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ABSTRACT 

A theoretical consideration of the terminal velocities of 

several ice crystal types is presented. The Best number-Reynolds 

number relationship for objects whose shapes simulate ice crystals 

is employed in the computations. The computed terminal velocities 

as a function of crystal size are shown. 

A parallel field study has been performed. Photographs of 

crystals falling in natural snowfall were made using a strobe light 

for illumination. From the photographs, a determination of crystal 

type, size, and falling attitude and the distance the crystal fell be-

tween successive strobe flashes was made. Terminal velocities 

were then calculated and the data was plotted as a function of crystal 

type and size. Curves were fitted to the data using the least squares 

method. These results are shown with the computed values. Also 

shown are Nakaya's findings for comparison. 

Experimental results of the study show that all of the crystal 

types observed exhibit a functional relationship between terminal 

velocity and crystal size. This is consistent with theoretical predic­

tions developed in the study. Reasons for some disagreement between 

observational and theoretical results are discussed. 
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INTRODUCTION 

Over the past decade, Colorado State University has been 

conducting a program in the central Colorado Rockies to investigate 

cold orographic clouds, associated precipitation processes, and their 

modification potential. An inherent part of this program has been 

the attempt to refine the description of various cloud physics pro­

cesses. A cloud process which has been observed frequently in the 

field but has not been explained satisfactorily is the production of 

excessively high concentrations of ice crystals in certain clouds. 

Several mechanisms which would produce such an effect have been 

proposed. One such mechanism might be the mechanical fracturing 

of the fragile dendritic crystal types resulting from collisions with 

one another or with other crystal types. Basic to our understanding 

of such a process is an accurate knowledge of ice crystal terminal 

velocities. Detailed knowledge of the terminal velocities of ice 

crystals is important for additional reasons. It is a controlling 

factor in the growth of ice crystals by diffusion and accretion. In 

addition it is a controlling factor in the formation of ice crystal 

aggregates or snowflakes. 

Despite the importance of the terminal velocities of ice crys­

tals in so many cloud physics problems, our knowledge of them is 

very sparse and incomplete. The terminal velocities of several ice 

crystal types have been studied by Nakaya (1954). His work is 
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generally regarded as the standard for ice crystal terminal veloci­

ties. Several other studies, Schaefer (1947), Magano (1953), and 

Litvinov (1956), have been reported on individual crystals, but 

these have not substantially altered Nakaya's results. Unfortunately 

however, Nakaya did not have a large data sample. In addition, 

more refined techniques than Nakaya used are now available for 

measuring the terminal velocity of ice crystals. For those crystal 

types not studied by Nakaya, the terminal velocities are not well 

known. 
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OBJECTIVES 

The objective of this study has been to develop theoretical 

values for the terminal velocities of individual ice crystals and 

compare them with experimentally obtained values. To accomplish 

this, the following specific objectives have been to: 

1. measure the terminal velocities of some of the crystal 

types reported by Nakaya using an improved technique 

which: 

a. reduces the human error factor, 

b. allows recognition of crystal accelerations, 

c. a llows photographic determination of crystal type 

and size, 

ct. allows determination of the falling attitude of 

crystals. 

2. measure the terminal velocities of some of the crystal 

types not previously reported using the same technique. 
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BACKGROUND 

The most extensive study on the terminal velocities of indi­

vidual ice crystals was made by Nakaya (1954). He employed two 

techniques for determining the velocity. In one, crystals were 

dropped from the top of a closed tube and the time they took to fall 

through a distance of 2 meters was measured with a stopwatch. 

Graupel, which requires a considerable distance to reach terminal 

velocity, was measured by photographing falling pellets through a 

fan rotating at a known rate. The resulting streaks were chopped at 

known time intervals and the velocity then could be determined. 

The results of Nakaya's work are shown in Fig. 1. Of parti­

cular interest are the curves for spatial and plane dendrites. They 

both show no size dependence. Nakaya 's data is meager as he him­

self states and therefore is subject to further verification. 

Schaefer (1947) photographed falling crystals that were illu­

minated by high pressure mercury lamps. The lamps were operated 

by an alternating current which produced a stroboscopic effect. 

With this he was able to determine the terminal velocities of a few 

individual crystals which he reported. For the most part his values 

were greater than those of Nakaya. Schaefer grouped crystals of 

various type together, which seriously reduces the value of his 

findings. 
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Magano (1953) worked primarily with snowflakes which are 

aggregates of individual ice crystals but did study a few individual 

crystals. His technique consisted of photographing the falling crys­

tals which were illuminated once per • 01 second with light produced 

by an electric discharge. Magono's results are similar to those of 

Nakaya. 

