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ABSTRACT

THE SIMULTANEOUS INFLUENCE OF THERMODYNAMICS AND AEROSOLS ON

DEEP CONVECTION AND LIGHTNING

The dissertation consists of a multi-scale investigation of the relative contributions of
thermodynamics and aerosols to the observed variability of deep convective clouds in the
Tropics. First, estimates of thermodynamic quantities and cloud-condensation nuclei (CCN) in
the environment are attributed to convective features (CFs) observed by the Tropical Rainfall
Measuring Mission (TRMM) satellite for eight years (2004-2011) betwe®®-36'N across all
longitudes. The collection of simultaneous observations was analyzed in order to assess the
relevance of thermodynamic and aerosol hypotheses for explaining the spatial and temporal
variability of the characteristics of deep convective clouds. Specifically, the impacts of
normalized convective available potential energy (NCAPE) and warm cloud depth (WCD) as
well as CCN concentrations (D > 40 nm) on total lightning density (TLD), average height of 30
dBZ echoes (AVGHT30), and vertical profiles of radar reflectivity (VPRR) within individual
CFs are the subject of initial curiosity.

The results show that TLD increased by up to 600% and AVGHT30 increased by up to 2-
3 km with increasing NCAPE and CCN for fixed WCD on the global scale. Thelpartia
sensitivity of TLD/AVGHT30 to NCAPE and CCN individually are found to be comparable in
magnitude, but each independent variable accounts for a fraction of the total range of variability
observed in the response (i.e., when the influences of NCAPE and CCN are considered

simultaneously). Both TLD and AVGHT30 vary inversely with WCD such that maxima of TLD



and AVGHTS30 are found for the combination of high NCAPE, high CCN, and shallower WCD.
The relationship between lightning and radar reflectivity is shown to vary as a function of CCN
for a fixed thermodynamic environment. Analysis of VPRRs shows that reflectivity in the mixed
phase region (altitudes where temperatures are betW€ean@d -40C) is up to 5.0-5.6 dB

greater for CFs in polluted environments compared to CFs in pristine environments (holding
thermodynamics fixed).

A statistical decomposition of the relative contributions of NCAPE, CCN, and WCD to
the variability of convective intensity proxies is undertaken. Simple linear models of
TLD/AVGHT30 based on the predictor set composed of NCAPE, CCN, and WCD account for
appreciable portions of the variability in convective intensii/<R.3-0.8) over the global
domain, continents, oceans, and select regions. Furthermore, the results from the statistical
analysis suggest that the simultaneous contributions from NCAPE, CCN, and WCD to the
variability of convective intensity are often comparable in magnitude. There was evidence for
similar relationships over even finer-scale regidd&lp° kn?)], but differences in the relative
prognostic ability and stability of individual regression parameters between regions/seasons were
apparent. These results highlight the need to investigate the connection between statistical
behavior and local meteorological variability within individual regions.

Following the global and regional analyses, data from Dynamics of the Madden-Julian
Oscillation (DYNAMO) field campaign (2011-2012; central equatorial Indian Ocean (ClO)) and
other sources was used to assess the relative impact of aerosols on deep convective clouds within
a fine-scale environment with spatially homogeneous thermodynamics and variable aerosols in a
pristine background over the CIO (CCN ~50-100%n average; NCAPE and WCD are

hypothesized to be approximately constant, spatially). The experiment was designed to compare



differences in the convective cloud population developing in more-polluted and pristine regions,
north and south of the equator, respectively. Analysis of the covariability of rainfall, cold cloud
frequency, CCN, NCAPE, and lightning/radar reflectivity in deep convective clouds over
multiple (> 20) episodes of the Madden-Julian Oscillation (MJO) leads to a hypothesis for a
potential bi-directional interaction between aerosols and convective clouds that develop in
association with the MJO. Close scrutiny of the results from climatology leads to the conclusion
that thermodynamics and aerosols both influence deep convective cloud behavior over the CIO
in a manner similar to that observed on the global scale, but the possibility that other factors are
required to reproduce the full range of variability of deep convective clouds on fine-scales is
acknowledged.

The research presented in this dissertation constitutes one of the first efforts to link the
documented variability of radar reflectivity and lightning within convective features observed by
the TRMM satellite to their environment using novel representations of thermodynamic and
aerosol quantities from reanalysis and a chemical transport model, respectively. The
independent variables studied here (i.e., NCAPE, CCN, and WCD) were chosen specifically to
address preeminent hypotheses in the literature and the results from this investigation suggest
that NCAPE, CCN, and WCD each contribute significantly to the variability of deep convective
clouds throughout the Tropics and Subtropics (and perhaps seasonally). Implications of the
findings from the current investigations and the relevance of these results to future studies are

discussed.
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CHAPTER 1

I ntroduction

From the jungles of Borneo, the Congo, and the Amazon, to the Sahel, to the lee side of
the Andes and Rocky Mountains, to the remote reaches of the western Pacific and central Indian
Ocean, the evolution from clear sky, to convective initiation, to the mature phase of deep
convection and intense cloud electrification occurs with varying frequency on the global scale
[Boccippio et al.2000;Christian et al, 2003;Zipser et al. 2006;Liu et al, 2012;Cecil et al,

2014]. To the common observer, strobe-like luminous discharges from a distant convective

tower over the jungle or transient pulses illuminating the anvils of distant cumulonimbi rooted
somewhere beyond the horizon warrant mere afterthoughts. For the atmospheric scientist, as he
or she observes deep convective clouds (and the minute subset of them that produce lightning), a
rapid flurry of curiosity surrounding cloud dimension, internal structure, morphology, and

lightning flash rate ensuedVhy are regional populations of deep convective clouds incongruous

in frequency, height, internal structure, and number? Why do some species of cumulonimbi
produce little rainfall and copious lightning while other cumulonimbi produce significant

rainfall and infrequent lightning? Furthermore, is the variable behavior of deep convection and
lightning on large-scales attributable to specific characteristics of the tropospheric environment

(e.g., conditional instability or the concentration of cloud nuclei)?

This dissertation revisits long-standing questions surrounding an explanation for the
observed variability of deep convection and lightning in the Tropics and Subtropics between
continents and oceans as well as in individual regions. Two hypotheses stand out in the literature

to explain land-ocean and regional contrasts in convective intensity, i.e., the thermodynamic



hypothesis and the aerosol hypothesis. Although a vast collection of literature relevant to
thermodynamic and aerosol influences on deep convection exisi/iltaens and Stanfill
2002;Williams et al, 2005;Rosenfeld et 312008; andrao et al, 2012], recent advances (within

the last two decades) in the atmospheric science community’s ability to observe and model

important aspects of the atmospheric system have revitalized the prospect of new understanding
on the subject. The stated objective of this reseatchdstermine the relative roles of
thermodynamics and aerosols as they contribute to the observed variability in deep convection

and lightning on global and regional scales

A prerequisite to this research is a basic physical understanding of deep convective
clouds, cloud electrification, and lightning. The launch of the TRMM satellite in 1997 initiated a
collection of passive microwave angtkand radar observations from°$go 36N latitude to
allow scientists to develop sidi~side semi-global climatology of tropical lightning and
precipitation. Subsequently, seminal analyses of individual precipitation features elucidated the
intricate joint-frequency behavior of radar quantities (and the inferred presence of liquid and ice
hydrometeors) and lightning [e.dNesbitt et al.2000;Cecil et al, 2005;Zipser et al, 2006; and
Liu et al, 2008], thereby leading to an important link between theory for thunderstorm
electrification [e.g.Takahashi1978 and many others] and global-scale observations.

Gradually, researchers studying the TRMM climatology began to note systematic discrepancies
in radar-lightning correspondence [egetersen and Rutledg2001;Liu et al, 2012] and

general feature characteristics between continents and oceans, confirming earlier speculation
about inherent phenomenological differences between convective clouds developing over

continents and oceans, respectively.



The establishment of archetypes foontinental” and “maritime” convective clouds
dates back to the middle part of the twentieth century @uemreg1958] noted distinct
differences in cloud droplet spectra within warm convective clouds (i.e., growing cumulus
clouds lacking ice with cloud tops below the local height of #i2iSotherm) between maritime
(oceanic) and continental locales. A strong inverse relationship between droplet number
concentration and median diameter was found for “continental”, “transitional”, and “maritime”
popuhbtions of cumuli, with “continental” (“maritime”) cumuli exhibiting relatively small (large)
median diameter and high (low) droplet number concentratimsifes 1958]. From the
middle part of the twentieth century until the present, scientists have used data from various field
campaigns throughout tropical and middle latitudes, e.g., the Thunderstorm [Bygrstdnd
Braham 1948], Global Atmospheric Research Prograftlantic Tropical Experiment [GATE;
Houze and Betfd981], Tropical Ocean-Global Atmosphere-Coupled Ocean-Atmosphere
Response Experiment [TOGA-COARRVebster and Lukad992], and Dynamics of the
Madden-Julian Oscillation field campaign [DYNAM®pneyama et g12013], to develop a
more rigorous separation for continental and maritime convective clouds (with and without
lightning) globally. For example, investigations Byers and Brahar{iL948],LeMone and
Zipser[1980], Zipser and LeMon§1980], Jorgensen and LeMorj&989], Szoke et a[1986],
andZipser and Lut21994] were among the earliest to document distinct differences in
characteristic core widths, vertical motions, and reflectivity structures between convective clouds

in continental and maritime environments.

Following previous hypotheses, land-ocean or regional contrasts in convective vigor and
lightning are presumably related to the local availability of condensation nuclei, though it is

possible that the thermodynamic characteristics of the environment differ between regimes



simultaneouslyTao et al, 2012;Altaratz et al, 2014]; such postulation is a microcosm for the
main factors inhibiting understanding in studies that attempt to determine relationships between

convective intensity and thermodynamics or aerosols individually.

The simplest approach to address the outstanding uncertainty surrounding
thermodynamic/aerosol influences on deep convection is to evaluate “singular” hypotheses that
argue for convective cloud variability being governed by thermodynamigsrosols (of course
there is the relevant null hypothesis that other environmental factors account for the variability of
convective clouds). A considerable amount of previous research has demonstrated correlation
between global attributes of deep convection, such as cloud top height/pressure, cloud fraction,
precipitation rate/amount, and aerosol (cloud condensation nuclei, CCN) concentrations in the
environment [e.g.Rosenfeld et 811999;Sherwood et al2006;Koren et al, 2012; and many
more]; however, many of the aforementioned studies cite uncertainty surrounding the
covariability of thermodynamic metrics, such that the true magnitude of the aerosol influence

remains unknown.

Research investigating the relative influence of aerosols on deep convection while
controlling for environmental thermodynamics either by limiting the investigation region [e.g.,
May et al, 2009,2011Altaratz et al, 2010;Yuan et al.2011;Storer et al. 2014], instituting
simultaneous observational strategies [@/dliams et al, 2002;Koren et al, 2010,2012Wall et
al., 2014], or explicitly accounting for multiple independent variables in controlled cloud model
experiments [e.gStorer et al. 2010;van den Heever et aR011;Storer and van den Heever
2013;Li et al, 2013] are less common; results from these studies are in some cases apparently
contradictory. For examplégj et al, [2013] andSheffield et al[2015] contend that aerosols are

responsible for the transition from shallow convective to congestus (or deep convective) modes,



especially in pristine-background environments, such as over remote reaches of the West Pacific
Warm Pool and areas of the Atlantic Oce&torer et al, [2010] found approximately

comparable increases in ice water path (~30-50%) in simulations of deep convective clouds for a
575% increase in CAPE (holding aerosols constant) and 400% increase in CCN (holding
thermodynamics constant). Based on the finding3tarfer et al[2010] and theory for

thunderstorm charging [e.gsaunders1993], it is reasonable to expect comparable responses in
lightning frequency with respect to CAPE and CCN. In contrast, in a study over the Amazon,
Williams et al.[2002] observed negligible changes in lightning/radar reflectivity in the pre-
monsoon period (decidedly continental conditions with high CAPE and relatively high cloud

base height) a8CN trended from 3000 ctto ~500 cr between October and November

1999. Williams et al.[2002] concluded that their results..[cast] doubt on a primary role for

the aerosol in enhancing the electrification,” and go on to cite appreciable correlations between

CAPE and CCN for their time period of interest over the Amazon, thus highlighting further
ambiguity in their results surrounding the relative influence of thermodynamics and aerosols on

deep convection.

Attempts to separate the simultaneous influence of aerosols on rainfall and convective
cloud characteristics from background thermodynamics using observations on the global scale
and in individual regions for continental and maritime populations of deep convective clouds are
less numerous [e.goren et al, 2012]. Koren et al.[2012] matched rainfall observations from
the TRMM satellite to aerosol optical depth measurements and reanalysis using a simple grid-
based attribution scheme; strong increases in rain rate with increasing mid-level vertical velocity
(a synoptic-scale proxy for thermodynamic instability) were noted and for a given

thermodynamic environment, rainfall increased monotonically with increasing aerosol optical



depth, indicating simultaneous dependence in their sample. In a regional study of deep
convective clouds over the tropical Atlantic Ocdéaren et al.[2010] argued that small

variations in the slopes of the relationships between cloud properties (e.g., cloud top pressure and
cloud fraction) and aerosol quantities in different thermodynamic environments indicated near-

independent forcing by aerosols and thermodynamics, respectively.

Hence, results from global and regional studies suggest that both thermodynamics and
aerosols are important contributors to the observed variability of deep convective clouds on the
large-scale, but the relative importance of each forcing mechanism, as they may contribute to
lightning and radar reflectivity variability, has yet to be systematically quantified using global
observations that are currently available. These investigations will use global satellite
observations, reanalysis, and output from a global chemical transport model, to investigate the
variability of lightning and deep convection in order to test a simultaneous interpretation of the
thermodynamic and aerosol hypotheses (a rdetgled treatment of the “simultaneous”
hypothesis follows in Sec. 2.1). As it will be shown, new understanding surrounding the
variability of deep convective clouds and lightning may be gleaned by studying the variability of
convective intensity proxies on multiple scales, while ensuring that the diversity of the
observations spans as many combinations of environmental factors as possible; results from the
analyses are presented in Chs. 2-4. The results are subsequently synthesized and contextualized
within the scope of the relevant literature prior to a summary of research and conclusions in Ch.
5. Chapter 2 of this dissertation was published in the Journal of Geophysical Research
Atmospheres on 3 June 2015 (Sec. 2.5 constitutes a statistical investigation of the regional
variations in the relationships between convective intensity proxies and environmental factors;

the results from the statistical assessment have been amended to Ch. 2 and a separate manuscript



is in preparation). Chs. 3-4 have been combined into a separate manuscript for submission in the

Journal of the Atmospheric Sciences.



CHAPTER 2

Global and regional perspectives— The response of deegp convection and lightning to
ther modynamics and aer osols

2.1 Background

Over the past several decades, satellite observations have proven to be indispensable for
characterizing convective clouds in the Tropics and Subtropics. Climatologies derived from the
burgeoning data record have identified several important findings surrounding the phenomenon
of deep convection. One prominent result is that lightning-producing convective features
(LPCFs) occur predominantly over continental regions in the Tropics, whereas the majority of
precipitating features occur over tropical oce@nvjlle and Hendersonl986;Mackerras et al.
1998;Boccippio et al.2000, 2005Christian et al, 2003;Cecil et al, 2005]. Boccippio et al.

[2000] refined the understanding when they conducted an individual convective feature-based
analysis across the Tropics and concluded that total lightning rates in continental thunderstorms
are a factor of 2-3 larger compared to oceanic thunderstorms.

Regional analyses employing satellite instruments and ground-based radars have
documented distinct differences in vertical precipitation structure throughout the Tropics
associated primarily with intraseasonal variabilBgzpke et al.1986;Williams et al, 1992;

Rutledge et a].1992;Zipser and Lutz1994;Petersen et al.1996;DeMott and Rutledgel 998;
Rosenfeld and Lensk{998 Petersen and Rutledg2001;Cifelli et al,, 2002,Williams et al,
2002;Petersen et al2006]. Petersen and Rutledg2001] found a continuum of vertical

reflectivity distributions corresponding to remote oceanic, coastal, and continental convection. A
key finding was the higher frequency-of-occurrence of 30 dBZ radar echoes at temperatures
colder than -1€C (greater than ~6 km MSL) in tropical continental convection (compared to

8



tropical oceanic convection). The relative frequency of 30 dBZ echoes at these heights was
considerably less over coastal and (especially) over remote oceanic regions.

In turn, these disparities in vertical precipitation structure have been related to
appreciable differences in lightning. On average, deep convection that produces significant
amounts of lightning is frequently the most vertically developed from the radar perspBygtve |
et al, 1989;Rutledge et a].1992;Williams et al, 1992;Zipser, 1994;Petersen et al.1996;

Carey and Rutledge000;Neshitt et al.2000;Cecil et al, 2005;Zipser et al. 2006;Liu et al,
2012;Stolz et al.2014], whereas reduced lightning activity in deep convection is often
associated with reduced reflectivities above the freezing level. Such close correspondence
between lightning and radar characteristics is substantiated by both theoretical and laboratory
studies which support the non-inductive mechanism (charge separation that occurs during
collisions between ice particles in the presence of supercooled liquid within a cloud’s mixed

phase region, i.e., in the temperature range frétnt0 -40C). It is generally accepted that this
mechanism is the most plausible explanation for lightning initiatR®yfpolds et al.1957;
Takahashi1978;Baker et al. 1987;Saunders1993;Baker and Dash1994]. Indeed, global
distributions of ice-water path observed using satellites exhibit strong correlations with lightning
and radar echo top climatologydtersen and Rutledg2001;Petersen et al2005].

Thus, a multitude of observations clearly illustrate fundamental differences in the make-
up and electrical behavior of deep convection between tropical continental and oceanic regions.
We are then left to question the underlying driver(s) of the observed variability in lightning and
convective intensity. There are two hypotheses in the literatilve thermal hypothesis and the

aerosol hypothesisthat attempt to explain the aforementioned variability.



The thermal hypothesis holds that the variability in lightning and convective intensity
over continental and oceanic regions in the Tropics can be explained by differences in
thermodynamic instabilityRutledge et al.1992;Williams et al, 1992, 2002Williams and
Stanfill, 2002;Williams and Satori2004]. One major caveat to the thermal hypothesis has been
demonstrated in a number of analyses: the average convective available potential energy
(CAPE), which represents the column-integrated energy available to accelerate parcels vertically,
is approximately the same over continents and ocpafiiBams and Renndl993;Lucas et al.
1994a,bHalverson et al.2002;Williams and Stanfi|l2002]. Williams and Stanfil[2002]
argue that tropical land surfaces, with their relatively low heat capacity and high Bowen ratio,
respond strongly to solar radiation and excite larger, more buoyant (energetic) parcels which
ascend through a deep boundary layer and therefore are less susceptible to dilution via
entrainment. Parcels in oceanic regimes have reduced thermal buoyancy in the lower and middle
troposphere and may undergo more significant entrainment as a direct consequence of smaller
parcel widths, resulting from ascent through a shallower boundary layer. The differences would
suggest mixed-phase microphysics and non-inductive charging are both more robust in
continental convection compared to oceanic convection, as wider updrafts contribute to a more
efficient conversion of CAPE to updraft kinetic energy [&/dlliams et al, 2005]. Williams et
al. [2005] found that flash rates increased with increasing cloud base height for a sample of
tropical convective clouds (i.e., assuming that updraft width is proportional to cloud base height).

Citing results of both observation- and model-based studies, advocates of the aerosol
hypothesis argue that the number of cloud condensation nuclei (CCN) in the environment of
convective clouds significantly influences their microphysical and vertical development

[Rosenfeld and Lensky998;Rosenfeld1999;Ramanathan2001;Andreae et a).2004;Graf,
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2004;Khain et al, 2005; Lohmann and Feichte2005;Sherwood et al2006;van den Heever
et al, 2006;Hudson and Mishra2007;van den Heever and CottoP0O07;Andreae and
Rosenfeld2008;Bell et al, 2008;Lee et al. 2008;Rosenfeld et al2008 hereafter RO&oren et
al.,2010, 2012l et al,, 2011;May et al, 2011;Yuan et al.2011, 2012Heiblum et al. 2012;
Niu and Lj 2012;Fan et al, 2013;Li et al, 2013;Lebo and Morrison2014;Storer et al. 2014;
Wall et al, 2014]. In their theoretical work, RO8 provided a conceptual description of so-called
aerosol-induced convective invigoration which has since been cited in many studies on the
subject. Following their model, in convective clouds that develop in an environment with high
aerosol concentrations (> 500 CCN-8nprecipitation formation by the collision-coalescence
mechanism is hindered relative to clouds drawing on lower CCN concentrations. Substantial
cloud water is then transported above the freezing level which upon freezing releases latent heat
contributing to increased thermal buoyancy, stronger vertical motions, and greater charge
separation. Note that R08 also emphasize the importance of offloading condensate in order for
the maximum invigoration effect to be realized in and above the mixed-phase region (see Fig. 3
of that study). In more pristine environments (< 100 CCN)¢reollision/coalescence becomes
very efficient which leads to rapid generation of precipitation, thereby reducing supercooled
water contents in the mixed-phase region. This may explain the relatively low occurrence of
lightning over remote oceanic reg&n

We hypothesize that warm cloud depth (WCD), defined as the vertical distance between
the lifted-condensation level (LCL) and the freezing level, could simultaneously influence the
growth of cloud droplets by determining the duration of ascent througluds warm phase
and the subsequent development of precipitation by condensation or collision/coalescence [e.g.,

Carey and Buffalp2007;Albrecht et al. 2011] in combination with aerosol indirect effects.
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Takahash{1978] communicated the importance of liquid water content for the charge separation
process. For deep WCD, a relatively long trajectory through the cloud’s warm phase implies that
the probability of precipitation formation increases as autoconversion proceeds; therefore, cloud
liquid may be lost prior to its arrival in the mixed-phase region where charge separation may
decrease subsequently. Conversely, for shallower WCD, the likelihood that more cloud liquid
reaches the mixed-phase increases for a fixed updraft and aerosol concentration. Lastly, for very
shallow WCD (most applicable outside the Tropics), the duration of ascent through a cloud’s
warm phase is shortest for a fixed updraft velocity. In this case, the time period during which
aerosols may be able to impact collision/coalescence is short and as a result there may be little if
any sensitivity to aerosol concentration [elget al., 2011].

These ideas are supported by a number of model-based analyses of the impacts of
aerosols on convective clouds in environments where WCD ranges from shallow té-deegt.
al., [2007] found that the influence of aerosols on the microphysical development of deep
convective clouds was negligible when surface dew-point temperature depressions were large
(i.e., dry boundary layers with resulting shallower WCD). In 3-D simulations of convective
clouds in the deep Tropics (where WCD is de¥ygng[2005] found increasing precipitation as
the initial CCN concentration was varied from 50%tm more than 5000 cfy but decreases in
precipitation efficiency were not observed even under heavily polluted conditions. In contrast,
2-D simulations of isolated convection in environments with intermediate WCD (WCD ~ 2 km)
depicted increases in max updraft velocity -8 Bn s! and enhanced lightning as aerosol
concentrations were increased from 50%am> 500 cr? [Mansell and Ziegler2013].

Results from regional and cloud-resolving model studies that investigate the robustness

of aerosol effects in varied thermodynamic environments throughout the Tropics and Subtropics
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depict nontrivial modifications to a cloud’s hydrometeor population and subsequent dynamics
[Khain et al, 2005, 2012yan den Heever et aR006;van den Heever and Cotto2007 Lee et
al., 2008;Fan et al, 2013 Storer and van den Heev&013;Venevsky2014. These results
generally show enhanced pristine ice, as well as increases in graupel and hail at the expense of
rain and drizzle in the cloud’s warm phase when aerosol concentrations exceed ~100-400 cm?®
[e.g.,Storer and van den Heev&013]. Collectively, these studies strengthen the case for
aerosol effects on deep convection and lightning, but considerable uncertainty remains [e.g.,
Stevens and Feingql@009;van den Heever et aR011;Lee 2012;Wall et al, 2014]. For
example, differences in precipitation/updraft intensity within an individual cloud with respect to
changes in aerosol concentrations may be buffered $#ayens and Feingql@009] or
overwhelmed by the compensating circulations in the ensemble of deep convective clouds across
a wider domain [e.gLee 2012].

In their recent global analysis of the impacts of aerosol indirect effects on convective
clouds,Wall et al.[2014] concluded, “...the true magnitude of the aerosol indirect effect [on
deep convection] remains elusive on the global scale”. They demonstrated regional sensitivity of
deep convective clouds to aerosol load in the atmospheric column while accounting for
meteorological factors, but their uncertainty may be the result of their choice to use column-
integrated aerosol quantities estimated from satelliésll et al.were diligent in addressing the
limitations of their chosen satellite aerosol data [&§rnai et al, 2013], but other investigators
have found aerosol number concentrations to be more illustrative in studies of aerosol-
convection interactions [e.ddudson and Mishra2007;Koren et al, 2010].

We recognize that there may be a mutual-dependence between aerosols and

thermodynamics that leads to stronger convection. Following R08, aerosols may influence how
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much of the thermodynamic potential energy (i.e., CAPE) is realized by a parcel within a mature
deep convective cloud. They argue that a shift from invigorated to suppressed convection should
occur as a function of aerosol concentrations (as was exemplifieliaogitz et al., 2010 over

the Amazon). According to R08, the optimum aerosol load is that which balances the effects of
modifying hydrometeor size distributions and subsequent differences in latent heating against
water loading within rising parcels. From another point of view, the environmental
thermodynamics dictate whether or not aerosol indirect effects on deep convection will be
significant [e.g.Morrison and Grabowski2013]. In the absence of large-scale forcing (i.e.,

within baroclinic zones or due to topography), conditional instability in the thermodynamic
environment is necessary to accelerate parcels with variable aerosol concentrations to their
respective LCLs and potentially to sub-freezing temperatures in order for any microphysical
response to aerosols to be observed.

This study addresses the question of how aerosols impact characteristics of deep
convective clouds and attendant lightning production in the Tropics (over continents and
oceans). Based on the above reasoning, we will consider the impacts of aerosols within the
context of thermodynamic instability and WCD. Hence, we investigate the hypothesis that
aerosols modulate the amount of available potential energy realized throughout the lifecycle of a
convective cloud and this interaction is sensitive to WCD. We utilize reanalysis and the GEOS-
Chem transport model to estimate relevant thermodynamic and boundary layer aerosol number
concentrations globally in lieu of satellite methods for retrieving environmental thermodynamic
and aerosol characteristics. By this method, we assure a large, representative sample of deep
convective clouds in the Tropics. Additionally, we contribute new insight about the

simultaneous importance of WCD.
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2.2 Data and Methodology

This study employs data from the Tropical Rainfall Measuring Mission (TRMM), which
in itself represents the most spatially and temporally comprehensival-gtathe data set
consisting of simultaneous high-resolution lightning and radar observations (TRMM PR and LIS
observations span all longitudes betwee\386°S and 38N-38°S, respectively). The TRMM
Convective Feature (CF) database (available, http://trmm.chpc.utah.edu) is comprised of
individual groups of contiguous convective pixels observed by the TRMM precipitation radar
(PR) that are determined by version 7 of the 2A23 ‘raintype’ PR algorithm. A number of
relevant radar and lightning characteristics are defined for each CF (e.g., maximum height of
reflectivity echo tops, total lightning flash count, estimated time within the satellite’s field-of-
view, number of PR pixels within the CF). The TRMM Lightning Imaging Sensor (LIS) detects
total lightning, i.e., contributions from intracloud and cldaezround lightning sources, but is
unable to distinguish between the two types of lightning. An eight-year temporal subset (2004-
2011) of the full CF database (1998-2014) was chosen to maximize overlap with the available
global GFED3 biomass burning inventosah der Werf et al2010] for the development of the
aerosol data component, which will be described next.

A novel aspect of this research is its reliance on a global chemical transport model,
GEOS-Chem (www.geos-chem.org) with the online aerosol microphysics module TOMAS
[Adams and Seinfel@002;Pierce and Adam<2009;D 'Andrea et al., 2013 ,Pierce et al. 2013],
to provide estimates of lower tropospheric aerosol number concentrations on the global scale.
GEOS-Chem-TOMAS simulates the particle size distribution from 3 nm - 10 pum in 15 size bins,
and it tracks sulfate, sea-salt, organics, black carbon and dust aerosol species within these size

sections. In this analysis, the GEOS-Chem-TOMAS aerosol fields are used to provide the
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simulated number concentration of aerosols with diameters larger than 40 nm (D > 0.04 pm).
This concentration is referred to as N40. Thus, this study does not account for differences in
aerosol composition because integrated number above cutoff diameters (as well as variability in
maximum supersaturations) accounts for most of the variability in cloud droplet number
concentrationsusek et al.2006]. It is expected that variability with respect to different
aerosol species (e.g. giant CCN from sea-spray, black carbon, and dust) could affect the results
and these sensitivities should be explored in future work.

In an analysis of particulate matter present within a variety of continental and marine
airmassed)usek et al[2006] found that the CCN efficiency (i.e., the ratio of CCN to cloud
nuclei) of aerosols with diameters larger than 40 nm was strongly sensitive to the level of
supersaturation within cloudy parcels. For low supersaturations (< 1%), N40 was shown to
overestimate CCN concentrations, while for supersaturations a few tenths of a percent higher
than 1%, the CCN efficiency of N40 rapidly increased up to values exceeding 0.8. Both
observations and two-dimensional cloud scale simulations of growing congestus and
cumulonimbus clouds in the Tropics show that supersaturations at various heights above cloud
base range from a few tenths of a percent up to 3% or dbeer et al, 2012; 2013]. This
study focuses on deep convective clouds with strong updrafts that are capable of producing high
supersaturations immediately above cloud base. Therefore, N40 should be an appropriate proxy
for CCN in the context of this investigation; note that several aspects of this analysis were also
conducted using N80 data from the GEOS-Chem model runs and the results were approximately
unchanged (the correlation between N40 and N8O in our data sample was high, r > 0.93).

The simulations were run globally at a horizontal resolution of 2.5 degrees longitude by 2

degrees latitude (roughly 270 km by 220 km at the equator) for 47 vertical levels between
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approximately 1000-0.01 hPa. In our analysis we use output between the 1000-850 hPa levels
(10 layers). Output was provided every 6 hours during the time period of interest over the
domain spanning all longitudes and between the latitud&s-38B°N (corresponding to the

latitudinal extent of coverage for the TRMM LIS instrument). The spatial and temporal
autocorrelation of aerosol quantities has been shown to be near 0.8 for time and space scales of
200 km and 10 hours respectively in global observatidngdé¢rson et al.2003]. Therefore, the

model resolution should adequately capture aerosol variability on the scales of interest for the
current study.

The choice to use a chemical transport model arose from the documented uncertainties
surrounding global satellite aerosol retrievals. The method requires observations as close as
possible to deep convective clouds, but the probability of contamination for passive retrievals of
aerosol characteristics by a satellite increases with decreasing distance to clougisrgnget
al.,, 2010]. Additionally, passive imagers flying onboard satellites suffer from the inability to
discern where in the atmospheric column the radiation reflected by aerosols originates and have
difficulty differentiating aerosols from clouds, especially over land surfaces and near optically
thick clouds where 3-D radiative effects are significs#rhai and Marshak2009;Varnai et
al., 2013].

Errors in GEOS-Chem simulated aerosol fields may impact the aerosol-cloud
relationships determined in this analysis. If errors in aerosol variability are independent of
cloud/lightning variability (e.g., random noise in the predicted aerosol fields as opposed to
systematic bias), then the errors will contribute to reduced sensitivity in the trends of convective
cloud characteristics versus aerosol concentrations. Therefore, it is argued that the results should

represent a lower bound for quantifying the influence of aerosols on the microphysical
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development of deep convective clouds and lightning production. In an independent assessment
of the performance of the GEOS-Chem model [&34ndrea et al., 2013], a comparison of

predicted and observed aerosol concentrations at 21 ground sites throughout North America and
Europe illustrated that the log-mean bias of predicted N40 in GEOS-Chem was less than ~|0.067|
(a factor of ~1.17) for all sensitivity experiments conducted.

The CF database incorporates thermodynamic information from the Interim Reanalysis
(ERAI) developed by the European Center for Medium Range Weather Forecasts (ECMWF)
[Dee et al.2011]. For each CF, ten levels of meteorological variables (Independent sensitivity
analysis illustrated that the global probability distribution of CAPE computed using all thirty-
seven levels of available reanalysis data is more accurately reproduced using just sixteen levels
of thermodynamic data (1000, 975, 950, 925, 900, 850, 800, 750, 700, 600, 500, 400, 300, 250,
200, 100 hPa) as opposed to the original ten levels. In the interest of computational efficiency,
the aforementioned sixteen levels of data were chosen’ai@izontal resolution for this
analysis and are provided from the nearest neighboring reanalysis grid point. These variables are
linearly interpolated to the time of the TRMM overpass and are used to compute thermodynamic
variables of interest. Global aerosol climatology and satellite observations of aerosols have been
integratediito the ECMWE’s data assimilation plan [Morcrette et al. 2009;Benedetti et a).

2009] and are accounted for in the radiative transfer scheme within the Dededtal. 2011].

The methods for computing aerosol and thermodynamic quantities and attributing them to
individual CFs will now be described in more detail. For each CF between the years 2004 and
2011 (inclusive), we computed a vector-average of the horizontal wind components from ERAI

reanalysis between 1000 hPa and 850 hPa. We then defiagdtamy “inflow” swath by a 90°

sector centered on the computed direction (0}36@h a direction of 36Ddenoting north).
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Next the direction to all aerosol grid points relative to the geographic coordinates of each CF was
calculated and the grid points within the upstream swath sector at a distance of less than 350 km
were identified. After linearly interpolating the aerosol data to the time of the TRMM overpass,
boundary-layer average (~1000-850 hPa) CCN concentrations (N40) were computed at the
identified grid points and averaged. The average of boundary layer N40 in the upstream swath
was then assigned to individual CFs.

ERAI profiles of temperature and moisture at the nearest reanalysis grid point within the
upstream swath were used to calculate mixed-layer (lowest 50 hPa) pseudoadiabatic CAPE. The
difference between the geopotential heights of the approximate levels of free convection and
neutral buoyancy within each reanalysis sounding were found; this quantity represents the depth
over which he idealized parcel’s perturbation temperature was positive. Normalized CAPE
(NCAPE) was determined for each CF by dividing the mixed-layer pseudoadiabatic CAPE by
the depth of the positive area in the soundBlgrichard 1998]. Following earlier studies [e.qg.,
Lucas et al.1994b], the NCAPE represents the amount of thermodynamic instability in the
environment but takes the “shape-of-the<CAPE” into account via the normalization factor. For
example, NCAPE = 0.1 J Kgn' could be representative of CAPE = 1000 3 &igtributed over
a depth of 10 km (as is common in the Tropics). Comparison of CAPE and NCAPE across the
global domain for the eight-year period illustrated a generally high correlation, but greater spread
in the distribution was noted for generally high values of both metrics.

The derivations of CAPE and NCAPE incorporate a number assumptions that have been
the subject of debate in the community, e.g., a critical assumption of no mixing between the
parcel and the environment. In fact, parcels do entrain a significant amount of ambient air [e.g.,

Romps and Kuan@010;McGee and van den Heey@014] throughout the course of ascent
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(especially true over tropical oceans where thermal/plume widths are relatively small) and
subsequent mixing processes serve to homogenize thermal and moisture perturbations within
parcels. Furthermore, there are known moisture biases within the reanalysis product used in this
analysis [e.g.Yesperinj 2002] that would lead to increasing uncertainty in our calculations. We
acknowledge these shortcomings of the chosen data and emphasize that these metrics for thermal
instability (CAPE and NCAPE) are only estimates of the potential intensity of deep convection
based on the available data. That being said, these datasets are considered the best available to
work with in large scale analyses.

This study emphasizes the role of NCAPE as an estimator for the potential intensity of
deep convection. Itis possible that NCAPE can be ambiguous in this context because similar
values may be found for different thermodynamic environments. For example, the NCAPE
computed for a sounding with a shallow layer of positive area with a relatively small value of
CAPE may be comparable to the NCAPE in a sounding with a deep layer of positive area and
large CAPE. In each case, convection that develops is likely to be very different. When we
looked at the distribution of the depth of positive area in each sounding in our data subset, we
found a sharp peak in frequency near a depth of 10 km (depths < 4 km accounted for roughly just
5% of our sample) in line with unstable conditions observed in the tropical atmosphere. The fact
that the majority of soundings with NCAPE > 0 J*kg™ in our sample exhibited deep layers of
positive parcel buoyancy increased our confidence in using NCAPE as metric for
thermodynamic instability in the investigation.

The LCL was approximated by taking the difference between a parcel’s surface
temperature and dew-point temperature, and then multiplying by a constant, ¢=0.12[&m.K

Iribarne and Godson1981]. Next, the local height of the@isotherm was estimated by linear
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interpolation from the nearest neighbor in the ERAI vertical temperature profile. The
approximations for the LCL and the local freezing height were found to agree generally well
with observations from the global upper-air network. We then calculated the WCD for each CF
by finding the vertical distance between the approximate LCL and the freezing level.

The mean vertical profile of radar reflectivity (VPRR) was computed for each CF by
cross-referencing the version 7 2A25 attenuation-corrected reflectivity pigfilehj et al,
2000]. The geographic centroid of each CF was noted and the rozemesttivepixel
(according to the version 7 2A23 raintype algorithm) was identified as the reference position (ray
and scan indices) within the orbital 2A25 data array. Next, “SEARCH2D” software from the

Interactive Data Language/nvw.exelisvis.corpwas used to index array positiadhat had both

convective precipitation and a continuous path of connectivity to the reference position. The

angle between the local zenith and the slant path of the radar beam was then used to calculate the
height of radar returns in each VPRR using basic trigopnometry. The mean VPRR for individual
CFs was then computed by taking the mean of the linear reflectivity at indexed array positions

(in the horizontal dimensions) at all 80 heights assuming a 250 m interval in the vertical. To
mitigate the effects of near-surface ground clutter, we restricted the VPRR to all PR returns

above 1.5 km altitude (approximately less than PR range bin 73).

Importantly, the average height of 30 dBZ echoes (AVGHT30) is defined to be the peak
altitude in themeanVPRR where the reflectivity was between 30.0-39.9 dBZ (inclusive). Note,
however, that the definition of AVGHT30 differs from the maximum height of 30 dBZ echoes
(MAXHT30) in the original CF database since the latter refers teitige maximum altitude
within a CF where the reflectivity is greater than or equal to 30 dBZ. AVGHT30 takes the area-

average behavior of the 30 dBZ echo top height surface into account, whereas MAXHT30
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indicates the behavior of the peak(s) of the 30 dBZ echo top height surface (i.e., the single
strongest convective pixel/core resolvable with TRMM PR). Lastly, the elevation of the surface
(i.e., the ‘elev’ parameter in the CF dataset) has been subtracted, such that AVGHT30 is

representative of height relative to the ground surface. By definition, the grouped TRMM PR
pixels that constitute a CF contain shallow and deep convective pixels and we adhere to this
standard definition in the current study (as opposed to excluding shallow convective pixels
within each CF/LPCF). Therefore, in the computation of mean VPRR and AVGHT30, the
presence of shallow convective pixels within the larger CF would tend to offset the contributions
from deep convective pixels and possibly weight the 30 dBZ echo height statistics toward lower
altitudes.

The CF database algorithm attributes lightning flashes to individual CFs if the flash
location falls within the boundary of grouped convective pixels. Total lightning flash rate was
estimated by taking the quotient of the flash count and the viewtime, or the estimated time during
which the CF was in LIS’s field-of-view (units of flashes mirt). Total lightning density (TLD)
for each CF was then computed by taking the estimated total lightning flash rate and normalizing
by the approximate feature area @xmwWhile TRMM LIS observations extend from°®B 38N,

CFs and LPCFs are defined only within the latitudinal limit of the TRMM PR observations, i.e.,
36°S-36N; thus our results apply to CFs and LPCFs within the domain of TRMM PR
observations.

There are multiple potential “noise” sources that could result from the above feature
attribution scheme coupled with the TRMM satellite observation strategy. Most importantly,
given the myriad of convective scale processes that are not resolved by the relatively coarse

thermodynamic and aerosol grids and the impossibility of knoexagtlywhich
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thermodynamic environments and aerosol concentrations each CF interacts with, scatter about
some central value is expected. For example, our preliminary analyses showed appreciable total
lightning flash rates occurred in LPCFs where our scheme attributed the lowest values of
NCAPE. It was determined that these LPCFs occurred in the vicinity of large gradients in
thermodynamic instability; these LPCFs accounted for a small fraction of the dataset (~6% of
LPCFs) and were excluded from further analysis due to the uncertainties surrounding their
respective thermodynamic environments.

