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ABSTRACT

LOOKING UNDER THE HOOD: VISUALIZING WHAT LSTMS LEARN

Recurrent Neural Networks (RNNs) such as Long Short Term Memory (LSTM) and Gated

Recurrent Units (GRUs) have been successful in many applications involving sequential data. The

success of these models lies in the complex feature representations they learn from the training

data. One criteria to trust the model is its validation accuracy. However, this can lead to surprises

when the network learns properties of the input data, different from what the designer intended

and/or the user assumes. As a result, we lack confidence in even high-performing networks when

they are deployed in applications with novel input data, or where the cost of failure is very high.

Thus understanding and visualizing what recurrent networks have learned becomes essential.

Visualizations of RNN models are better established in the field of natural language processing

than in computer vision. This work presents visualizations of what recurrent networks, particularly

LSTMs, learn in the domain of action recognition, where the inputs are sequences of 3D human

poses, or skeletons. The goal of the thesis is to understand the properties learned by a network with

regard to an input action sequence, and how it will generalize to novel inputs.

This thesis presents two methods for visualizing concepts learned by RNNs in the domain of

action recognition, providing an independent insight into the working of the recognition model.

The first visualization method shows the sensitivity of joints over time in a video sequence. The

second visualization method generates synthetic videos that maximize the responses of a class

label or hidden unit within a set of known anatomical constraints. These techniques are combined

in a visualization tool called SkeletonVis to help developers and users gain insights into models

embedded in RNNs for action recognition. We present case studies on NTU-RGBD, a popular

data set for action recognition, to reveal properties learnt by a trained LSTM network.
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Chapter 1

Introduction

1.1 Motivation

Recurrent Neural Networks (RNNs) such as Long Short Term Memory (LSTM) networks [1],

Gated Recurrent Units (GRUs [2]) have been successful in many applications involving sequential

data. Examples can be found in text classification [3], image and video captioning [4, 5], speech

recognition [6, 7], and action and gesture recognition [8–10]. The success of these deep learning

models lies in the complex feature representations they learn from the training data and encoding

the temporal information. Unfortunately, the practice of deep learning is ahead of the theory.

The feature representation remains a black box for the developer, who can only trust the model

from the accuracy with which it labels the validation data. There is no way of summarizing what

properties of the training data the network has learned with respect to individual classes in the

data. This can lead to surprises when the network learns properties of the input data other than

what the designer intended and/or the user assumes. As a result, we lack confidence in even high-

performing networks when they are deployed in applications where the input might differ from the

training data, or where the cost of failure is very high. Thus understanding and visualizing what

recurrent networks have learned becomes essential.

This thesis presents visualizations of what recurrent networks, particularly LSTMs, learn in

the domain of action recognition. The input to the network is a sequence of 3D human poses of a

particular action. The goal of the thesis is to understand the properties learned by a network with

regard to an input action sequence, and how it will generalize to novel inputs.

1.2 Current Techniques and Shortcomings

The Computer vision domain has well developed methods of visualizing layer-wise learned

features for convolutional neural networks. See [11] for an up-to-date survey and [12] for an
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interactive summary of visualization techniques in CNNs. However, those techniques do not apply

to recurrent neural networks.

Recently, researchers studying RNNs have introduced techniques that probe what is being

learned from data by changing the underlying network architecture. One such technique involves

the use of attention mechanisms to study specific properties of the problem with respect to the

input. These attention mechanisms have been used successfully in machine translation and image

captioning [13–15]. However, this approach involves changing the original model architecture to

study specific properties of the input and the problem domain. While this helps us understand the

data-driven properties of the task at hand, the model-driven properties remain under explored.

Visualizations of RNN models are better established in the field of natural language processing

than computer vision. Karpathy and Li presented a static visualization exploring properties of

hidden units and important words in text respectively. Karpathy showed the existence of cells that

keep track of long range properties like line lengths, quotes and parentheses. Li highlighted the

important words in text for different models using a gradient based saliency approach. Similarly,

Strobelt et al [16] studied the response of a recurrent network model to a structural pattern of

words and local state changes. Y. Ming et al [17] provided a glyph based visualization displaying

the association between words and different hidden state state units. Both these approaches differ

from the previously stated techniques as they present a dynamic visualization of the hidden units

with the input data. However, the input to all the above methods is a single character or word,

embedded into a vector. This is significantly different from the input to LSTMs in an action

recognition system.

The input to the LSTM in an action recognition system is a multidimensional skeleton pose

sequence. Interpreting how long distance relationships within a video are modeled becomes par-

ticularly difficult. Two main approaches attempt to understand key properties learned by the LSTM

model. Song et al in [9] propose a two step attention mechanism to study the spatial and temporal

information in the action sequence. However, as with the attention approach, the original model

architecture is altered. Zhu et al in [10] study the co-occurrence of joints in an action sequence.
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While the original model is unchanged, the effect of input on the output hidden states is not ex-

plored. We aim to interpret the hidden states of a one layer LSTM model directly.