In a later paper. Magano (1954) treated ice crystal terminal 

velocities from a theoretical standpoint. By making certain assump­

tions he was able to arrive at values which agreed quite well with 

Nakaya 's findings. 

Using an interesting technique. Langleben (1954) studied the 

terminal velocities of snowflakes. His method was to use a 16 mm 

cine-camera with a speed of 32 frames per second. The snowflakes 

were photographed in free fall against a dark background. Langleben 

found that the velocity of snowflakes was approximately equal to the 

1/10 power of the snowflake mass. 

Snowflakes were also studied by Litvinov (1956) using a 12 

meter tube and a stopwatch to time the snowflake falling through the 

length of the tube. His results were similar to Langleben 's, but 

they did not show as much dependence on size. 

In a study of the fall cities of plate-like and columnar ice 

crystals. Jayaweera and Cottis \1969) employed disk and column 

shaped objects, made of various materials, and allowed these to 

fall through fluids of different viscosities. From this work they 
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were able to deduce certain characteristics which would a llow them 

to predict the terminal velocities of plate a nd columnar ice crystals 

falling through air. They did not actually work with ice crystals but 

did check their predictions against nylon fibers falling through air 

and obtained good agreement. 

Other investigations, similar to the one by Jayaweera and 

Cottis have been made. Podzimek (1968) studied the behavior of 

plastic and metal models falling through various fluids. His models 

simulated stellar, hexagonal plate, and plate with corner outgrowths 

types of ice crystals. Others, e.g. Stringham (1965), have studied 

the falling behavior of a wide range of shapes. These investigations 

were made for purposes other than the study of ice crystal behavior. 

However, they ha ve proven very useful for predicting ice crystal 

terminal velocities. 
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THEORY 

An object moving through a fluid experiences a resistance 

due to the behavior of the fluid. Shear stresses resulting from 

viscosity and velocity gradients along the surface of the object 

create forces tangential to the surface. Also affecting the object 

are forces normal to the surface which arise from pressure varia-

tions along the surface. The component of the vector sum of these 

forces directed opposite to the object's motion is usually known as 

the drag force, FD" The drag force can be expressed as: 

(1) 

where CD is the drag coefficient, p is density of air, A is the 

cross-sectional area of the object normal to the direction of motion 

and U is the velocity of the object. The gravitational force G acting 

on the object is: 

G = g (p - p )V 
C 

(2) 

where g is gravitational acceleration, and p is the density of the 
C 

object of volume V. When the object is falling at terminal velocity 

these two forces are equal. Thus: 

l 2 
2 CD p AU = g (pc - p) V 

Solving (3) for U gives: 

U= [Zg(pc-p)Vl ½ 
CD p A j 

(3) 

(4) 
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This general expression for the terminal fall velocity is not readily 

suitable for computation because of the difficulty in assigning values 

to the drag coefficient for objects of various shape. This difficulty 

arises from the fact that the drag coefficient is a function of the ob­

ject's velocity through its relationship with the Reynolds number, 

Re: 

Re=dU/v (5) 

where dis some characteristic length and v is kinematic viscosity. 

The CD-Re relationship is not expressable in terms of elementary 

functions but must be found experimentally. 

Best (1950) developed an approach to solve this problem, 

which combines the Reynolds number and drag coefficient in the 

form: 

2 
X = CDRe (6) 

where X is known as the Best number. Solving (3) for CD and sub­

stituting this into (6) along with the expression for Re gives: 

X = 2:: ~V [ p\- P ] (7) 

We can see that the velocity has conveniently dropped out and we are 

left only with terms which are easily evaluated. To use (7) for 

computing terminal fall velocities,~ the X-Re relationship for the 

shape in question is necessary. This is readily found if the CD-Re 

relationship is known for the particular shape. The procedure is 
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to calculate X for a given object, then find the corresponding value 

of Re and calculate U from the expression for Re. 
' 

In the remainder of this section, an attempt has been made 

to determine the relationship between terminal fall velocity and ice 

crystal size for various crystal types using Best's technique. To do 

this the work of several authors on the CD-Re relationship of various 

shaped objects has been utilized. The results are shown graphically 

along with the experimental values obtained in this study. 