The TRMM satellite has a forward propagation speed of ~7ksush that any CF may
be in the instrument field of view for a maximum of ~90 s. Then it is expected that “snapshot”
observations by TRMM PR/LIS will depict CFs at various stages in their respective life cycles in
any given orbit- constituting another potential source of variability. Additionally, close
inspection of orbital level data from PR/LIS for individual CFs illustrated that larger CFs
sometimes have significant lightning observed beyond the PR swath boundary so the
radar/lightning correspondence may be compromised. We tried filtering CFs within varying
distances from the PR swath edge (cross-track PR pixels 0 and 49) and found that our results
were insensitive to this limitation in the datd/e chose to include all CFs, regardless of their
proximity to swath boundaries, in an effort to maximize the strength of our statistical findings.

Separate data populations of CFs for continental and oceanic regions, both with and
without lightning, were simultaneously stratified by the three independent parameters (NCAPE,
CCN, and WCD) to test various aspects of our hypothesis. The data were first separated by
WCD, then the data were binned by CCN and NCAPE using set intervals in order to facilitate
comparison between specific environments of interest. A considerable effort went to into

understanding how WCD varies throughout the tropical/subtropical domain. The probability
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density functions of WCD were computed at every reanalysis gridpoint and time step for the 8-
year period (regardless of whether there was an overpass by TRMM); the median WCD in the
domain of interest was found to be very close to 4200 m. Therefore, discussion of differences
with respect to “shallower” and “deeper” WCD in this paper are relative to WCD = 4200 m.

In our examination of VPRR for the global sample of CFs, we investigated the potential
impacts of aerosols in fixed background thermodynamic environments. It is difficult to
rigorously define pristine and polluted aerosol environments between continents and oceans
since the underlying aerosol distributions are so different igiams et al, 2002 and
references therein]. For this reason, we introduce stratifications for the range from pristine to
heavily polluted environments (CCN < 100én100-200 cri¥, 200-500 cri#, > 500 cn?) based
on the cumulative probability distribution function for the global population. We use average 30
dBZ echo top height (AVGHT30), TLD, and VPRR as proxies for the variability of convective
intensity throughout the Tropics in the following investigation [&mpser et al. 2006; and

many others].

2.3Results
2.3.1 Global Climatology

Roughly 12.2 million CFs were observed by the TRMM satellite between 2004 and 2011
but we decided to include only CFs and LPCFs with 1) AVGHT30 > 5 km and 2) with
collocated aerosol and thermodynamic variables within the upstream swath in our final data
subset. The choice to truncate the data to CFs/LPCFs with AVGHT30 > 5 km reduced our data
subset to just under 1.5 million CFs (~260,000 LPCFs; see Table 2.1 for a sample sizes of each

population). However, by this method, we attempt to isolate quasi-upright, deep convective

24



features since we expect shallow and deep CFs to respond differently to perturbations to
environmental thermodynamics and aerosol concentrationsTa@et al, 2012;Rosenfeld et

al., 2014]. We then binned these populations of CFs and LPCFs in the 8-year temporal subset
geographically on a®igrid and produced global distributions of CF/LPCF frequency, mean
AVGHT30, mean TLD, as well as, mean distributions of NCAPE, CCN, and WCD for both CFs

(Figs. 2.1a-e) and LPCFs (Figs. 2.1 f-)).

m—  r—
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Fig. 2.1. Annual mean distributions of a) CF frequency, b) AVGHT3WCAPE for CFs, d) CCN for CFs, e)

WCD for CFs, f) LPCF frequency, g) TLD, h) NCAPE for LPCH<CCN for LPCFs, and j) WCD for LPCFs
averaged over®grid boxes between 88 and 38N for the years 2004-2011 (see text for definitions). CFs (LPCFs)
with AVGHT30 > 5 km (with flash rates above the minimum detection bimldsf the TRMM Lightning Imaging
Sensor) and were analyzed (both constraints in the case of LPCFs).
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Globally, the frequency of deep CFs maximizes in the Intertropical Convergence Zone
and over the western Pacific Ocean (Fig. 2.1a). Deep CFs are nearly absent from subsidence
regions on the eastern periphery of major ocean basins. The global distribution of AVGHT30 for
the subset of deep CFs (Fig. 2.1b) shows heights of < 6 km over oceans and 6 km to more than 7
km over continents in the Tropics and Subtropics on average. These differences generally agree
with the spatial variability of lightning shown in Fig. 2.1g, but the strength of correlation
between these two fields appears to vary between continents and oceans. The maxima in the
AVGHT30 distribution occur over the Sahel, Southern Great Plains of the United States, in lee
of the central Andes Mountains, and over parts of northwest India. Notably, the distribution of
MAXHT30 for LPCFs (and to some extent, for CFs) in our data subset show roughly similar
values, ~9 km, between continents and oceans over much of the TRMM domain (not shown).
The homogeneity of the MAXHT30 climatology for LPCFs coupled with the striking land-ocean
contrast in TLD constitutes an important set of findings and will be discussed in a subsequent

section.

Table2.1. Census of CFs and LPCFs

CFs LPCFs
Domain CFs LPCFs (AVGHT30>5km) (AVGHT30>5km)
Global 12,232,564 503,133 1,457,919 263,378
Continents 2,148,492 360,190 388,859 162,593
Oceans 10,084,072 142,943 1,069,060 100,785

3Populations of convective features (CFs) and lightning-producing conedetitures (LPCFs; i.e., CFs with
lightning flash rates above TRMM LIS’s minimum detection threshold) over the TRMM domain for the years 2004-
2011. The first two columns represent populations in the original CHIdRtabase, while the latter two columns
represent the sample sizes of the data subset for the current analysis.

In agreement with previous studies, the frequency of LPCFs over continents is
consistently an order of magnitude larger than the frequency of LPCFs over ocean (Fig. 2.1f).
However, the vast majority of CFs (including CFs without lightning) occur over ocean (cf.,

Table 2.1). CFs with lightning flash rates above LIS’s minimum detection threshold (~0.7
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flashes min?) represent only a small fraction of the total number of CFs observed

(approximately 3.4% of CFs observed by the TRMM satellite between 2004-2011). Although
LPCFs in our data subset account for a small fraction of the full CF database, prominent aspects
of the general circulation like the Intertropical and South Pacific Convergence Zones, the African
Easterly Jet, and midlatitude storm tracks are readily noticeable in Fig. 1f as these areas are
favorable for the development of deep convective clouds.

The annual mean distribution of TLD (Fig. 2.1g) depicts the strong climatological land-
ocean contrast in lightning that has been previously documedte$iian et al, 2003]. TLD
over continents is greater than TLD over ocean by a factor of 2-5Beagippio et al.2000].

While intense convection capable of producing copious lightning does occur over remote tropical
oceans [e.gKelley et al, 2010], Fig. 2.1f shows that such convection occurs very infrequently
compared to continental areas. Abrupt decreases in TLD near coastlines are also shown in Fig.
2.1g in agreement with previous global lightning climatologies.

In general, the difference in NCAPE between continental and oceanic regions across the
TRMM domain for both CFs and LPCFs is small in the annual mean sense (Figs 2.1c,h). At
first, this result was surprising given the emphasis on the importance of thermal instability in
moist convective processes in the literature to date. However, several researchers have argued
that the difference in conditional instability between continents and oceans in the Tropics is
small on average [e.gWilliams and Rennadl993;Lucas et al. 1994a,b], consistent with the
results found here. The annual mean distributions of the depth of the positive area (i.e., the
normalization factor in the NCAPE computation) in a given sounding depict general longitudinal

homogeneity (depth ~ 10 km) and general decreases in the poleward direction (not shown). The
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differences in the distributions of NCAPE for CFs (Fig. 2.1c) and NCAPE for LPCFs (Fig. 2.1h)
are not readily discernible, but will be discussed in more detail below.

The annual distributions of boundary-layer CCN for CFs and LPCFs in Figs. 2.1d,i are
consistent with observations of an order-of-magnitude difference in the mean aerosol
concentrations between continents and oceanic regions. The most pristine environments are the
equatorial regions of the Pacific and Indian Oceans with mean CCN values near a few 10’s cm™,
Globally, CCN concentrations are maximized over continental regions in developing counties
and in areas where seasonal biomass burning takes place (e.g., central equatorial Africa and the
southern/southeastern portions of the Amazon). Several oceanic regions are subject to offshore
aerosol transport as evidenced by CCN reaching as high as a few hundred per cubic centimeter
(e.g., downstream of the eastern United States, South America, South Africa, and eastern
Australia).

The global distributions of WCD (Figs. 2.1e,j) show considerable homogeneity in the
deep Tropics. The greatest distance between the freezing level and LCL, on average is found
over parts of the Amazon, equatorial Africa, Southeast Asia, and the Indian and Pacific Oceans
for both of the populations of CFs and LPCFs. The fact that WCD generally decreases with
increasing latitude is likely due to decreases in boundary layer moisture and the lowering of the
local freezing level. Zonal heterogeneity of WCD is most pronounced in the northern
hemisphere over continents (e.g., between the United States, northern Africa, and Southeast

Asia).
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Fig. 2.2. Probability density functions of a) NCAPE, b) CCN, and ¢) WGDOFs over continents (green), CFs
over oceans (blue), LPCFs over continents (red), and LPCF®o®ans (orange). The number of CFs or LPCFs is
provided in parentheses for each population. CFs (LPCFs) with AVGHBE3m (with flash rates above the
minimum detection threshold of the TRMM Lightning Imaging Sensat)vegre analyzed (both constraints in the

case of LPCFs).

Probability density functions for NCAPE, CCN, and WCD for the populations of CFs
and LPCFs over both continents and oceans are presented in Fig. 2.2. The median NCAPE for
CFs (for LPCFs) is 0.08 J kgn'? (0.09 J kgt m™Y) over continents and 0.07 Jkgr! (0.08 J kg
1 m1) over oceans. While the distributions of NCAPE (Fig. 2.2a) peak near 0.08d kipr
each population of CFs and LPCFs, there is a tendency for CFs over continents and LPCFs to
develop in environments with higher NCAPE more frequently.

There are distinct differences between the distributions of CCN for CFs and LPCFs over
continents and oceans. Fig. 2.2b shows that CFs over oceans develop in environments that are
most frequently characterized by CCN < 100%nin contrast, the distribution of CCN for CFs
that develop over continents peaks around 300-500 diRCFs over oceans develop in
environments with CCN values that are intermediate between those values typical for oceanic
and continental CFs. Lastly, the distribution of CCN for LPCFs over continents peaks at

approximately 300-500 ci) however, the relative frequency of occurrence of LPCFs over
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continents in heavily-polluted environments (CCN > 100&F)i® higher than that for any other
subset of the total CF population considered.

The distributions of WCD for CFs and LPCFs (Fig. 2.2c) each peak near 4500 m (slightly
deeper than the global median value computed from all reanalysis time steps) and there is a
subtle tendency for LPCFs over continents and oceans to occur more frequently at shallower
WCD when compared to the relative frequency of occurrence for the populations of CFs over
continents and oceans. It is also apparent that there are relatively few observations of WCD
shallower than 2000 m in our data subsets and therefore we limit the analysis to WCD between
2000-5000 m.

While the global climatological and probability distributions in Figs. 2.1-2.2 lend
physical credence to the behavior of each variable, they only allow for qualitative
characterization of potential relationships between proxies for convective intensity and NCAPE,
CCN, and WCD. Furthermore, these climatological distributions support the idea that the
variability in TLD and AVGHT30 could result from some combination of NCAPE, CCN, and

WCD. We now turn to a discussion of this topic.

2.3.2 Three-parameter stratification: total lightning density and average height of 30 dBZ

We begin our discussion by examining the relationships between NCAPE, CCN, WCD,
and TLD. For the global population of LPCFs, we find that TLD increases from < 0.0014 fl.
min.t km? up to 0.01 fl. min! km? (a 600% increase) withothincreasing CCN and NCAPE
for all simultaneous stratifications of WCPigs. 2.3a-d). Additionally, the highest TLD occurs
for CCN > 1000 crd and NCAPE > 0.15 J Kgm? while the lowest TLD is generally found

below CCN < 500 cm and NCAPE < 0.15 J Kgm'* for all WCD stratifications. Finally, as
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WCD trends from shallower (Fig. 2.3a) to deeper (Fig. 2.3d), the highest median values of TLD
become restricted to higher values of both NCAPE and CCN, suggesting a modulation of the
NCAPE-CCN-TLD relationship by WCD. Fig. 2.3 also illustrates important conditional or

partial sensitivities of TLD to NCAPE and CCN (e.g., changes in TLD along a constant
vertical/horizontal parameter space trajectory holding other variables constant). The partial
sensitivity of TLD with respect to changes in NCAPE and CCN is systematically detailed in Sec.

2.3.3 below.
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Fig. 2.3. Total lightning density (TLD; shaded) plotted as a two dimensional funatibliCAPE and CCN for CFs
across the global TRMM domain (continents and oceans) for a) 2000 m < WCD < 3500 m, b) 3500 m < WCD <

4000 m, c) 4000 m < WCD < 4500 m, and d) 4500 m < WCD 9500 Black solid contours indicate the number
of observations in each bin within the parameter space. LPCFfagitirates above the minimum detection
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threshold of the TRMM Lightning Imaging Sensor and AVGHT30 > 5aane analyzed. A threshold of twenty
LPCFs was set for a given bin before the output was plotted.

Next, we examined the response of AVGHT30 in the population of CFs with AVGHT30
> 5 km (shallow CFs, i.e., features with AVGHT30 < 5 km, were excluded). The distributions of
AVGHT30 for these CFs in response to NCAPE and CCN for simultaneous stratifications of
WCD (Figs. 2.4a-d) are broadly consistent with the results shown in Fig. 2.3. AVGHT30
increases from 5.25 km up to more than 7.5 km as both NCAPE and CCN increase, with the
peak AVGHT30 found for CCN > 1000 ¢hand NCAPE > 0.15 J Kgm' while minima are
found for CCN < 500 crdand NCAPE < 0.15 J Kgm'* for all WCD stratifications. Analogous
to Fig. 2.3, there are again aspects of the two-dimensional dependence of AVGHT30 on NCAPE

and CCN, i.e., partial sensitivities, and these sensitivities will be discussed in Sec. 2.3.3 below.
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Fig. 2.4. As in Fig. 2.3, but for the average height of 30 dBZ echoes (AVGHSirigled). CFs with AVGHT30 > 5
km were analyzed. A threshold of twenty CFs was set for a givelnefore the output was plotted.

Our next objective was to determine whether the response of these proxy measures for
convective intensity varies for CFs/LPCFs between continents and oceans. From climatology in
Fig. 2.1, LPCFs occur predominantly over continents. On average, TLD is greater and
AVGHTS30 is higher over continents compared to oceanic regions. LPCFs over continents and
oceans are shown to populate different sections of the NCAPE-CCN parameter space (Fig. 2.5);
LPCFs over continents occur in more polluted environments across a wide range of NCAPE
values while LPCFs over oceans occur in environments with lower NCAPE and generally low

aerosol number concentrations. Here, we present only the extremes of the WCD stratifications in
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our sample to illustrate potential variability with respect to shallower and deeper WCD. Do the
differences in the intrinsic properties of the environments for continental and oceanic CFs impact

the resulting sensitivities of lightning and radar quantities to NCAPE and CCN?
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Fig. 2.5. Total lightning density (TLD; shaded) plotted as a two dimensional funatibiCAPE and CCN for
LPCFs over continents (left panel) and oceans (right panel) for a,b) 2000 m < WCD < 3500 m and ¢,d) 4500 m <
WCD < 5000 m.Black solid contours indicate the number of observations in each bim Withparameter space.
LPCFs with flash rates above the minimum detection threshold oRMMILightning Imaging Sensor and
AVGHT30 > 5 km were analyzed. A threshold of twenty LPCFs was satdtven bin before the output was
plotted.

Over continents for shallower WCD (Fig. 2.5a), TLD is shown to increase from about

0.0033 fl. min! km? up to more than 0.012 fl. mihkm? (a 268% increase ) as NCAPE and
CCN increase together. Over oceans for shallower WCD (Fig. 2.5b), TLD increases from

approximately 0.0018 fl. mi.km2 up to 0.006 fl. mint km? (roughly a 300% increase) as
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NCAPE and CCN simultaneously increase for fixed WCD. For deeper WCD (Figs. 2.5¢,d),
TLD increases by roughly 300-400% again as both NCAPE and CCN increase simultaneously.
In all cases (both shallower and deeper WCD), the minimum TLD is found for NCAPE < 0.10 J
kgl m?!and CCN < 500 crhand the maximum TLD is generally found for NCAPE > 0.15°J kg

! m?and CCN > 1000 crh

We conducted a similar analysis for the sensitivity of AVGHT30 over continents and
oceans and the results for shallower and deeper WCD are shown in Fig. 2.6. Over continents
(Figs. 2.6a,c), AVGHT30 increases from approximately 5.5 to 8.0 km for shallower WCD and
approximately 5.25 to 7.25 km for deeper WCD as NCAPE and CCN increase simultaneously.
Over oceanic regions for shallower and deeper WCD (Figs. 2.6b,d), AVGHT30 increases from
roughly 5.256.75 km and 5.25-6.25 km, respectively, as both NCAPE and CCN increase, with
the maximum values of AVGHT30 found for NCAPE > 0.10 3 kgt and CCN ~ 1000 ci
The minimum values of AVGHT30 are again found for low NCAPE and low CCN.

Together the results for the sensitivity of TLD and AVGHT30 with respect to NCAPE
and CCN simultaneously over continents and oceans are consistent with the behavior observed
for the global populations of CFs and LPCFs (Figs. 2.3-2.4). Furthermore, the variability of
AVGHT30 over continents and oceans mirrors the response of TLD to combinations of
NCAPE/CCN for fixed WCD, emphasizing potential correlation between 30 dBZ radar
reflectivity and lightning characteristics in convective features (analysis of the relationship

between lightning and 30 dBZ radar reflectivity will be provided in a subsequent section).
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Fig. 2.6. As in Fig. 2.5, but for the average height of 30 dBZ echoes (AVGHSigled). CFs with AVGHT30 > 5
km were analyzed. A threshold of twenty CFs was set for a pivelmefore the output was plotted.

2.3.3 Partial sensitivity of TLD/AVGHT30 to NCAPE and CCN

To this point, we have focused on the sensitivity of lightning and radar reflectivity to
simultaneous changes in NCAPE and CCN. However, it is important to explore how the
response of deep convection varies with respect to individual predictor variables with other
factors held fixed. Hence we focus on partial sensitivities of TLD/AVGHT30 (e.qg.,
AAVGHT30/ANCAPE) and how the magnitudes of these terms compare to the observed total

response of TLD/AVGHT30 to simultaneous changes in NCAPE and CCN presented in Sec.
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2.3.2. The partial sensitivities of proxy variables (i.e., TLD and AVGHT30) with respect to
NCAPE have been plotted for fixed CCN above and below the median value of CCN over the
global domain, over continents, and over oceans (for shallower and deeper WCD). Likewise, the
relationships between TLD and AVGHT30 with respect to CCN are plotted for fixed NCAPE
above and below the median value of NCAPE for shallower and deeper WCD for the global
domain, over continents, and over oceans (Figs. 2.7-2.8). The partial sensitivity of TLD and
AVGHT30 with respect to WCD was also examined; these results will be detailed in Sec. 2.3.4
below.

Table 2.2. Partial sensitivities of AVGHT30 and TI'D
Partial Sensitivity Global Continents Oceans

AAVGHT30

] (+1.26 km/+0.69 km) (+1.01 km/+0.65 km) (+0.75 km/+0.25 km)
ACCN NCAPE Low

AAVGHT30 (+1.49 km/+1.13 km) (+1.11 km/+1.00 km) (+1.00 km/+1.25 km)
ACCN NCAPE High
AAVGHT30 (+0.75 km/+0.68 km) (+0.62 km/+0.47 km) (+0.50 km/+0.25 km)
“ANCAPE lcen ow
AAVGHT30 (+1.38 km/+0.76 km) (+1.28 km/+0.71 km) (+1.50 km/+0.75 km)
ANCAPE ¢ High
ATLD (+408%/+199%) (+211%/+112%) (+276%/+106%)
ACCN NCAPE Low
ATLD] (+421%/+263%) (+178%/+171%) (+138%/+150%)
ACCNlycape High
ATLD ] (+153%/+131%) (+61%/+74%) (+193%/+145%)
ATLD (+53%/+80%) (+45%/+66%) (+209%/+141%)

ANCAPE CCN High

PPartial sensitivities of AVGHT30 [km] and TLD [%] with respect to NCAPE @@N for (shallower/deeper)

WCD for CFs/LPCFs over the global domain, over continentspaaedoceans. Each value represents the max
range of the one-dimensional comparisons in Figs. 2.7-2.8; thedlte is the change when WCD is shallower and
the second value (see text for stratification methodology).
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First, we present the partial sensitivity of TLD as functions of NCAPE and CCN holding
other independent variables fixed (Fig. 2.7). Note that there was a minimum threshold of 20
LPCFs required before the bin median was plotted in each case; error bars represent the
interquartile range in each bin. The average range of the relationship between TLD and each
predictor variable (e.g., NCAPE and CCN) for the global domain, for continents, and for oceans
are 104%, 62%, and 172% with respect to NCAPE (Figs. 2.7a-c) and 322%, 168%, and 168%
with respect to CCN (Figs. 2.7d-f). The range of the individual relationships described above are
given in Table 2.2 for reference. Next, in the legend of each panel, we provide the linear
correlation between NCAPE and CCN for each stratification in an effort to address the
possibility of the trends being the result of simultaneous correlation. For all stratifications over
the global domain, over continents, and over oceans, the linear correlation is generally smaller
than 0.20, suggesting that NCAPE and CCN are approximately independent in each case and that

variations in the predictand are more likely attributable to the changes in the abscissa.
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Fig. 2.7. The partial sensitivity of total lightning density (TLD) with respect to AKCAPE and with respect to d-f)
CCN for LPCFs over the global TRMM domain (left), over continecgsier), and over oceans (righggé€ text for
definition of individual stratification)s Medians of TLD are plotted and the interquartile range in each bin is
represented by the error bars. The linear correlation, r, between NCARECAhwithin each data subset is
providedin each panel’s legend. LPCFs with flash rates above the minimum detection threshold of the TRMM
Lightning Imaging Sensor and AVGHT30 > 5 km were analyzedhréshold of twenty LPCFs was set for a given
bin before the output was plotted.

From Fig. 2.7, it is clear that the average ranges of variability in TLD with respect to
CCN over the global domain and over continents are larger when compared to the sensitivity
with respect to NCAPE (the behavior of TLD over oceans being the exception). Furthermore,
TLD is greater at a given value of NCAPE when CCN is above the median value (true for both
shallower and deeper WCD). Additionally, the slope of the relationship between TLD and
NCAPE remains roughly constant for the different stratifications of CCN and WCD (Figs. 2.7a-
c) while there is a considerable amount of variability in the slope of the relationship between
TLD and CCN for different stratifications of NCAPE and WCD (Figs. 2.7d-f). The steepest
slope in the latter cases is found for NCAPE above the median value and shallower WCD and
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the smallest slope is found for low NCAPE and deeper WCD. The slope for the TLD vs. CCN
relationship, specifically for low NCAPE and deeper WCD, diminishes and becomes negative
beyond CCN > 1000 crh this result agrees with the changes in lightning behavior with respect
to aerosols that were observedAltaratz et al[2010] during four dry seasons over the

Amazon.

Decreasing TLD with increasing CCN (CCN > 10009ns consistent with earlier
hypotheses put forth in the literaturéhat the combined effects of a reduction in conditional
instability (as a consequence of aerosol absorption/diminished shortwave fluxes at the surface)
and increased water loading (owed to reduced coalescence) in ascending parcels reduces updraft
intensity for aerosol concentrations beyond some optimum value. The observed behavior of
TLD for high CCN (CCN > 1000 cr) is consistent with a decrease in riming efficiency as
cloud droplets become small enough under high aerosol concentrations to yield an overall
decrease in the collision efficiency with graupel particles [e.g., B@Ber and van den Heever
2013].

We also examined the partial sensitivity of AVGHT30 with respect to changes in
NCAPE (Figs. 2.8a-c) and CCN (Figs. 2.8d-f) in a similar manner and the results were found to
be largely consistent with what was shown for TLD in Fig. 2.7. The average ranges of the
AVGHT30 vs. NCAPE relationship (holding CCN and WCD fixed) were 0.89 km, 0.77 km, and
0.75 km for the global domain, continents, and oceans respectively (statistics for individual
relationships are listed in Table 2.2). By comparison, the average ranges of the relationship
between AVGHT30 and CCN (holding NCAPE and WCD constant) were 1.14 km, 0.94 km, and
0.81 km. Thus, the average ranges in AVGHT30 with respect to CCN are slightly larger than the

ranges in AVGHT30 with respect to NCAPE over the global domain and continents, and over
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oceans. Again, we find that AVHT30 is higher at a given value of NCAPE when CCN is above
the global median (for fixed WCD; Figs. 2.8a-c) and AVGHT30 levels off or begins decreasing
slightly for values of CCN > 1000 cf(e.g., Figs. 2.8d-f). Although the linear correlations
between NCAPE and CCN in each stratification of AVGHT30 (in the legend of each panel in
Fig. 2.8) are slightly larger compared the values for the stratifications of TLD, the r values
remain below about 0.25, again lending to the idea that NCAPE varies approximately
independently of CCN.

For CFs with and without lightning across the global Tropics, the resulting partial
sensitivities of both TLD and AVGHT30 to NCAPE and CCN (for fixed WCD) support the
hypothesis that aerosols modulate the amount of conditional instability realized by ascending
parcels [e.g., RO8]. TLD (AVGHT30) was found to be greater (higher) when NCAPE increased
in the presence of higher aerosol concentrations (e.g., Figs. 2.7a-c and 2.8a-c) and the slope of
both the TLD vs. CCN and AVGHT30 vs. CCN relationships decreased to zero and became
negative for CCN > 1000 cie.g., Figs. 2.7d-f and 2.8d-f). We emphasize that the average
ranges of the TLD/AVGHT30 vs. NCAPE and CCN relationships separately amounted to a
fraction of the total changes that were observed above in Sec. 2.3.2. Therefore, our results
suggest that 1) both NCAPE and CCN are important factors that contribute to the development
of high TLD and AVGHT30 in our data subsets and 2) that there may be other factors that are

simultaneously influencing these attributes of deep convection.
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Fig. 2.8. As in Fig. 2.7, but for the partial sensitivity of the average heigh® afBZ echoes (AVGHT30). CFs with
AVGHT30 > 5 km were analyzed. A threshold of twenty CFs was satdoren bin before the output was plotted.

2.3.4 The importance of warm cloud dep

In the above discussion, the sensitivity of lightning and radar reflectivity to simultaneous
changes in NCAPE and CCN as well as partial sensitivities of these quantities to NCAPE and
CCN holding other independent variables constant were shown to be appreciable. However, our
results illustrate considerable variability in both TLD and AVGHT30 with respect to WCD. In
Fig. 2.9, we show the difference in TLD and AVGHT30 between shallower WCD (WCD < 4200
m) and deeper WCD (WCD > 4200 m) populations at each point in the NCAPE-CCN parameter
space for CFs and LPCFs in the global TRMM domain, over continents, and over oceans,
respectively. In each case presented, differences in TLD (percent differences; left panel) and

AVGHTS30 (height differences; right panel) with respect to WCD are mostly posifiid is
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greater and AVGHT30 is higher when WCD is shallower as opposed to deeper. We note that
there is an exception for AVGHT30 over continents for low CCN across a range of NCAPE; it is
likely that this behavior results from seasonal and regional dependence, i.e., CFs occurring in
select regions or preferred times of year (to be discussed in Sec. 2.5).

We investigated the significance of the differences between populations of TLD or
AVGHT30 between shallower and deeper WCD at each NCAPE/CCN point using a Wilcoxon
rank-sum test. In context, the Wilcoxon rank-sum test assumes the null hypothesis that the
medians of the populations of TLD or AVGHT30 for shallower and deeper WCD are equal. The
maximum increase in TLD (Fig. 2.9; left panel) with respect to WCD at a given NCAPE-CCN
point was found to be +91% for the global domain, +86% over continents, and +42% over
oceans and these differences were all significant at the P=0.05 level (i.e., these results were in
favor of rejecting the null hypothesis at the 5% level). The maximum positive increases for TLD
for the global domain and continents (oceans) occurred for NCAPE > 0.25ndkand CCN >
1000 cm? (NCAPE > 0.1 J kg mt and CCN > 500 crf). Negative differences in TLD with
respect to changing WCD were very small (less than 1%) and were relatively rare. The
maximum increase in AVGHT30 (Fig. 2.9; right panel) with respect to WCD was +1.46 km for
the global TRMM domain, +1.19 km over continents, and +1.00 km over oceans and these
differences were also significant at the P=0.05 level. The maximum positive increases of
AVGHT30 over both the global domain and over continents (over oceans) occur for NCAPE >
0.2 J kgt mt and CCN > 1000 crhi(NCAPE > 0.08 J k§ m* and CCN > 1000 cr).

These results suggest that deep convection in the Tropics is stronger when WCD is
shallower since similar responses are noted for both proxies for convective intensity (i.e., TLD

and AVGHT30). Additionally, the differences in TLD and AVGHT30 with respect to
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progressively shallower WCD are largest when NCAPE and CCN are high. In other words, in
environments with deeper WCD, higher NCAPE and CCN appear to be necessary to

“invigorate” a convective updraft during ascent through the cloud’s warm phase.
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Fig. 2.9. Differences in total lightning density (TLD; left panel) and the averagghhof 30 dBZ echoes

(AVGHT30; right panel) between shallower WCD (WCD < 4200 m) and deeper WMID(> 4200 m) for a,p

the global population of LPCFs and CFs, c,d) LPCFs and CFsorgnents, and e,f) LPCFs and CFs over oceans
for a fixed NCAPE/CCN point. Shading indicates the percent difference iightling density and the difference
in AVGHT30 in the left and right panels, respectively. Colored outlines for@aohin the two-dimensional
parameter space illustrate the significance of the difference determined by adViRamk-Sum test for the
difference of medians. CFs (LPCFs) with AVGHT30 > 5 km (with fleghs above the minimum detection
threshold of the TRMM Lightning Imaging Sensor) and were analyzatth Constraints in the case of LPCFs).
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2.3.5 Radar reflectivity/lightning correspondence and sensitivity

Our results indicate that both TLD and AVGHT30 behave similarly in response to
changes in both CCN and NCAPE for different stratifications of WCD. Meanwhile, previous
studies have documented strong correspondence between radar reflectivity and lightning in many
regions [e.g.Dye et al, 1989;Rutledge et a).1992;Petersen et al.1996;DeMott and Rutledge
1998;Petersen and Rutledg2001;Liu et al, 2012;Stolz et al.2014]. The climatologies for
TLD and AVGHT3O0 presented above (Fig. 2.1) corroborate the findings of these previous
studies, however, our study allows for an attempt to quantify the correspondence between
reflectivity and lightning proxies for convective intensity on the global scale. Specifically, we
guestion whether the relationship between TLD and AVGHT30 varies as a function of NCAPE,

CCN, and/or WCD.
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Fig. 2.10. Total lightning density (TLD) versus average height of 30 dBoesffior various aerosol stratifications
(see legend) for a) the global population of LPCFs, b) LPCFs oméineats, and ¢) LPCFs over oceans. LPCFs
with flash rates above the minimum detection threshold of the TRMIktilgg Imaging Sensor and AVGHT30 >
5 km were analyzed. A threshold of twenty LPCFs was setdiwea bin before the output was plotted. The
number of LPCFs in each respective aerosol stratum is provided in parerithiselower right corner of each
plot.
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Note that this comparison is only possible for deep CFs that produce lightning and
therefore we were limited to analyzing only 2.1% of the total CF population observediiy TR
during 2004-2011 (i.e., those features with lightning above the minimum detection threshold of
TRMM LIS and AVGHT30 > 5 km). For this subset of CFs, when TLD is binned by AVGHT30
for a continuum of stratifications of CCN (Fig. 2.10) and the resulting bin medians are plotted, a
strong positive relationship is readily apparent (r = 0.95-0.98). However, the sensitivity of the
TLD versus AVGHT30 relationship decreases with decreasing CCN, suggesting that for
convective clouds developing in pristine environments, the 30 dBZ reflectivity column has to be
deeper in order to produce the same flash density. Evidence of this phenomenon in the
continental subset of LPCFs (Fig. 2.10b) is subtle but is more apparent for the oceanic subset of
LPCFs (Fig. 2.10c). Importantly, this finding points to the possibility of different microphysical
properties of the mixed phase region in a convective cloud under different background aerosol
concentrations. Clouds developing in more polluted environments may be more efficient in
separating charge and producing lightning (as evidenced by steeper slopes in the relationship
between TLD and AVGHT30).

In accordance with previous observational studies, AVGHT30 was investigated here
since it may provide a rough measure of updraft intensity. The assumption is that stronger
updrafts are more capable of lofting cloud liquid and frozen hydrometeors. However,
AVGHT30 is an ambiguous metric in this context since the same radar reflectivity can be
realized for different hydrometeor populations [eGarey and Rutledge000]. We next
examined VPRR for different stratifications of CCN in various thermodynamic environments to
verify if the observed increases in lightning and AVGHT30 with respect to aerosols are

associated with a more developed reflectivity column (Fig.)2.11
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Fig. 2.11. Mean vertical profiles of radar reflectivity (VPRR) for CFs across thHea§jlbBRMM domain (continents
and oceans) for various levels of CCN for a) shallower WCD anddpat WCD for NCAPE above the global
median value (0.07 J Kgn?) and ¢) shallower WCD and d) deeper WCD for all NCAPEs. Colamkebs in the
lower right of the main plots indicate the number of observations wetith aerosol stratum. The difference
between the most polluted and pristine VPRR are plotted for altitudes betweea@kandn each inset. The
altitude and magnitude of the maximum difference are provided by ssdailes and adjacent text. The thin solid
blue line in each inset indicates the global average height of @his6therm (4823 m). CFs with AVGHT30 > 5

km were analyzed.

To investigate the possibility of simultaneous dependence on environmental
thermodynamics, we stratified the data by NCAPE above the global median in addition to
examining the full range of NCAPEs for both shallower and deeper WCD. Motivation for this
part of the analysis came in part as a result of several aspects of the 30 dBZ echo top
climatologies discussed in Sec. 2.3.3; MAXHT30 did not change appreciably between continents

and oceans (especially true for the global population of LPCFs). By the above method, we
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would be able to visualize potential differences in the response of vertical precipitation structure
(i.e., the reflectivity column) in deep convective features at various levels of CCN in different
thermodynamic environments.

For the global population of CFs (with and without lightning), a clear, systematic
increase in reflectivity at a given altitude is shown as CCN increases from pristine levels (CCN <
100 cm®) to polluted levels (CCN > 500 cthfor shallower and deeper WCD in all NCAPE
environments. In agreement with the analysis in Secs. 2.3.2 and 2.3.4, the largest changes in
VPRR at a given height with respect to CCN occur for shallower WCD (Figs. 2.11a,c) compared
to deeper WCD (Figs. 2.11b,d). As shown in each inset, the difference in reflectivity between
polluted and pristine profiles is maximized in the mixed phase region (greater for polluted
features) and these differences are shown to vary slightly as a function of NCAPE. For all
NCAPEs (Figs. 2.11c,d), the difference between polluted and pristine environments ranges from
5.2-5.6 dB in the mixed phase. The observed mean VPRR for high NCAPE (VPRR with
NCAPE above the global median value; NCAPE=0.07-9rkg) illustrate that the magnitude of
the difference in reflectivity within the mixed phase between polluted and pristine clouds is still
appreciable (5.0-5.4 dB; Figs. 2.11a,b

The mean VPRR for various aerosol concentrations in different thermodynamic
environments therefore show that higher aerosol concentrations are associated with larger values
of reflectivity at a given height in the mixed phase. The behavior of the mean VPRR,
specifically in the mixed phase region, for different aerosol concentrations are consistent with
previous hypotheses regarding aerosol indirect effects on deep convective clouds (e.g., R08), that
greater latent heat release via transport of supercooled liquid water and subsequent

riming/deposition processes lead to invigorated updrafts capable of lofting graupel.
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Additionally, we looked at the median TLD for each of the aerosol stratifications in the VPRR
analysis; the median TLD increased monotonically between the pristine and polluted CCN
stratifications consistent with the idea that greater flash rates/densities are associated with more
vertically developed reflectivity. The results of the VPRR analysis also suggest that the
influence of CCN on vertical precipitation structure decreases as NCAPE incrlases.

discussion of the foregoing results follows in the next section.

2.4 Discussion
A summary of the behavior of deep convective features, associated lightning activity, and
their mean VPRR signatures in differing background aerosol and thermodynamic environments
(NCAPE, WCD) follows next. Our results suggest thathighest TLD/AVGHT30 is found for
deep convective features that develop in polluted environments where WCD is shallower and
NCAPE is above the median valiiegs. 2.3-2.6). Conditional sensitivities of convective
intensity proxies (e.g., TLD and AVGHT30) illustrated that for a fixed WCD, increasing
NCAPE resulted in greater TLD/higher AVGHT30 when CCN was above the median value
(CCN > 100-300 cri) (Figs. 2.7-2.8). Additionally, TLD and AVGHT30 were both nearly
systematically larger for shallower WCD compared to deeper WCD (Fig. 2.9). Note that the
median value of WCD in our data was found to be very close to 4200 m; therefore, “deeper”
WCD probably represents the deepest limit of WCD globally. Thus, the results of this study
favor a merged “simultaneous” hypothesis regarding the roles of thermodynamics and aerosols
as they may influence the variability of deep convective clouds in the Tropics and Subtropics.
Though a considerable amount of effort went into isolating the impacts of aerosols from

background thermodynamics in our investigation of the variability of lightning and radar
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characteristics over continents and oceans, it is possible that other sources of potential variability
exist within each respective environment (e.g., aerosol species, ice nuclei concentration, wind
shear, and relative humidity in the middle troposphere). For example, the data from GEOS-
Chem simulations used for this study made no distinction for ice nuclei but ice nuclei sources,
concentrations, and activity as a function of temperature are likely to differ between continents
and oceans [e.gBurrows et al. 2013]. In addition, environmental wind shear may impact the
results of the current study through its connection to entrainment/mixing events in convective
updrafts that could then influence CCN/ice nuclei concentrations and lead to changes in thermal
buoyancy within cloudy parcels.

A combination of shallower WCD and more instability over continents implies that the
warm-cloud residence time for an ascending parcel could be sufficiently short to allow for
efficient transport of cloud water to the mixed phase region to promote electrification and
frequent lightning. While observations of very shallow WCD were absent from our tropical
dataset, we speculate that large TLD and high AVGHT30 may occur in these environments
despite varying aerosol concentrations as the thermodynamics dictate the transport of cloud
liquid water to the mixed phase region to allow for riming and charge separation. Additionally,
for convective clouds with shallow WCD, the influence of aerosols on droplet growth processes
may be limited as a result of the briefijod of ascent through the cloud’s warm phase. When
WCD is > 4000 m (e.g., for many oceanic regions in the Tropics), our findings (Figs. R.3-2.6
suggest that the activation of warm-rain microphysics and subsequent development of
precipitation may still occur, even in the presence of high aerosol concentrations; this is
substantiated by our results as the greatest TLD and highest AVGHT30 were found to occur in a

relatively small region of the NCAPE-CCN parameter space (i.e., high NCAPE and high CCN).
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Hence, it appears that the maximum sensitivity to aerosols in deep convective clouds should be
found for environments with sufficient NCAPE for strong convective updrafts and shallower
WCD (e.g., WCD < 4000 m) in agreement with previous studies Wayng 2005;Fan et al,
2007;Mansell and Ziegler2013].

TLD for a fixed AVGHT30 was found to vary considerably as a function of CCN
especially for oceanic regions (Fig. 2.10). In more polluted environments the slope of the
relationship between TLD and AVGHT30 is greater and a given lightning density was associated
with higher AVGHT30 in more pristine environments. The results suggest that lightning is
sensitive to both changes in the internal vertical structure of precipitation and 30 dBZ echo top
height. Meanwhile, we have shown that modest enhancements to reflectivity in the mixed phase
region occur in progressively polluted boundary layer environments. While the correlation
between lightning and radar reflectivity proxies for convective intensity is generally strong, their
response to changes in thermodynamics and aerosol concentration may result from different
processes.

For example, laboratory experiments suggest that at a constant temperature (i.e., altitude),
the amount of charge separated per collision between ice particles increases with increasing
supercooled liquid water contefitgkahashi1978]. Thus, it is possible that increases in
lightning with respect to increasing aerosol concentrations in a given thermodynamic
environment result from enhanced transport of liquid water to the mixed phase region as warm
rain processes become less efficient for high aerosol concentrations, without invoking the
convective invigoration hypothesis of R08. Meanwhile, increased reflectivities at a given height
with increasing aerosol concentrations may again result from inefficient collision/coalescence

and enhanced riming in the mixed phase, but larger particles have greater fall speeds. Therefore
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a stronger updraft, possibly the result of enhanced latent heat release in the mixed phase when
aerosol concentrations are high [e.g., R08], may be necessary to loft these particles to greater
altitudes and contribute to larger reflectivity observed there.

