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The loss of independent degrees of freedom at singular configurations is an inherent
characteristic of robotic manipulators. Due to the unavoidable singularity of mechani-
cal wrists, singular configurations cannot be avoided by simply restricting the bounds of
the workspace. Techniques for operating at singular configurations without inducing
unacceptably high joint velocities or end effector tracking errors are presented.
Extensions to the damped least-squares formulation which incorporate estimates of the
proximity to singularities and selective filtering of singular components are illustrated.
The generality of the technique presented is illustrated in a computer simulation of a
commercially available manipulator operating through singular configurations.
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l. INTRODUCTION

All articulated manipulators, with the exception of some used only for
positioning, can be shown to possess singular configurations which limit the
effective number of independent degrees of freedom.! These singular
configurations restrict the motion of the end effector and can induce high joint
velocities and spurious motions. Due to these undesirable characteristics there
has been a significant amount of effort aimed at avoiding the operation of a
manipulator at or near a singular configuration.>”” Unfortunately, due to the
inevitable singularity of pointing or orienting wrists, singular configurations
cannot be restricted to isolated regions of the workspace.

The effects of singularities are frequently presented with respect to the
resolved motion rate control formulation® given by

x=J0 1)

where % represents the commanded end effector velocity, @ represents the joint
angle velocities and J is the Jacobian matrix. In this form singularities can be
identified by a mathematical change in rank of J which physically represents
the inability of the manipulator to achieve an arbitrary end effector velocity.
Since inverses of rank deficient matrices are undefined, the pseudoinverse has
been proposed as a means of obtaining solutions to (1).® Unfortunately,
pseudoinverse solutions have an undesirable discontinuity for arbitrarily small
perturbations which result in a change of rank.” The difficulty, therefore, is not
at singularities but the ill-conditioned transition between singular and non-
singular configurations which results in oscillations and unacceptably high
joint velocities. It is important to note that these difficulties are not unique to
the resolved rate formulation but are an inherent part of the transformation
between Cartesian and joint spaces.

One approach to achieving the desired continuity between singular and
nonsingular configurations, independently proposed in Refs 10 and 11, is to
use a well-conditioned formulation based on weighting the accuracy of track-
ing the end effector velocity with the norm of the joint angle velocity, a
method sometimes referred to as damped least squares. The success of this
approach is based on varying the weighting factor between these two criteria
so that unnecessary end effector tracking errors are not produced in well-
conditioned configurations. The loss of an independent degree of freedom at a
singularity, however, also need not adversely affect end effector tracking.
Clearly, if the commanded end effector velocity does not include the un-
achievable component, then there is no physical reason for inducing errors
into the well-conditioned components. The ability to identify such cases
requires further information about the manipulator configuration and the
commanded end effector velocity.

The approach presented here is to extend the concept of damped least-
squares solutions by incorporating a technique for determining the minimum
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singular value and the directions associated with the lost degrees of freedom.
This allows a more accurate means of determining proximity to singularities
which can then be used to set an appropriate weighting factor. In addition,
knowledge of the direction of any lost degrees of freedom permits the use of a
formulation for selectively filtering out individual components from the com-
manded end effector velocity. This formulation more accurately reflects the
physical constraints on the manipulator so that performance can match kine-
matic capabilities.

il. PROPERTIES OF DAMPED LEAST-SQUARES SOLUTIONS

The concept of considering a solution’s norm along with the accuracy to
which it solves a set of linear equations was first proposed by Levenberg in
Ref. 12 where he coined the phrase ‘“damped least squares™. Since that time
the use of damped least squares, also referred to as regularization, has become
one of a number of common techniques for obtaining solutions to ill-con-
ditioned equations such as those encountered in applications involving
measurement or sensing.'>!'* In terms of the inverse kinematics problem
specified by (1) the damped least-squares criterion requires a solution which
minimizes the sum

Ik~ JOIF + A%| 8| @)

where A is a weighting factor, sometimes referred to as the damping factor,
which can be used to set the relative importance of the minimum residual
criterion (i.e., end effector tracking error) versus the norm of the solution. The
solution which satisfies this criterion for a particular value of A will be denoted
as V). The damped least-squares criterion results in the augmented system of

equations
e[l ®

where the solution can be obtained by solving the consistent set of equations

JTT+A’D6=J"% @)

which results in 8™, It is easily shown'* that this 8% represents the solution
with the minimal residual over all 8 whose norm does not exceed that of 6.

