \\ 5 \text {-oxopent-3-ene-1,2,5-tricarboxylate decarboxylase [Burkholderia sp. 383] } \\ \text { Quantitation: } & \text { Ratio } & \text { Weighted } & \text { N } & \text { SD(geo) }\end{array}$ $\begin{array}{lll}\text { Quantitation: } & \text { Ratio } & \text { Weighted } \\ & 115 / 114 & 0.299\end{array}$
$\begin{array}{lll}115 / 114 & 0.299 & 2 \\ 116 / 114 & 0.230 & 3 \\ 117 / 114 & 1.145 & 3\end{array}$
2.307
1.882
1.367
 88 Mass 11803 Score: 90 Queries matched 3 emPAl: 0.29

$\stackrel{0}{0}$ 앵
$\begin{array}{rllll}\text { Expect } & 115 / 114 & 116 / 114 & 117 / 114 & \text { Peptide } \\ 0.025 & 0.586 & 0.103 & 1.568 & \text { R.AIDPATLPLVSGEPR.I } \\ 0.05 & 0.528 & 0.711 & 1.102 & \text { R.QAIDSSVDATLSR.M }\end{array}$ -
2.8 .
衰

$$
\begin{aligned}
& 2.462 \\
& 1.316
\end{aligned}
$$

	116/114	2.228	3	2.462	
	117/114	1.713	3	1.316	
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss
1245	634.6766	1901.0079	1900.9976	0.0103	0
467	524.7745	1047.5345	1047.5682	-0.0337	0
18809 Mass: 21245 Score: 78 Queries matched: 4 emPAl: 0.16					
sium-transporting ATPase c chain [Burkholderia pseudomallei K96243]					
tation:	Ratio	Weighted	N	SD(geo)	
	115/114	1.295	2	1.387	
	116/114	3.831	2	1.026	
	117/114	2.148	2	1.163	
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss
844	676.3726	1350.7306	1350.7377	-0.0072	0
1216	617.6863	1850.0370	1850.0383	-0.0013	0
9373 Mass: 78292 Score: 61 Queries matched: 3 emPAI: 0.04					
rone protein dnaK (Heat shock protein 70) (Heat shock $70 \mathrm{kDa} \mathrm{protein)}$					
tation:	Ratio	Weighted	N	SD(geo)	
	115/114	2.660	3	1.576	
	116/114	2.038	3	1.142	
Query	117/114	2.355	3	1.315	
	Observed	$\mathrm{Mr}(\mathrm{expt})$	Mr (calc)	Delta	Miss
1169	577.6528	1729.9367	1729.9332	0.0034	0
1326	695.3574	2083.0504	2083.1153	-0.0649	0

al134295978 Mass: 26929 Score: 101 Queries matched: 9 emPAl: 0.26

$$
\begin{gathered}
116 / 114 \\
2.463 \\
--
\end{gathered}
$$

$$
\begin{aligned}
& 116 / 114 \\
& 3.954 \\
& 0.018
\end{aligned}
$$

$$
\begin{array}{ll}
\text { 117/1144 } & \begin{array}{l}
\text { Peptide } \\
\text { 1.707 } \\
\text { K.-.AAGGAEIVAIVTNDSVDR.L } \\
\text { K.DALDTLTR.Q }
\end{array}
\end{array}
$$

$$
\begin{aligned}
& 117 / 114 \\
& 1.787 \\
& 0.062
\end{aligned}
$$

$$
\begin{aligned}
& \text { Peptide } \\
& \text { K.LNLALDAAQAAH.- } \\
& \text { K.IAAILNAATPPADALER. } 1
\end{aligned}
$$

$$
\begin{array}{rrllll}
\text { Score } & \text { Expect } & 115 / 114 & 116 / 114 & 117 / 114 & \text { Peptide } \\
42 & 0.3 & 0.416 & 0.480 & 3.442 & \text { R.DTLGESALFPPETTR.A } \\
26 & 14 & 0.055 & 0.035 & 0.035 & \text { K.SVAVVDSTAYGQGLADEFEK.K }
\end{array}
$$

$$
\begin{aligned}
& \stackrel{8}{2}
\end{aligned}
$$

R.GPTSVLYGAGDPGAIIDVQTK.T 10.171
1.047
3.015

44

2			
Miss	Score	Expect	$115 / 114$
0	34	2.2	0.616
0	32	3	0.549

 $\stackrel{0}{0}$

$\begin{array}{ll}17114 & \text { Peptide } \\ \text { K.AQSVDALLNR.L } \\ \text { R.QAFVGLSQDQYGSITLGR.Q }\end{array}$

Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	0.136	2	1.494							
	116/114	0.073	2	2.261							
	117/114	0.217	2	1.398							
Query	Observed	Mr(expt)	$\mathrm{Mr}(\mathrm{calc}$)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
2066	613.6573	1837.9502	1837.9302	0.0201	0	43	0.27	0.092	0.107	0.158	R.EITQADTPTGFGGEK.N
2671	705.4086	2113.2041	2113.2027	0.0014	0	23	23	---	...-	---	R.NSPVPIGTVPIYQALEK.V
gil34495909 Mass: 19265 Score: 64 Queries matched: $2 \mathrm{emPAl}: 0.17$											
hypothetical protein CV0454 [Chromobacterium violaceum ATCC 12472]											
Quantitation:	Ratio	Weighted		SD(geo)							
	115/114	1.311	2	1.278							
	116/114	0.477	2	1.077							
	117/114	0.298		1.180							
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
2117	626.6497	1876.9271	1876.9401	-0.0129	0	32	3.5	0.992	0.442	0.248	R.SGGVELGTPAAYDNNIR.A
1278	496.9450	1487.8132	1487.8106	0.0026	0	32	3.3	0.314	0.877	0.565	K.VISPIEDTPAFR.A
gil84351996 Mass: 32756 Score: 71 Queries matched: 7 emPAI: 0.21											
COG0596: Predicted hydrolases or acyltransferases (alpha/beta hydrolase superfamily) [Burkholderia cenocepacia PC184]											
Quantitation:	Ratio	Weighted		SD(geo)							
	115/114	0.285		1.567							
	116/114	0.655	3	1.795							
	117/114	0.391		1.356							
Query	Observed	Mr(expt)	Mr(calc)	Delta	Miss	Score	Expect	115/114	116/714	117/114	Peptide
1611	542.6816	1625.0229	1625.0193	0.0036	0	47	0.1	0.701	0.175	0.389	K.AVLVSAVPPLMLK.T
1751	557.9497	1670.8273	1670.8243	0.0030	0	28	8.7	0.193	-0.004	0.303	K.AFSETDQTEDLK.S
gil78060284 Mass: 149500 Score: 119 Queries matched: 5 emPAl : 0.02											
Haemagluttinin/Autotransporter adhesin [Burkholderia sp. 383]											
Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	2.892	4	1.131							
	116/114	1.224	4	1.105							
	117/114	0.399	4	1.311							
Query	Observed	$\mathrm{Mr}(\mathrm{expt})$	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
$\underline{2580}$	691.7047	2072.0921	2072.1106	-0.0184	0	63	0.0026	2.129	1.561	0.665	K.NVAAGAADTDAVNVQQLK.N
1151	731.3892	1460.7638	1460.7705	-0.0067	0	56	0.012	2.429	0.799	1.050	R.ASETNQVQATIR.E
gil1770287 Mass: 63685 Score: 57 Queries matched: 46 emPAl : 0.11											
groEL [Francisella tularensis]											
Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	0.806	7	1.296							
	116/114	0.633	8	1.627							
	117/114	0.462	8	1.341							
Query	Observed	$\mathrm{Mr}(\mathrm{expt})$	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
1841	576.0034	1724.9884	1724.9907	-0.0022	0	55	0.016	1.428	1.050	0.337	R.AAVEEGIVAGGGVALIR.A
$\underline{2360}$	994.9690	1987.9234	1987.7762	0.1472	0	2	$2.9 \mathrm{e}+003$	---	---	---	K.EAAPAMPMGGGMGGMPGM
gil9964068 Mass: 50258 Score: 69 Queries matched: 9 emPAI: 0.14											
maltose-binding protein [Burkholderia pseudomallei]											
Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	0.282	3	1.903							
	116/114	0.563	3	NN							
	117/114	0.470	4	1.225							
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
1424	515.6359	1543.8858	1543.8813	0.0044	0	33	2.4	0.325	0.667	0.559	K.VISGDAPSAAQIK.G
2003	603.9959	1808.9659	1808.9698	-0.0039	0	36	1.1	0.280	0.638	0.343	K.DFAVAGGAGAAAMTALK.T
gil78061073 Mass: 85767 Score: 67 Queries matched: 12 emPAl: 0.08											
TonB-dependent haemoglobin/transiemin/lactofernin receptor [Burkholderia sp. 383]											
Quantitation:	Ratio	Weignted	N	SD(geo)							
	115/114	0.579	2	1.173							
	116/114	2.078	2	1.750							
	117/114	2.143	2	1.177							

$\begin{array}{rrrrrccccccc}\text { Query } & \text { Observed } & \text { Mr(expt) } & \text { Mr(calc) } & \text { Delta } & \text { Miss } & \text { Score } & \text { Expect } & 115 / 114 & 116 / 114 & 117 / 114 & \text { Peptide } \\ \underline{934} & 459.2477 & 1374.7214 & 1374.7225 & -0.0011 & 0 & 39 & 0.65 & 0.482 & 1.001 & 1.778 & \text { K.AVSTSANELSPR.V } \\ \underline{2430} & 676.3548 & 2026.0426 & 2026.0462 & -0.0037 & 0 & 28 & 8.3 & 0.655 & 2.928 & 2.430 & \text { R.TTSNPQDVYSESLLGK.L }\end{array}$
$\begin{array}{rrllll}\text { Score } & \text { Expect } & 115 / 114 & 116 / 114 & 117 / 114 & \text { Peptide } \\ 44 & 0.2 & 2.769 & 3.367 & 4.255 & \text { R.SITRASGEAFR.A } \\ 32 & 3.5 & 2.163 & 1.205 & 0.491 & \text { R.IQSDGGGSAIGTIGGGALGAVAGSAIGGGK.G }\end{array}$ $\begin{array}{llll}3.5 & 2.163 & -1.205 & 0.491\end{array}$ -

$\begin{gathered} \text { Miss } \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} \text { Score } \\ 46 \\ (27) \end{gathered}$	$\begin{gathered} \text { Expect } \\ 0.12 \\ 11 \end{gathered}$	$\begin{aligned} & 115 / 114 \\ & 6.377 \\ & 4.748 \end{aligned}$	$\begin{aligned} & 116 / 114 \\ & 2.093 \\ & 5.793 \end{aligned}$	$\begin{aligned} & \text { 117/114 } \\ & 9.789 \\ & 5.300 \end{aligned}$	Peptide R.DAFWTPATANAK.C K.IEGMNTEVVVATGYTDR.I
$\underline{6}$						
Miss	Score	Expect	115/114	116/114	117/114	Peptide
0	59	0.0063	2.440	1.547	2.620	K.SSQEIVALGLR.H
0	24	22	0.931	1.011	1.444	K.AIFQLENGFNSASGALGQGGR.M

Queries matched: 10 emPAI: 0.78					
outer membrane lipoprotein [Burkholderia sp. 383]					
Quantitation:	Ratio	Weighted	N	SD(geo)	
	115/114	2.149	7	1.244	
	116/114	3.253	7	1.300	
	117/114	2.237	7	1.413	
Query	Observed	Mr(expt)	Mr(calc)	Delta	Miss
948	691.3621	1380.7096	1380.7119	-0.0023	0
3136	915.4928	2743.4566	2743.4708	-0.0143	0

 porin, Gram-negative type
Quantitation: \quad Ratio $158 \quad$ Ma
ambrane
Query
$\underline{348}$
$\underline{3136}$ gil 78065624
outer membrat
Quantitation: $\begin{array}{ll}\text { outer membrane protein, } \\ \text { Quantitation: } & \text { Ratio } \\ & 115 / 114\end{array}$