Plane Dendrites 

It was found by Magono (1953) and confirmed in this study 

that plane crystals fall with their basal face horizontal. This was 

predictable from the work of various authors on thin disks falling 

through viscous fluids, e.g. Stringham (1965). He found that when 

Re< 100, disks fall with their maximum cross-sectional area normal 

to the direction of motion in a steady fashion, but when Re exceeds 

100, the disks begin to oscillate slightly and increase their erratic 

behavior as Re increases. The value of Re for most plane crystals 

is< 100, with only those crystals greater than about 3-4 mm in 

diameter exceeding this value. For those, the oscillations are 

small and about the vertical and thus do not effect their horizontal 

attitude. Fig. 2 is a photograph of a falling dendrite which was 

illuminated every 1/100 of a second by a strobe light. It clearly 

demonstrates the horizontal attitude of the basal plane. 
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Figure 2. Falling plane dendrite showing horizontal attitude. 



12 

The cross-sectional area normal to the direction of motion 

then is simply the area of the basal plane. Since the volume of the 

crystal is the basal area times the thickness, the ratio V / A reduces 

to just t, the crystal thickness. Thus for plane dendrites, (7) be-

comes 

X = 
2 d 2 t g 1- p l 

V2 - C; p (8) 

The relationship between crystal diameter and thickness has 

been investigated by several authors. Auer and Veal (1970) have 

made the most extensive study and report that the thickness slowly 

increases as the diameter increases. Ono (1969) found that plane 

crystals show an increase in thickness as the diameter increases 

until they reach 50-60µ thick. This occurs at a diameter of about 

1600µ. The apparent discrepancy between the two investigations can 

probably be explained by the small sample size obtained by Ono. 

Plotting Ono's curve on the diagram of Auer and Veal shows that it 

lies within the scatter of their points. The two curves are shown in 

Fig. 3. Reynolds (1952) in a study of plane crystals nucleated in a 

cold chamber, obtained results which agreed quite well with Ono 

for very small crystal diameters. His results are shown in Fig. 4. 

However I Nakaya (1954) reported an average thickness for dendrites 

of 11µ. The reason for this wide departure from the results of 

others is not obvious. 
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Podzimek (1968) has determined the drag coefficient-Reynolds 

number relationship for models which simulated hexagonal plates, 

both with and without corner outgrowths, and stellars. He gives the 

relationship for plates as: CD = 16. 5 Re-. 
466 

and for stellars and 

plates with outgrowths: CD = 20. 2 Re-. 
466

• These relationships 

are plotted in Fig. 5 using log-log scales. From these curves, the 

X-Re relationships were determined and these are also shown in 

Fig. 5. Using values oft from the curve of Auer and Veal to calcu­

late X and then finding the corresponding value of Re from the X-Re 

curve for stellars in Fig. 5 the relationship between terminal fall 

velocity and crystal diameter was found. This is shown in Fig. 12. 

It should be emphasized that this curve is valid only for crystals 

exhibiting a diameter-thickness relationship which is in agreement 

with Auer and Veal. Crystals which exhibit a different diameter­

thickness relationship, such as reported by Nakaya, would lie along 

another curve. 

Hexagonal Plates 

The expression for the Best number given by (8) applies to 

plates as well as plane dendrites. Following the same procedure 

used for plane dendrites, the terminal velocity-crystal diameter 

relationship was computed. This relationship is shown in Fig. 12 

also. The two curves are similar in shape, with the plate curve 

being somewhat higher due to plates having a lower drag coefficient 
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than plane dendrites. Again it should be emphasized that this curve 

holds only for those crystals which exhibit the diameter-thickness 

relationship found by Auer and Veal. 

Spatial Dendrites 

When spatial dendrites are considered, the problem becomes 

more complex. Because of the random orientation and number of 

arms occurring, it is not possible to define cross-sectional area and 

volume as simply as for plane crystals. To overcome this difficulty, 

the problem can be approached in the following manner: the spatial 

dendrite can be considered in terms of a sphere which would just 

enclose it. A certain fraction of the sphere's volume would be ice 

and the remainder air . Likewise, if we project the crystal arms on 

a cross-section through the sphere, a fraction of the cross-sectional 

area would be ice and the remainder air. However, the area of ice 

would vary depending on the orientation of the cross section. Al­

though the area of ice varies , a mean value will exist for each 

crystal. Letting the fraction of the volume which is ice be x , and 

the mean fraction of the area which is ice be y, an expression for 

the volume of a spatial dendrite can now be written as: 

3 
V = x 4/3 1r r (9) 

where r is the radius of the sphere which just encloses the crystal. 

Likewise the expression for the mean cross-sectional area is: 

2 
A=y1rr (10) 
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These results can now be incorporated into (7) giving: 

Pc - p 

p l ; l (11} 

Before ( 11) can be used, the factor (x/y) must be evaluated. 

If we consider a simple six branch crystal, four branches lying in 

one plane ~nd ihe other two perpendicular to it, an approximate 

value for (x/y} can be obtained. First, looking at a broad branch 

crystal, much like those found in this investigation, and using the 

following dimensions: branch width: 500µ; branch length: 1000µ; 

branch thickness: 50µ, x is found to have a value of . 003. 