Currently, visualizations of LSTMs in skeleton based action recognition use heat maps to iden-

tify important joints and their correlations with other joints in an action. In [9], the authors use

markers of different sizes and colors projected on skeletons to highlight weights of joints. How-

ever, their approach does not produce a tool for easily visualizing the skeleton inputs to the RNN

model. We present a tool called SkeletonVis to visualize trained skeleton-based action recognition

networks.

1.3 Summary of Research

This thesis presents two methods for visualizing concepts learned by RNNs in the domain

of activity recognition. Activity recognition has the advantage that the inputs are sequences of

3D human poses, or skeletons. This provides a framework for visualizing results and anatomical

constraints for generating synthetic inputs. Both the visualizations provide an independent insight

into the working of the recognition model.

The first visualization method shows a color based importance of joints in an action sequence,

also called as sensitivity. This approach extends the work by Li et al [18] to find important words

in a text. Sensitivity is the normalized partial derivative of an output signal with respect to a given

joint, where the output may either be a class label or the output of a specific hidden unit. Figure 5.2

shows class based sensitivity plot for frames for a throw sequence.
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Figure 1.1: Sensitivity plot for frames of throw action. As seen in the two frames, in addition to the hands
having high sensitivity, the model is sensitive to the spine joint.

We observe that the throw action is sensitive to the positions and motions of the arms, which is

not a surprise, but is also sensitive to the upward motion of the spine. In essence, the LSTM has

learned that throwing requires an upward movement of the entire body, which otherwise the user

may not know.

The second visualization method generates synthetic videos that maximize the responses of

a class label or hidden unit within a set of known anatomical constraints. This yields different

insights from the first method. Figure 1.2 shows the original and the updated skeleton within

anatomical constraints for frames for a throw sequence.
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Figure 1.2: Progressive frames of a throw sequence in the original video and updated skeletons by the
model within the anatomical constraints. the model favors the position of the subject to be as low to the

ground as possible.

For example, the response of one hidden unit to throws is maximized when the subject begins

as low to the ground as possible. The goal of such visualizations is to show users what the system

has learned, and therefore how it might respond to novel inputs.

The visualization techniques presented in this paper are presented in the context of LSTMs, but

can be applied to most recurrent networks, including Gated Recurrent Unit networks (GRUs [2])
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and Echo State Networks (ESNs [19, 20]). For LSTMs, however, we consolidate the two visual-

ization techniques into a tool called SkeletonVis.

Figure 1.3: The SkeletonVis tool, as it appears to LSTM developers and users

Figure 1.3 shows a snippet of the working of SkeletonVis, as it appears to the users. This tool

can be used over the web to view LSTM networks we have trained on the NTU activity data set,

or downloaded and applied to LSTMs trained by users on data sets of their choice.

We also present several case studies of using SkeletonVis. The case studies show how the

sensitivity and response maximization visualization techniques can be used to reveal properties of

trained LSTMs.

1.3.1 Contributions

This thesis presents two methods to visualize feature representation in recurrent networks in

the domain of action recognition using skeleton data. The main contributions of this thesis are:
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1. A technique for visualizing the sensitivity of an LSTM class label or hidden unit response to

specific joints in pose data.

2. A technique for visualizing the (synthetic) video that elicits the maximum response by a

class label or hidden unit.

3. A software tool called SkeletonVis for visualizing LSTMs using the techniques above

4. Case studies of using SkeletonVis to probe the properties of trained networks.

1.3.2 Roadmap

The rest of the document is structured as follows: Chapter 2 discusses the visualization tech-

niques used in convolutional neural networks and recurrent networks, anatomical constraints em-

ployed to generate synthetic skeletons and a greater discussion of related research in the field of

understanding and visualizing deep learning models. Chapter 3 briefly introduces the working of

recurrent networks and LSTMs in particular. Gradient based saliency and activation maximiza-

tion are the two visualization approaches discussed in Chapter 4. It also describes the design and

working of SkeletonVis, the visualization tool. Chapter 5 explains the case studies done on NTU

RGB-D dataset, a well known dataset for action recognition. Chapter 6 concludes the thesis with

a discussion and possible avenues for future research.
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Chapter 2

Prior Literature

This chapter aims to provide the reader with the necessary background to understand the fol-

lowing chapters. Readers may want to skip to subsections pertaining to their interests. Section 2.1

explains the visualization techniques employed in understanding hidden layer mechanisms in con-

volutional neural networks. Section 2.2 explains the visualization techniques in recurrent neural

networks, particularly in the field of natural language processing and skeleton based action recog-

nition. The chapter concludes with section 2.3 that explains the different approaches to generate

synthetic skeletons conforming to anatomical constraints of the human body.

2.1 Visualization techniques in CNN

The computer vision literature includes many methods for visualizing features learned by con-

volutional neural networks. There are some of well developed techniques at interpreting hidden

layers and internal neurons and their interactions in CNN architectures. Of particular importance

to this work, Simonyan and Zisserman use saliency maps to find class-specific properties in im-

ages [21]. Mahendran and Vedaldi in [22] introduce activation maximization to search for image

patterns that maximize the neuron activations of specific layers. This thesis builds on the concepts

of gradient based saliency and activation maximization. [11] and [12] present an updated and

interactive summary of visualization techniques in CNNs. However, the techniques referenced

above do not apply to recurrent networks; they are limited to feed-forward convolutional networks.