96822 Mass: 54549 Score: 78 Queries matched: 11 emPAl: 0.12					
e Do [Burkholderia vietnamiensis G4]					
ation:	Ratio	Weighted	N	SD(geo)	
	115/114	4.660	4	1.123	
	116/114	16.731	5	1.243	
	117/114	10.213	5	1.315	
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss
773	430.2617	1287.7634	1287.7642	-0.0008	0
1070	481.9155	1442.7246	1442.7236	0.0010	0

 gil78065428 Mass: 11897 Score: 86 Queries matched: 11 emPAI: 1.76

Score	Expect	$115 / 114$	$116 / 114$	$117 / 114$	Peptide
65	0.0016	0.042	0.057	0.142	K.VVDDAISQVEK.S
34	1.8	0.326	0.751	0.315	R.AVAFMMDDALLAGER.A

	116/114	0.229	9	NN							
	117/114	0.371	10	1.094							
Query	Observed	Mr(expt)	Mr(caic)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
1691	407.2653	1625.0319	1625.0193	0.0126	0	57	0.0099	-0.012	0.001	0.295	K.AVLVSAVPPLMLK.T
1816	557.9516	1670.8330	1670.8243	0.0087	0	34	1.8	0.250	0.270	0.339	K.AFSETDOTEDLK.S
gil78067874 Mass: 19078 Score: 94 Queries matched: 34 emPAl: 1.65											
hypothetical protein Bcep18194_A6405 [Burkholderia sp. 383]											
hypothetical prot Quantitation:	Ratio	Weighted		SD(geo)							
	115/114	1.764	12	1.175							
	116/114	0.379	12	1.266							
	117/114	0.465	12	1.226							
Query	Observed	Mr(expt)	Mr(calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
806	651.8533	1301.6921	1301.6890	0.0031	0	40		2.170	0.456	0.300	R.NLPFSYYVR.A
1208	731.3928	1460.7710	1460.7705	0.0005	0	54	0.021	2.936	0.831	0.918	R.ASETNQVQATIR.E
qil53721005 Mass: 60482 Score: 103 Queries matched: 9 emPAI: 0.17											
Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	0.933	6	1.163							
	116/114	0.849	6	1.146							
	117/114	0.484	6	1.096							
Query	Observed	Mr(expt)	Mr (calc)	Deita	Miss	Score	Expect	115/114	116/114	117/114	Peptide
1409	507.9781	1520.9125	1520.9048	0.0077	0	43	0.26	0.513	0.841	0.626	R.ILEVPVGPELVGR.V
1598	801.9521	1601.8896	1601.8859	0.0037	0	50	0.0049	0.824	1.080	0.416	R.NQGTVISVTDGIVR.I
gil18065543 Mass: 50068 Score: 97 Queries matched: 23 emPAl: 0.38											
ABC sugar transporter, periplasmic ligand binding protein [Burkholderia sp. 383]											
Quantitation:	Ratio	Weighted		SD(geo)							
	115/114	0.464	-	2.068							
	116/114	0.606	8	1.424							
	117/114	0.839	9	1.651							
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
900	443.6113	1327.8120	1327.8067	0.0053	0	48	0.076	0.563	0.573	0.920	K.AATPGQLALAK.T
2279	632.6823	1895.0249	1895.0073	0.0176	0	49	0.069	0.231	0.463	0.292	K.VPTTWPEFFAVADK.L
Qill2306819 Mass: 28794 Score: 97 Queries matched: 5 emPAl: 0.25											
acetoacetyl-COA reductaseQuantitation:Rataligenes sp.WeightedWh-69]											
Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	0.743	4	1.159							
	116/114	1.071	3	1.031							
	117/114	0.987	4	NN							
Query	Observed	$\operatorname{Mr}($ expt)	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
1214	487.9592	1460.8559	1460.8442	0.0117	0	23	27	0.662	0.772	0.716	R.IIIISSVNGEK.G
$\underline{2806}$	709.3876	2125.1411	2125.1333	0.0078	-	74	0.0002	0.746	1.033	1.670	K.GVTVNTVSPGYIGTDMV
gil78064927 Mass: 32624 Score: 104 Queries matched: 3 emPAl 0.10											
Quantitation:	115/114	0.992	3	1.103							
	116/114	0.913	3	1.099							
	117/114	1.035	3	1.130							
Query	Observed	Mr(expt)	Mr (caic)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
$\frac{2264}{128}$	630.0090	1887.0053	1887.0006	0.0047	0	52	0.029	1.165	1.084	0.900	K.GLTVGQQLMSGSEAPIR
1282	741.9254	1481.8362	1481.8324	0.0038	0	52	0.027	0.309	0.829	1.683	R.ANIAADLGLPLDRV
gil53720045 Mass: 9571 Score: 105 Queries matched: 8 emPAI: 1.54											
Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	1.365	7	1.210							
	116/114	2.502	7	1.219							
	117/114	1.638	7	1.136							
Query	Observed	Mr(expt)	Mr(caic)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
1418	761.9172	1521.8199	1521.8273	-0.0074	0	65	0.0016	1.925	2.890	1.812	K.ITTVQQAIDYAR.A

2.089
0.982
0.769
0.47
40

2060	- 586.6818	1757.0235	1757.0178	0.0057	0
8340	Mass: 29139 Score: 71 Queries matched: 11 emPAl: 0.38				
periplasmic cytochrome c protein [Burkholdenia pseudomaliei K96243]					
ation:	Ratio	Weighted	N	SD(geo)	
	115/114	1.006	5	2.271	
	116/114	2.267	6	1.701	
	117/114	3.345	6	NN	
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss
579	- 596.7794	1191.5443	1191.5386	0.0057	0
3435	- 991.5228	2971.5465	2971.5525	-0.0060	0

Query	Observed	Mr(expt)	Mr(calc)	Delta	Miss	Score	Expect	$115 / 114$	$116 / 114$	$117 / 114$	Peptide
$\underline{5479}$	596.7794	1191.543	1191.5386	0.0057	0	31	3.9	1.090	2.625	3.666	K.TPLACGSEPQ.-.
$\underline{3435}$	991.5228	2971.5465	2971.5525	-0.0060	0	40	0.5	-0.180	1.347	2.156	K.LSDEDVTAVTAWLAAQPAPANPVPAPAR.S

 gil118720065 Mass: 48746 Score: 130 Queries matched: 27 emPAI: 0.69
$\begin{array}{llll}115 / 114 & 0.109 & 18 & 1.270 \\ 116 / 114 & 0.102 & 18 & 1.270 \\ 117 / 114 & 0.097 & 18 & N\end{array}$

core	0.069	1.341	6.816	2.342	RepldQLNQQVATLR.G
39	0.66	5.508	2.303	5.900	R.AADALVAIGTNQLEQGQK.A

$\begin{array}{rcrrrrrrllll}\text { Query } & \text { Observed } & \text { Mr(expt) } & \text { Mr(calc) } & \text { Delta } & \text { Miss } & \text { Score } & \text { Expect } & 115 / 114 & 116 / 114 & 117 / 114 & \text { Peptide } \\ \underline{2608} & 830.0888 & 2487.246 & 2487.2373 & 0.0073 & 0 & 59 & 0.0059 & 0.237 & 0.145 & 0.091 & \text { K.SVAVVDDSTAYGQGLANEFEK.K } \\ \underline{3110} & 982.1840 & 2943.5302 & 2943.5222 & 0.0081 & 0 & 71 & 0.00043 & 0.146 & 0.073 & 0.144 & \text { K.IYSDAGIVQISPSATNPAYTQQGFK.T }\end{array}$

ular sol tion:	Ratio-binding pro Ratio	in, family 3 [Bu Weighted	${ }_{N}$	miensis G4] SD(geo)							
	115/114	0.322	2	1.041							
	116/114	0.344	2	1.612							
	117/114	0.189	2	1.386							
Query	Observed	Mr(expt)	Mr(calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
282	${ }_{7}^{616.3441}$	1230.6736	1230.6690	0.0046	0	20	44	--1	\cdots	24	K.AINDALDSLR.K
$\underline{2436}$	782.7299	2345.1679	2345.1661	0.0018	0	67	0.001	0.310	0.194	0.247	K.EALDFSEPYTYSAAQLIQR.K

4858 Mass: 45014 Score: 141 Queries matched: 28 emPAI: 0.											
ation:	Ratio	Weighted	N	SD(geo)							
	115/114	0.114	16	1.342							
	116/114	0.109	16	1.267							
	117/114	0.102	16	NN							
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
1572	906.4692	1810.9239	1810.9183	0.0056	0	55	0.017	0.112	0.024	0.034	K.ITLQLDPQODAADPR.O
$\underline{2709}$	861.7584	2582.2534	2582.2447	0.0087	O	86	1.3e-005	0.047	0.082	0.137	K.LADLAGDATDNVVCSE

$\begin{array}{lllllllllllll}\underline{1572} & 861.7584 & 2582.2534 & 2582.2447 & 0.0087 & 0 & 86 & 1.3 \mathrm{e}-005 & 0.047 & 0.082 & 0.137 & \text { K.LADLAGDATDNVVCSEAGASLEK.M }\end{array}$
gil 78061080 Mass: 32042 Score: 97 Queries matched: $13 \mathrm{emPAl}: 0.48$ [Burkholderia sp. 383]
$\begin{array}{ccccc}\text { Lysine-arginine-ornithine } & \text { ABC } & \text { transporter, periplasmic ligand binding protein } \\ \text { Quantitation: } & \text { Ratio } & \\ & \text { Reighed } & \text { N } & \text { N } & \text { SD(geo) } \\ & 115 / 114 & 0.163 & 9 & 1.274\end{array}$
gil30525581 Mass: 63022 Score: 70 Queries matched: 9 emPAl: 0.11

Peptide
R.LAEVPGIIGVK.E
K.LAGQLSNLMQVANVEFSLSPEAQR.T

 gil78066870 Mass: 33958 Score: 101 Quenes matched: 13 emPAl: 0.20 qil78066870
dihydrodipicolin
Quantitation:

$\begin{array}{lllll}\text { dipicolinate synthase [Burkholderia sp. } 383] & & \\ & \text { Ratio } & \text { Weighted } & \mathrm{N} & \mathrm{SD} \text { (geo) } \\ & 115 / 114 & 1.386 & 8 & 1.267 \\ & 116 / 114 & 2.071 & 8 & 1.235 \\ & 117 / 114 & 1.729 & 8 & \mathrm{NN} \\ \text { Query } & \text { Observed } & \text { Mr(expt) } & \mathrm{Mr} \text { (calc) } & \mathrm{NN} \\ \underline{2043} & 695.3914 & 2083.1522 & 2083.1799 & -0.0277 \\ \underline{2537} & 815.1064 & 2442.2973 & 2442.2950 & 0.0023\end{array}$
(

gil134295363	Mass: 40763	Score: 88	Queries matched: 6	
phosphate ABC transporter,	periplasmic phosphate-binding protein [Burkholderia vietnamiensis G4]			
Quantitation:	Ratio	Weighted	N	SD(geo)
	$115 / 114$	3.436	4	1.152

Query	Observed	Mr(expt)	Mr(calc)	Delta	Miss	Score	Expect	$115 / 114$	$116 / 114$	117/114	Peptide
$\underline{1596}$	609.3443	1825.0111	1825.0179	-0.0069	0	55	0.016	3.385	3.135	1.906	K.LLDQGQAGDNVGILLR.G
$\underline{2118}$	718.7034	2153.0883	2153.0949	-0.0066	0	55	0.015	1.061	0.607	0.890	R.AVDGAFLMPVEDVFSISGR.G

gil 78066870 Mass: 33958 Score: 101 Queries matched: 13 emPAl: 0.20											
dihydrodipicolinate synthase [Burkhoideria sp. 383]											
Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	1.386	8	1.267							
	116/114	2.071	8	1.235							
	117/114	1.729	8	NN							
Query	Observed	$\mathrm{Mr}($ expt)	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
$\underline{2043}$	695.3914	2083.1522	2083.1799	-0.0277	0	52	0.032	0.788	1.847	1.656	K.TIAEAVDLPVILYNVPGR.T
2537	815.1064	2442.2973	2442.2950	0.0023	0	49	0.057	1.568	4.626	4.145	R.GSIPAIVTPMLEDGSLDLPAFR.K

	116/114	0.539	5	1.296							
	117/114	0.419	5	1.097							
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
1302	563.3125	1686.9157	1686.9022	0.0135	0	54	0.019	0.129	0.526	0.483	K.GNTGENLLQLLESR.L
783	473.9147	1418.7222	1418.7236	-0.0014	0	52	0.035	6.608	2.206	15.713	R.SIGATVSAAGGNDR.I