As mentioned earlier, y varies depending on what cross 

section is taken. y will be near a minimum when the cross section 

is taken perpendicular to a branch such that the remaining branches 

are seen on edge. This is shown in Fig. 6a. Actually, y would be 

slightly less if the crystal was rotated 45 ° about the vertical. The 

maximum value will occur when the cross-section is again taken 

perpendicular to a branch but in such a manner that the remaining 

branches have their broad faces parallel to the cross-section as 

shown in Fig. 6b. The first condition gives a value of • 06 for y 

while the second gives • 56. Using these values to compute x/y 

gives . 05 in the first case and . 0053 in the second. Thus x/y will 

have a value somewhere in between . 05 and • 0053. Further calcu­

l ations show that as the branches become more slender, x/y in­

creases rapidly. 



19 

t r >--1000µ1 

50µ 

J 

Figure 6a. Cross section of spatial dendrite showing minimum y 

c500µ=i 
r ..... 

1000µ ... 

_l 
-~ 50µ 

' 
-

'-. ,J 

Figure 6b . Cross section of spatial dendrite showing maximum y 



20 

The problem now arises of what X-Re relationship to use. 

The author was unable to find any information on this relationship 

for objects similar in shape to spatial dendrites. As a first approxi­

mation. the relationship for stellars shown in Fig. 5 can be used. 

This approximation is probably quite realistic. If the spatial 

dendrite consists of six arms, it will have approximately the same 

surface area as a plane dendrite of similar branching. Thus the 

area over which frictional drag occurs would be essentially the same 

for both crystals. However, the cross-sectional area presented to 

the flow by the spatial dendrite would be less than that of the plane 

dendrite since all six arms of the spatial dendrite do not lie in the 

same plane. Thus the area over which pressure dr2g occurs is 

less for the spatial dendrite. At low Re:;nolds numbers the frictional 

drag is much greater than the pressure drag. As the Reynolds num­

ber increases. the pressure drag becomeE rnore significant in rela­

tion to the frictional drag and at a certain value of the Reynolds 

number• becomes the dominant factor. However• the value of the 

Reynolds number at which this occurs for objects shaped like spatial 

dendrites is not known. The fact that plane dendrites have higher 

drag coefficients than hexagonal plates indicates that the frictional 

drag is still the dominant factor for the range of Reynolds numbers 

covering these crystals. It is believed that this conclusion can be 

safely extended to spatial dendrites. Thus we can expect the drag 

force on both plane and spatial dendrites to be quite similar. 
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Using this approximation and allowing x/y to take on various 

values, we can compute the relationship between the terminal velocity 

and the measure of crystal size r. A different relationship exists 

for each value of x/y and several of these are plotted in Fig. 14. 

Columns and Needles 

Stringham (1965) found that columns fall with their longest 

or 'c' axis horizontal when the Reynolds number is between 10 and 

400. Ono (1969) found this also for the case of columnar ice crystals. 

Thus the cross-sectional area normal to the direction of motion is 

the length times the crystal width. The width is the diameter of 

a circumscribed circular cylinder which just encloses the crystal. 

The cross-sectional area can then be expressed as: 

A= 2RL (12) 

where R is the radius of the circumscribed cylinder and L is the 

crystal length. The volume is: 
l 

V = 3 [ 3 J2 R2 L 
2 

Substituting these into (7) gives: 

(13) 

(14) 

Equation .(14) shows the interesting result that X is dependent on the 

crystal radius and not directly on length. 
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Ono (1969) has found the relationship between length and 

diameter of a large number of columns. His results are shown in 

Fig. 7. We can see that columns reach a maximum diameter of 

about 90µ although the length may continue to increase. Thus two 

crystals of the same diameter may have quite different lengths and 

yet will have the same Best number. However, Jayaweera and 

Cottis (1969) have obtained the X-Re relationship for circular 

cylinders and report that at low values of X, the relationship is 

markedly dependent on the length/diameter ratio but becomes less 

dependent as X increases. Their results are shown in Fig. 8. 

Using this information they plotted curves of terminal fall velocity 

versus L/d ratio for cylinders of various diameter. These are 

shown in Fig. 9. 

The more recent study by Auer and Veal (1970) does not 

reveal the cutoff of crystal growth in the 'a' direction at 90µ. 

Rather their results showed a gradual increase in diameter as 

length increased. Both Auer and Veal and Ono obtained a large 

number of observations. Thus this question remains to be resolved. 

Needles are treated in the same manner as columns, being 

classified as columns with much g!'eater length than diameter by 

Jayaweera and Cottis (1969). However in the study by Auer and 

Veal (1970) it was found that the L/ d ratio of needles varied from 

about five for the shortest length crystals to approximately 40 for 

the maximum length crystals. At the same time the L/d ratio of 
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columns varied from 2 to 15. Thus such a simple definition as 

stated by Jayaweera and Cottis is not adequate. 

Capped Columns 

Ono (1969) has reported that capped columns fall with the 

column length oriented vertically. Thus the cross-sectional area, 

normal to the direction of motion, is the area of the basal plane of 

the plate capping the column. Letting R be the radius of a cylinder 

which circumscribes the column and R' be the radius of a thin disk 

which circumscribes the end plates, the expression for the crystal 

volume is: 

V= 

where L is the column length and h is the plate thickness. The 

cross-sectional area of the bottom plate is: 

Substituting into (7) gives: 

8 R 12 g 
X - ---=-- v2 

(15) 

(16) 

(1 7) 

Information on the X-Re relationship is not available for objects of 

this shape. However. by making certain assumptions it is possible 

to predict how the X-Re relationship will compare with those of 

other shapes. Due to the falling attitude of a capped column, the 

air will flow around the bottom plate. If the crystal falls with 
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sufficient speed, wake formation will occur, and if great enough no 

further contact between air and crystal will occur after the air passes 

from the edge of the bottom plate. If these conditions are met, the 

drag on the crystal will consist entirely of pressure drag on the basal 

face. The crystal will then be expected to behave like a thick plate 

with mass equal to that of the capped column. Of course, this con­

cept required many assumptions to be made. In addition, little is 

known on the relationship between R, R', L, and h. Because of this 

uncertainty, it seems rather pointless to attempt to compute the rela­

tionship between terminal velocity and various crystal dimensions. 

Graupel 

The approach used for computing the terminal velocity of 

spatial dendrites can be readily applied to graupel because of its 

irregular shape. Considering a sphere which just encloses the parti­

cle, a fraction x of the sphere's volume would be ice and the remain-

der air. In similar fashion, a cross section through the sphere 

would have a fraction y of its area ice and the remainder air. Again, 

as with spatial dendrites, the value of y would vary as the orientation 

of the cross-section changed. However, a mean value, y, would 

exist and this would be a constant for a given particle. Expressions 

for the volume and area are identical with equations (9) and (10) and 

when substituted into equation (7) give the result: 

X"3:~:g [Pcp-P] [~J (18) 
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which is identical with equation (11). Of course the factor x/y will 

be different for graupel, as well as the density p • 
C 

The greatest problem in treating graupel theoretically arises 

from the density, because of its wide variation. Nakaya reported an 

average value of. 125 g/cm
3 

while Braham (1964) found values near 

• 9 g/ cm 
3 

in summer cumulus. This variation in density would 

cause a large difference in fall velocities between the particles 

studied in the respective investigations. 
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EXPERIMENT 

The basic method used for determining the terminal veloc­

ties of ice crystals consisted of photographing a falling crystal using 

a strobe light for illumination. To do this, a means of controlling 

the position of crystals falling in front of the camera was necessary. 

Also required was a way in which the crystal could be illuminated by 

the strobe light while at the same time the camera could be shielded. 

Thirdly, a means of determining the distance that the crystal fell 

between strobe flashes was necessary. 

Instrumentation 

These requirements were met by constructing a 9 cm x 27 

cm x 15 cm "black box". At one end a 35 mm camera ~as mounted. 

Towards the other end, a vertical slit, open at the top and bottom, 

was made with glass plates. The box design is shown in Fig. 10. 

A 1 cm 
2 

grid was attached to the plate at the back of the slit to 

allow the distance determination discussed above. One side of the 

slit contained a glass window for illumination of falling crystals by 

the strobe light. The camera was focused in the middle of the 1. 5 cm 

wide slit and exposure times ranged fr~m ½ to 3 seconds depending 

on film speed and crystal source. Image clarity was quite good and 

in most cases natural crystals could be readily identified from the 

film. The result of this arrangement was a series of images of the 

same crystal falling in front of the grid. An example of this is 
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shown in Fig. 2. The distance between images was determined from 

the grid while the time between images was known fro_m the strobe 

light frequency. Thus only a simple calculation was necessary to 

find the fall velocity of the crystal. The box and camera were 

mounted on a stand and a plastic tube was placed above the slit to 

eliminate horizontal drafts. It was possible to close the bottom of 

the slit as well as the top of the tube when windy conditions required 

it. The physical arrangement of the apparatus is shown in Fig. 11. 