In our examination of differences between the mean VPRR within deep CFs (i.e., CFs
with AVGHT30 > 5 km) for various stratifications of CCN (Fig. 2.11), we noted distinct
similarities in the mean vertical profiles, but systematically larger reflectivity at a given height
for progressively higher CCNSzoke et a[1986] andZipser and LutZ1994] produced median
VPRR for various samples of tropical oceanic, tropical continental, and midlatitude continental
convective systems. The mean VPRR for CFs in pristine environments in our study depicted
near constant reflectivity below the freezing level (near 40-45 dBZ) and rapid decreases in
reflectivity above the freezing levelsalient features of the VPRR shownZigser and Lutz
[1994]. Zipser and LutZ1994] showed differences of up to 10-15 dBZ above the freezing level
between tropical oceanic and tropical continental convective systems.

We point out that the effect of aerosols is to “continentalize” the vertical precipitation
structure by effectively enhancing the reflectivity above the freezing level. While differences in
the mean VPRR with respect to aerosols are observed, they are still modest and vary
guantitatively as a function of background thermodynamics. We interpret this finding as an
indication that thermodynamics simultaneously influence the development of deep convection
and are probably necessary to more accurately account for the full differences between tropical
continental and tropical oceanic VPRRs and the observed lightning characteristics.

Lastly, it is possible that the response of TLD and AVGHT30 to thermodynamic
characteristics of the environment and local concentrations of CCN varies seasonally and

regionally. For example, Fig. 2.9d illustrated that AVGHT30 was higher when WCD was deeper
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for low CCN and a considerable range of NCAPE for CFs over continents, in effect, countering
the hypotheses concerning the role of WCD put forth by previous researchei/il&agms and
Stanfill, 2002;Williams et al, 2005; andCarey and Buffalp2007]. Even though we exclude

CFs and LPCFs with AVGHT30 < 5 km in the current study to isolate the populations of deep
CFs and LPCFs, we have chosen to incorporate CFs and LPCFs from the global scale TRMM
domain and continents and oceans respectively. Therefore, it is possible that CFs and LPCFs
from different background regimes (e.g., subtropical/midlatitude vs. deep tropical) in different
stages of their respective lifecycles are analyzed together. A pressing question then becomes
whether the results found here are representative over continents and oceans everywhere or are
there notable exceptions over finer time and space scales. Despite the limitation of the smaller
sample sizes, a statistical decomposition of the relative influence of these independent variables
on deep convection and lightning in specific regions of the Tropics and Subtropics was

attempted.

2.5 Statistical evidence for the simultaneous roles of thermodynamics and aerosols

2.5.1 Introductory analysis

01 0Z 0t

0

......................................

-30-20-10 0 10 20 30

0€-0Z-01—

-150-120 -90 -60 -30 0O 30 60 90 120 150

Fig. 2.12. Global map of the TRMM domain (spannind®3&88°N, 18(°W-18C°E). Domains of interest are
outlined by colored lines and labeled for identification purposes (reference Table 2.3)
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The foregoing discussion focused predominantly on land-ocean contrasts in convective
behavior in response to changes in thermodynamics (NCAPE, WCD) and aerosols. A consistent
simultaneous dependence of convective intensity proxies on NCAPE, CCN, and WCD was
demonstrated for both continents and oceans. Noting the first-order dependence of convective
intensity proxies on the chosen predictors that was illustrated in the global analysis, one may
guestion whether the relative contributions of thermodynamics and aerosols to explaining the
overall variability in convective intensity changes for environments with different
thermodynamic and CCN conditions, i.e., between regions (Fig. 2.12; geographical bounds and
abbreviations for each region are provided in Table 2.3). Note that these regions were chosen
specifically for study based on documented seasonal changes in environmental characteristics
[e.g. Williams et al, 2002] and in order to highlight maxima in global lightning/radar echo top
height climatologies [e.gPetersen and Rutledg2001;Christian et al, 2003;Zipser et al.

2006;Liu et al, 2012] as well as land-ocean contrasts in convective intensity.

Table 2.3. Regions of IntereSt

Region Abbreviation Geographical Limits

Globe GLOBE [38°S— 38°N, 180W — 18C°E]
Continents CONT [38°S—38°N, 180W — 18CPE]
Oceans OCEAN [38°S-38°N, 180W — 18CPE]
Gulf Stream GS [31-38°N, 61— 81°W)]

Gulf of Guinea GG [5°S—5°N, 5°W — 10°E]
South America Offshore SAM [20 - 38°S, 35- 55°W]

South Africa Offshore ZAF [31-38°N, 25— 50°E]
Central America Offshore CA [8 — 16°N, 85— 100°W]
Australia Offshore AUS [31-38°S, 150- 170°W)]
Warm Pool WP [0 —20°N, 130- 16C°E]
Central Indian Ocean ClO [6°S— 6°N, 60— 9C°E]
Southern Great Plains, USA US [30-38°N, 87— 105°W]
Amazon AMZ [0 —15°S, 50- 70°W]

Congo CNG [0 —15°S, 10- 3C°E]

India IND [23 - 38N, 65— 75°W)]

Cldentification, abbreviation, and geographical boundaries for the selegfieds of interest.
The distribution of environmental characteristics for CFs/LPCFs spans a broad area in the

three-dimensional parameter space defined by NCAPE (axial X direction), CCN (axial Y
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direction), and WCD (axial Z direction), and it is readily apparent that continental and oceanic
LPCFs occupy different portions of the three-dimensional parameter space (Fig. 2.13).
Sensitivity of convective intensity proxies to NCAPE, CCN, and WCD can first be assessed by
searching in the geometric space defined by the three-independent parameters (NCAPE, CCN,
and WCD) for the path from the least to greatest values of convective intensity proxies; once
known, an estimate of the relative importance of each independent parameter may be ascertained
by comparing the magnitude of the projection of the trajectory onto each axis in the three-
dimensional NCAPE-CCN-WCD parameter space. In this section, such an heuristic analysis of
regional dependence of convective intensity proxies on the chosen predictor variables leads to a
more stringent statistical quantification of the relative influence of each variable using a multiple
regression approach following earlier hypotheses (the statistical method will be discussed in
more detail in a subsequent section). As it will be shown, the collection of a large number of
individual observations for many unique combinations of the independent predictors allows for
statistical isolation of the relative contributions of each independent variable studied in this
analysis to the variability of convective intensity.

As a first step to the analysis for individual regions, the convective intensity proxies were
sorted according to their magnitude from least to greatest (according to deciles for TLD and
altitude for AVGHT30). For each stratification, the associated values of the predictors were
indexed, averaged, and then catalogued. By making no assumption about the predictor variable
behaviora priori, strictly speaking, the procedure implicitly (incorrectly) treats the predictand as
an independent variable and the predictors as dependent variables; however, this elementary
method is instructive as one can begin to understand potential relationships between convective

intensity proxies and the specified predictors in each region. The trajectories of TLD/AVGHT30
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(from least to greatest) were mapped in the three-dimensional parameter space of NCAPE, CCN,

and WCD (X, Y, and Z axial directions, respectively; TLD shown in Figs. 2.14-2.16) for each

region of interest globally, over continents, and over oceans. For a simplified view, projections

of the three-dimensional predictand trajectories onto the NCAPE-WCD (X-Z), CCN-WCD (Y-

Z), and NCAPE-CCN (X-Y) planes are also presented.
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b) TLD Trajectories:globe
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b) TLD Trajectories:land

a) TLD Trajectories:land 5000
Us
AMZ
—T / ONG Q’X
AMZ | :
CNG 4500 IND
IND
= 5000 B
= 5 40001
2 4500 ’ 2
2 4000 " a X A
2 a T 3500+
2 3500 2
3] ) 2
g 3000 (;
§ 2500 é- 3000 F
2000
10000 0.3
>9% 00 0.25 2500 F
500250 0.15
100 0.1
2000 . N : ’ )
10 0 0 0.05 0.1 0.15 0.2 0.25 0.3
Boundary Layer CCN [em ?] NCAPE [Jkg 'm™] NCAPE [Jkg 'm 1]
0 TLD Trajectories:land d) TLD Trajectories:land
5000 10000
l»i‘iiz o
. e 5000 | ANz
¢ ONG
4500 F IND IND
. 2500}
= 5
= 4000 j = 1000}
= v 4 é
2, 5 RS
g2 3
=) O 500t
g 3500 F 5
=
2 7 250t f
3 |
g e
s 3000 .g 100 +
d :
Mm 50
2500
25
2000 . , . " : : " ‘ 10 g i A i i
10000 5000 2500 1000 500 250 100 ) 50 25 10 0 0.05 0.1 0.15 0.2 0.25 0.3
Boundary Layer CCN [em ¥] NCAPE [Jkg~'m™]

Fig. 2.15. Three-dimensional map of trajectories (solid) for TLD deciles from lepen(oircles) to greatest (open
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b) TLD Trajectories:ocean
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Fig. 2.16. Three-dimensional map of trajectories (solid) for TLD deciles from lepen(oircles) to greatest (open
triangles) for regions of interest over oceans during 2004-2&ElLIégend in each panel for region identification

The trend from low to high TLD (AVGHT30 not shown) is marked by a path toward
higher NCAPE, higher CCN, and shallower WCD over many of the regions investigated.
However, for several regions studied it is clear that the points that make up the trajectory are
restricted to certain subspaces within the three-dimensional parameter space, i.e., the Southern
Great Plains region (US), the Amazon (AMZ), the regions offshore of South Africa/eastern

Australia (ZAF/AUS), and over the Gulf Stream (GS). It is interesting to note that for regions
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where CCN concentrations range from 100-50 ciine projections of the trajectories onto the
NCAPE and CCN axes appear to be comparable. Meanwhile, for regions with CCN >500 cm
or <100 cn?, the trajectories project most strongly on the NCAPE axis and relatively less so on
the CCN axis. Thus, the preliminary results suggest the possibility that the largest sensitivity of
convective intensity proxies to CCN is found for environments in which the background
concentrations are moderate (~100-506°tm

To investigate the linkage to background meteorological conditions, composite behavior
of the predictors was examined for low and high values (i.e., below theet@entile and above
the 9" percentile) of the predictand in a subset of the regions analyzed. For brevity, the results
for TLD over regions that stand out as maxima in lightning climatology offshore/downstream of
major continents are shown, as a definitive explanation for enhanced lightning in these regions is
lacking. During the eight-year period, days with LPCFs that produced lightning densities above
the 9" percentile were sequestered from days with LPCFs that produced lightning densities
below the 18 percentile (also without producing lightning density above tiepgdcentile;
percentiles were computed within individual regions). The resulting daily averages of
thermodynamic/meteological variables of interest were composited for these two “exclusive”
data populations and compared.

Composites of NCAPE, CCN, WCD, 850 hPa geopotential height (Z), and 1000-850 hPa
vector-average flow over three regions downstream of the United States (GS), South Africa
(ZAF), and Australia (AUS) during their respective warm convective seasons (JJA for GS and
DJF for ZAF and AUS) are presented in Figs 2.17-2.21. For these coastal regions, deeper low-
level troughs (evident in the composites of Z850 hPa) promote stronger cross-shore flow and

transport higher CCN concentrations farther offshore. Additionally, both convective inhibition

60



(not shown) and NCAPE were generally higher, contributing to a more volatile thermodynamic
profile once parcels reach the level of free convection. WCD composites depict ambiguous
results in the comparison between low and high lightning density, possibly indicative of a
secondary importance of WCD in the cases presented. Collectively, the composite distributions
illustrate that higher lightning density in the warm season over regions downstream of major
continents is associated with more favorable thermodynamics and CCN simultaneously when

compared to the composites for the lowest decile of lightning density in the same season.
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Fig. 2.17. Composites of NCAPE [J Kgm?] for low and high TLD over the Gulf Stream (GS; for the month,Jun
July, and August), offshore of South Africa (ZAF; for the momdesember, January, and February), and offshore
of eastern Australia (AUS; for the months December, January, and FebIN&ARE is contoured for days
featuring the occurrence of TLD above thé'@@rcentile (red solid) and for days featuring TLD below th& 10
percentile (blue solid; not including the occurrence of lightning denstteitighest decile). The contour of mean
NCAPE (shaded in grayscale) for all days where an LPCF was observedionthi of interest (light green solid)
for each season is shown for reference. Outlines of major comstiamenshown by thin, black solid lines.
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Fig. 2.18. As in Fig. 2.17, but for CCN [cHj.

61



'WCD Distributions: GS, JJA ‘WCD Distributions: ZAF, DJF WCD Distributions: AUS, DJF
-8 70 60 150 160 1%
= 3

3000 3500 4000 4500 3000 3500 4000 4500 3000 3500 4000 4500
Warm Cloud Depth [m] Warm Cloud Depth [m] Warm Cloud Depth [m]

Fig. 2.19. As in Fig. 2.17, but for WCD [m].
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Fig. 2.21. As in Fig. 2.17, but for 1000-850 hPa average wind{m s

The aforementioned results from the initial cursory analysis communicate that in specific
regions, the trends in convective characteristics with respect to NCAPE, CCN, and WCD are
gualitatively consistent with the results from the global scale investigation. However, as
exemplified for oceanic regions downstream of major continents, more unstable environments
can occur in unison with stronger aerosol transport and/or greater CCN concentrations and hence
major difficulty is encountered when attempting to decouple aerosol microphysical/dynamical

impacts from thermodynamic impacts [el§oren et al, 2005,2010Altaratz et al, 2014]. The
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fact that correlations between thermodynamic and aerosol quantities were shown to exist calls
for an approach to isolate the effects of each predictor on convective properties using statistical

methods.

2.5.2 Inferences from simple linear models

Multiple linear regression is a statistical technique that seeks to account for the maximum
portion of variance in a quantity of interest (i.e., the predictand) by minimizing the difference
between the observed value of the predictand and a value of the predictand that is estimated
using a linear combination of the chosen independent variabiés[2011]. Provided a
number of relevant assumptions are valid in context, the sensitivity of the predictand to each of
the independent variables can be quantified in isolaMwon{gomery et a).2012]. As a
generalization of the one-dimensional case, the multiple linear regression model is specified as

follows:

Yo = Bo+ B1Xin+ B2Xon + -+ BpXpn t+ € (Eqg. 2.1)
WhereY, is the predictandio is the regression constafig,are coefficients for each of thxg
independent predictor variables, and € are errors between the fitted value of the predictand and Yn
(for the set oh observations).The statistical integrity of the model is commonly tested against
the null hypothesis that the chosen set of independent variables exhibit no predictive skill for the
predictand, i.e.fo...fp = 0.

The discussion of uncertainty attendant to the chosen methodology in Sec. 2.2 above
highlights the need to institute an averaging scheme in order to investigate the central behavior
of the dataAltaratz et al, 2014]. In line with the above analysis that analyzed two-dimensional
histograms based on the independent variables, the current approach is to use a three-

dimensional histogram of NCAPE, CCN, and WCD in order to incorporate potential influences
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of all predictors simultaneously. The means of these predictor variables within each subset
(cube) of the parameter space are assumed to accurately represent true population values
attributed to individual CFs. Next, the mean of the predictand within each subset of the
parameter space was used to define simultaneous observations accordinify, ¢&.g.Xo.n,
Xan, ..., Xpn, fOr p predictors for each of theobservations).

The explicit goals of conducting this type of statistical regression analysis are generally
1) to investigate whether the set of independent variables offer predictive capability for the
dependent variable of interest, 2) whether linear combinations of the independent variables
“explain” more of the variance in the dependent variable compared to each of the independent
variables in isolation and 3) to determine the relative contributions of each independent variable
to the variance in the dependent variable, controlling for other inputs. According to the latter
goal, standard anomalies, i.e., the quantity defined by the difference between a value and its
sample mean, divided by its sample standard deviation, were computed for each of the variables
of interest. Thus, regression of standard anomalies of the predictand onto standard anomalies of
the independent variables permits direct comparisons of the relative importance of each input.
An initial form of the multiple linear regression model follows from the above result (i.e., Sec.
2.4), that stronger convection occurs in environments with higher NCAPE, higher CCN
concentrations, and shallower WCD. The results from the global CF study above suggest
possible first-order linear dependence of convective intensity proxies on NCAPE, CCN and
WCD. However, several previous studies have noted potential for higher order dependencies of
the predictand on the chosen set of independent variables.

To reiterate, RO8 suggest a “saturation/optimum” effect for aerosols, such that initial

increases in aerosol concentrations can invigorate convection, yet increasing the aerosol load
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beyond some optimum value leads to a reduction in short-wave fluxes reaching the surface and
subsequent depletion of surface-based instability (contributing a simultaneous direct radiative
influence on thermodynamics). Alternatively, increasing the concentration of CCN in parcels
near cloud base leads to progressively smaller droplets, as an increased number of condensation
centers compete for the available water vapor; in this view, droplets may become so small that
the collision/riming efficiency for small droplets and riming particles diminishes appreciably.
Subsequently, the development of high concentrations of graupel above the freezing level and
the occurrence of rebounding collisions between precipitation ice and smaller ice particles
becomes less likely, in which case lightning and radar reflectivity in the mixed-phase region may
decrease in frequency and magnitude, respectively. Lastly, it is possible that there could be a
simultaneous quadratic/logarithmic dependence on WCD as this parameter influences the warm-
phase residence time of ascending parcels. For progressively shallower WCD, the time for CCN
or condensational growth processes to impact warm-rain microphysics decreases. So WCD
plays the same forcing role as increasing CCN. When considering simultaneous influences of
other predictors, is there a limit beyond which shallowing the WCD leads to no further changes
in the response?

It is often the case that environmental variables are log-normally distributed and therefore
these variables may be transformed into logarithmic form in practice$¢otg,et al.2014]. To
rectify log-normal behavior of the predictand or individual predictors in the current statistical
investigation, multiplicative relationships are also relevant. For example, multiplicative models
of the dependent variable, e.g., lightning, can be re-expressed as linear models via the following

development:

XB1_X52

Y = 30[ 1ng2 ] (Eq. 2.2a)
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Xﬁl-XZ’BZ

log1o(Y) = logyo (ﬁo [}T]) (Eg. 2.2b)

log1o(Y) = log10(Bo) + b1 - log10(X1) + B2 - log1o(X2) — B3 logq0(X3) (Eq. 2.2¢)

Note that the preceding development is relevant in a multiple linear regression framework since
the hypothesized model form remains linear in the regression pararig{ess, the model form
does not contain products of regression coefficients). Table 2.4 describes the experimental
regression trials used in this study. The linearized form of the above multiplicative model will
be referred to as the “logarithmic” form hereafter so that it may be differentiated from pure linear
representations of Y and the predictor set alike.

Table 2.4. Linear models of varying complexﬂy

Model Description General Form

1 Single X Y ~ X1 (logwoY ~ logioX1)
2 Single X% Y ~ Xz (logioY ~ logioX2)
3 Single % Y ~ X3 (logioY ~ logioX3)
4 Linear (logwoY) Y ~ Xp

5 Interaction (logioY) Y ~ Xp- Xq

6 Quadratic (logwoY) Y ~ Xp2

7 Logarithmic (logoY) Y~ logioXp

8 Linear, Interaction (logioY) Y ~ Xp, Xp* Xq
9 Linear, Quadratic (logioY) Y ~ Xp, Xp?

10 Quadratic, Interaction (logoY) Y ~ Xp?, Xp- Xq
11 Linear, Interaction, Quadratic (log10Y) Y ~ Xp, Xp- Xgq, Xp?

12 Linear, Interaction, Quadratic, Logarithmic (logioY) Y ~ Xp, Xp* Xg, Xp?, logioXp
13 Optimal (logioY) Y ~ Xp, Xp?, logioXp (three-term model)
dModels for the response variable, Y, versus linear representations of NCAREQCN (X2), and WCD (%) employed in the

statistical decomposition. Model #13 represents an experimental form tHayshpee independent variable terms of any
transformation (linear, quadratic, and logarithmic allowed; one eacKyf, seeking the maximum strength of regression.

In the multiple regression analysis, the investigator is burdened with proving that the null
hypothesis (i.e fo...fp = 0) is false and thus is obliged to demonstrate that assumptions of
Gaussian residuals, homoscedasticity (constant residual variance), and linear independence for
the set of predictors are valid. Therefore, the multiple correlation for the regression, the
strength/significance of the multiple regression, covariability/multicollinearity of the

independent variables, distribution of regression residuals/residual variance, and standard error
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of eachpp (to determine whether the individual parameter estimates are significantly different
from zero) were examined in detail.

The linear correlation between a predictor and the rest of the independent variables in
each model form, i.e., multicollinearity, was computed in order to determine the degree of linear
dependence in the set of independent variables. From a statistical perspective, the ordinary least-
squares matrix algebra solution for parameter estimates in the multiple linear regression
framework depends on computation of the inverse of the product of the design Xoétex,the
[n x p] matrix whose columns are vectors of lengtltorresponding ta measurements of each
predictor,p), multiplied by its transpose, i.eX'K]™2. If one column (or more) of the design
matrix can be rewritten as a linear combination of the remaining columns, the square matrix
[X'X] is said to be singular and therefore not invertible. Conceptually, if there is significant
multicollinearity in the predictor set, two or more independent variables are highly correlated
with each other. If there is then significant correlation between the set of predictors and the
responsevariable it becomes difficult (or impossible) to assess the relative influence of each
predictor on the response variable in isolation from other independent variables.

The predictive strength and significance of each model was assessed using multiple-
correlation coefficients both for the regression and for the regression adjusted according to the
number of degrees of freedom. The F-statistic, defined by the ratio of variance of the regression
to the variance of the residuals (assuming Gaussian residual behavior), was used to test the null
hypothesis that at least one of the regression parameter estimates was significantly different from
zero. Standard-error estimates for each of the regression parameters were used to assess
regression coefficient stability via the appropriatetistic (i.e., the ratio of the parameter’s

coefficient estimate to its sample standard deviation), again assuming Gaussian residuals. These
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guantities were computed for specific regions and seasons; the focus now shifts to a discussion
of results from the multiple regression analysis and assessment of the statistical validity of these
findings.

The extended set of results for each regression model (e.g., models 1-13 in Table 2.4), for
each region/season are provided in Appendix A.2, but several aspects of the collection of
experimental regression trials for all regions and seasons studied may be generalized (though
regions lacking sufficient data points were omitted). Importantly, the multiple linear model
including either linear or logarithmic representations of the convective intensity proxies and
predictors (i.e., NCAPE, CCN, and WCD) for almost every region analyzed illustrated that the
hypothesized first-order dependence was consistent with findings from the global scale
(reference Sec. 2.3.2 above be discussed in more detail below). For example, the multiple
correlation coefficients (B, an indicator of the model’s overall predictive skill, for models
involving combinations of the predictors was larger than thi@Rone-dimensional
linear/logarithmic relationships between TLD/AVGHT30 and each predictor separately. The
degree of linear dependence in the predictor set, i.e., multicollinearity, was small for
linear/logarithmic combinations of the predictors; approximately twenty percent or less of the
variability in one predictor was explained by linear combinations of other predictors in the set for
most regions annually (according@oaper and Smit1998], these values are within standard
tolerance levels for multicollinearity in multiple linear regression).

The F-statistic for each model was statistically significant (p < 0.01), favoring rejection
of the null hypothesis, such that at least one ofle0 (an indication that the ratio of variance
of the regression to the variance of the residuals is large; possibly a consequence of the large

sample sizes involved). For many of the experimental trials involving simple linear/logarithmic
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representations of the predictors, individual regression parameter estimates, g wére

found to be significant at the p < 0.05 level (two-tailed probability). Stated another way,
statistical significance is implied by a 95% chance that the absolute value of a random t-variate is
less than or equal to the t-statistic for the parameter estimate in question. For higher-order
models that included multiple representations of NCAPE, CCN, and WCD in the predictor set,
the multiple correlation was in some instances higher than that for lower-order models, but
multicollinearity in the predictor set for higher-order models increased sufficiently to render
individual parameter estimates generally insignificant from a statistical perspective. Note that
the R values for linear/logarithmic representations were comparable or only slightly smaller
than the Rfor higher-order models considered. Hence, the rest of the discussion will focus on
linear/logarithmic representations, i.e., experimental model forms 4 and 7 from Table 2.4.

The above discussion of general results for individual regions contributes 1) that simple
linear/logarithmic models are consistent with first-order dependence found on the global scale; 2)
that these model forms capture a significant portion of the variance of the response; and 3) that
the parameter estimates for each model form are unlikely to result from mere random chance.
Linear and logarithmic model results will be studied next to assess the validity of the
assumptions of the multiple linear regression framework; it is important to investigate regression
residual behavior to determine whether parameter estimates remain undks®p11], and
therefore applicable across the domain of the independent parameter space. Figs. 2.22-2.26
exemplify the distribution of the residuals with respect to each predicted value from the linear
model (left panel) and logarithmic model (right panel) for TLD (AVGHT30 not shown) over the
globe, continents, oceans, and different regions of interest for all months in the eight-year

sample. The residual variance for linear models in the left panel suggests Gaussian residual
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behavior (randomly distributed about a mean of O for a given predicted Y value), but
heteroscedastic behavior is apparent, as the variance increases across the domain of predicted Y.
Residuals for the logarithmic model form in the right panel are approximately Gaussian and the
variance of the residuals is more uniform across the domain of predicted Y, especially over
oceans, the Amazon (AMZ), and the Gulf Stream (GS) domains, for example.

The latter behavior evident for the logarithmic model form is more in line with the
assumptions of the multiple linear regression framework. Although the logarithmic
representation of TLD (and AVGHT30) over continents appears to be subject to “missing
predictors” [e.g., Wilks 2011; pp. 227] the mean-square-error (MSE) statistics, shown in the
upper left of each plot, suggest that the logarithmic model is a better fit to the data as evidenced
by smaller MSE values overall. Using Tables 2.5-2.6 as an additional reference for regression
statistics, it is understood thée logarithmic model form consistently outperforms the linear

model form as shown by the multiple correlation coefficient.

GLOBE_ANNUAL Residual Variance, Samples: 885 GLOBE_ANNUAL Residual Variance, Samples: 885
linear Y; lincar log Y; logarithmic
Jf R=053591468 z af  R=079450273 3

MSE = 0.46566564 ] MSE = 0.20619703

Residual
Residual

0 0
Predicted Y Predicted Y

Fig. 2.22. The distribution of regression residuals (i.e., the difference betwegmedicted value of dependent
variable, Y, and the observed value of Y) versus the predicted value othéf@lobal dataset for all months for
the years 2004-2011. The number of samples, form of Ygandral form of the regression model parameters are
provided in the title; linear models (left) are compared to logarithmic models (rightds on each axis are
representative of standardized anomalies. The multiple correlatipar{® mean square error (MSE) for each
regression are provided in the upper left corner of each plot.
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CONT_ANNUAL Residual Variance, Samples
linear Y; lincar

R*=0.48819331

: 716

Residual

CONT_ANNUAL Residual Variance, Samples: 716

log Y; logarithmic

; 4 o
MSE =0.51396318 ] [

R*=0.65944043
MSE =0.34199452

0
Predicted Y

Fig. 2.23. As in Fig. 2.22, but for continents (CONT).

OCEAN_ANNUAL Residual Variance, Samples: 615

OCEAN_ANNUAL Residual Variance, Samples:

615

linear Y; lincar

R* = 0.50716608

log Y; logarithmic

R*=0.72623552

Residual

0
Predicted Y

Fig. 2.24. As in Fig. 2.22, but for oceans (OCEAN).

AMZ_ANNUAL Residual Variance, Samples: 202
inear Y; linear

] 13
MSE =0.49525372 ]

MSE = 0.27510866

AMZ_ANNUAL Residual Variance, Samples: 202

log Y; logarithmic
4f R'=0.57542385 a 4 R'=0.77759785 2
MSE = 0.43100912 ] MSE = 0.22577188
] ]
= -
°
3 ]
~ ]
4 ¢ 4 -af J
-4 -2 0 2 4 -4 -2 0 2 4
Predicted Y Predicted Y
Fig. 2.25.

As in Fig. 2.22, but for the Amazon (AMZ).

GS_ANNUAL Residual Variance, Samples: 87

{ ¢ GS_ANNUAL Recsidual Variance, Samples: 87
inear Y; linear log Y; logarithmic
4f R'=0.55124233 a 4 R'=0.70550219 2
MSE =0.46497782 ] [ MSE=0.30514231
2F 3 oF ]
c | .
= = 3 oo Bhd obloq -
g o . 2 of S
~ . 4 o .« L
-2F - -2 -
-4k - . -
-4 -2 0 2 4 -4 -2 0 2 4
Predicted Y Predicted Y

Fig. 2.26. As in Fig. 2.22, but for the Gulf Stream (GS).
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Over the globe, continents, oceans, and select smaller-scale regions of interest, the
logarithmic model exhibits higher multiple correlation with the convective intensity proxies
(R?>~0.36-0.79 for TLD; R~0.27-0.73 for AVGHT30) compared to the linear modeé~IR04-

0.61 for TLD; R~0.29-0.61 for AVGHT30). The improvement for logarithmic models of
AVGHT3O0 vs. linear models of AVGHT30 based on the multiple correlation coefficients are
generally small (in some cases, the linear model outperforms the logarithmic model). Total
regression (via the F-statistic) and individual parameter estimates (via the t-statistic) were
statistically significant at the p < 0.05 level over the GS, CIO, US, and AMZ for TLD and over
the GS, SAM, US, AMZ, and CNG for AVGHT30 annually. Provided that the aforementioned
discussion validates the logarithmic model (using NCAPE, CCN, and WCD as inputs) for
convective intensity, a critical final consideration in the regression analysis is the comparison of

the magnitudes of the weights applied to each predictor.

Table 2.5. Statistics of regression model forms 4 (linear) and 7 (logarithmid)LiD®

Region Season  Multicollinearity ~ Multiple R? Individual R? Estimates, fp Significance, fp
GLOBE Annual 0.12, 0.00, 0.13 0.54 (0.79) 0.18,0.25,0.03  0.53,0.49,-0.37 1.00,1.00,1.00
(N=885) (0.12,0.03,0.10) (0.13,0.53, 0.02) (0.32,0.75,-0.31) (1.00,1.00,1.00)
CONT Annual  0.10,0.00,0.10 0.49 (0.66) 0.12,0.15,0.13 0.51,0.36,-0.49 1.00,1.00,1.00
(N=716) (0.09,0.07,0.14) (0.08,0.45,0.19) (0.38,0.56,-0.41) (1.00,1.00,1.00)
OCEAN Annual  0.14,0.00,0.14 0.51 (0.73) 0.09,0.18,0.13  0.49,0.41,-0.53 1.00,1.00,1.00
(N=615) (0.12,0.01,0.12) (0.06,0.39,0.23) (0.40,0.56,-0.58) (1.00,1.00,1.00)
GS Annual 0.12,0.01,0.12 0.55 (0.71) 0.17,0.38,0.01  0.44,0.58,-0.24 0.99,0.99,0.96
(N=87) (0.12,0.00,0.12) (0.19,0.50,0.01) (0.48,0.67,-0.24) (0.99,1.00,0.96)
GG Annual  0.09,0.17,0.09 0.61 (0.61) 0.45,0.32,0.00 0.54,0.45,-0.14 1.00,1.00,0.70
(N=58) (0.10,0.18,0.10) (0.39,0.35,0.00) (0.48,0.51,-0.21) (1.00,1.00,0.87)
SAM Annual  0.23,0.01,0.23 0.34 (0.43) 0.04,0.30,0.03  0.11,0.54,0.14  0.39,0.99,0.48
(N=29) (0.31,0.01,0.31) (0.00,0.41,0.01) (0.11,0.65,-0.18) (0.38,1.00,0.57)
ZAF Annual  0.04,0.52,0.55 0.50 (0.72) 0.07,0.48,0.26  0.14,0.63,-0.05 0.47,0.94,0.13
(N=22) (0.06,0.60,0.59) (0.05,0.69,0.56) (0.02,0.61,-0.27) (0.09,0.91,0.56)
CA Annual 0.12,0.14,0.03 0.47 (0.67) 0.43,0.16,0.00 0.59,0.20,0.00 1.00,0.84,0.02
(N=58) (0.20,0.24,0.06) (0.61,0.26,0.03) (0.71,0.17,-0.16) (1.00,0.73,0.76)
AUS Annual  NaN (NaN) NaN (NaN) NaN (NaN) NaN (NaN) NaN (NaN)
(N=NaN)

WP Annual  0.03,0.05,0.05 0.04 (0.42) 0.02,0.00,0.01 0.03,0.08,-0.16  0.16,0.43,0.75
(N=54) (0.02,0.06,0.05) (0.36,0.09,0.03) (0.57,0.22,-0.05) (1.00,0.87,0.27)
ClO Annual  0.10,0.06,0.07 0.35 (0.59) 0.15,0.18,0.02  0.38,0.38,-0.29 0.99,0.99,0.95
(N=51) (0.15,0.10,0.06) (0.31,0.28,0.05) (0.53,0.40,-0.39) (1.00,0.99,0.99)
us Annual 0.21,0.10,0.27 0.25 (0.38) 0.10,0.06,0.02  0.49,0.23,-0.29 0.99,0.98,0.99
(N=128) (0.21,0.09,0.26) (0.05,0.22,0.05) (0.44,0.46,-0.29) (0.99,0.99,0.99)
AMZ Annual 0.06,0.15,0.15 0.58 (0.78) 0.18,0.32,0.22  0.42,0.37,-0.40 1.00,0.99,0.99
(N=202) (0.05,0.18,0.17) (0.15,0.63,0.26) (0.32,0.63,-0.29) (0.99,1.00,0.99)
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CNG Annual  0.12,0.02,0.13 0.32(0.36)  0.14,0.16,0.00 0.42,0.41,-0.08 0.99,0.99,0.59
(N=137) (0.11,0.04,0.14) (0.13,0.24,0.00) (0.38,0.46,-0.10) (0.99,0.99,0.73)
IND Annual  0.26,0.51,0.39 0.60 (0.74)  0.17,0.60,0.19  0.05,0.77,0.04  0.16,0.98,0.12
(N=25) (0.25,0.45,0.30) (0.17,0.74,0.26) (0.01,0.81,-0.07) (0.03,0.99,0.24)

®Experimental regression model statistics for TLD in each region and ahsiorthe eight-year sample. Linear
and logarithmic model forms are detailed (output from logarithmic model foen@ravided in parentheses).
Multicollinearity is the linear multiple regression coefficient between eaafligior and the rest of the independent
set. Individual Raccounts for relationships between individual predictors to the respaniakle, Y. Multiple R
illustrates strength of the relationship between each combination of predictaheandponse variable, Y.
Significance of each parameter estimate is given in terms of a two-taileahjlity that the absolute value of a
random t-variate is less than or equal to the parameter estimate in questidrip@#dan certain categories are
indicative of the values assigned to representations (either linear or logarithiidi€APE, CCN, and WCD
respectively. The number of observations is provided under each negiarentheses (regions with less than 20
data points were omitted from this analysis).

Table 2.6. Statistics of regression model forms 4 (linear) and 7 (Iogarithmi@)\!&HT3Of

Region Season  Multicollinearity ~ Multiple R? Individual R? Estimates, fp Significance, fp
GLOBE Annual 0.11,0.00,0.11 0.61 (0.73) 0.29,0.20,0.03  0.65,0.43,-0.39 1.00,1.00,1.00
(N=1052) (0.12,0.04,0.10) (0.23,0.54,0.03) (0.44,0.65,-0.25) (1.00,1.00,1.00)
CONT Annual  0.09,0.00,0.09 0.57 (0.63) 0.24,0.08,0.11  0.65,0.27,-0.52 1.00,1.00,1.00
(N=844) (0.09,0.06,0.13) (0.19,0.33,0.12) (0.52,0.47,-0.39) (1.00,1.00,1.00)
OCEAN Annual 0.12,0.00,0.12 0.58 (0.63) 0.17,0.13,0.12  0.61,0.39,-0.56 1.00,1.00,1.00
(N=779) (0.10,0.02,0.10) (0.15,0.34,0.11) (0.49,0.51,-0.44) (1.00,1.00,1.00)
GS Annual  0.09,0.02,0.10 0.47 (0.48) 0.07,0.31,0.07 0.36,0.52,-0.31 1.00,1.00,1.00
(N=197) (0.08,0.02,0.10) (0.08,0.31,0.08) (0.36,0.52,-0.31) (1.00,1.00,1.00)
GG Annual 0.07,0.07,0.01 0.45 (0.49) 0.39,0.13,0.01  0.58,0.23,-0.14 1.00,0.98,0.87
(N=113) (0.06,0.07,0.01) (0.34,0.23,0.01) (0.50,0.37,-0.17) (1.00,1.00,0.93)
SAM Annual 0.08,0.01,0.07 0.36 (0.40) 0.07,0.16,0.10  0.33,0.37,-0.40 1.00,1.00,1.00
(N=126) (0.09,0.03,0.08) (0.05,0.25,0.10) (0.28,0.44,-0.36) (1.00,1.00,1.00)
ZAF Annual 0.07,0.31,0.30 0.41 (0.50) 0.02,0.30,0.30  0.13,0.33,-0.40 0.78,0.99,1.00
(N=93) (0.04,0.33,0.34) (0.01,0.44,0.30) (0.11,0.51,-0.28) (0.71,1.00,0.97)
CA Annual 0.13,0.15,0.04 0.63 (0.60) 0.59,0.19,0.00 0.70,0.19,-0.07 1.00,0.97,0.61
(N=159) (0.18,0.20,0.03) (0.46,0.38,0.01) (0.52,0.40,-0.01) (1.00,1.00,0.18)
AUS Annual 0.15,0.13,0.21 0.29 (0.27) 0.16,0.06,0.11  0.25,0.30,0.34 0.81,0.88,0.91
(N=34) (0.12,0.10,0.17) (0.09,0.07,0.12) (0.16,0.35,0.38) (0.59,0.94,0.95)
WP Annual 0.00,0.00,0.00 0.59 (0.59) 0.39,0.19,0.00 0.64,0.45,0.02 1.00,1.00,0.15
(N=161) (0.00,0.01,0.02) (0.35,0.23,0.00) (0.59,0.49,0.07) (1.00,1.00,0.14)
ClO Annual 0.03,0.02,0.04 0.58 (0.59) 0.38,0.22,0.00 0.60,0.42,-0.08 1.00,1.00,0.67
(N=150) (0.04,0.05,0.06) (0.35,0.31,0.00) (0.54,0.49,-0.05) (1.00,1.00,0.44)
us Annual 0.14,0.12,0.21 0.44 (0.38) 0.12,0.04,0.16  0.57,0.11,-0.57 1.00,0.81,1.00
(N=180) (0.16,0.11,0.23) (0.07,0.07,0.15) (0.50,0.18,-0.52) (1.00,0.97,1.00)
AMZ Annual 0.10,0.15,0.18 0.63 (0.71) 0.16,0.46,0.14 0.40,0.54,-0.28 1.00,1.00,1.00
(N=278) (0.10,0.21,0.23) (0.16,0.60,0.14) (0.35,0.65,-0.19) (1.00,1.00,0.99)
CNG Annual 0.12,0.02,0.14 0.41 (0.44) 0.08,0.25,0.04 0.39,0.48,-0.27 1.00,1.00,1.00
(N=167) (0.12,0.04,0.15) (0.04,0.37,0.05) (0.27,0.57,-0.21) (1.00,1.00,0.98)
IND Annual 0.19,0.26,0.14 0.32 (0.32) 0.17,0.25,0.00 0.25,0.43,0.07 0.94,1.00,0.43
(N=75) (0.17,0.15,0.12) (0.13,0.24,0.00) (0.27,0.46,0.06) (0.97,1.00,0.40)

'As in Table 2.5 except for AVGHT30.

In order to assess the relative importance of each predictor as they contribute to the
variability in convective intensity proxies, a compilation of the parameter estimates for regions

where the logarithmic model forms produced statistically significant output is presented for both
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TLD and AVGHT30 (Figs. 2.27-2.28; annual results). Recall that the relative weight assigned to
each predictor accounts for changes in the response, holding all other inputs fixed, and the results
are directly comparable since all variables have been standardized prior to computing the
regression output (these values may be interpreted as dependence “per unit” input of each

predictor). For TLD, the logarithmic model in these regions explains between 38-79% of the
variance of the predictand and the relative weight on CCN is greater than the relative weight on
NCAPE in all regressions except for the CIO (Fig. 2.27); for the global dataset, the relative
dependence on CCN is more than double that for NCAPE or WCD. Over continents, CCN is
still the leading component explaining the variability in the response according to the logarithmic
model but the relative weight is comparable to the other two inputs, NCAPE and WCD. Over
oceans, CCN and WCD are approximately equally weighted, while the weight assigned to
NCAPE is about 32% smaller than either CCN or WCD. Over the CNG, US, and CIO, the
contributions of NCAPE and CCN are roughly equal (and positive) while the dependence on

WCD is negative and appears to be of secondary importance.