Query	Observed 523.8273	$\operatorname{Mr}($ expt) 1045.6401	Mr(calc) 1045.6406	Delta -0.0005	Miss	Score 37	$\begin{array}{r} \text { Expect } \\ 1.2 \end{array}$	115/114	$\begin{gathered} 116 / 114 \\ \hline-- \end{gathered}$	117/114	Peptide R.FVTVALPR.V 223
761	703.9276	1405.8407	1405.8384	0.0023	0	72	0.00035	1.627	2.008	3.958	R.GLNISITTTAK.T 760762
45907 Mass: 13526 Score: 92 Queries matched: 7 emPAl: 0.96											
ABLE THIOREDOXIN 1 (REDOX FACTOR) PROTEIN [Ralstonia solanacearum GMI1000]											
tation:	Ratio	Weighted	N	SD(geo)							
	115/114	1.652	5	1.118							
	116/114	4.463	5	1.187							
	117/114	5.284	5	1.177							
Query	Observed	Mr(expt)	Mr(calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
502	645.4238	1288.8330	1288.8362	-0.0032	0	45	0.17	2.457	3.706	8.118	R.GIPTLILFK.N
700	688.3709	1374.7271	1374.7265	0.0006	0	47	0.11	1.676	4.731	5.592	K.SQLTAFLDSHL.-

gil69880176 Mass: 85197 Score: 76 Queries matched: 21 emPAI: 0.04
ron (III) protoporphyrin IX monomer binding protein [Burkhoideria cenocepacia]
$\begin{array}{lll}\text { iron (ili) protoporphyntio } & \text { Ratio } & \text { Weighted } \\ \text { Quantitation: } & 115 / 114 & 0.080\end{array}$
$\begin{array}{llll}115 / 114 & 0.080 & 3 & 1.294 \\ 116 / 114 & 0.149 & 3 & 1.207 \\ 117 / 114 & 0.065 & 3 & 1.013\end{array}$

$\begin{array}{lrrrrrrrrrrr}\text { Query } & \text { Observed } & \text { Mr(expt) } & \text { Mr(calc) } & \text { Delta } & \text { Miss } & \text { Score } & \text { Expect } & 115 / 114 & 116 / 114 & 117 / 114 & \text { Peptide } \\ \underline{2057} & 614.8732 & 2455.4638 & 2455.4739 & -0.0101 & 1 & 21 & 37 & -- & \ldots & --. & \text { K.KVSLADLIVLAGAAGVEQAAK.N } \\ \underline{2733} & 737.6253 & 2946.4721 & 2946.4715 & 0.0006 & 0 & 55 & 0.016 & 0.091 & 0.101 & 0.066 & \text { K.THGAGPASNVGPEPEAAGLEEQGLGWK.S }\end{array}$ THGAGPASNVGPEPEAAGLEEQGLGWK.S

3574	s: 11619	e: 130	s mat	emPAI:	
inding pro	in HU -alpha	3urkholderia x	ovorans LB400		
tation:	Ratio	Weighted	N	SD(geo)	
	115/114	1.609	18	1.158	
	116/114	3.896	19	1.256	
	117/114	8.265	19	1.364	
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss
1039	609.9998	1826.9774	1826.9771	0.0004	
1188	960.0457	1918.0768	1918.0866	-0.0099	

Query	Observed	Mr (expt)	Mr (calc)	Delta	iss	5	Expect	115/114	116/114	117/11	Peptide
1039	609.9998	1826.9774	1826.9771	0.0004	0	54	0.019	0.814	1.259	2.397	K.gDAVQLIGFGSFGSGK.R
1188	960.0457	1918.0768	1918.0866	-0.0099	0	76	0.00013	0.908	2.700	3.894	K.AQTGETLDTLLEVIK.K

Query 1017	Observed 540.3278	Mr(expt) 1617.9616	Mr(calc) 1617.9688	Delta -0.0072	Miss 0	Score 35	Expect	${ }^{115 / 114} 0$	$116 / 114$ 0.758	117/114 0.340	Peptide R.VAVATPGDILLHIR.A
$\underline{1185}$	585.6480	1753.9222	1753.9193	0.0029	0	45	0.15	0.713	1.070	0.968	R.GLSSAASAANAAIDHVR.D
4934 Mass: 9188 Score: 67 Queries matched: 9 emPAl: 0.90											
40: Protease subunit of ATP-dependent Clp proteases [Burkholderia cenocepacia PC184]											
ation:	Ratio	Weighted	N	SD(geo)							
	115/114	0.190	4	1.136							
	116/114	0.291	4	1.184							
	117/114	0.357	4	1.042							
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
872	760.9695	1519.9245	1519.9217	0.0028	0	49	0.062	0.204	0.337	0.319	K.AYGLIDQVLLK.R
1070	555.6827	1664.0262	1664.0238	0.0024	0	(18)	74	.-.	---	.--	K.AYGLIDQVLLK.R

$\begin{array}{cc}0.319 & \text { K.AYGLIDQVLLK.R } \\ \text { K.AYGLIDQVLLK.R }\end{array}$
$\begin{array}{ll}117 / 114 & \text { Peptide } \\ \ldots-.14 & \text { K.VVDLTDGAHIER.E } \\ 0.337 & \text { R.HISVLLENEPGALSR.V }\end{array}$
$116 / 114$
-.280
 Miss
0
0

.084
Delta
0.0020
-0.0097

 il78067733 Mass: 26448 Score: 52 Queries matched: 8 emPAI: 0.27 | DSBA oxidoreductase [Burkholderia sp. 383] | | | | |
| :--- | :--- | :--- | :--- | :--- |
| Quantitation: | Ratio | Weighted | N | SD(geo) |
| | $115 / 114$ | 0.133 | 4 | 1.409 | $\begin{array}{ll}\text { 1155/114 } & 0.133 \\ 116 / 114 & 0.206 \\ 117 / 114 & 0.457\end{array}$

	$117 / 114$	0.457
Query	Observed	Mr(expt)
立37	783.1349	2346.3830
$\underline{\underline{2297}}$	817.4568	2449.3487

Query	Mbserved	Mr (expt)	Mr(calc)	Delta
2137	783.1349	2346.3830	2346.3888	-0.0058
2297	817.4568	2449.3487	2449	

 PA. 01
$\begin{array}{ll}\text { 117/114 } & \text { Peptide } \\ 0.416 & \text { K.LKDVAIDGVPTVVVQGK.Y } \\ \cdots & \text { K.TGPAYANSIPGTAQVLDFLVK.Q }\end{array}$

$\begin{array}{llllll}\text { gil } 78067213 & \text { Mass: } 21685 & \text { Score: } 55 & \text { Queries matched: } 5 & \text { emPAl: } 0.16 \\ \text { inorganic pyrophosphatase [Burkholderia sp. } & \text { W83] } & \\ \text { Quantitation: } & \text { Ratio } & \text { Weighted } & \text { N } & \text { SD(geo) } \\ & 115 / 114 & 0.248 & 3 & \text { NN }\end{array}$

1.068 NN

$\begin{array}{crllll}\text { Score } & \text { Expect } & 115 / 114 & 116 / 114 & 117 / 114 & \text { Peptide } \\ 42 & 0.28 & 0.239 & 0.344 & 0.489 & \text { K.VEGWAGIEAAHK.E }\end{array}$
K.VEGWAGIEAAHK.E
K.SIDDVPEYLKDQIK.H
$117 / 114$
$-\quad 0.679$
$116 / 114$
0.344
--

	116/114	0.381	3	1.068	
	117/114	0.527	3		
Query	Observed	Mr (expt)	Mr (calc)	Delta	Miss
905	519.2889	1554.8448	1554.8398	0.0050	0
1763	699.0591	2094.1554	2094.1574	-0.0020	1
912 Mass: 107396 Score: 41 Queries matched: 4 emPAl: 0.03					
id dehydrogenase E1 component homodimeric type [Burkholderia sp. 383]					
tion:	Ratio	Weighted	N	SD(geo)	
	115/114	0.584	3	1.104	
	116/114	0.785	3	1.192	
	117/114	0.610	3	1.061	
Query	Observed	$\mathrm{Mr}(\mathrm{expt})$	Mr (caic)	Delta	Miss
176	475.8335	949.6524	949.5249	0.1275	1
1952	737.3935	2209.1587	2209.1613	-0.0026	0

ail 17549025 Mass: 83374 Score: 49 Queries matched: 5 emPAl: 0.04

$\begin{array}{lll}\text { Ratio } & \text { Weighted } & \mathrm{N} \\ 115 / 114 & 0.802 & 2\end{array}$
1.076
1.110

$\begin{array}{lrlllll}39 & 0.6 & 0.479 & 0.718 & 0.679 & \text { R.HWVVTVAALNALADEGTIER.K }\end{array}$

R．LLARPTATLSLEAQER．R

60277 Mass： 21030 Score： 73 Queries matched： 7 emPAl： 0.35											
ation：	Ratio	Weighted	tical protein Bamb＿5534［Burkhoideria cepacia AMMD］								
	115／114	1.209	5	1.139							
	116／114	2.228	5	1.173							
	117／114	3.303	5	1.370							
Query	Observed	Mr（expt）	Mr （calc）	Delta	Miss	Score	Expect	115／114	116／114	117／114	Peptide
1061	554.6407	1660.9004	1660.8978	0.0026	1	38	0.73	1.414	3.044	1.382	K．RQSIDASVNATLSR．L
1760	524.2945	2093.1489	2093.1482	0.0006	1	35	1.4	1.502	2.582	4.472	R．KSEGWSAGADASVAVVK．V
4646 Mass： 44093 Score： 88 Queries matched： 5 emPAI： 0.16											
45：Membrane－fusion protein［Burkholderia cenocepacia PC184］											
ation：	Ratio	Weighted	N	SD（geo）							
	115／114	0.798	3	1.197							
	116／114	2.917	3	1.122							
	117／114	4.809	3	1.024							
Query	Obsened	Mr（expt）	Mr（calc）	Delta	Miss	Score	Expect	115／114	116／114	117／114	Peptide
1172	581.9996	1742.9771	1742.9883	－0．0112	1	44	0.2	0.992	3.405	5.025	R．QAGLQVAVVGKDDR．A
$\underline{2845}$	705.3810	2817.4948	2817.4908	0.0041	1	44	0.2	0.244	0.426	0.806	K．GGAITLEGTMPAQDQIDKAEAAAK．G

$\begin{array}{rrllll}\text { Score } & \text { Expect } & 115 / 114 & 116 / 114 & 117 / 114 & \text { Peptide } \\ 43 & 0.27 & 2.286 & 2.016 & 5.27 & \text { K．ALTEADGDLAKAEELLR．V } \\ 48 & 0.082 & 0.143 & 0.116 & 0.091 & \text { K．THGAGPASNVGPEPEAAGIEQQGLGWK．S }\end{array}$
 gil78066797 Mass： 34685 Score： 91 Queries matched： 4 emPAl： 0.10
elongation factor Ts［Burkholderia sp． 383 ］
 $115 / 114$
$116 / 114$
$117 / 114$
$\begin{array}{ccc} & 116 / 144 & 1.953 \\ & 117 / 114 & 5.401 \\ \text { Query } & \text { Observed } & \text { Mr（expt）} \\ \text { O } & 70787 \\ & 7017184 & 2102.1333\end{array}$
Obsen
701.718
737.374

 39 Mass： 57372 ： 39 Pal． 0.12

$\begin{array}{ll}115 / 114 & 0.146 \\ 116 / 114 & 0.178 \\ 117114 & 0.162\end{array}$