Procedure 

Two crystal sources were used and the procedure that was 

followed varied somewhat depending on source. Natural plane den­

drites were collected and stored in sealed plastic containers in a 

cold chamber for later use. To study them, the apparatus was set 

up in the cold chamber at a temperature of about -20° C. Wind condi­

tions were calm so the bottom of the slit was left open. To eliminate 

thermal effects, the apparatus was allowed to cool overnight before 

proceeding. The dendritic crystals were dropped one at a time and 

caught at the bottom of the slit on a glass slide. A photomicrograph 

was then made for later comparison of size with that determined 

-
from the photograph of the falling crystal. 

The other crystal types studied empirically were photographed 

as they fell in natural snowfall. This included spatial dendrites, 

capped columns, needles, needle bundles, and graupel. To 
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eliminate possible air motion within the chamber the slit bottom was 

kept closed. The tube top opening was also reduced in size. To en­

hance the possibility of photographing a crystal, a slow speed film 

and exposure time of :1 seconds were used under these conditions. 

/\ constant strobe light frequency of 6000 c. p. m. was used 

throughout the study. Thi::; produced several images of the fastest 

particles while ;it the same time it m;:iintained adequate separation of 

the images of the slower particles. It should be pointed out that one 

distinct advantage of the method employed in this study was that parti­

cle accelerations were recognizable from variations in separation of 

the crystal images. 

To check the repeatibility of the procedure, several dendritic 

crystals were dropped through the apparatus more than once. No 

difference in terminal velocity was detectable between each trial, 

thus increasing the author's confidence in the method. 
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RESULTS AND DISCUSSION 

Plane Dendrites 

Approximately 100 plane dendrites were photographed. All but 

41 of these either showed riming or hit the slit edge. The experi­

mentally determined values for these 41 are plotted in Fig. 12. While 

the observations show greater velocities than those of Nakaya as pre­

dicted by theory, agreement with the computed curve is rather poor. 

The fact that the experimental data is, in general, below the computed 

curve indicates that the actual dendrites had a higher drag coefficient 

than the stellar models used by Podzimek although it might be partly 

due to a difference in thickness since he does not provide this informa­

tion on his models. The disagreement between the slope of the com­

puted curve and the general slope of the author's data can perhaps be 

attributed to the CD-Re relationship reported by Podzimek. This 

relationship gives a curve of constant slope when plotted on log-log 

paper. However, the CD-Re relationship as found by various authors, 

for objects of other shape shows a significant change in slope as Re 

~ 3 varies up to Re -10 • The relationship for a thin circular disk which 

closely approximates a hexagonal plate in shape is shown in Fig. 5. 

To see what effect this has, a curve, parallel to the CD-Re 

curve for thin disks and tangent to Podzimek's curve, was drawn. 

From this a new X-Re curve was obtained and finally the resulting 

terminal fall velocity-diameter relationship was computed. This new 

relationship is the starred curve shown in Fig. 12. We see that 
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there is better agreement between the slope of the new computed 

curve and the slope of the experimental data. Of course the position 

of the new curve is of less significance since the choice of position 

of the CD-Re curve was arbitrary. 

Also shown in Fig. 12 is a fitted curve using the least­

squares method as well as Nakaya 's curve. The large difference be­

tween Nakaya's results and those obtained in this study are in part 

due to the difference in elevation between the two experimental sites 

but this would only amount to about 2 cm/ sec. Of more significance 

is the difference in crystal thickness found in the two studies. A few 

dendrites collected in this study were observed to determine their 

thickness and were found to agree quite well with Auer and Veal. 

However, as mentioned earlier, Nakaya reported that the average 

thickness of the dendrites which he studied was 11µ. The fact that 

Nakaya's curve shows a constant terminal fall velocity can probably 

be explained by 1) the fact that his data sample was small and 2) the 

size dependence is actually quite small for crystals larger than 

1600µ in diameter, the range in which Nakaya made his measure­

ments. It is also possible that the crystals had not reached terminal 

velocity when Nakaya began his timing, since they had fallen only 

20 cm at this time. His technique did not allow recognition of crystal 

accelerations such as was possible with the technique used in this 

study. 
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A few of the dendrites showed a small amount of riming as 

noted from the photomicrographs. These were excluded from the 

unrimed dendrites. However, due to the importance of accretion 

processes, a plot of their terminal velocities versus crystal dia­

meter was made as shown in Fig. 13. It is apparent that even though 

a large amount of scattering is present, in general the values are 

considerably higher than those found for unrimed dendrites. 

Theoretically the riming can be treated as an increase in 

crystal thickness equivalent to the total volume of the rimed droplets. 