Multiple Regression: Regional Dependence

logyY = log,ey + b;log,NCAPE + b,log,.CCN + bjlog,,wCD ¥ariable: TLD
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Fig. 2.27. Estimates of the relative weight assigned to each independent paramétiegrizem the multiple linear
regression using logarithmic model form #e¢ Table 2 ¥for TLD for different regions of interest (shown in the
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legend) for all months during the years 2004-2011. The suofsamples (N), multiple correlation3Rand
significance of the §predictor (; see text for definition of statistical significap@e provided for reference along
the abscissa.
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Fig. 2.28. Asin Fig. 2.27, but for AVGHT30.

In general, the logarithmic regressions show higher AVGHT30 for higher NCAPE,
higher CCN, and shallower WCD for individual regions as well as on the global scale annually.
The logarithmic model analyzed based on the three predictors in the selected regions offers a
range of predictive skill as it captures about 38-72% of the variance in the predictand. Like the
results for TLD, the regional dependence of AVGHT30 on NCAPE, CCN, and WCD again
appears to be quite variable. Furthermore, comparing the results for TLD and AVGHM80
same regiorshows that the sensitivity of the each convective intensity proxy to NCAPE, CCN,
and WCD is similar, corroborating the strong correlation between TLD and AVGHT30 shown in
Sec. 2.3.5.

In order to address potential differences in seasonal sensitivity of convective intensity
proxies to NCAPE, CCN, and WCD in the logarithmic model, broad hemispheric study areas
had to be tested to account for the decrease in sample size that resulted from limiting the data

subsets to individual seasons (Fig 2.28-2.29; note that concurrent regional and seasonal subsets
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were studied, but the parameter estimates were statistically unstable, perhaps due to prohibitively
small sample sizes). Hemispheric subsets were analyzed for individual warm seasons (JJA for
the Northern Hemisphere and DJF for the Southern Hemisphere) to reduce the potential
complication that may arise from including tropical (e.g., upright, warm-season type) and
subtropical/extratropical (i.e., convective clouds governed by midlatitude dynamics) features in
the same sample. Results for the logarithmic model regression for individual seasons in each
hemisphere are in close agreement with the annual regression output presented above (note
annual results in individual hemispheres are also shown in Figs. 2.282\&0idation

purposes), again emphasizing the consistency of the current statistical results across multiple

scales of interest.
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Fig. 2.29. As in Fig. 2.27, but for TLD in individual hemispheres (seasonamnsual datasets are identified along
the abscissa for each hemispheric data subset).
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Fig. 2.30. As in Fig. 2.27, but for AVGHT30 in individual hemispheres (seassannual datasets are identified
along the abscissa for each hemispheric data subset).

A tangential study of the applicability of the statistical approach to global chemical
transport modeling was motivated by previous studies that attempted to parameterize lightning in
order to more accurately resolve and model chemical constituents of the atmoBptkerenjg
et d., 1990,1998]. For example, the frequency and vertical distribution of lightning is
theoretically linked to the production of nitrogen oxides and therefore lightning has been
implicated for altering subsequent distributions ozone, an important green-houSelgasdnn
and Huntrieser2007]. Allen and Pickering2002] developed parameterizations for satellite
observations of lightning flash rates using the vertical mass flux, convective precipitation rate,
and cloud top height but found considerable disagreement between their regressions and
observations, particularly over tropical oceans, citing bias in their modeled predictor set.
However, it is well-known the convective cloud tops in the Tropics may reach the tropopause in
the absence of strong updrafts> 5-8 m ') [Zipser, 2003] or appreciable vertical reflectivity
column development and lightningipser and Lutz1994;DeMott and Rutledgel998]. It is

possible that weak relationships between parameterized and observed lightning flash rates in
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previous global modeling studies [e8llen and Pickering2002] resulted from focusing on
variables that were too indirectly linked to the charge separation process.

The foregoing results support the notion that NCAPE, CCN, and WCD in combination
are important drivers of the observed variability in lightning on the global scale. Accordingly,
“real” values (as opposed to standard anomalies) of lightning, NCAPE, CCN, and WCD were
used as inputs for the computation of ordinary least-squares regression parameters assuming the
logarithmic model form (using all available data). The multiple correlation for the real-valued,
logarithmic regression was’R0.79, the F-statistic for the regression was significant at the p <
0.01 level, and individual t-statistics for parameter estimates were significant at the p < 0.10 level
(see Fig. 2.31). While it is beyond the scope of the current research, tests of the sensitivity of
NOx in global chemical transport models to lightning parameterized by NCAPE, CCN, and
WCD following the real-valued regression analysis conducted here are required before
implementation. As new emissions inventories become available for years following 2011,
cross-validation of the empirical model developed here using independent data sets will be
possible.

As mentioned above, multiple noise sources are likely to contribute to the observed
spread/variance of the predictand for each NCAPE, CCN, and WCD bin. The sensitivity of the
results of these statistical analyses (e.g., regression strength and parameter estimates for the
various model forms) to changes in bin increments for averaging was examined by adjusting the
bin increment from fine to coarse, according to multiples of 0.10 and 0.50. To illustrate, the
above analysis used a multiple of 0.25 such that bin increments were 0.0263 fay
NCAPE, 0.25 for CCN (logarithmic units, ¢t)) and 250 m for WCD. Regressions tended to

improve as the number of bins decreased (i.e., for coarse bin increments); simply put, for a
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smaller number of bins more noise in the data is smoothed out. However, as the binning became
coarser, the sample size decreased in some regions to the point where the possibility of
overfitting in the regression became a concernBaper and Smitti1998], Wilks[2011],and

other texts on applied statistics).
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Fig. 2.31. Observed TLD versus predicted TLD based on multiple linear regression det #6(model form and
multiple correlation are shown in the upper left) using real variables. The parestatertes and their associated

p-values have been included below the main figure.

It is important to remember that the set of predictors examined here was chosen
according to dominant hypotheses in the literature, i.e., the thermodynamic hypothesis and the
aerosol hypothesis. However, previous research points to the importance of low- or mid-level
shear Fan et al, 2009,2013] as well as environmental humid@®ygnt and van den Heever
2014,2015] in determining the behavior of deep convective clouds. From this perspective, the
fact that the multiple correlation coefficients for linear models of convective intensity proxies
based on NCAPE, CCN, and WCD alone are in some cases well below 1.0 is somewhat

unsurprising. For exampl&rant and van den Heevi015] found that precipitation intensity
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in multi-cellular convection was sensitive to increasing aerosols when considering the
evaporation rate of cloud droplets with respect to changing the height and ambient humidity of
environmental dry layers; higher evaporation rates and stronger cold-pool forcing of secondary
convection resulted from dry layers located near cloud base, leading to an overall increase in
rainfall. Though not explicitly addressed in the aforementioned studies, modeled changes in
secondary-forcing resulting from aerosol-evaporation-dynamical feedbacks within deep
convective clouds would likely be manifest by variations in mixed-phase radar reflectivity and
lightning frequency in observations via the implication of stronger subsequent updrafts. Hence,
future studies that seek to extend the simultaneous observation approach implemented in the

current investigations may benefit by including environmental factors that were not treated here.

2.6 Summary of findings on global and regional scales

The variability of radar reflectivity and lightning in convective features observed by
TRMM’s precipitation radar and lightning imaging sensor in the Tropics for 2004-2011 in
response to thermodynamics and CCN was investigated. The thermodynamic environment and
CCN concentrations in the vicinity of deep convective clouds were characterized using
reanalysis and a chemical transport model, GEOS-Chem. The advantage of the strategy arises
from the continuity of reanalysis and model output as it allows for a large number of convective
features in remote areas across the global Tropics and Subtropics lacking in-situ observations to
be included in the data sample. The objective was to use observations to validate a hypothesis
put forth by Rosenfeld et al. [2008] - that aerosols modulate the release of conditional instability
such that convective updrafts, radar reflectivity, and lightning are enhanced during the mature

phase of convective cloud development.
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In the global sample of deep convective features observed by the TRMM satellite, we
found that TLD (AVGHT30) increased by more than 600% (2-3 km) as a function o€kdth
concentrations and thermodynamic instability simultaneously when WCD was held constant.
The trends observed for the global populations of CFs and LPCFs were also found in the subsets
of these populations over continents and oceans. Importantly, the changes in TLD and
AVGHT30 with respect to NCAPE or CCN separately (holding other independent variables
fixed) were comparable in many of the cases examined here. The partial sensitivities of TLD
and AVGHT30 accounted for only a fraction of the total range of variability in the global
populations of CFs and LPCFs when considering simultaneous changes with respect to both
thermodynamics and aerosols. Meanwhile, TLD (AVGHT30) was shown to increase by up to
91% (1.25 km) between shallower and deeper WCD for a given combination of NCAPE and
CCN, with greater (higher) values shown in environments with shallower WIGDs, total
lightning density and the average height of 30 dBZ echoes were maxianibggh NCAPE,
shallower WCD, and high CCN for the global population of deep convective CFs as well as over
both continental and oceanic regions

The relationship between TLD and AVGHT30 was shown to be strongly positive
(r=0.95-0.98), but variable as a function of background CCN; the results suggest that clouds
developing in more pristine environments must have 30 dBZ echoes reaching to higher altitudes
in order to produce similar lightning rates when compared to more-polluted clouds. The mean
reflectivity in the mixed-phase region of deep convective clouds was shown to be up to 5.6 dB
higher in the most-polluted environment relative to pristine environments. Finally, the analysis
of VPRR illustrated that the differences in radar reflectivity at a given height in pristine and

polluted clouds diminishes (the differences in reflectivity range from 5.0-5.4 dB) when NCAPE
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is above the global median value. Based on the results presented, one may speculate that the
impact of aerosols on the development of deep convection becomes less pronounced when
NCAPE is high and WCD becomes progressively shallower (note thatmecBbation angle

of the TRMM satellite meant that the results apply to deep convective clouds in the Tropics and
Subtropics only, i.e., clouds with intermediate to deeper WCD).

This research represents the first effort to use a chemical transport model to more
accurately attribute CCN number concentrations to individual deep convective features over a
range of thermodynamic environments in order to investigate their simultaneous influence on the
variability of radar reflectivity and lightning between continental and oceanic regions on the
global scale. The results provide observational evidence supporting a merged hypothesis for the
impacts of thermodynamics and aerosols on deep convective clouds in the Tropics and
Subtropics. Meanwhile, the results also contribute insight about the simultaneous influence of
warm cloud depth.

Importantly, the results from the multiple linear regression analysis provide quantitative
support for the simultaneous hypothesis for the role of thermodynamics and aerosols as they may
influence the development of convective clouds. Roughly 50-75% of the variance in convective
intensity proxies is explained by simple linear models based on NCAPE, CCN, and WCD.
Convective intensity proxies were found to be directly proportional to both NCAPE and CCN
and inversely proportional to WCD consistently in different regions alynasiwell as in
individual seasons. Noting the magnitude and sign of the parameter estimates and inverting the
linearized logarithmic representation of the model back to the multiplicative form (see Eg. 2.2),

the maximum sensitivity of the convective intensity proxies is theoretically found for smaller
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(shallower) values of the independent variables; in other words, the largest changes in
TLD/AVGHT30 are found when NCAPE and CCN are small and WCD is shallower.

Despite similar general sensitivity of TLD and AVGHT30 to NCAPE, CCN, and WCD
in the multiple regression framework, there are still appreciable regional differences in the
relative weight assigned to NCAPE, CCN, and WCD for both annual and seasonal data subsets.
It is intriguing that the linear models’ predictive skill varies between regions that are apparently
similar from a climatological perspective. For exampldliams and Sator[2004] investigated
environmental and atmospheric thermodynamic characteristics of two tropical chimneys, the
Amazon and Congo river basins, to understand differences in lightning climatology; although
Williams and Séatorj2004] found only modest thermodynamic differences between the Amazon
and Congo to explain differences in lightning density, the results of the current study suggest that
a linear model of TLD based on NCAPE, CCN, and WCD performs reasonably well over the
Amazon (R = 0.77) and poorly over the Congo?(R0.36). Hence, the need to investigate the
relative importance of the chosen predictors in different environments in order to link the
observed statistical behavior to physical meteorological and aerosol variability is highlighted.
Next, the focus of the investigation shifts to a small-scale region that has received comparatively
little attention to date, the central equatorial Indian Ocean (CIO).

Historically, simultaneous observations of thermodynamics, aerosols, and the
characteristics of deep convective clouds have been difficult to obtain over of the CIO due to the
remoteness of this region and limited availability of surface observation sites. However,
temporal and spatial continuity of the aerosol data derived from GEOS-Chem and

thermodynamic data from global reanalysis readily lend themselves to addressing the current
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uncertainty surrounding the interaction between thermodynamics, aerosols, and convective

clouds over the CIO.
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CHAPTER 3

Aerosol-cloud-M JO interactions

3.1Background

The discovery of 40-50 day oscillations in the zonal winds at 850 and 150 hPa in the
tropical atmosphere over 45 years ago has incited a rich interest in researching and characterizing
the Madden-Julian Oscillation [MJ®™adden and Julian1971,1972]. The MJO influences
patterns of variability of lower and upper tropospheric winds, humidity, and temperature on 30-

90 day timescales, and anomalies in the large-scale circulation associated with the MJO have
been shown to circumnavigate the global TropMadden and Julian1994;Zhang 2005].

Furthermore, the MJO has been implicated as a modulator of regional monsoon patterns, tropical
cyclones, tornadoes, lightning, and extratropical weather/clirdatng 2013]. The Dynamics

of the Madden-Julian Oscillation (DYNAMO) field campaigfoheyama et gl2013] took

place during boreal fall and winter of 2011-2012 in the CIO. One of the overarching objectives

of the field campaign was to improve understanding of the mechanisms that govern the onset and
propagation of the MJO, such as the transition from shallow to deep convectioStgphens et

al., 2004;Yoneyama et gl2013].

In recent years, the impact of the MJO on atmospheric composition has received
increasing attention, as the literature over multiple decades advocates a strong link between
atmospheric aerosols and the microphysical and dynamical evolution of convective clouds [e.g.,
Tao et al, 2012;Rosenfeld et 812014; and many others]. Observations from the Indian Ocean
Experiment [INDOEX;Ramanathan et gl2001] identified a strong meridional gradient in

aerosol concentration in the CIO [e 8§atheesh et al1998;Moorthy and Saha2000;
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Ramanathan et gl2001] and a substantial seasonal cycle related to the changing large-scale
flow patterns of the Asian monsodn pnd Ramanathgr2002]. These plumes of continental
aerosols have been linked to parts of Southern Asia and the Indian Subcontinent in particular
[Krishnamurti et al. 1998;Bates et al.2002].

Previous researchers have demonstrated distinct patterns of variability in the distribution
of atmospheric aerosols in association with the MJO globally, over major ocean basins, and at
individual observation site§{an et al, 2008,2011Beegum et g3l2009;Guo et al, 2013,

Langley DeWitt et al.2013]. Key findings from these earlier studies include a robust inverse-
relationship between local aerosol concentrations and rainfall, presumably due to wet
scavenging, as well as notable changes in aerosol concentration, size distributions, and/or
composition [e.g.Tian et al, 2008;Langley DeWitt et al.2013] as a function of MJO phase
[e.g.,Wheeler and Hendor2004]. Specificallyl.angley DeWitt et al[2013] analyzed data

collected from the R/A\Roger Revelleuring DYNAMO and found significant variations in the
concentrations of sea-salt and anthropogenic aerosols over the CIO before, during, and after peak
convective activity associated with the October, November, and December 2011 MJO episodes.
Sea-salt aerosols were shown to increase during westerly wind burst events in the wake of active
MJO convection owing to disturbed sea states and wave bredlangley DeWitt et al[2013]

also documented several instances of aerosol concentrations reminiscent of continental
conditions along the Equator at 8TE3ongitude.

There is outstanding uncertainty as to 1) the origin of these episodic “outbreaks” of high
aerosol concentrations on intraseasonal timescales over the remote reaches of the CIO and 2)
whether any discernible signature of the impact of elevated aerosol concentrations on convection

associated with the MJO exists. The seminal paper on the subject of aerosol-cloud interactions
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by Rosenfeld et a[2008] details a hypothesis regarding convective invigoration and the
transition from shallow to deep convection based on local variations in aerosol concentrations in
the subcloud layer. In a recent study of individual convective features across the global Tropics,
Stolz et al[2015] noted stronger convection with increasing aerosol concentrations over oceanic
regions for fixed thermodynamic conditions. Non-negligible differences in radar-observed
precipitation structure occurred for relatively small increases in aerosol concentrations (100-200
cm®) in pristine background environments, in agreement with previous investigations [e.g.,
Storer and van den Heeyé013;Storer et al. 2014 Sheffield et a).2015]. Thus, it is possible

that even modest changes in aerosol concentrations could impact deep convective clouds
associated with the initiation of MJOs over the CIO. A pressing question is whether the
interaction between clouds and aerosols in the CIO is bi-directional. Previous research
corroborates that the MJO’s large-scale wind anomalies affect local concentrations of

atmospheric aerosols over the CIO [elgngley DeWitt et al.2013], but do these changes in
atmospheric aerosol concentrations above the background pristine state influence the population
of convective clouds on the basin scale and subsequently feedback onto the MJO itself?

The goal of this study is to build on the findings of previous research by investigating the
sources, transport, and impact of atmospheric aerosols over the CIO during three specific MJO
episodes observed in DYNAMO. We will leverage a set of satellite and ground-based
observations to study the distribution of convective clouds, their radar reflectivity structure, and
lightning characteristics as they may relate to changes in atmospheric composition. The CIO
represents an ideal natural laboratory to explore the potential influence of varying aerosol

concentrations on deep convection [eMpy et al, 2009] associated with the MJO phenomenon
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since thermodynamic conditions over the CIO are not expected to vary significantly in space

over the regionKig. 3.1).
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Fig. 3.1. Daily-average values of Surface-based NCAPE (top), WCD (middle}z@ht(bottom) for boreal cold
seasons during the eight-year period between 2004-2011 ovelQh#omain (20S-20°N, 35-115°E).
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3.2Data, methods, and results

DYNAMO intensive observation periods during October-December 2011 allowed for an
unprecedented view of multiple MJO episodes using a specialized suite of radar, satellite, and
ground-based instrumentation in addition to upper air observations at strategic positions in an
organized quadrilateral array over the CIO [elghnson and Ciesielsk013 Yoneyama et al.
2013;Xu and Rutledge2014]. For the current study, the geographical extent of these northern
and southern domains has been expanded relative to the sounding array dimensions from earlier
studies to accommodate spatial and temporal sampling considerations of the Tropical Rainfall
Measuring Mission (TRMM) satellite {6-6’N, 65-8%E; Fig. 3.2). Specifically, geostationary
infrared satellite imagery (METEOSAT-7), clotiolground (CG) lightning from Vaisala’s
Global Lightning Dataset (GLD360), space-borne radar observations of basin-wide rainfall
characteristics, and vertical reflectivity structure from the TRMM precipitation radar (PR)
[Kummerow et a].1998;lguchi et al, 2000] 3B42 and 2A25 products, respectively, were
analyzed in the context of background thermodynamics and winds from the Modern Era
Retrospective Analysis for Research and Applications (MERRA;
http://gmao.gsfc.nasa.gov/imerraNote that Vaisala’s GLD360 network detected approximately
50-60% of CG strokes exceeding 10 kA in peak current during the time period of interest over

the CIO [R. Saidpersonal communicatign
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Fig. 3.2. The geographical domain of the central equatorial Indian Ocean sp26f8g0°N, 35-115°E. The
northern (NSA) and southern sounding arrays (SSA) from BM® (red solid/dots), wider northern (NR) and
southern (SR) study regions’&6°N, 65-85°E; black solid boxes), and outlines of major coastlines are also shown.

This study utilizes data from a chemical transport model, GEOS-Chenv.(eos-
chem.ord with the online TOMAS aerosol microphysics modwdegms and Seinfel@002;
Pierce and Adam=009;D 'Andrea et al, 2013,Pierce et al. 2013], to simulate the number
concentration of aerosols with diameters greater than or equal to 40 nm (N40) across a domain
spanning the Indian Ocean and portions of adjacent contineA&-ZZN, 35-11%E; seeStolz
et al, [2015] and references therein for a detailed discussion of model design and uncertainty).
N40 is assumed to be an appropriate proxy for the number concentration of cloud condensation
nuclei [CCN;Dusek et a.2006]. In addition, we assume that the spatial and temporal
variability of CCN in the lower troposphere is adequately characterized by relatively coarse
resolution used in the model (roughly 200 km in the horizontal, 10 vertical levels between 1000
and 850 hPa). Plumes of continental aerosols have been shown to exist primarily in layers

extending up to 400-3000 m above the ocean surface in remote regions of the Arabian Sea, Bay
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of Bengal, and the tropical Indian Oce&afheesh et al1999;Ramanthan et gl2001]; hence,
we represent CCN for our study by the boundary layer average for 1000-850 hPa.

The temporal resolution of individual datasets varied, therefore, we chose to assimilate
each data source to a six-hour interval to capture salient aspects of variability in the convective
cloud population as well as variability on longer timescales (e.g., by analyzing time series of
relevant quantities). CCN concentrations, the horizontal components of the 925 hPa wind, and
surface-based pseudoadiabatic normalized convective available potential energy (NCAPE) were
analyzed at 0, 6, 12, and 18 Z from 1 Octob8d December 2011 over the CIO domain. CG
lightning, the distribution of cold cloud features (CCFs; defined by contiguous areas of
brightness temperature, € 208 K in IR channel 4), and rainfall rate from the TRMM 3B42
product were compiled over the ensuing six-hour period prior to the next model time step. Note
that for each interval, the distribution of NCAPE and CAPE were computed over the same study
region to track potential changes in background thermodynamics; however, the mean values of
CAPE (NCAPE) between the northern and southern hemisphere domains of interest differed by
approximately 200 J kb(0.02 J kgt mt) or less during the three-month study period.

We carefully analyzed the simultaneous evolution of rainfall, CCFs, CCN, CG lightning,
and NCAPE for the three MJO episodes observed during DYNAMO. The results are succinctly
summarized in Fig. 3.3, which shows times series of TRMM 3B42 rainfall, the aggregate area of
METEOSAT7 CCFs (< 208K), CG lightning stroke rate densities, boundary layer average CCN,
and surface-based NCAPE over both the northern and southern regions. The raw time series
(colors) have been smoothed using a 29-time step (1 week) boxcar running mean (thick, black

solid) to gain insight about variations on longer timescales.
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MJO episodes are clearly evident (hereafter labeled MJOs 1, 2, and 3, for the October,
November, and December events respectively) in both the northern and southern regions
according to variations in TRMM 3B42 rainfall; the same signal is also apparent in the CCF
observations in both regions. CG lightning occurs more frequently in the northern hemisphere
compared to the southern hemisphere and it is evident that peaks in CG lightning density occur
just prior to peaks in heavy rainfall (especially in the northern region). Boundary layer CCN
concentrations vary on MJO timescales (perhaps in relation to the MJO itself) and CCN
concentrations are markedly higher in the northern region compared to the southern region. Peak
CCN concentrations in the northern region commonly exceed 580wehile peak CCN
concentrations in the southern region rarely exceed 160 &fe note that the aggregate area of
the cold cloud feature populations (second panels in Fig. 3.3) are very similar between the
northern and southern regions over the course of the DYNAMO-observed MJOs, yet the bulk of
the lightning occurs in the northern region. Furthermore, there is little evidence of MJO
modulation of NCAPE in either the two study regions with the exception of increasing NCAPE
associated with increasing sea surface temperature prior to heavy rain p&uiaas [Rutledge

2014].
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Fig. 3.3. Time series of TRMM 3B42 rain rate, the aggregate area of cold datutds, cloude-ground lightning
flash density, CCN (25th, 75th , and 90th percentile values at each timMlestepeen overlaid) and surface-based
normalized convective available potential energy for 3 MJO periods documentedNiliNDY (vertical red solid
bars) over the northern (left panel) and southern (right panel) stgidpse Thick black, solid lines in each tile
represent the 29-time step (1 week) boxcar average. The real-time mu#ilédi@ index is delineated at the top of
each panel for reference.

There is clear evidence that aerosols are rapidly depleted due to washout (note the

quadrature relationship of the rainfall and CCN time series in Fig. 3.3 in both the northern and
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southern regions) as the heavy MJO rain sets in, consisteritangiey Dewitt et al[2013]. A

subtle, yet important, aspect of the covariability between rainfall, lightning, NCAPE, and CCN,

is that CCN concentrations are diminishing (in the doraaerage sense) as lightning activity
increases, presumably associated with isolated, deep convection, prior to the onset of widespread
rainfall. However, CCN concentrations north of the equator during these periods of enhanced
lightning still tend to be greater by a factor of two or more than what is typically observed in
pristine oceanic regions [e.¢deintzenberg et 812000;Spracklen et al.2011]. Hence, we

suggest that the temporal intersection of increasing NCAPE, sufficient for the development of
deep convection, and higher CCN concentrations observed in the northern region (compared to
the southern region) are perhaps acting to enhance convection locally via the invigoration

mechanism proposed Rosenfeld et a[2008].
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Fig. 3.4. Six-hour aggregate observations of (upper panel) boundary layagave€N (shading; logarithmic scale)
and 925 hPa wind (black vectors) versus (lower panel) cold clotidtdeg CCFs; blue circles, size of circle is
proportional to logy of the CCF area [k&) and CG lightning (green plus signs) over the central equatori@nind
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lower panel. Red dots/red solid lines denote the northern and southedimgoamays frondohnson and Ciesielski
[2013] and black boxes denote the northern and southern regions utilizbd €urrent study. Outlines of major
coastlines are shown for reference, but note change of geographicattarearbthe upper (28-20°N, 35-115°E)
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Cecil et al, [2014] illustrated a distinct north-south gradient in total lightning flash rate
climatology over the CIO using observations from multiple satellite lightning detectors.
Therefore, this motivated us to explore the geographical dependence of the relationships
apparent in the previous time series analysis of convective characteristics, rainfall, NCAPE,
CCN, and lightning. For example, in the periods leading up to peak rainfall in MJOs 2 and 3,

similar populations of CCFs were present in each region, yet CG lightning was found to occur
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almost exclusively in the northern regienvhere CCN concentrations were appreciably higher
(Fig. 3.4).

In any given 6-hour interval, the CG lightning density in the northern region vs. the
southern region differed by about an order of magnitude on average, leading us to suggest that
higher CCN concentrations in the northern region are acting to invigorate convection following
the mechanism discussed Rgsenfeld et gl[2008]. More-active mixed-phase processes owing
to enhanced CCN concentrations then act to produce stronger electrification and more lightning
[Saunders1993]. Note that for the period leading up to MJO1, the difference in lightning
between the northern and southern region is apparent, but the rates in both regions are small
compared to observations in subsequent MJO episodes (i.e., MJO2 and MJO3). Comparison of
the large-scale aerosol transport in the upper panel of Fig. 3.4 illustrates that the low-level
circulation associated with the winter monsoon was not yet established prior to MJO1. In
contrast, during the periods leading up to MJOs 2 and 3 northeasterly flow prevalils in the
northern region leading to higher CCN concentrations locally.

We consulted the TRMM database of vertical reflectivity profiles (2A25 product) for
overpasses in each study regitgughi et al, 2000; convective rain profiles with 30 dBZ echo
top > 5 km] during suppressed periods (i.e., RMM phases 4-1, when CCN concentrations are
generally higher than typically observed over pristine oceanic regions) to investigate potential
differences in vertical precipitation structure with respect to gradients in CCN concentrations
(Fig. 3.5). Each convective pixel was matched to the nearest GEOS-Chem gridpoint and the
GEOS-Chem data were linearly interpolated to the time of the TRMM overpass.

On average, the difference between more-polluted (CCN > 3Gpamal pristine

reflectivity profiles (CCN < 50 crd) maximizes in the mixed-phase region (5-10 km). The
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difference in reflectivity between polluted and pristine environments north and south of the
equator, respectively, are most apparent above the freezing level and range from about 0.5 up to
2.8 dB. The reflectivity differences between polluted and pristine environments are appreciable
in the northern region as they range from 1.0-2.5 dB (a subtle difference in radar reflectivity is
also noted in the southern region). The sensitivity of these results to the chosen aerosol
stratifications was investigated and the qualitative result was found to be roughly invariant
(despite limitations of decreasing sample sizes for more-polluted conditions). These results
suggest that deep convective clouds in the CIO are more intense when they are subject to

increased levels of pollutants transported from nearby continents.
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Fig. 3.5. The mean vertical profile of radar reflectivity for TRMM PR pixels witrdBZ echo top height greater
than 5 km for a) polluted northern region vs. pristine southeianel) polluted northern region vs. pristine
northern region, and c¢) polluted southern region vs. pristine eswuthgion (see legend in each panel) for real-time
multivariate MJO (RMM) phases 4, 5, 6, 7, 8, and 1 where the RMM auteléxceeded 1.0 during October-
December 2011. The number of observations for each populapoovisied in parentheses in the legend of each
panel. Differences in reflectivity in the mixg@diase region are plotted in each panel’s inset; the difference is

defined as the polluted reflectivity profile minus the pristine reflectivitfilerin each case.

We now investigate physical mechanisms to explain the variability of CCN
concentrations in the context of the three MJO events observed during DYNAMO, i.e, potential
intrusions of horizontal aerosols from nearby landmasses Keighnamurti et al. 1998].

According toGill [1980], for a heat source centered on the equator (i.e., heating associated with
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convective precipitation during active MJO episodes), broad scale easterlies should develop
along the equator while cyclonic gyres should be manifest to the north and south of the equator,
west of the heat source, in an eastward-propagating Kelvin wave/westward-propagating Rossby
wave response pattern. In fact, in the time following the peak of the heavy rainfall during MJOs
2 and 3 (see animations in supplemental material), cyclonic eddies embedded within the large-
scale circulation are apparent in both hemispheres. The flow pattern in the northern hemisphere
gyre advects CCN-rich air from primarily India, Sri Lanka, and Indonesia into the northern
region of the DYNAMO domain. Meanwhile, the southern gyre draws very clean air from the
southern reaches of the Indian Ocean towards the equator, thereby establishing a sharp
meridional aerosol gradient prior to the next MJO cycle.

We note that CCN concentrations over southern India and Sri Lanka frequently exceed
500 cm?, such that northerly anomalies in the meridional flow leads to a dramatic increase in
CCN concentrations primarily north of the equator within our study area of interest (e.g.,
episodes occurring 7 November, 5 December, and 15 December, 2011). Additionally, biomass
burning practices throughout much of Sumatra and Kalimantan in Indonesia are known to
contribute to significant increases in local concentrations of aerosols during July-November each
year Field et al, 2009]. However, evidence for episodes of persistent (anomalous) easterly flow
leading up to MJO onset, contributing to a meridional aerosol gradient between the northern and
southern regions in the CIO, was lacking during our period of investigation.

According toLangley DeWitt et al[2013] westerly wind bursts occurring in the wake of
active MJO convection in DYNAMO contributed to appreciable increases in sea-salt aerosols.
Although we did not quantify the contributions of individual constituent aerosol species to the

total estimates of CCN in the current GEOS-Chem simulations, we do not expect that local
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increases in sea-salt aerosols could account for the large overall increase in the total CCN over
the CIO in the wake of active MJO convection; sea-salt mass is weighted towards larger particle
sizes and contributes a proportionally smaller aerosol number per mass than anthropogenic
aerosols. Rather, circulations induced by the MJO itself lead to increases in CCN north of the
equator, with CCN having origins over nearby land masses.

Rosenfeld et a[2002] argued that the introduction of a relatively small number of sea-
salt particles within continental aerosol plumes advected offshore maintains a generally
maritime-like population of convective clouds, where efficient warm-rain processes prevail as
sea-salt aerosols activate and grow readily in the presence of a relatively large number of small
droplets that result from higher-than-average CCN concentrations over ocean. Our results do not
favor theRosenfeld et a[2002] hypothesis. Rather the enhanced lightning and stronger mixed-
phase radar reflectivities north of the equator in more-polluted environments are more consistent

with the invigoration hypothesis &osenfeld et a[2008].

3.3 Discussion and summary of results from DYNAMO

Although the current study is limited to the three month period from October to
December 2011 surrounding the DYNAMO field campaign in the CIO, the continuity of the
GEOS-Chem aerosol transport model output and GLD360 lightning data has allowed for the
compilation of a significant number of observations in a region that has received relatively little
attention in context. Comparisons between two regions north and south of the equator were

emphasized in this study and highlighted a number of important findings.

First, we have documented apparent trends in CCN concentrations that appear to be

related to large-scale circulations associated with the MJO (e.g., Fig. 3.3) over the CIO. The
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largescale circulation’s influence on regional differences in CCN concentrations over the CIO
documented in this study (upper panel of Fig. 3.4) corroborates earlier research from INDOEX
outlining the existence and seasonal variability of the large-scale hemispheric gradient in aerosol
concentrations in this region. Secondly, we have presented considerable evidence that
hemispheric differences in CCN concentrations impact deep convective clouds (i.e., more intense
radar reflectivities aloft and more lightning) leading up to the heavy rainfall period associated

with the MJO (Figs. 3.4-3.5). Thus, our results are in support of a two-way interaction between
aerosols and convective clouds in the MJthat the MJO is likely responsible for modulating
regional CCN concentrations in the CIO and the impact of these CCN on subsequent cloud

system development is non-negligible.

Is it possible that the implicit differences in the intensity of convection (e.g., heating and
vertical mass flux) between the northern (polluted) and southern (pristine) regions could impact
larger-scale circulation or propagation of the convective envelope in individual MJO episodes?
Results from an independent thermodynamic analysis over the northern and southern sounding
arrays observed during the DYNAMO field campaign indicate that tropospheric heating rates
were greater to the north of the equator compared to south of the equator in suppressed and
active periods of the MJO cycle [R. Johnspersonal communicatign Importantly, the large-
scale circulation response to asymmetric heating about the equatd®é,d.980] is
hypothesized to increase the offshore transport of anthropogenic aerosols from northern land
masses, in effect, leading to the persistence of the aforementioned two-way interaction.

In this chapter, a collection of satellite observations of convective clouds were compared
with estimates of boundary layer CCN concentrations from the GEOS-Chem transport model

throughout the period spanning October-December 2011 during the DYNAMO field campaign
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over the CIO. We investigated differences in the distribution, vertical precipitation structure, and
lightning characteristics of deep convective clouds in response to hemispheric differences and
temporal variations of background boundary layer CCN concentrations related to the MJO
evolution (while noting a general homogeneity in environmental thermodynamics between
regions north and south of the equator using data from the MERRA reanalysis).

Our findings suggest that aerosols advected from nearby land masses may be responsible
for invigorating convective clouds during certain phases of the MJO in the northern region of the
CIO via the mechanism describedRgsenfeld et gl[2008]. The results also suggest that
synoptic scale, off-equatorial, cyclonic gyres develop in the wake of active MJO convection
[e.g.,Gill, 1980] over the CIO and they appear to be responsible for enhancing the background
meridional aerosol gradient primarily during suppressed phases of the MJO (as the northern gyre
advects continental air from southern Asia southward and the southern gyre transports pristine
air from the southern Indian Ocean northward). Although rainfall and the total ar@d of
cloud features were found to be comparable between the northern and southern regions of
interest for the three MJO episodes observed during DYNAMO, convection developing in more-
polluted environments north of the equator produced up to an order of magnitude more CG
lightning compared to convection in pristine environments south of the equator. Convection
occurring in polluted environments also had higher radar reflectivity in the mixed-phase region
(~1-3 dB differences at an altitude of approximately 5-10 km), consistent with theory for
aerosol-induced convective invigoration [eRasenfeld et gl2008]. Here we emphasize that
NCAPE did not vary appreciably between the northern and southern regions during DYNAMO
(although thermodynamic characteristics of the environment are known to fluctuate temporally

between phases of the MJO); thus, we ensure that spatial variability in the convective cloud
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population with respect to changing CCN concentrations north and south of the equator occurs in
a roughly homogenous thermodynamic background.

Though the relationships between aerosols and convective clouds observed were
consistent for three distinct MJO episodes in our study period, it remains to be seen whether
these patterns are a robust feature of MJO climatology for this region. The next section details
an examination of a longer observation climatology that attempts to validate the findings from
DYNAMO using a more complete sample of MJO events. Composite distributions of lower
tropospheric wind, CCN, thermodynamic quantities, and convective intensity proxies relative to

MJO evolution are presented next.
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CHAPTER 4

Climatology of MJO-modulated aerosol variability and the response of deep convection

4.1 Background

After the inadvertent discovery of the MJO Mydden and Juliafl971], extensive
investigations of surface and upper-air observations have documented 40-50 day periodicities in
lower and upper tropospheric wind fields, temperature, and surface prassgeneral
broadband frequency behavior of this phenomeiaden and Julian1972,1994]. Coherent
observations of zonal winds, temperature, and pressure between surface/upper-air stations across
the equatorial Tropics lead to the establishment of the idea of (eastward-) propagating
disturbances and global-scale baroclinic structures in the zonal winds associated with the MJO
[Madden and Julian1972]. Madden and Juliaf1972] identified important phase relationships
between pressure, horizontal wind (i.e., divergence signatures) and temperature/moisture in the
middle troposphere that prompted speculation about the possible importance of moist convective
processes in addition. Early theories surrounding the existence of convectively-coupled
equatorial waves with peak variance on intraseasonal time scales were substantiated by
climatological studies of tropical clouds that contributed evidence of large (L ~ 2000-4000 km),
eastwardropagating “super cloud clusters” that formed and subsequently intensified over the
CIO [e.g.,Nakazawa1988;Wang and Ryi1990].

To present, the continued aggregation of observations and advances in computation
capability have allowed scientists to develop new methods that aim to objectively identify
convective anomalies associated with the MJO and track their propagation. Many investigators

have attempted to isolate intraseasonal variability in the Tropics, i.e., variability potentially
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associated with the MJO, by bandpass filtering atmospheric observables approximately in the 30-
90 day spectral band prior to analysis [e&kgladis et al, 2005]. Subsequent steps in studies that
employ spectral filtering methods can involve the computation of dominant spatial structures of
variability via empirical orthogonal function (EOF) analysis. Conveniently, the EOF analysis
seeks to define a collection of individually weighted independent vectors (or spatial structures)
that collectively explain the variance associated with a quantity of intéfashfchi et al.

2007].

Citing early studiesyWheeler and Hendoj2004] noted that the leading two EOFs of
bandpass-filtered single fields (i.e., outgoing longwave radiation or zonal wind) typically
characterize eastward-propagating disturbances at tropical latitudes. HWeader and
Hendon[2004] go on to demonstrate that the projection of global daily data onto the leading two
combined EOFsf outgoing longwave radiation, zonal wind at 850 hPa, and zonal wind at 200
hPa enhances the sigrialnoise ratio of variance on intraseasonal timescales (compared to
methods that use EOFs of single fields). Meanwhile, by their definition, it is possible to define a
metric for determining the state of the MJO in real-time, i.e., the real-time multivariate MJO
index (RMM index), using the principle component time series of the leading EOF modes.

Following the study of three distinct MJO events observed during DYNAMOQke®),
the aim of the next part of the analysis is to determine whether the covariability noted between
aerosols, large-scale winds, and convective clouds associated with the MJO is a robust feature of
climatology. Though no consensus currently exists for the optimal method to objectively define
the MJO in climatology$trauh 2013;Kiladis et al, 2014], in the interest of investigating the

climatological interaction of the large-scale flow, rainfall, CCN, and convective clouds, the
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RMM index will be employed in a composite-based analysis. Data and methodology for the

climatological analysis will be described next.

4.2 Data and Methodology

The climatological analysis was based on data from multiple sources for the years 2004-
2011 over the CIO domain (28-2C°N, 35-118E). Following the investigation presented in Ch.
3, the TRMM 3B42 rainfall productHuffman et al.2007] is used to document large-scale
rainfall variability over multiple years for this study. Note that the period of interest occurs
exclusively after 2001, at which time the TRMM satellite underwent a boost maneuver to extend
its observational lifetime. As a result, potential differences in spatial resolution of the TRMM
PR footprint and sensitivity across multiple years are avoided. Data for the 3B42 product are
available at 0, 6, 12, and 18Z at ®®28&solution. Note that rainfall rate in the 3B42 prodsct i
representative of a 3-hourly average; a constant scaling factor was applied to the data to estimate
an equivalent 6-hourly rainfall rate.