$\begin{array}{ccr}\text { Query } & \text { Observed } & \text { Mr（expt）} \\ \underline{19999} & 510.0887 & 2545.409 \\ \underline{2032} & 513.2870 & 2561.3986\end{array}$
$\begin{array}{cccl}115 / 114 & 116 / 114 & 117 / 114 & \text { Peptide } \\ 0.099 & 0.181 & 0.127 & \text { R．TNVPHIFAIGDIVGQPMLAHK．G } \\ \ldots--- & \ldots & \text { R．TNVPHIFAIGDIVGQPMLAHK．G }\end{array}$ N
咅 $\stackrel{-}{\cdots}$
 Expect
38
2.9夢 $\overline{\text { N }}$ Miss
1
1 s！n
 $\begin{array}{ll}\text { Ratio } & \text { Weighted } \\ 115 / 114 & 0.249 \\ 111 / 114 & 0.150\end{array}$
$\begin{array}{ll}16 / 114 & 0.150 \\ 1160 \\ 11 / 114 & 0.313\end{array}$ 117／114 Et69をもけ
Delta
0.0010
0.0828 $\begin{array}{lll}\text { gil78067343 Mass：} 22819 & \text { Score：} 69 \text { Queries matched：} 25 \text { emPAl：} 0.51 \\ \text { Superoxide dismutase［Burkholderia sp．383］}\end{array}$

Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	0.486	3	1.581							
	116/114	0.446	2	1.040							
	117/114	0.392	3	1.138							
Query	Observed	Mr (expt)	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
$\underline{2159}$	677.8722	2707.4597	2707.4605	-0.0009	1	45	0.16	---	---	--.	K.KADGSLDIVSTSNAATPLTTADK.A 21602161
$\underline{2743}$	878.4676	3509.8413	3509.8398	0.0015	0	24	18	0.178	-0.004	0.299	K.HHQAYVTNLNNLIPGTEFENLSLEEIVK.K 27382739274027412742
qil78063463	ass: 62862	core: 65 Que	es matched: 1	emPAI: 0.2							
Chaperonin Cpr	60/GroEL [Bur	olderia sp. 383									
Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	0.411	4	1.154							
	116/114	0.333	5	NN							
	117/114	0.581	5	NN							
Query	Observed	$\mathrm{Mr}($ expt)	Mr(calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
524	504.9797	1511.9173	1511.9167	0.0006	0	26	11	0.411	0.280	0.580	R.DLLPVLEQVAK.S 525526
564	516.3204	1545.9395	1545.9455	-0.0061	1	39	0.64	0.473	0.322	0.464	K.AVAAAVDELKK. 1565566567568
qil78066856	ass: 19752	core: 48 Que	es matched: 6	emPAl: 0.37							
Peptidyl-prolyl ci	-trans isomer	, cyclophilin ty	pe [Burkholder	sp. 383]							
Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	0.966	2	1.184							
	116/114	1.230	2	1.184							
	117/114	0.661	2	1.236							
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
907	587.6825	1760.0257	1760.0409	-0.0153	1	24	22	1.203	1.531	0.867	K.VVEGQDVVDKIK.G
1830	599.5633	2394.2241	2394.2998	-0.0758	1	24	19	1.404	1.301	1.837	K.AYVDSGVAEGATLVVDGRTVK.V
gil78063001	ass: 38372	core: 61 Que	es matched: 3	emPAl: 0.09							
malate dehydro	enase [Burkho	deria sp. 383]									
Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	2.463	2	1.047							
	116/114	1.172	2	1.018							
	117/114	1.048	2	1.091							
Query	Observed	Mr(expt)	Mr (caic)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
578	517.2841	1548.8305	1548.8382	-0.0076	1	30	4.9	2.567	1.153	0.963	K.RIEGLEIDAFSR.E
700	538.6639	1612.9698	1612.9756	-0.0058	1	31	4.1	2.990	1.307	1.337	K.VKLPDTDIAVVR.R
gil78065223	ass: 23697	core: 64 Que	es matched: 5	emPAl: 0.14							
2-dehydro-3-deo	xyphosphoglu	nate aldolase	Burkholderia sp	383]							
Quartitation:	Ratio	Weighted	N	SD(geo)							
	115/114	0.411	3	1.147							
	116/114	1.485	3	1.136							
	117/114	2.010	3	1.073							
Query	Observed	Mr(expt)	Mr (caic)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
$\underline{2624}$	772.6593	3086.6081	3086.6106	-0.0025	0	30	4.3	0.314	1.292	1.926	R.ASQLADDIVVGVGTITKPEHCEQAK.R
767	554.9678	1661.8817	1661.8818	-0.0002	1	34	2	0.975	1.142	1.771	K.RQAIDSSVDATLSR.M
gi\|33151319	ass: 50242	core: 47 Que	es matched: 9	emPAl: 0.07							
major outer mem	brane protein	omolog, OmpA	[Haemophilus	ducreyi 3500							
Quartitation:	Ratio	Weighted	N	SD(geo)							
	115/114	1.149	2	1.058							
	116/114	1.572	2	1.196							
	117/114	2.143	2	1.067							
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
589	521.2954	1560.8644	1560.8723	-0.0079	1	38	0.84	1.095	1.798	2.257	R.KQLIACLAPDR.R
2257	692.3630	2765.4228	2765.3318	0.0910	0	9	$5.6 \mathrm{e}+002$	---	---	---	R.FGQGAQMMMDEPTPVAEPEVVSK.N
gil78065110	ass: 41957	core: 56 Que	es matched: 6	emPAI: 0.16							
outer membrane	protein, (porin)	[Burkhoideria	383]								
Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	2.513	4	NN							
	116/114	3.556	3	1.085							
	117/114	2.182	4	1.150							

$\begin{array}{r} \text { Query } \\ \underline{770} \\ 2063 \\ \hline \end{array}$	$\begin{aligned} & \text { Observed } \\ & 556.6083 \\ & 652.1107 \end{aligned}$	$\begin{array}{r} \operatorname{Mr}(\text { expt }) \\ 1666.8030 \\ 2604.4138 \end{array}$	$\begin{array}{r} \operatorname{Mr} \text { (calc) } \\ 1666.8041 \\ 2604.4165 \end{array}$	$\begin{array}{r} \text { Delta } \\ -0.0011 \\ -0.0027 \end{array}$	Miss 0 0	$\begin{gathered} \text { Score } \\ 53 \\ 3 \end{gathered}$	$\begin{array}{r} \text { Expect } \\ 0.026 \\ 2.8 \mathrm{e}+003 \end{array}$	$\begin{gathered} 115 / 114 \\ 2.815 \\ \ldots-. \end{gathered}$	$\begin{gathered} 116 / 114 \\ 3.304 \end{gathered}$	$\begin{aligned} & 117 / 114 \\ & 1.812 \\ & \ldots \end{aligned}$	Peptide K.HLYSMASGVMQGSR.F K.YQLTPALILGAAYDYTQGSK.I
gi\|84362104 Mass: 26722 Score: 57 Queries matched: 17 emPAl: 0.12											
COG1842: Phage shock protein A (IM30), suppresses sigma54-dependent transcription [Burkholderia dolosa AUO158]											
Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	1.066	3	1.208							
	116/114	1.055	3	1.251							
	117/114	3.017	3	1.132							
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
368	468.6077	1402.8014	1402.8024	-0.0010	0	44	0.2	0.994	1.108	3.205	K.DVAASALGGIGGK.N
1156	475.2608	1897.0140	1897.0158	-0.0018	1	13	$2.4 \mathrm{e}+002$	---	---	---	K.NLSEDFQKLEDK.V
gil91782599 Mass: 39964 Score: 52 Queries matched: 4 emPAl: 0.08											
Acetohydroxy acid isomeroreductase [Burkholderia xenovorans LB400]											
Quantitation:	Ratio	Weighted		SD(geo)							
	115/114	0.123	3	1.166							
	116/114	0.268	3	NN							
	117/114	0.154	3	1.197							
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
1536	547.3077	2185.2016	2185.1735	0.0281	0	6	$1.2 \mathrm{e}+003$	\ldots	---	--7	R.GTYSQGGGVPHLIAVAQDK.S
1719	574.5777	2294.2817	2294.2739	0.0078	0	46	0.12	0.102	0.217	0.113	K.QVTIGYGSQGHAHALNLK.E
gil78067059 Mass: 39858 Score: 70 Queries matched: 11 emPAl: 0.17											
ketol-acid reductoisomerase [Burkholderia sp. 383]											
Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	0.187	5	1.290							
	116/114	0.270	5	1.063							
	117/114	0.170	5	1.136							
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
1530	547.0574	2184.2006	2184.1895	0.0111	0	24	21	0.337	0.276	0.215	R.GTYSQGGGVPHLIAVAQNK.S
1719	574.5777	2294.2817	2294.2739	0.0078	0	46	0.12	0.102	0.217	0.113	K.QVTIIGYGSQGHAHALNLK.D
gil84352918 Mass: 16988 Score: 56 Queries matched: 3 emPAl: 0.20											
COG4154: Fucose dissimilation pathway protein FucU [Burkhoideria cenocepacia PC184]											
Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	0.450	2	1.231							
	116/114	0.500	2	1.002							
	117/114	0.573	2	1.036							
Query	Observed	Mr(expt)	Mr(calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
990	472.0257	1884.0738	1884.0703	0.0035	0	29	5.9	0.538	0.501	0.592	K.NLDPLLHADILHTLR.A
1590	554.0294	2212.0886	2212.0865	0.0021	0	27	9.9	0.592	1.312	2.340	K.EKPQATGHDEASWAQNR.R
gil78065675 Mass: 52624 Score: 62 Queries matched: 3 emPAl: 0.06											
fumarate hydratase [Burkholderia sp. 383]											
Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	2.035	3	1.214							
	116/114	1.605	3	1.234							
	117/114	1.751	3	1.109							
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
1156	495.2872	1977.1196	1977.1251	-0.0055	1	25	17	1.577	1.017	1.936	R.AlIDAADEIIAGKHPR.E
1363	524.0411	2092.1352	2092.1309	0.0043	0	37	0.99	0.269	0.658	0.451	K.AALDAYQVHPVHQEVK.K
gil 78067415 Mass: 16158 Score: 58 Queries matched: 11 emPAl: 0.46											
hypothetical protein Bcep18194_A5946 [Burkholderia sp. 383]											
Quantitation:	Ratio	Weighted	N	SD(geo)							
	115/114	5.690	2	2.911							
	116/114	3.523	2	6.691							
	117/114	2.233	2	3.367							
Query	Observed	Mr(expt)	Mr (calc)	Delta	Miss	Score	Expect	115/114	116/114	117/114	Peptide
852	595.6166	1783.8279	1783.8247	0.0032	0	32	3	1.299	0.244	0.415	R.YTVHASYQGNEESR.A
1073	481.0189	1920.0465	1920.0461	0.0003	1	26	13	6.119	3.844	2.411	R.FTGKGGEFLADVHVR.I

Peptide
R．NLPHVAIVEPR．Y
R．LSVVEDIILEAPK．T ＋
$\stackrel{ \pm}{ \pm}$

Appendix V:

Two-dimensional electrophoresis protocols.