We extend their techniques to recurrent networks.

2.2 Visualization techniques in RNNs

An advantage of visualizing features of deep learning models is the improvement in the model

architectures for those problems. Researchers trying to understand the internal workings of RNNs

have introduced techniques such as attention mechanism to study specific properties of the problem
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with respect to the input. This approach has been used successfully in machine translation and

image captioning [13–15]. However, attention mechanism modifies the original model architecture

to study specific properties of the input and the problem domain. This helps understand the data-

driven properties of the given task, but the model-driven properties remain under explored.

In the following sections, Section 2.2.1 presents tools for visualizations in the field of natural

language processing. Section 2.2.2 explains the different methods that aid in understanding the

data properties in skeleton based action recognition.

2.2.1 Visualizations in Natural Language Processing

Visualizations of RNN models are better established in the field of natural language processing

than computer vision. [23] showed cells that keep track of long range text properties like line

lengths, quotes and parentheses. [18] finds important words in text classification and auto encoders

for different models and datasets using a gradient based saliency approach. However, this was

a static visualization providing only an overall analysis. Strobelt et al developed LSTMVis [16]

, a tool to analyze specific hidden state properties for a structural pattern of words. This tool

gave the user the flexibility to study local state changes, but lacked scalability of the hidden state

dimensions. More recently,Y. Ming et al [17] developed RNNVis to study expected responses

of hidden state units to words. This technique provided a glyph based visualization of RNNs by

displaying associated hidden state units and words. However, the input to all the above methods is

a single character or word, embedded into a vector. This is significantly different from the input to

LSTMs in an action recognition system.

2.2.2 Visualizations in skeleton-based action recognition

Skeleton based action recognition system takes a multidimensional 3D skeleton pose over time

as input.Due to this, interpretation of long distance relationships within a video becomes partic-

ularly difficult. [9] designed a two step attention mechanism to study the spatial and temporal

information in the action sequence. The spatial attention module focuses more on the content de-

pendent relevant joints (foot, elbow and hand for a kicking action), while the temporal attention
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module looks at time frames as the sequence progresses into the given action. This technique effec-

tively understands key properties learned by the LSTM model, but as with the attention approach,

the original model is altered.

[10] proposed the study of co-occurrence of joints in an action sequence. Though this approach

shows correlations of joints without altering the model, the effect of the input on the output hidden

states of LSTM is not explored. This thesis aims to interpret hidden states of a one layer RNN

model directly.

Currently, visualizations of LSTMs in skeleton based action recognition use heat maps to iden-

tify important joints and their correlations with other joints in an action. In [9], the authors use

markers of different sizes and colors projected on skeletons to highlight weights of joints. How-

ever, their approach does not produce a tool for easily visualizing the skeleton inputs to the RNN

model. We present a tool called SkeletonVis to visualize trained skeleton-based action recognition

networks.

2.3 Anatomical constraints for synthetic skeleton poses

Skeleton extracted by 3D pose estimation techniques from depth and/or RGB data are easily

prone to distortions and noise both at the source (e.g Kinect sensor) as well as due to transfor-

mations by different models. To make the skeleton pose adhere to anatomical conditions, various

constraints are imposed on it. This idea finds applications in 3D human pose estimation, generating

animated human poses, or denoising the data obtained from source. Tripathy et al [24] propose a

constrained Kalman filter to denoise joint coordinates obtained from the Kinect sensor. Our ap-

proach integrates the bone length constraints proposed in this paper. Dabral et al [25] models the

joint angle limits and the bone length limits as a loss function that strongly penalizes joints that

deviate from valid angular limits. The formulation of joint angle limits stated by the authors is

used in our approach. [26] discriminate joint types (ball joints vs. hinge joints) and impose joint

limits accordingly, while [27] formulate a prior to eliminate invalid poses by pose-conditioned

joint angle limits. Such constraints could be added to our techniques in the future.
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Chapter 3

Background

The visualization techniques presented in the next section require the reader to be familiar with

recurrent networks in general and LSTMs [1] in particular. Readers who are already familiar with

the basic equations in LSTMs may choose to skip this section.

Recurrent Neural Networks(RNN) are a family of neural networks used to model long temporal

sequences of data. The output response ht at any time instance t, is determined by the current input

to the system xt and the output of the previous time step ht-1. Mathematically, a vanilla RNN may

be written as:

ht = tanh(W (xt;ht−1)) (3.1)

where W is the weight matrix and xt;ht−1 is the concatenation of xt and ht-1. The tanh non linear

activation restricts the value of ht between [-1,1]. However, this model suffers from vanishing

gradients, and hence it is not able to handle long range dependencies. The LSTM architecture was

designed to mitigate this problem.

Long Short Term Memory (LSTM) networks have an additional memory state called the cell

state ct. Figure 3.1 shows the structure of a basic LSTM cell.

Figure 3.1: Architecture of an LSTM cell, as implemented by Equations 3.2 through 3.4
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The removal of previous information and addition of current information to the cell state is

regulated by linear interactions between gates f (forget gate), i (input gate) and g (regulator gate).