The horizontal zonak{) and meridionali®) components of the wind, relative humidity,
and temperature at 0, 6, 12, and 18Z at a horizontal resolution 8f(@v&% a portion of the
TRMM domain spanning the CIO; 38-38N,35-11%E) in both the latitudinal and longitudinal
dimensions for 25 pressure levels between 1000 and 100 hPa (at 25 hPa increments for 1000-700
hPa and 50 hPa incremements for 700-100 hPa) were obtained from the Modern Era
Retrospective Analysis for Research and Applications (MERRA; via

http://gmao.gsfc.nasa.gov/mejralhe vector average of the horizontal components of the wind

was computed between 1000 and 850 hPa in order to obtain an estimate of the boundary layer

average flow speed and direction. Surface-based CAPE (and NCAPE) was computed at all
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gridpoints for each of the four model time steps over the domain of interest using the vertical
profiles of temperature and moisture. Likewise, warm cloud depth (assuming a surface-based
parcel) was computed for all model time steps at all gridpoints using the method described in
Sec. 2.2 above, followingibarne and Godsoii1981].

Note that quality-controlled global lightning data from GLD360 (Vaisala, Inc.) were
available only for the intensive observation periods during the DYNAMO field campaign
(October-December 2011). In order to obtain a climatological perspective of the lightning data
component, the current investigation appeals to the longer climatology of total lightning
provided by the TRMM lightning imaging sensor (LIS). Previous studies have shown large
regional differences in the ratio of intracloud to cldadyround lightning flashes (i.e., the IC to
CG ratio) Boccippio et al.2001] such that lightning characteristics observed by global very low
frequency (VLF) lightning networks (e.g., GLD360), which predominantly observe ttsud-
ground discharges, may differ appreciably from lightning characteristics observed by space-
borne total lightning imagers or ground-based very high frequency (VHF) networks, which
capture the sum of intracloud and claomeground flashes. However, it is of interest to
document relative changes in lightning behavior between regions of the CIO along with the
temporal evolution of lightning during different phases of the MJO for comparison with the
earlier results from DYNAMO. Therefore, the TRMM LIS dataset adequately satisfies the
requirement for a climatological lightning dataset in the current study.

Vertical profiles of radar reflectivity (i.e., VPRR) were again taken from the TRMM
2A25 attenuation-corrected reflectivity profile product. Analogous to the methodology
presented in Sec. 3.2, convective profiles (determined using the 2A23 ‘raintype’ parameter) with

30 dBZ reaching altitudes greater than 5 km (i.e., MAXHT30 > 5 km) were studied. To reiterate,
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the purpose of this study is to investigate the variability of deep convective clouds with respect to
environmental changes (i.e., in thermodynamics and aerosols) potentially occurring during the
various phases of the MJO observed over multiple years over the ClO. Restricting the study of
VPRR to those PR pixels with MAXHT30 > 5 km ensures that the sample of radar reflectivity
structures is most closely associated with congestus or cumulonimbus convective modes, as it is
unlikely that reflectivity from growing cumuli or predominantly warm-phase clouds achieves the

aforementioned reflectivity altitude threshold.
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Fig. 4.1. Climatological distributions of total daily lightning flash rate (top), total dalytning flash density
(middle), and sensor viewtime as observed by the TRMM Lightmivaging Sensor (LIS) for cold seasons in the
years 2004-2011 over the CIO domain%@20°N, 35-115°E).
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Output from the GEOS-Chem transport model with the online TwO-Moment Aerosol
Sectional microphysics module [TOMAB&dams and Seinfel@002] is used to define a proxy
for the concentration of cloud condensation nuclei (CCN) according to the number of aerosols
with diameters larger than or equal to 40 nm (N40). Data from the model were output at a
horizontal resolution of 2.0 latitude by 2.5 longitude, four times daily (0, 6, 12, and 18Z), and at
ten levels between 1000 and 850 hPa. The values of N40 at each gridpoint were averaged
vertically across all levels to define the boundary layer average CCN proxy studied here [e.qg.,
Dusek et al.2006]. Importantly, the wind fields in the GEOS-Chem model and MERRA
reanalysis are derived from a similar source and therefore using these two separate data sources
to characterize potential variability in boundary layer CCN concentrations due to advection is
appropriate.

Data from both the MERRA reanalysis and the GEOS-Chem transport model are
available in a native gridded data format at each output time, allowing for simple interpretation
in the 6-hourly or daily-average analysis setting. In contrast, data from the TRMM satellite is
available in an orbit-level granule (each orbit &t Belination lasts approximately 91 minutes),
with sixteen files available each day of the yeline TRMM PR pixel data are geospatially
tagged and time referenced, such that cross-referencing with other data sources (i.e., regularly
gridded data) is trivial. To document the potential influence of regional variations in CCN on
vertical reflectivity structure, each deep convective pixel (identified using the methodology
described above) was matched to the nearest neighboring GEOS-Chem grid point before
interpolating the chemical transport model output to the time of the TRMM satellite overpass.

The TRMM LIS instrument documents the location, radiant intensity, areal extent, and

error flags for individual optical emission events that are then grouped into flashes. Lightning
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flashes from each orbit were subjected to a quality-control filtering routine whereby a flash was
eliminated from the daily count if the associated one-second data had any indication of fatal
platform, instrument, or processing errors (see TRMM LIS documentation, available
http://thunder.nsstc.nasa.gov/data/data_lis.html). The native resolution for the LIS observation
strategy is 0.5in latitude/longitude coordinates across all longitudes betweth&&l 38N
(the field of view of the LIS instrument is approximately 600 x 600 km, thus the field of view
extends ~300 km beyond the maximum orbital latitude of the TRMM satellite). The collection
of quality-controlled flashes in each orbit was then gridded at the native grid resolutiof of 0.5
and the counts were summed over each day

The estimated amount of time that a°@yBdbox is in the field of view of the LIS
instrument, i.e., the effective observation time, is termed the “viewtime”. On average, the
viewtime for individual gridboxes is approximately 90 s, though this value ranges from roughly
0-105 s in a single overpass. All orbits for each day were queried during the eight-year period
and the total daily viewtime was computed by summing over all overpasses in a given day
(typically 2-4 overpasses for any given gridbox). Note that the product of the number of
overpasses and the average effective observation for each overpass accounts for a small fraction
of the time elapsed in one day (roughly 3-7 minutes). Flash rate (flash rate density) was then
computed by taking the quotient of the daily flash count and the daily total viewtime (and then
normalizing by the area in each gridbox while accounting for the change in gridbox area with
increasing latitude). Total flash rate and total flash rate density statistics and estimates of the
total viewtime for the global TRMM domain are shown in Fig. 4.1; despite the fact that this
study encompasses less than half of the TRMM lifetime, the quantitative estimates of lightning

flash rate (top), flash density (middle) and sensor viewtime (bottom) over a given location
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compare well with other climatological studies of the TRMM LIS and Optical Transient Detector

datasets [e.gChristian et al, 2003;Cecil et al, 2014].
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Fig. 4.2. Areal-average TRMM 3B42 rainfall per 6 hours over the northeiiom€ged solid), southern region (blue
solid), and total region (northern + southern regions; black solidiifiercold seasons between January 2004 and
December 2011. Rainfall time series have been smoothed using a 29-paweel)boxcar moving average. The
onset of RMM phase 2 for identified MJO episodes is shown along the ab@mis triangle).

The boreal cold season that spans time between October and March is coincident with the
strongest MJO-like variability in the equatorial region of the Indian and West Pacific Ocean
basins Madden 1986;Zhang and Dong2004]. The principle components of the leading two
combined EOFs of outgoing longwave radiation, zonal wind at 850 hPa, and zonal wind at 200
hPa, i.e., RMM and RMM according toNVheeler and Hendoj2004], were used to assign an
RMM phase (phases 1-8) to each day in the months January, February, March, October,
November, and December for the years 2004-2011 (time series of RMM indices are freely

available viahttp://cawcr.gov.au/staff/mwheeler/maproom/RMMAS a continuation of the

analysis in section 3, the two regions that were defined for the DYNAMO-centric analysis, i.e.,
the northern and southern regions, (see Fig. 3.2), are again used for assessing possible regional

differences in the context of the MJO climatology. RMM phase composites were created by
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averaging quantities of interest during each phase (for RMM phases 1-8) within the northern and
southern regions on each day in the cold season months where the combined RMM amplitude
(i.e., RMMi? + RMM?) exceeded a value of 1.0, as is common in practice kladis et al,
2014].

Rainfall and lightning were scaled by factors of 6.0 (dimensionless) and 86,408, s day
respectively, prior to taking the unconditional mean (including values of values of 0-hon®r
fl. day?, where they existed within each study region) across the northern and southern regions
each day. The computation of the areal mean NCAPE and WCD for surface-based parcels was
conditional on the presence of non-zero NCAPE at a given reanalysis gridpoint for a given time
step. Values in the chemical transport model were generally non-zero at all gridpoints for all
time steps, so the areal mean computation for CCN was done without regard for potential

occurrences of zero values.

4.3Results
4.3.1 RMM phase dependence

For the eight-year period between 2004-2011, individual MJO episodes were identified
by cataloging periods where the RMM phase index 1) was in phases 1-3 for a minimum of 10
days; 2) progressed from phase 6 through the peak active phases 2 and 3 (for the CIO) and then
onto suppressed phases 4 and 5; and 3) had an amplitude of 1.0 or greater for at least half of the
days in the cycle. Time series of the areal-average rain rates from the TRMM 3B42 product are
shown for the northern, southern, and total (northern region + southern region) regions in Fig.
4.2for the boreal cold season, with the onset of phase 2 in each identified MJO episode

highlighted along the abscissa. In general, the onset of RMM phase 2 relative to the peaks in the

112



rainfall time series varies between episodes and the rainfall observed during MJO episodes can
be rather asymmetric between the northern and southern regions. For several of the identified
MJO events, the rainfall amounts do not appear to differ substantially from background quiescent
periods (i.e., 15 February 2007, 7 March 2010, and 13 March Xilddis et al.[2014] noted
that zonal wind signatures can strongly project onto the leading two combined EOF modes of
equatorial variability identified byWheeler and Hendoj2004], leading to an inflated RMM
index amplitude, even in the absence of large-scale negative outgoing longwave radiation (i.e.,
convective) anomalies. Nonetheless, more than 20 individual events are identified using the
RMM indexing method and thus there is high confidence that a sufficient sample of independent
MJO episodes has been observed during eight-year period.

As a proofef-conceptWheeler and Hendgj2004] composited outgoing longwave
radiation anomalies as well as upper and lower tropospheric winds across RMM phases 1-8 and
found a large-scal®(L~4000 km) peak negative anomaly (< 30 WArthat developed over the
CIO near the equator during RMM phases 1-3 and subsequently decayed during eastward-
propagation over the Maritime Continent and into the western Pacific O¢éaeeler and
Hendon[2004] noted large-scale flow behavior consistent with previous diagnostic models for
diabatic heat sources centered on the equator (&ly.1980]. Following their results, at a
given location in the CIO, the passage of an MJO episode is marked by the evolution from low-
level easterly flow, isolated, deep convection and heavy rainfall, to the development of
widespread, stratiform light precipitation under an expansive anvil shield, to low-level westerly
flow and lower precipitation amounts. Here, the question is whether the phase composite

evolution of proxies for deep convection are linked to variations in thermodynamics or aerosols
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or some combination of the two, in a manner consistent with what was observed during

DYNAMO.
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Fig. 4.3. Composite means a) TRMM 3B42 rainfall, b) CCN, c) surface-ba€&PH, d) WCD, and e) lightning
flash rate for RMM phases 1-8 (x-axis) over the northern regiors@édidiamonds) and the southern region (blue
solid/squares) for cold seasons during the years 2004-201Imax}immum value of each parameter anywhere
within each study region during each RMM phase is shown byuhbers below each panel (in red for the
northern region, in blue for the southern region) to communicagstanate of the variance of each parameter.

RMM composites of areal-average rainfall, CCN, NCAPE, WCD, and lightning flash
rates for the northern and southern regions over all MJO episodes observed for the years 2004-
2011 are shown in Fig. 4.3. The phéasghase evolution of areal-average rainfall is similar
between the northern and southern regions as daily rainfall peaks in RMM phase 2 over the CIO
and is at a minimum throughout RMM phases 4-6 (Fig. 4.3a). The equivalent daily rainfall totals
are comparable to those which were observed over the finer sounding array regions during
DYNAMO [e.g., Xu and Rutledg2014, 2015]. However, the rainfall rate in the northern region
is larger than the rainfall rate in the southern region by 20-30% on average in individual RMM

phases.

Consistent with observations from the smaller subset of MJO episodes from DYNAMO,
CCN concentrations are greater by about a factor of four in the northern region compared to the
southern region on average for the collection of MJO events identified here (Fig. 4.3b). In RMM
phase 5, CCN concentrations in the northern region abruptly increase by more thar® 90 cm
average while the CCN concentrations in the southern region increase only slightly (increases of
20-30cm® are observed) and never exceed 10G.c#t this point, the disparity in CCN

concentrations between regions increases to a factor of six before the concentrations in the
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northern region gradually decrease during RMM phases 6-8. Note that the absolute maximum
CCN concentrations observed in both regions differ by an order of magnitude, as the northern
region shows values in excess of 672 while the southern region only reaches values 6f 10
cm3,

From the thermodynamic perspective, NCAPE and WCD between the northern region
and the southern region appear are very similar (in contrast to the disparity in CCN
concentrations between regions cited above). The evolution of surface-based NCAPE depicts a
relative maximum in RMM phase 3 and relative minima in RMM phases 6 and 7 for the northern
and southern regions, respectively, while the difference in NCAPE between regions rarely
exceeds 0.02 J Kgn. Aside, the magnitude of the conditional instability over both regions
(CAPE ~ 800-1200 J kf nearly matches the observations from comprehensive studies of in-
situ, upper-air observations over the sounding arrays during DYNAMO |[cf., Tabl€iésielski
et al, 2014]. The evolution of WCD by MJO phase depicts generally high values during periods
of active convection in RMM phases 2-3 and slightly shallower values during the suppressed
phases. Note however, that WCD values in both the northern and southern regions are in excess
of the global median (WCD > 4200 m) and are among the deepest observed anywhere in the
world [Williams et al, 2005]. Overall, the phase composite behavior of NCAPE and WCD
contributes to the ideal of homogeneous thermodynamics between regions of the CIO.

Fig 4.3e shows the phasephase evolution of the daily total lightning flash rates in the
northern and southern regions; flash rates (computed using an independent data set from the
observations in DYNAMO) are systematically higher in the northern region compared to the
southern region and the difference ranges from a factor of approximately 2 (in RMM phase 6) to

4 (in RMM phase 8). The evolution of total flash rate in the northern region is periodic with the
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most frequent lightning occurring in RMM phase 8, prior to MJO onset over the CIO; there is

little evidence of similar temporal behavior in the southern region. Lastly, the maximum daily
flash rates in the northern region are often more than double those observed for the southern
region (e.g., RMM phases 1, 2, and 4). Furthermore, the maximum areal-average daily flash rate
in the northern region is more than ten times that in the southern region for RMM phase 8, when

the areal-average values are maximized in both regions.
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Fig. 4.4. Composite mean VPRR for RMM phases 1-8 (arbitrary x-axis) fondhern region (solid) and the
southern region (dotted) for cold seasons during the yearsZU A reflectivity scale to assess relative
differences has been included in the upper right. RMM phases are differebtiateldr and the number of vertical
profiles in each region for a given phase is provided (northern vsgigthern region).

Fig. 4.4 shows the phase composites for VPRR in the northern and southern regions for
the same period. The maximum differences in reflectivity are shown to occur in the mixed-phase
region with the VPRR from the northern region (solid lines) exhibiting values of up to 2 dB
greater at 5-10 km altitude compared to the southern region (dotted lines), primarily in RMM
phases 6-8. Smaller reflectivity differences between the northern and southern regions are also
noted throughout active convective phases, but the magnitude of the reflectivity in the mixed-
phase region for deep convective pixels observed north of the equator is consistently greater than

reflectivity at these altitudes in the southern region. In line with observations of typical maritime
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deep convective clouds, reflectivity is found to decrease rapidly above the freezing level [e.g.,
Szoke et a11986;Zipser and Lutz1994], primarily during RMM phases 2 and 3, consistent

with the relative dearth of lightning observed in the CIO compared to other regions globally (the
equivalent annual flash rate densities range from about 1-5'fkny?, compare tcCecil et al.

[2014]). Small increases in near-surface reflectivity in the northern region relative to the
southern region are perhaps indicative of more-robust ice-based microphysical processes
translating to stronger rain near the surface [8iglz et al.2014].

Despite the apparent differences in the magnitude and evolution of environmental
(primarily CCN concentrations) and convective intensity proxies between the northern and
southern regions, there are still open questions. Given the areal-average approach, it is logical to
guestion whether greater lightning flash rates observed in the northern region compared to the
southern region result simply from differences in the frequency of deep convective clouds
between regions. However, the numbers of deep convective pixels observed by the TRMM PR
in each study region (shown for each RMM phase at the bottom of Fig. 4.4) over the eight-year
cold season climatology are very nearly the same for each RMM phase, suggesting that the
frequency of deep convective clouds and/or aggregate cold cloud area in both the northern and
the southern regions are approximately equal, as shown in observations from DYNAMO.
Hence, climatological observations of convective intensity proxies are consistent with the notion
that stronger convection is found systematically in the northern region compared to the southern
region. Are spatial and temporal variations of CCN, low-level wind, NCAPE, and WCD
consistent with the aforementioned result in mind?

In a study of global aerosol distributiods)derson et al[2003] found that point

observations of aerosol quantities were highly correlated over distances less than 400 km
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(r~0.80). Thus to a good approximation, aerosol quantities (i.e., CCN concentrations) are
roughly homogeneous on the mesoscale, while appreciable differences are likely to exist for
larger spatial scales. Since the areal-averages of rainfall, CCN, NCAPE, WCD, and lightning
quantities encompass rougl®¢10°) km? in both the northern and southern regions, significant
local variations could exist within each area of interest. Until now, an appreciable amount of
evidence in favor of aerosol indirect effects on deep convective clouds in isolation from
thermodynamics has been presented. Thus, it is possible that mesoscale variations in CCN
concentrations may be associated with variations in convective intensity proxies on
commensurate scales. To investigate the potential influence of mesoscale variability on the
phaseto-phase co-evolution of environmental characteristics and convective parameters in the
RMM phase composite framework, the geographical distributions of the mean values at

individual gridpoints were computed for each RMM phase. These results are presented next.

4.3.2 Geographical composite variability

Figs. 4.5-4.6 show the mean geographical distribution of CCN concentrations for each of
the eight RMM phases, with the anomalies of the horizontal wind components at 925 hPa
(defined relative to the mean over all days in the cold seasons for 2004-2011) overlaid. The
Student’s t-test (assuming two-tailed probability) was used to assess whether the anomalous
horizontal winds in each RMM phase were significantly different from the background
climatology. The daily wind anomalies were assumed to be independent (i.e., the autocorrelation
was sufficiently small) so that the number of degrees of freedom equaled the number of days that
each phase was classified, less one. Anomalous winds that were statistically significant at the

95% level have been highlighted in gold.
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In each RMM phase, a meridional gradient in CCN concentrations is apparent between
the northern and southern regions, but intraseasonal modulation is also evident. In RMM phases
2 and 3, when peak convection occurs over the CIO according to RMM phase diagnostics, CCN
concentrations are generally at a minimum value with widespread estimates of 1005200 cm
the northern region and ~50 €rin the southern region. Meanwhile, in the suppressed periods
(RMM phases 4-5) an equatorward expansion of the area of polluted continental air is clearly
evident, with CCN concentrations exceeding more than 500ictihe northern region and CCN

concentrations of 100 ciextending just south of the equator in CIO.
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Fig. 4.5. Composite mean boundary layer CCN concentrations (shaded; logarithmic scdig)a®a of RMM
phases 1-8 (the number of days identified for each phase is inelbded each panel) for cold seasons during the
years 2004-2011 over the CIO domain9@@2CN, 35-115°E). Anomalies in the zonal wind component at a given
point have been overlaid, scaled by the 8'nsalid, black vector in the lower right. Wind anomalies that are
statistically significant at the 95% level (compared to climatology at each gridpaug)deen colored gold.
Outlines of major continents are shown by solid dark green lines. ofttem and southern study regions are
shown by black solid boxes and the northern and southern sguardays identified byohnson and Ciesielski
[2013] are shown by red solid lines with dotted vertices.
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Surface—Based NCAPE
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Fig. 4.7. Composite mean surface-based NCAPE (shaded; computed using tiAMEdhalysis) as a function of
RMM phases 1-8 (the number of days identified for each phase is in@dbded each panel) for cold seasons
during the years 2004-2011 over the CIO domaif$ZI°N, 35-115°E). The northern and southern study regions
are shown by black solid boxes and the northern and southerfirsganrays identified byohnson and Ciesielski
[2013] are shown by red solid lines with dotted vertices.
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Warm Cloud Depth
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Fig. 4.8. As in Fig. 4.7, but for WCD computed according to the methotfibarne and Godsofi1981] (using
MERRA reanalysis).
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LIS AREAL AVERAGE FLASH RATE
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Fig. 4.9. As in Fig. 4.7, but for total lightning flash rate observed ByYM LIS. Note that the flash rate has been
plotted according to a logarithmic scale and the data were subsequently snustibeal 7.8 Gaussian kernel in
both longitude and latitude.

Zonal wind anomalies along the equator between both the northern and the southern
study regions are among the strongest observed anywhere throughout the CIO domain,
regardless of the RMM phase. The peak negative zonal wind anomalies ()4 sbserved
in RMM phases 8 and 1, possibly indicative of a Kelvin wave response ahead of the main
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convective envelope. Positive zonal wind anomalies on the order oftzare soted in RMM
phases 3-5 along the equator, consistent with westerly wind burst episodes that are commonly
observed in the wake of active MJO phases in the CIO. In the suppressed phases (especially
RMM phases 4-5), equatorward meridional wind anomalies in both the northern and southern
regions are noted over parts of the CIO.

In fact, inspection of the meridional wind anomalies in RMM phase 5 reveals southerly
anomalies in the Bay of Bengal and northerly anomalies further west over the Arabian Sea,
southern India, and Sri Lanka. In the southern hemisphere, northerly anomalies are present just
west of Sumatra, Indonesia and southerly anomalies are observed BE8E /§enerally
poleward of 10S latitude (the meridional wind speed anomalies are approximately 0.5:21m s
magnitude in both hemispheres). Importantly, the northerly anomalies to the south and west of
India contribute to a net strengthening of the northerly component in the monsoon flow. In th
presence of the background meridional CCN concentration gradient, stronger equatorward
advection of continental aerosols is implied; the magnitude of the meridional CCN concentration
gradient appears to be strongest during RMM phase 5 and this behavior is reflected in the areal-
average RMM composites shown in Sec. 4.3.1. Note that in both hemispheres, the structure of
the anomalous meridional winds is consistent with the presence of cyclonic eddies within the
larger scale circulation in the wake of active convective episodes, perhaps evidence of off-
equatorial Rossby wave activity noted®yl [1980], Yamagata and Hayas[il984], and more
recently byJohnson and Ciesielsg013].

The composites of areal-averaged NCAPE and WCD were very similar between the
northern and southern regions (shown in Figs. 4.7-4.8), in support of hypothetical spatial

similarity in thermodynamics across both study regions in the CIO. However, anomalous
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northerly flows and equatorward excursions of continental CCN could also indicate cooling and
drying in the low levels associated with periodic outbreaks of continental air that occur during
the boreal cold season (not shown). In general the geographical distributions of NCAPE and
WCD illustrate meridional homogeneity, with the maximum (minimum) surface-based instability
generally found during RMM phase 3 (RMM phase 6). However, longitudinal differences

within both the southern and especially the northern regions are clearly apparent during some
phases. In the areal-average RMM phase composite view, NCAPE was found to be slightly
smaller in the northern region compared to the southern region throughout much of the
suppressed period (RMM phases 4-6) over the CIO. From the geographical distributions,
erosion of surface-based instability is apparent in the northwestern reaches of both the northern
and southern regions. In Fig. 4.8, WCD is generally greater than 4200 m over both the northern
and southern regions in the CIO, but there was evidence that the surface dew-point depressions
were larger on average in the northern region as WCD was slightly shallower there (accounting
for a difference in WCD of roughly only 100-200 m).

For completeness, the composite geographical distributions of daily total lightning flash
rates are presented for each RMM Phase. Following the methods outlined above, composites of
the total lightning flash rate [flashes ddwere computed by cataloging all flashes observed
during the aggregate time that eacl @8dbox was within the TRMM sateldits field of view
during each RMM phase. The resulting distributions were generally noisy, so a Gaussian kernel
(7.5-degree width) was used to smooth each composite field in the latitude and longitude
dimensions. Immediately apparent is the overwhelming preponderance of lightning over land
areas adjacent to the oceanic study regions. There is a subtle intraseasonal modulation (cf., Figs.

4.9a,f, and h) in the lightning signal as lightning flash rate is highest over the CIO in RMM
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phases 7, 8, and 1 and high lightning rates extend further offshore south of India, Sri Lanka, and
west of Sumatra during these times.

In contrast, high lightning rates are less apparent in the southern region during all RMM
phases. The southern region is more than 600 km from the nearest appreciable landmass and
therefore direct sources of CCN transport are not clear, however convection in the inter-tropical
convergence zone, resulting from overturning in the Hadley cells, is probably a contributing
factor for lightning observed in this region. Note that we have ignored the potential for local
sources of water-soluble chemical species (i.e., dimethylsulfide, DMS) to contribute to
variability in local CCN concentrations in this analysis. However, monthly climatology of
ocean-atmosphere fluxes of DMS [elgana et al, 2011] does not appear to explain the
existence of or reinforce the background meridional gradient of CCN over the CIO shown here

and in prior studies.

4.4Discussion

Following the results presented in the global CF, regional statistical analysis, and
DYNAMO-centric analysis (Secs. 2-3), it would seem that higher lightning rates observed in the
northern region compared to the southern region could be attributed to systematic differences in
aerosol concentrations between regions, rather than differences in the frequency of occurrence of
strongly-electrified deep convective clouds between regions north and south of the equator
during the eight-year climatology. Recall that lightning flash rates were approximately 2 times
greater in the northern region compared to the southern region as a function of the MJO phase
(e.g., Fig. 4.3e) and VPRR composites (Fig. 4.4) depicted greater reflectivity in the mixed-phase

region (5-10 km altitude) in addition to similar numbers of deep convective pixels observed by
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the TRMM PR, primarily in the suppressed period leading up to MJO onset. The differences in
NCAPE and WCD between the northern and southern regions were generally not appreciable,
but both thermodynamic quantities varied temporally as a function of MJO phase; there was
evidence of the occurrence of periodic outbreaks of cool, dry, continental air near the surface,
perhaps in association with anomalous northerly flows, during suppressed periods (RMM phases
4-6), that would act to stabilize the lower troposphere.

Another implication of the equatorward surges of continental air from southern Asia is
that large numbers of CCN are transported to regions that are typically pristine in nature (i.e.,
CCN concentrations < 10fn) over the equatorial regions of the CIO. Furthermore, the results
from the climatological composite analysis conducted here suggest that anomalous (meridional)
flows in RMM phase 5 are concurrent with enhanced meridional aerosol gradients at the equator.
In other words, anomalous wind patterns that occur during preferred times of the intraseasonal
cycle sustain high CCN concentrations north of the equator and pristine conditions south of the
equator.

Based on these findings, it is tempting to invoke the aerosol hypothesis for suppressed
warm-rain processes and invigorated convection to explain the regional differences in convective
spectra (e.g., enhanced lightning/vertical reflectivity columns within deep convective clouds)
between the northern and southern regions of the CIO. However, close inspection of the RMM
phase composites of areal-average values of CCN, lightning, and VPRR for the northern region
reveals that temporal variations of lightning flash density in the northern region alone @re quit
significant in the pre-onset phases of the MJO (e.g., between RMM phases 8 and 1), but CCN
concentrations are roughly equal (CCN ~ 200°tnConsidering that the thermodynamic

guantities studied here show little variation in magnitude in the average sense between RMM
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phases 8 and 1 leading up to MJO initiation over the CIO (Fig. 4.3c,d), an explanation for the
observed 60% increase in lightning between RMM phases 8 and 1 in the northern region is
lacking.

Note that the results from the statistical investigation (presented in Sec. 2.5) illustrated
that approximately 58% of the variability (composed of spatial and temporal contributions) in
total lightning density over the CIO could be attributed to the 3-parameter multiple linear model
consisting of NCAPE, CCN, and WCD. For the logarithmic form of the multiple linear
regression model for lightning density over the CIO, the relative weight assigned to CCN was
roughly 37% smaller than the relative weight for NCAPE and comparable to the weight assigned
to WCD (e.g., Fig 2.27). The RMM phase areal-average composites (Fig. 4.3) illustrate that the
range of the temporal variability in lightning between RMM phases is larger than the regional
variability between the northern and the southern hemispheres in the CIO. In other words,
lightning varies approximately by a factor of 4 from pre-onset to suppressed RMM phases within
the northern region, while lightning varies approximately by a factor of 2 on average between the
northern and southern regions. There is also evidence of coherent (in-phase) temporal variability
between lightning, NCAPE, and WCD, whereas the temporal variations in lightning appear to be
in quadrature with the variations in CCN. Is it possible then that CCN are primarily responsible
for regionto-region differences in convective intensity over the CIO, while the larger temporal
component of variability in convective intensity between different phases of the intraseasonal
cycle is driven more by thermodynamics? Despite simultaneous behavioral tendencies for
lightning, thermodynamics, and aerosols, as well as the strength of the multiple regression for the
CIO on the annual basis (the multiple linear model contributes to explaining more than half of

the lightning variance over this region during the eight-year period of interest), the statistics
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favor the possibility that other mechanisms may be important for explaining the full variations of
convective intensity on such fine scales of interest.

Specifically in the Tropics, the vertical wind shear in the lower and middle troposphere
has been shown to strongly influence convective cloud morphology, dimension, and cloud
lifetime, subsequently impacting the vertical mass flux, cold-pool dynamics, and secondary
convective developmentéMone et al.1998;Cetrone and Houz&€006;Rowe and Houze
2015]. Tompkind2001] posited that the spatial scales of secondary convection forming along
cold-pool boundaries in the Tropics could be attributed in part to the magnitude of surface fluxes
as they modify the cold-pool characteristics (e\§,, and propagation speed of the cold-pool
boundary); the spatial dimensions and vigor of convective updrafts have been cited as key cloud
attributes for determining to what extent entrainment and mixing process can impact a cloudy
parcel’s buoyancy [e.g., Williams and Stanfi]l2002]. The efficacy of entrainment/mixing
processes to dilute convective updrafts is also likely to be sensitive to the ambient humidity of
the free troposphere. In turn, both shear and free-tropospheric relative humidity have been
shown to vary considerably during various phases of the MJOJetmson and Ciesielski
2013;Xu and Rutledge2014;Rowe and Houze015]. Hence, incorporating the effects of shear
and free-tropospheric humidity could lead to improvements when accounting for the spatial and
temporal variance of lightning and radar reflectivity over the CIO, but the inclusion of two
additional independent variables introduces new potential sources of uncertainty and greater
complexity to an already difficult problem.

In this study, the behavior of lightning and radar reflectivity with respect to changes in
environmental thermodynamics and aerosols across various phases of the intraseasonal cycle

were found to agree with the results from a shorter-duration, yet more comprehensive,
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assessment of observations/model analyses from DYNAMO (e.g., Ch. 3), suggesting that the
apparent trends are robust in climatology over the CIO. The results support 1) the idea that
anomalous flows embedded within the larger-scale monsoon flow over southern Asia and the
CIO basin during suppressed convective periods associated with the MJO maintain the
meridional gradient of CCN concentrations in the boundary layer over this region and 2) that
deep convection is stronger north of the equator according to observed regional differences in
lightning and vertical reflectivity structure. The simultaneous importance of both
thermodynamics and aerosols in explaining the observed climatological variability of lightning
and radar quantities is again invoked. Next, these results from the multi-scale investigations

presented here are synthesized and concluding remarks follow thereafter.
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CHAPTER S

Synthesis and conclusion

The results and discussions presented in this dissertation advocate for the simultaneous
hypothesis, i.e., that both aerosols and thermodynamics are important modulators of deep
convective clouds and lightning in the Tropics [e.g., RG&@en et al, 2010,2012Storer et al.

2014]. In light of the findings from the global-scalsimultaneous-typeanalysis conducted

here, the difficulty of isolating the impacts of thermodynamics and aerosols on deep convection
apparently stems from the high likelihood of significant correlations amongst environmental
factors on regional scales of interest. In the statistical component of this investigation (e.g., Sec.
2.5), reducing the spatial scale of the observations to individual regions in some cases restricted
the dynamic range of both the predictand and chosen predictors sufficiently to render equivocal
findings, perhaps due to the aforementioned potential flaw in experimental design. For example,
the “heuristic” composite-based analysis of lightning variability over regions offshore and
downstream from major continents (e.g., Sec. 2.5.1) showed evidence for the existence of high
lightning rates in association with stronger low-level pressure troughs that enhanced offshore
transport of continental pollutants ahead of the trough axis; meanwhile, stronger low-level
troughs promote warm-air advection in the lower troposphere beneath cooler air aloft associated
with the mid-level (e.g., at 500 hPa) trough to the west, effectively contributing to increased
NCAPE (stronger convective inhibition for surface-based parcels was als9.noted

In other words, environmental variability leading to superlative thermodynamic
conditions favorable for deep convection [eWjilliams et al, 2003 can also lead to increases in

CCN concentrations. In this scenario, observations of associated convective spectra in the multi-
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dimensional parameter space incorporating thermodynamics and aerosols tend to amass along
the diagonal plane that bisects the axial directions for individual predictors. Variability in the
predictand is then confined strictly to the space where predictors vary strongly together, thereby
precluding unambiguous separation of the relative contributions of individual factors.

The success of the global approach depends on observing many convective features
across a wide range of the multi-dimensional parameter space, potentially both along diagonal
planes between predictors and in regions in the off-diagonal space (refer to Figs. 2.3-2.8). In thi
way, partial sensitivities can be assessed (as was done here using explicit stratifications first in
Sec. 2.3 and using a more-rigorous multiple regression approach assuming independence in the
predictor set in Sec. 2.5). As a result of these experiments, estimates of the isolated influence of
each independent predictor on the response were compiled. On the global scale, the most
influential element was CCN, but in general, independence in the predictor set was apparent for
individual regions and the magnitude of the relative weight assigned to each predictor in the
statistical models were often found to be comparable on large scales. It is important to
emphasize the lack of multicollinearity found for the predictor set consisting of NCAPE, CCN,
and WCD when studied on large scales (e.g., hemispheres and regions generally larger than
O(10° knm?), as it validates a schematic depiction to summarize the main finding from this
research (Fig. 5.1), i.@hat convective intensity increases with increasing NCAPE, increasing
CCN concentrations, and decreasing WCD

Polarizing examples of deep convective clouds that span the continuum of the
observations studied here, along with their associated lightning and radar reflectivity
characteristics, are shown in Fig. 5.1. The exemplary cloud shown in the left portion of the

diagram is meant to depict deep convective clouds that occur in environments that favor
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infrequent lightning and insignificant development in the vertical reflectivity structure, i.e.,
environments with deep WCD, generally low CCN concentrations, and small values of NCAPE;
these environments are typically found over oceanic regions (e.g., Fig. 2.5-2.6). Hence, updrafts
are shown to be strongest at or below the freezing level [e.g., Zipser, 1994] and the horizontal
dimensions of the main convective core and radar reflectivity are relatively narrow [e.g.,

Williams and Stanfi]l2002]. Generally low values of reflectivity between ab&@ @nd -40C

in the mixed-phase region could be a consequence of weak updrafts that have been observed at
these altitudes within deep convective clouds over tropical oceanic locationslgguapsfield et

al., 2010] and may be responsible for the overall lack of lightning associated with this population
of deep convective clouds when invoking the theory for thunderstorm charging gkahashi
1978;Williams et al, 1991;Saunders1993].

In contrast, convective features that exhibit high lightning flash rate density and higher
AVGHT30 were found to occur in environments where NCAPE was high, CCN concentrations
approached 500-1000 cinand WCD was shallower than about 4200 m. Following previous
hypotheses [e.gWilliams and Stanfill2002;Williams et al, 2005;Carey and Buffalp2007],
clouds with shallower WCD are shown to have wider horizontal core dimensions. The highest
AVGHT30 was found to be in the vicinity 8 km on average (i.e., altitudes where the temperature
is close to -28C assuming a moist adiabatic lapse rate), and these CFs were generally associated
with the highest lightning flash density, as exemplified on the right side of Fig. 5.1. Note that the
storm echo top (~17-20 dBZ as resolved by the TRMM PR) is similar in both cases, as
reflectivity echo tops in deep convective clouds in the Tropics commonly reach upwards of 15
km, while potentially large differences in the vertical development of the reflectivity column at

lower altitudes can still be appareBeMott and Rutledgel 998;Carey and Rutledge000].
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Note that the trend from low (small) to high (large) AVGHT30 (flash density) for
increasing NCAPE, increasing CCN, and shallowing WCD was shown for both continental and
oceanic subsets in Sec. 2.3, but continental CFs produced high lightning density with high
AVGHT30 over a variety of land-surface types, where CCN concentrations exceeded the pristine
baseline observed over oceans. Interior land areas were generally the most polluted (e.g., Fig.
2.1) and have therefore been portrayed accordingly in Fig. 5.1; in addition, the differing
depictions of aerosols over continental and oceanic regions implies that the source, species, and
vertical distribution of aerosols can vary substantially between regions. This aspect of the
problem has not been examined explicitly in this analysis, though aerosol speciation could be an
important aspect to consider in a future study as discussed above in Sec. 2.4. The difference in
aerosol type and relative concentrations of CCN versus ice nuclei at a given location may have
implications for differences in the observed radar reflectivity characteristics (beyond those that
were characterized here); the magnitude of the difference in near-surface reflectivity between
weaker (oceanic) and stronger (continental) CFs on average was found to be small, but

exceptions to this rule are apparent in the data studied here.
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Increasing NCAPE, Increasing CCN, Decreasing WCD

- O Do O e v

Fig. 5.1. A schematic depiction of the variability of deep convection on the géoladd, summarizing the primary
finding from the current set of investigations.

Based on the above discussion, “singular hypothesis” perspectives would appear to be
inadequate for investigations that attempt to account for the full variability of the population of
deep convective clouds in the Tropics; this research and the results from previous studies in the
literature contribute evidence to rule out the possibility of aerasdlseermodynamics acting as
a lone driver of the observed variability of deep convective cloud properties on the global scale.
Chs. 2-4 also illustrated that multiple parameters (e.g., NCAPE, CCN, and WCD in addition to
other possible factors) likely influence the temporal evolution and spatial variability of deep

convective clouds over individual, fine-scale regions.
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Previous studies point to the possible importance of other factors that were not
considered here, e.g., environmental relative humidity and wind shear, but as mentioned above in
Chs. 2 and 4, inclusion of additional independent variables would likely lead to greater
complexity in the analysis. If the objective of a future investigation is to strictly reproduce the
observed variability in deep convective clouds based on environmental parameters, then adding
additional parameters may be appropriate in a forward-type regression analysis. Alternatively, if
the goal of a future investigation is to determine the relative contributions of environmental
factors to regional variations in convective intensity, then the covariance of additional variables
from the physical atmospheric system (e.g., wind shear and relative humidity) with the three
predictors studied here (NCAPE, CCN, and WCD) must be understood prior to developing a
hypothesis for simultaneous influences of these other factors on convective intensity.
Henceforth, it is the audl’s recommendation that efforts on this front be directed toward
understanding why regioto-region differences in the relative weights assigned to individual
predictors existAre there regions and seasons where the background environment dictates that
the influence of certain independent variables becomes either dominant or insignificant? It is of
interest to know whether these behaviors are intrinsic to certain regions and/or seasons, as
appreciable annual variability was noted in a related analysis of seasonal mean variable behavior
(not shown). The discussion now turns to a summary of the research and conclusions.

Why d@sprecipitation intensity, internal structure, and lightning occurrence within deep
convective clouds vary throughout the Tropics and Subtropids8 research was motivated in
part by the author’s anecdotal experience observing tropical thunderstorms and squall lines

between the jungles of Sumatra, Panama, and infrequently in Hawaii. On the other hand, an
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extensive body of observations over multiple decades in the literature illustrates notable
differences in rainfall intensity and lightning frequency regionally in the Tropics and Subtropics.

Two hypotheses, the thermodynamic and aerosol hypotheses, stand out prominently as
they attempt to explain the observed regional differences in convective intensity throughout the
Tropics. Early investigators posited a dominance of either thermodynanaesosols in
accounting for the regional variability of convective cloud characteristics (e.qg., rainfall intensity)
but more recent studies have demonstrated near-orthogonal or the independent influence of both
thermodynamics and aerosols on deep convective clouds. Thus, the objective of the research
wasto determine the relative contributions of thermodynamics and aerosols to the observed
variability of deep convective clouds and lightning in the Tropiksimultaneous hypothesis
that incorporated the salient aspectbath thermodynamic and aerosol paradigms was
developed and subsequently tested.

The dissertation was initially envisioned as a four-part collection (parts 1a, 1b, 2a, and
2b) detailing the findings surrounding the variability of deep convective clouds and lightning
using a multi-scale experimental approach. A study of the global behavior of convective features
and lightning-producing convective features in response to changes in thermodynamic and
aerosol characteristics of their immediate environments was undertaken to determine large-scale,
“bulk” patterns of variability related to changes in NCAPE, CCN concentrations, and WCD (part
la; Ch. 2 herein). In the global-scale analysis, an elementary method of data stratification
contributed a convincing set of evidence in support of the simultaneous hypothesis for explaining
the variability of deep convection on large scales in the Tropics, i.e., between continents and
oceans. A natural follow-on to global-scale study was a more rigorous statistical decomposition

of the relative importance of the independent variables over individual regions (part 1b; Ch. 2,
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Sec. 5 herein); the results of the statistical investigation over individual regions (and seasons)
were consistent with the findings on the global scale, yet the relative weight assigned to
individual independent parameters varied between regions and therefore these results motivated
further study to link statistical output to the background meteorological context.

In a shift of focus from global, to regional, to individual basin-scale analyses, data
collected between October-December 2011 during the DYNAMO field campaign over the CIO
was used to investigate the inter-basin differences in convective spectra with respect to
intraseasonal changes (associated with the MJO) in aerosols in the lower troposphere in an
otherwise spatially homogeneous thermodynamic background (part 2a; Ch. 3 herein). Coherent
variations in the large-scale circulation, convective clouds, and aerosols were noted, consistent
with relevant theory for equatorial heating modes/wave disturbances and observations from the
INDOEX field campaign that took place more than a decade prior over the CIO. The relative
brevity of the DYNAMO data record prompted the author to appeal to the longer climatology of
MJO events occurring in previous boreal cold seasons to investigate whether the patterns of
covariability noted during DYNAMO were robust (part 2b; Ch. 4 herein). Bearing in the mind
the spatial and temporal patterns of variability noted, the results from Chs. 3-4 again pointed to
the importance of all three independent variables studied here, highlighting the applicability of
the simultaneous hypothesis for convective cloud variability in individual regions/basins (i.e.,
over finer scales).

The four parts of the research have been combined into three manuscripts for publication
in the peemeviewed literature. The first of which is entitled, “Simultaneous influences of
thermodynamics and aerosols on deep convection and lightnilmgTinopics” and was accepted

for publication in the Journal of Geophysical Researéftmospheres (JGR-A) on 3 June 2015.
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Ch. 2, Sec. 5 will be revised and prepared as a stand-alone manuscript to follow the
aforementioned article from JGR-A; the questions posed at the end of Ch. 2, Sec. 4 have been
addressed accordingly in Ch. 2, Sec. 5 and it is the view of the author that these results warrant
publication in light of continuity and to guide on-going science pursuits. Ch. 3 of the dissertation
was originally submitted to Geophysical Research Letters (GRL) and received generally
favorable reviews in the editor’s response. After much thought and deliberation, the author and

his coauthors have opted to combine Ch. 3 and Ch. 4 into a cohesive manuscript that more
thoroughly addresses the criticism put forth by reviewers from GRL. The primary results from

the collection of manuscripts can be summarized as follows:

e In a study of more than 1.4 million CFs/260,000 LPCFs in the TRMM satellite
observation domain between the years 2004-2011 (Cboyective intensitwas shown
to increase with increasing NCAPE, increasing CCN, and decreasing WCD over both
continents and oceans.

o New observational evidence for the simultaneous influence of WCD on deep
convection was presented; results agree with previous findings

o Differences in the VPRR for polluted environments (CCN > 506)ahepicted
~5.0 dB enhancements at 5-10 km altitude compared to pristine environments
(CCN < 100 crt) holding thermodynamic quantities constant

o Total lightning density (TLD) and the average height of 30 dBZ (AVGHT30)
echoes were strongly correlated in the average sense; the slope of this relationship

was sensitive to the background aerosol concentration
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A statistical decomposition (Ch. 2) of the relative influence of NCAPE, CCN, and WCD
on TLD and AVGHT30 illustrated that simple linear models of the three independent
variables accounted for up to approximately 78% of the variance in the lightning and
radar reflectivity on the global-scale
o In the multiple regression statistical output, the relative weight assigned to CCN
was double the relative weight assigned to NCAPE and WCD, respectively, on
the global scale; in general, the relative weight applied to each independent
variable had the same sign regardless of the individual region studied, but the
magnitudes of regression coefficients varied regionally
o The global observation strategy contributed to sufficient independence in the
predictor set to ensure robust quantification of the influence of each variable in
isolation
o The multiple correlation and general invariance noted in the magnitude and sign
of regression parameters the large-scalsuggest that these results may be
applied in efforts to improve global chemical transport modeling (e.g.xLNO
generation and dispersion)
A fine-scale analysis of the relative contribution of CCN to the observed variability of
convective clouds over the CIO (Ch. 3) suggested that systematic differences in CCN
concentrations in the lower troposphere between the northern and southern regions of the
CIO contribute to more lightning (up to a factor of 10) and greater radar reflectivity (~2-3
dB; maximized in the mixed phase region) north of the equator compared to south of the

equator.
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o Variability in the large-scale circulation on intraseasonal timescales appears to
maintain the meridional gradient of lower-tropospheric aerosols; implied stronger
convective heating in polluted regions may lead to enhanced aerosol-cloud-
circulation feedbacks in association with the MJO

e A climatological study of the covariability between rainfall, CCN, NCAPE, WCD, and
lightning over the same region again illustrated systematic differences in CCN, similar
thermodynamics and rainfall, and higher lightning rates north of the equator compared to
south of the equator in the CIO (for approximately more than 20 MJO episodes during
the years 2004-2011; Ch. 4)

o Climatological behavior was found to be similar to that observed during
DYNAMO, emphasizing the robust nature of the patterns of covariability found

between rainfall, CCN, thermodynamics, and lightning over the CIO

The primary findings of this dissertation advocate for the simultaneous hypothesis that
aerosols modulate the amount of available thermodynamic potential energy realized throughout
the lifecycle of a tropical convective cloud (also noting sensitivity of the response to the depth of
the cloud’s warm phase). As demonstrated here, a considerable amount of the variability in the
deep convective cloud population can be accounted for when studying the response of
convective intensity to the combination of NCAPE, CCN, and WCD on large spatial scales
(following previous hypotheses in the literature); but, as the time and space scales of interest
become progressively finer, the results indicate that other factors may be important for

explaining observed tendencies in lightning and radar reflectivity characteristics.
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The next generation of observational platforms is in development (or is in the process of
being deployed) and the outlook for passive and active remote-sensing strategies to address some
of the continued uncertainties surrounding simultaneous thermodynamic and aerosol influences
on deep convection is promising in light of on-going and planned misskmwsiman et aJ.
2013;Heymsfield et al.2013;Rennd et a).2013;Hou et al, 2014;Rosenfeld et gl2014]. Itis
the hope of the author that this research provides the impetus for future investigations that extend
this analysis to extratropical latitudes while utilizing high-resolution data from the next
generations of geostationary satellites and space-borne radar (e.g., GOES-R and the GPM

satellite constellation), lightning detection systems, and chemical transport models.
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APPENDIX

Appendix A.Z Index of Terms

AVGHT30 - Average 30 dBZ echo top height

CAPE- Convective Available Potential Energy

CCN- Cloud Condensation Nucleus(ei)

CCF- Cold Cloud Feature

CF- Convective Feature

CIO - Central Indian Ocean

DMS - Dimethylsulfide

DYNAMO - Dynamics of the Madden-Julian Oscillation field campaign
ECMWEF - European Center For Medium Range Weather Forecasts

EOF- Empirical Orthogonal Function

ERAI — European Centers For Medium Range Weather Forecasts Interim Reanalysis
GLD360- Global Lightning Dataset (Vaisala)

GRL - Geophysical Research Letters

IR — Infrared

JGRA - Journal of Geophysical Research-Atmospheres

LCL - Lifted-Condensation Level

LIS - Lightning Imaging Sensor onboard the TRMM satellite

LPCF- Lightning-Producing Convective Feature

MAXHT30 — Maximum 30 dBZ echo top height

MERRA - Modern Era Retrospective Analysis for Research and Applications
MJO - Madden-Julian Oscillation

N40- Concentration of boundary-layer cloud condensation nuclei with diameters > 40 nm
NCAPE- Normalized Convective Available Potential Energy

PR- Precipitation Radar onboard the TRMM satellite
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R08- Rosenfeld et al., 2008

TLD - Total Lightning Density

TRMM - Tropical Rainfall Measuring Mission
VPRR- Vertical Profiles of Radar Reflectivity
WCD - Warm-Cloud Depth
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Appendix A.2 Statistical output- Supplement to Sec. 2.5

The overarching objective of the analysis in Sec. 2.5 was to discern the relative influence
of the each predictor within independent predictor set on TLD and AVGHT30 using multiple
linear regression analysis. A forward-regression analysis strategy was employed, whereby
multiple iterations of the regression computations are conducted, each time adding a variable (or
transformed variable) and assessing changes in regression performance. The optimal model for
the data is found when the addition of new vds@alloesn’t contribute improvements in
regression strength beyond some pre-determined tolersiocegomery et al.2012]. In
general, thirteen model forms consisting of linear combinations of NCAPE, CCN, WCD, and
physically-explicable transformations of the independent variables were studied. The first
twelve of these models were based on linear, quadratic, interaction, and logarithmic forms of the
predictor set.

With the inclusion of higher-order terms in the regression model, it became apparent that
increases in the multiple correlation between the dependent response variable (i.e., TLD and
AVGHT30) and the independent predictor set were possible when including higher-order terms
in the regression form. However, a consequence of including higher-order terms (e.g., NCAPE
and NCAPE) in the same model was that multicollinearity within the predictor set led to
decreased stability of individual parameter estimates. For completeness, the thirteenth model
form was an experimental form that combined “random” combinations of linear, quadratic, or
logarithmic forms of the independent variables (NCAPE, CCN, and WCD) in an effort to see if
there was an optimal fit/significant increase in the multiple correlation using transformations of

predictor variables.

169



In each statistical output table, several identifying characteristics are laid out in the upper
left corner. The name of the geographical and temporal subset, the form of the predictand (O-
TLD; 1-AVGHT30; log Y implies that the logarithmic transform of the predictand was used in
regression), the minimum number of samples within a given subset of the three-dimensional
parameter space before inclusion of that data point within the regression computation (“Bin
minimum”), and the total number of samples (i.e., the number of subsets of the three-
dimensional parameter space that were included in the regression computation) are shown. The
forms of each regression for models 1-13 are shown in the upper center/right of the statistical
output table. Note that regression form 13 varies according to which combination of transformed
predictor variables explained the most amount of variance in the response.

Each statistical output table is subsequently organized by column according to the
regression model form studied (the top row of the statistical output table is the regression number
corresponding to entries in the upper right of each diagram). Note that for each regression model
form (i.e., each column), each row for a given parameter corresponds to the quantity for NCAPE,
CCN, and WCD, in that order. For the higher-order models including interaction, quadratic,
and/or logarithmic transformations, the order of individual variables again follows the order of
NCAPE, CCN, and WCD. The order for interaction terms is NCAPE-CCN, NCAPE-WCD,

CCN-WCD.

Multicollinearity statistics depict the degree of linear dependence in the predictor set, i.e.,
the likelihood that a given predictor can be represented by a linear combination of the remaining
predictors in the set. The two rows that follow beneath the multicollinearity statistics consist of
the multiple correlation and adjusted multiple correlation (i.aml Rq?, respectively) for the

total regression to illustrate the “goodness of fit”. The adjusted multiple correlation is meant to
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express the “goodness of fit” while accounting for the degrees of freedom in the regression and
residuals. Individual coefficients of determination (i.e., IndividuAIf&r regression of the
predictand onto each predictor in succession have been provided to illustrate potential
differences in the “goodness of fit” between individual variables and the predictand vs. between

the full predictor set and the predictand. Parameter estimates, i.e., the coefficients of the
regression assigned to individual predictors, and the regression constgf temen, in Eq. 2.1)
follow next. Mean-square error (MSE) is meant to quantify the accuracy of each model and in
theory, this quantity should decrease with inyii@ “goodness of fit”. The degrees of freedom

for the regression (vreg) and for the residuals (verror) are provided along with the F-statistic; these
guantities are used in evaluating the null hypothesis for the regressiofy &€) according to

the theoretical F-statistics for significance levels, p=0.10, 0.05, and 0.01. Lastly, the two-tailed
Student’s t-test results are shown to evaluate whether individual parameter estimates in the
regression are statistically significant; these values represent the probability that each t-statistic
for a given parameter estimate is not random and values approaching 1.0 are more favorable.
Note that these values are negatively correlated with the multicollinearity statistics near the top
of the statistical output table; as linear dependence in the predictor set increases, the statistical
significance of individual parameter estimates decreases.

For each predictand (e.g., TLD and AVGHT30), statistics for global, continental,
oceanic, hemispheric, and regional data subsets on the annual time scale are followed by
hemispheric data subsets for individual seasons. Statistical output tables for TLD precede the
statistical output tables for AVGHT30 and each table can be identified using the information in

the upper left corner of each diagram. These tables represent the statistigarithmic forms
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of the predictanénd the results for linear forms of the predictand have been withheld for

reasons described in Sec. 2.5. See below for statistical output tables.

172



Location,Scason: Globe, ANNUAL Regression Forms: Location,Scason: Contincnts, ANNUAL Regression Forms:

3 Tnecraction 9 Linear Quadatc 3 Tnccraction 9 Linear Quadatc
Predictand: 0 log Y & Guearae. i icrction Gusiraic Predicund: 0log Y & Guearae. i icrction Gusiraic
-8 s -8 s
Bin minimua: 20 T izar Taseection e e garitimic: B uinimuim: 20 T izar Taseection T e e on Qoo Logarthi
Samples: 885 13: NCAPK, log,;CCN, WCD (optimal) Samples: 716 13: NCAPK, log,,CCN, WCD (optimal)
Regression Number: Regression Number:
1 2 3 4 5 6 7 8 » 10 1" 21 1 2 3 4 5 6 7 8 5 10 1" 21
Multoollinearity: Multeollincarity:
NuaN NaN 0.1254 0.7657 0.1207 09819 0.9941 0.1604 00984 07619 0.09 ol 0.9942 0.116]
=177 =774 =177 0.0030 03444 0.011¢ 09684 0.9781 00418 0.0046 0.3654 0.0072 0.0673 0.9798 0074
=7774 =17 0,125 0.71; 0125 0.9904 0.99% 0.133 01022 0.717: 0.0943 0.1408 0.99% 0.162:
7 77 7. 77.4 .l 777.1 0.8131 44 £ 177.4 | 7L 771 08228 g
=7 =774 =772 = =777 =77 09875 0.9876 =777 =771 =777 =77 =700 0.9852 =777
=7 =774 =777 =777 =777 =770 09742 97! = =772 =77 =TT =777 9791 il
IRy Iy T R S X 09334 098 = B XTI S TR 09807
=7 =774 =277 =TT =777 =777 0.8822 0.9405 = =TT =777 =777 =777 0.9448 =7
7, 377 7.1 Tid g 09914 0.9997 774 . | 0.9997
7774 7. ~7774 . T77.0 0.9592 ~7774 . 0.95%)
77 . 777.0 0.8476 = . 0.8891 =t
. =777.0 0.9997 - =TT .9997

06030 0IUST  OTWOE QI OSTIS QKL DEUUN 02661  0S4S  06A 0632 06 QT2 QT O7HI  OTISE
08003 07037 06985 07243 08698 08385 L6UEl 02630 05476  06SE0 06301  O6YSE 0700 07269 07806 07146
Qlms  olsE  gams ol QlwmE  plss 0003 02595 9lom ol g2ms ol 0l ola
02779 02779 00900 02779 02779 06578 01R8 0087 01828 O] 371 Q1828 g
0o Gows o 2153 0,
03215 03205 - I
0.0 o0 - - E I
02222 02222 1
1426 01426 = e 777, ~1770 =
01056 Q1056 = e 777, 710 T
00693 0 E = I S vy TR X -7770 E
S0 Ol E e 27771 e =
7770 06378 X 77 70 7770 04488
0 0050 E X & W e ohe
03378 081 - 05332 04313 05513 03221 QT2 03514 0135 04272 10453 03939 05125 06537 03781 08322 04052 0034 00777 08392 04365
JT0 7770 -7772.0 05226 01034 03850 07555 05030 12754 04767 07424 06N 07295 03975 -0.061 0 03569 a2 09114 050% 0033 D714 053
7 il 7 461 0, 0,48 43 03650 LS0S1 04687 4553 7 .5 1 0 41 0655 16759 10255 0240 047
-7 ~7774 -177.4 -7774 -T774 777 -T77. -0063 01119 00921 1195 0005 77 -7774 -T774 772 -T13 00573 0016 0950 777
e LI X R R X 70 -7770  -01%  -0812 917 00532 0230 - -0 -7 730 -7770 03k 0550 67T aS067 -
-7 B LT X ¢ R X 1) 0692 0 0713 0BT 032S 77 U0 -ID T8 TID 0766 2224 0 4252 17T
-7 0 -0 -0 - -TI0 -T0 -0 -T770 <TI0 0098 -05S0 77 -T7g - -TI0 -0 -mI0 <TI0 <1710 2617 -777!
-7 L X R, ¥ B R X Sy 4 SO 969 00970 =77 B X TN -T7e 0 770 7 52 00835 777
b X 7 7771 770 173 770 7170 7770 lOnd  L70s6 7 X 70 -T0 770 70 SI7I0 0 2412 1297 77
-7 LI X R X Tu -0 -pI0 -T0  -1II0 710 03 77 7T STU -0 -TI0 Ime 770 e 38 77
7 ZTe e e o e -0 7770 099 77 e B T O R S S Y 1 R
777 7 i T X X 7770 70 T 770 7710 24324 7 777 7 T X X 7770 70 T 7770 7710 08226 77
Rogression Constant, by Rogression Constant, by
1014 Lle-l4 9815 1314 10e-14 960-15 8715 12614 €515 8915 73015 4deld 1214 18c-15  -84c-16 -1Sc-14 27015 17e-15 L3e-15 -17e-18 Lle-15 -25-15 12615 -28e-15 35e-14 12616
Mcan Squarc Error Mcan Squarc Error
USSGS 03425 DS4T0  D39YT  DETI0  OSIE 02061 OIE 02962 O 02756 01301 01614 USIEL  DSSIY DSI4Y D398 0369 04523 03419 OJ6W  OS0A1 02992 02730 02193 02853
Viegt Verr Compuu:d F—S luns ic v,,:. Vs Computed F-Statistic
LOOOD 100 0000 30000 30000 30000 60000 6000 6000 90000 12000 30000 10000 LOOID 30000 30000 30000 30000 60000 60000 60000 9000 12000 30000
§505  GS00 84500 3erh0 0 Gdo  dndo  wSm  Em0  SMe e smm  daien SE6S T Ti% 3N IR IR DN SNE TN SB% e 1w 7o
U373 16975 50468 4a542 14404 28360 11353 22233 35099 34247 25001 4930 15320 64705 SNLS6  1634¥ 37080  ¥6053  2K9SI 456555 20406 27365 2800 21250 21306 97T
Theoretical F-Statistic (p=0.10,0.05,0.01) Theoretical F-Statistic (p=0.10,0.05,0.01)

27112 27112
EE ]

20900 20000 20900  |7808  L7ROR  L.7R0B 16386 15333 20900 2 091 1

2510 2elsg 261 2108 2108 ZIo  1aws 172 2610 26174 26174 26174 2.
039 As0l  IE09  2a5  TmnS  Zsns 242 22051 360R9 35002 Ao Fs02 2%

um the absolute value of a random variate will be less than parameter L-value) Twa-sided (~test: Significance of b, (probability Urat the absolute value of a random variate will be les than parameter t-valus)

20915 20015 20915 T8l Lsssl o 200l

0.9988 0.9977 0.9222 09113 0.9827 1.0000 0000 1.0000 D 99'7 03258 02056 1
U 5926 1 O\IUU 0.9988 09999 09941 1.0000 03080 1.0000 0.9982 0.1133 09931
1.0000 08260 1.0000 9684 1.0000 999@ 1.0000 09999 0.0393
0.5201 0.9879 7.0 =777.0 T17.0 01359 0.0885 0.1107 0.7149
)OO 0.1 -777.0 T77.0 10000 0.8116 08570
1.0000 09999 T77.L =777.0 | (M](Kl 1.0000 09999 0.8968
7770 04075 777, 70 7. 7770 02274 09777
7770 10000 7770 ~T77.0 TI70 7770 10000 0.3
=777.0 0.994 -777.0 -777.0 -7717.0 777.0 1.0000 0.3850
=770 =T =777.0 =777.0 = D =770 =777.0 09610
~777.0 =770 D0 =777.0 ~777.0 =777.0 7770 =770 ~777.0 =770 10060 =777.0
e R R o e e e Cmio 7o o a7no
Location,Season: Oceans, ANNUAL Regression borms; Location,Season: Northern Hemi. (LonmwmsL ANNUAL Regression borms;
= NCAPE, Tneeraction Lincar,Quadratic 5: Linear Quadati
Predictand: 0log Y CON s 16: Tferctin Qo sdrsic Predictand: 0log Y eraction Quadratic
o WD 7 (bmic ar oteraction Quadratic $b ar oteraciion Quadratic
Bin minimum: 20 4: Lincar #L It ithmie Bin minimum: 20 4: Lincar L ithmi
Samplu: 615 13: NCAPFE', log,(OCN, WCI¥ (optimal) Samplu: 631
Regression Number: Regression Number:
1 2 3 4 5 6 7 3 ) 10 1 12 13 1 2 3 4 5 6 7 3 ) 10 1 12 13
Multeollinearity: Multeollinearity:
aN NuN 0.1400 0.765 0.1320 U 1187 V9800 0.8062 09830 0.9955 aN NuN 0.1015 0.7637 0.1016 D 9803 09208 08049 09855 0.9943
=177 7" 0.0004 0377 0.0029 0107 0.95( 09512 09626 0.98: =177 7" 00033 0.370 0.0494 09732 0.9471 09749 0.9817
=777 0,140 0708 013 117 0.7668 0907 0.9903 0.99¢ =777 01038 0.7198 0,136 0.7447 15 0.9922 0.99%
1774 T 7. 7774 7—7". 08077 09388 0.8128 0.818¢ 177.4 T 7771 0813 09329 08178 08258
=777 =777 =772 =770 =77 =T72.0 0.9828 0.8427 09880  0.9891 =777 =777 =772 =770 =T72.0 0.9821 0.8808 09889  0.989%0
=777 =177 =TT =777 =TT =777 0.958! 0.5991 09589 0.9600 =777 =177 =TT =777 =777 09742 0.5347 09757 09795
7 Sy mu Smie e me - 5 0930 09837 L S Smo S Smo - ZHh 0951 098
=777 =777 =771 =777 =777 =777 =777 =777.0 0.8825 0.9522 =777 =777 =771 =777 =777 =T77.0 =777.0 0.8890 0.9549
~277.4 -7 ~7774 -7 17 -7 =773 ~7170 09912 09997 177 ~277.4 -7 ~777 ~7771 -7, -1717.0 ~7770 09930 09997 17
7771 T 7T 770 T 7 770 S0 Ogis 77 7771 T 77 70 7770 70 7o 8 777
=777 =77 =TT T2 =77 =777 =TT =774 =777.0 =777 =777 =77 =TT T2 =777 =TT = =774 =777.0 0.9069 =777
77 =17 =774 =772 =TT =177 =T =170 170 0.9997 =77 77 =17 =774 =772 =177 =0 =-T70 =170 =710 0.9997 =77
R ,Ru," R ,Ru,"
0.0572  D.3866 02309 07207 02750 06515 07262 07298 08064 07950 0.B151 08363 OB1L 0.0578 . 15 02802 05327 06534 06275 06797 06948 0796 07766 UFLL
0.0556 03856 0.2297 07193 02714 0.6498 0.7248 07271 0.8045 07930 08123 0.8330 08102 0.0559 0.2033 0.5996 02768 0.5305 06528 0.6239 0.6766 0.6919 07054 07722 07097
Individual R Individual R
0.057: 0.386¢ 0.2308 D864 0261 00922 0.0572 0.0864 0.0864 02613 (l OSM 0.0864 0.0922 0.057 0.204¢ 0.0750 02629 0.0619 0.057 ﬂ 0750 0.0750 02629 00750 () ()750 00750
=774 =777, 0.2164 0.027: 0.0M8 03866 02164 0.2164 00272 0.2164 0.3866 =772 =770 0.1861 0.023% 0.0756 0431 EM 0.1861 0.0238 0.1861 318
- ~7T74 ~177.L 0.2496 0.14] 0.262¢ 0.2309 0.2496 0.2496 0.1412 0.2496 0.2396 0.2620 - ~177.L 0.2313 01282 0.2522 0. 231
= =774 =177 777 =777 =771 =773 0.2613 0.0922 00922 02613 02613 =777, - =177 =777 =771 =772 =173 T
- =177 =777 =777 =777 =TT =777 0.02] 0.0948 .00 =17 - - =777 =777 =TT =777 =17
g 7 7.1 77 | 77U 77 0.141 0.2620 02620 0.1412 0.1412 g 7. 77 77U 7771 T
- =774 =770 =771 = =777 =777 = =777 =777.0 0.0922 0.0922 =T 770 =771 = =777 =777 =777
=7774 =17 =TT = =TT =777 =77 =TT =777.0 0.099% 0.0948 77 7.1 =TT =i =TT =777 7774
~7774 =177 7774 =777 =777 =773 -777. =777 -777.0 0.26: 77 7.1 7774 =177 =772 =T173. =777
=774 =777 =771 =777 =772 =777 =T77. =TT =777.0 =777.0 00572 =77 7.1 =771 =777 =772 =777 =777
177 -7774 ~T77.4 = 17 -7 -7, 777 ~77710 -1 0.3866 =777 7.4 ~T77.4 ~ 17 -7 =777
777 70 7T K X 0 TI0 70 Te 028 7 70 7T K . ) X
Parameler cstimates, b,
0.5711 0.0250 02215 09735 04780 0.4795 )46 89 0.3576
0.0815 0.2052 06987 0.0165 0.4095 ~0.134 0.3245 0.5552
0.741 09297 0.3679 166 061 2 .65
0.0967 0.3296 7774 =
—0.07 17 .
2078 95 T34
0 X
0 L
0 L
=, 0 - =777 7.
=777 0 =777 =T774 | 7770 177.0 07814
g .1 7720 0 g 7774 | 77 7771 7770 7710 0436
Regression Constan, by Regression Constaant, by
19c-15  -99¢-16 7.3¢-15 23c-15 1le-16 -l8-15 97e-15 25e-15 -49-15 -18v-15 —4le-15 —22v-14 —30c-15 60c-15  37c-15 18e-14 S55c-15 50c-15 28015 1914 6le-15 -58-16 30c-15 -97e-16 S58c-15 42e-15
Mean Square Error Mean Square Error
. W'J 0.6143 03702 0.2806 07285 03501 02751 0272¢ 0.1954 0.2069 0.1876 0.1669 01897 0.9440 0.5690 0.7966 05003 03231 0.4694 03471 03760 03233 03080 02945 02217 02902
Viegh Vot Computed F-S llusuc Verrs Compuied F-Sltatistic
L EXJD 1.0000 1.000( 0000 3.0000 3.0000 3.0000 6.0000 6.0000 6.0000 9.0000 12,000 3.0000 10000 1.0000 3.0000 3.0000 3.0000 3.0000 6 0000 6.0000 6.0000 9.0000 12.000 3.0000
613.00 613.00 M).GO 6| 1.00 611.00 611.00 611.00 608.00 608.00 608.00 605.00 602.00 611.00 629.00 629.00 627.00 627.00 627.00 627.00 00 624.00 624.00 621.00 61E.00 627.00
3709 38645 18410 525.66 77.261 38085 S4028 27377 42214 39319 29636 256X £74.74 475.09 16184 31557 ¥1.398 23831 39585 17525 22069 23681 168,63 17905 51447
Theorolical F-Satisi (p=0.10.005.001) Theomtol F-Stastls (=0.10005001)
27137 27137 271¥ [)927 20827 20927 20927 1.7R3% 1.TR3R 17838 16418 1.5567 2 W"«' 27138 27135 5 20925 20925 20925 17838 1.7R3S 17838 16416 ].55&
3.8566 38566 ) 8‘66 2.6l 26194 26194 26194 21134 21134 21134 1.8953 1.7682 38562 38562 2.619! 26191 2619 26191 2 113 21130 21130 l SW) 1.7678
6.6764 6.6764 "XUR 38138 A8138  3FI3R 28316 28316 28316 24366 22143 El"ﬂ 6.6753 6.6753 8129 38129 38129 38129 8309 28300 28300 A359 22135
Two-sided (-test: Slynﬁum.c byt abadue afi o onlm gt b g i parei e} Twa-sided t-test: Significance of b, (g et s Shafes e ofacanlim irtis ailhe e han peimeie t-value)
10000 1.0000 1.0000 1.0000 1.00n0 02154 0.5249 08926 1.0000 10000 1.0000 1.0000 m“ﬂ 1.0000 1.00n0 09088 0.2965 1.0000
7.0 T 70 l (XJI.W 09918 LO00O 07379 09991 0.0432 10000 7.0 T 70 1.0000 09924 LO00O 09700 0.1248 10000
=770 -1770 -777.0 1.0000 09769 1.0000 1.00000 06294 0.7700 1.0000 =770 -7770  -177.0 10000 09974 1.0000 1.0000 09902 0000
=177.0 =177.0 =770 =177.0 =777.0 =777.0 0.9566 0.0762 0309 =777.0 =177.0 =177.0 =770 =177.0 =777.0 =777.0 0.1348 n.RZfM =777.0
-777.0 —777 9 1770 77740 1770 -777.0 0.99¢ -777.0 -777.0 —777 9 1770 77740 1770 -777.0 1.0000 78 -777.0
=777.0 =771.0 =777.0 =777.0 =772.0 1.0000 09699 09166 =777.0 =777.0 =771.0 =777.0 =777.0 =772.0 1.0000 U‘PW =777.0
-777.0 - "ﬂ.{l -777.0 -177.0 -7710 7720 ~7770 09289 02927 1770 -777.0 - "ﬂ.{l -777.0 -177.0 -7710 7720 ~7770 00301 -171.0
777.0 el 770 T4 770 J77.0 7770 10000 0.8300 T 777.0 el 770 T4 770 J77.0 7770 10000 T770
=777.0 -7T' ﬂ =777.0 =T77.0 =777.0 =777.0 TI7L =777.0 0.9905 06142 =777.0 =777.0 -7T' ﬂ =777.0 =T77.0 =777.0 =777.0 =777.0 0.9¢ =777.0
=777.0 =770 =770 ~777.0 =170 T77.0 =770 -1m. 0.83%9 =177.0 =777.0 =770 =770 ~777.0 =170 7.0 -177.0 =177.0
=777.0 —7'!'7 ﬂ =177.0 -777.0 =-777.0 =777.0 =777.0 =T77.0 =777.0 =777.0 0.9972 =777.0 =777.0 —7'!'7 ﬂ =177.0 -777.0 =-777.0 =777.0 . K =777.0 =777.0 =777.0
=770 -177.0 =T770 =777.0 =T77.0 ~777.0 =T77.0 =T77.0 =771.0 0.7945 =777.0 =770 -177.0 =T770 =777.0 =T77.0 =777 7770 =777 =T77.0 =771.0 01375 =777.0

173



Regression Forms:
Tneeraction 9; ner Quadesic
6 Qudralic 0: Ineraction Quadratic

3
15 Cinea feracion &mmc.x.ogsnmm-c

Location,Scason: Southern Hemi. (menmli;‘ ANNUAL
Predictind: 0log Y’

L5

mic
Lincar,Interaction

Bin minimum: 20 : Lincar
Samples: 535 13: NCAPH, log, CCN, WCD (optimal)
Regression Number:
1 2 3 4 5 6 7 3 9 10 i 2 13
Multcollinearity:
01002 0.7654 0.0947 0.0963 09809 09238 09850 0.9949 0.1129
0.0265 0.448. 0.0058 0.0917 0.9240 09846 0.9897 0.1059
01226 0. 097! 0.173 0.9908 09922 0.9999 01!
177.4 777 774 77 08323 08335 177
=771 =777 =77 =700 09885 0.9885 =
=777 =777 =777 =777 0.9R( 9832
=TT =777 =777 =777 09383 ).Y8: =
7774 =777 =777 =777 09248 09727 -
Tid g 77 09927 0.9998
774 . 7.\ T77.0 0.9664
. 7.0 777.0 0.9338 =t
=) = =TT =TT =77 .9997
0.5484 0.2484 0.5146 0.6063 0.6470 06217 0.6784 07043 07417 0.6458
Gass 02441 03118 06041 O6i0 0674 06747 O6®Z 0737 06438
0. 0. 0 0.0584 0.079 0.0794 02413 0.0794
0. 0, 0.] A31 02181 181 0.0289 021
0. 0, 0. 0. 0.179% 02022
= = = 0.077: 02413
- - - 0111 0.0289
01796
- - - =774 0775
=% - = =171 01118
= - =772 =777 02201
5 - = =777 =777.0
777, 710
- . T77L 7770 01785
0.4539 04435 0.4743 08018 2846 —.179 0.0870 0.4944 0.404]
630 -002 0Ll Sren o8 0562 08 -igm 052
33 0089 0.59: 0921 4774 1.3569 1.0286 990 ).4]
7774 =177 =772 -0 .1258 R -0.205 .172. =777
=771 =777 =TT -0.239 -0.708 0850 0.4643 51 <
=777 =TT =TT 22369 1942 0824 19749 1.6121 =177
7774 = =777 =T77.0 =772.0 =777.0 0.0040 —4.284 =777
=TT = =TT =777 =777.0 =T770 55 02049 =777
77 T77L 7770 T77.0 7770 -1.970 34611 ~777.
=TT =772 =777.0 =771.0 =777.0 =771.0 —.189 =777
=74 - =T =170 =777, =770 =170 0.6829 =17
7774 77 7774 g . o 0 770 70 4.7565 177
Regression Constant, by
~12e-14 -15¢-14 -21c-14 -10e-14 -lle-14 -~10e-14 -2de-14 -lle-14 -lle-14 -10e-14 —lle-14 10s-13 -ldc-14
Mean Squarc Error
0.5693 08229 0.4541 07558 0.4881 0.3958 0.3569 0.3825 03252 03007 0.2642 0.3561
Compulcd F-Slatistic
1.000( 01 10 3.0000 6.0000 6.0000 6.0000 49,0000 12,000 3.0000
5'“ 'IW 533.00 531.00 53] 00 531 531.00 52 528.00 528.00 525.00 522.00 531.00
33,062 11585 21497 58,510 187.67 27265 161.30 144.63 185,66 13896 12491 32279
Theorstiel F-Satisic (p=0.10,0.05001)
27149 il 0941 1.7852 1.7R52 1.7852 16434 1.5584 20941
26216 2,621 26216 Z.l \57 2 |l57 2. ||57 1.8977 L7707 26216
38186 28186 AEIR6 361 28361 2411 22188 3RIE6
T\vu—sldui t-test: Significance of b, (pmbdhﬂlly that the absolute value ofnrdmlnm variale will be less than parameter L-value)
0.9999 1.0000 0.9891 0.9208 0927R 0. |979 08817 1.0000
0.5330 1.0000 10000 1.0000 9‘368 09795 09999
07407 )00 1.0000 09988 0000 09631 ﬂ ﬂ7Dl
=TT T77.0 0.979% 5751 0 1170 0.94
-777.0 T77.0 9999 1.0000 0.74¢
=777.0 =777.0 0.9999 1.0000) 1.0000
7710 TIT0 7370 7770 00189
7770 ~T77.0 TI70 7770 09999
-777.0 -777.0 =770 -T770  0999%
=777.0 =777.0 =770 =770 =777.0
~777.0 =777.0 =770 ~777.0 =770 9999 'I 0
=77 =777.0 =771.0 =777.0 =771.0 0.9070 —777.“
Location,Season: Southern Hemi, (Occans), ANNUAL Regressin Horms:
- NCAPR Theeraction Lincar,Quadratic
Predicland: 0log Y CCN uisds Il| Inferact n,Q- d Iu.
oo Wen 7. Logarilbmic
Bin minimum: 20 A4: Lincar # L Ini ACti ith
Samples: 444 13: NCAPE, log,OCN, WCIY (optimal)
Regression Number:
1 2 3 4 5 6 7 3 ) 10 1 12 13
Multcollinearity:
NaN NaN D1S72 D947 01496 01260  OYTEE 09252 UBIUT Q950 09963
=777 7" 0.022 03245 K) 0010 0.0095 0.95% 0.9588 09690 09864 1
=777 0. SRS 0.7612 0.1490 0.132¢ 0.7R43 BRI 0.9903 0.99%9 .16
177.4 | 7 777. T7U 777 0.8399 0.9248 ) 9442 08407 08336 1770
=777 =777 =777 =777 =777 =777 09821 ). 0.8527 0.989%0 0.9893 =777
=777 =177 =TT =777 =TT =777 0.9661 .98 06721 0.9665 0.9685 =777
-777 ~177. 7774 =777 =772 -7771 =7710  -T710 77 9453 09871 7774
=777 =777 =771 =777 =777 =777 =T77.0 =771.0 =777.0 0.8872 0.9604 =777
~277.4 -7 ~7774 -7 17 -7 -1717.0 ~TIT0 -T770 09918 09997 177
777! T 77 a0 b Iy b b oo 09I T
=777 =77 =TT T2 =77 =777 =T77.0 =777.0 7770 =777.0 09212 =777
-7 =777 =777 777 =TT =777 =777 =T70 -T0 0 =770 09997 7T
R ,Ru,"
0.0001 0.3366 03910 07107 02529 06515 07203 07140 07924 07407 07956 08121 0.7848
). X 0.7087 02478 0.6491 07100 07371 0.7 0.8069 0.7833
0.0012 0.0001 0.0012 0.0012 0.1525 00012 0.0012 0.0022
0.2225 03366 02225 02225 00132 02225 02225 03366
03180 0.391C 0.4180 0.4180 0.1108 04130 0.4180 0.4323
=777 =777 0.1525 0.0022 0.0022 0.1525 0.1525 =777.
=777 =777 0.0133 0.1152 0.1152 00133 0.0123 =777
77 7771 0.1108 04323 04323 0.1108 0.1108 777
=771 =777 =777.0 =777.0 =777.0 0.0022 0.0022 =777
217 7o Tmin Smro o oS ans: o
7774 =T173. -772.0 -T77.0 -777.0 04323 4323 =777
=771 =777 =T77.0 =771.0 =777.0 =777.0 0.0001 =777
~I77.4 -7 -0 -TI0 -T7100 771 3366 =777
T T J77.0 770 T770 T70 03910 177
0.3359 02371 02717 0.0404 0.0814 4] 093 0.2821 03144
0.4387 1.1056 0.7897 1993
0.4196 13.69 3¢
02921 0.0740 K
~0.008
0218
01417
)A3T
6.2283
=, ).128
=777 0.2389 £
g g 77 7771 68472 £
Regression Constant, by
l4c-14 12c-14 20c-14 ldo-14 lde-14 160-14 1914 lde-14 160-14 1614 16014 -S54v-14 ldo-14
Mean Square Error
06648 0.6103 02912 01521 03508 va2ss 02899 02103 0.2628 02086 01930 02166
Verrs Compuled F-Sltatistic
1.0000 1.0000 3.0000 3.0000 3.0000 3.0000 6.0000 6.0000 6.0000 9.0000 12,000 3.0000
442.00 4—12.00 440.00 440.00 440.00 440.00 437.00 437.00 437.00 434.00 431.00 440.00
224.33 36034 49652 27427 3.9 18183 27816 206 187.72 155,31 53494
Theorctical F—swusuu (;H) 10,0.050.01)
27169 2.09¢ 20962 (0967 20962 17876 17R6 17876 1.6459 1.5611
3.8625 ) ﬁﬁ25 2. 6"5| 7.625] 26251 26251 21193 21193 21193 19014 1.7746
6.6925 6925 6.6925 3.826¢ 38264 38261 28423 28433 28423 M8 22261
Two-sided (-test: Significance oﬂl (pmh.lluhly tha
01957 10000 10000 10000
7.0 T 70 l (XJI.W 10000
S0 - T 100 09949
=177.0 =177.0 =770 =177.0 =777.0
-777.0 —777 9 1770 77740 -777.0
=777.0 7770 =771.0 =777.0 =777.0
2770 - "ﬂ.{l -177. -177.0 ~777.0 0.2642
777.0 el 770 T4 770 09320
=777.0 -—7T' ﬂ =777.0 =T77.0 =777.0 T 123
=777.0 =770 =770 ~777.0 T77.0 =777 )3 0
=777.0 —7'!'7 ﬂ =177.0 -777.0 =-777.0 =777.0 =777.0 =T77.0 =777.0 =777.0 0.8410 =777.0
3770 777.0 =T770 =777.0 T77.0 ~777.0 =T77.0 =T77.0 =771.0 09775 =777.0

Location.Scason: Northern Hemi. (Occans), ANNOAL
20

Predictind: 0log Y’
WeD

Regression Forms:
Tneeraction 9; ner Quadesic
6 Qudralic 0: Ineraction Quadratic

mic 1
Lincar,Interaction

Bin winimun: 20 : Lincar
Samples: 522 13: NCAPK, log,,CCN, WCI¥ (optimal)
Regression Number:
1 2 3 a4 5 6 7 8 9 10 1 12 13
Multcollinearity:
NaN o NaN o NaN D13 ozl 023l Q9867 099 01362
ST IO 17D o 001 00176 09658 09820 00335
e o S ol o1 0,1213 09911 0999 0,127
77! T 7 77 X il OEI6G  0ball 5
D X ¥ R I X X 09904 09906 77
e e o i 7 09663  09A8I
I8 -0 TI70 777 09377 0982
e o - X X 0873 09483
777 7 X 77 09919 09997
7 X 7 7770 09708
7. X 7. 7770 Q9016
Y X X X 770 09997
i
01001 DIETE 0.1 07319 06689 06S OIS 0TKIZ Q776 OTH0  OBOIE 0777
00984 D363 060X 07303 06670 OGBS 0735 OTE06 0769 0TS 079N 0TI
01532 0319 031 01532 01532
02659 0078 00788 02659 026
0174 D191 01914 01741
b T 01660 03190
z = 2177 alall 00788
1820 01914
= = 7771 70 01
= > 7 70 oAl
= = 7771 7770 01820
& 3 7 7770 9710
- S0 1o o
7 777 - 7770 70 0
Paramcler cstimales, b,
03164 06 - 05964 06280 04555 08401 9 0006 05724 14571 05308
JTI0 -T70  -777.0 04690  -0009 490 01952 09248 01343 06147 02167 .
777! il 0 06 i .07 0614 635 04259 01010 S22l
-7 I8 IO -7d T ~TI70 00167 0301 04081 928 00029
e LI R IR ~7770 0276 a1 D3sd g1 013
-7 B Iy X R o X “TTD 02713 0957 0780 03%1 03422
-7 LS X R ¢ X R -0 -0 <770 -T770 0372 -0087
= L R ¥ 70 STT0 -7770 1770 D493 0208
b X 7 7771 777, 9770 777 7770 0686 21402
-7 LI X R X -0 7770 -7 7770 7710 0370
7 ZTe e i o T 7770 170 023%
777 7 i T X 770 70 T T 70 257%
Rogression Constant, by
22¢-18 8816 1214 48c-16 8516 42016 1de14 4De-16 4616 59e-16 45016 73014 62016
Mcan Squarc Emmor
USOIS  D6ISS  DN391  D26Y  DESIE 03329 D3LIZ 02664 02193 02310 02146 0202 02295
Viegt Vet Computed F-Statistic
100D L0000 LOOD 3000 00 30000 30N0 60000 60000 90000 12000 30000
2000 3100 31800 3180 M0 s1300 A0 100 S1200 D0 Bl
0 03 Toow e Sl W sy b oos Mo 397 1719 w68
Theoretical F-Statistic (p=0.10,0.05,0.01)
27152 27152 27152 20043 20941 20861 20843 LTRSS LTRSS LTRSS 16437 1.SS8T 20943
58504 38594 38504 26271 26221 26221 26221 21161 21161 21161 LR 17712 26221
66338 G683 66538 38106 38196 38196  3%I96 28330 2830 2830 2420 22197  381%
tiat the absolute value of a random variate will be less than parameter -value)
09190 0.0497
10000 06397
05975 1.0000
09443 09801
09998 09988
09724 10000
7770 -7770
0 7170
7170 1770
e 1770
e 7o
e S

Location.Season: Amazon, ANNUAL

NCAPE Tneeraction Linear Quadei
Predictand: 0log Y CON wih reraclion,Quadratc
o WCD T (bmic ar oteraciion Quadratic
Bin minimuw: 10 4 Lincar 8 Lincarng 1
Samples: 202 13: NCAPE, 1og,,CCN, WCIY (optimal)
Regression Number:
1 2 3 a4 £ 6 7 8 9 10 11 12 13
Multcollinearity:
aN NN DDSYL  DYETE O QOSOO  OUIGY UYL USETZ  09UTZ 09981
By 7 01479 0532 OORIS 01843 09945 O90SE 09402 09975 09977
7774 14 208 OJ03T 01724 08265 09981 09120 0998 0999
77 I 773 777 7770 77D 0839 098 09432 09064 0S0%
7774 I TGO 70 -T70 <7770 09967 09039 QR86H 09973 09973
777 70 STII0 -7 7700 710 09941 099’1 02376 09969 0997
777 S0 JT0 -T0 -7 -T30 -770 170 <1770 09443 0989
777 S0 0 SI0 ST0 SIm0 -mI0 SI70 7770 0926 09709 .
-7 ST Ima -1 S0 SmTe 10 70 7770 09 9999 77T
77! 7 777 v JTu IO 70 TI0 Q70 110 U917 77
7774 O X 70 -0 I8 -II0 -T70 710 <7790 093 -7I7
-77 Dma ma TwIn e i a6 SmI6 _1mI0 170 09999 77
R'R,;’
U490 DG D259 D676 DATI6  06TS  0ITIS 0TI OISI6 07610 0T63 08242 0EDL
U147 06317 1 06720 04636 OIS 072 OJ0T5 07537 07512 ORIX 07991
Individual R
0.4 06335 02598 01714 0. olet 0li oama oama g4 o174 0174 Gleh
= -THQ -0 04205 0. 02511 06335 04205 04205 01214 04205 04205 335
- I 1770 02840 O, 0371 D3R 030 06 ONes 0Iew 0288 0567
= B T R —7770  -7770 04047 01641 01641  Q4D4T 04047 777
E S0 S30 IE0 ST 10 -7mIh 00214 02sil Q251 00214 Q204 73T
X 77 7 777 D 7770 777D 03968 02671 02671 03968 0396K I
= X R X 70 -7170 -T7I0 <9770 -7770 016dl 01641 =770
E B Oy X R SII0 ST II0 S7T0 170 02511 0251 77
0 -0 JI0 -0 70 -T0 -TI0 -T0 0 <1770 02671 71 77
I R R, X R Sy X Y S . X' 771
0 ST Ima b 0 STID A0 hT0 7770 1770 0633 77
77 g 771 O X (R (X 770 TI0 02596 777
Paramcler cstimaes, b
03861 03175 05906 02095 0263 Q4007 03097 03582
=377 06322 -i6h2 12559 01598 -2 06073
X 0.39: 561 5.53
777 T3 0282 0197
777 ~0160  -0289
7771 11450 04707
7771 02653 03260
T77. 0,67 4500
771 8151
2 777 1052
7774 TITd 1770 -170 09975
X 70T 770 70 9Msz
Regression Constant, b,
66c-15 62c-15  -6le-15 98e-15 6215 66015 -Lle-15 90c-15 43-15 Sde-15 1014 4le-13 6315
Mcan Square Error
U552 DIGEZ 07438 03279 0SI63 0398 02257 02926 02559 02462 02497 0869 02008
Verrs Compuled F-Slatistic
L0000 L0000 300 3.0000 60000 60000 60000 900 1200 30000
00 000 19 m) ioxts  18E0 oo Load W ol TeN T Ime  1sbe
33584 70201 58925 10216 23075 1968  9K36S 10353 6BAS3 73847 26765
ﬂwwml F-Swusuu (p%) 104 005 ,0.01)
;7 zle 20n6 2016 2iue e 045 1gen  LsiR 211l
i5m 3 m, H B des deds  dews 21453 21453 21453 19289 18036 26
iR UE IR INE IER BB MRl R B a0 s
Two-sided l—lan Significance of b, (probability that the absolute value of a random variate will be less than parameter (-value)
09999 1000 1000 09999 04050 10000 o909 887 02355 01510 09999
70 IT0 770 L0 0993 099w 03962 OO0RDS 03605 10000
L R 000% 02079 02876 09999
S0 -Ima I -Ima -7mh S0 -T7In 0620 07773 0804 -7770
e mg my o g e my oo 09976 00933 01667 7770
IS N X T B S X S, X S X 10000 06262 02819 7770
770 T I me mh Ime T 7770 06240 03689 70
peu N X X R ¢ KIS X S X S 21} 7170 098z 071 7770
gma - gme ma rmo oo e -T70 0030 0279 7770
770 S Tma Cwan e o7 1770 S0 -mro ainT Cmio
-0 -m u I X Ry R X, X X} 7770 7770 09994 7710
7770 0 IO 0 e 10 0 —7ie 10 770 0280 7710
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Regression Forms:

3
15 Cinea feracion &mmc.x.ogsnmm-c

thmi




Location.Scason: Central America Offshore, ANNUAL
2

Predictind: 0log Y’
Bin winimua: 10
Samples: 58
Regression Number:

1 2
Multeollinearity:

s
2

WD
: Lincar

Regression Forms:

Tneeraction

6 Qudralic
miG
Lincar,Inicraction

9; ner Quadesic
1

3: NCAPH, log, CCN, log,(WCD (optimal)

acc
3&

RE]
PES’

06218 06297 06722
06008 06092 06530
0,
0.
0,

= o 777
= I S vy TR X
3 nn 27771
X X yil
Ly ¥ i
07603 -0307 0510 071X
01010 08525 00647 01639
196 0, 02 .16:
770 -1730 770 -7
B S X X
B U X S X R 5 X
I X T -T70
I X By X X
X TN T
7T I X X
e X )
777 77 T X X gk
Regression Constant, by
-8.9c-16 -17c-16 -9.0c-16 1615 -33e-16 -22e-15 -13e-15
Mcan Squarc Error
U3970 DISI6 DYESI 03466 03991 0397 03459
Viegt Verr Compulch—Slunsuc
L0000 LOK W00 30000 30000 30000
5000 ol leoe 3uow e %0 N
§7.565 19833  1¥616  36KI0 29602 3082 36913
Theoretical F-Statistic (p=0.10,0.05,0.01)
a7m am a7 el 2isel 2imL o 24881
40129 40129 4029 27757 27751 27157
TI02 70102 71102 41685 D s A

0.69%0
06636

06176
01462
0.

76e-16

03363

60000
51000
19745

1.8929
22826
30783

07246
06922

06176
6

1013

03077

0500
22368

18929
22826
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Location,Season: Warm Pool, ANNUAL Regrossion Fotms: Location,Scason: South Aftica Offshore, ANNUAL Regrossion Fotms:
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Two-sided (~test: Significance of b, (probability that the absolule value of 4 random variate will be less than parameter L-value) 4 that the absolute value of a random variate will be less than parameter L~value)
0.654: 0.9998 198 0.3906 0.9998 5724 02161 D 519‘ 06756 0.5303 3238 0.4617
0.6984 03716 08836 0.5657 0.B699 08215 0.7280 02519 02883 (.B502
0.309 02732 0.1919 00571 0.2 ﬂ 7!3() OTEXB 09152 02760 ).2304 0.6882
=TT T774 07716 0.7221 07728 02641 04882 =777.0
-777.0 777, 0.4626 0.5545 6 194 0.6028 03249 01743 7770
377.0 =777.0 0.7769 0.5679 (l 8738 0.7941 8696 05231 0.0917 =777.0
7710 TiT 7770 0.5041 7770 70 7770 0.8082 0.4879 7770
7770 ~T77.0 7770 02130 -777.0 TI70 7770 02922 0.4505
~777.0 ~777.0 =777.0 0.0382 =777.0 7770 =777.0 =777.0 04147 0.1793 =777.0
=777.0 =777.0 =770 =777.0 =777.0 =770 =770 =777.0 L1010 =777.0
~777.0 =777.0 ~777.0 =770 =777.0 7770 =770 ~777.0 =770 0.6871 =777.0
o ] 770 Lo o 710 e 6 Tmio o 69 7ro
Location,Season: Northern Hemi. (LonmwmsL A Regression borms; Location,Season: Southern Hemi. (LonumnsL Regression borms;
‘rAPﬁ Tneeraction Linear Quadati rAl’n 5: Lincar,Quadratic
Predictand: 0log Y s 16: Tferctin Qo sdrsic Predictand: 0log Y 16: Tferctin Qo sdrsic
WL'U T thmic ar Lulemchw Uudimh& WL'U ar Lulemchw Uudimh&
Bin minimum: 20 4: Lincar #L It Bin minimum: 20 4: Lincar L ithmi
Samples: 439 13: NCAPFE', log,(OCN, WCI¥ (optimal) Samples: 413 13: hCAPl\ log gCCN. WCD (optimal)
Regression Number: Regression Number:
1 2 3 4 5 6 7 3 ) 10 1 12 13 1 2 3 4 5 6 7 3 ) 10 1 12 13
Multcollinearity: Multcollinearity:
aN NuN D.UEYY 07910 0.0843 D869 0.9874 09234 08127 09906 0.9955 aN NuN D.058% 07343 0.0688 00564 0984 09191 08064 09873 0.9948 00787
=177 7 0.0202 0. llﬂé 0.0319 0.0024 0.9909 ). 463! 0.9465 0.9920 0.9929 777 7" 0.0507 04887 0.013! 0.1097 0.9795 09397 09826 0.9871 190
=777 01067 0.7406 ol 0.0RAS 07217 0.9932 0.9944 0.99%9 77 n.1144 RS 0.0767 0156 0.8246 09162 0.9930 0.9999 781
177.4 | 774 7774 7771 081089 09227 09352 08134 08227 7.4 7774 777 0.8292 0.931 ) 8397 08451 1770
=777 =777 =777 =777 =777 =777 0.9837 0.8654 0.8834 0.9928 0.9928 =777 =777 =777 =777 0.9851 08833 0.9891 0.9892 =777
=777 =177 =TT =777 =TT =777 09912 0.9931 04195 09933 09936 =TT =777 =TT =777 0.9787 05192 09797 0.9847 =777
77 S0 w0 e im0 STb -7 -170 0 770 0935 098l Imo b o o -1 S770 09306 Q9S8 77
=777 =777 =771 =777 =777 =777 =T77.0 =771.0 =777.0 0.8868 0.9524 = =771 =777 =777 =777 =T77.0 =777.0 0.8997 0.9646 =777
~277.4 -7 ~7774 -7 17 -7 -1717.0 ~TI710 7770 09951 0.9998 ~T770 ~777 ~7771 17 -7 -1717.0 ~7770 09932 0.9998 ~T770
777! T 77 Dy b 0 b D STiu 096 77l 777 X TR )] e S 7 T S T
=777 =77 =TT T2 =77 =777 =T77.0 =777.0 7770 =777.0 0.9043 =777 =TT T2 =77 =777 =T77.0 7770 =777.0 09443 =777
77 =17 =774 =772 =TT =177 1770 =-T70 =170 170 09998 =77 =774 777 =TT =177 7.0 =170 =710 0.999% =7
RR,;
R,y
0.0430 727 02316 06114 04792 05531 06302 06210 06759 06792 06950 0750 O.TU60 0.5279 02384 04936 05372 0.5897 03649 06139 06297 06481 0.5830
0.0418 02710 0.2299 0.6088 0.1735 0.5500 06277 0.615¢ 06714 0.6747 0.6836 0.7430 07040 244 02329 0.491¢ 0.5338 0.5837 0.5585 0.6082 06214 0.6376 0.5800
Individual R
0.0440 0.272] 0.2311 0.0747 0.1665 0.0744 0.0440 0.0747 O(ﬂ‘ﬂ 0.1665 00747 0.0747 00744 0.0895 02304 0.0867 0.0652 0.0895 0.0895 0.2304 00895 0.0895 0.0895
=772 =774 =770 0.105: 0.0321 00370 02727 0.1054 0.1054 0.0321 0.1054 0.1054 02727 0.213 0.0356 0.10¢ 03557 02136 02136 00356 02136 02136 03557
- ~7T74 ~177.L 0.251 0074 0.2656 0.231¢ 02516 02516 00740 02516 02516 0.265¢ 0.2123 0.1558 0.224C 0.195¢ 02123 02123 0.1558 02123 02123 02123
= =774 =177 ~T77 =771 =772 =773 0.1665 00744 00744 0.1665 0.1665 -777. =777 =771 =772 =777 0.2304 0.0867 0.0867 02304 0.2304 177,
- =177 =777 =777 =777 =TT =777 0.0324 0.0370 0.03720 0.0324 0.0324 =777 =777 =777 =77 =777 0.0356 0.106° 0.1062 0.0356 0.0356 =777
g 7 7.1 77 | 77U 7771 00750 0.2656 02656 00740 0.0740 T 77 | 77U 7771 0.1558 0. 0.22%0 1558 0.1558 777
= =774 =770 =774 = =777 =777 =777.0 =777.0 =777.0 0.0744 0744 =777 =771 = =777 =777 =T77.0 =777 =777.0 00867 0.0867 =777
= =T774 =777 =TT = =77 =777 =T77.0 =7T77.0 =777.0 0.0370 0.0370 =777 =TT = =TT =777 =T77.0 =T77. =777.0 0.1063 0.1063 =777
~7774 -177. 7774 -777. 772 =T173. 77720 -T710  -T770 02656 02656 -7 7774 777 772 =T173. 7770 177 -777.0 ).2240) 2240 =777
=774 =777 =771 =777 =772 =777 =T77.0 =771.0 =777.0 =777.0 0.0440 =777 =771 =777 =772 =777 =T77.0 =777 =777.0 =777.0 0.0652 =777
177 -7774 ~T77.4 777 17 -7 -0 -TI0 -T7100 771 02727 =777 ~T77.4 777 17 -7 1770 777 ~77710 7710 03557 =777
777 70 7T D s b gm0 T om0 mie 0zsis 77 777 D Ty b gm0 TSm0 mie 01s% 77
Parameler cstimates, b,
0.1255 0.6033 1.5573 0 4215 277 06513 1.3297 0.4022
0.0466 -1222 ~1.087 0.454¢
270 10.63 ).4]
0.2158 276 =777
) 68T 157
0.8370 1.4166 177.(
).201 0314 177.(
0.0841 ).137 7
3.8027 4.7419 177.(
=, 432 - 7.1 ) 342 7
=777 | =177.0 TI70 7770 177.0 0.6437 =777 7.0 0.3860 777
g 77 7771 7.0 T 7770 7770 4924 g 7. 77 7771 5224 774
Regression Constaant, by Regression Constani, by
-12e-14 -lle-14 58¢-16 -13c-14 -lle-14 -10e-14 3le-15 -13e-14 —69c-15 -10s-14 —50c-15 -17e-13 —10c-14 4le-15  46e-15 -26c-15 S.le-15 36e-15 6le-15 -3le-17 60e-15 6le-15 66e-15 66v-15 92e-14 S6e-15
Mean Squate Error Mean Square Error
0.7289 03700 03911 03264 0.4499 03722 03841 0.3285 03252 03113 02569 02959 . 9.36? 06458 0.806¢ 04755 07670 0.5080 0.4661 04162 04414 03917 03785 03623 04199
e Computed F—Sllusuc Vit Vot Computed F—Sllus tic
10000 1.000( 0000 3.0000 3.0000 0000 6.0000 6.0000 6.0000 90000 12.000 3.0000 L RKJD 1.0000 3.0000 3.0000 3.0000 3.0000 6.0000 6.0000 6.0000 9.0000 12.000 3.0000
K 4374 37.00 GJSAI]() 435.00 435.00 5000 43200 432.00 43200 429.00 426.00 435.00 4|| DD 411.00 4\ 1.00 409.00 400.00 409.00 409.00 40600 406.00 403.00 400.00 409.00
20,141 16386 13176 22821 31.669 17947 24715 118,00 150.21 15247 108,63 10655 34831 22693 15245 42697 134.00 158.28  97.29% ¥7.867 w762 76146 61405 19068
TheomtcalF-Staisto (;H) 10,0.050.01) Theorstica P-Soaiste (;H) 10,0.050.01)
27170 22170 2.09¢ 64 ’Eﬁﬂ 20964 20964 17877 LTRIT 17877 1.6461 1.5613 2177 l7|7‘ 27177 20972 20872 20972 20972 1. 7886 1.7886 1. 7886 1.6471 1.5623
3.8628 38628 ) ﬁﬂ"ﬂ 2.6 6254 26254 26254 2 H?S 21195 2 ||‘)5 l,"ﬂ|7 1.7749 3 8641 3,864 38641 26267 26267 26267 26267 21209 21209 21209 19031 1.7764
6.6932 6932 6.6932 3"69 3 8269 28269 28269 & 284138 2266 5%9 6.6909 fh 6969 A8 3 2'29 28298 28298 28465 28165 28465 514 22293

Two-sided t-test: Significance .,n, (pmh.lluhly i e bt vafi o n s yarais il o st ‘parameter -value)

3
15 Cinea feracion &mmc.x.ogsnmm-c

09999 10000 I 10000 L.oar 10000 0743 07783 097031 10000 09999 10000 I Lo 10000 09649  DR9RT  Q9RES  0RI% 1.0000
Eer T v G R 01785 05271 09679 10000 0 Sme S dow of 1000 L0000 O3S0 09999 09BN QBTG 10000
-J770 -7770 7770 10000 09512 10000 1.0000 0999%  0B8WA 07455 10000 -3770 -7770  -7770 10000 07597 10000 10000 10000 09365 1000 02818 10000
B X R X o X N £ S X S i 21 08426 0730 09421 7770 R X R i X A X R 7730 7770 09478 0505 05005 09914 7770
Y -y b g Sme o - 0999 07253 Q7% 7770 Y omy T Tmg Il mmd o 0l 06 099% o -7770
B R X Ty X R N R X S, X S X 10060 0970 0833 7710 70 IO <D -TH0 -1I0 -TP0 -T770 0 09999 09927 10000 09999 7770
2770 T i) gme mmh Imo e 7770 09576 04258 7770 2770 ame iy gme o B X O R R 7770 04R03 -1770
eV X v X XTI v S T Sy 1} 7770 0999 02939 7! eV X v TR v XTI X SO 1 S 4 Sy X} 7770 0993 7770
et e K vk ek ) 7770 7170 -1770 098 0623k 7770 Bt X v X O vk Sy e e 1770 0902 7770
“3170 DTN Ima I CmIn 7N -T770 710 0%i% 1770 “3170 By X R Y R 770 -7Ti0 10
-1770 -771 u B Ry X T X S X R X} -1770  -7770  0999% 7770 -1770 -771 u B Ry X T X S X R X} 1770 7770 7770
7770 b T Ny X N X R 1 7770 CT0 07937 70 7770 b T R SR X R X S ) 7770 7710 7710

177




Location,Season: Northern Hemi. (Ucun:), s,

Regression Forms:
Tntcraction
6 Quadralic

mic
Lincar,Interaction

9; ner Quadesic

1

13: NCAPE, log,{CON, Jog,qWCD) optimal)

APR
Predictind: 0log Y’
\h'(l]
Bin winimua: 20 : Lincar
Samples: 287
Regression Number:
1 2 3 a 5 6 7
Multeollinearity:
NaN NuaN NaN L.0S1 03127 0.0002
Sfu e - GOBL D43 goioz
=777 =173 D003 0.7691 0.010]
e T 3

(NN

se
#

5
23

55

8

05956

9

09379

08175
03136

0409
02512

08252
08214

04099
02512

08350

-1770

08108
08068

04560
03316

09959

-m10

08304
0¥249

40

..1m..m,Q.mn.=m

3
15 Cinea feracion &mmc.x.ogsnmm-c

Zmn o
T
S0 CmTe 1710
= 70 e 770
0399 05336 0. 03752 03401 01121 02405 06833 05470
Gapis 03436 05173 18960 0770 03190 1689 14064 04958
043 0 0358 1381 OG38 LI9§ I 0406
7770 77 = b3 02555 0232 0027 00K 77
i o 5 02204 0317 02% 0097 a6
B X K = Ci387  0Si4  0S00 0978 1163 77
X = 70 70 -TT0 02681 0008 777
e o Th Tpro b 62 a@le oo
7774 ST gm0 b 7D 1086 L8l 77
L By S Ry VX
T Thin e Smio a0 om0 amsid o1
w70 777 X D 0 TIb 7m0 770 LoalT 7T
Regression Constant, by
“18c-14 -22¢-14 30016 -17c-14 -19%6-14 ~196-14 28615 —17o-14 —126-14 ~195-14 12014 -526-14 —3lo-15
Mean Squarc Exror
U662 DOSUD NS DIST6  DASI0  DZ7P1 02444 OI63  OI7S OISl 0170 O16ST  01s2
Viegt Vet Computed F-Statistic
1000 1oon  Loono 30000 2000 30000 60000 60U G00C0 Y0000 1200 30000
28500 28500 2300 28300 28300 26000 28000 28000 270 2400 28300
I T 1703 24707 29571 20913 22031 20007 15079 11838 40678
Theoretical F-Statistic (p=0.10, 005, 0 o1
R R amR o o2im o 2jom 2lew dgm Lmm Lw o Lwm o L s 2im
w4 dwar 2eds  Zsas  2eds  Zews 20 200 210 19w 7 2eks
216 85 5 Wis 22501 315
o ‘parameter L-value)
0209 ’
09659
06161
01367
00857
07762
07338
0KS7d
05061
7170 a7 o om0 -1To
r 70 0 o 70 70 00305 7710
LocationSeason: Globe, ANNUAL Regrestion Forms:
5. LincarQuadear
Predictamd: 1 log Y aterachion, Quadrtic
o . iericlion Quadrtic
Bin minitnum: 30  Lincar th
Samples: 1052
Rogression Number:
1 3 3 a 5 6 7 8 9 10 1 12 13
Multeollinearity:
AN NaN DIOG DI 024 DIISE 09762 OSISE  O7ESE  O9EUY 09936
BTy ) GoR 03231 K% 0043 O E%0 05T 05Md 09 006
77 6105 070% 00072 0095 07079 OSKDS 09123 09903 09999 ]
77 D Mmn o Crh i PRRL O Ot o oz omin
77 70 T 70 70 -T70 09794 OBSK) 03691 09863 09863 77
77 Zm7a o o Za Crb agniT  o9msd 973 0971y 777!
o gnb gm0 b gm0 b -1 T 9323 09795 777
e By Ry Sy O ) 0752 09316 777
“777 B I T o S O S X 7 ¥ 09913 09%97 7T
7771 T 7 N T O R 1y X IO 09510 771
77 -7 T O S/ B ¥ 710 0flee 777
B Tnin T Tmin e Smin Smse Sm o aser 7
RR,
02263 D3I 00260 D62V, 05061 07266 066 076 0637 0T 0825 0TNE
02775 03427 00251 06286 03047 0729 06366 07180 06577 07377 O8BE 0719
Individual R'
02283 05431 00260 0 030 02488 02 0280 om0 030 Q2m0 028 0o
S0 370 7170 02138 00716 00791 053 0203 0213 0176 02038 0213% 051
: TITT0 7770 UDMS 0753 0047 OUZE0  QOB& 0034 01735 00348 003K 005
= 770 m0 7m0 -3D  -THD 70 03240 02484 02483 03240 03240 17
z Tma Trma o Cran oo S e D6 00791 Q0iel 01716 017%6 7
0 70 3T D 7m0 T 0133 00427 00477 01758 QLSS 77
z LI L R R 0 7770 ST0 70 -T770 02484 02484 771
23 o Tmin T O B Oy S S Vo B S
B R v R R S Y S B
B B Ty G QS O < S X
I I v SR v R S L S O £ ¥ QT Y
777 T a7 D aTu T 0 e 7m0 7710 002 77
Parameler cstimaes, b
04T, 434 064s8 04388 LTSI O6M46 00274 14375 1995 0S07L
i 335 03341 06169 0459 1093 037 078% 0193 0@l
X 0477 0 028 0 10%0  lowe  oTms kom0
77 | i 034 022 0061 006%
X 717 D% e 1030
i 7] TLan o 01193
X 777 777, o254
i 777 777 o1
7771 777 42311
= - 773, 777 336
D77 = T 776 1770 b 06 I
X 0 T TTO A0 T 46088 L
Regression Constant, by
256-15 -14e-15 1de-15 -35e-15 -19-1S 22615 3815 3015 -24e-16 21e-15 10615 ~136-13 21e-15
Mean Squarc Exror
DASTZ DSTEN LITI3 DES  LASS2 02741 03433 U2H9 0342 02622 0761 02220
gt Ve Computed F-Statistic
LOOD L0000 LOOOD G000 30000 3000 G000 60000 6000 60000 1200 30000
100 10300 1000 100 1040 100 10480 1040 1040 10880 e I ]
31063 12484 28068 59412 20106 3SKU6 92858 33603 44706 33764 32945 41069 12285
‘Theoretical F-Swusuu (940 10,0.05, 0 01
27102 2710 20890 20890 208 0890 \Te e Lems lsm 200
58502 3 usuz H Ia0 67 Zels zelm  zels z Ton ;o alm 1R 6133
86591 66591 66391 S a%e ima B ANB ANG AR MR
Two-sided t-test: Slyuﬁum.c uf'h (pmhlluhly that the absolute value. ol"mm.lnm variate will be less than parameter l—-vd'lu:)
1000 10000 09996 10000 1oma 10000 03193 1000 09999 10000
G O i N . 1 05936 09999 063 10000
Jnh TG hTh it 058 loowe  lowe oot 10000 09761 09771 10000
Sra Tmme Inin e -ima a1 oo GS13 066l 06ME 71710
JEy me omb e S gme mo L0000 09999 0999 7770
Dm0 e Tmin e Smn o S 10000 09630 04630 7770
770 T I me mh Ime T 7770 080 0827 7770
Fec XTI | TR O (T ¢ X1 7170 1000 01623 7770
Bt e X o O c X o 70 7170 70 099M 09605 777
Sr7a Znin o Tma S e Smw T770  -m10 099 110
0 -mu ST T Smb o oo To o Loww 7710
770 70 7 mb Smia S omi 7o Tore  assst o

Location,Season: Southern Hemi. (Occans), DIE Regression Forms:
| NCAPR 5: Tnecraction.
Predictand: 0 log Y & Quadralic

L5

Bin winimua: 20 : Lincar

Samples: 204

Regression Number:

1 2 3 4 5

Multcollinearity:
NaN NaN L.o17I 03640
=774 =177 0.009: 0447
=174 =17 .02 0844
IT; 7 X :
7770 -777 7771
Zmre S i
=774 =177 =177
=774 =171 =777
37 7.4 |

4 7.

ss
4
&

o

03550 0.5 - 04595 03058
JTI0 7770 -7 05244 02309
e T 7 370 D191
= 0 o e -
-7 B Iy X R o X
7 I Ry R

e i By

b X 7 X

-7 LI X R X

o drn e
e 7 TN 7T X

Regression Constant, by
1514 15e-14 1214 Lie-14  1Se-14

Mcan Squarc Error
USTE2  DESEY D84S 04621 0663

Viegt Vet Computed F-Statistic
Looo ooy Lot oo 3o000

00 20200 20000 200.00
BT los0y  Tham  9a% 9160

Theorctical F-Statistic (p=0.10,0.05,0.01)

2708 2708 27308 113 20113

i Gwm  Gem 2w 2sr

87620 6762 67620 38810 3580
ur

Location,Season: Continents, AN

miG
Lincar,Imieraction
13: NCAPH, Jog, OCN, WCIY (optimal)

6 7 8 9 10
00164 DUWA  0YII  0Y4Y
00137 0.009: 0,
00205 0021 X
77, 09

04478 0S84 05934 05947 05728
04396 03213 05811 035823 035593
01748 01721 01721 03118
0128 02419 02419 01263
0,07 00673 02162
e 01748 01748
E 01286 0.1286

00711 00711

9; ner Quadesic

1

06351
06182

01721
02119

..1m..m.Q~..m=m
3
15 Cinea feracion &mmc.x.ogsnmm-c

12 13
09976 00194
09976 00045

2999 0.011
0502 g
09949
09975 -
09884
09494
09999
09788
02083
09999
06697 03724
0630 05660
01721 174
02419

06
16650 996
S0188 05502

66.25 309
0193 77
0351
4090 777
0299 777,
0356 777
33978 777
582 771
01258 77
32265 77,
43614 15e-14
03509 04339
12000 30000
91.00 200,00
32279 BY2SK
15805 21113
13031
22790 38810

Q7441

0.4 03450 07107 01476 0057 06300
04219 03582 48602 10301 01096 48454
0.35: 031 0135 017! 10224
770 -TIO 0121 02982 0360
770 -TIT0 0231 5 483
I 7D 4260 0536 421
-0 -770 <TI0 <770 -T30
70 770 STI0 70 170
70 -TI0 7730 T30 1770
TI0 100 -I770 -0 -7770
S0 CmIn S1I0 SHIn -170
X 7771 e e 7m0 10
Ldo-14  13e-14  10e-14 lde-14 lde-14 10014
05603 DATH6 04  041T6 04406 O3BIT
0000 30000 60000 60000 60000 90000
20000 20000 197.00 19700  197.00 19400
54053 74698 47934  dET1 43540 37531
w213 LKe  sa jwe e
26497 21448 21448 21448 19283
N O MR ISR ORI MR
at the absolute value of a random variate will be less than parameter L-value)
09999 04095 02266 0.5052
10000 09999 02908 0993
09999 01027 09998 00076
7170 07208 ORI06 05607
7770 09950 09866 04100
7770 03004 0999 09916
7370 7770 -7770 08211
7770 70 7770 098aT
-7770 1770 =170 00470
7770 770 =170 -7710
I8 1770 Te 110 770
770 TTI0 <TI0 70 -7710

Regression Forms:
5

7770
7770

041
09654

NCAPE
Predictnd: 1log Y CON
WCD
Bin minimuw: 30 4 Lincar
Samples: 844
Regression Number:
1 2 3 a4 £ 6 7 8 9 10 11 12 13
Multcollinearity:
N 0UOI3 07443 OUSYY  OU7HS 0910 QTR 09822 09937
3 7 0001d 03446 00803 G4 ookl 0910 0%sl4 7
E 00920 0698 01296 07476 059 09118 09908 09999 3
I 777 777. TII0 0784 09191 0937 QTR 07931 TIT
= I e X Ty X -777.0 09811 0757 Q%688 098Il 098P 77
= B R X X —7770 09758 0900 05206 09761 09781 77
= B R YR X -TI0 770 <TG <7170 09339 09798 77
E IS o X 7 X S0 0 7770 1770 088X 09408 77
B B T v R e X “TTh T30 70 7770 09917 09997 o
7 777 g 0 0 770 Q770 STII0 0953k 77
O X 7. 170 -TI0 -T770  -I710 7770 08626 777
= Dma o S . O ST 6 110 09997 77
R'R,
0. 01193 0S995 D20 053 06279 063 U660 0688 OTHE  OT68S 0889
(% 01183 03981 02474 0353ST 06266 0640 06636 06403 07014 07651  0.6882
Ind
0. 0o ool o3l eiEd om0 0213 0213 23 02193 021 02ies
- -777.0  OO0BES 01103 00260 03339 0088 0OSSR 01103 008 00888 03339
- 7770 G141l ODE6L OISl )] Ol4n Ol ookt  ouail  oian i
= TN 0 770 -TA0 -770 0 02131 01834 Q1834 02131 02131 7
E E S0 SIIn IO STTh 001 00260 00260 01103 Q1103 737
7 777 D 7770 777D 0086l 01591 01591 00861 00661 77
= I e X 730 -7170 -T7I0 -T770  -170 0183 01SM 777
E I R I8 7 II0 S7IT0 1770 00260 0060 77T
E -0 g0 -0 T0 0 -TH0 0 -TI0 -T7I0 0 -1370 01591 01591 77
-7 S0 S0 S7Ie IO 70 STI0 I70 770 110 OIR 77T
-7 ST ITa Srmn 0 SmIh  Ine 10 7770 710 0339 77T
7 771 I X T X X I K S ) 7
345 06443 03579 17621 06953 00606 13370 18319 05728
70 02933 01192 0279 -Toss 04351
055 1 243 045
70 771 00u0s 777
X B0
X 05778 77
X 038 777!
X 2047 7
X 04169 77
2 X 0254 77
7774 X 7770 170 068 7T
X X X 70T IO 70 LW 7T
Regression Constant, by
Lle-14  96e-15 2514 lle-14 10e-14  Lie-l4 26014 Lle-l4 1614 12014 15014 60014 10014
Mcan Square Error
v sm DEEEY  DYSIE DALY 0IS2S 0462 DITS3  0IS19 03353 03596 0205 026 03T
Veegt Vot Computed F-Slatistic
1 :mn 10000 10000 30000 30000 0000 60000 6ODUO 6000 90000 1200 30000
0 84200 84200 84000 §40.00 X 000 837.00 8300 3200 R0 8310 BAOOD
19495 42223 1403 41917 93379 32522 47262 25969 27944 25110 22108 2992 62049
‘Theoretical F-Statistic (p=0.10,0.05,0.01)
U3 225 23 200 oM 2090 209 ITRIL TN LTEIL 160 sy 200
il I 525 26154 26154 26154 26154 2109 21094 21094 18910 17638
AR a@h  asm  ams  hme  ams  deme 2 mB RN AR MR
Two-sided t-test: Slyuﬁum.c uf'h (pmh.lluhly that the absolute value. 0l'4n|m.|nm \'Analc will be less than parameter l—-vd'lu:)
100D 10000 1.0000 10000 1Loana 10000 05898 09999 1m0
G N - N O 1< 10000
770 -T770  -7770 10000 09964 10000 10000 10000 09999 10000 09972 10000
0 -6 S0 SITa -0 77700 770 0SRI2 05785 OSLA4 00650 -7770
e mg md g TR TmU o o 0% o Lo 09sg -1770
770 -T78 0 T IO 70 <7770 09999 100K 10000 09999 -7710
70 AT 0 me ;i 7m0 mih 1m0 o7i0 7770 0281 -1770
e R X TR £ Ry TS X S ¢ X S 2 X S 11 ') 7770 099 7770
mh o -mre -rma e -mmo e -7l - -T7T0 09999 -7770
S S Tma Cwan e o7 I ] ]
-0 -m u BB X Ry R X X 7170 7770 -7770
7770 R X S R ) S X TIT0 7770 05665 7710

178




Regression Forms:

Tneeraction 9; ner Quadesic
6 Qudralic 0: ..1m..m.Q~..m=m

Location,Scason: Northern Hemi. (anmmli;‘ ANNUAL
Predictnd: 1log Y’

L5

mic
Lincar,Interaction

Bin winimucn: 30 : Lincar
Samples: 736 3: NCAPK, log, CON, WCD (optimal)
Regression Number:
1 2 3 a4 5 6 7 8 9 10 1 12 13
Multcollinearity:
07472 DO 01033 09834 09Ul 01210
0305 0060 0.0605 09779 09827 00686
06986 00971 01397 09917 099%  0.1361
777 777 QTRYT Q796K - TIT.
-0 -T711 0OBSS Q9889 77
=777 =777 09769 9790
R X 09354 0979
-0 77 08837 09454
X 09925 0.9997
X TI0 09566
X 7770 Q87T
Y ~770 09997
05072 0S54 06U OGIIT 05967 06537 0730 06255
05051 05485 05970 06085 05934 06495 0765 06240
01870 01533 01001 01901 01901 01901
0.0995 266 00737 00757 a73 866
D3 139
- I 01870
= K 0995
y 0538
= = 777, 1626
= E 777 00238
E 70 777 0158
% 5 77 01533
X yil T, 02865
X & 70 a6z
3916 05353 - 06151 05414 05964 04829 15592 05312 14764 05529
ST -Tmg Srro ol 0o ona odz Doy oem -1544 94
7771 77 7 K 194 03K 0553 17770 6377 4
-777.4 7774 -177.4 ~T774 -777.1 777 -771. 00693 00455 01460 777
e T -7 ST 77 770 ST -1082 0373 499 =
-7 ST 7T na - [ X X BN T 17 07197 777
-7 B X -TI0 -0 -Ti0 -T2 0318 777!
= e Smn e o TN -TI0 ST0 7770 03945 777
b X 7 7771 BT v TR 1 X R 1 ¥ 22568 777
-7 LI X R X B K S R ) 7770 0295 777
7 ZTe e Sma o e ST Tmo  o7am 77
777 7 i T X 0 TT0 I 7o TI0 10 3T ul
Regression Constant, by
3fc-14 32c-14 3le-l4 3de-l4 3514 3614 3014 3de-ld 3714 37e14 3¥eld Tdeld 33eld
Mcan Squarc Emror
USATT 07143 DN 04565 OTSI0 04948 04514 OAI29 03914 04065 03504 0274 03759
Veegt Vet Computed F-Statistic
10000 0000 30000 30000 60000 60000 6000 90000 12000 30000
73200 73200 7200 7900 7000 790 760 730 73200
Jie] 69681 28113 2973 lk2s? 19142 17979 15233 16377 4076S
Theorctical F-Statistic (p=0<l[)005001)
27123 20012 20912 20912 |TR2 17K LTR22 16401 1849 20912
58541 nno 26170 26170 21109 21109 21100 18927 17655 26170
669 A80R1 AEOR1 28267  2RAT 2567 24317 22093 3RO