2-D Electrophoresis Stock Solutions

Washing Solution
(stored at room temperature on Glover 122 benchtop)

Component	Final Concentration	For 1.0 L solution
KCl	3.0 mM	0.2237 g
$\mathrm{KH}_{2} \mathrm{PO}_{4}$	1.5 mM	0.2041 g
NaCl	68 mM	3.9739 g
$\mathrm{NaH}_{2} \mathrm{PO}_{4}$	9.0 mM	1.0798 g
Nanopure $\mathrm{H}_{2} \mathrm{O}$		To final volume
of 1.0 L		

(Filter using large vacuum filter apparatus and 0.22 um Millipore filters stored under Glover 122 benchtop)

Lysis Solution (Gram -)
(stored in 10 mL aliquots at $-20^{\circ} \mathrm{C}$ in Glover 106 freezer)

$\left.$| Component | Final
 Concentration | For 0.2 L solution |
| :--- | ---: | ---: |
| Tris- $\mathrm{HCl}(\mathrm{pH}$
 $8.0)$ | 10 mM | 40 mL of 50 mM
 Tris- $\mathrm{HCl}(\mathrm{pH} 8.0)$
 stock solution |
| $\left.\begin{array}{l}\mathrm{MgCl}_{2} \\ (\mathrm{or} \\ \mathrm{MgCl}\end{array} \mathrm{H}_{2} \mathrm{O}\right)$ | | |$\quad 1.5 \mathrm{mM} .$| 0.0286 g |
| ---: |
| (or 0.0610 g$)$ | \right\rvert\, | KCl | 10 mM |
| ---: | ---: |
| Sodium
 dodecyl
 sulfate (SDS) | $0.1 \%(\mathrm{w} / \mathrm{v})$ |
| Dithiothreitol
 (DTT) | 0.5 mM |
| Pefabloc SC | 0.5 mM |
| Nanopure $\mathrm{H}_{2} \mathrm{O}$ | 0.0154 g |

(50 mM Tris- HCl (pH 8.0) stock, DTT, and Pefabloc stored at $4^{\circ} \mathrm{C}$ in Glover 106 refrigerator; filter using large vacuum filter apparatus and 0.22 um Millipore filters stored under Glover 122 benchtop)

Rehydration Stock

(stored in 0.5 mL aliquots at $-20^{\circ} \mathrm{C}$ in Glover 106 freezer)
Component Final Concentration For $\mathbf{6 0} \mathbf{~ m L}$ solution Urea 8.0 M 28.83 g CHAPS $2.0 \%(\mathrm{w} / \mathrm{v})$ 1.2 g Dithiothreitol (DTT) $0.3 \%(\mathrm{w} / \mathrm{v})$ 0.18 g Bromophenol blue Trace few grains Nanopure $\mathrm{H}_{2} \mathrm{O}$ To final volume of 60 mL

(DTT stored at $4^{\circ} \mathrm{C}$ in Glover 106 refrigerator)

SDS Electrophoresis Buffer
(stored in 4 L flask on Glover 106 benchtop)

Component	Final Concentration	For 4.0 L solution
Tris base	25 mM	12.11 g
Glycine	192 mM	57.68 g
SDS	$0.1 \%(\mathrm{w} / \mathrm{v})$	4.0 g
Nanopure $\mathrm{H}_{2} \mathrm{O}$		To final volume of
		4.0 L

For Lower Tank Buffer, add 1.6 g Sodium Azide per 8 L buffer.
Equilibration Stock

(stored in 12.5 mL aliquots at $-20^{\circ} \mathrm{C}$ in Glover 106 freezer)		
Component	Final Concentration	For 0.5 L solution
Urea	6.0 M	180.18 g
Glycerol	$30.0 \%(\mathrm{v} / \mathrm{v})$	300 mL of 50% (v/v) glycerol stock
SDS	$2.0 \%(\mathrm{w} / \mathrm{v})$	10.0 g
Tris-HCl, pH 6.8	24 mM	24 mL of 0.5 M Tris-HCl, pH 6.8
Nanopure $\mathrm{H}_{2} \mathrm{O}$	$\sim 40 \mathrm{~mL}$	To final volume of 500 mL

Reducing Solution: add 0.24 g DTT in 12.5 mL . Acetylation Solution: add 0.30 g IAA + few grains of bromophenol blue, in 12.5 mL .

Electrode solutions
(stored at room temperature above Glover 106 benchtop)

Component	Final Concentration	For 0.1 L solution
$\mathrm{NaOH} / \mathrm{H}_{3} \mathrm{PO}_{4}$	$1 \mathrm{mM} / 6 \mathrm{mM}$	$4 \mathrm{mg} / 40 \mathrm{uL}$ of $85 \%(\mathrm{v} / \mathrm{v}) \mathrm{H}_{3} \mathrm{PO}_{4}$
Nanopure $\mathrm{H}_{2} \mathrm{O}$		To final volume of 100 mL

(Filter using small vacuum filter apparatus and 0.22 um Millipore filters stored in drawer of Glover 106 benchtop)

Tris-HCl Stocks ($1.5 \mathbf{M}$ ($\mathbf{p H 8} 8.8$) and $50 \mathrm{mM}(\mathbf{p H} 8.0)$)
(stored at $4^{\circ} \mathrm{C}$ in Glover 106 refrigerator)

Component	Final Concentration	For 0.5 L solution
Tris base	1.5 M $(50 \mathrm{mM})$	90.855 g $(3.0285 \mathrm{~g})$
Nanopure $\mathrm{H}_{2} \mathrm{O}$		400 mL
HCl		adjust to pH 8.8 (adjust to pH 8.0$)$
Nanopure $\mathrm{H}_{2} \mathrm{O}$		To final volume of 500 mL

(Filter using small vacuum filter apparatus and 0.22 um Millipore filters stored in drawer of Glover 106 benchtop)

Protein Extraction for E. coli

1. Upon reaching the appropriate growth point, harvest the cell culture by centrifuging in a reusable 500 mL centrifuge bottle in the large rotor at 13000 xg and $4^{\circ} \mathrm{C}$ (solid state and centrifuge chamber) for 15 minutes.
(Reusable 500 mL centrifuge bottles and 35 mL centrifuge tubes are stored on the bottom shelf of the supply cabinet beneath the Glover 122 benchtop)
2. Decant supernatant (pour the supernatant off semi-quickly with cell pellet on the upper side of the bottle to minimize disturbance to the cell pellet and cell mass loss), resuspend pellet in $\sim 25-30 \mathrm{~mL}$ of Washing Solution by vortexing, and transfer to a smaller (35 mL) reusable centrifuge tube, rinsing any missed cell mass into the smaller tube with additional Washing Solution:
(Washing Solution is stored at room temperature on Glover 122 benchtop)

Component	Final Concentration	For 1.0 L solution
KCl	3.0 mM	0.2237 g
$\mathrm{KH}_{2} \mathrm{PO}_{4}$	1.5 mM	0.2041 g
NaCl^{2}	68 mM	3.9739 g
$\mathrm{NaH}_{2} \mathrm{PO}_{4}$	9.0 mM	1.0798 g
Nanopure $\mathrm{H}_{2} \mathrm{O}$		To final volume of 1.0 L

(Filter using 0.22 um Millipore filters and vacuum filter apparatus located in cupboard of Glover 122.)
3. Centrifuge suspended cells in small rotor at 30000 xg and $4^{\circ} \mathrm{C}$ for 10 minutes.
4. Decant supernatant, add fresh Washing Solution to the centrifuge tube, and resuspend the pellet by vortexing. Centrifuge once more in the small rotor at 30000 xg and $4^{\circ} \mathrm{C}$ for 10 minutes.
5. Decant the supernatant; resuspend this final pellet in 5 mL of Lysis Solution (Gram -) by vortexing.
(Lysis Solution Gram - is stored in 10 mL aliquots at $-20^{\circ} \mathrm{C}$ in Glover 106 freezer; DTT and Pefabloc stored at $4^{\circ} \mathrm{C}$ in Glover 106 refrigerator)

Component	Final Concentration	For 200 mL solution
Tris- $\mathrm{HCl}(\mathrm{pH} 8.0)$	10 mM	40 mL of 50 mM Tris-HCl $(\mathrm{pH} 8.0)$ stock solution
MgCl_{2} (or $\left.\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right)$	1.5 mM	0.0286 (or 0.0610$) \mathrm{g}$
KCl	10 mM	0.1492 g
Sodium dodecyl sulfate (SDS)	$0.1 \%(\mathrm{w} / \mathrm{v})$	0.2 g
Dithiothreitol (DTT)	0.5 mM	0.0154 g
Pefabloc SC	0.5 mM	0.0240 g
Nanopure $\mathrm{H}_{2} \mathrm{O}$		To final volume of 200 mL

(Filter using 0.22 um Millipore filters and vacuum filter apparatus located in bottom drawer of Glover 106 benchtop.)
6. Sonicate cell suspension at maximum level (level 5 for micro tip) on ice for 5 minutes (1 sec on: 2 sec off).
7. Centrifuge the lysate in the small rotor at 30000 xg and $4^{\circ} \mathrm{C}$ for 20 minutes to remove cell debris. Decant the supernatant into aliquots without disturbing the pellet, and store the aliquots at $-80^{\circ} \mathrm{C}$ until use.

Protein Extraction for Mixed culture

1. Follow steps 1-7 from the protein extraction from the E. coli protocol.
2. Resuspend the final pellet in 3 mL of Lysis Solution (Gram +) by vortexing.
(Lysis Solution Gram + is stored in 10 mL aliquots at $-20^{\circ} \mathrm{C}$ in Glover 106 freezer; DTT stored at $4^{\circ} \mathrm{C}$ in Glover 106 refrigerator)

Component	Final Concentration	For 200 mL solution
Tris-HCl (pH 8.0)	10 mM	40 mL of 50 mM Tris- HCl $(\mathrm{pH} 8.0)$ stock solution
Lysozyme	$0.1 \%(\mathrm{~g} / \mathrm{v})$	0.2 g
EDTA sodium salt	1 mM	0.074 g
DTT	10 mM	0.308 g
Pefabloc	0.5 mM	4 g
Glycerol	$10 \%(\mathrm{v} / \mathrm{v})$	20 mL
Nanopure $\mathrm{H}_{2} \mathrm{O}$		To final volume of 200 mL

(Filter using 0.22 um Millipore filters and vacuum filter apparatus located in bottom drawer of Glover 106 benchtop.)
3. Sonicate cell suspension at maximum level (level 5 for micro tip) on ice for 5 minutes (1 sec on: 2 sec off).
4. Centrifuge the lysate in the small rotor at 9000 rpm for 20 minutes to remove cell debris. Add the supernatant to the protein solution extracted previously.
5. Proceed to protein concentration determination. Otherwise, save the protein solution in 1 mL aliquots in the -80 $o \mathrm{C}$ freezer.
1.Turn on visible lamp on spectrophotometer (click on "VIS OFF" at bottom of screen, which should turn red and change to "VIS ON") to allow 30 min warming up, and click on "PROTEIN" under the "Applications" menu. If not already open, open method "A:/BSACARLA" (click on the path listed to the right of "Method name:" and then click on "A:/BSACARLA" from the list of methods that you will be presented with).
2. Prepare dye reagent by diluting Dye Reagent Concentrate $1: 5$ with Nanopure water.
(Both diluted reagent and concentrate are stored at $4^{\circ} \mathrm{C}$ on 2-D PAGE reagent shelf in Glover 106 refrigerator)
3. Pipette 5.0 mL of diluted dye reagent into each clean glass test tube to be used (need six tubes for standard curve and two tubes (duplicates) for each sample to be tested).
(Test tubes are stored in one of the proteomics cupboards on Glover 106)
4. Prepare six dilutions of Bovine Serum Albumin (BSA) standard for standard curve by mixing the following amounts of standard with the dye reagent in standard test tubes, making sure to rinse all of the standard into the dye reagent by aspirating and dispensing the dye reagent through the pipette tip five times:
(Standard is stored at $4^{\circ} \mathrm{C}$ on 2-D PAGE reagent shelf in Glover 106 refrigerator)

Volume of Standard added (uL)	0	12.5	25.0	37.5	50.0	62.5
Final Mass of Standard present (ug)	$\mathbf{0}$	$\mathbf{2 5 . 0}$	$\mathbf{5 0 . 0}$	$\mathbf{7 5 . 0}$	$\mathbf{1 0 0 . 0}$	$\mathbf{1 2 5 . 0}$