The final output is obtained by the combination of the cell state and the o (output gate). The model

architecture is mathematically expressed as:
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(3.2)

ct = ct−1 ⊙ ft + it ⊙ gt (3.3)

ht = tanh(ct)⊙ ot (3.4)
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Chapter 4

Methodology

We propose two approaches to visualize what a trained recurrent network has learned. The first

is a gradient-based saliency approach that illustrates how relevant each joint is to the class label

or to a particular hidden unit. This approach is inspired by the saliency maps explained in [18],

which used heat maps to demonstrate the importance of words visually. The second method shows

the synthetic skeleton that maximizes the hidden state activation of the class label or a particular

neuron. To make these techniques easy to use, we consolidate them into a visualization tool called

SkeletonVis. SkeletonVis allows users to gain insights into the workings of their trained models in

order to increase (or decrease) their confidence in a network’s abilities.

The rest of this section describes our techniques in more detail. Section 4.1 describes the design

of the action recognition model and how a video sequence gets assigned a class label. Section 4.2

explains how joint saliency is calculated. Section 4.3 describes how we generate skeletons to

maximize a class label or hidden state output for a particular neuron. A brief overview of the

SkeletonVis tool is explained in Section 4.4.

4.1 Main network architecture

Figure 4.1: The LSTM architecture used for the experiments in this thesis. The LSTM block is as shown
in Figure 3.1. It is followed by a single hidden layer converting hidden unit responses into label responses,

and then a softmax layer converting label responses into probabilities.
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Figure 4.1 show the architecture of a recurrent network used for skeleton-based action recog-

nition. The input is a sequence of skeleton poses over time; the output is a vector of class label

probabilities. Opening up the architecture, the recurrent network is a one-layer LSTM cell like the

one shown in Figure 3.1. The Main LSTM Network architecture is similar to the one referenced

in [9] and [8]. This is followed by a fully-connected (FC) layer and a softmax layer.

Consider a video sequence with T frames. Let xt denote the input skeleton pose at time instance

t. The output of the LSTM cell for this timestep is denoted by ht. The FC layer takes as input the

summation of all outputs of the LSTM’s hidden units ht over the complete sequence, expressed

mathematically as:

H =
T
∑

t=1

ht (4.1)

The FC layer has one output for every class in the data set, called logits. The softmax layer converts

the logits into label probabilities. The mathematical formula for the softmax function is:

S(yi) =
eyi

∑

j e
yj

(4.2)

The class label of the video sequence under consideration is the one having the maximum proba-

bility.

4.2 Gradient-based saliency

Gradients can help us understand the contribution of each individual input unit to the final

output of a network. This technique has been used extensively to find localized class-discriminative

visual explanations in images for CNN models [21] and to find important words in text mining [18].

In skeleton-based action recognition, saliency can help understand the contribution of every body

joint to the decision about a particular class of action.

For the model shown in Figure 4.1, we first explore the gradient of the response hu of a partic-

ular hidden unit u with respect to dimension d of joint j. Note that we are considering the partial

derivative of hu with respect to the pose input xt and not the previous hidden state input ht-1. We
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are therefore measuring the sensitivity of a particular pose value in time, not the combined impact

of a joint over time. We denote the gradient gu
t,j,d as:

gu
t,j,d =

δht
u

δxt,j,d
(4.3)

where xt and ht
u are the pose input and hidden state output of neuron u at time instance t respec-

tively. The absolute value of gu
t,j,d denotes the sensitivity of the input joint to the final output hidden

state. Thus, we denote sensitivity Su
t,j,d as:

Su
t,j,d = |gut,j,d| (4.4)

For any particular time t, joint j and dimension d, the sensitivity Su
t,j,d is a scalar. Empirically, we

note that when there are joints with very little motion across the data set, i.e. body parts that don’t

move, their sensitivity can become very large due to random sensor noise. Hence, we normalize

sensitivity across an sequences as:

S ′u
t,j,d =

σxt,j,d

σhu
t

∗ Su
t,j,d (4.5)

where S’u
t,j,d denotes the normalized sensitivity for dimension d of joint j for a particular neuron u

at time t. σxj,d
denotes the standard deviation of the pose input xj,d, and σhu denotes the standard

deviation of hu over the complete video sequence. We will refer to the normalized sensitivity S’u
j,d

for the rest of this paper.

Sensitivity is a scalar value for each dimension of a joint in the skeleton pose. For a given time

t, we denote the summation of sensitivities across the X, Y and Z dimensions of a joint as the final

contribution of that joint in the output hidden state of a neuron. Thus:

S ′u
t,j =

3
∑

d=1

S ′u
t,j,d (4.6)
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Equation 4.6 measures the sensitivity of a given hidden unit u to input joint j at time t. To

understand the impact of a joint not just on a single hidden unit but on the overall class response

we take the weighted product of the normalized joint sensitivities for a particular class. This is

calculated by taking the product of the sensitivity of a neuron with its magnitude in the weight

matrix column of the FC layer for the respective class. The values in the weight matrix of the

FC layer indicate the final effect of a hidden unit in the classification of an input sequence. This

weight matrix has dimensions (H, C) where H is the number of hidden neurons in the LSTM, and

C is the number of classes in the data set. Thus, for any given class, the respective weight matrix

column shows the contribution of each neuron in the classification decision. The final sensitivity

map is represented as an aggregation of the weighted sensitivities of all neurons for the class under

consideration and can be written as:

S ′

t,j =
H
∑

u=1

S ′u
t,j ∗|W u

c| (4.7)

where |W u
c| is the magnitude of the weight of neuron u for class c. This result is visually

represented in SkeletonVis as a sequential colormap with darker values for large sensitivities and

lighter values for small ones.