The properties of the damped least-squares solution are perhaps best
revealed by the use of the singular value decomposition (SVD). The SVD of
the Jacobian J, order m X n, can be represented in the form

min(m,n)

J= Y owv] (5)

i=1

where v; and w; denote the input and output singular vectors and the singular
values, denoted by o;, are typically ordered from largest to smallest so that

012 022 Ominimm =0 6)
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where the number of nonzero singular values is the rank of J. The matrix J is
allowed to be non-square to allow for kinematically redundant manipulators.
The minimum singular value of J has a special significance since it is the only
accurate measure of proximity to singularities. Physically it represents the ratio
of end effector velocity to joint velocity in the direction for which it is most
difficult to move. This direction is given by the associated output singular
vector.
By writing x in terms of the basis specified by the output singular vectors

% =ulx M
the components of the damped least-squares solution can be written as

T;

o ==
0',2+ A2

V;X.;. (8)

It is important to note that inclusion of the vector norm criterion into the
least-squares process only affects the magnitude of the singular values; the
singular vectors remain unchanged. From (8) one can see that for o; much
larger than A the damped least-squares solution has little effect since

o; 1

1 A 9
P &)
which results in approximately the same value as the standard least squares.
However for o; that are on the order of A, the A term in the denominator
“damps” the potentially high norm of that component of the solution so that

-

max(||6(|)) = 21; (10)

which occurs when o; = A. For o; smaller than A, 6"’ approaches zero as o;
approaches zero which demonstrates the desired continuity in the solution in
spite of the change in the rank of J. A plot of the norm of a component of the
damped least-squares solution as compared to the standard least squares as a
function of o; is presented in Figure 1.

The norm of the complete solution is obtained by combining each of the
components from (8) which results in

poop= 3 =2 an

i=1 gl +A?

where r is the rank of J. The above equation clearly demonstrates that for
positive A the norm is monotonically decreasing and approaches zero as A
approaches infinity. This decrease in norm, however, is unavoidably ac-
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Figure 1. A comparison of the damped and undamped least-squares solutions as a
function of the singular value showing the norm of the joint velocity for a component
in the direction of the singular vector associated with the plotted singular value.

companied by an increase in the resultant residual. The residual, as a function
of A, is given by

x-soop=3 2|+ § e 12)

2 2
i=1 oi+A i=r+1

The second term of the residual represents that portion of x which is outside of
the range space of J and is therefore not a function of A. The first term
illustrates how the damping factor A affects the resultant residual, the mag-
nitude of which is a monotonically increasing function with a minimum at
A=0.

The characteristics of the damped least-squares solution are similar to those
obtained using the truncated SVD.!? The truncated SVD solution of a system
of linear equations described by (1), denoted here by 8, is defined as

. k1
0P =3 —vux (13)

i=1Ti

where k is an integer less than or equal to the rank r. The truncated SVD
reduces the solution norm by removing all components of the solution which
correspond to small singular values while retaining all of those associated with
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larger singular values. The parameter k is used to define small and large such
that o; for i<k are large and o; for i> k are considered small. It can be
shown that 8 is the minimum residual solution for all 8 in the k-dimensional
subspace spanned by v, for i= k.'s For cases where i > 0x+y such that there
is a large gap between the large and small singular values and A is chosen to
be midway between o and o+, the results for the two types of solutions will
be approximately the same.

. DETERMINING AN APPROPRIATE DAMPING FACTOR

One of the difficulties in successfully applying the damped least-squares
formulation is determining the optimum value for the damping factor A. If
there exist hard constraints on the maximum allowable joint velocity or end
effector tracking error then an iterative technique based on the monotonic
behavior of these functions can be applied. Unfortunately, this technique
requires repeated solution of (4) which is computationally undesirable, parti-
cularly with respect to real-time control. If the SVD of J is available then
Newton’s method can be applied to the nonlinear equations (11) or (12) to
solve for an optimum damping factor.'® Once again, however, the SVD is in
general too computationally expensive for use in real-time control.

A usable approach to dynamically setting the damping factor is to vary it as
a function of the manipulability.’! The manipulability, defined as the square
root of the determinant of JJ7'7 is easy to compute and has zeros which
coincide with the singularities of J. Unfortunately, the manipulability measure
cannot guarantee an accurate estimate of proximity to singularities, the only
reliable measure of this quantity being the minimum singular value.'® Since the
manipulability measure is the product-of the singular values, it can be held
constant for an arbitrarily large variation in both the condition number and the
minimum singular value. The discussion in Ref. 10 with regards to choosing an
appropriate damping factor centers around the condition number of the matrix
(JTJ+ A2I). A bound on this quantity prevents ill-conditioned problems in
which solutions are suspect due to the amplification of unavoidable roundoff
errors present in numerical calculations. A technique for computing an esti-
mate of this condition number is given in Ref. 19, however, it provides only a
Jower bound and is applicable for only those manipulators which possess
spherical wrist joints.