**Based on BSA standard concentration of $2 \mathrm{ug} / \mathrm{uL}^{* *}$
5. Prepare sample for testing by micro centrifuging a 1 mL aliquot of lysate from protein extraction at 13000 rpm for 15 minutes, then transferring the supernatant to a new microcentrifuge tube. This must be done prior to the assay to remove cell debris or aggregates will form in the dye reagent - 1 mL samples separated after sonication in the previous protocol.
6. Prepare sample dilutions by mixing specific volumes of sample supernatant from step 4 with the dye reagent in sample test tubes, again making sure to rinse all of the sample into the dye reagent by aspirating and dispensing the dye reagent through the pipette tip five or six times. The volumes added are dependent upon the concentration of the protein in the sample, since the mass of protein added to the dye reagent must fall within the range covered by the standards, thus this requires some trial and error. To avoid "overshooting" the standard range, start by adding 10 uL of sample to the dye, shaking the test tube to enable mixing throughout the dye reagent, and comparing the shade of the blue color formed to those observed in the six standard tubes. Add more in this way until the shade of the sample tube falls within the range observed in the standard tubes. Record the total volume of sample added, and prepare a duplicate by adding this same volume of sample to a new test tube of dye reagent.
7. Vortex each tube (standards and samples) for 15 seconds each, and incubate for $15-30$ minutes at room temperature. Absorbance will increase over time.
8. Transfer 0.5 to 1.0 mL of the contents in tube to a clean plastic cuvette and read the absorbance at 595 nm . (Cuvettes are stored in cupboard on Glover 122)
a. Load the standard cuvettes into the spectrophotometer with the " 0 ug BSA" cuvette in the farthest cell (this is the "blank") and the other standard cuvettes in mass-ascending order towards the closest cell. Replace the cell cover and close the chamber lid.
b. Click on "Auto sampler" and ensure that the number of samples is set to 6 . If it is not, click on the number listed and reset using the window that opens.
c. Click on "BLANK" in the bottom left hand corner and allow the spectrophotometer to read the blank, repeat until the blank reading (in the bottom center of the screen, to the left of "Abs") settles to zero (0.0000).
d. Once the blank has settled to zero, click on "Read I" to the left of the top standard listed. The auto sampler will automatically read all of the standards and record them beside the appropriate theoretical mass listed.
e. Once the standards have been read, click on "Dispstndcurve" at the top of the screen. A window will open displaying the mass versus optical density curve for these standards. Ensure that the r^{2} value for the linear fit is >0.99, then click "Exit" in the top right hand corner of this sub window to close it.
f. Now that the standard curve is constructed, remove all of the standard cuvettes EXCEPT for the blank (the farthest cuvette) and replace them with the sample cuvettes (you will be able to measure up to five at a time). Replace the cell cover and close the chamber lid.
g. Click on "Samples" in the top left hand corner of the screen, a new screen will open.
h. Click on "Auto sampler" on the right side of the screen, and set the "number of cells" to the number of sample cuvettes that you will be reading (including the blank).
i. Again, click on "BLANK" and allow settle to zero, repeating if necessary.
j. Click on "Read Samples" in the top left hand corner of the screen. The auto sampler will automatically read all of the samples (including the blank) and record the absorbance readings and the calculated "CONC" (mass) of protein present (from the standard curve) of each sample, including the blank.
k. Repeat steps (i) and (j) twice, for a total of three readings of each sample. If the readings are not stable (i.e., the absorbance read for a particular sample varies by more than 0.0050 between the readings), then click on "Save Clear" at the top of the screen and click "OK" on the pop-up screen (without choosing the box to save the results). This will clear all previous readings from the screen and allow you to retake the three readings on a clear screen, making it easier to print only the results that you want.

1. Once stable readings are obtained, click on "Print" at the top of the screen to print out your results, and label the readings on the printout with the appropriate sample IDs and sample volumes added to the dye reagent in step (6).
m . Remove these sample cuvettes and replace them with the next set of sample cuvettes to be read, if any. Repeat steps (h) - (m) as needed.
2. From the three readings taken for each sample cuvette, calculate the average mass (listed under "Conc" in units of "UG") in each sample duplicate. Determine the concentration in each sample duplicate by dividing the average mass by the volume of sample added to the dye reagent in step (6). Determine the average concentration of each sample by averaging the concentrations calculated for each duplicate of that sample.
3. Dispose of the used dye reagent as hazardous waste (0.01% Coomassie brilliant blue G250 in 50% phosphoric acid and 25% methanol). Clean out used cuvettes and test tubes with 70% ethanol followed by soap and water, and rinse well with Nanopure water. Dry test tubes upside down on a test tube rack.

Immobilized pH Gradient (IPG) Strip Rehydration

1. Prepare Rehydration Stock (if needed):
(Rehydration Solution is stored in 1.5 mL aliquots at $-20^{\circ} \mathrm{C}$ in Glover 106 freezer)

Component	Final Concentration	For 60 mL solution
Urea	8.0 M	28.83 g
CHAPS	$2.0 \%(\mathrm{w} / \mathrm{v})$	1.2 g
Dithiothreitol (DTT)	$0.3 \%(\mathrm{w} / \mathrm{v})$	0.18 g
Bromophenol blue	Trace	Few grains
Nanopure $\mathrm{H}_{2} \mathrm{O}$		To final volume of 60 mL

(DTT stored at $4^{\circ} \mathrm{C}$ in Glover 106 refrigerator)
2. Remove the necessary number of Rehydration Stock aliquots from the freezer and thaw in lukewarm water. Calculate the volume of sample required from the appropriate protein mass to be loaded:

Stain used	Protein mass loaded	Volume of sample needed
Coomassie	600 ug	$600 \mathrm{ug} /[$ conc(ug/uL)]
Silver/Sypro	200 ug	$200 \mathrm{ug} /[$ conc $(\mathrm{ug} / \mathrm{uL})]$

3. Determine the volume of Rehydration Stock required for each sample from the appropriate total sample volume and the volume of sample to be added:

IPG strip length	Final volume of sample solution	Volume of Rehydration Stock needed
13 cm	250 uL	$250 \mathrm{uL}-$ (volume of sample)
18 cm	400 uL	$400 \mathrm{uL}-$ (volume of sample)

**If the amount of sample needed is greater than about 25% of the final sample solution (with Rehydration Stock), the sample must be concentrated in a centrifugal concentrator until the this volume limit is met. **
4. Pipette the appropriate amount of Rehydration Stock (calculated in step \#3) into a clean, labeled microcentrifuge tube for each sample. Prepare the sample mixture by adding the appropriate amount of sample (calculated in step \#2) to the Rehydration Stock in each test tube, making sure to rinse all of the sample into the Rehydration Stock by aspirating and dispensing the mixture through the pipette tip five or six times. Don't refreeze leftovers of sample or Rehydration Stock.
5. Determine how much IPG Buffer (ampholyte) is to be added to the sample mixture (use the IPG Buffer that corresponds to the same pH gradient and range as the IPG strips to be used):

IPG strip pH range	Concentration of IPG Buffer	Volume of IPG Buffer to be added
$4-7,3-10 \mathrm{~L}$ or NL	$2.0 \%(\mathrm{v} / \mathrm{v})$	$2 \mathrm{uL} / 100 \mathrm{uL}$
$6-11$	$0.5 \%(\mathrm{v} / \mathrm{v})$	$0.5 \mathrm{uL} / 100 \mathrm{uL}$

(IPG Buffer is stored at $4^{\circ} \mathrm{C}$ in small Nalgene box in Glover 106 refrigerator)
6. Prepare the final sample mixture by adding the appropriate amount of IPG Buffer to the sample mixture prepared in Step \#5, making sure to rinse all of the IPG Buffer from the pipette tip by aspirating a couple of times. Vortex each sample mixture for 20 seconds on the highest setting to ensure complete mixing.
7. For the following steps, clean forceps with 70% ethanol between samples to prevent cross-contamination. IF DOING MORE THAN ONE IPG, THEN DO THESE STEPS FOR ONE SAMPLE AT A TIME.
8. Transfer all of the sample mixture to the far end (closest to the leveling bubble) of a trough on the Rehydration Tray.
9. Quickly:
a. USE GLOVES AND FORCEPS to remove one IPG strip from the package and remove the thinner plastic backing.
(IPG strips are stored at $-20^{\circ} \mathrm{C}$ in the Glover 106 refrigerator/freezer)
b. Holding the blunt end of the thick, permanent backing with forceps, place the pointed (+) end of the strip GEL SIDE DOWN into the sample, ensuring that any bubbles present in the sample liquid are on top of the IPG strip. Lower the blunt end of the strip, occasionally raising and lowering as needed, such that the mixture evenly coats the strip.
10. Top the IPG strips with mineral oil in order to prevent evaporation. Add the mineral oil slowly from both sides so that the sample liquid is not driven to either end by the movement of the oil. Level the Rehydration Tray using the built-in bubble level and the adjustable feet on the front of the tray. Let sit, undisturbed, for 12-24 hours, preferably overnight, at room temperature.

Isoelectric Focusing (IEF)

1. Turn on pump and refrigerator (set point $=20^{\circ} \mathrm{C}$) in order to cool the Multiphor cooling block. Make sure that the clamps on the tubing [connecting the pump to the Pharmacia Multiphor (IEF apparatus)] are arranged such that the water will flow.
2. Apply $\sim 15 \mathrm{~mL}$ of (used) mineral oil evenly over the surface of the Multiphor cooling block and replace the Immobiline Strip Tray. Apply mineral oil on the Strip Tray, and place the alignment card. Make sure that the mineral oil is evenly distributed between these surfaces to ascertain that sufficient heat transfer is achieved. Connect the red and black electrode plugs on the Strip Tray to their corresponding jacks on the Multiphor unit.
3. Remove a rehydrated IPG strip from the rehydration tray and remove excess mineral oil by gently wiping across a KimWipe (gel side AWAY from the KimWipe!!).
4. Carefully, place the IPG (GEL SIDE UP) into a trough of the alignment card with the positive ends (marked + or pointed) of all IPGs towards the anode (red, + electrode) of the Multiphor. IF RUNNING MORE THAN ONE IPG, MAKE SURE THAT THE GEL EDGES OF ALL STRIPS ARE ALIGNED AND THAT THE GEL SIDES ARE FACING UP!
5. Cut two paper wicks to a length sufficient to fit across the ends of all IPGs. Soak each strip in the appropriate pH solution (the anodal strip (red, + end) should be soaked $6 \mathrm{mM} \mathrm{H}_{3} \mathrm{PO}_{4}$, and the cathodal strip (black, - end) should be soaked in 0.5 mM NaOH). Remove excess water by firmly blotting (DO NOT RUB!) the strips with a KimWipe.
(paper wicks are stored in a zip-lock bag in the scissors drawer in Glover 106)
6. Using forceps, place paper strips across the appropriate ends of the IPGs such that they overlap the end $1 / 4$ " of gel on the IPGs (which is why all strips must be aligned in step \#2).
7. Attach electrodes by aligning the electrodes over the appropriate paper strip (i.e., the red (+) anode should be aligned over the paper strip covering the pointed gel edge). This should be done such that the colored plastic piece of each electrode is on the side of the Strip Tray that has the metal strip on the outside. Press the electrodes gently, but firmly, into the paper wicks and gels so that good electrical contact is made.
8. Cover the gels and the entire inner surface of the Strip Tray with fresh mineral oil, taking care not to pour mineral oil directly on the gels as this may disturb their alignment.
(fresh mineral oil is stored on the shelf of 2-D PAGE supplies above the Glover 106 benchtop)
9. Replace the cover, taking care to slip the hooks in the back under the lip of the unit base and to line up the electrode plugs with the jacks on the underside of the cover. Level the apparatus using the bubble level and the four adjustable feet of the unit. Connect to power supply by plugging the red and black plugs into the corresponding receptors on the power supply (EPS 3500 XL)
(bubble level is stored in drawer in Glover 106)
10. Choose program 1 on the power supply. Set for GRADIENT, maximum 30 mA and 20 W).

18 cm IPG ($\mathrm{pH} 3-10 / 4-7$): linearly increase voltage from 0 V to 500 V over 1.0 min ;
linearly increase voltage from 500 V to 3500 V over 5.0 h ;
hold voltage at 3500 V for $17.5 / 19.0 \mathrm{~h}$. (total $71250 / 76500 \mathrm{Vh}$)
11. With program number blinking, hit RUN. Check if there is current (initially 0.1 mA), and after about 5 min , check the migration of the blue dye.
12. When the program has finished, hit EXIT/STOP then unplug the Multiphor from the power source. Remove the cover from the Multiphor, move the electrodes, and discard the paper strips.
13. If necessary, let the gels run for some more hours (up to $4 h$), using program 9 on the power supply. Set for STEP, maximum 30 mA and 20 W).

18 cm IPG ($\mathrm{pH} 3-10 / 4-7$): \quad hold voltage at 3500 V for 4 h
14. Use ethanol-cleaned tweezers to pick up each IPG and remove excess mineral oil from each by drawing across a clean KimWipe, plastic backing side down, and holding upside down over the KimWipe to allow mineral oil to drip off. Place each strip into an individual trough of the clean rehydration tray and proceed immediately to SDS equilibration and SDS PAGE (preferred). If $2^{\text {nd }}$ dimension can not be completed immediately after IEF, use an IPG packaging to wrap the gels and store at $-80^{\circ} \mathrm{C}$ until processed (do NOT carry out SDS Equilibration prior to storage at $-80^{\circ} \mathrm{C}$!).
15. Every two weeks, remove the Strip Tray from the Multiphor unit, discard excess mineral oil on Strip Tray surface, and remove the alignment card from the Strip Tray. Wash both the alignment card and the Strip Tray with soap and water, and rinse both the Strip Tray and alignment card with Nanopure water. Wipe up any excess mineral oil from the cooling block and replace the cover on the Multiphor.