This is a result of the rime occurring primarily on the basal face. 

Due to the variation in the amount of riming, one would expect a 

variation in terminal velocities, as observed. 

Spatial Dendrites 

The data obtained for 40 spatial dendrites are shown in Fig. 

14. We see that the crystals exhibit x/y ratios between • 03 and • 09 

with a tendency towards lower values as the crystal size increases. 

It is not known how this ratio varies with crystal size nor under 

different growth conditions. It appears that it does not remain con­

stant as the size increases, however this may be due to the shape of 

-
the CD-Re curve plotted from Podzimek's expression as discussed 

in the previous section. If the CD -Re curve showed the same change 

in slope as curves for other shapes, then the computed curves in 

Fig. 14 would exhibit a greater change in slope and would be closer 
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to the experimental data. An example of this has been computed 

and is shown in Fig. 14. Also shown are the findings of Nakaya and 

a curve which was fitted to the data. 

Needles 

Unfortunately only three falling needles were photographed 

in this study. As expected they fell with their 'c' axis horizontal. 

Their terminal fall velocities are plotted in Fig. 15 along with 

Nakaya's findings. The values appear to agree quite well with 

Nakaya if his curve is extended to larger sizes. Three needle bun­

dles were also photographed and these are included in Fig. 15. 

Capped Columns 

Several falling capped columns were photographed and their 

terminal fall velocity as a function of column length is shown in Fig. 

16. In addition several crystals consisting of more than one column, 

separated by plates in a stacked fashion, were photographed. An 

example of these is shown in Fig. 18. Their terminal fall velocities 

are shown in Fig. 1 7. 

As discussed in the theory section, if the crystal fell with 

sufficient speed to cause wake separation to occur, we would expect 

the crystal to behave as a thick plate of mass equal to that of the 

capped column. Such a crystal would, of course, have a greater 

terminal fall velocity than the plates in Fig. 12 and would also show 

dependence on the column length L through its effect on the crystal 
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Figure 18. Example of multiple capped column encountered in study. 
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mass. It is evident from Fig. 16 that the experimental data tends 

to be compatible with this concept. Included in Fig. 16 is a curve 

which has been fitted to the data of the individual crystals. 

A composite showing the fitted curves of the various crystal 

types is given in Fig. 1 . Also included are Nakaya 's curves for 

comparison. 
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SUMMARY 

In this study, an attempt has been made to explain the terminal 

velocity-crystal size relationship from a theoretical aerodynamical 

standpoint for several crystal types. A parallel study has been car­

ried out to measure the terminal velocities of ice crystals using a 

more refined technique than employed by Nakaya, and to establish 

values for the terminal velocities as a function of size for some of 

the crystal types not previously reported. 

Experimental results of the study show that all of the crystal 

types observed exhibit a functional relationship between terminal 

velocity and crystal size in the size range considered. This is con­

sistent with theoretical predictions developed in the study. Confi­

dence in the method used is high because of its demonstrated repeata­

bility and its improvements over the method used by Nakaya such as 

reduction of human error and the opportunity for recognizing particle 

acceleration. 

The specific results of this study may be summarized as 

follows: 

1. Theory predicts that the terminal velocity of plane den­

drites should be greater than reported by Nakaya and in 

addition should show a functional relationship with crystal 

size, both diameter and thickness. This has been con­

firmed by the observations. The importance of crystal 
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thickness in controlling the terminal velocity was one 

result of the theoretical treatment. This parameter has 

been largely ignored in previous studies. A curve was 

fitted to the experimental data ' using the least squares 

technique and gave the relationship between terminal 

0.217 
velocity and crystal diameter as: U = 37. 6 d • 

2. Hexagonal plates were treated in the same manner as 

plane dendrites and a terminal velocity-crystal size 

curve was developed for them. Because plates have 

lower drag coefficients than plane dendrites, they have 

higher terminal velocities. Thus the plate curve is dis­

placed towards higher velocities from the curve for plane 

dendrites. No natural plates were observed in the study 

for comparison with the theoretical treatment. 

3. The volume and cross sectional area of a spatial dendrite 

can be determined by considering a sphere which just 

encloses the crystal. A certain fraction, x, of the 

sphere's volume would be ice. Similarly, if the crystal 

arms are projected on a cross section through the sphere, 

a fraction, y, of the cross sectional area would be ice. 

Theoretical considerations showed that the ratio x/y was 

one of the controlling factors in predicting terminal velo­

cities. Observations showed in this study that natural 

crystals apparently do not maintain a constant x/y ratio 
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as they increase in size since the slope of the experi­

mental data does not parallel theoretical curves. A curve 

· 50 5 do. 38 
fitted to the data is described by: U = • 

4. It was found from theoretical considerations that the 

terminal velocity of columns is dependent on the crystal 

radius and not directly on length. Jayaweera and Cottis 

(1969), using a similar theoretical approach, computed 

the terminal velocities of columns as a function of diameter 

and length/ diameter ratio. Their results are included in 

this paper for comparison. 

5. Needles are treated along with columns because of their 

similarity. They are classified as columns with much 

greater length than diameter by Jayaweera and Cottis 

(1969). The va lue of the length/ diameter ratio at which 

the classification changes is not specified by them, how­

ever. Three natural needles were observed and their 

terminal velocity was plotted versus their length. Their 

terminal velocities could not be compared directly to the 

theoretical curves of Jayaweera and Cottis because the 

crystal diameters were greater than those included in 

their study. However, good agreement with Nakaya was 

found when his curve was extended to greater lengths. 

6. Theoretical considerations predict that a capped column 

should behave like a thick plate of mass equal to that of 



varies over the basin. C is the curve-fitting error introduced into the 

model parameters by a fitting process . The parameter values are 

perturbed from a global "best II set of values in order to minimize the 

fitting criterion, U, so that C is negative in sign. For use of the model 

in prediction, the curve fitting adds to the error, as indicated in table 2. 

The fitted error criteria of set A for all three stations are quite 

s imilar to those for set B, although set A rainfall values are not adjusted 

t o mean basin conditions. The bias in the recorded rainfall at each station 

was compensated for by the curve-fitting ability of the model to adjust 

parameter values. On th~ basis of these data, bias in amount of recorded 

r ainfall affects the resulting fitted parameter values rather than the 

accuracy of fit. As the result of a change in value of the fit criterion 

of less than 1 percent, the parameter values from station 338 have 

changed so much that the parameter values for set B have a maximum 

of L 36 for the ratio of highest to lowest value, the ratio for parameter 

~VC. For Set A five parameters had ratios greater than 1. 36, PSP, 

RGF, BMSM, EVC, and DRN. The fitted parameter value for station 338 

if; one of the extreme values for each of those parameters in both set 

/\ and set B. Thus, the errors seem to be transferred from the data to 

th e parameters, as is particularly evident for station 338. 

SD 



Input set C contains variability among the three inputs only in the 

time distribution of rainfall. The goodness of fit for this set ranged 

from 0. 100 for station 60 to 0. 152 for station 338. Converting the 

range of 0. 052 to an average percentage error for the peaks yields an 

es timate of about a 23 percent error in peak discharge reproduction 

introduced by time variability alone. Therefore for a basin with this 

degree of variation in rainfall patterns and the relative smoothing action 

introduced by the model and, hopefully, by the hydrology, an average 

t•r ror of as much as 20 percent for simulated flood peaks can be intro­

duced by the time distribution error alone. Considering only the two 

"be tter" or seemingly more representative gages, the difference in 

fitt e d U 1 values is,.. 0.017 which gives ·an average percentage error of 

13 percent introduced by time distribution error in a "good" record. 

In set C the most representative gage, judged in terms of goodness 

01· fit, was that closest to the center of the basin. The least represen-

t ntive was on the perimeter and at the highest elevation of the basin. 

The refore, relative representativeness was about as expected. 

Input set B contains both time distribution erros within a storm and 

to rm volume errors. The records have been adjusted to minimize only 

tit<' s tation bias in relation to basin mean annual rainfall. The results of 

·,,·t B runs indicate that station 44 7 probably is the most representative 

, t:i tion for predicting storm volumes, just as results of set C runs indicate 

111,t t s tation 60 probably is the most representative for time distribution of 

t d nfall within a storm. 

SI 



An estimate of the volume error component for station 60 should 

be about the sum of the differences between the values of the objective 

functions for the B and C runs for the two stations. Thus, volume 

errors can introduce as much as 0. 04 to Ui, which is on the order of 

20 percent errors. The compounding of the time distribution errors of 

station 4 77 and the storm volume errors of station 60 would give a U 1 of 

0. 057, which leads to a possible combined rainfall data error component 

on the order of a 24 percent standard error. 

Effect of Screened Data 

All data used in fitting was screened fo1· gross flyers or outliers. 

The fitted parameters will predict within the indicated range of accuracy 

lor other data which contain the same range of errors as in the screened 

cbta. The screened data used for fitting contain the usual range of errors 

normally encountered. However, grossly inadequate or unrepresentative 

cl.1t:1 will produce outliers well beyond the errors of the indicated prediction. 

If data are grossly in error, modeling results using that erroneous data 

llt1uld be expected to be in error also. 
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