4.3 Activation Maximization

Sensitivity visualization shows a user what body parts are having the most influence over a

class label or the response of an individual hidden unit. Activation maximization, on the other

hand, is a technique that generates synthetic inputs that maximize the response of a class label or a

hidden unit. The idea is to warn users about inputs that the network might never have encountered

but which never the less causes the network to generate a very strong response for a particular class

label.
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Activation maximization is implemented by hill-climbing. We begin with an input sequence

that receives the class label c we are interested in studying. Starting with this input, we calculate

the gradient of the fully connected layer for class c with respect to the input as:

dc
t,i =

δoc

δxt,i
(4.8)

where dc
t,i denotes the gradient of the output for class c with respect to the input pose xi at time t.

Note that this gradient is obtained for all neurons in the LSTM cell for input xi and time t and is

therefore a vector of length H , where H is the number of hidden units in the LSTM.

The gradient dct,i is a weighted sum of the gradients of every hidden unit u with respect to the

input pose xi at time t. i is the dimension of the input pose xt. This can also be written as:

dc
t,i =

H
∑

u=1

W u
c ∗

δht
u

δxt,i
(4.9)

The value of dct,i is used to update the input pose xt for the next iteration. The input is updated

with the gradient and passed again to the model to calculate the change in the activation. Iterating

this process over a finite number of steps gives a synthetic skeleton sequence that maximizes the

activation of that class. For example, Figure 4.2 shows the plot of the change in hidden state acti-

vations and the corresponding change in the gradient over 40 iterations if we run the hill climbing

method over a sequence of throw action. Based on the plot, we choose the skeleton from iteration

12 as the final skeleton that maximizes the hidden state activation for throw gesture.
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Figure 4.2: The plot of running the hill climbing method over a throw action sequence for 40 iterations.
We choose the skeleton at iteration 12 as it maximizes the hidden state activation for this activation.

Unfortunately, the LSTM treats every input feature xt,j,d as independent. The gradient update

calculated by Equation 4.9 alters the data to increase the networks response, but the result may

look nothing like a reasonable human skeleton.
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Figure 4.3: Frame (a) shows the original skeleton of a throw gesture. Frame (b) shows the skeleton
updated after one iteration. Although this skeleton maximizes the hidden state activation, the result is far

from a reasonable human skeleton.

Figure 4.3(a) shows the original skeleton pose of a throw action and Figure 4.3(b) shows the

input pose updated with the gradient obtained by Equation 4.9. The human form is unrecognizable

in this picture. The middle of the spine has been moved to the top, elongating the spine as well

as giving it an unrealistic degree of curvature. Other joints have been moved in odd ways as well,

resulting in a non-human shape.

In many ways, this situation is analogous to what happens when activation maximization is

applied to convolutional neural networks performing image classification. Activation maximiza-

tion produces "images" that fool the CNN, but look like white noise to human observers [28–30].

In our case, activation maximization produces "skeletons" that don’t look like skeletons to human

observers. Fortunately, in action recognition, unlike general image recognition, human anatomy

provides constraints that can be used to alter how we update poses.
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To produce valid skeletons, we apply two types of constraints, bone length constraints and

pairwise angle constraints. We are aware that the constraints below are not exhaustive. At this

stage, we are relying on a few, important constraints for conceptualization.

For a frame f , we construct a state vector sf as:

sf = [x0, x1..xN, y0, y1..yN, z0, z1..zN] (4.10)

Thus, sf is a N × 3 dimension vector, where N is the number of joints.

Bone Length constraints:

The bone length bi,j between any two connected pair of joints is given by the Euclidean distance

between the joints:

bi,j =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (4.11)

For Kinect version 2, there are 25 joints and 24 connected joints (bones). We consider the reference

bone length bi,j to be the mean of bi,j,T over the input video sequence. The bone length constraint

is defined as:
∥

∥

∥

(

sf + d′
)

· Ai,j

∥

∥

∥
/
√
2− bi,j = 0 (4.12)

where Ai,j is a 75 x 75 dimension matrix, and d′ is a 75 x 1 dimension vector having the same

format as sf . For example, for joints (0,1) the A matrix will be represented as:
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A0,1 =

0 1 ...25 26 ...50 51 ...74












































































1 −1 ..0 0 ...0 0 0 0

−1 1 ..0 0 ...0 0 0 1

0 0 ..1 −1 ...0 0 0 ..25

0 0 ..− 1 1 ...0 0 0 26

0 0 ..0 0 ...1 −1 0 ..50

0 0 ..0 0 ...− 1 1 0 51

0 0 ..0 0 ...0 0 0 ..74

In addition to preserving bone lengths between connected pairs, certain joint angle constraints

are also imposed on skeletons.

Joint Angle Constraints:

Inspired by the joint angle limits in [25], we propose three joint constraints and four joints con-

straints. The conditions for three joint angle constraints are as follows: Let vsb,sm and vss, sm be

two unit vectors from spine mid to spine base and spine mid to spine shoulder respectively. We

constrain the angle formed by vsb,sm and vss, sm to be between 160◦and 180◦. Mathematically, this

is expressed as:

− 0.93969 > (vsb,sm · vss, sm) > −1 (4.13)

We impose similar constraints on the following set of joints: angle between spine shoulder and

both shoulders to be between 110◦and 180◦, the angle made by the spine base with the hips to be

between 100◦and 180◦, the angle made by the wrist with the elbow and hand joint to be between

90◦and 180◦.

We formulate a similar angle constraint with four joints as: Let vrh,sb, vlh,sb and vsm,sb be three unit

vectors from spine base to right hip, spine base to left hip and spine base to spine mid respectively.

We define the vector nrh,sb, lh as the normal vector to the plane defined by vrh,sb and vlh,sb.

nrh,sb, lh = (vrh,sb × vlh,sb) (4.14)
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For the four joints to be in a valid position, we restrict the vectors nrh,sb, lh and vsm,sb to be between

0◦and 90◦. Mathematically this is written as:

1 > (nrh,sb, lh · vsm,sb) > 0 (4.15)

All the constraint equations (bone lengths, three joint angles and four joint angles) are grouped and

denoted as C. We then find the update d′ that optimizes:

minimize (d− d′)2 subject to C. (4.16)

The gradient d′ obtained from solving the optimization equation has the same format as sf . Hence

we convert it back to the the format of the original input pose, having 3 dimensions for every joint

grouped together. The rearranged update d′ is denoted as follows:

d′ = [x0, y0, z0, x1, y1, z1..xN, yN, zN] (4.17)

The current skeleton pose is updated with d′ and iterated to hill climb in the space of valid skeletons.
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Figure 4.4: Why anatomical constraints matter. Frame (a) shows a skeleton after one iteration of activation
maximization without anatomical constraints. Frame (b) shows it after one iteration with constraints.

Figure 4.4(b) shows the skeleton updated with one iteration of the constrained gradient.

Equation 4.16 updates the input (i.e. the sequence of skeleton poses) so as to increase the label

response while still generating skeletons that satisfy the anatomical constraints. As shown in Fig-

ure 4.4(b), the first update yields a more extreme motion that optimizes, in this case, the throw

action. If we continue the gradient updates until convergence, we get a skeleton that maximizes

the class response for the sequence. Unfortunately, the skeleton that optimizes the class response

fails to look like a skeleton, despite adhering to all the constraints imposed on it.
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Figure 4.5: Figure shows the progression of skeleton

Figure 5.4 shows the skeleton that optimizes the response but does not look like a valid skeleton.

We could add more constraints, for example, by requiring that the skeleton be supported rather than

floating in mid-air, but at the moment these unrealistic optima provide a warning about inputs that

generate strong false responses, while earlier stages in the optimization show us more realistic

motions that still strengthen the response.
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4.4 SkeletonVis

Figure 4.6: The SkeletonVis tool, as it appears to LSTM developers and users.

We aggregate sensitivity analysis and activation maximization into an interactive visualization

tool called SkeletonVis. This tool is intended to help users better understand the models learned by

LSTMs. The model is built using Tensorflow [31] and the web framework Dash [32].

SkeletonVis can be used over the web to see visualizations of our already trained networks, or

it can be downloaded and run locally to examine the user’s own LSTM networks. Users can log on

to view the existing case studies, or they can download the source code from the CSU repository

to run it locally.

Figure 4.6 shows SkeletonVis as it appears when a user logs on to xxx.edu. On top, the system

summarizes the model and data information, showing the number of data samples, classes, and

hidden neurons in the model, as well as the Kinect version used and the classification accuracy
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of the system. The Kinect version is necessary to know how many joints there are, and in what

order they appear. Users select the class or hidden unit they want to inspect, and an input video to

visualize. Users also choose whether to visualize sensitivity or activation maximization, and in the

case of activation maximization how many optimization iterations to apply. In the next section, we

present case studies done using this tool.
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Chapter 5

Case Studies

This chapter provides examples of applying the two visualization techniques on action se-

quences of known data sets. To achieve this, we trained an LSTM network on the well-known

NTU-RGBD action recognition data set [33], and analyzed it using SkeletonVis. Although the

network has a relatively good recognition performance, the focus of this work is on the analysis of

the network, not the network’s accuracy.

The rest of the section is structured as follows: Section 5.1 describes the NTU-RGBD dataset

and the data normalization techniques used for this experiment. Section 5.2 gives an overview

of the hyperparameters in the model architecture, providing information for any user to replicate

the model for future work. The visualizations and discussions of sensitivity analysis on two ac-

tions, namely, throw and kick are provided in Section 5.3. The chapter concludes with Section 5.4

discussing activation maximization applied on throw action.

5.1 Data set specifications

This section introduces the reader to the NTU-RGBD data set, providing information about the

number of classes, illustrations of video samples, etc. It also describes the normalization method

used on the data samples before training for the model.

5.1.1 Description

The NTU-RGBD dataset is currently the largest data set for action recognition. It provides

multi-modal data containing RGB videos, depth map sequences, 3D skeletal data, and infrared

videos for each sample. It contains 56,880 video samples of 60 action classes, performed by 40

participants, seen from various viewpoints. Cross Subject (CS) and Cross View (CV) are the two

standard modes of evaluation. Figure 5.1 shows the frames from a video sequence of shaking

hands action, seen as RGB, depth, skeleton and infra-red data.
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Figure 5.1: Sample frames from a video sample of two persons shaking hands. Clockwise from top left,
RGB, RGB + skeleton, IR, depth modalities of the data.
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Table 5.1: List of 49 single person actions in the NTU-RGBD data set.

drink water eat meal brush teeth brush hair drop pickup throw

sitting down standing up

(from

sitting

position)

clapping reading writing tear up

paper

wear jacket

take off

jacket

wear a shoe take off a

shoe

wear on

glasses

take off

glasses

put on a

hat/cap

take off a

hat/cap

cheer up hand

waving

kicking

something

put/take out

something

inside/from

pocket

hopping

(one foot

jumping)

jump up make a

phone

call/answer

phone

playing

with

phone/tablet

typing on a

keyboard

pointing to

something

with finger

taking a

selfie

check time

(from

watch)

rub two

hands

together

nod

head/bow

shake head wipe face salute put the

palms

together

cross hands

in front (say

stop)

sneeze/cough staggering

falling touch head

(headache)

touch chest

(stom-

achache/heart

pain)

touch back

(backache)

touch neck

(neckache)

nausea or

vomiting

condition

use a fan

(with hand

or pa-

per)/feeling

warm

For simplicity, we trained our network on the 49 actions that contain only a single person; there

are 44,213 videos of the 49 actions. Table 5.1 shows the 49 action classes performed by a single

person. Data obtained from one participant (Participant 2) is reserved as validation data, which

consists of 739 samples across 49 classes, equivalent to 2% of the available training data.
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5.1.2 Data Normalization

The skeleton data is normalized as specified in the dataset’s reference paper. The skeleton files

specified by the authors are skipped, and noisy skeletons are eliminated. The mean pose of the

actor is calculated for the video, and the average position of the spine mid joint (Kinect joint index

1) is set to be the origin. The coordinate system is rotated such that the X axis is aligned with the

vector from the right to the left shoulder, and the Y axis is aligned with the vector from the spine

base to the spine shoulder. All 3D points are then scaled by the distance between the spine base

and the spine joint.

This experiment consisted of only one person performing the action. However, for a video

sequence with two persons, all transformations mentioned above are done with respect to the main

actor. The main actor is decided on the basis of the highest amount of 3D body motion. Kinect

sensor is prone to detect false skeletons in the background. To eliminate these noisy skeletons,

we calculate the spread of the joint locations towards image axis and filter out the ones whose X

spread were more than 0.8 of the Y spread, for each skeleton.

5.2 Model Specifications

For the purposes of our case studies, we trained a single-layer LSTM network on the NTU-

RGBD data set. The 1 layer model consists of 150 hidden neurons in the LSTM Cell, trained with

a batch size of 128. Adam optimizer [34] is used for training with an initial learning rate of 0.005.

Learning rate is reduced by a factor of 10 after 100 epochs. The training was terminated after

25800 iterations.

5.3 Sensitivity analysis

The role of sensitivity analysis is to give the user an intuition about what parts of the body a

class label or hidden unit is paying attention to. For most actions, we start with an idea of what

joints define the action and therefore what joints the network should focus on. For example, for

the throw action we expect the network to concentrate on the hands and elbows, while for the kick
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action we expect it to concentrate on the knees and feet. But the whole point of sensitivity analysis

is to determine whether what the network learned matches our expectations.

Figure 5.2: Progressive frames of sensitivity visualizations for three variations of throw action: Tow
handed throw, one handed under-arm throw, two handed basketball throw. All three variations have a high
sensitivity for the arm/arms that makes the throw action. The spine mid, which decides the body posture
during the action has high sensitivity initially for rows 1 and 3. Row 2 has high sensitivity for head, neck

and hip joints, due to slight crouching of the person during the action.
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The throw action has three variants in the data set, namely, one handed under arm throw, two

handed throw, and a two handed upward basketball throw. Figure 5.2 shows the sensitivity plot

of selected frames for all the three variants of this action. As we would have expected, the arm

or arms contributing to the throw action have high sensitivity. In case of the under arm throw, the

dominant hand has high sensitivity, while for the two handed throws, both hands and elbows have

almost equal sensitivity.

However, a less expected phenomenon seen across all these samples is the sensitivity of the

mid-spine. This joint has an equal sensitivity to the hands and elbows in the initial frames of the

action, and fades almost instantly. Since spine mid joint is the basis for the translation component

of normalization, its average position across a video is always the origin. The throw label seems

to be sensitive to it, however, because throw motion has a vertical movement of the torso in all the

video samples. This is seen in the upward motion in both two handed, and a downward motion in

the one handed throw.

For the one handed under arm throw action, the head, neck and hip joints have moderate to

high sensitivity through the video sequence. This could be due to a slight crouching body posture

during the throw. This indicates that, during an action, the model pays attention to those joints that

alter the posture in a meaningful way. A validation of this theory can be seen from the fact that for

both two handed throws, the other joints do not have a significant change in their colors.
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Figure 5.3: Sensitivity visualizations of frames extracted from kick action. (a) and (c) show high
sensitivity to spine, shoulders, elbow and legs. (b) shows high sensitivity to foot, and low sensitivity to

upper body. (a) and (c) indicate that the model is attentive to the starting pose of an action.

Figure 5.3 shows frames from a kick action. With kicking, we expected the attention to be

focused on the knees and feet. The actual story is more dynamic. In the early frames of the video,

the LSTM is sensitive to the spine, shoulders and elbows as well as the knees and left foot. As the

kicking motion progresses, the LSTM becomes less sensitive to the upper body, and focuses on

the foot instead. This may be because the starting pose is important to classifying kick, since most

NTU kicks begin from a standing position. It may also be that people tend to spread their arms

slightly at the beginning of a kicking motion for balance. Whatever the reason, what is likely is

that a non-standing kick would probably not be recognized by this network. (*Also, the network

has learned that most subjects stand on their right foot and kick with their left, so kicks with the

other foot might also be missed.)

5.4 Activation Maximization

In addition to sensitivity analysis, SkeletonVis shows synthetic videos that progressively in-

crease the hidden state activation for a particular class. We consider the example of throw action

which is already correctly classified, and see the changes the model favors to increase its response.

33



Figure 5.4: Figure shows the progression of skeleton as it gives the maximum response at iteration 12. The
skeleton conforms to all constraints, but does not look like one.

Figure 5.4 concentrates on a three frames from a video of throw action. The first row shows

skeleton frames from the original video. The middle row shows this skeleton accentuated through

one iteration of our maximization algorithm. The bottom most row shows the final local optima

reached after 12 iterations.
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We learn different things from the second and third rows of the above figure. The second row

teaches us how to improve the throw response by showing us what would have made the seed video

even more of a "throw". In this case, the response would be stronger if the participant began in

a more crouched position, with their left arm slightly more curled and their left shoulder dipped.

The feet are also shown slightly more splayed, but we know that throw is not very sensitive to the

positions of the feet, so presumably this difference is not important.

The third row of Figure 5.4, on the other hand, warns us about videos that could fool us. For the

throw motion, activation maximization converges to a local optimum which can only be described

as a floating contortionist. Although the bone and angle constraints are all satisfied, the skeleton is

so contorted that the joints are practically on top of each other, and it is floating in mid-air. This is

clearly not a feasible input, yet it maximizes the throw response. This suggests a possible source

of strong but false responses.
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Chapter 6

Conclusion and Future work

Recurrent Neural Networks are one of the state of the art deep learning methods for modeling

sequential data. However, the internal workings of these models are often treated as black boxes

by the researchers using them. This thesis tries to provide insights into the models learned by

RNNs through visualizations in the domain of action recognition using skeleton data. Using NTU-

RGBD, a widely popular data set for action recognition providing skeleton data, we present case

studies that help us understand the details in an action performed by a human subject.

This thesis introduces two methods of visualizations of interpreting RNN models in the domain

of action recognition. Using class weighted gradient based saliency of the inputs with respect to the

outputs, also known as sensitivity, we explore the most relevant joints in an action. We observe that

while the joints we expect to be important generally are important, there is often more to the story.

For example, in our LSTM trained on the NTU-RGBD data set, for the throw motion, as expected,

the motion of the hands has high sensitivity. However, in addition, the model has high sensitivity

to the upward trajectory of the torso. Similarly, for the kick motion, we expect the attention to be

focused on the knees and feet. Howver, we observe that the starting pose is important to classifying

kick, with the slightly spread arms as an indicator of the starting of the action.

The second visualization method, known as activation maximization, generates synthetic videos

that maximize the responses of a class label or hidden unit within a set of known anatomical con-

straints. The goal of this technique is to show users what the system has learned, thus giving an

intuition about what the idealized from of the action looks like, and therefore how it might respond

to novel inputs. For the throw action, the model favors the subject to be in a crouched position. At

the same time, by running activation maximization to convergence we produce impossible videos

that can fool the RNN, even if each skeleton pose conforms to the the stated constraints.

36



We aggregate these visualization techniques into an interactive visualization tool called Skele-

tonVis, which we are making available to the public to allow RNN developers and users to gain

more insights into these enigmatic networks.

This study can be extended into many avenues in the research of interpretability of recurrent

network models. One of the interesting future works is to improve the anatomical constraints

underlying activation maximization. We will add temporal constraints to eliminate implausible

accelerations, and volume constraints to prevent body parts from passing inside each other. We

also plan to explore activation minimization, by which we mean the extent to which the motion in

a video can be reduced without changing the assigned label. Lastly, the state of the art skeleton

based action recognition models rely on multi-layer LSTMS rather than a single layer model.

Exploring feature abstractions from higher layers would be another interesting extension to this

thesis.
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