Polyacrylamide Gel Preparation (10 gels)

1. Wipe down multi gel-casting chamber with $70 \%(\mathrm{v} / \mathrm{v})$ ethanol.
2. Clean inner side of larger glass plate and two spacers with 70% ethanol, place the glass plate (clean side out) against back wall of chamber (or against separation sheet of previous gel sandwich if repeating this step for additional slab gels), and position a clean spacer on each side of the clean glass plate.
3. Clean both sides of alignment card with 70% ethanol and place between spacers, bottom flush with plate. Clean inner side of smaller glass plate with 70% ethanol and place against spacers and alignment card. Place a separation sheet against smaller glass plate.
4. Repeat previous steps for each additional slab gel to be made.
5. Once all gel sandwiches are made, fill any additional space in the chamber with available acrylic blocks. Use separation sheets to fill any remaining space to the edge of the chamber. Make sure that all space to the edge of the chamber is filled so that pressure will be exerted on the gel sandwiches by the front wall when attached, ensuring that the gel sandwiches will not shift during casting and that gel will only be introduced to the space between the spacers of each sandwich.
6. Attach the front wall of the chamber such that the port is at the bottom. Tighten the screws in a random order until all are completely tightened (hand-tight). Clamp tubing on inlet port, and ensure that chamber is on a flat, level surface.
7. Check that gel sandwiches are tightly packed within the chamber by testing that the spacers are tightly in place. If so, remove all alignment cards from the gel sandwiches.
8. Prepare gel solution in a 500 mL vacuum flask, with stir bar stirring as each component is added.

Solution for $\mathbf{1 2 \%}$ acrylamide gels (V=500 $\mathbf{~ m L}$)	
$\mathrm{H}_{2} \mathrm{O}$	165 mL
30% acrylamide mix	200 mL
1.5 M Tris (pH 8.8)	125 mL
$\mathbf{1 0 \%}$ SDS	5 mL
$10 \%($ w/v) ammonium persulfate	5 mL
TEMED	0.2 mL

(Acrylamide and Tris stored at $4^{\circ} \mathrm{C}$ in Glover 106 refrigerator; ammonium persulfate, SDS and TEMED stored at room temperature in Glover 106 proteomics shelves.)
9. Add all components except ammonium persulfate and TEMED (initiator), and then vacuum for 5-10 minutes to remove all gas from solution. IMMEDIATELY after adding TEMED, transfer gel solution to space between front sandwich using a funnel (gel solution will enter other gel sandwiches from the bottom).
10. Fill chamber with gel solution to within 1 cm of top of shorter plate (top edge of chamber), then QUICKLY top off each gel with 1 mL water-saturated butanol (50% isobutanol or n-butanol) to allow an even surface to form. Only the butanol (upper) phase is pipetted down the larger plate of each block so that no convection is introduced (could cause deformations as the gels polymerize).
(NOTE: Nanopure water may be used instead if applied VERY slowly, but water-saturated 1-butanol is preferred since it will not mix with the gel solution as easily)
11. Allow polymerization to occur for at least one hour, confirming polymerization by the state of any excess gel solution in the vacuum flask. If not used immediately in second dimension, cover top edge of gel with Nanopure water, wrap sandwiches and store at $4^{\circ} \mathrm{C}$ for up to one week.

Polyacrylamide Gel Preparation (1 gel)

12. Wipe down gel-casting stand and base sealers with 70% (v / v) ethanol. Level the gel-casting stand using the bubble level.
13. Clean inner side of larger glass plate and two spacers with 70% ethanol, place the glass plate (clean side up) on KimWipes, and position a clean spacer on either side. Clean both sides of alignment card with 70% ethanol and place between spacers, bottom flush with plate. Clean inner side of smaller glass plate with 70% ethanol and place on top of spacers and alignment card.
14. Place plate sandwich within clamping blocks and tighten slowly!
a. Use holding area on gel-casting stand. Larger plate is closest to tightening knobs. Make sure spacers and plates are flush at the bottom. Remove alignment card when tightened.
b. Measure 18 cm from the bottom of the small plate, and mark this level on the small plate with a fine point permanent marker (this will be the final height of your slab gel).
c. A small, labeled piece of filter paper can be put in the bottom left corner of each plate block to serve as a label for each gel and to help orient all gels.
15. With casting stands situated such that the holding area is away from you, clamp one plate block into each stand in the back base sealer position (the front base sealer position should be open), with small plates facing towards front (away from holder on stand).
16. Prepare gel solution in a vacuum flask that is $\sim 2 \mathrm{X}$ the total volume of gel solution to be made, mixing with a stir bar as each component is added. Make $\sim 40 \mathrm{~mL}$ of gel solution (PER GEL) so that excess is available to monitor extent of polymerization.

Solution for 12\% acrylamide gels (V=100 $\mathbf{~ m L}$)	
$\mathrm{H}_{2} \mathrm{O}$	33 mL
30% acrylamide mix	40 mL
1.5 M Tris (pH 8.8)	25 mL
10% SDS	1 mL
$10 \%(\mathrm{w} / \mathrm{v})$ ammonium persulfate	1 mL
TEMED	0.04 mL

(Acrylamide and Tris stored at $4^{\circ} \mathrm{C}$ in Glover 106 refrigerator; ammonium persulfate, SDS and TEMED stored at room temperature in Glover 106 proteomics shelves.)
17. Add all components except ammonium persulfate and TEMED (initiator), then vacuum for 5-10 minutes to remove all gas from solution. IMMEDIATELY after adding TEMED, pour gel solution between the glass to the 18 cm line marked on the smaller plate of each plate block on each casting stand. Then, quickly clamp the remaining plate blocks into the front base sealer position on each casting stand and pour gel solution between these glass plates to the 18 cm line. Tap the casting stands as needed to dislodge any bubbles that may have become attached to the filter paper labels at the bottom of each gel.
18. QUICKLY top off each gel with 1 mL water-saturated butanol (50% isobutanol or n -butanol) to allow an even surface to form. Only the butanol (upper) phase is pipetted down the larger plate of each block so that no convection is introduced (could cause deformations as the gels polymerize).
(NOTE: Nanopure water may be used instead if applied VERY slowly, but water-saturated I-butanol is preferred since it will not mix with the gel solution as easily)
19. Allow polymerization to occur for at least one hour, confirming polymerization by the state of any excess gel solution in the vacuum flask. Monitor the butanol level to prevent the top surfaces of the gels from becoming exposed to the air and drying out. If gels are to be kept overnight before use, top each with Nanopure water, wrap and store upright at $4^{\circ} \mathrm{C}$ for up to one week.

SDS PAGE

11. Prepare SDS Electrophoresis Buffer (if needed):
(SDS Electrophoresis Buffer is stored in 4 L flask on Glover 106 benchtop)

Component	Final Concentration	For 4.0 L solution
Tris base	25 mM	12.08 g
Glycine	192 mM	57.68 g
SDS	$0.1 \%(\mathrm{w} / \mathrm{v})$	$4 . \mathrm{g}$
Nanopure $\mathrm{H}_{2} \mathrm{O}$		To final volume of 4.0 L

(For lower tank buffer, check the levels indicated and add 1.6 g sodium azide per $8 \mathrm{~L}(0.02 \%)$ to control microbial growth; wash the lower tank with soap and rinse well with Nanopure water every 6 months)
12. Make sure that the clamps on the tubing [connecting the pump to the BioRad MultiCell (PAGE apparatus)] are arranged such that the water will flow through the cooling cores. Turn on pump and refrigerator (set point $=8^{\circ} \mathrm{C}$) in order to cool MultiCell cooling cores.
13. Prepare Equilibration Stock (if needed):
(Equilibration Stock is stored in 12.5 mL aliquots at $-20^{\circ} \mathrm{C}$ in Glover 106 freezer)

Component	Final Concentration	For 0.5 L solution
Urea	6.0 M	180.18 g
Glycerol	$30.0 \%(\mathrm{v} / \mathrm{v})$	300 mL of $50 \%(\mathrm{v} / \mathrm{v})$ glycerol stock
SDS	$2.0 \%(\mathrm{w} / \mathrm{v})$	10.0 g
Tris- $\mathrm{HCl}, \mathrm{pH} 6.8$	24 mM	24 mL of $0.5 \mathrm{M} \mathrm{Tris-HCl}, \mathrm{pH} 6.8$
Nanopure $\mathrm{H}_{2} \mathrm{O}$	$\sim 40 \mathrm{~mL}$	To final volume of 500 mL

14. Once isoelectric focusing is finished, remove each IPG from the alignment tray and remove excess mineral oil from each strip as described in Step \#14 of Isoelectric Focusing protocol. Place each IPG into a separate trough of a clean Rehydration Tray (gel side UP). If frozen, let IPGs thaw for ~ 15 min before reduction.
15. Prepare Reducing Solution by adding dithiothreitol (DTT) to a final concentration of 2.0% (w/v) in an appropriate volume of Equilibration Stock (3 mL needed per IPG strip). This requires 0.24 g DTT per 12.5 mL Equilibration Stock. Cover each IPG with $\sim 3 \mathrm{~mL}$ of Reducing Solution, and incubate at room temperature for 15 minutes. (DTT stored at $4^{\circ} \mathrm{C}$ on 2-D PAGE reagent shelf in Glover 106 refrigerator)
16. Prepare Acetylation Solution by adding iodoacetamide (IAA) to a final concentration of $2.5 \%(\mathrm{w} / \mathrm{v})$ and a few grains of bromophenol blue to an appropriate volume of Equilibration Stock (3 mL needed per IPG strip). This requires 0.30 g IAA per 12.5 mL Equilibration Stock; add enough bromophenol blue to obtain a deep blue color. (IAA stored at $4^{\circ} \mathrm{C}$ on 2-D PAGE reagent shelf in Glover 106 refrigerator)
17. After 15 minutes of reduction, transfer each IPG to a new clean trough (gel side UP), cover each with $\sim 3 \mathrm{~mL}$ of Acetylation Solution, and incubate at room temperature for 5 minutes.
18. After 5 minutes of acetylation, transfer each IPG to the appropriate slab gel:
a. Using ethanol-cleaned tweezers, remove the IPG from the trough, and place onto the inner side of the large glass plate (gel side UP) of the appropriate slab gel, with the pointed (acidic) end to the left side of the slab gel.
b. Trim both ends of the IPG (trim larger piece on basic (right) end) `using ethanol-cleaned scissors. IT IS IMPORTANT THAT THE IPG BE ORIENTED WITH THE ACIDIC END AT THE LEFT SIDE OF THE GEL PRIOR TO TRIMMING SO THAT PROPER ORIENTATION OF 2-D GELS CAN BE EASILY MAINTAINED.
c. Using ethanol-cleaned metal spatula, gently slide the IPG down the glass plate to the top of the slab gel surface, and press to remove any bubbles lodged between the IPG and the slab gel so that there is uniform contact.
(Tweezers, scissors, and metal spatula are stored in a holder above the Glover 106 benchtop)
19. Snap each slab gel sandwich onto a cooling core, by aligning the pins on the sides of the cooling core with the notches on the outside of each clamping block and pressing the sandwich into the black latch mechanism on the cooling core. Make sure that the gasket on the cooling core is uniformly flush against the smaller plate just below the top of the plate, or else leaks will occur during the run. DO THIS WITHOUT DISCONNECTING THE COOLING CORES FROM THE REFRIGERATION TUBING.
20. If there are an odd number of slab gels to be run, an upper chamber for the lone gel can still be formed by constructing a mock sandwich and snapping it onto the cooling core.
21. Fill each upper chamber with SDS Electrophoresis Buffer to the top edge of the larger glass plate. This will be more than sufficient to ensure that the electrode (located under the black crossbar at the top of the upper chamber) will be submerged.
22. Replace the chamber lid on the Multicell, making sure that the red electrodes on all cooling cores are aligned on the same side as the red electrode of the lid. (All red electrodes should be on the left side of the unit of the electrical cables are coming out of the lid and pointing directly at you.) Connect to power supply by plugging the red and black plugs into the corresponding receptors on the power supply (EPS 3500 XL).
23. Choose program 1 on the power supply, reprogram if necessary so that total current divided by the number of gels being run is equal to 40 mA per gel $(\mathrm{V}=3000 \mathrm{~V}, \mathrm{P}=400 \mathrm{~W}$, time $=3 \mathrm{~h})$.
24. Monitor the gels to ascertain that the buffer level in each of the upper chambers has not drastically decreased, that the line of bromophenol from the IPGs is migrating down through the slab gel, and that the set current is reading on the power supply.
25. At the end of the run, note the distance that the line of bromophenol has traveled through the slab gel. If the line has not migrated to within $3-4 \mathrm{~mm}$ of the bottom of the slab gel, then continue the electrophoresis at the same settings for an additional time until this distance has been reached and note the total time required.
26. When complete, pick up each cooling core and pour the upper chamber buffer into a plastic tub set across the top of the Multiphor unit (this buffer can be dumped down the sink with lots of running water). Unsnap the gels from the cooling cores by pulling the clamping blocks away from the cooling core while simultaneously pushing down on the black latch mechanism.
27. Remove the plate sandwiches from the clamping blocks, and remove one of the spacers by gently but firmly pushing the spacer to the side, away from the slab gel. Once out, use the spacer as a wedge to gently pry the two glass plates apart. Do this is such a way that you are supporting the spacer with your fingers and not just using it as a crowbar...the spacer cannot handle that much strain and will break if it is bent too much!! Once the plates are apart, the slab gel should stick to one of the plates. Carry the gel on this plate to a trash can and use the spacer to gently separate the IPG from the slab gel and push the IPG into the trash.
28. Holding the glass plate at the top edge (the top is the edge without gel so that you can grip it better), dip the bottom edge of the slab gel into the fixation solution for the adequate staining procedure, invert the plate so that the gel is on the underside, and hold the glass plate near the surface of the fixation solution. Let the gel use its weight to separate from the glass plate.