Two-sided t~test: Significance uﬂ) (pmbahﬂny What the absolute value of a random variate will be less than parameter t-value)

3
15 Cinea feracion &mmc.x.ogsnmm-c

Location,Season: Southern Hemi. (Lonﬁnmis;‘ ANNUAL Regression Forms:
Tnecraction
Predictand: 1log Y & Quadralic

mic
Lincar,Interaction

Bin winimucn: 30

Samples: 634
Regression Number:
1 2 3 a4 5 6 7 8 9
Multcollinearity:
DOBGD 07829
00165 04038
01008 0.739
77 777
0673 03 06787 07224
06456 0.3213 06757 07197
0. 0316
0 0091
0 0,159
b 7.
= 2177
05964 06089 05981 04740 17265 0009
0351 00563 02959 05460 -013%6 09752
05 0568 0336 10413
= TI70 <130 7720 T 00585
= B TR, S -0.621
- B U X S X R 5 X n(m -1.4&7
-7 0 -0 -0 - -TIn 77 -17.0
= L R ¥ L L
b X 7 7771 Er T v TR 1 X X'}
-7 LI X R X B K S R )
7 ZTe e Sma o e -1
777 7 i T X XN (I X 0
Regression Constant, by
1015 49e-15 6315 33c-15 1315 lSe-15 3615 5615 83e-16
Mcan Squarc Error
U463 DSTZ0 DN6TZ  03S43 OETH6 04397 0330 03242 02602
Viegt Vet Computed F-Statistic
Lo 10000 W0 om0 60000 6000
2. 63000 63000  627.00
S Ghon Dow i
20024 20024 TR 1TR3S
26190 2610 21130 21150
3g18 3§18 07 28307

Lit Jadrs
T e G

3
15 Cinea feracion &mmc.x.ogsnmm-c

3: NCAPK, log, CON, WCD (optimal)

10 1 12 3
9536 09945 01046
9817 09833 01105
9916 09999 (RS
E3¥3 0839 77,
9860 09870
9: 0982
93; 09812
8619 09366
09921 09997
IO 09627
7770 08912
-7 09997
07056 07466 07604 07211
07027 07430 07557 07198
01922 01922
02105 4288
01519 01519
03161 =
00914 =
01598
01744
00739
0,1657
7710
7770
70
00664 13828 17812
29 027 0284
09338 0 0118
02987 0076 0053
-0621  -1.091  -1.097
651 07701 04239
-T770 02260 048
7770 -0629  -0302
7770 0790 0414
7770 7710 0184
ST770 7710 03367
70 T0 0279
23615 3815 13e-14 59e-15
02972 02569 02442 02801
60000 90000 12000

6700 6240
25046 20437

L783s 16418 64
21130 18948 17677 26190
28307 24357 2213 2RI

um the absolute value of a random variate will be less than parameter L-value)

1.0000 1.0000 0.9999 06658 09979 977 0.9996 0.5209 09999 2990
09790 05999 10000 09951 09858 10000 10000 08419 06526 0736
0.9960 1.0000 0.9999 1.0000 09991 08130 0.9894 1.0000 06710 00174
=777.0 0.6146 0.2711 0.5866 04151 0.9252 02228 09198 0.5592 A177
-777.0 0.9998 0.9995 0.999% 0.8532 08446 1.0000 1.0000 2 9982
=777.0 0.9999 1.0000 1.0000 09999 0.9951 0.9997 1.0000 09891 0.8044
7710 7770 710 7770 OSB3 07774 7710 7770 08602 01329
7770 TI70 7770 09999 09873 TI70 7770 10000 0.9342
~777.0 =777.0 1770 09990 0.6253 -7717.0 1770 09220 0.1186
=777.0 =770 777.0 =777.0 148 =770 =770 =777.0 0.6293
~777.0 7770 =770 ~777.0 =770 1.0000 =777.0 =770 ~777.0 =770 0.9946
=77 =T77.0 =771.0 =77 =771.0 0.8892 =7717.0 =771.0 =777.0 =771.0 0.0866
Location,Season: Northern Hemi. (Occans), ANNUAL Regression borms; Location,Season: Southern Hemi. (Oceans), ANNUAL Regressin Horms:
- NCAPR 5 Li Arn:ar r,Quadratic - NCAPR Theeraction Lincar,Quadratic
Predictnd: 1log Y CON eraction Quadratic Predictnd: 1log Y CON s 10: Tnferaction sdrsic
o WCD ar oteraciion Quadratic o WCD 7 hmic ar oteraction Quadratic
Bin minimum: 30 A4: Lincar L ithmie Bin minimum: 30 A4: Lincar # L Ini ith
Samplu: m Samplu: 580 13: NCAPFE', log,(OCN, WCI¥ (optimal)
Regression Number: Regression Number:
1 2 3 4 5 6 7 3 ) 10 1 12 13 1 2 3 4 5 6 7 3 ) 10 1 12 13
Multcollinearity: Multcollinearity:
aN NuN 0.1175 07391 0.1196 0.1005 0.9802 09141 07798 09836 0.9947 aN NuN 0.1273 0.7610 0.1286 0.104 09789 0.7957 09818 0.9957
=177 7 0.0007 03354 0.017 00236 0.9638 ). 0.9479 09639 09724 =177 7 5.104 03040 K) 0OST 0.017: 0.9651 09537 09666 09777
=777 01177 0.687 0.125: 0.1 0.7462 0.9R99 0.9206 0.9908 0.99% =777 A 0,127 0.7234 0.128¢ o111 0.7599 09161 0.9901 0.999%9
177.4 7, 7 7 7774 T77 ).77¢ 09141 09342 0.7835 7909 177.4 i 7.1 77 777, 777, el 07981 ) 9409 08017 08077
=777 =777 =777 =777 =777 =777 0.9829 0841 0.8736 0.9892 0.9893 =777 =774 =777 =777 =777 =777 =777 0.9821 0.8685 0.9884 0.9885
=777 =177 =TT =777 =TT =777 ).966 | 0.9R9% 0.5340 09734 09762 =777 =T774 =177 =TT =777 =TT =777 0.967¢ 05881 09707 09731
77 Do mu b mb b -0 S 7m0 ool 098l Snu me mb mo b b b -m o 034l 09853
7 pn mo GmD Smn o Smae im0 a0 mT0 0fied 09368 o Dme Gmo o Cmn Smin e o 770 osis  0aar
~277.4 = -7 ~7774 -7 17 -7 =773 -7 ~7770 09916 09997 ~777.4 177 ~7774 ~777 ~7771 17 -7 =773 ~7770 09910 09997
7 777 770 T 7m0 T 70 7o 0% 7771 T 7T 770 T 7 770 70 0978
= 774 70 70 -1 M S8 10 1770 0sies 777, S 70 70 170 M e 10 7770 QEIST
2 X =777 -7 =TT =777 =777 =77, ~1770 7770 09997 -7 =777 =777 777 =TT =777 =777 =770 -T0 =170 9997
RR,;
Ry
0.6100 0.2424 05014 06111 06340 06485 06027 06633 07071 0.6454 0.0935 0.3137 01099 05483 02129 04745 05399 0.569% 06477 5806 06393 07064 06090
0.6083 02392 0.499: 0.6094 0.6309 0.6455 0.5993 0.6590 0.7021 0.6439 0.091% 03125 0.1083 0.5460 02088 04718 0.5375 0.5653 0.6440 0.5762 0.6539 0.7002 0.6069
Individual R
0.1684 0.226 0.1411 0.151 0.1684 0.168 0.2265 (l 1684 644 0.1684 0.093 0.31. 0.109¢ 0.1166 0.206 0.1102 0.0935 0.1166 0. ||M 0.2062 01166 01166 01102
0.1481 0.084: 0.0473 0.3140 0.1481 0.1481 0.0845 0.1481 0.1481 0.3 =72 =774 =770 0.1677  0.047 0.06( 03137 01677 0.1677 0477 0.1677 01677 03137
0.1267 0091 0.13] 0.117] 0.1267 0.1267 00914 0.1267 0.1267 0.1267 - ~7T74 ~177.L 0.127¢ 0.1038 0.14] 0.1099 0.1279 01279 0.1038 0.1279 0.1279 0.14]
=777 =771 =772 =773 0.2265 0. 0.1411 02265 0.2265 =77 = =774 =177 =777 =771 =777 =773 0.2062 01102 01102 02062 0.2062 =77
=777 =777 =TT =777 0.0R4S 0.04° 0.047. 0.0R45 0.0845 =777 - =177 =777 =777 =777 =TT =777 0.0477 0.0604 04 0.0477 0.0477 =777
77 | 77U 7771 0081 0.131¢ 0.1310 00914 0.0914 777 g 7 7.1 77 | 77U 7771 0,103 0.1411 0.1411 0.1038 0.1038 777
7 - 7 770 S0 o7 70 oMl gl o 3 LI L R R 70 -0 i 7o Smao ol ollee 777
Zmma C e R R v S 7. S Y S 2 Zmma T T 70 7o TmI0 7o 7o 001 G060 77T
7774 777 772 =T173. -777. =777 -777.0 01310 01310 =777 377 7724 -177.1 7774 777 772 =T173. -777. -T77.0 7770 01411 0.1411 =777
=771 =777 =772 =777 =T77. 7774 =777.0 =771.0 0.1513 =777 =777 =774 =777 =77 =777 =772 =777 =T77. =771.0 =777.0 =777.0 0.0935 =777
~I77.4 ~ 17 -7 =177 777 -7770 7710 0314 =777 =7, 177 -7774 -7 ~ 17 -7 =177 ~T70 7170 7710 03137 =777
777} D s b gm0 e om0 omie onm 77 777 70 7T N I R (R
Parameer cstimates, b,
0.6109 0.5457 0.4942 1.5393 0.6964 0.0695 1.5498 20871 05336 0.3058 1 0.4084 12313 UJ“U) 0.0517 09581 1.5756 0.4762
0.4028 0.074: 0.4806 0.7446 0.8127 0.5074 0.7763 0.5080 04524 =772 2948 0.4985 0.9283 0.0852 12150 08733 04757
0.57. 1 0.43 0.314 746 07358 0.250 2117 ). 485 g 0: 0.303 0.8478 09628 .23 ).49(
7774 = 7. 0.0649 0.0637 .007 0.0342 =777 7778 . T77 L ~0.041 022 =777
. & 0421 —1.168 1.158 . 7774 051
£ g .7 0f -0.253 177.( . T -0.201 177
X X 0.1032 242 177.( . 777 01372 177.(
L . ). 466 =0.141 7 . 7770 ).A34 17’
.| L 10.857 177.( X T77 12442 177.(
- 7.1 .4 = 273 7 - & 777, —(125‘ 7
=777 7.0 g = £ 7770 177.0 0.2948 777 =777 7774 7770 177.0 777
g 7.1 A | 77 77 77170 70 10477 177 £ 77 T 77170 70 11 574 177
Regression Constan, by Regression Constaant, by
12c-14 13c-14 -10c-14 1S5c-14 1214 120-14 -1Se-14 lde-14 12v-14 12e-14 13014 7813 15e-14 ~29c-14 -29¢-14 -26c-14 -3.le-14 -3le-14 3.le-14 -20c-14 -29e-14 -29-14 —30s-14 -27c-14 —260-13 -29c-14
Mean Squate Error Mean Squate Error
b W W O UMY opl DB WORC) S R0 BB W USOS)  DGNTA  DSIS  DASS  DISLL OSZE1 D462 0436 O35S 0427 03460 02997 03930
Vit Vot Computed F—Sllus c Verrs Compuied F-Slatistic
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Two-sided (-test: Significance oﬂl (pmh.ﬂuhly that the absolute value of a random variate will be less than parameter l—-vd'lu:)
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Two-sided (-test: Significance oﬂl (pmh.ﬂuhly that the absolute value of a random variate will be less than parameter l—-vd'lu:)
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Location,Scason: Amazon, ANNUAL
Predictind: 1log Y’

Bin winimuc: 20

Samples: 278

Regression Number:

1 2
Multeollinearity:
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Location,Season: Central Indian Ocean, ANNU.
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Two-sided t-test: Significance .,n: (pmh.ﬂuhly
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Regression Forms:
Tneeraction 9; ner Quadesic
6 Qudralic 0: Ineraction Quadratic

miG 1 ua
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13: NCAPE, log,{CON, Jog,qWCD) optimal)
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Regression Forms:
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Lincar,Quadrati
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at the absolute value of a random variate will be less than parameter (~value)
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Location,Scason: Central America Offshore, ANNUAL
;- NCAPE

Predictnd: 1log Y’ : G
wcen

Bin wminitnuc: 20 : Lincar
Samples: 159
Regression Number:
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Location,Season: Congo, ANNUAL
Predicumd: 1log Y
Bin minimum: 20

Samples: 167
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Two-sided t-test: Significance of b, (probability that
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Regression Forms:

Tneeraction 9; ner Quadesic
6 Qudralic 0: ..1m..m.Q~..m=m
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1t the absolute value of a random variate will be less than parameter L-value)
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Regression Forms:

Thtcraction Linear Quadati
wih eriction Quadraic
7: Logaibmic ar oteraction Quadratic

3
15 Cinea feracion &mmc.x.ogsnmm-c

13: NCAPE, 1og,,CCN, WCIY (optimal)
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Location,Season: Gulf of Guinea, ANNUAL
Predictnd: 1log Y’
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Regression Forms:
Tneeraction 9; ner Quadesic
6 Qudralic 0: Ineraction Quadratic
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3
15 Cinea feracion &mmc.x.ogsnmm-c

Location.Scason: Gulf Stream, ANNUAL
Predictnd: 1log Y’
Bin winimuc: 20

Samples: 197
Regression Number:
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um the absolute value of a random variate will be less than parameter L-value)
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15 Cinea feracion &mmc.x.ogsnmm-c
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3.0000 60000 60000 90000 12000 30000
0900 Sobdn  Tembo  jenge  1sToo  imed  1ohop
59044 35216 36220 3151 24691 18586 6K.001
i lws 1em (s Lsem LSis 20m
26513 21465 21465 465 19302 13051 26513
B OGME W O BE BR 8RR

1 09999 0.7052 1.008 0.4392 9999 0.6RO% 05177 091 07038 0.4R92 0.7084 0.6R8S 0.2198% 0.2643
70 770 09994 05957 09936 08027 00777 01671 0.9890 5411 0.8474 6560
08549 09271 09469 0.9987 09687 0.9403 09739 0.8596 0.92¢ 0.6745
=777.0 T17.0 0.2556 02978 0.5787 0.4945 03031 0.1808 07771 0.7825
-777.0 T77.0 ).9560 09723 0.8609 ). 7830 4682 02524 0.0565 00151
7o 170 09409 09926 03575 U4s32 05457 09999 OG0 064D
7710 70 710 7770 0.5056 0.3461 770 7.0 0.2962 0.0525
7770 ~T77.0 TI70 7770 0.8841 0.6953 TI70 7770 04348 00575
~777.0 ~777.0 -7717.0 =777.0 0.9679 0,933 -7717.0 1770 0.8847 0.7089
=777.0 =777.0 =770 =770 =777.0 01212 =770 =770 =777.0 02231
~777.0 =777.0 =770 ~777.0 =770 00300 =770 ~777.0 =770 0.1619 =777.0
=77 =777.0 =771.0 T77L =771.0 0. =771.0 =777.0 =771.0 0.6192 =7717.0
Location,Season: India, ANNUAL Regression borms; Location,Season: South America Offshore, ANNUAL Regression borms;
= Tneeraction Linear Quadati = Tneeraction Linear Quadati
Predicumd: 1log Y s eraction Quadratic: Predicumd: 1log Y s eraction Quadratic:

o 7 hmic ar oteraction Quadratic o 7 hmic ar oteraciion Quadratic
Bin minimum: 20 4: Lincar ®L Intcracti ithe Bin minimum: 20 4: Lincar L It L ithmi
Samplur 75 13: NCAPE', CCN, WCIY (optimal) Samplur 126 13: NCAPFE', log,(OCN, WCI¥ (optimal)

Regression Number: Regression Number:
1 2 3 4 5 6 7 3 ) 10 1 12 13 1 2 3 4 5 6 7 3 ) 10 1 12 13
Multcollinearity: Multcollinearity:
aN NuN 0.1934 03793 0.2294 0.0655 09953 09700 09965 0.9975 02110 NaN NuN D.0EY 0.0595 00882 0.9950 0.8652 09961 0.9985 00824
777 7" 0.2592 06653 0.278¢ 0.1517 0.9950 0. 09974 0.9988 u 2828 =177 7 0.0134 0.0049 0.026! ). 0.9439 09948 0.9957 1297
1774 01406 0.7886 0,117 0.121 0.8986 09366 09937 0.999%9 \487 =777 7.0 0.0692 0.0599 0.0 0.8150 0.9962 0.92¢ 9967 .9999 167
2774 777. 7771 777 09555 09624 09746 09769 1774 7. 774 771 777 0.8681 09288 09376 08733 O8I0 7.
=777 =772 =777 =777 0.9951 0.9465 0.9967 0.9969 = 7 £ =777 =777 =777 =777 =777 =777 0.9953 0.893: 0.5960 0.996% 0.9969
=TT =777 =TT =777 0.9945 06441 0.9961 0.9969 =777 =777 =177 =TT =777 =TT =777 0.9951 0.9961 03010 0.99514 0.9959
7774 =777 =772 -7771 -771.0 ~7770 09637  0.9903 7774 -177 ~177.1 7774 =777 =772 -7771 =7770  -T710 7770 09412 9902
TT7. =777 =777 =777 =T77.0 =777.0 09684 0.9952 =777 =777 =777 =771 =777 =777 =777 =T77.0 =771.0 =777.0 .99 09716 i
~7774 ~7771 17 -7 -1717.0 ~7770 09930  0.999% ~T770 ~777.4 ~7774 ~777 ~7771 17 -7 -1717.0 ~TIT0 -T170 09969 9999 |
7771 T 770 S0 Oona 77 777! T 77 D mu b 7m0 qpb 770 S0 09Wsa X
=TT T2 =77 =777 =T77.0 7770 =777.0 0.9908 =777 =777 =77 =TT T2 =77 =777 =T77.0 =777.0 7770 =777.0 09542 £
=774 -7 =TT =177 =0 =170 170 09998 =77 77 =17 =774 =772 =TT =177 =0 =-T70 =170 77 999
R ,Ru,"
0.3389 03558 3207 0383 03470 03654 03854 0.4061 3453 0.0547 0.2463 . 1 0.3903 04791 0.3275 0409 04524 04521 04746 04753 04272
03110 03286 02920 03294 02894 03094 03003 02912 3177 00471 02402 00972 03753 01589 03110 03799 04238 04284 04339 04196 04131
Individual R
0.1893 03437 02078 () 1333 ﬂ 1!93 0.1893 0.3437 0.1893 0.1893 02078 0.054 0.24¢ 0.1044 0788 0. 0.0823 () ()“7 ﬂ o788 0.0788 0.1707 00788 0.0798 00823
02722 0.167: 0.2638% 438 02722 02722 01672 02722 02722 02722 =772 =774 =770 0.1721 0. 0.0759 463 01721 01721 0.0603 0.1721 01721 0.2463
00038 0291 0.0X46 U LIU U.D(IJH 0.0U3E 02919 00038 0.0038 Vo6 - ~7T74 ~177.0 0.106: 0, 0.107: U um 0.1063 0.1063 0.1374 0.1063 0.1063 0.107
=777 =771 =772 =773 03437 02078 02078 03437 0.3437 =77 = =774 =177 =777 = =777 =773 0.1707 0.0823 0.0823 01707 01707 -777.
=777 =777 =77 =777 0.1673 0.2638 0.2628 0.1673 01673 =777 = =177 =777 =777 = =TT =777 0.06( 0759 B 0.0603 0603 =777
77 | 77U 7771 02919 00046 0.0046 02919 02919 777 g 7 7.1 77 77U 7771 0.1374 0.1073 01073 01374 0.1374 777
=771 = =777 =777 =T77.0 =777.0 =777.0 02078 0.2078 =777 - =774 =777 =774 = =777 =777 =T77.0 =777.0 =777.0 0.0823 0.0823 =777
=TT = =TT =777 =T77.0 =7T77.0 =777.0 0.263% 02638 =777 = =7774 =17 =TT = =TT =777 =T77.0 =7T77.0 =777.0 0.0759 0.0759 =777
e U -I0 -TI0 T30 70 00046 00046 77T T -0 gm0 -I0 U -0 70 ST 7770 010 1073 771
T 770 ST -TI70 T0 S1700 7710 01333 777 I 1IN 77 70 STI0 -7I0 -TI0 ST0 1700 <3710 0047 <77
Tre - S Cmin 0 Tmio 1m0 70 024 17T Do Tmre Trma S im0 SmTd Ime mTo 1100 1m0 02363 77
777 D mu b gm0 T om mie gousz 77 777 70 T D s b gm0 T om0 mie Oles 77
Parameler cstimates, b,
0323’ 0.2841 0.2662 0.3508 ~0.343 0.2893 02832 2340 02078 3764 0.2798 ~2.087 03174
0.091 0.3939 0.460° -1913 =2036 04196 =772 0.0881 0.2801 0.4352 1.4200 04280
0.238: 0,01, 0,0648 18,785 00393 g 0,193 0434 0.36; 88119 377
=777 77 777 5971 =777 7778 =777 . 7. —L.043 =777
X T770 0.7895 & X 25479
3 T 1.1470 177.( g g -0.143 177
X 777 ZogsT 777 X X 0080 777!
& 7770 0.5538 7 & . 0852 7
T77 ~10.10 177.( X -5.859 177.(
=3 777, ).466 7 - = x 0.0243 7
=777 7.0 = 777 03778 777 =777 = =177.0 TI70 -0.077 777
g 7.1 g 77 7771 9207 1774 g | 77 7771 o 70 3.595 774
Regression Constaant, by Regression Constan, by

—46c-15 -40c-15 -36c-15 —46c-15 -460-15 -46e-15 -Sle-15 —47e-15 -47e-15 —4Bo-15 —450-15 13e-13 —4Tc-15 12c-14 12e-14 20e-15 12e-14 1214 llo-14 14e-15 1214 9015 1014 540-15 -12e-13 lle-14
Mean Square Error Mean Squate Error

0. 5733 0.7664 10103 0.6889 06713 0.6972 07079 06705 0.7105 0.6908 06996 0.7087 06822 . 9!2! 0.7597 0.5027 0.6246 03410 0.6889 0.6161 0.6200 0.5751 0.5755 0.5660 0.5803 0.5868
Viegh Vot Computed F-8 uusuc et Computcd F-Slatistic

L EXJD 10000 1.0000 3.0000 3.0000 3.0000 6.0000 6.0000 6.0000 9.0000 12,000 3.0000 10000 1.0000 3.0000 3.0000 3.0000 6.0000 6.0000 6.0000 9.0000 12,000 3.0000

F3.000 73,000 73.000 7| GI]() 71.000 71000 TLO0O 68.000 68.000 68.000 650060 62.000 71.000 124 DD 12* 00 124.00 122.00 122.00 122.00 119.00 119.00 119.00 116.00 113.00 122.00

11231 23543 0.2403 12.13: 13.074 11711 1L175  705%0 60241 6.5218 4.5291 35337 12487 1843 40522 14.463 26035 Y3746 19808 26955 13763 16.385 16366 11645 85325 30.338
Theomto F-Stastls (=0.10005001) ﬂwuruml F—swusuu (G=0.10005001)

27788 21625 |(\11 2.162% 21625 1.8626 1.8626 1.8626 1.7206 1.6537 21625 1 1292 21292 21292 21292 1.8242 1.8242 1.8242 GREQ 6046 21
30720 I a7 ame amue 2nw 2mm Zaw 2o Lo 2 ing o : 9175 z i g 2em e 2ume Zlme 21 1558 1§ ?
69953 .07 l"ﬂﬂﬂ 4,070 3.0795 0795 30795 26932 855 A.0700 6.8437 6.8137 2.9462 3.9 39462 39162 29571 29571 29571 25639 3
t-test: Significance of b, (probability hat, e mam vl of il yedils ol o asttan ‘parameter L-valus) Two-sided (-test: Slyuﬁum.c .,n, (pmh-lluhly hat. the absolute value of & random variate e gt
09999 l\%ﬁl 33 6 699 03970 0.1379 0.0985 0.9661 09900 N.9999 9995 06233 .9999 D.9965 0.7485 0.4105 4241 ). B456
Tia 09979 3485 9947 93 0.2882 0.5944 04508 9968 777.0 Tia 7770 0.9999 04508 09977 0S99 0700 09998 06!61 07070
-777.0 0.2649 0.6508 0.0825 3 0.7600 04752 0.6529 0.2443 -277.0 -777.0 =777.0 0.9999 019 0.9999 0.9998 0.9992 0.6604
=177.0 =177.0 =777.0 =777.0 0.0849 0.5200 05618 -777.0 =177.0 =177.0 =770 =177.0 =777.0 =777.0 =T77.0 0.1022 0.1142
—777 9 -777.0 1770 -777.0 0.5294 0.1781 02918 77.0 -777.0 —777 9 1770 77740 1770 -777.0 -773.0 09912 0.8932
7770 =777.0 =777.0 =772.0 04617 06708 0.4133 =777.0 =777.0 7770 =771.0 =777.0 =777.0 =772.0 =777 0.999% 01182
- "ﬂ.{l -177.0 -777. 7724 7770 01083 0419 1770 2770 - "ﬂ.{l -177. -177.0 -777. 7724 770 7770 02107
T 1 770 777.0 7770 00423 02574 7770 777.0 T 770 1 770 777.0 770 7770 09922
-7T' ﬂ =T77.0 =777.0 =777.0 =777.0 02226 0.6565 =777.0 =777.0 -7T' ﬂ =777.0 =T77.0 =777.0 =777.0 =777.0 T —"77 0 08065
=770 ~777.0 =17 =770 -777.0 04419 =177.0 =777.0 =770 =770 ~777.0 =170 ~777. T77.0 =177 -7177.0
—7'!'7 ﬂ -777.0 =-777.0 =777.0 =777.0 =777.0 0.2434 =777.0 =777.0 —7'!'7 ﬂ =177.0 -777.0 =-777.0 =777.0 =777.0 =T77.0 =771.0 —777 0 =777.0 ).
=T770 =777.0 =T77.0 =T77.0 =771.0 0.6799 =777.0 3770 777.0 =T770 =777.0 T77.0 ~777.0 =T77.0 =711.0 =T77.0 =771.0 01753 7770
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Regression Forms:
Tneeraction 9; ner Quadesic
6 Qudralic 0: Ineraction Quadratic

3
15 Cinea feracion &mmc.x.ogsnmm-c

Regression Forms:
1: NCAPE 5 Tntcraction
2 6 Quadralic

Location, Scason: Warm Pool, ANNUAL
Predictnd: 1log Y’
Bin winimuc: 20

Location,Season: United States, ANNUAL
Predictnd: 1log Y’
Bin winimuc: 20

9 mear adratic

3
15 Cinea feracion &mmc.x.ogsnmm-c

mic
Lincar,Interaction

mic
Lincar,Interaction

Samples: 180 13: NCAPH!, log,,OCN, WCIY (optimal) Samples: 161 3: NCAPH, log,,CCN, WCD (optimal)
Regression Number: Regression Number:
1 2 3 4 5 6 7 3 9 10 1 2 13 1 3 4 5 6 7 3 9 10 1 2 13
Multcollinearity: Multeollinearity:
NaN NuaN NaN 0.1353 07978 0.1012 0.15¢ 09898 09248 08785 09923 0.9966 Q.06 0.008:
=777 =774 =177 0.1212 07355 0.1188 0.1148 09943 0.99%) 0.1123 0.011¢
~777.6 =7774 =17 n.2109 0.5802 0.17 0.228 09968 9999 0.1R6f 0.006]
7 77 7] 77 vl 0T 03105 0S121 7T 77
A7 =7774 =772 - =770 =777 =700 9924 0.9925 =777 =777
=774 =777 =774 =772 =17 =777 0.9883 0.9887 = =17
~7774 =177 =TT =777 =777 =777 09302 9829 = =777
970 Gmo e Smn Smig 7 09708 09%8 = e
37 7.4 774 . 77 0.9964 0.9998 .
7.\ ~7774 . 7.\ T77.0 0.9685 .
7.0 . 7.0 772.0 0.9955 -~ .
g =17 = =TT =TT =777. ).999% v =TT
alj
L0710 0.0700 0.1489 0.4479 0.1964 0.4438 03830 05237 0.5714 04610 0.5085 0.5879 06347 0.6654 06238 06814 07014
UDSSS  0USHS 01441 G485 0827 0433 03725 Oa%S 03306 0418 0491 O3W00 06205 06523 060l 0662 06712
0. 0.158¢ 0.13: 0.1165 5035 0.3742 0.3465 () 4033 0.4033 0.4033 U M]?l
0. 0D.061: 0 00394 3957 0. 0.23 0.1910 0.1910
0., 00108 0. 0.1637 L83 0. 4, 9.6004
< -777. =] 0.1580 177. = 05035
- -777 = 0.0614 17 = 0.3957
00109 0183
=7 =774 - = =777 = 0.1334 = . 03742
7 = Z = I S 00171 = X 0097
-7 B X = -1770 -1 0.173¢ e I 0.0001
=7 =77 - - =777 = ~777.0 = X ~777.0
7 377 = 77, 710
7 -7 ~177.0 - 7770 7770
Paramoler estimales, b,
266 0.2¢ = 0.5691 07735 0.5481 0.5031 —4).253 )31 0.7300 05458 3258 0.6435 05933 13150 0.7208 0.2343 1.7246 06171
777, =774 =770 0,104 -0.325 0.0373 0.1759 0.6292 0.5919 0.5698 0.1439 4756 0.3666 0.4952 29542 0.736° 5264 29088 04632
7 7L 7. .5’ 291 0572 ). 524 09638 0010 4147 .536 2013 0. 00736 02551 6494 04772 6,441 00778
i 0 m0 70 -TD T T OiEs  01s;2 0293 0315 17 0 7D 70 -0 0195 006 001  vzss 71,
=7 A =77 =771 =777 =TT =777 —1.0R0D 0.8 0.3506 .2097 =] . T3 T72. =777 —0.783 -0.290 .223 —1.064 =
7 Db e Cime Cimo o Tos0s 0987 06ao7  a3ssk 77T X D TN TTTD 2661 633 003 2368 7
7 S R R 7o - . N 5 Y S U X 70 0 0 -7iie 70 0084 77
=7 & =777 =TT = =TT =770 =777 =777 =1.041 ).748 =777 2 =TT =770 =T77.0 =777 =777 ~0.196 =777
-7; A 7.1 .4 T77L ~T77.! 777 T77L -0.823 20.513 177 .4 T77L ~T77.! 7770 T77.0 7770 6.7204 177
=7 & =177 =TT =772 =777 =771 =777. =771.0 —.164 =777 .4 =772 =777 =777.0 =771.0 =777.0 =770 =777
-7 =772 =74 - =T ~777. =777, =774 =170 0.0943 =17 =74 =T ~777. =170 =777, =770 =170 77
7774 7 7. 7774 g .| 7771 T 7771 . 1433 177 7774 7 7. 7774 g . 777U o 0 770 70 177
Regression Constaan, b, Rogression Constaan, b,
64c-15  62c-15 64c-15 5915 66e-15 S¥e-15 6le-15 3Te-15 73e-15  SSe-15  64e-15 30015 57e-15 59c-15 4.6c-15 Sle-15 Sle-15 5215 S50c-15 5515 6le-15 26e-14 Sle-15 27e-14 -37e-13 46e-15
Mean Squate Error Mean Squate Error
09341 DY351 0.355% 0.5614 03172 0.5656 06274 0.5300 0.5064 0.4962 05014 0.4593 0.5481 0.6575 07716 1.0062 0.395% 0.3906 0.5008 04199 03794 0.3476 0.3908 03375 03227 03909
Viegt Vet Computed F-Statistic v,,:. Vo Compuu:d F-Slatistic
10000 10000 1.0000 3.0000 000 3.0000 3.0000 6.0000 6.0000 6.0000 49.0000 12,000 3.0000 1.000( 00 10 3.0000 3.0000 6.0000 6.0000 6.0000 9.0000 12.000 3 (’IWXI
178.00 178.00 178.00 176.00 176.00 176.00 176.00 173.00 173.00 173.00 170.00 167.00 176.00 159 OD !59 'I[? 159.00 157.00 .00 157.00 157.00 154.00 154.00 154.00 151.00 | 48.00
13615 13411 31144 47.599 14.346 46.819 36427 27454 20.U68 31.286 20.770 18.555 50,180 84,309 0.0078 82408 34,192 54.158 74672 44608 51048 42.561 35,893 28976 lﬂ ll).!
Theoretical F-Statistic (p=0.10,0.05,0.01) Theorsiel F-Statisic (p=0.10,0.05.001)
2733 2733 279 2031 2081 20131 LUISI LS8 1808 L8084 16686 1SESS 24181 27373 273m 27T 2189 2089 21189 LIS L8127 L8121 L8127 1673 1906 20189
3.8942 3.!‘ J.KMZ 2655 26559 26559 21513 21513 21513 19353 1 8105 26559 3.9006 3.9006 3.9006 2.662] 26621 26621 26621 21579 21579 21579 1.9423 18181 2.6621
794 S £941 29077 29077 29077 25132 2028 018 ﬁ,7969 5.7969 ﬁ 7969 2.9088 3 w!ﬂ 23,9088 2.9088 291 29211 29211 25268 23070 39088
um the absolute value of a random variate will be less than p'.\r.mml:r t-valusy L : a
1.0000 0.7608 0.2881 0.4288 1.0000
09719 9244 O4aS  OLR0E 0947
00t 0.9988 0.9956 1.0000
T17.0 04266 0.7565 078 7.0
T77.0 0.9982 03166
=777.0 1.0000 0.6503
70 7770 03585
~T77.0 7770 09816
-777.0 =777.0 0ABER
=777.0 =770 =77
=777.0 ~777.0 =770 A6 =777.0 7770 771 0.3940 =770
] 7770 a6 0995t 7t Zmra oo 70 ose3  Crro
Location,Season: South Africa Offshore, ANN| Regression borms; Location,Season: Northern Hemi. (LonmwmsL A Regression borms;
= Tneeraction Lincar,Quadratic ‘rAPﬁ 5: Linear Quadati
Prodictnd: 1log Y’ i 16:Tfrstion Qs adredc Prodictnd: 1log Y’ reraclion,Quadratc
o 7 hmic ar oteraciion Quadratic wcu ar oteraciion Quadratic
Bin tinimua: 20 : Lincar o Tt Logarithmic  Bin winitmua: 30 : Lincar Logarithrm
Samples: 93 13: log,)NCAPE, log.;CCN, WCI¥ (optimal) Samples: 544 13 hCAPl\ log gCCN. WCD (optimal)
Regression Number: Regression Number:
1 2 3 4 5 6 7 3 9 10 1 2 13 1 2 3 4 5 6 7 3 9 10 1 2 13
Multeollinearity: Multeollinearity:
NuN 00731 0.7865 0.0740 0.0400 0.9884 08942 09898 0.9979 Q32 NaN NuN 0.1040 07604 0.0998 0.1040 09861 0.9150 07870 09903 0.9951
377 7 0.3069 03270 ). 0.3276 09819 0.9402 09951 0.9957 0.3238 =177 7 0.0109 03855 0.0230 0.004) 0.9882 0.9447 09889 0.9907
n.3039 0.7599 0.1977 0.3448 08417 08351 0.9967 0.999%9 0.3403 =777 7.0 01127 0.708 0.1 0.1047 0.7059 0.9925 09301 0.9939 0.999%9
bl 70 TI0 71D 089S 09476 093 09wz 77 774 70 9T 70 70 70 O70ES  OSI 098 o7 07971
=777 =777 =777 =777 09878 0.8407 09914 09916 =777 =777 =777 =777 =777 =777 =777 09876 0.8852 0.8945 0.9928 0.9928
=777 =777 =TT =777 0.9768 05568 09913 0.9921 17 £ =777 =177 =777 =777 =TT =777 0.9887 0.9925 04195 0.9901 0.9906
gmo by o 1o 770 094 0an I o Gmn o mu Cmid 7mb b 70 -0 -7i7h 0933 09798
=771 =777 =777 =777 =T77.0 =777.0 09518 0.9751 —77 i =777 =777 =771 =777 =777 =777 =T77.0 =771.0 =777.0 0.8953 0.9553
Sre Tome Tamo Cmmh S0 Ti0 09 990 77T E T Tme Tngn Tame mT0 ;0 CmT 7770 09837 0999 7T
777 frc I 1 I L e S 7 R R T 777! T 77 a0 b I b qb oo 09s% T
773 77 170 -7 -T7I0 1770 -7770 09600 777 2774 2770 T 0 7720 -TI0 <700 -7970 7710 <7700 Q8’6 777
Tma Tmn s Cmin o - 7T 0% 17 -77 I TE0 STIN TN 7D e ShT0 170 70 G99 77
RR,
R,y
DAY 02721 03668 049K 04TI  OSNT 04862 05629 0GR OSI0S DOSTA D207 02121 OST6 DUSI0 0325 DSI6  O6LDT  OSKS  OS9N 06296 0TS 06419
03921 02476 0.3454 04788 0.4372 0.4980 0.4504 05155 0.5425 0.4940 0.0858 02003 0.2106 0.5752 0.1483 0.5219 0.5944 0.6064 0.5847 0.59a5 06234 0.7060 06399
Individual R'
0.0104 0.1887 00114 0.0052 ﬂ (HM 0.0104 0.1887 00104 0.0104 0.0874 0.201 0.2121 0.112 0.1329 0.0966 0087 0.1124 0.1124 0 |!Z‘) 0.1124 01124 0.1124
62951 00046 01480 04100 02951 02951 00046 02981 02051 ST AT 370 0083 00316 003 D 0053 00533 00513 003 02017
031 02599 03235 0.297¢ 03117 0.259%9 03117 03117 - ~7T74 ~177.L 0.2244 0,0393 0.2307 0.212] 0.22¢ 00!93 02244 02244 Q.
=777 =771 T77. =773 0.1887 00114 0.1887 0.1847 - =774 =177 =772 =771 =772 =730 0.1329 0.0966 0.1329 0.1329 =777.
=777 =777 =TT =777 0.0046 0.1480 0.0036 0.0046 - =177 =777 =777 =777 =TT =777 0.0576 00212 0.0876 0.0576 =777
77 | 77U 7771 0.2599 03238 02599 0.259%9 g 7 7.1 g | 77U 7771 00393 02307 00393 0.0393 T
g - I L 11 Z70 004 0dila > 70 -777 X 70 e -0 ST70 00%6 0096 77
Zmma C Imin mrn o Cmio Zmio oiasa alao 2 Zma T X Iin mrn Cmo 1 s S S
Jme Cmn Sy e mine T7o 03zs 03 e S X o o Smn 70 02307 02307 7
77 g QO R ' O,y X} 7770 7770 00052 I 17 X B Oy X ) 7770 7770 00874 771
T Tmme o Cmb o S0 Tmb 044t Tme o T Cmrn T Tio Tmao oaol7 7o
T g 7L T J77.0 T770 T70 02971 377 7. 7L T J77.0 770 T770 T70 02121 T77.4
Parameler cstimates, b,
01126 1.8230 0.1830 00]4! 09210 24305 0.4707 l 3253 0.5998 0.0686 12335 1.8204 05117
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Location,Scason: Southern Hemi. (Lonﬁmﬁs;‘ Rogrestion Porms; Location.Scason: Northern Hemi. (umnn,uA Regression Forms:
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Appendix A.3 Data availability
The convective feature (CF) database is accessible online and may be downloaded via
public http or anonymous ftp from the University of Utah server

(ftp://trmm.chpc.utah.edu/pub/trmm/level).3Daily, six-hourly data from the ERA-Interim

Reanalysis Modern Era Retrospective Analysis for Research and Applications (MERRA) were
downloaded from the European Centre for Medium Range Weather Forecasts online server

(http://apps.ecmwf.int/datasets/data/interim_full_dai&nd Global Modeling and Assimilation

Office server l(ttp://gmao.gsfc.nasa.gov/meiaespectively. Level 2 orbital data from the

Tropical Rainfall Measuring Mission satellite are available National Aeronautics and Space
Administration (NASA) servers via the Goddard Earth Sciences Data and Information Services
Center (http://disc.sci.gsfc.nasa.gov/ITRMM). Information about the GEOS-Chem chemical

transport modelfww.geos-chem.ongwith the online TOMAS aerosol microphysics module is

available onlinelfttp://wiki.seas.harvard.edu/geos-

chem/index.php/TOMAS aerosol microphy3icBata from the GEOS-Chem simulations

analyzed during this research are available by special requésiz(@atmos.colostate.gdu
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