The approach proposed in this work is to use a damping factor based on an
estimate of the minimum singular value. The justification for this choice is due
to the fact that bounds on the norms of both the joint angle velocity and the
end effector tracking error can be specified solely on the basis of the minimum
singular value. In addition, the condition number of the Jacobian is bounded
by the inverse of the minimum singular value if J has been normalized so that
o, is equal to one. Therefore, by knowing the minimum singular value of J, a
value for the damping factor can be specified which is guaranteed to satisfy a
given constraint on either the joint angle velocity, end effector tracking error,
or conditioning of the equations.
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For a constraint on the maximum joint angle velocity over all unit norm
commanded end effector velocities, denoted by @ma., a damping factor based
on (10) can be specified without even considering the minimum singular value.
This value of A, however, will be much too conservative for those cases where
the minimum singular value is greater than the damping factor, which can be
seen from Figure 1. In these cases, a better choice for A, which is based on the
minimum singular value and is still guaranteed to satisfy the joint velocity
constraint, can be obtained from (11) which results in

Amas) = ‘;—""—— 02un (14)

for those cases where O, > A. Clearly if opun > 1/ Omax, then use O for A.

The end effector tracking error introduced by using the damped least-
squares formulation is given by the first term of (12). Let AR denote this error
relative to the commanded velocity, x, so that

2 .
AR A (15)

T ol a”

Therefore, to stay with a maximum specified value, AR, the required
damping factor can be obtained from

S
AR, = \/ 718 Rmas (16)

1-ARmax

Note that this is not the total end effector tracking error but only that
introduced by using the damped least-squares solution. If r is not equal to m
then the end effector velocity component in the space spanned by w; for
i=r+1 to m must be included. This corresponds to the second term in (12)
which is the null space of the transformation.

The numerical conditioning of the implicit inversion involved in the damped
least-squares solution can be determined by the condition number of the n by
n matrix (J7J + A2I), denoted here by «, which is given by

_o'%+A2

K=l an

where 0 is used for o, if m < n. A maximum condition number of Km.: can be
guaranteed by using the damping factor given by

2 _ . 2
A(Kmas) = \/ﬂ—i"‘ﬁ"— (18)

Kmax — 1

While concern for the conditioning of the matrix J7J 4+ A?] is a valid numeri-
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cal point, especially since the condition number of the Jacobian is squared to
form the product J7J, in practice, bounds on the joint angle velocity norm are
usually a more stringent constraint so that a reasonable joint angle velocity
will tend to automatically satisfy the numerical constraint of conditioning.

IV. IMPLEMENTATION OF DAMPED LEAST-SQUARES SOLUTIONS
WITH MINIMUM SINGULAR VALUE ESTIMATES

The damped least-squares solution of (1) is given by (8). While this solution
can be obtained by solving (4) it is preferable to compute this solution by using
the mathematically equivalent form

0N =JT(JIT+ A1)k (19)

especially when dealing with redundant manipulators. For redundant manipu-
lators m < n so that solutions based on the m by m matrix JJ7 + A*I require
fewer calculations than the n by n matrix J7J + A2I. The solution of (19) is
best performed in two part solving

(JIT+ANz=x (20)
for z and then substituting it into the Equation®®
0V =7Tz. (21)

In this manner an explicit inversion can be avoided by using an appropriate
factorization; since JJ7 + A?[ is symmetric, the Cholesky decomposition is an
ideal choice.

The solution of (20) presents an ideal place to obtain an estimate of the
minimum singular value of J. Since the Cholesky decomposition of JJ7 + A%I
is already available, the solution for an additional right-hand side chosen for
minimum singular value estimation represents a minimal amount of additional
computation. For this reason the solution of (20) is modified to the partitioned
matrix equation

JIT+A2D[z:an]=[x; Ga] (22)

where @i, is a unit vector designed to optimize the estimate of the minimum
singular value. The vector Wi, can be written in terms of the basis specified by
the output singular vectors of J as

il = i ay; (23)

i=1

were the a; denote the component along the respective singular vector. The
solution for fin can then be obtained from (22) as
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A —-1a - ai
n..=(JJT+AZI) Y, = ;mui. (24)

If @i, has a strong component in the direction of u,, so that a,, =1, then

- 1
"u-‘l~¢r%,.+A2 (25)

and for a known value of A an estimate of the minimum singular value can be
obtained. This technique is an application of the singular value estimation
procedure used in numerical analysis packages involving matrix com-
putations’’ and is based on the inverse iteration method for computing
eigenvalues. A proof of its ability to provide an estimate of the minimum
singular value to any specified tolerance is given in Ref. 22.

In order to obtain a good estimate of the minimum singular value, the
vector i, must contain a significant component within the subspace spanned
by the singular vectors associated with small singular values. In particular, for
those cases where there is only one minimum singular value, G, must be nearly
identical (within a sign) to ma. This vector is maintained by first setting @a,
exactly to u,, before starting the trajectory. Then at every computation cycle
time when (22) is solved the vector i, is replaced by a normalized version of
@i,. By comparing (23) with (24) it is easy to show that @i, will always have an
even larger relative component along the minimum singular vector than the
original estimate fi,. In particular, for @i, the relative component of u,, to any
other singular vector w; is given by the ratio a,./a;. For i this ratio is given by

% (&) )

a’ a;/\o% +A*?

Since o; is always greater than or equal to o, by definition, the second factor
in (26) is always greater than or equal to one thus improving the estimate of
the minimum singular vector. In this manner, as the singular vector associated
with the minimum singular values rotates, @i, is able to rotate along with it,
always maintaining a strong component along that direction. The perturbation
bounds on the rotation of singular vectors discussed in Ref. 23 guarantee that
the subspace associated with the small singular values is well-behaved.

The estimate for the minimum singular value for J can now be used to set
an appropriate damping factor using the equations of the previous section.
There is an apparent circular dilemma in that A must be known in order to
estimate o, from (25) yet the reason for calculating o, is to be able toset A to
an appropriate value. This dilemma is resolved by setting the damping factor
using the previous estimate of the minimum singular value. Since singular
values are well conditioned, the bounds on their rates of change, discussed in
Ref. 23, guarantee that the change in the minimum singular value will be small
during the computation time interval so that the above value of the damping
factor can be used.
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V. NUMERICAL FILTERING OF SINGULAR COMPONENTS

One of the limitations of the damped least-squares approach is a result of
the uniform damping factor applied to all singular values. From a physical
point of view it would be desirable if only those components of the end
effector velocity which are difficult to achieve would be damped when a
manipulator is in a singular configuration. The effect of such a formulation
would be similar to a continuous version of the truncated SVD solution where
error introduced by the damping of acceptable singular values is eliminated.
The advantages of such a formulation are the removal of unnecessary end
effector tracking errors due to the presence of small singular values even
though the desired end effector velocity has no component in the singular
directions. Such a solution requires replacing the identity matrix in (22) with a
more general matrix designed to selectively filter different components to
varying degrees. This approach is analogous to the numerical filtering used in
the solution of Fredholm equations for problems involving indirect sensing®*
and electromagnetics.?®

The estimate @in can be used in order to achieve a solution in which the
components associated with the small singular values are damped more than
the others. By replacing (22) with

(JJT + d*igbt + A1)z Gn] =X ] (27)
the filter gain @ can be used to provide further damping of the singular

components in addition to the overall damping factor A. By using (27) in place
of (22) the solution norm is now given by

; m—1 . 2 2
T ICES Z x-.g[ o; ] +x'?,.[—"‘&_] (28)
1

i a?+A2 a'f,,+a2+A2

where the accuracy of the approximation depends on the accuracy to which g
matches n.. As a manipulator approaches a singularity, it is the last term in
(28) which induces the high joint velocities. Without the filter gain a, the
-overall damping factor A would be forced to increase, unnecessarily damping
the well-behaved components in the summation term and resulting in an
unnecessary end effector tracking error. By introducing an extra degree of
freedom as to how damping is applied, the filter gain a can be set based on the
estimate of the minimum singular value obtained from (25) which then allows
a reduction in the overall damping factor. Note that these advantages are
present regardless of the value of X..

The computation of an appropriate overall damping factor A is based on
establishing an effective singular value for the specific commanded end
effector velocity. This effective singular value is based on modeling the
commanded end effector velocity x as being composed of two components,
one within the possibly singular subspace defined by @ and denoted by x,, and
the other component in the remaining orthogonal subspace denoted by X,.



Maciejewski and Klein: Numerical Filtering for Robotic Manipulators 537

These two components are easily calculated using

A A

X, = g inx (29)

and
X, =X —X,. (30)
The additional information required for establishing an effective singular value

is obtained from the vector z calculated from the previous computation
interval. From (27) one can write z as

(Bl ot

b ol +a’+A?

where once again the accuracy of the approximation depends on the accuracy
to which @i, matches ua. All of the values in the last term of (31) are known so
that the portion of z which results from X, denoted here by z,, can be
calculated from

X,

Z,=2-—5 353
° 0'3,,+a2+A2'

(32)

A measure of the effective singular value outside of the singular subspace,
denoted by o, can then be obtained by modeling the summation term in (31
by a one-dimensional space resulting in

[l

fz.ll= prrwy (33)
or
2 M 32
(i lz.l A, (34)

A measure of the overall effective singular value for the current commanded
end effector velocity can then be obtained by comparing the components X,
and %,. In particular, the overall effective singular value, denoted by o,y is
given by

By e

The entire motivation for developing (35) is to provide a means of incorporat-
ing information about how the current commanded end effector velocity will
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affect the resulting solution. In effect what (35) does is provide an estimate of
what the resulting joint angle velocity norm would be if no damping were
applied. This effective singular value is used in place of the minimum singular
value in the equations of Section III for calculating an appropriate overall
damping factor.

The approach outlined in this section allows the manipulator to differentiate
between situations where an arbitrary or only a particular end effector velocity
is difficult to achieve. The former case is only a function of the manipulator’s
configuration and can be identified by examining the minimum singular value
of the Jacobian. While this case is simpler to determine, algorithms based on
this limited information can result in unnecessary degradation of performance
in the latter case where the commanded end effector velocity has no com-
ponent in the singular subspace. With the numerical filtering approach the
damping factor A will be zero in this case so that no end effector tracking error
will be introduced. Note that the implicit inversion of (27) is still well
conditioned since a non-zero value of a damps the ill-conditioned singular
subspace components and does not affect the end effector tracking. While the
numerical filtering approach does require some additional calculations, they do
not appreciably increase the overall computation time. This is due to the fact
that solution of the matrix equations (20) and (21) require on the order of
O(n?) floating point operations whereas calculation of .y from (35) requires
only a few vector operations which can be performed in linear time.

VI. SIMULATION RESULTS

This section presents computer simulation results using the formulations
presented above. The techniques discussed are fully general and have been
implemented for use with any arbitrary three-dimensional manipulator. Simu-
lation results are initially presented for a planar two-dimensional manipulator
in order to facilitate the visualization of the associated singular vectors with
the results for the three-dimensional simulations presented in the following
section. In all cases, resolved motion rate control, as defined by (1), is used as
a representative example of the characteristics for these types of solutions.
Simulations using resolved acceleration control have produced similar
results.?> The commanded velocity for the end effector, x., is composed of the
desired velocity plus a position error term given by

X=Xt kp(Xa— Xa) (36)

where x4 and x, are the desired and actual positions of the end effector and k,
is the position error feedback grain. The normalized end effector tracking
error, X, is defined as

_ 58

e = 37
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Two-Dimensional Results

The two-dimensional simulations for the control of manipulators through
singular configurations were performed on the two-link planar manipulator
depicted in Figure 2. The manipulator is shown in its initial configuration
along with the desired trajectory for the end effector. As illustrated, the link
lengths are 110 and 100 cm for the first and second links, respectively. The
desired trajectory is 200 cm square, being offset by 10 cm from the base of the
manipulator. By commanding the manipulator to travel along the square
ABCD, the reach singularity is encountered along a significant part of the
trajectory, including the entire segment from B to C for which the desired end
effector position is kinematically unachievable except for the midpoint of
segment BC. In addition, the trajectory is designed to force the manipulator to
go through the internal singularity at the midpoint between points D and A.
This trajectory was intentionally chosen outside of the achievable workspace
in order to illustrate the smooth operation of the techniques presented here.
While such trajectories are not planned in controlled environments, they do
occur in cases where teleoperators are employed. The desired velocity is
uniform in magnitude at one cm per computation interval, thus resulting in
discontinuities in direction at the vertices of the square. While these dis-
continuities result in a physically impossible trajectory, they were included in
order to emphasize the effect that the direction of the commanded end effector
velocity has on the resulting solution. The position error feedback gain k,, is
set at the relatively low value of 0.1 in order to keep the norm of the

\,/100 /‘\

A % B

N

e 10 /

e 200 ]

¢ 200 —————

Figure 2. Two-link planar manipulator and desired trajectory used for the two-
dimensiona! simulations. The maximum reach of the manipulator is shown in dotted
lines. Lengths are in centimeters.
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commanded velocity within the range of 1 to 2.2 cm per computation interval
since a maximum position error of approximately 23 cm will occur when the
manipulator is commanded to be at points B or C.

The simulation results for the three cases of a constant damping factor, a
variable damping factor, and the numerical filtering formulation are presented
in Figure 3. A maximum damping factor of 25 was calculated from (10) in
order to maintain the actual joint velocity norm to within 0.05 radians per
computation interval. For the variable damping factor simulation A is com-
puted from (14) based on a desired normalized solution norm, Omax, of 0.02
which also results in a maximum damping factor of 25 and an actual solution
norm bound of 0.05 radians per computation interval. In order to provide a
valid comparison the numerical filtering simulation also uses a maximum
overall damping factor, A, of 25 which is computed from (14) using o,
however, in place of om. The filter gain, a, is computed from (14) using the
estimate of the minimum singular value.

The results for all three cases are superior to any formulation relying on
traditional pseudoinverse type solutions since the transition from a full rank to
a singular configuration for pseudoinverse type solutions results in unaccept-
ably high joint velocities, oscillations, and poor end effector tracking. The
damped least-squares solution, however, results in smooth transitions and
velocity bounds which can be set a priori. The normalized end effector
tracking error is much as would be expected. The largest errors occur at points
B and C along the trajectory. The dip in the error at the midpoint between B
and C is due to the fact the commanded end effector velocity is directed
increasingly along the singular vector associated with the non-zero singular
value. The notch in the end effector velocity error occurring just after point C
marks the position at which the commanded end effector position matches the
reach of the manipulator and it can now begin to come out of the singularity.
The overshoot in the end effector tracking as the manipulator comes out of its
reach singularity is due to the fact that the commanded end effector velocity
has a strong component in the direction of the now small singular value. It is at
this point that the peak joint velocity is reached in getting the manipulator out
of the singular configuration.

The constant damping factor case has the undesirable characteristic of end
effector tracking errors along the entire trajectory, even when the manipulator
is far from a singular configuration. In addition, a very large error occurs near
the internal singularity midway between points D and A even though the
manipulator is only singular at a single point and at that point there is no
component of desired end effector velocity in the direction of the singular
vector associated with the zero singular value. The use of a variable damping
factor based on an estimate of the minimum singular value is designed to
alleviate some of the difficulties associated with the constant damping factor
solution, namely, that of end effector errors in well-conditioned configurations.
The vafiable damping factor simulation results illustrate that, as expected, the
end effector velocity error can be reduced to near zero outside of the
proximity of singular configurations. These results are particularly evident in
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Figure 3. Results of the two-dimensional simulation showing the end effector tra-
jectory along with plots of the end effector velocity error and joint velocity.
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the neighborhood of points A and D where the error is reduced to zero
without an appreciable change in the joint velocity. By using this formulation
the desirable properties of predictable performance at singularities can be
coupled with improved performance away from singularities. Note, however,
that there is still a significant amount of end effector tracking error in the
neighborhood of the internal singularity. This error is due to the fact that all
components of the desired end effector velocity are equally damped. Thus the
non-singular component is damped by the maximum damping factor since the
minimum singular value is zero. This degre of damping is clearly unnecessary
as can be seen from the still relatively low joint velocity norm.

By applying the numerical filtering technique the manipulator can treat the
various components of the commanded end effector velocity with different
damping factors, thus further improving the performance at singular
configurations. The most dramatic difference in performance with numerical
filtering as opposed to treating all components equally occurs in the neigh-
borhood of singularities. In particular, at the internal singularity midway
between points D and A, the end effector error is significantly reduced from a
peak value of 22% of the commanded velocity to less than 4% and from an
integral error of 9.94 cm to 0.25 as compared to the variable damping factor
case. Note that this improvement occurs without violating any of the con-
straints on the joint angle velocities. The reason for the improvement lies in
the fact that the numerically filtered solution more accurately reflects the
physical situation of the manipulator. Proximity to a singularity only reflects
loss of motion in those directions associated with the corresponding singular
vectors. Treating all directions equally only induces unnecessary errors in the
nonsingular directions. The portion of this trajectory through the internal
singularity is meant to emphasize the importance of this fact, namely that
manipulators can physically pass through singular configurations without in-
ducing high joint velocities or end effector tracking errors. Utilizing such
information will result in larger effective workspaces and improved per-
formance.

Three-Dimensional Results

The three-dimensional simulation was performed for the familiar PUMA
robot geometry as a representative example, the Denavit and Hartenberg
parameters for which are presented in Table I. The simulations were conduc-
ted through three different types of singularities which are illustrated in Figure
4. The singular configurations of the PUMA robot are well-known and can be
identified by simple geometric properties. The first type, which is perhaps most
commonly encountered, is associated with the loss of a rotational velocity
component. Known as the wrist singularity, it occurs when joint angle five is
equal to zero thus aligning the other two axes of the wrist. This singularity is
present throughout the workspace of the manipulator since it is not associated
with any of the three primary positioning joint angle variables. The second
type of singularity is known as a shoulder singularity and occurs when the wrist
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Table I. The Denavit and Hartenberg parameters for the
PUMA robot used in the three-dimensional simulations.

link length (m) offset (m) twist (deg)
1 0.000 0.000 -90
2 0.432 0.149 0
3 -0.020 0.000 90
4 0.000 0.433 —90
5 0.000 0.000 90
6 0.000 0.056 0

of the manipulator is located along the axis of the shoulder. In this configura-
tion, linear velocities toward or away from the base are unachievable. The
third type of singularity, which also results in the loss of a linear velocity
component, occurs when the elbow joint angle is equal to zero thus aligning
links two and three. This singularity, known as the elbow singularity, is
analogous to the reach singularity of a two-dimensional manipulator. Note that
the particular version of the elbow singularity illustrated in Figure 4 is unique
in that the shoulder and wrist singularities are also present, thus resulting in a
triple singularity.

Figure 4. Three different singular configurations for the PUMA robot: {a) wrist
singularity; (b) shoulder singularity; (c) triple singularity.
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Figure 5. Three trajectories and starting configurations which pass through the
singular configurations of Figure 4.

The three trajectories used to pass through these singular configurations are
presented in Figure 5 along with the starting configurations. All three tra-
jectories have the commanded singular configuration as the midpoint of the
trajectory. Trajectory A is a circle with a constant end effector velocity
magnitude of 1.57 mm per computation interval. Trajectory B is composed of
cosine terms in the positional variables with a maximum end effector velocity
norm of 1.57 mm per computation interval. Trajectory C is composed of two
linear segments with a constant end effector velocity norm of V2 mm per
computation interval. The commanded end effector velocity is given by (36)
with a position error feedback gain, k,, of 0.5.

The results for the above three trajectories using the constant damping
factor formulation and the numerical filtering approach are presented in
Figures 6 to 8. The performance of the variable damping factor technique is
bracketed by these two cases and is therefore omitted. All simulations were
conducted with a maximum damping factor, A, of 0.08 with an & of 0.01 for
the numerical filtering formulation. The graphed results of the end effector
error and joint velocity over the trajectory are accompanied by selected
configurations of the manipulator along the trajectory. These configurations
are equally spaced in time, one every 25 computation cycle intervals, and
depict the manipulator as line segments connecting the origins of the various
link coordinate systems in a parallel projection.
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Figare 6. Results of PUMA robot simulation for trajectory A showing selected
manipulator configurations and the end effector trajectory along with plots of the end

effector velocity error and joint velocity.
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Figure 7. Results of PUMA robot simulation for trajectory B showing selected
manipulator configurations and the end effector trajectory along with plots of the end
effector velocity error and joint velocity.

The results for trajectory A aij;': presented in Figure 6 and illustrate the
typical behavior of these types of formulations. The singularity is clearly
encountered at the top of the circular trajectory since the hand of the
manipulator is aligned with the forearm. The constant damping factor for-
mulation has a nominal end effector velocity error of 15% of the commanded
velocity which is present throughout the trajectory and increases in the
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Figure 8. Results of PUMA robot simulation for trajectory C showing selected
manipulator configurations and the end effector trajectory along with plots of the end
effector velocity error and joint velocity.
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proximity of the singularity. The notch in the error is once again associated
with a larger component along the nonsingular directions. The position error is
also clearly evident from the configuration plot of the manipulator since the
projections of the end effector for the upward and downward motion of the
manipulator do not coincide. The results for the numerical filtering approach
show that like the two-dimensional simulation, the end effector error outside of
the singular region has been reduced to near zero. The configuration plot
collaborates this data by having coincident end effector positions except near
the top of the trajectory. The only remaining end effector error is due to the
lost degree of rotational velocity at the wrist.

The results for trajectory B are presented in Figure 7. Once again a nominal
end effector velocity error is present throughout the trajectory for the constant
damping factor solution with a notched peak at the shoulder singularity. The
single peak near the end of the trajectory is due to the proximity of a wrist
singularity which is clearly evident in the manipulator configuration plot where
once again the hand and forearm are nearly collinear. The results of the
numerical filtering approach show that only the physically unachievable velo-
cities associated with the singular vectors of small singular values account for
the end eflector errors which are present. The interesting feature to note about
this trajectory is that the minimum singular value estimation technique must
switch very rapidly from following the singular vector associated with the
shoulder singularity to that associated with the wrist singularity.

The final trajectory, C, represents the worst-case situation for this manipu-
lator geometry where a triple singularity is encountered. These results are
presented in Figure 8. The notched peak at the singularity is a bit more
pronounced due to the higher order of the singularity. The broadening of the
area around the singular configuration for which there is a non-zero end
effector velocity error for the numerical filtering case is also a result of the
higher order singularity. This behavior is due to the fact that a higher
dimensional space of end effector velocities are physically more difficult to
achieve. Thus the solution still accurately reflects the state and capabilities of
the manipulator under the imposed joint velocity constraints.

It is instructive to examine the behavior of the singular values for trajectory
C in-order to gain insight into the behavior of the technique for maintaining an
estimate of the minimum singular value under these worst case conditions. A
plot of all six singular values for the manipulator’s Jacobian for the entire
trajectory is presented in Figure 9. The notch in the three smallest singular
values at the center of the trajectory is where the manipulator is closest to the
triple singularity. Since the manipulator is only commanded to go through the
singularity at one point, it never actually reaches the completely singular
configuration which can be plainly seen from the configuration plots of Figure
8. Examination of the singular vectors associated with the singular values
reveals that the smallest singular value is primarily associated with the wrist
singularity, the next smallest with the elbow singularity, and the third smallest
primarily with the shoulder singularity. It is interesting to note that the fourth
largest singular value is still relatively small compared to the two largest ones.
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Figure 9. Singular values of the Jacobian matrix for each configuration along tra-
jectory C. ’

This is due to the fact that the linear and rotational velocity components of
joints two, three, and five are coupled.

The technique for maintaining an estimate of the minimum singular value is
based on the rotation bounds for singular vectors from which it is known that
the most rapid rotation occurs when thére are multiple minimum singular
values. This case already occurred during trajectory B, but it occurred when
the twin minimum singular values were above the threshold which would have
affected the damping factor. The most critical test of the estimation technique
occurs when the rapid rotation of singular vectors coincides with twin mini-
mum singular values which are sufficiently small to have a noticeable effect on
the damping factor. In order to force this case to occur, the second half of
trajectory C was modified to a constant position command at the reach of the
manipulator with a rotational velocity command in the direction of the axis of
joint 5. This modification forces the singular value associated with the elbow
singularity to go to zero while increasing the singular value associated with the
wrist singularity. This causes the two small singular values to cross and thus
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Figore 10. Smallest singular values o5 and o, and the estimate to the minimum
singular value, &,,, along the modified trajectory C. Also shown is the dot product of
the singular vectors associated with ¢, and &,,. Modified trajectory C has been
designed as a worst case situation for rapid rotation of singular vectors.

the singular vector associated with the minimum singular value rapidly rotates
its maximum value of 90 degree. A plot of the two smallest singular values for
this modified trajectory is presented in Figure 10. In order to measure the
performance of the estimation technique, the minimum singular value estimate
is also plotted along with the dot product of the estimation vector, @ia, and the
singular vector associated with the minimum singular value. The only notice-
able error in the estimate occurs just after the center of the trajectory when
the rapid rotation is in progress. At this point the estimate is an average of the
two nearly equal singular values. As the singular values separate, however, the
estimation vector rapidly rotates to track the new minimum singular value.
Thus even in a worst case analysis, this procedure provides a robust estimate
of the minimum singular value.

Vii. CONCLUSIONS

Kinematically singular configurations are an inherent property of articulated
manipulators. Using numerical techniques which account for there presence
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prevents unexpected spurious motions, oscillations, and unacceptably high
joint velocities while expanding the usable workspace. The performance of the
techniques illustrated here varies with the amount of information included in
the formulation. In general, the more information regarding the manipulator’s
current state and specific trajectory, the more accurately can the formulation
match the manipulator’s capabilities to the requirements of the assigned task.
In particular, the simplest formulation using damped least-squares solutions
with a predefined constant damping factor can guarantee bounded joint
velocities and smooth transitions through singular configurations, however the
performance at well-conditioned configurations is unnecessarily compromised.
By including a minimum singular value estimation technique into the process,
knowledge of when the manipulator is near a singular configuration can be
used to combine the performance of traditional inverse or pseudoinverse
techniques at well-conditioned configurations with the characteristics of the
damped solutions at singular configurations. Including specific information
regarding the commanded end effector velocity permits the filtering of sin-
gular components to be separated from well-conditioned components thus
achieving the physically realizable limits of manipulator performance for the
given task.
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