Coomassie Blue Staining

Carry out all staining steps in the plastic Nalgene ${ }^{\circledR}$ staining boxes. These boxes are not to be used for silver staining methods!

Note: The sensitivity of this method should be around $30 \mathrm{ng} /$ spot.

Step	Components	For 1 gel	For 6 gels	Time
Fixation/Staining	Ethanol	112.5 mL	675 mL	1 h
	Acetic acid (glacial)	25 mL	150 mL	(minimum 30 min)
	Coomassie R250 dye	0.25 g	1.5 g	
	Nanopure water	112.5 mL	675 mL	
Destain 2	Ethanol	25 mL	150 mL	minimum 30 min x 4 washes
	Acetic acid (glacial)	25 mL	150 mL	
	Nanopure water	200 mL	1200 mL	

${ }^{1}$ Filter this solution prior to use with vacuum filter apparatus and 0.2 um Millipore filters.
${ }^{2}$ Destain carried out to lower background staining. Gel may be stored at $4{ }^{\circ} \mathrm{C}$ in this solution for up to 1 week prior to tryptic digest of spots.

Dispose of all solutions as hazardous waste labeled with final concentration (after dilution from all solutions) of each component.

Simply Blue Staining

1. Rinse the gel 3 times for 5 minutes with 100 mL deionized water to remove SDS and buffer salts, which interfere with binding of the dye to the protein. Discard each rinse.
2. Stain the gel with enough SimplyBlue ${ }^{\mathrm{TM}}(\sim 100 \mathrm{~mL})$ to cover the gel. Stain for 1 hour at room temperature with gentle shaking. After incubation, discard the stain (down the sink with lots of water).
Note: If you need to leave the gel overnight in the stain, add 10 mL of $20 \% \mathrm{NaCl}(\mathrm{w} / \mathrm{v})$ in water for every 100 mL of stain. The procedure using NaCl allows for better sensitivity (binding of the dye).
3. Wash the gel twice with 250 mL of water for $1-3$ hours. Gels can be left in $20 \% \mathrm{NaCl}(\mathrm{w} / \mathrm{v})$ in water at $4^{\circ} \mathrm{C}$ for up to a week without loss of sensitivity. There is a small amount of dye in the water that is in equilibrium with the dye bound to the protein, so proteins will remain blue.

Silver Staining Method

Based on method of PlusOne Silver Staining Kit, GE Healthcare, modified by Yan et al., Electr. 21: 3666, 2000
Carry out all staining steps in the stainless steel staining trays. The plastic Nalgene ${ }^{\circledR}$ staining boxes labeled SILV ER are to be used for storage only!!

Note: The sensitivity of this method should be around $1 \mathrm{ng} /$ spot.

Step	Components	For 1 gel	For 6 gels	Time
Fixation	Ethanol	100 mL	600 mL	30 min
	Glacial acetic acid	25 mL	150 mL	
	Nanopure water	131.7 mL	790 mL	
Sensitizing	Ethanol	75 mL	450 mL	30 min
	Sodium thiosulphate ($5 \% \mathrm{w} / \mathrm{v})$	10 mL	60 mL	
	Sodium acetate	17 g	102 g	
	Nanopure water	162.5 mL	975 mL	
Washing	Nanopure water	250 mL	1500 mL	$3 \times 5 \mathrm{~min}$
Silver reaction	Silver nitrate solution $(2.5 \% \mathrm{w} / \mathrm{v})$	25 mL	150 mL	20 min
	Nanopure water	225 mL	1350 mL	
Washing	Nanopure water	250 mL	1500 mL	$2 \times 1 \mathrm{~min}$
Developing	Sodium carbonate	6.25 g	37.5 g	$\sim 5 \mathrm{~min}$
	Formaldehyde (37\% w/v)	0.05 mL	0.3 mL	
	Nanopure water	254 mL	1525 mL	
Stopping	EDTA-Na2•2H2O	3.65 g	21.9 g	$10 \mathrm{~min}-$ up to 1 week at $4{ }^{\circ} \mathrm{C}$
	Nanopure water	250 mL	1500 mL	

Dispose of all solutions as hazardous waste labeled with final concentration (after dilution from all solutions) of each component.

Sypro ${ }^{\circledR}$ Ruby Staining

Carry out all staining steps in the plastic Nalgene ${ }^{\circledR}$ staining boxes (polymethyl pentene box, polypropylene cover, low-density polyethylene plug). These boxes are not to be used for silver staining methods!

Note: Volumes listed are for 1 large gel or 2 mini gels; for more gels, multiply volumes by the number of gels. The sensitivity of this method should be on the order of $10 \mathrm{ng} /$ spot.

Step	Components	For 1 gel	For 6 gels	Time
Fixation	Methanol Acetic acid (glacial) Nanopure water	$\begin{gathered} 25 \mathrm{~mL} \\ 17.5 \mathrm{~mL} \\ 207.5 \mathrm{~mL} \end{gathered}$	$\begin{array}{r} 150 \mathrm{~mL} \\ 105 \mathrm{~mL} \\ 1245 \mathrm{~mL} \\ \hline \end{array}$	30 min
Staining	Sypro ${ }^{\text {® }}$ Ruby Stain solution	250 mL	1500 mL	$\begin{gathered} 24 \mathrm{~h} \\ \text { (minimum } 30 \mathrm{~min} \text {) } \end{gathered}$
Destain ${ }^{1}$	Methanol Acetic acid (glacial) Nanopure water	$\begin{gathered} 25 \mathrm{~mL} \\ 17.5 \mathrm{~mL} \\ 207.5 \mathrm{~mL} \end{gathered}$	$\begin{gathered} \hline 150 \mathrm{~mL} \\ 105 \mathrm{~mL} \\ 1245 \mathrm{~mL} \\ \hline \end{gathered}$	$\begin{aligned} & 2-3 \text { changes over } \\ & 24 \mathrm{~h} \\ & \text { (minimum } 30 \mathrm{~min} \text {) } \end{aligned}$

${ }^{1}$ Destain carried out to lower background fluorescence. Gel may be stored in this solution for up to 1 week prior to tryptic digest of spots.

Sypro ${ }^{\otimes}$ Ruby Protein Gel Stain solution must be disposed of as hazardous waste labeled as "Ruthenium in organic solvents". Dispose of all other solutions as hazardous waste labeled with final concentration (after dilution from all solutions) of each component.

Gel Imaging

29. Clean all the trays in the imager before using it. If imaging silver or Coomassie stained gels, put the white filter on top of the UV light, underneath the gel tray. If imaging Sypro, put the gel tray directly on top of the UV source.
30. Make sure all the lamps and the camera are on. The UV light should be set at 302 nm (UV-B). Set the UVP parameters according to the stain used:

Stain	Overhead Light	Filter	Control
Coomassie Blue	White	Coomassie	Safety switch
Silver Nitrate	White	Coomassie	Safety switch
Sypro Ruby	365 nm	Ethidium bromide	Safety switch

(The Filters can be used differently, and in most cases the "Clear" option works well for all kinds of stain).
31. Put the gel on the imaging tray, and remove all the bubbles between the gel and the tray. Put the tray in the UVP chamber, close the door, and start previewing the image.
32. Use the software "Labworks", and start "Video / Digital Capture". Use the camera settings to optimize the amount of light on the image, and to focus the whole gel.
33. If the image is good, stop previewing by hitting "Stop / Capture". If imaging Sypro, go to "Options, Acquire" and increase the exposition time to 1-2 seconds, until the acquired image is visible.
34. After capturing, go to "Edit / Convert to" and choose "Gray Scale 16", and save your image. Further image improvements can be made by "Edit / Display range", by narrowing the range of black and white.
35. Finally, hit the AOI button, and select the area of the gel that is of interest for image analysis (cut out useless portions of the gel image). Save the new AOI image. Open it, and "Edit / Resize" it to 1000×1000 pixels, allowing distortion. This is the final image that should be transferred to the Proteomweaver computer.
36. The files should be saved in the folder "C:/Gels" of the "Proteomweaver" computer, and contain information on gel number, sample type, and stain used, and date. All gels should have the same size (1955 kb).

Image Analysis

1. Start "Proteomweaver", and create a new experiment with sample type reference, and stain used.
2. In step 1, load all the necessary gel images, putting different treatments in different groups. Rename the groups.
3. Follow all the steps in Proteomweaver, making sure to:

- Edit the parameters of detection for all the gels using the "Parameter Wizard" in Step 2.
- Edit spots that are not correct in Step 3.
- Edit bad matching in Step 5.

4. Go to the end of the analysis and identify differentially expressed spots. Select these spots for MS analysis. Annotate this info on Proteomweaver.

ио!релихә әр!̣дәд

:Kep puosas

:u!ezsad

(VB) p!̣e s!̣uioł \%s

(N)

12. Add 40 uL ACN and incubate at $37^{\circ} \mathrm{C}$ for 15 min with agitation. Spin down the gel particles and recover the supernatant.
13. Pool all extracts and dry down to 5 uL in a vacuum centrifuge. Dry digests can be stored at $-20^{\circ} \mathrm{C}$ for weeks.

Cleanup of Peptide Fragments - DEPLASTICIZED TUBES ONLY

Solutions	C18 Pipette Tips protocol
Wetting solution	100% acetonitrile (ACN)
Sample preparation	0.5% TFA in B\&J water
Equilibration solution	0.1% TFA in B\&J water
Wash solution	0.1% TFA in B\&J water
Elution solution*	0.1% TFA/60\% ACN

* For electrospray, elute with 1% formic acid $/ 50 \%$ methanol.
1.Prepare enough of these solutions for all digested samples. Since the samples will be bound to the tips, aliquot 40 $\mu \mathrm{L}$ of washing and elution solution to different tubes, according to the number of samples.

2. Using the maximum volume setting of $10 \mu \mathrm{~L}$, aspirate wetting solution into the tip. Dispense to waste. Repeat 10 times.
3.Aspirate equilibration solution. Dispense to waste. Repeat 10 times.
4.If samples are dry, add $10 \mu \mathrm{~L}$ of sample preparation solution to the tubes, and sonicate for 15 min .
3. Bind peptides and proteins to ZipTip pipette tip by fully depressing the pipette plunger to a dead stop. Aspirate and dispense the sample 10 cycles for maximum binding of complex mixtures.
6.Aspirate wash solution into tip and dispense to waste. Repeat once.
7.Dispense $5 \mu \mathrm{~L}$ of elution solution into a new tube. A second $5 \mu \mathrm{~L}$ elution can be done using the $0.1 \% \mathrm{TFA} / 70 \%$ ACN solution.

[^0]: -

[^1]:

[^2]:

